Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per  

E-Print Network [OSTI]

Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

Phillips, David

2

Ethers have good gasoline-blending attributes  

SciTech Connect (OSTI)

Because of their compatibility with hydrocarbon gasoline-blending components, their high octane blending values, and their low volatility blending values, ethers will grow in use as gasoline blending components. This article discusses the properties of ethers as blending components, and environmental questions.

Unzelman, G.H.

1989-04-10T23:59:59.000Z

3

Interaction blending equations enhance reformulated gasoline profitability  

SciTech Connect (OSTI)

The interaction approach to gasoline blending gives refiners an accurate, simple means of re-evaluating blending equations and increasing profitability. With reformulated gasoline specifications drawing near, a detailed description of this approach, in the context of reformulated gasoline is in order. Simple mathematics compute blending values from interaction equations and interaction coefficients between mixtures. A timely example of such interactions is: blending a mixture of catalytically cracked gasoline plus light straight run (LSR) from one tank with alkylate plus reformate from another. This paper discusses blending equations, using interactions, mixture interactions, other blending problems, and obtaining equations.

Snee, R.D. (Joiner Associates, Madison, WI (United States)); Morris, W.E.; Smith, W.E.

1994-01-17T23:59:59.000Z

4

Renewable Oxygenate Blending Effects on Gasoline Properties  

Science Journals Connector (OSTI)

Renewable Oxygenate Blending Effects on Gasoline Properties ... National Renewable Energy Laboratory, Golden, Colorado 80401, United States ... Energy Fuels, 2011, 25 (10), ...

Earl Christensen; Janet Yanowitz; Matthew Ratcliff; Robert L. McCormick

2011-08-16T23:59:59.000Z

5

A new blending agent and its effects on methanol-gasoline fuels  

SciTech Connect (OSTI)

The major difficulty encountered with the use of methanol-gasoline blends as SI engine fuel is their tendency to phase separation due to the hydrophilic properties of methanol. Phase separation can lead to some utilization problems. Using a blending agent for the methanol-gasoline system is the common approach taken towards solving the phase separation problem. In this study introduces fraction of molasses fuel oil as an effective new blending agent for methanol-gasoline fuel.

Karaosmanoglu, F.; Isigiguer-Erguedenler, A.; Aksoy, H.A.

2000-04-01T23:59:59.000Z

6

Proton NMR characterization of gasoline–ethanol blends  

Science Journals Connector (OSTI)

Abstract Nuclear magnetic resonance (NMR) can be conveniently used for accurate measurement of water and ethanol concentrations in gasoline–ethanol fuel blends. The spectra also contain information on proton exchange rates. In addition, NMR pulsed-field-gradient diffusion measurement allows estimation of ethanol–water clusters and viscosity of the fuel blends.

A. Turanov; A.K. Khitrin

2014-01-01T23:59:59.000Z

7

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

8

Blended Straight-Run Gasolines with Composite Additives Containing Watery Ethanol  

Science Journals Connector (OSTI)

Cranking and antiknock properties of gasoline-alcohol blends based on straight-run gasoline with additives containing watery ethanol and other ... components are studied. The composition of the gasoline-alcohol b...

Yu. O. Beiko; A. P. Pavlovskii; O. A. Beiko

2014-01-01T23:59:59.000Z

9

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines*  

E-Print Network [OSTI]

Fuel Puddle Model and AFR Compensator for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up to 85% ethanol for gasoline-ethanol blends is, thus, necessary for the purpose of air-to-fuel ratio control. In this paper, we

Stefanopoulou, Anna

10

The Effects of Ethanol/Gasoline Blends on Advanced Combustion Strategies in Internal Combustion Engines.  

E-Print Network [OSTI]

??This dissertation presents the effects of blending ethanol with gasoline on advanced combustion strategies in internal combustion engines. The unique chemical, physical and thermal properties… (more)

Fatouraie, Mohammad

2014-01-01T23:59:59.000Z

11

Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in  

E-Print Network [OSTI]

1 Puddle Dynamics and Air-to-Fuel Ratio Compensation for Gasoline-Ethanol Blends in Flex-Fuel Engines* Kyung-ho Ahn, Anna G. Stefanopoulou, and Mrdjan Jankovic Abstract--Ethanol is being increasingly flexible fuel vehicles (FFVs) can operate on a blend of gasoline and ethanol in any concentration of up

Stefanopoulou, Anna

12

Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

2014-01-01T23:59:59.000Z

13

The relationship between crude oil and gasoline prices  

Science Journals Connector (OSTI)

This study investigates the dynamic relationship between crude oil and retail gasoline prices during the last 21 years and determines ... that date, the results show that gasoline prices include higher profit mar...

Ali T. Akarca; Dimitri Andrianacos

1998-08-01T23:59:59.000Z

14

Effect of use of low oxygenate gasoline blends upon emissions from California vehicles. Final report  

SciTech Connect (OSTI)

The objective of this project was to investigate the emissions effects of low-oxygenate gasoline blends on exhaust and evaporative emissions from a test fleet of California certified light-duty autos. Thirteen vehicles were procured and tested using four gasoline-oxygenate blends over three test cycles. The four gasoline blends were: Methyl Tertiary Butyl Ether (MTBE), Ethyl Tertiary Butyl Ether (ETBE), and 'match' and 'splash' blends of ethanol (in the 'match' blend the fuel Reid Vapor Pressure (RVP) is held constant, while in the 'splash' blend the fuel RVP is allowed to increase). Hydrocarbon and carbon monoxide exhaust emissions were generally reduced for the oxygenated blends, the exception being the 'splash-blended' ethanol gasoline which showed mixed results. Older technology vehicles (e.g., non-catalyst and oxidation catalyst) showed the greatest emissions reductions regardless of gasoline blend, while later technology vehicles showed the smallest reductions. Evaporative emissions and toxics were generally reduced for ETBE, while results for the other blends were mixed.

Born, G.L.; Lucas, S.V.; Scott, R.D.; DeFries, T.H.; Kishan, S.

1994-02-01T23:59:59.000Z

15

A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which  

E-Print Network [OSTI]

of feedstock; and a blender unit which blends feedstock and gasoline stock (at no loss). (Note that "ONA blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production in feedstock (maximum 200,000 bbl/day) and produces gasoline stock with 98 ON at a rate of .5 bbl per bbl

Galvin, David

16

Properties, performance and emissions of biofuels in blends with gasoline.  

E-Print Network [OSTI]

??The emission performance of fuels and their blends in modern combustion systems have been studied with the purpose of reducing regulated and unregulated emissions, understanding… (more)

Eslami, Farshad

2013-01-01T23:59:59.000Z

17

Organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends  

E-Print Network [OSTI]

The organic gas emissions from a stoichiometric direct injection spark ignition engine operating on ethanol/gasoline blends have been assessed under warmed-up and cold idle conditions. The speciated emissions show that the ...

Kar, Kenneth

18

Particulate Matter Emissions from a Direct Injection Spark Ignition Engine under Cold Fast Idle Conditions for Ethanol-Gasoline Blends  

E-Print Network [OSTI]

The engine out particular matter number (PN) distributions at engine coolant temperature (ECT) of 0° C to 40° C for ethanol/ gasoline blends (E0 to E85) have been measured for a direct-injection spark ignition engine under ...

Dimou, Iason

19

Performance of a spark ignition engine fueled with methanol or methanol-gasoline blends  

SciTech Connect (OSTI)

Engine torque and specific energy consumption of an automotive engine were studied under steady state condition using gasoline, methanol gasoline blends and straight methanol as fuel. At first the engine was run without any modification. Next the diameters of metering orifices in carburetor were modified to give the same excess air factor regardless of fuel type under each fixed engine operating condition. Finally the engine was run with 15% mixture methanol in gasoline by volume using the carburetor modified to have approximately 10% larger fuel flow area than the production carburetor. From the results of this study the effects of using methanol on engine torque and specific energy consumption can be explained on the basis of change in stoichiometry caused by the use of methanol.

You, B.C.

1983-11-01T23:59:59.000Z

20

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

22

Crude Oil and Gasoline Price Monitoring  

Gasoline and Diesel Fuel Update (EIA)

What drives crude oil prices? What drives crude oil prices? November 13, 2013 | Washington, DC An analysis of 7 factors that influence oil markets, with chart data updated monthly and quarterly Crude oil prices react to a variety of geopolitical and economic events November 13, 2013 2 price per barrel (real 2010 dollars, quarterly average) Low spare capacity Iraq invades Kuwait Saudis abandon swing producer role Iran-Iraq War Iranian revolution Arab Oil Embargo Asian financial crisis U.S. spare capacity exhausted Global financial collapse 9-11 attacks OPEC cuts targets 1.7 mmbpd OPEC cuts targets 4.2 mmbpd Sources: U.S. Energy Information Administration, Thomson Reuters 0 20 40 60 80 100 120 140 1970 1975 1980 1985 1990 1995 2000 2005 2010 imported refiner acquisition cost of crude oil

23

Selective catalytic reduction of nitric oxide with ethanol/gasoline blends over a silver/alumina catalyst  

SciTech Connect (OSTI)

Lean gasoline engines running on ethanol/gasoline blends and equipped with a silver/alumina catalyst for selective catalytic reduction (SCR) of NO by ethanol provide a pathway to reduced petroleum consumption through both increased biofuel utilization and improved engine efficiency relative to the current stoichiometric gasoline engines that dominate the U.S. light duty vehicle fleet. A pre-commercial silver/alumina catalyst demonstrated high NOx conversions over a moderate temperature window with both neat ethanol and ethanol/gasoline blends containing at least 50% ethanol. Selectivity to NH3 increases with HC dosing and ethanol content in gasoline blends, but appears to saturate at around 45%. NO2 and acetaldehyde behave like intermediates in the ethanol SCR of NO. NH3 SCR of NOx does not appear to play a major role in the ethanol SCR reaction mechanism. Ethanol is responsible for the low temperature SCR activity observed with the ethanol/gasoline blends. The gasoline HCs do not deactivate the catalyst ethanol SCR activity, but they also do not appear to be significantly activated by the presence of ethanol.

Pihl, Josh A [ORNL] [ORNL; Toops, Todd J [ORNL] [ORNL; Fisher, Galen [University of Michigan] [University of Michigan; West, Brian H [ORNL] [ORNL

2014-01-01T23:59:59.000Z

24

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices  

E-Print Network [OSTI]

Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

Paris-Sud XI, Université de

25

Exhaust particle characterization for lean and stoichiometric DI vehicles operating on ethanol-gasoline blends  

SciTech Connect (OSTI)

Gasoline direct injection (GDI) engines can offer better fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet the U.S. fuel economy standards for 2016. Furthermore, lean-burn GDI engines can offer even higher fuel economy than stoichiometric GDI engines and have overcome challenges associated with cost-effective aftertreatment for NOx control. Along with changes in gasoline engine technology, fuel composition may increase in ethanol content beyond the current 10% due to the recent EPA waiver allowing 15% ethanol. In addition, the Renewable Fuels Standard passed as part of the 2007 Energy Independence and Security Act (EISA) mandates the use of biofuels in upcoming years. GDI engines are of environmental concern due to their high particulate matter (PM) emissions relative to port-fuel injected (PFI) gasoline vehicles; widespread market penetration of GDI vehicles may result in additional PM from mobile sources at a time when the diesel contribution is declining. In this study, we characterized particulate emissions from a European certified lean-burn GDI vehicle operating on ethanol-gasoline blends. Particle mass and particle number concentration emissions were measured for the Federal Test Procedure urban driving cycle (FTP 75) and the more aggressive US06 driving cycle. Particle number-size distributions and organic to elemental carbon ratios (OC/EC) were measured for 30 MPH and 80 MPH steady-state operation. In addition, particle number concentration was measured during wide open throttle accelerations (WOTs) and gradual accelerations representative of the FTP 75. Fuels included certification gasoline and 10% (E10) and 20% (E20) ethanol blends from the same supplier. The particle mass emissions were approximately 3 and 7 mg/mile for the FTP75 and US06, respectively, with lower emissions for the ethanol blends. The data are compared to a previous study on a U.S.-legal stoichiometric GDI vehicle operating on the same ethanol blends. The lean-burn GDI vehicle emitted a higher number of particles, but had an overall smaller average size. Particle number per mile decreased with increasing ethanol content for the transient tests. For the 30 and 80 mph tests, particle number concentration decreased with increasing ethanol content, although the shape of the particle size distribution remained the same. Engine-out OC/EC ratios were highest for the stoichiometric GDI vehicle with E20, but tailpipe OC/EC ratios were similar for all vehicles.

Storey, John Morse [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL

2012-01-01T23:59:59.000Z

26

A short and simple explanation of how oil is converted into gasoline and then brought to  

E-Print Network [OSTI]

A short and simple explanation of how oil is converted into gasoline and then brought to you the products produced from this petroleum, gasoline represents about half of the total product volume

27

Price of Motor Gasoline Through Retail Outlets  

Gasoline and Diesel Fuel Update (EIA)

Prices, Sales Volumes & Stocks by State Prices, Sales Volumes & Stocks by State (Dollars per Gallon Excluding Taxes) Data Series: Retail Price - Motor Gasoline Retail Price - Regular Gasoline Retail Price - Midgrade Gasoline Retail Price - Premium Gasoline Retail Price - Aviation Gasoline Retail Price - Kerosene-Type Jet Fuel Retail Price - Propane Retail Price - Kerosene Retail Price - No. 1 Distillate Retail Price - No. 2 Distillate Retail Price - No. 2 Fuel Oil Retail Price - No. 2 Diesel Fuel Retail Price - No. 4 Fuel Oil Prime Supplier Sales - Motor Gasoline Prime Supplier Sales - Regular Gasoline Prime Supplier Sales - Midgrade Gasoline Prime Supplier Sales - Premium Gasoline Prime Supplier Sales - Aviation Gasoline Prime Supplier Sales - Kerosene-Type Jet Fuel Prime Supplier Sales - Propane (Consumer Grade) Prime Supplier Sales - Kerosene Prime Supplier Sales - No. 1 Distillate Prime Supplier Sales - No. 2 Distillate Prime Supplier Sales - No. 2 Fuel Oil Prime Supplier Sales - No. 2 Diesel Fuel Prime Supplier Sales - No. 4 Fuel Oil Prime Supplier Sales - Residual Fuel Oil Stocks - Finished Motor Gasoline Stocks - Reformulated Gasoline Stocks - Conventional Gasoline Stocks - Motor Gasoline Blending Components Stocks - Kerosene Stocks - Distillate Fuel Oil Stocks - Distillate F.O., 15 ppm and under Sulfur Stocks - Distillate F.O., Greater than 15 to 500 ppm Sulfur Stocks - Distillate F.O., Greater 500 ppm Sulfur Stocks - Residual Fuel Oil Stocks - Propane/Propylene Period: Monthly Annual

28

Correlation between speciated hydrocarbon emissions and flame ionization detector response for gasoline/alcohol blends .  

SciTech Connect (OSTI)

The U.S. renewable fuel standard has made it a requirement to increase the production of ethanol and advanced biofuels to 36 billion by 2022. Ethanol will be capped at 15 billion, which leaves 21 billion to come from other sources such as butanol. Butanol has a higher energy density and lower affinity for water than ethanol. Moreover, alcohol fueled engines in general have been shown to positively affect engine-out emissions of oxides of nitrogen and carbon monoxide compared with their gasoline fueled counterparts. In light of these developments, the variety and blend levels of oxygenated constituents is likely to increase in the foreseeable future. The effect on engine-out emissions for total hydrocarbons is less clear due to the relative insensitivity of the flame ionization detector (FID) toward alcohols and aldehydes. It is well documented that hydrocarbon (HC) measurement using a conventional FID in the presence of oxygenates in the engine exhaust stream can lead to a misinterpretation of HC emissions trends for alcohol fuel blends. Characterization of the exhaust stream for all expected hydrocarbon constituents is required to accurately determine the actual concentration of unburned fuel components in the exhaust. In addition to a conventional exhaust emissions bench, this characterization requires supplementary instrumentation capable of hydrocarbon speciation and response factor independent quantification. Although required for certification testing, this sort of instrumentation is not yet widely available in engine development facilities. Therefore, an attempt is made to empirically determine FID correction factors for oxygenate fuels. Exhaust emissions of an engine fueled with several blends of gasoline and ethanol, n-butanol and iso-Butanol were characterized using both a conventional FID and a Fourier transform infrared. Based on these results, a response factor predicting the actual hydrocarbon emissions based solely on FID results as a function of alcohol type and content is presented. Finally, the correlation derived from data presented in this study is compared with equations and results found in the literature.

Wallner, T. (Energy Systems)

2011-08-01T23:59:59.000Z

29

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network [OSTI]

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

30

Experimental and Theoretical Investigation of the Effects of Gasoline Blends on Single-Cylinder Diesel Engine Performance and Exhaust Emissions  

Science Journals Connector (OSTI)

Experiments presented in this study for gasoline blends and experiments of Bilgin et al. for ethanol blends have been performed in a single-cylinder diesel engine at Karadeniz Technical University, Engineering Faculty, Mechanical Engineering Department, Internal Combustion Engines Laboratory. ... However, to determine the most favorable blend ratio for any vehicle diesel engine, to achieve general results, and to give general recommendations, more systematic experimental and theoretical studies for actual vehicle diesel engines must be performed. ... Union of Chambers of Turkish Engineers and Architects, Chamber of Mechanical Engineer, 1991; Vol. 383, pp 18? 29 (in Turkish). ...

Z. ?ahin

2008-08-16T23:59:59.000Z

31

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

32

Emission Characteristics of a Diesel Engine Operating with In-Cylinder Gasoline and Diesel Fuel Blending  

SciTech Connect (OSTI)

Advanced combustion regimes such as homogeneous charge compression ignition (HCCI) and premixed charge compression ignition (PCCI) offer benefits of reduced nitrogen oxides (NOx) and particulate matter (PM) emissions. However, these combustion strategies often generate higher carbon monoxide (CO) and hydrocarbon (HC) emissions. In addition, aldehydes and ketone emissions can increase in these modes. In this study, the engine-out emissions of a compression-ignition engine operating in a fuel reactivity- controlled PCCI combustion mode using in-cylinder blending of gasoline and diesel fuel have been characterized. The work was performed on a 1.9-liter, 4-cylinder diesel engine outfitted with a port fuel injection system to deliver gasoline to the engine. The engine was operated at 2300 rpm and 4.2 bar brake mean effective pressure (BMEP) with the ratio of gasoline to diesel fuel that gave the highest engine efficiency and lowest emissions. Engine-out emissions for aldehydes, ketones and PM were compared with emissions from conventional diesel combustion. Sampling and analysis was carried out following micro-tunnel dilution of the exhaust. Particle geometric mean diameter, number-size distribution, and total number concentration were measured by a scanning mobility particle sizer (SMPS). For the particle mass measurements, samples were collected on Teflon-coated quartz-fiber filters and analyzed gravimetrically. Gaseous aldehydes and ketones were sampled using dinitrophenylhydrazine-coated solid phase extraction cartridges and the extracts were analyzed by liquid chromatography/mass spectrometry (LC/MS). In addition, emissions after a diesel oxidation catalyst (DOC) were also measured to investigate the destruction of CO, HC and formaldehydes by the catalyst.

Prikhodko, Vitaly Y [ORNL; Curran, Scott [ORNL; Barone, Teresa L [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL; Cho, Kukwon [ORNL; Wagner, Robert M [ORNL; Parks, II, James E [ORNL

2010-01-01T23:59:59.000Z

33

Combustion behavior of gasoline and gasoline/ethanol blends in a modern direct-injection 4-cylinder engine.  

SciTech Connect (OSTI)

Early in 2007 President Bush announced in his State of the Union Address a plan to off-set 20% of gasoline with alternative fuels in the next ten years. Ethanol, due to its excellent fuel properties for example, high octane number, renewable character, etc., appears to be a favorable alternative fuel from an engine perspective. Replacing gasoline with ethanol without any additional measures results in unacceptable disadvantages mainly in terms of vehicle range.

Wallner, T.; Miers, S. A. (Energy Systems)

2008-04-01T23:59:59.000Z

34

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

35

Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline  

DOE Patents [OSTI]

The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

Baker, E.G.; Elliott, D.C.

1993-01-19T23:59:59.000Z

36

Conversion of the straight-run gasoline fraction of high-paraffin oil on a zeolite catalyst  

Science Journals Connector (OSTI)

The conversion of the straight-run gasoline fraction of high-paraffin crude oil into the high-octane gasoline over niobium-zirconium-aluminosilicate catalyst with the ... composition, and performance characterist...

A. V. Vosmerikov; B. Ulzii; Ya. E. Barbashin; L. L. Korobitsina…

2011-03-01T23:59:59.000Z

37

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

SciTech Connect (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

38

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

39

Research on viscosity-reduction technology by electric heating and blending light oil in ultra-deep heavy oil wells  

Science Journals Connector (OSTI)

In the Tahe oilfield in China, heavy oil is commonly lifted using the light oil blending technology. However, due to the lack of light oil, the production of heavy oil has been seriously limited. Thus, a new c...

Mo Zhu; Haiquan Zhong; Yingchuan Li…

2014-07-01T23:59:59.000Z

40

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Effect of two-stage injection on combustion and emissions under high EGR rate on a diesel engine by fueling blends of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol and pure diesel  

Science Journals Connector (OSTI)

Abstract The effect of two-stage injection on combustion and emission characteristics under high EGR (46%) condition were experimentally investigated. Four different fuels including pure diesel and blended fuels of diesel/gasoline, diesel/n-butanol, diesel/gasoline/n-butanol were tested. Results show that blending gasoline or/and n-butanol in diesel improves smoke emissions while induces increase in maximum pressure rise rate (MPRR). Adopting pilot injection close to main injection can effectively reduce the peak of premixed heat release rate and MPRR. However, for fuels blends with high percentage of low cetane number fuel, the effect of pilot fuel on ignition can be neglected and the improvement of MPRR is not that obvious. Pilot-main interval presents more obvious effect on smoke than pilot injection rate does, and the smoke emissions decrease with increasing pilot-main interval. A longer main-post interval results in a lower post heat release rate and prolonged combustion duration. While post injection rate has little effect on the start of ignition for post injection. The variation in fuel properties caused by blending gasoline or/and n-butanol into diesel does not impose obvious influence on post combustion. The smoke emission increases first and then declines with retard of post injection timing. Compared to diesel, the smoke emissions of blended fuels are more sensitive to the variation of post injection strategy.

Zunqing Zheng; Lang Yue; Haifeng Liu; Yuxuan Zhu; Xiaofan Zhong; Mingfa Yao

2015-01-01T23:59:59.000Z

42

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

43

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

44

Causality and volatility spillovers among petroleum prices of WTI, gasoline and heating oil in different locations  

Science Journals Connector (OSTI)

This paper examines the time series properties of daily spot and futures prices for three petroleum types traded at five commodity centers within and outside the United States. Examining five combinations of the spot and futures prices by petroleum type and trading center, the cointegration tests of each of these five groups suggest that spot and futures contracts offer little room for long-run commodity portfolio diversification. In the West Texas Intermediate (WTI) crude-oil group, the VEC model indicates that the New York Mercantile Exchange (NYMEX) 1-month futures price has the upper hand in terms of directional causality and volatility spillovers. In the NYMEX gasoline system, there are bi-directional causality relationships among all the gasoline spot and futures prices, but the spot price produces the greatest spillover. In the NYMEX heating oil system, information transmission and predictability among the spot, 1- and 3-month futures are found to be particularly strong and significant. In the international gasoline spot market, contrary to the world crude-oil market, there is no apparent world gasoline spot leader for the gasoline spot prices.

Shawkat Hammoudeh; Huimin Li; Bang Jeon

2003-01-01T23:59:59.000Z

45

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

46

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

47

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

48

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

49

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion  

Broader source: Energy.gov [DOE]

Almost 2 dozen gasoline fuels, blending components, and surrogates were evaluated in a single-cylinder HCCI gasoline engine for combustion, emissions, and efficiency performance.

50

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect (OSTI)

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

51

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

52

High precision in-cylinder gas thermometry using Laser Induced Gratings: Quantitative measurement of evaporative cooling with gasoline/alcohol blends in a GDI optical engine  

Science Journals Connector (OSTI)

Abstract The first application of Laser Induced Thermal Gratings Spectroscopy (LITGS) for precision thermometry in a firing GDI optical engine is reported. Crank-angle resolved temperature values were derived from LITGS signals generated in fuel vapour with a pressure dependent precision in the range 0.1–1.0% allowing differences in evaporative or charge cooling effects arising from a variety of ethanol and methanol blends with a model gasoline fuel to be quantified. In addition, fluctuations in temperature arising from cyclic variations in compression were directly detected and measured.

Ben Williams; Megan Edwards; Richard Stone; John Williams; Paul Ewart

2014-01-01T23:59:59.000Z

53

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

· Flows between which tanks in which time periods · Inventories/concentrations for tanks in each period for many applications 4 · Gasoline and crude oil blending · Raw material feed scheduling · Storage. "no bounds" on concentration total inventory mass balance in tanks inventory mass balance by component

Grossmann, Ignacio E.

54

Decomposition method for the Multiperiod Blending Problem  

E-Print Network [OSTI]

problem is a general model for many applications, and it is difficult to solve · Gasoline and crude oil tanks in which time periods · Inventories/concentrations for tanks in each period · Maximum total profit total inventory mass balance in tanks inventory mass balance by component in blending tanks

Grossmann, Ignacio E.

55

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

56

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

57

Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends (Book), Clean Cities, Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

DOE/GO-102013-3861 DOE/GO-102013-3861 September 2013 Handbook for Handling, Storing, and Dispensing E85 and Other Ethanol-Gasoline Blends Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

58

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

59

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

60

Ethanol Demand in United States Gasoline Production  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

Hadder, G.R.

1998-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: Energy.gov [DOE]

Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline). The Renewable Fuels Standard (under the Energy...

62

Physical and chemical characteristics of an interesterified blend of butterfat and cottonseed oil with possible industrial applications  

E-Print Network [OSTI]

: dilatometry, glyceride compositional analysis, thin layer chromatography, gas liquid chromatography, mass spectrometry, and pancreatic lipase hydrolysis. physical/Chemical properties of the Modified pats Use of official methods of the American Oil... butterfat, cottonseed oil, the blend, the interesterified blend, and cheese. The following tests were conducted: Free fatty acids A. O. C. S. official method Ca 5a-40 was used. The molten samples were well mixed and a sample size of 28. 2 g of each...

Rashidi, Nabil

2012-06-07T23:59:59.000Z

63

Competition and price asymmetries in the Greek oil sector: an empirical analysis on gasoline market  

Science Journals Connector (OSTI)

This article attempts to investigate the issue of asymmetries in the transmission of shocks to input prices and exchange rate onto the wholesale and retail price of gasoline respectively. For this purpose, we ...

Michael L. Polemis

2012-10-01T23:59:59.000Z

64

Motor Gasoline Outlook and State MTBE Bans  

Reports and Publications (EIA)

The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

2003-01-01T23:59:59.000Z

65

Gasoline Prices: What is Happening?  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Prices: What is Happening? Gasoline Prices: What is Happening? 5/10/01 Click here to start Table of Contents Gasoline Prices: What is Happening? Retail Motor Gasoline Price* Forecast Doesn't Reflect Potential Volatility Midwest Looking Like Last Year RFG Responding More Strongly Gasoline Prices Vary Among Locations.Retail Regular Gasoline Price, Cents per Gallon May 8, 2001 Crude Oil Affects Gasoline Prices WTI Crude Oil Prices Are Expected To Remain Relatively High Through At Least 2001 Low Total OECD Oil Stocks* Keep Market Balance Tight Low U.S. Stocks Indicate Tight U.S. Market Regional Inventories Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) "New Factor" Contributing to Volatility: Excess Capacity is Gone Regional Refinery Utilization Shows Gulf Coast Pressure

66

MTBE, Oxygenates, and Motor Gasoline  

Gasoline and Diesel Fuel Update (EIA)

MTBE, Oxygenates, and MTBE, Oxygenates, and Motor Gasoline Contents * Introduction * Federal gasoline product quality regulations * What are oxygenates? * Who gets gasoline with oxygenates? * Which areas get MTBE? * How much has been invested in MTBE production capacity? * What does new Ethanol capacity cost? * What would an MTBE ban cost? * On-line information resources * Endnotes * Summary of revisions to this analysis Introduction The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an

67

Integration of Refinery Planning and Crude-Oil Scheduling using Lagrangian Decomposition  

E-Print Network [OSTI]

a large number of crude-oils, finished products such as liquified petroleum gas, gasoline, diesel fuel product blending and shipping. Some examples of nonlinear refinery planning problems including pooling, 2010 #12;crude-blends, and CDU feed charging. This problem has been addressed since the late 90s

Grossmann, Ignacio E.

68

Motor Gasoline Outlook and State MTBE Bans  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Outlook Motor Gasoline Outlook and State MTBE Bans Tancred Lidderdale Contents 1. Summary 2. MTBE Supply and Demand 3. Ethanol Supply 4. Gasoline Supply 5. Gasoline Prices A. Long-Term Equilibrium Price Analysis B. Short-Term Price Volatility 6. Conclusion 7. Appendix A. Estimating MTBE Consumption by State 8. Appendix B. MTBE Imports and Exports 9. Appendix C. Glossary of Terms 10. End Notes 11. References 1. Summary The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending State bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year. Three impending State bans on MTBE blending could significantly affect gasoline

69

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Methodology For Gasoline and Diesel Fuel Pump Components Methodology For Gasoline and Diesel Fuel Pump Components The components for the gasoline and diesel fuel pumps are calculated in the following manner in cents per gallon and then converted into a percentage: Crude Oil - the monthly average of the composite refiner acquisition cost, which is the average price of crude oil purchased by refiners. Refining Costs & Profits - the difference between the monthly average of the spot price of gasoline or diesel fuel (used as a proxy for the value of gasoline or diesel fuel as it exits the refinery) and the average price of crude oil purchased by refiners (the crude oil component). Distribution & Marketing Costs & Profits - the difference between the average retail price of gasoline or diesel fuel as computed from EIA's

70

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

71

Characterization of Pre-Commercial Gasoline Engine Particulates Through Advanced Aerosol Methods  

Broader source: Energy.gov [DOE]

Advanced aerosol analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends.

72

Refiner Crude Oil Inputs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Day) Refiner Percent Operable Utilization Net Inputs (Refiner and Blender) of Motor Gasoline Blending Comp Net Inputs (Refiner and Blender) of RBOB Blending Components Net...

73

Chromatographic analysis of primary light gasoline and Pbi-H fractions of romashkino crude oil  

Science Journals Connector (OSTI)

Both qualitative and quantitative analyses of the hydrocarbon components of straight-run and hydrogenated pyrolysis gasolines have been made by gas-liquid chromatography. Several different open tubular (capillary or Golay) columns with squalene, Ucon LB-550, or mannit-hexakis-cyanoethyl ether as stationary phase were used for the analysis. Chromatograms of the samples analysed on squalene are given, using temperature programming. The chromatographic peaks have been identified by the use of pure standards, prepared by different chemical methods, before the sample input and by purification of some components on a preparative gas chromatograph. The purified compounds were identified by infrared spectroscopy.

J. S?imeková; N. Pronayová; R. Pies?; M. C?iha

1970-01-01T23:59:59.000Z

74

Revisiting the Income Effect: Gasoline Prices and Grocery Purchases  

E-Print Network [OSTI]

Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

2008-01-01T23:59:59.000Z

75

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

76

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

SciTech Connect (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

77

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

78

Gasolin n  

Science Journals Connector (OSTI)

Gasolin n, Gasbenzin n ? natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-colo(u)red and of high API gravity (above 60°), that are produced wit...

2013-01-01T23:59:59.000Z

79

natural gasoline  

Science Journals Connector (OSTI)

natural gasoline, condensate, distillate [Liquid hydrocarbons, generally clear or pale straw-coloured and of high API gravity (above 6o°), that are produced with wet gas] ? Gasbenzin n, Gasolin n ...

2014-08-01T23:59:59.000Z

80

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Learn more... Learn more... Price trends and regional differences What causes fluctuations in motor gasoline prices? Retail gasoline prices are mainly affected by crude oil prices and the level of gasoline supply relative to demand. Strong and increasing demand for gasoline and other petroleum products in the United States and the rest of the world at times places intense pressure on available supplies. Even when crude oil prices are stable... read more in Gasoline Explained What causes fluctuations in diesel fuel oil prices? The retail price of a gallon of diesel fuel reflects the underlying costs and profits (or losses) of producing and delivering the product to customers. The price of diesel at the pump reflects the costs and profits of the entire production and distribution chain, including... read more in

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

82

Retail Motor Gasoline Prices*  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Gasoline pump prices have backed down from the high prices experienced last summer and fall. The retail price for regular motor gasoline fell 11 cents per gallon from September to December. However, with crude oil prices rebounding somewhat from their December lows combined with lower than normal stock levels, we project that prices at the pump will rise modestly as the 2001 driving season begins this spring. For the summer of 2001, we expect only a little difference from the average price of $1.50 per gallon seen during the previous driving season, as motor gasoline stocks going into the driving season are projected to be slightly less than they were last year. The situation of relatively low inventories for gasoline could set the stage for some regional imbalances in supply that could once again

83

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

84

“Petroleum Gas Oil?Ethanol” Blends Used as Feeds: Increased Production of Ethylene and Propylene over Catalytic Steam-Cracking (CSC) Hybrid Catalysts. Different Behavior of Methanol in Blends with Petroleum Gas Oil  

Science Journals Connector (OSTI)

“Petroleum Gas Oil?Ethanol” Blends Used as Feeds: Increased Production of Ethylene and Propylene over Catalytic Steam-Cracking (CSC) Hybrid Catalysts. ... Recently developed hybrid catalysts used in the catalytic steam cracking (CSC, formerly called selective deep catalytic cracking or SDCC(1, 2) and also thermal catalytic cracking or TCC(3, 4)) of hydrocarbon heavy feedstocks (naphthas and gas oils) are very efficient in the production of light olefins, particularly ethylene and propylene with a product propylene-to-ethylene ratio close to 1.0. ...

A. Muntasar; R. Le Van Mao; H. T. Yan

2010-03-22T23:59:59.000Z

85

Characterization of Particulate Emissions from GDI Engine Combustion with Alcohol-blended Fuels  

Broader source: Energy.gov [DOE]

Analysis showed that gasoline direct injection engine particulates from alcohol-blended fuels are significantly different in morphology and nanostructures

86

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Pass-through Gasoline Price Pass-through January 2003 by Michael Burdette and John Zyren* The single most visible energy statistic to American consumers is the retail price of gasoline. While the average consumer probably has a general notion that gasoline prices are related to those for crude oil, he or she likely has little idea that gasoline, like most other goods, is priced at many different levels in the marketing chain, and that changes ripple through the system as prices rise and fall. When substantial price changes occur, especially upward, there are often allegations of impropriety, even price gouging, on the part of petroleum refiners and/or marketers. In order to understand the movement of gasoline prices over time, it is necessary to examine the relationship between prices at retail and various wholesale levels.

87

Experimental study on the performance, emission and combustion characteristics of rubber seed oil-diesel blends in a DI diesel engine  

Science Journals Connector (OSTI)

In the present work, experiments have been carried out to assess the suitability of rubber seed oil and its blends with diesel in a diesel engine. Tests were conducted with different blends of R80-D20 (80% of rubber seed oil and 20% of diesel by volume) and R70-D30 (70% of rubber seed oil and 30% of diesel by volume). Experimental results indicate that the brake thermal efficiency increases from 26.5% to 27.7% with the optimum blend of R70-D30. There is a reduction in emissions is also observed except NOx level at all loads. Smoke emission reduces drastically from 6.1 to 4.7 BSU. Combustion parameters indicated a decrease in ignition delay and combustion duration compared with neat RSO. This will also contribute to higher heat release rate in the premixed combustion phase. Current investigations reveal that the performance of R70-D30 blend is closer to diesel.

V. Edwin Geo; G. Nagarajan; B. Nagalingam

2011-01-01T23:59:59.000Z

88

Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply Chain  

E-Print Network [OSTI]

1 Multiscale Strategic Planning Model for the Design of Integrated Ethanol and Gasoline Supply address the design and planning of an integrated ethanol and gasoline supply chain. We assume, distribution centers where blending takes place, and the retail gas stations where different blends of gasoline

Grossmann, Ignacio E.

89

The comparative analysis of diesel engine combustion and emission parameters fuelled with palm oil methyl esters and its diesel blends  

Science Journals Connector (OSTI)

In this work, the combustion and emission characteristics of a direct injection compression ignition engine fuelled with diesel-Palm Oil Methyl Ester (POME) blends are investigated. This study shows that the ignition delay decreases with increase in the POME addition. The maximum rate of pressure rise and maximum rate of heat release decreases with increase in POME addition at all loads. As the percentage of POME in the blend increases, the crank angle at which the maximum rate of heat release takes place advances. The brake thermal efficiency decreases with increase in POME addition. The unburned hydrocarbon, carbon monoxide and soot intensity decreases, while nitrogen oxides (NOx) increase with increase in POME addition. [Received: April 4, 2008; Accepted: November 24, 2008

G. Lakshmi Narayana Rao; S. Saravanan; P. Selva Ilavarasi

2009-01-01T23:59:59.000Z

90

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

91

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

92

Electric car Gasoline car  

E-Print Network [OSTI]

ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preference survey with choice situation contexts involving gasoline cars (Renault and competitors

93

El Paso Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Good morning. IÂ’m glad to be here in El Paso to share some of my agencyÂ’s insights on crude oil and gasoline prices. I represent the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. My division has the responsibility to monitor petroleum supplies and prices in the United States. As part of that work, we operate a number of surveys on a weekly, monthly, and annual basis. One of these is a weekly survey of retail gasoline prices at about 800 stations nationwide. This survey in particular allows us to observe the differences between local gasoline markets in the United States. While we track relatively few stations in the El Paso area, we have compared our price data with that collected by the El Paso City-County Health and Environmental District and

94

What Drives U.S. Gasoline Prices?  

Reports and Publications (EIA)

This analysis provides context for considering the impact of rising domestic light crude oil production on the price that U.S. consumers pay for gasoline, and provides a framework to consider how changes to existing U.S. crude oil export restrictions might affect gasoline prices.

2014-01-01T23:59:59.000Z

95

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

96

1 What is Oil ? General information  

E-Print Network [OSTI]

of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Aviation gasoline White spirit + SBP Gasoline type jet fuel Lubricants Unleaded gasoline Bitumen Leaded

Kammen, Daniel M.

97

Gasoline Prices Also Influenced by Regional Gasoline Product Markets  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: Next we examine the wholesale market's added contribution to gasoline price variation and analyze the factors that impact the gasoline balance. There are two points to take away from this chart: The U.S. market moves with the world market, as can be seen with the high inventories in 1998, being drawn down to low levels during 1999. Crude and product markets are not independent. Crude oil and product markets move together fairly closely, with some lead/lag effects during transitions. The relationship between international crude oil markets and domestic product markets raises another issue. A subtle, but very important point, lost in recent discussions of gasoline price increases: The statement has been made that crude markets are not a factor in this past spring's high gasoline prices, since crude prices were

98

The Performance of Gasoline Fuels and Surrogates in Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion The Performance of Gasoline Fuels and Surrogates in Gasoline HCCI Combustion Almost 2 dozen gasoline...

99

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

100

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve Timing  

E-Print Network [OSTI]

Combustion Phasing Model for Control of a Gasoline-Ethanol Fueled SI Engine with Variable Valve engine efficiency. Fuel-flexible engines permit the increased use of ethanol-gasoline blends. Ethanol points across the engine operating range for four blends of gasoline and ethanol. I. INTRODUCTION Fuel

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)  

Reports and Publications (EIA)

The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

1999-01-01T23:59:59.000Z

102

Characterization of Liquids Derived From Laboratory Coking of Decant Oil and Co-Coking of Pittsburgh Seam Bituminous Coal with Decant Oil  

Science Journals Connector (OSTI)

(41-43) Co-coking of decant oil/coal blend produced higher coke and gas yields but less liquid product than those of coking. ... When the same decant oil was blended with the Pittsburgh Seam coal and then delayed co-coked, the overhead liquid contained 2.1% gasoline, 3.6% jet fuel, 4.6% diesel, and 88.8% fuel oil on average. ... It is also possible that catalytic cracking reactions may occur via the coal mineral matter (e.g., clays, which are abundant minerals in coals, can serve as cracking catalysts) (Table 1). ...

Ömer Gül; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert

2009-04-21T23:59:59.000Z

103

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

104

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

105

High compression ratio turbo gasoline engine operation using alcohol enhancement  

E-Print Network [OSTI]

Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

Lewis, Raymond (Raymond A.)

2013-01-01T23:59:59.000Z

106

Gasoline Prices at Historical Lows  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: Before looking at El Paso gasoline prices, letÂ’s take a minute to look at the U.S. average price for context. Gasoline prices this year, adjusted for inflation, are the lowest ever. Back in March, before prices began to rise ahead of the traditional high-demand season, the U.S. average retail price fell to $1.00 per gallon. Prices rose an average of 7.5 cents, less than the typical seasonal runup, to peak in early June. Since then, prices have fallen back to $1.013. Given recent declines in crude oil and wholesale gasoline prices, we expect retail prices to continue to ease over at least the next few weeks. Since their sharp runup during the energy crises of the 1970Â’s, gasoline prices have actually been non-inflationary. Adjusting the historical prices by the Consumer Price Index, we can see that todayÂ’s

107

Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand  

E-Print Network [OSTI]

demand shocks. Since gasoline demand and oil price areto gasoline demand shocks. In Venezuela, a strike by oildemand is likely correlated with the prices of other refinery outputs via the price of oil.

Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

2007-01-01T23:59:59.000Z

108

Net Taxable Gasoline Gallons (Including Aviation Gasoline)  

E-Print Network [OSTI]

Net Taxable Gasoline Gallons (Including Aviation Gasoline) Period 2000 2001 (2) 2002 2003 2004 "gross" to "net" , was deemed impractical. (5) This report replaces the Gross Taxable Gasoline Gallons (Including Aviation Gasoline) report which will not be produced after December 2002. (6) The November 2007

109

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

110

Annual Energy Review 2002  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Annual Energy Review 2002 125 a Unfinished oils, motor gasoline blending components, aviation gasoline blending components, and other...

111

TRUCK ROUTING PROBLEM IN DISTRIBUTION OF GASOLINE TO GAS STATIONS.  

E-Print Network [OSTI]

??This thesis aims at finding a daily routing plan for a fleet of vehicles delivering gasoline to gas stations for an oil company, satisfying all… (more)

Janakiraman, Swagath

2010-01-01T23:59:59.000Z

112

Fact #676: May 23, 2011 U.S. Refiners Produce about 19 Gallons of Gasoline from a Barrel of Oil  

Broader source: Energy.gov [DOE]

A standard U.S. barrel contains 42 gallons of crude oil which yields about 44 gallons of petroleum products. The additional 2 gallons of petroleum products come from refiner gains which result in...

113

Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends  

E-Print Network [OSTI]

In recent years, the development and use of biofuels have received considerable attention due to the high demand for environmentally acceptable (green) fuels. Most of the recent studies have looked at the processes of converting vegetable oils...

Savant, Gautam Sandesh

2012-07-16T23:59:59.000Z

114

Gasoline vapor recovery  

SciTech Connect (OSTI)

In a gasoline distribution network wherein gasoline is drawn from a gasoline storage tank and pumped into individual vehicles and wherein the gasoline storage tank is refilled periodically from a gasoline tanker truck, a method of recovering liquid gasoline from gasoline vapor that collects in the headspace of the gasoline storage tank as the liquid gasoline is drawn therefrom, said method comprising the steps of: (a) providing a source of inert gas; (b) introducing inert gas into the gasoline storage tank as liquid gasoline is drawn therefrom so that liquid gasoline drawn from the tank is displaced by inert gas and gasoline vapor mixes with the inert gas in the headspace of the tank; (c) collecting the inert gas/gasoline vapor mixture from the headspace of the gasoline storage tank as the tank is refilled from a gasoline tanker truck; (d) cooling the inert gas/gasoline vapor mixture to a temperature sufficient to condense the gasoline vapor in the mixture to liquid gasoline but not sufficient to liquify the inert gas in the mixture; (e) separating the condensed liquid gasoline from the inert gas; and delivering the condensed liquid gasoline to a remote location for subsequent use.

Lievens, G.; Tiberi, T.P.

1993-06-22T23:59:59.000Z

115

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

116

EIA Report 9/4/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4, 4:00 pm See current 4, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/4/2008 8/29/2008 change Week Ago 8/28/2008 Year Ago 9/4/2007 WTI Crude Oil ($/Bbl) 107.89 115.46 -7.57 115.59 75.08 Gasoline RBOB* (c/gal) 274.04 285.42 -11.38 286.44 199.10 Heating Oil (c/gal) 302.37 319.19 -16.82 320.21 207.95 Natural Gas ($/MMBtu) 7.32 7.94 -0.62 8.05 5.63 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 4, the Minerals Management

117

EIA Report 9/16/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Tuesday, September 16, 4:00 pm See current Tuesday, September 16, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/16/2008 Pre-Gustav 8/29/2008 change Week Ago 9/9/2008 Year Ago 9/17/2007 WTI Crude Oil ($/Bbl) 91.15 115.46 -24.31 103.26 80.57 Gasoline RBOB* (c/gal) 240.08 285.42 -45.34 265.26 204.42 Heating Oil (c/gal) 271.97 319.19 -47.22 292.47 222.87 Natural Gas ($/MMBtu) 7.28 7.94 -0.66 7.54 6.65 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 16, the Minerals Management

118

EIA Report 9/17/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

7, 4:00 pm See current 7, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/17/2008 Pre-Gustav 8/29/2008 change Week Ago 9/10/2008 Year Ago 9/17/2007 WTI Crude Oil ($/Bbl) 97.16 115.46 -18.30 102.58 80.57 Gasoline RBOB* (c/gal) 246.30 285.42 -39.12 266.16 204.42 Heating Oil (c/gal) 282.47 319.19 -36.72 290.24 222.87 Natural Gas ($/MMBtu) 7.91 7.94 -0.03 7.39 6.65 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 17, the Minerals Management

119

EIA Report 9/8/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

8, 4:00 pm See current 8, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/8/2008 Pre-Gustav 8/29/2008 change Week Ago 9/2/2008 Year Ago 9/7/2007 WTI Crude Oil ($/Bbl) 106.34 115.46 -9.12 109.71 76.70 Gasoline RBOB* (c/gal) 275.03 285.42 -10.39 273.37 198.64 Heating Oil (c/gal) 301.31 319.19 -17.88 307.36 214.32 Natural Gas ($/MMBtu) 7.53 7.94 -0.41 7.26 5.50 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 8, the Minerals Management

120

EIA Report 9/5/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

5, 4:00 pm See current 5, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/5/2008 Pre-Gustav 8/29/2008 change Week Ago 8/29/2008 Year Ago 9/5/2007 WTI Crude Oil ($/Bbl) 106.23 115.46 -9.23 115.46 75.73 Gasoline RBOB* (c/gal) 268.61 285.42 -16.81 285.42 199.65 Heating Oil (c/gal) 298.28 319.19 -20.91 319.19 209.99 Natural Gas ($/MMBtu) 7.45 7.94 -0.49 7.94 5.81 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 5, the Minerals Management

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

EIA Report 9/26/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

26, 4:00 pm 26, 4:00 pm U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/26/2008 Pre-Gustav 8/29/2008 change Week Ago 9/19/2008 Year Ago 9/26/2007 WTI Crude Oil ($/Bbl) 108.89 115.46 -8.57 104.55 80.30 Gasoline RBOB* (c/gal) 266.51 285.42 -18.91 259.97 202.74 Heating Oil (c/gal) 299.49 319.19 -19.70 289.78 218.26 Natural Gas ($/MMBtu) 7.47 7.94 -0.47 7.53 6.40 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 26, the Minerals Management

122

EIA Report 9/23/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3, 4:00 pm See current 3, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/23/2008 Pre-Gustav 8/29/2008 change Week Ago 9/16/2008 Year Ago 9/21/2007 WTI Crude Oil ($/Bbl) 106.61 115.46 -8.85 91.15 81.62 Gasoline RBOB* (c/gal) 259.50 285.42 -25.92 240.08 211.45 Heating Oil (c/gal) 299.63 319.19 -19.56 271.97 225.62 Natural Gas ($/MMBtu) 7.93 7.94 -0.01 7.28 6.08 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 23, the Minerals Management

123

EIA Report 9/14/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Sunday, September 14, 3:00 pm See current Sunday, September 14, 3:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 2:30pm 9/14/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 99.17 115.46 -16.29 106.23 79.91 Gasoline RBOB* (c/gal) 264.65 285.42 -20.77 268.61 201.60 Heating Oil (c/gal) 284.80 319.19 -34.39 298.28 221.91 Natural Gas ($/MMBtu) 7.43 7.94 -0.51 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum

124

EIA Report 9/19/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

19, 4:00 pm See current 19, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/19/2008 Pre-Gustav 8/29/2008 change Week Ago 9/12/2008 Year Ago 9/18/2007 WTI Crude Oil ($/Bbl) 104.55 115.46 -10.91 101.18 81.93 Gasoline RBOB* (c/gal) 259.97 285.42 -25.45 276.96 209.34 Heating Oil (c/gal) 289.78 319.19 -29.41 293.91 224.53 Natural Gas ($/MMBtu) 7.53 7.94 -0.41 7.37 6.18 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 19, the Minerals Management

125

EIA Report 9/22/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

22, 4:00 pm See current 22, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/22/2008 Pre-Gustav 8/29/2008 change Week Ago 9/15/2008 Year Ago 9/21/2007 WTI Crude Oil ($/Bbl) 120.92 115.46 5.46 95.71 81.62 Gasoline RBOB* (c/gal) 270.38 285.42 -15.04 256.14 211.45 Heating Oil (c/gal) 304.30 319.19 -14.89 279.12 225.62 Natural Gas ($/MMBtu) 7.66 7.94 -0.28 7.37 6.08 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 22, the Minerals Management

126

EIA Report 9/24/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

4, 4:00 pm 4, 4:00 pm U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/24/2008 Pre-Gustav 8/29/2008 change Week Ago 9/17/2008 Year Ago 9/24/2007 WTI Crude Oil ($/Bbl) 105.73 115.46 -9.73 91.16 80.95 Gasoline RBOB* (c/gal) 259.47 285.42 -25.95 246.30 208.34 Heating Oil (c/gal) 301.33 319.19 -17.86 282.47 223.06 Natural Gas ($/MMBtu) 7.68 7.94 -0.26 7.91 6.37 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 24, the Minerals Management

127

EIA Report 9/3/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

3, 4:00 pm See current 3, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/3/2008 8/29/2008 change Week Ago 8/27/2008 Year Ago 9/4/2007 WTI Crude Oil ($/Bbl) 109.35 115.46 -6.11 118.15 75.08 Gasoline RBOB* (c/gal) 276.68 285.42 -8.74 291.72 199.10 Heating Oil (c/gal) 307.88 319.19 -11.31 328.15 207.95 Natural Gas ($/MMBtu) 7.26 7.94 -0.68 8.61 5.63 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 3, the Minerals Management

128

EIA Report 9/15/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

15, 4:00 pm See current 15, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/15/2008 Pre-Gustav 8/29/2008 change Week Ago 9/8/2008 Year Ago 9/14/2007 WTI Crude Oil ($/Bbl) 95.71 115.46 -19.75 106.34 79.10 Gasoline RBOB* (c/gal) 256.14 285.42 -29.28 275.03 203.64 Heating Oil (c/gal) 279.12 319.19 -40.07 301.31 220.78 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.53 6.28 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 15, the Minerals Management

129

EIA Report 9/18/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

18, 4:00 pm See current 18, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/18/2008 Pre-Gustav 8/29/2008 change Week Ago 9/11/2008 Year Ago 9/18/2007 WTI Crude Oil ($/Bbl) 97.88 115.46 -17.58 100.87 81.51 Gasoline RBOB* (c/gal) 248.24 285.42 -37.18 274.88 206.03 Heating Oil (c/gal) 278.24 319.19 -40.95 291.55 224.23 Natural Gas ($/MMBtu) 7.62 7.94 -0.32 7.25 6.57 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 18, the Minerals Management

130

EIA Report 9/13/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

Saturday, September 13, 4:00 pm See current Saturday, September 13, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/12/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 101.18 115.46 -14.28 106.23 79.91 Gasoline RBOB* (c/gal) 276.96 285.42 -8.46 268.61 201.60 Heating Oil (c/gal) 293.91 319.19 -25.28 298.28 221.91 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 13, the Minerals Management

131

EIA Report 9/12/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

2, 4:00 pm See current 2, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/12/2008 Pre-Gustav 8/29/2008 change Week Ago 9/5/2008 Year Ago 9/12/2007 WTI Crude Oil ($/Bbl) 101.18 115.46 -14.28 106.23 79.91 Gasoline RBOB* (c/gal) 276.96 285.42 -8.46 268.61 201.60 Heating Oil (c/gal) 293.91 319.19 -25.28 298.28 221.91 Natural Gas ($/MMBtu) 7.37 7.94 -0.57 7.45 6.44 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 12, the Minerals Management

132

EIA Report 9/9/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

9, 4:00 pm See current 9, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/9/2008 Pre-Gustav 8/29/2008 change Week Ago 9/2/2008 Year Ago 9/10/2007 WTI Crude Oil ($/Bbl) 103.26 115.46 -12.20 109.71 77.49 Gasoline RBOB* (c/gal) 265.26 285.42 -20.16 273.37 197.86 Heating Oil (c/gal) 292.47 319.19 -26.72 307.36 217.16 Natural Gas ($/MMBtu) 7.54 7.94 -0.40 7.26 5.89 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 9, the Minerals Management

133

EIA Report 9/11/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

1, 4:00 pm See current 1, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/11/2008 Pre-Gustav 8/29/2008 change Week Ago 9/4/2008 Year Ago 9/11/2007 WTI Crude Oil ($/Bbl) 100.87 115.46 -14.59 107.89 78.23 Gasoline RBOB* (c/gal) 274.88 285.42 -10.54 274.04 198.11 Heating Oil (c/gal) 291.55 319.19 -27.64 302.37 218.27 Natural Gas ($/MMBtu) 7.25 7.94 -0.69 7.32 5.93 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 11, the Minerals Management

134

EIA Report 9/1/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

, 4:00 pm See current , 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) (2pm) 9/1/2008 8/29/2008 change Week Ago 8/25/2008 Year Ago 8/31/2007 WTI Crude Oil ($/Bbl) 111.16 115.46 -4.30 115.11 73.98 Gasoline RBOB* (c/gal) 275.10 285.42 -10.32 280.69 196.45 Heating Oil (c/gal) 309.24 319.19 -9.95 317.90 205.74 Natural Gas ($/MMBtu) 7.98 8.36 -0.38 7.94 6.46 OPEC Basket ($Bbl) NA 111.23 NA 110.61 69.60 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), August 31, the Minerals Management

135

EIA Report 9/25/08 - Hurricane Impacts on U.S. Oil & Natural Gas Energy  

U.S. Energy Information Administration (EIA) Indexed Site

25, 4:00 pm See current 25, 4:00 pm See current U.S. Oil and Natural Gas Market Impacts Prices NYMEX Futures Prices (for October delivery) 9/25/2008 Pre-Gustav 8/29/2008 change Week Ago 9/18/2008 Year Ago 9/25/2007 WTI Crude Oil ($/Bbl) 108.02 115.46 -7.44 97.88 79.53 Gasoline RBOB* (c/gal) 269.73 285.42 -15.69 248.24 203.79 Heating Oil (c/gal) 302.58 319.19 -16.61 278.24 218.13 Natural Gas ($/MMBtu) 7.64 7.94 -0.30 7.62 6.36 *RBOB = Reformulated Blendstock for Oxygenate Blending (RBOB), the base gasoline that needs to be blended with some type of oxygenate, now usually ethanol, to be turned into finished reformulated gasoline (RFG). Ethanol is not blended into the gasoline mixture until just before the gasoline is shipped to the retail stations. Petroleum As of 12:30 pm EDT (11:30 am CDT), September 25, the Minerals Management

136

Performance Evaluation of Fuel Blends Containing Croton Oil, Butanol, and Diesel in a Compression Ignition Engine  

Science Journals Connector (OSTI)

† Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa ... (2) The use of vegetable oils in diesel engines is as old as the diesel engine itself. ... The results indicate a general increase in NOx emissions as the load increases at a steady engine speed. ...

Frank Lujaji; Akos Bereczky; Makame Mbarawa

2010-07-15T23:59:59.000Z

137

Artificial neural networks based prediction of performance and exhaust emissions in direct injection engine using castor oil biodiesel-diesel blends  

Science Journals Connector (OSTI)

In this study the performance and emission characteristics of a direct injection diesel engine using castor oil biodiesel (COB)-diesel blended fuels were investigated experimentally and then predicted by artificial neural networks. For this aim castor oil was converted to its biodiesel via transesterification approach. Then the effects of the biodiesel percentage in blend engine load and speed on brake power brake specific fuel consumption (BSFC) nitrogen oxides (NOx) carbon dioxide (CO2) carbon monoxide (CO) and particle matter (PM) have been considered. Fuel blends with various percentages of biodiesel (0% 5% 10% 15% 20% 25% and 30%) at various engine speeds and loads were tested. The results indicated that blends of COB with diesel fuel provide admissible engine performance; on the other side emissions decreased so much. Two types of neural networks a group method of data handling (GMDH) and feed forward were used for modeling of the diesel engine to predict brake power BSFC and exhaust emissions such as CO CO2 NOx and PM values. The comparison results demonstrate the superiority of the feed forward neural networkmodels over GMDH type models in terms of the statistical measures in the training and testing data but in the number of hidden neurons and model simplicity GMDH models are preferred.

M. H. Shojaeefard; M. M. Etghani; M. Akbari; A. Khalkhali; B. Ghobadian

2012-01-01T23:59:59.000Z

138

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

139

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

140

Insights into Spring 2008 Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices Insights into Spring 2008 Gasoline Prices EIA released a new analytical report entitled Motor Gasoline Market Spring 2007 and Implications for Spring 2008. It includes a discussion of scheduled refinery outages in 2008 prepared in accordance with Section 804 of the Energy Independence and Security Act (EISA) of 2007, which requires EIA to review and analyze information on such outages from commercial reporting services and assess to their expected effects on the price and supply of gasoline. Changes in wholesale gasoline prices relative to crude oil are determined by the tightness between gasoline supply (production and net imports) and demand. Expectations for U.S. gasoline supply relative to demand are for a more favorable situation in January through May 2008 than was the case in the comparable 2007 period. Demand growth, which varies seasonally and depends on economic factors, is expected to slow. New gasoline supply is affected by refinery outages, refinery run decisions, and import variations. Planned refinery outages for January through May 2008 are lower than for the same period in 2007. Given lower planned outages and assuming the return of unplanned outages to more typical levels, including the return of BP's Texas City refinery to full operation, gasoline production could increase between 100 and 200 thousand barrels per day over last year's level, depending on the market incentives. In addition, ethanol use, which adds to gasoline supply, is expected to continue to increase. Considering the uncertainty in all the gasoline supply components, there is little likelihood of events combining in 2008 to lead to the kind of tight supply downstream from crude oil markets seen in spring 2007. In summary, refinery outage and import impacts should contribute less to gasoline price increases in 2008 than in 2007. If all of the low-range estimates for supply occurred, total gasoline supply would increase about 200 thousand barrels per day (Figure S1). However, record crude oil prices are nonetheless pushing current and expected gasoline prices to record levels.

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect (OSTI)

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

142

Summer 2003 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

3 3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike levels in time for the peak driving season, and the impact of recent disruptions in Nigerian oil output. Moreover, unusually low crude oil and gasoline inventory levels at the outset of the driving season are expected to keep prices high throughout much of the

143

Stocks of Motor Gasoline Blending Components  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

187,013 192,571 196,254 197,510 206,627 210,238 1983-2015 PADD 1 46,448 47,840 50,373 50,816 56,416 58,286 2004-2015 PADD 2 38,944 40,652 41,331 43,698 45,607 47,017 2004-2015 PADD...

144

Lyapunov-based Optimizing Control of Nonlinear Blending Process  

E-Print Network [OSTI]

. I. INTRODUCTION Blending processes arise in a wide range of industries, for example gasoline1 Lyapunov-based Optimizing Control of Nonlinear Blending Process Tor A. Johansen£ , Daniel Sb. ££ Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

145

Lyapunov-based Optimizing Control of Nonlinear Blending Processes  

E-Print Network [OSTI]

processes arise in a wide range of industries, for example gasoline blending [1], [2], [3], [4], food1 Lyapunov-based Optimizing Control of Nonlinear Blending Processes Tor A. Johansen , Daniel Sb. Department of Electrical Engineering, University of Concepci´on, Concepci´on, Chile. Abstract Blending

Johansen, Tor Arne

146

Behaviour and effects of alcohol-blended petrol in the subsurface  

Science Journals Connector (OSTI)

...Science of the Total Environment , 339 , 117-126...blends. Biomass and Bioenergy , 33 , 1175-1181...C.A. 2001. A review of the environmental...ethanol-blended gasoline in the environment. A literature review and transport modeling...

Philip Morgan; Simon Firth; Beate Hildenbrand

147

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

148

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

149

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

150

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

151

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

152

With Mathematica Gasoline Inventory  

E-Print Network [OSTI]

Preprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the station

Reiter, Clifford A.

153

Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc  

Gasoline and Diesel Fuel Update (EIA)

April 2004 April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to September 2004), retail gasoline prices (regular grade, all formulations) are projected to average $1.76 per gallon, about 20 cents above last summer. A 95-percent confidence range for the summer price average, excluding specific consideration of major

154

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

155

The producer surplus associated with gasoline fuel use in the United States1  

E-Print Network [OSTI]

The producer surplus associated with gasoline fuel use in the United States1 Yongling Sun, Mark A. This paper estimates the producer surplus associated with changes in gasoline fuel use in the United States that affect oil use and oil imports to the US, and (2) comparing the actual average cost of gasoline

Lin, C.-Y. Cynthia

156

On-line RVP analysis improves gas blending  

SciTech Connect (OSTI)

New government regulations on gasoline quality are making gasoline blending an increasingly important aspect of refining. The Environmental Protection Agency volatility regulations that establish maximum summertime commercial gasoline volatility levels provide that gasoline Reid Vapor Pressor starting in 1989 may not exceed 10.5, or 9.0 psi. Additionally, beginning in 1992, it may not exceed either 9.0 or 7.8 psi, depending on the area of the country and the month. This article discusses the on-line analysis of gas blending to minimize the volatile organic compounds released to the air.

Lo, P.T. [BP Oil Alliance Refinery, Belle Chasse, LA (United States)

1994-09-01T23:59:59.000Z

157

Summer 2002 Motor Gasoline Outlook2.doc  

Gasoline and Diesel Fuel Update (EIA)

Summer 2002 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2002), rising average crude oil costs are expected to yield above -average seasonal gasoline price increases at the pump. However, year-over-year comparisons for pump prices are still likely to be lower this summer. Inventories are at higher levels than last year in April, so some cushion against early-season price spikes is in place and price levels are expected to range below last year's averages, assuming no unanticipated disruptions. Still, OPEC production restraint and tightening world oil markets now probably mark the end of the brief respite (since last fall) from two years of relatively high gasoline prices. * Retail gasoline prices (regular grade) are expected to average $1.46 per gallon, 5

158

Meet changing fuel requirements with online blend optimization  

SciTech Connect (OSTI)

Compania Espanola de Petroleos (CEPSA) embarked on an overall refinery automation program, with state-of-the-art gasoline blending being one of the highest priorities. The result of this effort is a sophisticated computerized gasoline blending system using offline LPs for initial optimal recipe calculation, an online LP for real-time blend recipe reformulation using online analyzers for blending model adjustment, complete automation of blending sequence startup and shutdown, generation of end of blend quality performance reports, and real-time integration between lab, tank gauging, plant information, and blending systems. The entry of Spain in the EEC brought with it the need to quickly adapt to the requirements of an openly competitive marketplace emphasizing no lead, oxygenated, high performance gasolines and ISO 9000 quality standards. The blending system allowed CEPSA to produce lowest cost, minimum giveaway gasolines, while having the flexibility to produce a wide variety of modern gasolines serving the Western European market. The paper describes the blender architecture, optimizer linear programming, man machine interface, and results from the blending system.

Diaz, A. [Compania Espanola de Petroleos, S.A., Cadiz (Spain). Algeciras Refinery; Barsamian, J.A. [ABB Simcon Inc., Bloomfield, NJ (United States)

1996-02-01T23:59:59.000Z

159

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

160

Performance and Emissions of a Compression-Ignition Engine Fueled with Dimethyl Ether and Rapeseed Oil Blends  

Science Journals Connector (OSTI)

Sorenson and Mikkelsen2 had studied DME in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Meanwhile, these parameters are compared with those of pure diesel fuel in order to clarify the effect of blends on the combustion and emission of engines (a CI engine cannot run for much longer of a period with pure DME fuel, so a comparison is only made with pure diesel fuel). ... Moreover, owing to the lower calorific value of the blend compared to diesel fuel, the fuel supply amount per cycle for blend operation is enlarged by increasing the plunger stroke of the fuel pump in order to make the power and torque output of the blends approach those of the corresponding diesel engine. ...

Wang Ying; Zhou Longbao

2007-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of experimental performance investigation on kirloskar single cylinder diesel engine using mustard seed oil and diesel blend.  

E-Print Network [OSTI]

??This research work is focused on the mustard oil based bio diesel which is important renewable and alternative fuel in future. Mustard oil, is a… (more)

Ram Rattan

2013-01-01T23:59:59.000Z

162

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

163

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

164

Reformulated gasoline: Costs and refinery impacts  

SciTech Connect (OSTI)

Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

Hadder, G.R.

1994-02-01T23:59:59.000Z

165

Fractionation of reformate: A new variant of gasoline production technology  

SciTech Connect (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

166

Overview of sSupply of Chicago/Milwaukee Gasoline This Spring:  

Gasoline and Diesel Fuel Update (EIA)

Supply of Chicago/Milwaukee Gasoline Spring 20001 Supply of Chicago/Milwaukee Gasoline Spring 20001 Joanne Shore, Petroleum Division Tight Supply at the Beginning of Summer Gasoline Season This summer's run-up in Midwest gasoline prices, like other recent price spikes, stemmed from a number of factors. The stage was set for gasoline volatility as a result of tight crude oil supplies, which led to low crude oil and low product stocks and relatively high crude oil prices. With little stock cushion to absorb unexpected events, Midwest gasoline prices surged when a number of supply problems developed, including pipeline and refinery supply problems, and an unexpectedly difficult transition to summer-grade Phase II reformulated gasoline (RFG). Prior to the current summer driving season, gasoline stocks were low

167

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

168

Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: April 19, 6: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Google Bookmark Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Delicious Rank Vehicle Technologies Office: Fact #316: April 19, 2004 U.S. Gasoline and Crude Oil Prices, January 1998-February 2004 on Digg

169

Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: April 10, 3: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 to someone by E-mail Share Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Facebook Tweet about Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Twitter Bookmark Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Google Bookmark Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Delicious Rank Vehicle Technologies Office: Fact #123: April 10, 2000 U.S. Gasoline and Oil Prices: January 1998 - March 2000 on Digg Find More places to share Vehicle Technologies Office: Fact #123:

170

Speciation of Nitrogen Compounds in Gasoline and Diesel Range Process Streams by Capillary Column Gas Chromatography with Chemiluminescence Detection  

Science Journals Connector (OSTI)

......Compounds in Gasoline and Diesel Range Process Streams...compounds in gasoline and diesel range process streams...compounds. Gasoline and diesel range streams containing...qualitative analyses of light cycle oil and crude oil (12...HP-5890 series II) and the general location of each flow-related......

Birbal Chawla

1997-03-01T23:59:59.000Z

171

Gasoline accounts for about half the U.S. consumption of petroleum products, and its  

E-Print Network [OSTI]

2 Gasoline accounts for about half the U.S. consumption of petroleum products, and its price is the most visible among these products. As such, changes in gasoline prices are always under public scrutiny. Many claim to observe an asymmetric relationship between gasoline and oil prices -- specifically

172

The Origins of US Transportation Policy: Was There Ever Support for Gasoline Taxes?  

E-Print Network [OSTI]

The Origins of US Transportation Policy: Was There Ever Support for Gasoline Taxes? Christopher R consumption. Missing from these policies were taxes on either oil or gasoline, prompting a long economics press. In doing so, I pay particular attention to whether gasoline taxes were "on the table," as well

Rothman, Daniel

173

BLENDING PROBLEM A refinery blends four petroleum components into three grades of  

E-Print Network [OSTI]

BLENDING PROBLEM A refinery blends four petroleum components into three grades of gasoline/day $/barrel #1 5,000 $9.00 #2 2,400 7.00 #3 4,000 12.00 #4 1,500 6.00 Blending formulas and selling price 4,000 x4R + x4P + x4L 1,500 #12;blending: (1) x1R / (x1R + x2R + x3R + x4R) .40 or x1R .40(x1R

Shier, Douglas R.

174

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

175

Different Factors Impact Different Aspects of Gasoline Price  

Gasoline and Diesel Fuel Update (EIA)

1 1 Notes: In order to illustrate and quantify, to a large extent, the various market forces driving gasoline prices, we begin by decomposing those factors according to their location within the supply chain, i.e., the international crude market, U.S. wholesale gasoline markets, and the retail segment. Historically, variation in gasoline prices usually stems from changes in crude oil prices. As the major feedstock in the production of gasoline, shifts in the balance between supply and demand in crude markets explain a large portion of observed movements at the retail level. But shifts in the wholesale gasoline supply/demand balance also contribute to price pressure or movements at both the wholesale and retail levels beyond that stemming from crude oil markets.

176

Reformulated Gasoline Complex Model  

Gasoline and Diesel Fuel Update (EIA)

Refiners Switch to Reformulated Refiners Switch to Reformulated Gasoline Complex Model Contents * Summary * Introduction o Table 1. Comparison of Simple Model and Complex Model RFG Per Gallon Requirements * Statutory, Individual Refinery, and Compliance Baselines o Table 2. Statutory Baseline Fuel Compositions * Simple Model * Complex Model o Table 3. Complex Model Variables * Endnotes Related EIA Short-Term Forecast Analysis Products * RFG Simple and Complex Model Spreadsheets * Areas Particpating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Reformulated Gasoline Foreign Refinery Rules * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 , (Adobe

177

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

178

The potential for low petroleum gasoline  

SciTech Connect (OSTI)

The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

Hadder, G.R.; Webb, G.M.; Clauson, M.

1996-06-01T23:59:59.000Z

179

Fact Sheet: Effects of Intermediate Ethanol Blends | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Effects of Intermediate Ethanol Blends Effects of Intermediate Ethanol Blends Fact Sheet: Effects of Intermediate Ethanol Blends October 7, 2008 - 4:14pm Addthis In August 2007, the U.S. Department of Energy (DOE) initiated a test program to assess the potential impacts of higher intermediate ethanol blends on conventional vehicles and other engines that rely on gasoline. The test program focuses specifically on the effects of intermediate blends of E15 and E20-gasoline blended with 15 and 20 percent ethanol, respectively-on emissions, catalyst and engine durability, drivability or operability, and materials associated with these vehicles and engines. This DOE test program includes technical expertise from DOE's National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory.

180

Annual Energy Review 2011 - Released September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

gasoline | OpenEI  

Open Energy Info (EERE)

gasoline gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

182

Motor gasolines, summer 1979  

SciTech Connect (OSTI)

Analytical data for 2401 samples of motor gasoline, from service stations throughout the country, were collected and analyzed under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing areas and districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R + M)/2) averages of gasoline sold in this country were 88.6, 89.3, and 93.7 unleaded, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-02-01T23:59:59.000Z

183

Gasoline Price Differences Caused by:  

Gasoline and Diesel Fuel Update (EIA)

0 0 Notes: While my agency cannot be expert in every local gasoline market in the United States, we are familiar with a number of factors that can account for significant differences in prices between markets: Proximity of supply - distance from the refineries supplying the local market. Additionally, the proximity of those refineries to crude oil supplies can be a factor, as well as shipping logistics, including pipeline or waterborne, from refinery to market. Cost of supply - including crude oil, refinery operating, and transportation costs. Supply/demand balance - some regions are typically in excess or short supply, while others may vary seasonally, or when supply interruptions (such as refinery shutdowns) occur. Competitive environment - including the number of suppliers, and the

184

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ? 0.2 and ? 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

185

State Gasoline Taxes  

E-Print Network [OSTI]

BULLETIN OF THE UNIVERSITY OF KANSAS HUMANISTIC STUDIES Vol. III March 15, 192S No. 4 State Gasoline Taxes BY KDMUNI) IV LKAENKI), A. B., A, M. Instructor in Economics and Commerce The Unlvmity of Kansas PUBLISHED BY THE UNIVERSITY l... vast sums of money, Oregon was the first state to adopt a tax on gasoline to provide revenue for building and maintaining roads. Since this adoption in 1919, many states have passed laws provid ing for gasoline taxes until now forty-four states...

Learned, Edmund Philip

1925-03-15T23:59:59.000Z

186

Lower oil prices also cutting winter heating oil and propane...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lower oil prices also cutting winter heating oil and propane bills Lower oil prices are not only driving down gasoline costs, but U.S. consumers will also see a bigger savings in...

187

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Pump Components History Gasoline Pump Components History WHAT WE PAY FOR IN A GALLON OF REGULAR GASOLINE Mon-yr Retail Price (Dollars per gallon) Refining (percentage) Distribution & Marketing (percentage) Taxes (percentage) Crude Oil (percentage) Jan-00 1.289 7.8 13.0 32.1 47.1 Feb-00 1.377 17.9 7.5 30.1 44.6 Mar-00 1.517 15.4 12.8 27.3 44.6 Apr-00 1.465 10.1 20.2 28.3 41.4 May-00 1.485 20.2 9.2 27.9 42.7 Jun-00 1.633 22.2 8.8 25.8 43.1 Jul-00 1.551 13.2 15.8 27.2 43.8 Aug-00 1.465 15.8 7.5 28.8 47.8 Sep-00 1.550 15.4 9.0 27.2 48.3 Oct-00 1.532 13.7 10.1 27.5 48.6 Nov-00 1.517 10.4 11.8 27.8 50.0 Dec-00 1.443 8.0 17.9 29.2 44.8 Jan-01 1.447 17.8 10.4 29.2 42.7 Feb-01 1.450 17.3 11.0 29.1 42.6 Mar-01 1.409 18.8 9.7 30.0 41.5

188

Energy Information Administration/Annual Energy Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and , February 2002, Table 3. d e l l Petroleum Supply Monthly Unfinished oils, motor gasoline blending components, aviation gasoline blending components, and other...

189

Diesel vs Gasoline Production | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vs Gasoline Production Diesel vs Gasoline Production A look at refinery decisions that decide "swing" between diesel and gasoline production deer08leister.pdf More Documents &...

190

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

191

Reformulated Gasoline Foreign Refinery Rules  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated Gasoline Complex Model * Demand, Supply, and Price Outlook for Reformulated Motor Gasoline, 1995 Introduction On August 27, 1997, the EPA promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an

192

Motor gasolines, summer 1980  

SciTech Connect (OSTI)

Analytical data for 2062 samples of motor gasoline were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The anitknock (octane) index ((R + M)/2) averages of gasolines sold in this country were 87.8 for the unleaded below 90.0, 91.6 for the unleaded 90.0 and above, 88.9 for the regular, and 92.8 for the premium grades of gasoline.

Shelton, E.M.

1981-02-01T23:59:59.000Z

193

Motor gasolines, Summer 1982  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 796 samples of motor gasoline, were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 22 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M)/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1983-03-01T23:59:59.000Z

194

Regional Retail Gasoline Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Retail gasoline prices, like those for distillate fuels, have hit record prices nationally and in several regions this year. The national average regular gasoline price peaked at $1.68 per gallon in mid-June, but quickly declined, and now stands at $1.45, 17 cents higher than a year ago. Two regions, in particular, experienced sharp gasoline price runups this year. California, which often has some of the highest prices in the nation, saw prices peak near $1.85 in mid-September, while the Midwest had average prices over $1.87 in mid-June. Local prices at some stations in both areas hit levels well over $2.00 per gallon. The reasons for the regional price runups differed significantly. In the Midwest, the introduction of Phase 2 RFG was hampered by low stocks,

195

Behaviour and effects of alcohol-blended petrol in the subsurface  

Science Journals Connector (OSTI)

...and gasoline blends. Biomass and Bioenergy , 33 , 1175-1181. McDowell...93-104. Staples, C.A. 2001. A review of the environmental fate and aquatic...gasoline in the environment. A literature review and transport modeling . Report...

Philip Morgan; Simon Firth; Beate Hildenbrand

196

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

5 of 5 5 of 5 Notes: March began with gasoline spot prices showing large increases over crude oil. Spot prices were nearly 20 cents per gallon over the already high crude oil prices, when normally the spread would be half that size. This spread was comparable to the spread seen in August 1997 when high demand, low stocks, and some refinery problems cause prices to surge. By the end of March the spread had fallen to about 16 cents per gallon, and by mid April was at about 11 cents per gallon as the inventory situation improved. Crude oil prices have also been falling, pulling gasoline spot prices down. Retail prices, which lag behind changes in the spot market, are turning down also. Regular gasoline prices peaked the week of March 20 at $1.53 and fell to $1.48 the week of April 10.

197

Performance and emission characteristics of a diesel engine using esters of palm olein/soybean oil blends  

Science Journals Connector (OSTI)

In this experimental study, the engine performance and exhaust emissions of a diesel direct injection engine using mixed palm oleinâ??soybean vegetable oil ethyl ester (POSEE) and methyl ester (POSME) have been examined. The results of experimental studies have shown that the torque and brake power output of an engine, which uses biodiesels, is slightly lower and specific fuel consumption is higher than in an engine using conventional diesel fuel. It has also been observed that there is a decrease in both carbon monoxide and hydrocarbon (HC) emissions, which indicates an advantage of exhaust emissions. Although methyl ester's CO2 emissions decreased compared with those of diesel fuel, NO and NOX emissions were higher with the biodiesels.

Imdat Taymaz; Mucahit Sengil

2010-01-01T23:59:59.000Z

198

Is the gasoline tax regressive?  

E-Print Network [OSTI]

Claims of the regressivity of gasoline taxes typically rely on annual surveys of consumer income and expenditures which show that gasoline expenditures are a larger fraction of income for very low income households than ...

Poterba, James M.

1990-01-01T23:59:59.000Z

199

Fractional distillation of natural gasoline by means of a modified Podbielniak apparatus  

E-Print Network [OSTI]

in4ebte4 to the Humble Oil an4 Hefiaing Company for supplying hia with the samples of stabiline4 natural gasolines whish were analgas4 Isbre410t iea ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 I. Deeeriytiaa ot Apyazebue . II. Proeedere . 1T... pxeotionation of a 84. 2 Roid Vapor Pxoeeuro Watuxal Gasoline, Coiuan Uheoaled ~ . ~ . ~ ~ . ~ . . ~ ~ . 50 VII. Data Obtained in tho prost%enation of a 84. 1 Eei4 Vapor Pressure Natural Gasoline, Caiman Cooled . . . . . . . . . 51 VXII Data Obtained...

Toombs, Alfred John Lawrence

2012-06-07T23:59:59.000Z

200

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Motor gasolines, summer 1981  

SciTech Connect (OSTI)

The samples were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The analytical data for 715 samples of motor gasoline were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). They represent the products of 33 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing included in this report shows marketing districts into which the country is divided. A map included in this report shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.3 for unleaded 90.0 and above, 89.0 for leaded below 93.0, and no data in this report for 93.0 and above grades of leaded gasoline.

Shelton, E.M.

1982-04-01T23:59:59.000Z

202

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Sampling Methodology Gasoline Sampling Methodology The sample for the Motor Gasoline Price Survey was drawn from a frame of approximately 115,000 retail gasoline outlets. The gasoline outlet frame was constructed by combining information purchased from a private commercial source with information contained on existing EIA petroleum product frames and surveys. Outlet names, and zip codes were obtained from the private commercial data source. Additional information was obtained directly from companies selling retail gasoline to supplement information on the frame. The individual frame outlets were mapped to counties using their zip codes. The outlets were then assigned to the published geographic areas as defined by the EPA program area, or for conventional gasoline areas, as defined by the Census Bureau's Standard Metropolitan

203

Fact #741: August 20, 2012 Historical Gasoline Prices, 1929-2011  

Broader source: Energy.gov [DOE]

When adjusted for inflation, the average annual price of gasoline in 2011 was $1.24 above the price of gasoline in 1929. The effect of the U.S. embargo of oil from Iran can be seen in the early...

204

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects .  

E-Print Network [OSTI]

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumption… (more)

Sauer, William

2007-01-01T23:59:59.000Z

205

Use of ethers as high-octane components of gasolines  

SciTech Connect (OSTI)

This article reports on a study of the possible utilization of methyl tert-amyl ether (MTAE) as an automotive gasoline component, both by itself and in combination with methyl tert-butyl ether (MTBE). The naphtha used in these studies consisted of 80% reformer naphtha produced under severe conditions and 20% straight-run IBP-62/sup 0/C cut. The physicochemical properties of the MTAE, the MTBE, and the naphtha base stock are given. It is determined that MTAE, which has a slightly poorer knock resistance than MTBE, is fully equal to MTBE in all other respects and can be used as an automotive gasoline component; that a gasoline blend prepared from 89% naphtha base stock, 5.5% MTAE, and 5.5% MTBE meets all of the requirements of the standard GOST 2084-77 for Grade AI-93 gasoline; and that the use of MTAE offers a means for expanding the resources of high-octane components, lowering the toxicity of the gasolines and the exhaust gas (in comparison with organometallic antiknock agents), and bringing non-petroleum raw materials into the fuel production picture.

Gureev, A.A.; Baranova, G.N.; Korotkov, I.V.; Levinson, G.I.

1984-01-01T23:59:59.000Z

206

Co-coking of Hydrotreated Decant Oil/Coal Blends: Effect of Hydrotreatment Severity on the Yield Distribution and Quality of Distillate Fuels  

Science Journals Connector (OSTI)

The coke yield from delayed co-coking of hydrotreated DOs and coal blends was observed to be in the range of 15.9–24.4%. ... The coal used in this study (EI-106) was a 50:50 blend of the Powellton and Eagle seams, both very similar coals of high-volatile A bituminous rank from West Virginia. ... One of the hydrotreated DOs (EI-133) was coked alone. ...

Ömer Gül; Leslie R. Rudnick; Harold H. Schobert

2013-05-19T23:59:59.000Z

207

EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt  

Broader source: Energy.gov [DOE]

The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

208

U.S. Crude & Gasoline Stocks Low But Showing Signs of Recovering  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The current U.S. inventory levels for crude oil and gasoline stocks are low, but improved modestly in March. While crude oil inventories are still well below normal levels, they have increased about 10 million barrels since the end of January, despite the tight crude oil market. Gasoline stocks at the end of February had dropped about 5% below the low end of the normal range. But during March, they rose slightly, instead of dropping further as they normally would do. This allowed gasoline inventories to re-enter the low end of the normal band. While the inventory situation is improving, it remains low. With crude oil inventories still well below normal, and gasoline inventories on the low side of normal, we have little cushion to absorb unexpected events

209

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions  

Science Journals Connector (OSTI)

...the SOA potential of diesel emissions, especially...improve heavy-duty diesel engine performance with postcombustion...attention to gasoline and diesel fuel composition and emissions...carbon. Although total consumption of oil is minor relative...

Drew R. Gentner; Gabriel Isaacman; David R. Worton; Arthur W. H. Chan; Timothy R. Dallmann; Laura Davis; Shang Liu; Douglas A. Day; Lynn M. Russell; Kevin R. Wilson; Robin Weber; Abhinav Guha; Robert A. Harley; Allen H. Goldstein

2012-01-01T23:59:59.000Z

210

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

211

Volatility of Gasoline and Diesel Fuel Blends for Supercritical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions. p-02anitescu.pdf More Documents & Publications...

212

Characterization of liquids derived from laboratory coking of decant oil and co-coking of Pittsburgh seam bituminous coal with decant oil  

SciTech Connect (OSTI)

In this study, decant oil and a blend of Pittsburgh seam bituminous coal with decant oil were subjected to coking and co-coking in a laboratory-scale delayed coker. Higher yields of coke and gas were obtained from co-coking than from coking. Coal addition into the feedstock resulted in lighter overhead liquid. GC/MS analyses of gasoline, jet fuel, and diesel show that co-coking of coal/decant oil gave higher quantity aromatic components than that of coking of decant oil alone. Simulated distillation gas chromatography analyses of overhead liquids and GC/MS analyses of vacuum fractions show that when coal was reacted with a decant oil, the coal constituents contributed to the distillable liquids. To address the reproducibility of the liquid products, overhead liquid samples collected at the first, third, and fifth hours of experiments of 6 h duration were evaluated using simulated distillation gas chromatography and {sup 1}H and {sup 13}C NMR. NMR analyses of the liquid products showed that, even though there were slight changes in the {sup 1}H and {sup 13}C spectra, the standard deviation was low for the time-dependent samples. Simulated distillation gas chromatography showed that the yields of refinery boiling range materials (i.e., gasoline, jet fuel, diesel, and fuel oil cuts) were reproducible between runs. Fractionation of the overhead liquids into refinery boiling range materials (gasoline, jet fuel, diesel, fuel oil fractions) showed that the boiling range materials and chemical compositions of fractions were found to be reproducible. 54 refs., 17 tabs.

Omer Gul; Caroline Clifford; Leslie R. Rudnick; Harold H. Schobert [Pennsylvania State University, University Park, PA (United States)

2009-05-15T23:59:59.000Z

213

LOW COST BIOHEATING OIL APPLICATION.  

SciTech Connect (OSTI)

The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

KRISHNA,C.R.

2003-05-01T23:59:59.000Z

214

Mapping surrogate gasoline compositions into RON/MON space  

SciTech Connect (OSTI)

In this paper, new experimentally determined octane numbers (RON and MON) of blends of a tri-component surrogate consisting of toluene, n-heptane, i-octane (called toluene reference fuel TRF) arranged in an augmented simplex design are used to derive a simple response surface model for the octane number of any arbitrary TRF mixture. The model is second-order in its complexity and is shown to be more accurate to the standard ''linear-by-volume'' (LbV) model which is often used when no other information is available. Such observations are due to the existence of both synergistic and antagonistic blending of the octane numbers between the three components. In particular, antagonistic blending of toluene and iso-octane leads to a maximum in sensitivity that lies on the toluene/iso-octane line. The model equations are inverted so as to map from RON/MON space back into composition space. Enabling one to use two simple formulae to determine, for a given fuel with known RON and MON, the volume fractions of toluene, n-heptane and iso-octane to be blended in order to emulate that fuel. HCCI engine simulations using gasoline with a RON of 98.5 and a MON of 88 were simulated using a TRF fuel, blended according to the derived equations to match the RON and MON. The simulations matched the experimentally obtained pressure profiles well, especially when compared to simulations using only PRF fuels which matched the RON or MON. This suggested that the mapping is accurate and that to emulate a refinery gasoline, it is necessary to match not only the RON but also the MON of the fuel. (author)

Morgan, Neal; Kraft, Markus [Department of Chemical Engineering, University of Cambridge, Cambridge CB2 3RA (United Kingdom); Smallbone, Andrew; Bhave, Amit [Reaction Engineering Solutions Ltd., 61 Canterbury Street, Cambridge CB4 3QG (United Kingdom); Cracknell, Roger; Kalghatgi, Gautam [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2010-06-15T23:59:59.000Z

215

E-Print Network 3.0 - active oil producing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

making distillate- based fuels such as diesel and jet fuel. The cost of producing oil shale remains... and produce gasoline. The South African oil company Sasol later developed...

216

Dispensing Equipment Testing with Mid-Level Ethanol/Gasoline Test Fluid: Summary Report  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory's (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy's (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

Boyce, K.; Chapin, J. T.

2010-11-01T23:59:59.000Z

217

DOE Hydrogen Analysis Repository: Ethanol-Diesel Blends in Buses and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Diesel Blends in Buses and Tractors Ethanol-Diesel Blends in Buses and Tractors Project Summary Full Title: Fuel-Cycle Energy and Emission Impacts of Ethanol-Diesel Blends in Urban Buses and Farming Tractors Project ID: 86 Principal Investigator: Michael Wang Brief Description: This project studied the full fuel-cycle energy and emissions effects of ethanol-diesel blends relative to those of petroleum diesel when used in urban transit buses and farming tractors. Keywords: Ethanol; diesel; emissions; well-to-wheels (WTW) Purpose Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark- ignition engine vehicles. Those studies did not address the energy and emission effects of

218

2003 California Gasoline Price Study (preliminary version)  

Gasoline and Diesel Fuel Update (EIA)

1 1 2003 California Gasoline Price Study: Preliminary Findings May 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

219

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium 17 LPG 18 20 Light Naphtha 6 6 Premium Gasoline 20 20 Reg. Gasoline 80 92 Gas Oil 163 170 Fuel Oil Reg. Distillate Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum

Grossmann, Ignacio E.

220

What's an Alternative Fuel? Energy Department Proposes Additional Substitute for Gasolin  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

NEWS MEDIA CONTACTS: NEWS MEDIA CONTACTS: FOR IMMEDIATE RELEASE Jayne Brady, 202/586-5806 July 28, 1998 WHAT'S AN ALTERNATIVE FUEL? Energy Department Proposes Additional Substitute for Gasoline The Department of Energy today published a proposed rule to add another new substitute for gasoline, called the "P-series fuels," to the regulatory definition of "alternative fuel." P-series fuels are designed to operate in flexible-fuel vehicles that can run on E85 (85 percent ethanol mixed with 15 percent gasoline), or gasoline, or any blend of the two. Chrysler and Ford have begun to mass-produce flexible-fuel engines as standard equipment for certain vehicle models. Chrysler's most popular minivan equipped with a flexible-fuel engine is on the market today and the Ford Ranger pick-up truck will have such an engine in the 1999 model year. These

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

California Gasoline Price Study  

Gasoline and Diesel Fuel Update (EIA)

DIRECTOR, PETROLEUM DIVISION DIRECTOR, PETROLEUM DIVISION ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY BEFORE THE SUBCOMMITTEE ON ENERGY AND RESOURCES COMMITTEE ON GOVERNMENT REFORM U.S. HOUSE OF REPRESENTATIVES MAY 9, 2005 Mr. Chairman, I appreciate this opportunity to testify today on the Energy Information Administration's (EIA) insights into factors affecting recent gasoline prices. EIA is the statutorily chartered statistical and analytical agency within the U.S. Department of Energy. We are charged with providing objective, timely, and relevant data, analysis, and projections for the use of the Department of Energy, other Government agencies, the U.S. Congress, and the public. We produce data and analysis reports that are meant to assist policy makers in determining energy policy. Because we have an element of

222

Gasoline Price Volatility Is a Concern This Summer  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Last summer's low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories did not recover and the spread remained higher than average through most of the summer. In November and December, as gasoline demand eased, prices relaxed and spreads returned to average levels -- only to rebound again in January and February as refineries began to undergo maintenance and the market watched the already low stock cushion erode further. This February, spreads are higher than last year -- averaging 14 cents so far. This is about twice what we would typically see this time of

223

BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT.  

SciTech Connect (OSTI)

Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible.

KRISHNA,C.R.

2001-12-01T23:59:59.000Z

224

Total Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Imports - Other Conventional Gasoline Imports - Motor Gasoline Blend. Components Imports - Motor Gasoline Blend. Components, RBOB Imports - Motor Gasoline Blend. Components, RBOB w/ Ether Imports - Motor Gasoline Blend. Components, RBOB w/ Alcohol Imports - Motor Gasoline Blend. Components, CBOB Imports - Motor Gasoline Blend. Components, GTAB Imports - Motor Gasoline Blend. Components, Other Imports - Fuel Ethanol Imports - Kerosene-Type Jet Fuel Imports - Distillate Fuel Oil Imports - Distillate F.O., 15 ppm Sulfur and Under Imports - Distillate F.O., > 15 ppm to 500 ppm Sulfur Imports - Distillate F.O., > 500 ppm to 2000 ppm Sulfur Imports - Distillate F.O., > 2000 ppm Sulfur Imports - Residual Fuel Oil Imports - Propane/Propylene Imports - Other Other Oils Imports - Kerosene Imports - NGPLs/LRGs (Excluding Propane/Propylene) Exports - Total Crude Oil and Products Exports - Crude Oil Exports - Products Exports - Finished Motor Gasoline Exports - Kerosene-Type Jet Fuel Exports - Distillate Fuel Oil Exports - Residual Fuel Oil Exports - Propane/Propylene Exports - Other Oils Net Imports - Total Crude Oil and Products Net Imports - Crude Oil Net Imports - Petroleum Products Period: Weekly 4-Week Avg.

225

An econometric study of the demand for gasoline in the Gulf Cooperation Council countries  

SciTech Connect (OSTI)

Reliable and accurate estimation of price and income elasticities of demand for gasoline are important ingredients for long-run energy planning and policy formation. The purpose of this study is to develop and estimate a model for gasoline demand for Gulf Cooperation Council (GCC) countries (Bahrain, Kuwait, Oman, Oatar, Saufi Arabia, and the United Arab Emirates). The model is capable of producing short-run and long-run price and income elasticities. Since the first oil price hike in 1973, a great deal of attention has been directed toward the demand for gasoline, especially in the industrialized countries. Few studies have been directed toward the demand for gasoline in developing countries. In terms of primary energy consumption, the GCC`s energy needs are met by oil, natural gas, and electricity. Without any doubt, oil is the largest energy source consumed and gasoline is the most important oil product. However, very few studies have been directed toward analyzing GCC energy demand, and yet there has been not attempt to model and estimate GCC gasoline demand. This study attempts to address this gap.

Eltony, M.N.

1994-12-31T23:59:59.000Z

226

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Gasoline Price Data Collection Procedures Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

227

Gasoline Price Pass-through  

Gasoline and Diesel Fuel Update (EIA)

differences, whereas stationary series can be estimated in level form. The unit root test could not reject the hypothesis that the retail and spot gasoline price series have a...

228

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline Test Fluid  

Broader source: Energy.gov [DOE]

The National Renewable Energy Laboratory’s (NREL) Nonpetroleum-Based Fuel Task addresses the hurdles to commercialization of biomass-derived fuels and fuel blends. One such hurdle is the unknown compatibility of new fuels with current infrastructure, such as the equipment used at service stations to dispense fuel into automobiles. The U.S. Department of Energy’s (DOE) Vehicle Technology Program and the Biomass Program have engaged in a joint project to evaluate the potential for blending ethanol into gasoline at levels higher than nominal 10 volume percent. The U.S. Environmental Protection Agency (EPA) is considering a waiver application for 15% by volume ethanol blended into gasoline (E15). Should the waiver be granted, service stations may be able to use their current equipment to dispense the new fuel. This project was established to help DOE and NREL better understand any potentially adverse impacts caused by a lack of knowledge about the compatibility of the dispensing equipment with ethanol blends higher than what the equipment was designed to dispense. This report provides data about the impact of introducing a gasoline with a higher volumetric ethanol content into service station dispensing equipment from a safety and a performance perspective.

229

Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels  

Science Journals Connector (OSTI)

Milking Diatoms for Sustainable Energy: Biochemical Engineering versus Gasoline-Secreting Diatom Solar Panels ... In this communication, we propose ways of harvesting oil from diatoms, using biochemical engineering and also a new solar panel approach that utilizes genomically modifiable aspects of diatom biology, offering the prospect of “milking” diatoms for sustainable energy by altering them to actively secrete oil products. ...

T. V. Ramachandra; Durga Madhab Mahapatra; Karthick B; Richard Gordon

2009-06-02T23:59:59.000Z

230

Effect of Ethanol on Blending Stability and Diesel Engine Emissions  

Science Journals Connector (OSTI)

Effect of Ethanol on Blending Stability and Diesel Engine Emissions ... Industrial & Engineering Chemistry Research2013 52 (44), 15504-15508 ... This article describes the effects of hydroxylated biodiesel (castor oil methyl ester – COME) on the properties, combustion, and emissions of butanol–diesel blends used within compression ignition engines. ...

Magín Lapuerta; Octavio Armas; Reyes García-Contreras

2009-07-28T23:59:59.000Z

231

Inquiry into August 2003 Gasoline Price Spike Â… Revised Outline  

Gasoline and Diesel Fuel Update (EIA)

Inquiry into August 2003 Gasoline Price Spike Inquiry into August 2003 Gasoline Price Spike November 2003 Office of Oil and Gas Energy Information Administration U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. Contacts and Acknowledgments This report was prepared by the Office of Oil and Gas of the Energy Information Administration (EIA) under the direction of John Cook, Director, Petroleum Division. Questions concerning the report may be directed to Joanne Shore (202/586-4677),

232

Refiner Prices of Gasoline, All Grades - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/ Sales Type: Gasoline, All Grades - Sales to End Users (U.S. only) Gasoline, All Grades - Through Retail Outlets Gasoline, All Grades - Other End Users Gasoline, All Grades - Sales for Resale Gasoline, All Grades - DTW (U.S. only) Gasoline, All Grades - Rack (U.S. only) Gasoline, All Grades - Bulk (U.S. only) Regular Gasoline - Sales to End Users (U.S. only) Regular Gasoline - Through Retail Outlets Regular Gasoline - Other End Users Regular Gasoline - Sales for Resale Regular Gasoline - DTW (U.S. only) Regular Gasoline - Rack (U.S. only) Regular Gasoline - Bulk (U.S. only) Midgrade Gasoline - Sales to End Users (U.S. only) Midgrade Gasoline - Through Retail Outlets Midgrade Gasoline - Other End Users Midgrade Gasoline - Sales for Resale Midgrade Gasoline - DTW (U.S. only) Midgrade Gasoline - Rack (U.S. only) Midgrade Gasoline - Bulk (U.S. only) Premium - Sales to End Users (U.S. only) Premium Gasoline - Through Retail Outlets Premium Gasoline - Other End Users Premium Gasoline - Sales for Resale Premium Gasoline - DTW (U.S. only) Premium Gasoline - Rack (U.S. only) Premium Gasoline - Bulk (U.S. only) Period: Monthly Annual

233

Comparing air quality impacts of hydrogen and gasoline  

E-Print Network [OSTI]

from among existing gasoline station locations in Sacra-VOC emitted at gasoline service stations, because these arethe gasoline terminal storage and refueling stations, it is

Sperling, Dan; Wang, Guihua; Ogden, Joan M.

2008-01-01T23:59:59.000Z

234

Path to High Efficiency Gasoline Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine Path to High Efficiency Gasoline Engine deer10johansson.pdf More Documents & Publications Partially...

235

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

236

Word Pro - S5  

Gasoline and Diesel Fuel Update (EIA)

per Day) 1 Unfinished oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant...

237

Annual Energy Review 2010 - Released October 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.92),...

238

Annual Energy Review 2009 - Released August 2010  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant net production (0.75),...

239

TABLE31.CHP:Corel VENTURA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

unfinished oils. b Based on total finished motor gasoline output minus net input of motor gasoline blending components, minus input of natural gas plant liquids, other hydrocarbons...

240

Word Pro - S5.lwp  

Gasoline and Diesel Fuel Update (EIA)

per Day) 1 Unfinished oils, hydrogenoxygenatesrenewablesother hydrocarbons, and motor gasoline and aviation gasoline blending components. 2 Renewable fuels and oxygenate plant...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices  

E-Print Network [OSTI]

Sup) # Sup Squared Crude Oil Price Constant Years of Datafactors using the price of crude oil (Cushings, O K ) . AsN and N-squared. The price of crude oil is a significant and

Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

2007-01-01T23:59:59.000Z

242

Gasoline and Diesel Fuel Update  

Gasoline and Diesel Fuel Update (EIA)

Procedures, Methodology, and Coefficients of Variation Procedures, Methodology, and Coefficients of Variation Gasoline Price Data Collection Procedures Every Monday, retail prices for all three grades of gasoline are collected by telephone from a sample of approximately 800 retail gasoline outlets. The prices are published around 5:00 p.m. ET Monday, except on government holidays, when the data are released on Tuesday (but still represent Monday's price). The reported price includes all taxes and is the pump price paid by a consumer as of 8:00 A.M. Monday. This price represents the self-serve price except in areas having only full-serve. The price data are used to calculate weighted average price estimates at the city, state, regional and national levels using sales and delivery volume data from other EIA surveys and population estimates from the Bureau of Census.

243

Gasoline Prices Vary Among Locations  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: The public is probably more knowledgeable about what they pay for gasoline than about anything else they use regularly. Most Americans are bombarded several times a day with the price of gasoline. Many people who phone our office don't only want to know why prices have risen, but why their prices are different than prices in some other area - the gasoline station two blocks away, the average price quoted on the news, the price their uncle is paying in a different region of the country. This chart shows some of the different state averages for a specific month. Besides taxes, these differences are due to factors such as distance from refining sources, and mix of reformulated versus conventional fuels. What this snapshot does not show,is that all of these prices can

244

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

245

STEO January 2013 - average gasoline prices  

U.S. Energy Information Administration (EIA) Indexed Site

gasoline prices are expected to decline over the next two years. The average pump price for regular unleaded gasoline was 3.63 a gallon during 2012. That is expected to fall...

246

Household gasoline demand in the United States  

E-Print Network [OSTI]

Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

Schmalensee, Richard

1995-01-01T23:59:59.000Z

247

ER 100/200, PP C184/284 GSI Section Notes Energy & Society Week 15: Transportation, Climate Change Mitigation  

E-Print Network [OSTI]

- blending of low carbon fuels like ethanol with gasoline - increase use of bio-diesel (esp. from waste oil

Kammen, Daniel M.

248

table01.chp:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

... 60,218 1,943 Other Liquids Unfinished Oils and Gasoline Blending Components, Total (18) Stock Change (Withdrawal (+), Addition (-))...

249

energy savings by the use of mtbe to replace alkylate in automotive gasolines  

SciTech Connect (OSTI)

This paper presents data on the differences in energy consumption in the production of leaded and unleaded AI-93 gasolines with various blend components. The authors investigate as high-octane components certain products that are more effective in use and less energy-consuming in production in comparison with alkylate. In particular, methyl tert-butyl ether (MTBE) is discussed; it is not poisonous, it has a high heat of combustion, and it does not attack materials of construction. The addition of 11% MTBE to gasoline lowers the cold start temperature of engines by 10-12 degrees. Moreover, no adjustment of the carburetor is required for the changeover to gasoline with 11% MTBE.

Englin, B.A.; Emel'yanov, V.E.; Terent'ev, G.A.; Vinogradov, A.M.

1986-07-01T23:59:59.000Z

250

Vehicle Technologies Office Merit Review 2014: Advanced Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI)...

251

What Drives U.S. Gasoline Prices?  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

weekly gasoline spot price 2011-14 ... 15 Table 3. Dickey-Fuller test and autocorrelogram results ......

252

Hydrocarbon analysis of shrimp from oil polluted waters  

E-Print Network [OSTI]

), serious pollution problems are caused by crude oils, residual fuel oils, lubricating oils and miscel- laneous tank washings, sludges and tarsi known collectively as persis- tant oils, to distinguish them from light fuel oils such as gasoline, kerosene... obtained from crude oil, die- sel oil and lubricating oil. These "fingerprints" were compared to "fingerprints" from shrimp to obtain parameters for assessing pollution of shrimp by crude oil and its derivatives. Using these parameters, contaminated...

DeWitt, Bernard John

1982-01-01T23:59:59.000Z

253

Microsoft Word - Gasoline_2008 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 1 April 2008 Short-Term Energy Outlook Supplement: Motor Gasoline Consumption 2008 A Historical Perspective and Short-Term Projections 1 Highlights * Income growth rates have less of an impact on recent trends in gasoline consumption than in the past, but short-run effects are still significant. * High gasoline prices are once again motivating drivers to conserve by driving less and purchasing more fuel-efficient transportation. * The increasing share of lower-Btu-content ethanol has contributed to a growing divergence between volume-based and energy-content-based measures of trends in gasoline consumption. * Consumer sensitivity to gasoline price changes increases during periods when

254

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

increases in the price of crude oil during the last half ofdollar-denominated price of crude oil increased about 50%.month contract) price per gallon of crude oil and gasoline

Borenstein, Severin

2008-01-01T23:59:59.000Z

255

Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits  

Science Journals Connector (OSTI)

...emissions or oil consumption. Because such externality...associated with oil consumption. We compare externality and oil consumption costs to the costs...and no gasoline engine). We estimate...manufacturing, fuel cycle, and operation...

Jeremy J. Michalek; Mikhail Chester; Paulina Jaramillo; Constantine Samaras; Ching-Shin Norman Shiau; Lester B. Lave

2011-01-01T23:59:59.000Z

256

Cost, Conflict and Climate: U.S. Challenges in the World Oil Market  

E-Print Network [OSTI]

at the world price of oil and prices of gasoline and otherincremental pro?ts when oil prices rise come from both U.S.the recent increases in oil prices and attempts to clarify

Borenstein, Severin

2008-01-01T23:59:59.000Z

257

Average monthly gasoline price to fall to $3.43 by September  

U.S. Energy Information Administration (EIA) Indexed Site

monthly gasoline price to fall to $3.43 by September monthly gasoline price to fall to $3.43 by September The U.S. average monthly retail price of gasoline is expected to decline by about 18 cents per gallon between May and September, according to the new forecast from the U.S. Energy Information Administration. The lower price reflects, in part, slightly lower crude oil prices that account for about two-thirds of the cost at the pump. The largest price drops are expected in the Midwest states as refineries serving that region, which had been down for planned and unplanned maintenance, return to operation. For the year as a whole, the annual average retail gasoline price is forecasted to decline from $3.63 a gallon last year to $3.49 a gallon this year...and then drop to $3.37 per gallon in 2014

258

Motor Gasoline Market Spring 2007 and Implications for Spring 2008  

Gasoline and Diesel Fuel Update (EIA)

Motor Gasoline Market Spring 2007 Motor Gasoline Market Spring 2007 and Implications for Spring 2008 April 2008 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the U.S. Department of Energy or any other organization. Service Reports are prepared by the Energy Information Administration upon special request and are based on assumptions specified by the requestor. Preface and Contacts

259

Volatility Relationship between Crude Oil and Petroleum Products  

Science Journals Connector (OSTI)

This paper utilizes calculated historical volatility and GARCH models to compare the historical price volatility behavior of crude oil, motor gasoline and heating oil in U.S. markets since 1990. ... GARCH/TARCH m...

Thomas K. Lee; John Zyren

2007-03-01T23:59:59.000Z

260

The chemical origin of octane sensitivity in gasoline fuels containing nitroalkanes  

SciTech Connect (OSTI)

Experimental octane measurements are presented for a standard gasoline to which has been added various quantities of nitromethane, nitroethane and 1-nitropropane. The addition of nitroalkanes was found to suppress the Motor Octane Number to a much greater extent than the Research Octane Number. In other words addition of nitroalkanes increases the octane sensitivity of gasoline. Density Functional Theory was used to model the equilibrium thermodynamics and the barrier heights for reactions leading to the break-up of nitroethane. These results were used to develop a chemical kinetic scheme for nitroalkanes combined with a surrogate gasoline (for which a mechanism has been developed previously). Finally the chemical kinetic simulations were combined with a quasi-dimensional engine model in order to predict autoignition in octane rating tests. Our results suggest that the chemical origin of octane sensitivity in gasoline/nitroalkane blends cannot be fully explained on the conventional basis of the extent to which NTC behaviour is absent. Instead we have shown that the contribution of the two pathways leading to autoignition in gasoline containing nitroalkanes becomes much more significant under the more severe conditions of the Motor Octane method than the Research Octane method. (author)

Cracknell, R.F.; McAllister, L.J.; Norton, M.; Walmsley, H.L. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Andrae, J.C.G. [Shell Global Solutions, Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom); Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden)

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chapter 30 - Biofuel Economics and Policy: The Renewable Fuel Standard, the Blend Wall, and Future Uncertainties  

Science Journals Connector (OSTI)

Abstract Biofuels are currently in a state of flux. The main operative policy for biofuels in the United States is the Renewable Fuel Standard (RFS). It specifies a minimum quantity of four different types of biofuels that must be blended each year in the United States through 2022. However, the United States also faces what is called the blend wall, which is a physical limit on blending given that the United States blends at a 10% rate. The blend wall upper limit is now below the RFS lower limit for corn ethanol, and that is causing problems with the administration of the RFS. This chapter explains how the RFS functions and then examines alternatives to the current administration of the RFS. The RFS is critical for cellulosic biofuels and biodiesel, and its elimination would likely end use of those fuels. Corn ethanol, however, is now much less expensive than gasoline and would continue.

Wallace E. Tyner

2015-01-01T23:59:59.000Z

262

Rheological Behavior of Castor Oil Biodiesel  

Science Journals Connector (OSTI)

Rheological Behavior of Castor Oil Biodiesel ... This work aims at assessing the rheological behavior of castor oil, castor oil biodiesel, and undegraded and degraded biodiesel at different exposure times and temperatures. ... Castor oil biodiesel presents viscosity higher than diesel oil, but this drawback can be corrected by means of blends of both components at different proportions. ...

Marta M. Conceição; Roberlúcia A. Candeia; Hermesson J. Dantas; Luiz E. B. Soledade; Valter J. Fernandes, Jr.; Antonio G. Souza

2005-07-08T23:59:59.000Z

263

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Stories of Discovery & Innovation From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass Enlarge Photo Image by Eric Steen, JBEI Once E. coli have secreted oil, they sequester themselves from the droplets as shown by this optical image, thereby facilitating oil recovery. Currently, biochemical processing of cellulosic biomass requires costly enzymes for sugar liberation. By giving the E. coli the capacity to ferment both cellulose and hemicellulose without the 03.28.11 From Gasoline to Grassoline: Microbes Produce Fuels Directly from Biomass A microbe that can produce an advanced biofuel directly from biomass was developed by researchers with the U.S. Department of Energy's Joint BioEnergy

264

Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Gasoline Gallon Gasoline Gallon Equivalent (GGE) Definition to someone by E-mail Share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Facebook Tweet about Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Twitter Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Google Bookmark Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Delicious Rank Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on Digg Find More places to share Alternative Fuels Data Center: Gasoline Gallon Equivalent (GGE) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Gasoline Gallon Equivalent (GGE) Definition

265

Areas Participating in the Reformulated Gasoline Program  

Gasoline and Diesel Fuel Update (EIA)

Reformulated Gasoline Program Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA Short-Term Forecast Analysis Products * Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 * Environmental Regulations and Changes in Petroleum Refining Operations * Areas Participating in Oxygenated Gasoline Program

266

Truck loading rack blending  

SciTech Connect (OSTI)

Blending, the combining of two or more components to make a single product, has become widely used in most loading rack applications. Blending should not be confused with additive injection, which is the injection of very small doses of enhancers, detergents and dyes into a product stream. Changes in the environmental protection laws in the early 90`s have put increasing demands on marketing terminals with regards to reformulated fuels and environmental protection concerns. As a result of these new mandates, terminals have turned to blending at the loading rack as an economical and convenient means in meeting these new requirements. This paper will discuss some of these mandates and how loading rack blending is used for different applications. Various types of blending will also be discussed along with considerations for each method.

Boubenider, E. [Daniel Flow Products, Inc., Houston, TX (United States)

1995-12-01T23:59:59.000Z

267

JV Task 112-Optimal Ethanol Blend-Level Investigation  

SciTech Connect (OSTI)

Highway Fuel Economy Test (HWFET) and Federal Test Procedure 75 (FTP-75) tests were conducted on four 2007 model vehicles; a Chevrolet Impala flex-fuel and three non-flex-fuel vehicles: a Ford Fusion, a Toyota Camry, and a Chevrolet Impala. This investigation utilized a range of undenatured ethanol/Tier II gasoline blend levels from 0% to 85%. HWFET testing on ethanol blend levels of E20 in the flex fuel Chevrolet Impala and E30 in the non-flex-fuel Ford Fusion and Toyota Camry resulted in miles-per-gallon (mpg) fuel economy greater than Tier 2 gasoline, while E40 in the non-flex-fuel Chevrolet Impala resulted in an optimum mpg based on per-gallon fuel Btu content. Exhaust emission values for non-methane organic gases (NMOG), carbon monoxide (CO), and nitrogen oxides (NO{sub x}) obtained from both the FTP-75 and the HWFET driving cycles were at or below EPA Tier II, Light-Duty Vehicles, Bin 5 levels for all vehicles tested with one exception. The flex-fuel Chevrolet Impala exceeded the NMOG standard for the FTP-75 on E-20 and Tier II gasoline.

Richard Shockey; Ted Aulich; Bruce Jones; Gary Mead; Paul Steevens

2008-01-31T23:59:59.000Z

268

Rerefined Oil: An Option that Saves Oil, Minimizes Pollution  

Science Journals Connector (OSTI)

...of the annual oil consumption of the United States...desirably, burned as a fuel under carefully...percent of U.S. consumption of petroleum. About...oil was burned as fuel. Another 200 million...from gasoline and diesel fuel, carbon...me-tallic particles from engine wear, and metals...

THOMAS H. MAUGH II

1976-09-17T23:59:59.000Z

269

Refining Crude Oil - Energy Explained, Your Guide To Understanding Energy -  

Gasoline and Diesel Fuel Update (EIA)

Oil and Petroleum Products > Refining Crude Oil Oil and Petroleum Products > Refining Crude Oil Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Emissions Come From Outlook for Future Emissions Recycling and Energy Nonrenewable Sources Oil and Petroleum Products Refining Crude Oil Where Our Oil Comes From Imports and Exports Offshore Oil and Gas Use of Oil Prices and Outlook Oil and the Environment Gasoline Where Our Gasoline Comes From Use of Gasoline Prices and Outlook

270

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

to achieve cost-effective compliance * minimize precious metal content while maximizing fuel economy * Relevance: - U.S. passenger car fleet is dominated by gasoline-fueled...

271

Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...  

Broader source: Energy.gov (indexed) [DOE]

in Gasoline Turbocharged Direct Injection (GTDI) engine technology in the near term as a cost effective, high volume, fuel economy solution, marketed globally as EcoBoost...

272

Emissions Control for Lean Gasoline Engines  

Broader source: Energy.gov (indexed) [DOE]

SCR Urea TankInjector Cost Customer Acceptance Not in Project Scope Specific Key Issues: Cost, Durability, Fuel Penalty, Operating Temp.,+... Lean Gasoline SI Direct Injection...

273

Integration of Nonlinear CDU Models in Refinery  

E-Print Network [OSTI]

Hydrotreatment Distillate blending Gas oil blending Cat Crack CDU Crude1, ... Crude2, .... butane Fuel gas Prem. Gasoline Reg. Gasoline Distillate Fuel Oil Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum Product Blending 4 #12;Planning Model Example Information Given Refinery

Grossmann, Ignacio E.

274

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

275

EIA-878 Motor Gasoline Price Survey ? Reference Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8 Motor Gasoline Price Survey - Reference Guide For the purposes of the Motor Gasoline Price Survey (EIA-878), we collect prices for the following gasoline grades as defined by...

276

From Gasoline Alleys to Electric Avenues  

Science Journals Connector (OSTI)

...From Gasoline Alleys to Electric Avenues 10.1126...for next-generation electric cars could help make...next-generation hybrid vehicle. Like today's hybrids...have dual gasoline and electric engines. But whereas...authorizing $1 million for rebates for future plug-in hybrid...

Eli Kintisch

2008-02-08T23:59:59.000Z

277

Design Case Summary: Production of Gasoline and Diesel from Biomass...  

Energy Savers [EERE]

Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

278

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

279

Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...  

Energy Savers [EERE]

Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

280

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerfujita.pdf More...

282

Load Expansion with Diesel/Gasoline RCCI for Improved Engine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

283

Advantages of Oxygenates Fuels over Gasoline in Direct Injection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

284

Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of...

285

In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Gasoline and Diesel Engine Vehicle Exhaust Particulate and Semi-Volatile Organic Compound Materials In Vitro Genotoxicity of Gasoline and Diesel Engine Vehicle Exhaust Particulate...

286

High Efficiency Clean Combustion Engine Designs for Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen...

287

HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model  

SciTech Connect (OSTI)

Experiments in a homogeneous charge compression ignition (HCCI) engine have been conducted with four gasoline surrogate fuel blends. The pure components in the surrogate fuels consisted of n-heptane, isooctane, toluene, ethanol and diisobutylene and fuel sensitivities (RON-MON) in the fuel blends ranged from two to nine. The operating conditions for the engine were p{sub in}=0.1 and 0.2 MPa, T{sub in}=80 and 250 C, {phi}=0.25 in air and engine speed 1200 rpm. A semidetailed chemical kinetic model (142 species and 672 reactions) for gasoline surrogate fuels, validated against ignition data from experiments conducted in shock tubes for gasoline surrogate fuel blends at 1.0{<=} p{<=}5.0MPa, 700{<=} T{<=}1200 K and {phi}=1.0, was successfully used to qualitatively predict the HCCI experiments using a single zone modeling approach. The fuel blends that had higher fuel sensitivity were more resistant to autoignition for low intake temperature and high intake pressure and less resistant to autoignition for high intake temperature and low intake pressure. A sensitivity analysis shows that at high intake temperature the chemistry of the fuels ethanol, toluene and diisobutylene helps to advance ignition. This is consistent with the trend that fuels with the least Negative Temperature Coefficient (NTC) behavior show the highest octane sensitivity, and become less resistant to autoignition at high intake temperatures. For high intake pressure the sensitivity analysis shows that fuels in the fuel blend with no NTC behavior consume OH radicals and acts as a radical scavenger for the fuels with NTC behavior. This is consistent with the observed trend of an increase in RON and fuel sensitivity. With data from shock tube experiments in the literature and HCCI modeling in this work, a correlation between the reciprocal pressure exponent on the ignition delay to the fuel sensitivity and volume percentage of single-stage ignition fuel in the fuel blend was found. Higher fuel sensitivity and single-stage fuel content generally gives a lower value of the pressure exponent. This helps to explain the results obtained while boosting the intake pressure in the HCCI engine. (author)

Andrae, J.C.G. [Dept. of Chemical Engineering and Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Head, R.A. [Shell Technology Centre Thornton, P.O. Box 1, Chester CH1 3SH (United Kingdom)

2009-04-15T23:59:59.000Z

288

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 PADD 1 130 25 3,403 1,515 3,374 230 -269 3,374 264 5,307 PADD 2 1,993 892 4,464 2,094 500 -317 -225 4,240 386 5,224 PADD 3 6,249 96 7,346 4,283 -3,758 511 -211 6,723 2,976 5,239 PADD 4 887 14 643 287 -425 -18 51 615 10 713 PADD 5 1,174 20 3,127 1,413 310 82 36 2,939 362 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

289

Sandia National Laboratories: blending feedstock varieties  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

blending feedstock varieties Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks On February 26, 2013, in Biofuels,...

290

Process for producing gasoline of high octane number, in particular lead-free gasoline  

SciTech Connect (OSTI)

A process is described for producing gasoline of high octane number from C/sub 3/ and C/sub 4/ olefinic cuts, such as those obtained by fractional distillation of a C/sub 3/ / C/sub 4/ catalytic cracking cut. It includes the steps of: (A) oligomerizing propylene of the C/sub 3/ cut to obtain a first gasoline fraction, (B) reacting the isobutene of the C/sub 4/ cut with methanol to produce methyl tert.-butyl ether which is separated from the unreacted C/sub 4/ hydrocarbons to form a second gasoline fraction, (C) alkylating said unreacted C/sub 4/ hydrocarbons with isobutane in the presence of an alkylation catalyst such as hydrofluoric acid, to form a third gasoline fraction, and (D) admixing, at least partially, said first, second and third gasoline fractions, so as to obtain gasoline of high octane number.

Chauvin, Y.; Gaillard, J.; Hellin, M.; Torck, B.; Vu, Q.D.

1981-06-02T23:59:59.000Z

291

Tough Blends of Polylactide and Castor Oil  

Science Journals Connector (OSTI)

Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431, United States ... Poly(l-lactide) (PLLA) is a renewable resource polymer derived from plant sugars with several commercial applications. ... DND-CAT is supported by E. I. Dupont de Nemours and Co., The Dow Chemical Co., and the State of Illinois. ...

Megan L. Robertson; Jessica M. Paxton; Marc A. Hillmyer

2011-08-08T23:59:59.000Z

292

Alternative Fuels Data Center: Biodiesel Blends  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blends on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blends on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blends on Google Bookmark Alternative Fuels Data Center: Biodiesel Blends on Delicious Rank Alternative Fuels Data Center: Biodiesel Blends on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blends on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Blends Biodiesel can be blended and used in many different concentrations, including B100 (pure biodiesel), B20 (20% biodiesel, 80% petroleum diesel),

293

Why are gasoline prices falling so rapidly?  

Gasoline and Diesel Fuel Update (EIA)

Why are gasoline prices falling so rapidly? Why are gasoline prices falling so rapidly? As of October 29, 2001, the national average retail price of regular gasoline was $1.235 per gallon, its lowest level since November 8, 1999 (Figure 1). The average price has fallen 29 cents in 6 weeks since September 17, with further declines perhaps to come. The sharpest decline has been in the Midwest (Petroleum Administration for Defense District 2), where the average has dropped 57 cents in 8 weeks since Labor Day (September 3). Additionally, this decline comes on the heels of a 33-cent drop in the national average in 10 weeks from Memorial Day through August 6, interrupted only by a brief 17-cent rise in August. In total, the national average retail gasoline price has fallen nearly 48 cents from its peak on May 14. This is already the widest one-year range in retail prices

294

Eliminating MTBE in Gasoline in 2006  

Gasoline and Diesel Fuel Update (EIA)

02/22/2006 02/22/2006 Eliminating MTBE in Gasoline in 2006 Summary In 2005, a number of petroleum companies announced their intent to remove methyl tertiary-butyl ether (MTBE) from their gasoline in 2006. Companies' decisions to eliminate MTBE have been driven by State bans due to water contamination concerns, continuing liability exposure from adding MTBE to gasoline, and perceived potential for increased liability exposure due to the elimination of the oxygen content requirement for reformulated gasoline (RFG) included in the Energy Policy Act of 2005. EIA's informal discussions with a number of suppliers indicate that most of the industry is trying to move away from MTBE before the 2006 summer driving season. Currently, the largest use of MTBE is in RFG consumed on the East Coast outside of

295

U.S. gasoline prices increase slightly  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

296

Edgeworth price cycles in retail gasoline markets  

E-Print Network [OSTI]

In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

Noel, Michael David, 1971-

2002-01-01T23:59:59.000Z

297

Chemistry Impacts in Gasoline HCCI  

SciTech Connect (OSTI)

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

298

Eliminating MTBE in Gasoline in 2006  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

for and moving more ethanol to the East Coast and Texas, converting terminal tanks from petroleum to ethanol, adding blending equipment at many terminals, and finding...

299

Certification of alternative aviation fuels and blend components  

SciTech Connect (OSTI)

Aviation turbine engine fuel specifications are governed by ASTM International, formerly known as the American Society for Testing and Materials (ASTM) International, and the British Ministry of Defence (MOD). ASTM D1655 Standard Specification for Aviation Turbine Fuels and MOD Defence Standard 91-91 are the guiding specifications for this fuel throughout most of the world. Both of these documents rely heavily on the vast amount of experience in production and use of turbine engine fuels from conventional sources, such as crude oil, natural gas condensates, heavy oil, shale oil, and oil sands. Turbine engine fuel derived from these resources and meeting the above specifications has properties that are generally considered acceptable for fuels to be used in turbine engines. Alternative and synthetic fuel components are approved for use to blend with conventional turbine engine fuels after considerable testing. ASTM has established a specification for fuels containing synthesized hydrocarbons under D7566, and the MOD has included additional requirements for fuels containing synthetic components under Annex D of DS91-91. New turbine engine fuel additives and blend components need to be evaluated using ASTM D4054, Standard Practice for Qualification and Approval of New Aviation Turbine Fuels and Fuel Additives. This paper discusses these specifications and testing requirements in light of recent literature claiming that some biomass-derived blend components, which have been used to blend in conventional aviation fuel, meet the requirements for aviation turbine fuels as specified by ASTM and the MOD. The 'Table 1' requirements listed in both D1655 and DS91-91 are predicated on the assumption that the feedstocks used to make fuels meeting these requirements are from approved sources. Recent papers have implied that commercial jet fuel can be blended with renewable components that are not hydrocarbons (such as fatty acid methyl esters). These are not allowed blend components for turbine engine fuels as discussed in this paper.

Wilson III, George R. (Southwest Research Institute, 6220 Culebra Road, San Antonio, Texas 78238 (United States)); Edwards, Tim; Corporan, Edwin (United States Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States)); Freerks, Robert L. (Rentech, Incorporated, 1331 17th Street, Denver, Colorado 80202 (United States))

2013-01-15T23:59:59.000Z

300

Interactive coastal oil spill transport model  

E-Print Network [OSTI]

. 6 fuel oils, diesel or No. 2 fuel oils, and light petroleum products such as kerosenes or gasolines. Crude oils of different ge- ologic and geographic sources vary widely in composition. Thousands of individual compounds, mostly hydrocarbons... Composition (by Weight) of Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 16 IV Comparison of Solubilities for Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 17 V Biodegradation Rates of Crude Oils...

Thalasila, Nanda K.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Gasoline SR Distillate SR GO SR Residuum backoutletCDUfrontoutletCDUfeedfeedCDUoutlet bbFaF ,,,,, * ++= #12

Grossmann, Ignacio E.

302

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Feedstock Heavy Naphtha 13 9 Refinery Production Fuel Gas 13 17 LPG 18 20 Light Naphtha 6 6 Premium Gasoline

Grossmann, Ignacio E.

303

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum #12;7 Complexity of CDU CDU depends on steam stripping

Grossmann, Ignacio E.

304

Optimal Model-Based Production Planning for  

E-Print Network [OSTI]

Statement Cat Ref Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 and simplicity Taxes, 20% Dist. & Marketin g, 9% Refining, 18.10% Crude, 53% 2005 Retail Gasoline Price crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR

Grossmann, Ignacio E.

305

Optimal Model-Based Production Planning  

E-Print Network [OSTI]

Hydrotreatment Gasoline blending Distillate blending Gas oil blending Cat Crack CDU crude1 crude2 butane Fuel gas Premium Reg. Distillate GO Treated Residuum SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR crude2 SR Fuel gas SR Naphtha SR Gasoline SR Distillate SR GO SR Residuum backoutlet

Grossmann, Ignacio E.

306

Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9: August 4, 9: August 4, 2003 Gasoline Stations to someone by E-mail Share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Facebook Tweet about Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Twitter Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Google Bookmark Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Delicious Rank Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on Digg Find More places to share Vehicle Technologies Office: Fact #279: August 4, 2003 Gasoline Stations on AddThis.com... Fact #279: August 4, 2003 Gasoline Stations The number of retail outlets that sell gasoline to the public has declined by 17.7% from 1993 to 2002 - from 207,416 in 1993, to 170,678 in 2002.

307

Low Gasoline Stocks Indicate Increased Odds of Spring Volatility  

Gasoline and Diesel Fuel Update (EIA)

We cannot just focus on distillate. Gasoline will likely be our next We cannot just focus on distillate. Gasoline will likely be our next major concern. Gasoline stock levels have fallen well below the typical band for this time of year, primarily for the same reason distillate stocks fell to low levels -- namely relatively low production due to low margins. At the end of January, total gasoline inventories were almost 13 million barrels (6%) below the low end of the normal band. While gasoline stocks are generally not as important a supply source to the gasoline market this time of year as are distillate stocks to the distillate market, gasoline stocks still are needed. Gasoline stocks are usually used to help meet gasoline demand during February and March as refiners go through maintenance and turnarounds, but we do not have the

308

Motor gasolines, winter 1981-1982  

SciTech Connect (OSTI)

Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

Shelton, E M

1982-07-01T23:59:59.000Z

309

Motor gasolines, winter 1982-83  

SciTech Connect (OSTI)

Analytical data for 1330 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 28 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R + M)/2 below 90.0, unleaded antiknock index (R + M/2 90.0 and above, leaded antiknock index (R + M)/2 below 93.0, and leaded antiknock index (R + M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R + M)/2 averages of gasoline sold in this country were 87.3 for unleaded below 90.0, 91.5 for unleaded 90.0 and above, and 89.1 for leaded below 93.0, and no data was reported in this report for leaded gasolines with an antiknock index (R + M)/2 93.0 and above. 21 figures, 5 tables.

Shelton, E.M.

1983-07-01T23:59:59.000Z

310

U.S. Motor Gasoline Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Product: Motor Gasoline Regular Gasoline Midgrade Gasoline Premium Gasoline Conventional Gasoline Oxygenated Gasoline Reformulated Gasoline Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Sales to End Users, Total 28,179.6 24,384.0 24,143.9 23,567.1 24,120.5 23,282.9 1983-2013 Through Retail Outlets 26,507.1 22,632.7 22,641.3 22,038.2 22,474.5 21,660.0 1983-2013 Sales for Resale, Total NA NA NA NA NA NA 1983-2013 DTW 24,954.1 29,704.3 30,138.3 29,222.8 30,011.9 28,880.3 1994-2013 Rack 236,373.7 242,166.6 243,892.5 243,789.7 248,761.4 237,431.5 1994-2013

311

Gasoline marketing: Octane mislabeling in New York City  

SciTech Connect (OSTI)

The problem of octane mislabeling at gasoline stations in New York City has grown - from 46 or fewer citations in 1981 to 171 citations in 1986. No single source of octane mislabeling exists but the city has found both gasoline station operators and fuel distributors to blame. The problem does not seem to be unique to any one type of gasoline station but 57 percent of the 171 citations issued involved gasoline sold under the name of a major refiner; the rest involved unbranded gasoline. Octane cheating can be lucrative in New York City. A station intentionally mislabeling its gasoline could realize amounts many times the city's maximum $500 fine for cheating.

Not Available

1987-01-01T23:59:59.000Z

312

Motor gasolines, winter 1979-1980  

SciTech Connect (OSTI)

Analytical data for 1857 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 48 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report shows marketing areas districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1949. Twelve octane distribution percent charts for areas, 1, 2, 3, and 4 for unleaded, regular, and premium grades of gasoline are presented in this report. The antiknock (octane) index ((R+M)/2) averages of gasoline sold in this country were 87.9, 92.1, 89.0, and 93.3 unleaded below 90.0, unleaded 90.0 and above, regular, and premium grades of gasolines, respectively.

Shelton, E.M.

1980-07-01T23:59:59.000Z

313

Motor gasolines, Winter 1980-81  

SciTech Connect (OSTI)

Analytical data for 546 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 23 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since 1959. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.6 unleaded below 90.0, 91.4 unleaded 90.0 and above, 89.1 leaded below 93.0, and 93.3 leaded 93.0 and above grades of gasoline.

Shelton, E.M.

1981-07-01T23:59:59.000Z

314

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

315

Biochemical processing of heavy oils and residuum  

SciTech Connect (OSTI)

During the past several decades, the petroleum industry has adjusted gradually to accommodate the changes in market product demands, government regulations, and the quality and cost of feedstock crude oils. For example, the trends show that the demand for distillate fuels, such as diesel, as compared to gasoline are increasing. Air-quality standards have put additional demand on the processing of heavier and higher sulfur feed stocks. Thus, the 1990 Clean Air Act amendments require the industry to produce greater quantities of oxygenated gasoline, and lower sulfur diesel and reformulated gasoline. Biochemical technology may play an important role in responding to these demands on the petroleum industry.

Lin, M.S.; Premuzic, T.; Yablon, J.H.; Zhou, Wei-Min

1995-05-01T23:59:59.000Z

316

1995 Reformulated Gasoline Market Affected Refiners Differently  

Gasoline and Diesel Fuel Update (EIA)

5 Reformulated Gasoline Market Affected 5 Reformulated Gasoline Market Affected Refiners Differently by John Zyren, Charles Dale and Charles Riner Introduction The United States has completed its first summer driving season using reformulated gasoline (RFG). Motorists noticed price increases at the retail level, resulting from the increased cost to produce and deliver the product, as well as from the tight sup- ply/demand balance during the summer. This arti- cle focuses on the costs of producing RFG as experienced by different types of refiners and on how these refiners fared this past summer, given the prices for RFG at the refinery gate. RFG Regulatory Requirements The use of RFG is a result of the Clean Air Act Amendments of 1990 (CAAA). The CAAA cover a wide range of programs aimed at improving air qual-

317

Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Michigan Fleet Reduces Michigan Fleet Reduces Gasoline and Diesel Use to someone by E-mail Share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Facebook Tweet about Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Twitter Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Google Bookmark Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Delicious Rank Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on Digg Find More places to share Alternative Fuels Data Center: Michigan Fleet Reduces Gasoline and Diesel Use on AddThis.com... Feb. 11, 2010 Michigan Fleet Reduces Gasoline and Diesel Use D iscover how the City of Ann Arbor reduced municipal fleet gas and diesel

318

Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: February 26, 8: February 26, 2007 Gasoline Price Expectations to someone by E-mail Share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Facebook Tweet about Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Twitter Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Google Bookmark Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Delicious Rank Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on Digg Find More places to share Vehicle Technologies Office: Fact #458: February 26, 2007 Gasoline Price Expectations on AddThis.com... Fact #458: February 26, 2007 Gasoline Price Expectations

319

Factors Impacting Gasoline Prices and Areas for Further Study  

Gasoline and Diesel Fuel Update (EIA)

Factors Impacting Gasoline Prices and Areas for Further Study Factors Impacting Gasoline Prices and Areas for Further Study 8/10/01 Click here to start Table of Contents Factors Impacting Gasoline Prices and Areas for Further Study Different Factors Impact Different Aspects of Gasoline Price Correlation of Price to Inventory Levels Crude Prices Strongly Related to OECD.Crude & Product Inventories Gasoline Prices Also Influenced by Regional Gasoline Product Markets Tight Product Balance Pushes Up Product Spread (Spot Product - Crude Price) Retail Price Changes Lag Spot Prices Cumulative Gasoline Price Pass-through Illustration of How Lag Effect Dampens and Slows Retail Price Changes from Wholesale Recent Weekly Retail Price Changes Have Been as Expected Summary: Most Gasoline Price Movement Can Be Explained As Rational Market Behavior Author: Joanne Shore

320

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fleet that operates more than 30,000 motorized vehicles and has hybrid electric (diesel and gasoline) vehicles currently in service. FedEx Express has deployed 20 gasoline...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

322

U.S. gasoline price falls under $3 (short version)  

U.S. Energy Information Administration (EIA) Indexed Site

3, 2014 U.S. gasoline price falls under 3 (short version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon on...

323

U.S. gasoline price falls under $3 (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

November 3, 2014 U.S. gasoline price falls under 3 (long version) The U.S. average retail price for regular gasoline fell to its lowest level since December 2010 at 2.99 a gallon...

324

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

325

Fact #835: August 25, Average Historical Annual Gasoline Pump...  

Energy Savers [EERE]

5: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 Fact 835: August 25, Average Historical Annual Gasoline Pump Price, 1929-2013 When adjusted for inflation,...

326

Fact #824: June 9, 2014 EPA Sulfur Standards for Gasoline  

Broader source: Energy.gov [DOE]

Sulfur naturally occurs in gasoline and diesel fuel, contributing to pollution when the fuel is burned. Beginning in 2004, standards were set on the amount of sulfur in gasoline (Tier 2 standards)....

327

DOE's Gasoline/Diesel PM Split Study | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Desert Research Institute 2003deerfujita.pdf More Documents & Publications DOE's GasolineDiesel PM Split Study DOE's GasolineDiesel PM Split Study Long-Term Changes in Gas-...

328

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

329

Why Do Motor Gasoline Prices Vary Regionally? California Case Study  

Reports and Publications (EIA)

Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

1998-01-01T23:59:59.000Z

330

National Survey of E85 and Gasoline Prices  

SciTech Connect (OSTI)

Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

Bergeron, P.

2008-10-01T23:59:59.000Z

331

Catalytic isomerization of the overhead fractions of straight run gasoline  

Science Journals Connector (OSTI)

The isomerization of the pentane and hexane fractions of gasoline on a platinum catalyst was studied, as...

N. R. Bursian; G. N. Maslyanskii…

1965-06-01T23:59:59.000Z

332

Mid-Level Ethanol Blends  

Energy Savers [EERE]

Mid-Level Ethanol Blends Test Program DOE, NREL, and ORNL Team Presented by Keith Knoll Work supported by DOEEERE Vehicle Technologies Program Annual Merit Review and Peer...

333

Fuel-blending stocks from the hydrotreatment of a distillate formed by direct coal liquefaction  

SciTech Connect (OSTI)

The direct liquefaction of coal in the iron-catalyzed Suplex process was evaluated as a technology complementary to Fischer-Tropsch synthesis. A distinguishing feature of the Suplex process, from other direct liquefaction processes, is the use of a combination of light- and heavy-oil fractions as the slurrying solvent. This results in a product slate with a small residue fraction, a distillate/naphtha mass ratio of 6, and a 65.8 mass % yield of liquid fuel product on a dry, ash-free coal basis. The densities of the resulting naphtha (C{sub 5}-200{sup o}C) and distillate (200-400{sup o}C) fractions from the hydroprocessing of the straight-run Suplex distillate fraction were high (0.86 and 1.04 kg/L, respectively). The aromaticity of the distillate fraction was found to be typical of coal liquefaction liquids, at 60-65%, with a Ramsbottom carbon residue content of 0.38 mass %. Hydrotreatment of the distillate fraction under severe conditions (200{sup o}C, 20.3 MPa, and 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1}) with a NiMo/Al{sub 2}O{sub 3} catalyst gave a product with a phenol content of {lt}1 ppm, a nitrogen content {lt}200 ppm, and a sulfur content {lt}25 ppm. The temperature was found to be the main factor affecting diesel fraction selectivity when operating at conditions of WHSV = 0.41 g{sub feed} h{sup -1} g{sub catalyst}{sup -1} and PH{sub 2} = 20.3 MPa, with excessively high temperatures (T {gt} 420{sup o}C) leading to a decrease in diesel selectivity. The fuels produced by the hydroprocessing of the straight-run Suplex distillate fraction have properties that make them desirable as blending components, with the diesel fraction having a cetane number of 48 and a density of 0.90 kg/L. The gasoline fraction was found to have a research octane number (RON) of 66 and (N + 2A) value of 100, making it ideal as a feedstock for catalytic reforming and further blending with Fischer-Tropsch liquids. 44 refs., 9 figs., 12 tabs.

Andile B. Mzinyati [Sasol Technology Research and Development, Sasolburg (South Africa). Fischer-Tropsch Refinery Catalysis

2007-09-15T23:59:59.000Z

334

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

335

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel  

E-Print Network [OSTI]

1999 2000 2001 2002 2003 2004... 2005 2006 gasoline diesel price +10% gasolinegasoline gasoline diesel... ... 2007 20081998 2009 ...2010 home work home work diesel diesel ... gasoline diesel price -7, households' decisions are affected by various other factors, from the vehicle market offer to governmental

Bierlaire, Michel

336

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel  

E-Print Network [OSTI]

Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms of gasoline surrogate compounds using a set of mechanism generation techniques. The mechanism yields very good

Utah, University of

337

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry  

E-Print Network [OSTI]

Empirical Regularities of Asymmetric Pricing in the Gasoline Industry Marc Remer August 2, 2010 pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether

Niebur, Ernst

338

LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL  

E-Print Network [OSTI]

1 LAMINAR BURNING VELOCITY OF GASOLINES WITH ADDITION OF ETHANOL P. Dirrenberger1 , P.A. Glaude*1 (2014) 162-169" DOI : 10.1016/j.fuel.2013.07.015 #12;2 LAMINAR BURNING VELOCITY OF GASOLINES, Sweden Abstract The adiabatic laminar burning velocities of a commercial gasoline and of a model fuel (n

Boyer, Edmond

339

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network [OSTI]

Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron Smith July 12, 2012 Abstract Ethanol made from corn comprises 10% of US gasoline, up from 3% in 2003 proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry

Rothman, Daniel

340

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline  

E-Print Network [OSTI]

NIST Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Technical Note 1666 Modeling the Effects of Outdoor Gasoline Powered Generator Use on Indoor Carbon Monoxide and Technology (NIST) conducted a study for CDC to examine the impact of distance of gasoline-powered portable

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays  

E-Print Network [OSTI]

ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Ã?ystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

Feigon, Brooke

342

What Do Consumers Believe About Future Gasoline Soren T. Anderson  

E-Print Network [OSTI]

What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

Silver, Whendee

343

Production of high-octane automobile gasolines by the catalytic reforming of straight-run gasoline fractions from mangyshlak crude  

Science Journals Connector (OSTI)

High-octane components for AI-93 and AI-98 automobile gasolines can be obtained in 86 and 82% ... 140, 140–180, and 85–180°C gasoline fractions from Mangyshlak crude.

V. A. Kuprianov; A. A. Timofeev; V. E. Gavrun…

1971-08-01T23:59:59.000Z

344

Study of methanol-to-gasoline process for production of gasoline from coal  

Science Journals Connector (OSTI)

The methanol-to-gasoline (MTG) process is an efficient way to produce liquid ... The academic basis of the coal-to-liquid process is described and two different synthesis processes are focused on: Fixed MTG process

Tian-cai He; Xiao-han Cheng; Ling Li…

2009-03-01T23:59:59.000Z

345

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE  

E-Print Network [OSTI]

IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE SURVEYS By Michael J. Moran, Rick M. Clawges, and John S. Zogorski U.S. Geological Survey 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline

346

Burning Droplets Composed of Light Cycle Oil and Diesel Light Oil  

Science Journals Connector (OSTI)

Burning Droplets Composed of Light Cycle Oil and Diesel Light Oil ... 3. General Characteristics ... Now we are considering using LCO as well as its blend with LO in gas turbine (GT) or partially in the combined cycling gas turbine (CCGT),10 as to avoid the tight standards on oil compositions. ...

Guangwen Xu; Masiki Ikegami; Senji Honma; Khoji Ikeda; Hiroshi Nagaishi; Daniel L. Dietrich; Yasuhiro Takeshita

2002-01-05T23:59:59.000Z

347

Imperfect price-reversibility of US gasoline demand: Asymmetric responses to price increases and declines  

SciTech Connect (OSTI)

This paper describes a framework for analyzing the imperfect price-reversibility (hysteresis) of oil demand. The oil demand reductions following the oil price increases of the 1970s will not be completely reversed by the price cuts of the 1980s, nor is it necessarily true that these partial demand reversals themselves will be reversed exactly by future price increases. The author decomposes price into three monotonic series: price increases to maximum historic levels, price cuts, and price recoveries (increases below historic highs). He would expect that the response to price cuts would be no greater than to price recoveries, which in turn would be no greater than for increases in maximum historic price. For evidence of imperfect price-reversibility, he tests econometrically the following US data: vehicle miles per driver, the fuel efficiency of the automobile fleet, and gasoline demand per driver. In each case, the econometric results allow him to reject the hypothesis of perfect price-reversibility. The data show smaller response to price cuts than to price increases. This has dramatic implications for projections of gasoline and oil demand, especially under low-price assumptions. 26 refs., 13 figs., 3 tabs.

Gately, D. (New York Univ., NY (United States))

1992-01-01T23:59:59.000Z

348

Measurement of Enthalpies of Vaporization of Isooctane and Ethanol Blends and Their Effects on PM Emissions from a GDI Engine  

Science Journals Connector (OSTI)

Measurement of Enthalpies of Vaporization of Isooctane and Ethanol Blends and Their Effects on PM Emissions from a GDI Engine ... The enthalpy of vaporization is very important for the performance of spark ignition engines, especially those that use gasoline direct injection (GDI). ... However, measurements reported here show that the increased enthalpy of vaporization has an adverse effect on the particulate matter (PM) emissions from a GDI engine. ...

Longfei Chen; Richard Stone

2011-02-22T23:59:59.000Z

349

Engines - Fuel Injection and Spray Research - Gasoline Sprays  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Sprays Gasoline Sprays Animated image of fuel emerging from a gasoline injector Animated image of fuel emerging from a gasoline injector (simulated environment). Some newer automobiles in the U.S. use gasoline direct injection (GDI) engines. These advanced gasoline engines inject the fuel directly into the engine cylinder rather than into the intake port. These engines can achieve higher fuel efficiency, but they depend on a precise fuel/air mixture at the spark plug to initiate ignition. This leads to more stringent requirements on spray quality and reproducibility. GDI also enables new combustion strategies for gasoline engines such as lean burn engines that use less fuel and air. Lean burn engines may achieve efficiencies near those of diesels while producing low emissions. This

350

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

351

Volatility of Gasoline and Diesel Fuel Blends for Supercritical Fuel Injection  

Broader source: Energy.gov [DOE]

Supercritical dieseline could be used in diesel engines having efficient fuel systems and combustion chamber designs that decrease fuel consumption and mitigate emissions.

352

Why Are Gasoline Prices Rising so Fast  

Gasoline and Diesel Fuel Update (EIA)

Statement of John Cook Statement of John Cook Before the Committee on Government Reform Subcommittee on Energy Policy, Natural Resources and Regulatory Affairs U.S. House of Representatives June 14, 2001 Thank you Mr. Chairman and members of the Committee for the opportunity to testify today. Gasoline prices have begun declining, as expected, from this spring's apparent peak price of $1.71 on May 14, with the national average for regular gasoline at $1.65 per gallon as of June 11 (Figure 1). Between late March and mid-May, retail prices rose 31 cents per gallon, with some regions experiencing even greater increases. Like last year, Midwest consumers saw some of the largest increases, and along with California, some of the highest prices. Prices in the Midwest increased 43 cents per

353

Detailed Kinetic Modeling of Gasoline Surrogate Mixtures  

SciTech Connect (OSTI)

Real fuels are complex mixtures of thousands of hydrocarbon compounds including linear and branched paraffins, naphthenes, olefins and aromatics. It is generally agreed that their behavior can be effectively reproduced by simpler fuel surrogates containing a limited number of components. In this work, a recently revised version of the kinetic model by the authors is used to analyze the combustion behavior of several components relevant to gasoline surrogate formulation. Particular attention is devoted to linear and branched saturated hydrocarbons (PRF mixtures), olefins (1-hexene) and aromatics (toluene). Model predictions for pure components, binary mixtures and multi-component gasoline surrogates are compared with recent experimental information collected in rapid compression machine, shock tube and jet stirred reactors covering a wide range of conditions pertinent to internal combustion engines. Simulation results are discussed focusing attention on the mixing effects of the fuel components.

Mehl, M; Curran, H J; Pitz, W J; Westbrook, C K

2009-03-09T23:59:59.000Z

354

This Week In Petroleum Gasoline Section  

Gasoline and Diesel Fuel Update (EIA)

Regular Gasoline Retail Prices (Dollars per Gallon) Regular Gasoline Retail Prices (Dollars per Gallon) Retail Average Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13 12/17/12 U.S. 3.265 3.194 3.219 3.293 3.272 3.269 3.239 3.254 East Coast (PADD 1) 3.289 3.243 3.282 3.386 3.389 3.382 3.373 3.350 Midwest (PADD 2) 3.188 3.074 3.126 3.191 3.121 3.132 3.079 3.144 Gulf Coast (PADD 3) 3.030 2.978 3.004 3.140 3.124 3.104 3.047 3.045 Rocky Mountain (PADD 4) 3.307 3.227 3.183 3.145 3.113 3.077 3.055 3.211 West Coast (PADD 5) 3.564 3.507 3.467 3.457 3.475 3.477 3.472 3.457 Retail Conventional Regular Gasoline Prices Petroleum Data Tables more data Most Recent Year Ago 11/04/13 11/11/13 11/18/13 11/25/13 12/02/13 12/09/13 12/16/13

355

The Extraction of Gasoline from Natural Gas  

E-Print Network [OSTI]

for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gas» Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

Schroeder, J. P.

1914-05-15T23:59:59.000Z

356

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

357

Effects of Some Oxygenated Substitutes on Gasoline Properties, Spark Ignition Engine Performance, and Emissions  

Science Journals Connector (OSTI)

It is worthwhile to mention that eucalyptol which can be steam-extracted from eucalyptus leaves has been tested as a co-solvent that prevents alcohol?gasoline blended fuels from phase separation. ... In this table, the compound along with the concentration in the respective base fuel, BRON, and its accuracy as well as relative effectiveness on a molar (RE-M) and a weight (RE-W) basis in comparison with MTBE are shown. ... All the compounds studied exhibited enhanced ignition quality, expressed with their capability to suppress engine knock, performance that can be confirmed from the BRON values of Table 3. From the data in the table, and given the accuracy of the BRON values, which is ±10/x, where x is the w/v % concentration of the compound in the fuel, a decrease of BRON values with the increase of the RON of the base fuel is observed. ...

S. Gouli; E. Lois; S. Stournas

1998-08-12T23:59:59.000Z

358

Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures  

SciTech Connect (OSTI)

Ignition times were determined in high-pressure shock-tube experiments for various stoichiometric mixtures of two multicomponent model fuels in air for the validation of ignition delay simulations based on chemical kinetic models. The fuel blends were n-heptane (18%)/isooctane (62%)/ethanol (20%) by liquid volume (14.5%/44.5%/41% by mole fraction) and n-heptane (20%)/toluene (45%)/isooctane (25%)/diisobutylene (10%) by liquid volume (17.5%/55%/19.5%/8.0% by mole fraction). These fuels have octane numbers comparable to a standard European gasoline of 95 RON and 85 MON. The experimental conditions cover temperatures from 690 to 1200 K and pressures at 10, 30, and 50 bar. The obtained ignition time data are scaled with respect to pressure and compared to previous results reported in the literature. (author)

Fikri, M.; Herzler, J.; Starke, R.; Schulz, C.; Roth, P. [IVG, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Kalghatgi, G.T. [Shell Global Solutions U.K., P.O. Box 1, Chester CH1 3SH (United Kingdom)

2008-01-15T23:59:59.000Z

359

Detailed kinetic models for the low-temperature auto ignition of gasoline surrogates  

E-Print Network [OSTI]

In the context of the search for gasoline surrogates for kinetic modeling purpose, this paper describes a new model for the low-temperature auto-ignition of n-heptane/iso-octane/hexene/toluene blends for the different linear isomers of hexene. The model simulates satisfactory experimental results obtained in a rapid compression machine for temperatures ranging from 650 to 850 K in the case of binary and ternary mixtures including iso octane, 1-hexene and toluene. Predictive simulations have also been performed for the autoignition of n heptane/iso octane/hexene/toluene quaternary mixtures: the predicted reactivity is close to that of pure iso octane with a retarding effect when going from 1- to 3-alkene.

Bounaceur, Roda; Fournet, René; Warth, Valérie; Battin-Leclerc, Frédérique

2009-01-01T23:59:59.000Z

360

U.S. Product Supplied for Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 18,553 18,551 18,724 19,046 19,091 19,116 1963-2013 Crude Oil 0 0 0 0 0 0 1981-2013 Natural Gas Liquids and LRGs 2,297 2,086 2,138 2,169 2,159 2,331 1981-2013 Pentanes Plus 52 48 113 -52 15 114 1981-2013 Liquefied Petroleum Gases 2,245 2,038 2,025 2,222 2,144 2,217 1973-2013 Ethane/Ethylene 921 930 894 963 940 1,027 1981-2013 Propane/Propylene 1,148 924 979 1,052 1,036 1,093 1973-2013 Normal Butane/Butylene 130 138 85 141 103 78 1981-2013 Isobutane/Isobutylene 47 45 68 66 64 18 1981-2013 Other Liquids 66 100 24 184 -43 199 1981-2013 Hydrogen/Oxygenates/Renewables/ Other Hydrocarbons 0 0 0 0 0 0 1991-2013 Unfinished Oils 67 100 24 184 -43 199 1981-2013 Motor Gasoline Blend. Comp. 0 0 0 0 0 0 1981-2013

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Vehicle Technologies Office: Intermediate Ethanol Blends  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

362

Alternative Fuels Data Center: Biodiesel Blend Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Standards to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Standards on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Standards on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Standards on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Standards on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Standards Biodiesel blends are considered compliant with Texas Low Emissions Diesel Fuel (TxLED) regulations if the diesel fuel is compliant with TxLED

363

Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices:  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1: October 15, 1: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries to someone by E-mail Share Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Facebook Tweet about Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Twitter Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Google Bookmark Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Delicious Rank Vehicle Technologies Office: Fact #491: October 15, 2007 Gasoline Prices: U.S. and Selected European Countries on Digg Find More places to share Vehicle Technologies Office: Fact #491:

364

Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000  

Gasoline and Diesel Fuel Update (EIA)

Demand and Price Outlook for Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o Volatile Organic Compounds (VOC) Reduction o Summary of RFG Production Options * Costs of Reformulated Gasoline o Phase 1 RFG Price Premium o California Clean Gasoline Price Premium o Phase 2 RFG Price Premium o Reduced Fuel Economy

365

Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995  

Gasoline and Diesel Fuel Update (EIA)

Demand, Supply, and Price Outlook for Reformulated Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995 by Tancred Lidderdale* Provisions of the Clean Air Act Amendments of 1990 designed to reduce ground-level ozone will increase the demand for reformulated motor gaso- line in a number of U.S. metropolitan areas. Refor- mulated motor gasoline is expected to constitute about one-third of total motor gasoline demand in 1995, and refiners will have to change plant opera- tions and modify equipment in order to meet the higher demand. The costs incurred are expected to create a wholesale price premium for reformu- lated motor gasoline of up to 4.0 cents per gallon over the price of conventional motor gasoline. This article discusses the effects of the new regulations on the motor gasoline market and the refining

366

Estimating the gasoline components and formulations toxicity to microalgae (Tetraselmis chuii) and oyster (Crassostrea rhizophorae) embryos: An approach to minimize environmental pollution risk  

SciTech Connect (OSTI)

Even though petrochemical contamination frequently occurs in the form of oil spills, it is thought that a greater danger to coastal habitats is posed by chronic petrochemical toxicity associated with urban run-off, in which gasoline water-soluble-fraction (WSF) plays an important role. The hypothesis of the entrepreneurs, who were associated to the scientists uncharged of this research, was that recycled petrochemical waste may provide different gasoline formulations, having different toxic properties; the correlation between the gasoline formulations and their components' toxicological effects might contribute to the reformulation of the products, in such a way that the gasoline generated could be less toxic and less harmful to the environment. The aim of this research was to determine the toxic effects of 14 different types of gasoline (formulated, in accordance with National Petroleum Agency standards, from petrochemical waste), on Tetraselmis chuii (microalgae culture) and Crassostrea rhizophorae (embryos). Microalgae and oyster embryos were exposed to different gasoline formulations water-soluble fractions (WSF) at a range of concentrations (0%, 4.6%, 10.0%, 22.0%, 46.0%, and 100%), for 96 and 24 h, respectively. The tests were carried out under controlled conditions. End-points have been CI50-96h (concentration causing 50% growth inhibition in microalgae cultures) and EC50-24h (concentration causing abnormalities on 50% of the exposed embryos). Through these procedures, gasoline formulations, which represent the lowest environmental risk, were selected. Bioassays carried out on the 8 different gasoline components aimed to correlate gasoline toxicity with the toxic potential of its components. The analysis of principal components showed that the C9DI, a mixture of aromatic hydrocarbons of 9 carbon atoms, had the highest level of toxic potential, followed by C9S (a mixture of aromatics with 9-11 carbon atoms) and heavy naphtha. The results showed gasoline formulations 1-4 (monoaromatic hydrocarbons being the most conspicuous components) to be the least toxic, whilst formulations 12-14 (having higher content of C9DI, C9S and naphtha) were found to be the most harmful to organisms. This study led to the identification of the most toxic WSF gasoline components (C9DI and C9S), and to the possibility of developing more eco-compatible gasoline formulations.

Paixao, J.F. [Institute of Biology, Federal University of Bahia (Brazil); Nascimento, I.A. [Institute of Biology, Federal University of Bahia (Brazil) and Technology and Sciences Faculty, Salvador, Bahia (Brazil)]. E-mail: iracema@ftc.br; Pereira, S.A. [Institute of Biology, Federal University of Bahia (Brazil); Leite, M.B.L. [Institute of Biology, Federal University of Bahia (Brazil); Technology and Sciences Faculty, Salvador, Bahia (Brazil); Carvalho, G.C. [Institute of Biology, Federal University of Bahia (Brazil); BRASKEM, Petrochemical Complex, Camacari, Bahia (Brazil); Silveira, J.S.C. [BRASKEM, Petrochemical Complex, Camacari, Bahia (Brazil); Reboucas, M. [BRASKEM, Petrochemical Complex, Camacari, Bahia (Brazil); Matias, G.R.A. [Institute of Biology, Federal University of Bahia (Brazil); Rodrigues, I.L.P. [Institute of Biology, Federal University of Bahia (Brazil)

2007-03-15T23:59:59.000Z

367

Method to blend separator powders  

DOE Patents [OSTI]

A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

2007-12-04T23:59:59.000Z

368

Raman Scattering Sensor for Control of the Acid Alkylation Process in Gasoline Production  

SciTech Connect (OSTI)

Gasoline refineries utilize a process called acid alkylation to increase the octane rating of blended gasoline, and this is the single most expensive process in the refinery. For process efficiency and safety reasons, the sulfuric acid can only be used while it is in the concentration range of 98 to 86 %. The conventional technique to monitor the acid concentration is time consuming and is typically conducted only a few times per day. This results in running higher acid concentrations than they would like to ensure that the process proceeds uninterrupted. Maintaining an excessively high acid concentration costs the refineries millions of dollars each year. Using SBIR funding, Process Instruments Inc. has developed an inline sensor for real time monitoring of acid concentrations in gasoline refinery alkylation units. Real time data was then collected over time from the instrument and its responses were matched up with the laboratory analysis. A model was then developed to correlate the laboratory acid values to the Raman signal that is transmitted back to the instrument from the process stream. The instrument was then used to demonstrate that it could create real-time predictions of the acid concentrations. The results from this test showed that the instrument could accurately predict the acid concentrations to within ~0.15% acid strength, and this level of prediction proved to be similar or better then the laboratory analysis. By utilizing a sensor for process monitoring the most economic acid concentrations can be maintained. A single smaller refinery (50,000 barrels/day) estimates that they should save over $120,000/year, with larger refineries saving considerably more.

Uibel, Rory, H.; Smith, Lee M.; Benner, Robert, E.

2006-04-19T23:59:59.000Z

369

Oil market power and United States national security  

Science Journals Connector (OSTI)

...cooperation to defend against some future price collapse. The cooperation challenge...in its Who Gets What from Imported Oil campaign: OPEC is perceived as being...responsible for high gasoline or heating oil prices. Nothing could be further from the...

Roger Stern

2006-01-01T23:59:59.000Z

370

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 56 Energy Information Administration Petroleum Marketing Annual 1996 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

371

Energy Department Announces First Regional Gasoline Reserve to...  

Office of Environmental Management (EM)

Ernest Moniz today announced the creation of the first federal regional refined petroleum product reserve containing gasoline. Based on the Energy Department's lessons...

372

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1996 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

373

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Gasoline and Diesel Fuel Update (EIA)

by Grade, Sales Type, PAD District, and State 262 Energy Information Administration Petroleum Marketing Annual 1997 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

374

Impacts of Ethanol in Gasoline on Subsurface Contamination.  

E-Print Network [OSTI]

??The increasing use of ethanol as a gasoline additive has raised concerns over the potential impacts ethanol might have on groundwater contamination. In North America,… (more)

Freitas, Juliana Gardenalli de

2009-01-01T23:59:59.000Z

375

Microsoft Word - Summer 2006 Motor Gasoline Prices.doc  

Gasoline and Diesel Fuel Update (EIA)

Coast Chicago New York Harbor Sources: Ethanol spot prices through July 7, 2006 - Jim Jordan & Associates, Fuels Blendstock Report (www.jordan-associates.com); Gasoline prices -...

376

Long-term historical trends in gasoline properties are charted  

SciTech Connect (OSTI)

Trends in motor gasolines between 1942 and 1981 have been evaluated based upon data contained in motor gasoline surveys that have been prepared and published by the Bartlesville Energy Technology Center (BETC). These surveys have been published twice annually since 1935 describing the properties of motor gasolines from throughout the country. They have been conducted in cooperation with the American Petroleum Institute since 1949. A typical report covers 2,400 samples from service stations throughout the country representing some 48 companies that manufacture and supply gasoline. The reports include trend charts, octane plots and properties obtained from a dozen different tests.

Shelton, E.M.; Whisman, M.L.; Woodward, P.W.

1982-08-02T23:59:59.000Z

377

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace064confer2011o.pdf More Documents & Publications Gasoline...

378

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2012o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

379

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

380

Reductant Chemistry during LNT Regeneration for a Lean Gasoline...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory VW Scholar at the University of Tennessee Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster P-09 2010 DEER Directions...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Gasoline-Like Fuel Effects on Advanced Combustion Regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Regimes Gasoline-Like Fuel Effects on Advanced Combustion Regimes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

382

Gasoline-like fuel effects on advanced combustion regimes | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

regimes Gasoline-like fuel effects on advanced combustion regimes 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

383

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

384

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

385

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

386

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

387

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End...

388

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

389

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

390

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

391

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy Information...

392

Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

- - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

393

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

394

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

395

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

396

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

397

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons per...

398

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

399

Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding...

400

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) - Continued...

402

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per Day) -...

403

Table 32. Conventional Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

- - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

404

Powertrain Component Inspection from Mid-Level Blends Vehicle Aging Study  

SciTech Connect (OSTI)

The Energy Independence and Security Act of 2007 calls on the nation to significantly increase its use of renewable fuels to meet its transportation energy needs. The law expands the renewable fuel standard to require use of 36 billion gallons of renewable fuel by 2022. Given that ethanol is the most widely used renewable fuel in the U.S. market, ethanol will likely make up a significant portion of the 36-billion-gallon requirement. The vast majority of ethanol used in the United States is blended with gasoline to create E10-gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85 - a gasoline blend with as much as 85% ethanol that can only be used in flexible-fuel vehicles (FFVs). Consumption of E85 is at present limited by both the size of the FFV fleet and the number of E85 fueling stations. Gasoline consumption in the United States is currently about 140 billion gallons per year; thus the maximum use of ethanol as E10 is only about 14 billion gallons. While the U.S. Department of Energy (DOE) remains committed to expanding the E85 infrastructure, that market represented less than 1% of the ethanol consumed in 2010 and will not be able to absorb projected volumes of ethanol in the near term. Because of these factors, DOE and others have been assessing the viability of using mid-level ethanol blends (E15 or E20) as a way to accommodate growing volumes of ethanol. The DOE Mid-Level Ethanol Blends Test Program has been under way since 2007, supported jointly by the Office of the Biomass Program and the Vehicle Technologies Program. One of the larger projects, the Catalyst Durability Study, or Vehicle Aging Study, will be completed early in calendar year 2011. The following report describes a subproject of the Vehicle Aging Study in which powertrain components from 18 of the vehicles were examined at Southwest Research Institute under contract to Oak Ridge National Laboratory (ORNL).

Shoffner, Brent [Southwest Research Institute, San Antonio; Johnson, Ryan [Southwest Research Institute, San Antonio; Heimrich, Martin J. [Southwest Research Institute, San Antonio; Lochte, Michael [Southwest Research Institute, San Antonio

2010-11-01T23:59:59.000Z

405

Effects of the blends containing low ratios of alternative fuels on the performance and emission characteristics of a diesel engine  

Science Journals Connector (OSTI)

The aim of this study is to experimentally investigate the effects of blends containing various alternative fuels and diesel fuel on the performance and emissions of a diesel engine. The considered parameters are brake power, specific fuel consumption and thermal efficiency as well as carbon monoxide, hydrocarbon and nitrogen oxide emissions. Blends of biodiesel, ethanol, methanol and vegetable oil with diesel fuel, each containing 15% alternative fuel in volume, were prepared. Then, these blends were tested in a naturally aspirated, direct injection diesel engine. The test results obtained with these blends were compared with those obtained with diesel fuel. It was found that the tested blends yielded usually different performance and emission characteristics compared to diesel fuel. The biodiesel blend resulted in performance parameters very close to those obtained in the use of diesel fuel. Ethanol and methanol blends yielded lower brake power, while they resulted in higher specific fuel consumption and lower carbon monoxide emissions. On the other hand, the vegetable oil blend yielded lower carbon monoxide emissions, while it caused only slight changes in the performance parameters.

Murat Karabektas; Gokhan Ergen; Murat Hosoz

2013-01-01T23:59:59.000Z

406

Sandia National Laboratories: Biofuels Blend Right In: Researchers...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Show Ionic Liquids Effective for Pretreating Mixed Blends of Biofuel Feedstocks Biofuels Blend Right In: Researchers Show Ionic Liquids Effective for Pretreating Mixed Blends...

407

Gasoline demand in developing Asian countries  

SciTech Connect (OSTI)

This paper presents econometric estimates of motor gasoline demand in eleven developing countries of Asia. The price and GDP per capita elasticities are estimated for each country separately, and for several pooled combinations of the countries. The estimated elasticities for the Asian countries are compared with those of the OECD countries. Generally, one finds that the OECD countries have GDP elasticities that are smaller, and price elasticities that are larger (in absolute value). The price elasticities for the low-income Asian countries are more inelastic than for the middle-income Asian countries, and the GDP elasticities are generally more elastic. 13 refs., 6 tabs.

McRae, R. [Univ. of Calgary, Alberta (Canada)

1994-12-31T23:59:59.000Z

408

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

409

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

410

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

411

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

412

Biomethane CNG hybrid: A reduction by more than 80% of the greenhouse gases emissions compared to gasoline  

Science Journals Connector (OSTI)

Recent results of GDF SUEZ Research and Innovation Division (RID) activities on Compressed Natural Gas (CNG) vehicles are depicted in this paper:• The prototype “Toyota Prius II Hybrid CNG Vehicle”, developed with IFP Energies Nouvelles, combines a natural gas thermal engine with a hybrid electric motorization. After optimization, CO2 emissions, measured on chassis dynamometer, were 76 g/km on NEDC cycle. • The use of raw biogas in CNG Vehicle has been explored. These tests have shown that raw biogas (not upgraded) can be used as a fuel, if blended with natural gas. In fact, the use of raw biogas can be envisaged in dedicated CNG engines, if new engine technologies (lean CNG combustion) are developed. In such a case natural gas can be blended with up to 70% volume of not upgraded biogas. • The potential reduction of greenhouse gases (GHG) emissions related both to the optimization of the CNG vehicle and to the use of biomethane as a vehicle fuel has been evaluated. GHG emissions from CNG vehicles (mono-fuel and hybrid) may be significantly lower than emissions of gasoline vehicles: around 17% lower in the case of dedicated CNG Vehicle and up to 51% lower in the case of hybrid CNG vehicles. In addition, biomethane (from the anaerobic digestion of waste) brings the GHG emission levels, over the course of the life cycle, down to more than 80% compared to a gasoline vehicle. Emission levels are lowered by 87% in the case of the Toyota Prius CNG Hybrid prototype fuelled by biomethane produced from waste (in comparison to a gasoline vehicle). Thus, biomethane allows a reduction of GHG emissions far below the minimum required by the European Directive on the Promotion of Renewable Energy Sources (2009/28/EC). These results have shown that the combination of optimized and innovative engines with the use of biomethane as a fuel permits to significantly reduce the GHG emissions.

Olivier Bordelanne; Micheline Montero; Frédérique Bravin; Anne Prieur-Vernat; Olga Oliveti-Selmi; Hélène Pierre; Marion Papadopoulo; Thomas Muller

2011-01-01T23:59:59.000Z

413

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

414

Conversion of methanol to gasoline commercial plant study. Coal to gasoline via methanol  

SciTech Connect (OSTI)

Under the joint sponsorship of the German Federal Minister of Research and Technology (BMFT) and the US Department of Energy (DOE), a research program was initiated concerning the ''Conversion of Methanol to Gasoline (MTG), Engineering, Construction and Operation of a Demonstration Plant''. The purpose of the 100 BPD demonstration plant was to demonstrate the feasibility of and to obtain data required for scale-up of the fluid-bed MTG process to a commercial size plant. As per requirements of Annex 3 of the Governmental Agreement, this study, in addition to the MTG plant, also includes the facilities for the production of methanol. The feedstock basis for the production of methanol shall be coal. Hence this study deals with the production of gasoline from coal (CTG-Coal to Gasoline). The basic objective of this study is to assess the technical feasibility of the conversion of methanol to gasoline in a fluid-bed system and to evaluate the process economies i.e., to evlauate the price of the product in relation to the price of the feedstock and plant capacity. In connection with technical feasibility, the scale up criteria were developed from the results obtained and experience gathered over an operational period of 8600 hours of the ''100 BPD Demonstration Plant''. The scale up philosophy is detailed in chapter 4. The conditions selected for the design of the MTG unit are detailed in chapter 5. The scope of the study covers the production of gasoline from coal, in which MTG section is dealt with in detail (refer to chapter 5). Information on other plant sections in this study are limited to that sufficient to: generate overall mass balance; generate rate of by-products and effluents; incorporate heat integration; generate consumption figures; and establish plant investment cost.

Thiagarajan, N.; Nitschke, E.

1986-03-01T23:59:59.000Z

415

Clearing the Air? The Effects of Gasoline Content Regulation on Air Quality  

E-Print Network [OSTI]

15 for retail gasoline stations and May 1 – September 15 forof one if retail gasoline stations in county c are requiredseason for retail gasoline distribution stations is June 1 -

Auffhammer, Maximilian; Kellogg, Ryan

2009-01-01T23:59:59.000Z

416

Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles  

E-Print Network [OSTI]

t as determined by gasoline stations is unlikely to beshows a map of all gasoline stations i n central and easterni n Figure 5: Toronto Gasoline Stations Canadian cents per

Noel, Michael

2007-01-01T23:59:59.000Z

417

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of  

E-Print Network [OSTI]

Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed 19, 2012 (received for review July 22, 2012) Emissions from gasoline and diesel vehicles composition, mass distribu- tion, and organic aerosol formation potential of emissions from gasoline

Silver, Whendee

418

Improving Accuracy in the Determination of Aromatics in Gasoline by Gas Chromatography—Mass Spectrometry  

Science Journals Connector (OSTI)

......was composed of five gasoline blendstocks: light straight run (LSR) naphtha...consisted of the 21 gasoline fuels used in various...naphtha; LSR, light straight run naphtha; reformate...Because these common gasoline blendstocks contain......

Michael D. Mathiesen; Axel J. Lubeck

1998-09-01T23:59:59.000Z

419

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

SciTech Connect (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

420

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 597,448 1,812,484 PADD 1 4,022 783 105,480 46,972 104,579 7,133 -8,328 104,584 8,184 164,527 145,574 PADD 2 61,781 27,645 138,371 64,904 15,509 -9,838 -6,968 131,427 11,955 161,957 273,603 PADD 3 193,724 2,967 227,728 132,784 -116,513 15,829 -6,533 208,398 92,256 162,398 1,211,066 PADD 4 27,499 433 19,935 8,906 -13,181 -544 1,567 19,066 310 22,105 38,275 PADD 5 36,406 635 96,952 43,793 9,606 2,542 1,124 91,111 11,237 86,461 143,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oil palm phenolics suppresses oxidative stress and inflammation  

E-Print Network [OSTI]

Water-soluble Oil Palm Phenolics (OPP), derived from Elaeis guineensis, contains a unique blend of plant phenolics. Recent cell and animal studies have demonstrated positive health benefits in a number of different organ ...

Sundaresan, Abaya Meenakshi

2013-01-01T23:59:59.000Z

422

Thermal and Oxidative Degradation of Castor Oil Biodiesel  

Science Journals Connector (OSTI)

Thermal and Oxidative Degradation of Castor Oil Biodiesel ... The neat biodiesels, 20% blends, and the base fuel (No. 2 diesel) were tested at 2 different loads (100 and 20%) and 3 injection timings (3° advanced, std., 3° retarded). ...

Marta M. Conceição; Valter J. Fernandes, Jr.; Antonio S. Araújo; Mirna F. Farias; Ieda M. G. Santos; Antonio G. Souza

2007-03-23T23:59:59.000Z

423

Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications  

Broader source: Energy.gov [DOE]

Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

424

Author's personal copy Gasoline prices and traffic safety in Mississippi  

E-Print Network [OSTI]

Drive SE, Minneapolis, MN 55455, USA a b s t r a c ta r t i c l e i n f o Article history: Received 9-grade unleaded gasoline price data from the Energy Information Administration of the U.S. Department of EnergyAuthor's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur

Levinson, David M.

425

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

Includes gasoline, diesel, and electric. The following fourIncludes gasoline, diesel, and electric. In this study, weemissions from diesel-truck delivery and electric generation

Wang, Guihua

2008-01-01T23:59:59.000Z

426

Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

427

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

428

Integrated process offers lower gas-to-gasoline investment  

SciTech Connect (OSTI)

Many natural gas fields are in remote locations and of a size which cannot justify construction of a pipeline or liquified natural gas (LNG) plant. In these situations, the natural gas price can be low and the manufacture of gasoline an attractive alternative to producing ammonia or other petro-chemicals. Haldor Topsoe A/S has developed an integrated process scheme to convert natural-gas-derived synthesis gas to gasoline in a single loop. The process, Topsoe integrated gasoline synthesis (Tigas), incorporates Mobil's methanol-to-gasoline (MTG) process. The first step is a synthesis of oxygenates. The second step is the MTG process run at conditions selected to achieve optimum operation of the integrated loop. An industrial pilot plant has been in operation since January 1984. The plant has been running successfully, with long catalyst life, producing high-octane gasoline.

Topp-Jorgensen, J.; Rostrup-Nielsen, J.R.

1986-05-19T23:59:59.000Z

429

Lean Gasoline Engine Reductant Chemistry During Lean NOx Trap Regeneration  

SciTech Connect (OSTI)

Lean NOx Trap (LNT) catalysts can effectively reduce NOx from lean engine exhaust. Significant research for LNTs in diesel engine applications has been performed and has led to commercialization of the technology. For lean gasoline engine applications, advanced direct injection engines have led to a renewed interest in the potential for lean gasoline vehicles and, thereby, a renewed demand for lean NOx control. To understand the gasoline-based reductant chemistry during regeneration, a BMW lean gasoline vehicle has been studied on a chassis dynamometer. Exhaust samples were collected and analyzed for key reductant species such as H2, CO, NH3, and hydrocarbons during transient drive cycles. The relation of the reductant species to LNT performance will be discussed. Furthermore, the challenges of NOx storage in the lean gasoline application are reviewed.

Choi, Jae-Soon [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Partridge Jr, William P [ORNL] [ORNL; Parks, II, James E [ORNL; Norman, Kevin M [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Chambon, Paul H [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2010-01-01T23:59:59.000Z

430

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

431

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling  

Science Journals Connector (OSTI)

Hybrid Time Formulation for Diesel Blending and Distribution Scheduling ... Schematic of diesel in-line blending and distribution infrastructure. ...

Sérgio M. S. Neiro; Valéria V. Murata; José M. Pinto

2014-06-13T23:59:59.000Z

432

The Fusibility of Blended Coal Ash  

Science Journals Connector (OSTI)

Ash fusibility temperatures (AFT) of coal ash are found at temperatures below the predicted liquidus temperature and, for ashes from blended coals, are generally nonlinear with respect to the blend proportion. ... ashing. ...

G. W. Bryant; G. J. Browning; H. Emanuel; S. K. Gupta; R. P. Gupta; J. A. Lucas; T. F. Wall

2000-02-25T23:59:59.000Z

433

Comparison of blends of conventional diesel fuel and CRBO containing high levels of FFA in a DI diesel engine  

Science Journals Connector (OSTI)

This work attempts to analyse the ability of high free fatty acid (FFA) crude rice bran oil (CRBO) in replacing diesel partially in a compression ignition (CI) engine. It was observed that the delay period and the maximum rate of pressure rise for CRBO blends are lower than diesel and is almost inversely proportional to FFA content. Maximum heat release rate for CRBO blends are lower and occur earlier than that of diesel. CRBO blends require longer duration to release 90% of heat than diesel and it decreases with increase in FFA content of CRBO. When operating with CRBO blends, all emission parameters were decreased significantly with a marginal increase in CO emission than that of diesel without affecting the brake thermal efficiency of the engine. It is concluded that higher FFA of CRBO blends does not inhibit its ability to be utilised as a fuel in CI engines.

S. Saravanan; G. Lakshmi Narayana Rao; S. Sampath; G. Nagarajan

2012-01-01T23:59:59.000Z

434

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

435

The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis  

E-Print Network [OSTI]

and gasoline. In 2014, it is projected oil refineries will hit the blend wall (BW). In short, oil refineries are required to blend more ethanol into gasoline than is allowed by the Environmental Protection Agency (EPA). As a consequence, the EPA will need...

McNair, Robert

2014-04-18T23:59:59.000Z

436

Are unleaded gasoline and diesel price adjustments symmetric? A comparison of the four largest EU retail fuel markets  

Science Journals Connector (OSTI)

Abstract The purpose of this paper is to examine the nature of price adjustments in the gasoline markets of Germany, France, Italy and Spain. We examine whether crude oil prices are transmitted to the retail gasoline prices in the short and long run and we test the symmetry of price adjustments hypothesis. An Error Correction Model, which accounts for possible asymmetric adjustment behavior, is applied for the estimation of the international crude oil price pass-through and testing of the symmetric/asymmetric nature of the retail fuel price adjustments in these economies. Our results show that rigidities in the transmission process exist but the retail fuel speed of upward/downward price adjustment to equilibrium is considered as symmetric in all four economies analyzed. Thus, our findings on the whole do not provide firm evidence to support the “rockets and feathers” hypothesis that crude oil price increases are passed along to the retail customer more fully than the crude oil price decreases.

Stelios Karagiannis; Yannis Panagopoulos; Prodromos Vlamis

2014-01-01T23:59:59.000Z

437

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

Wadsley, J; Quinn, T; Wadsley, James; Stadel, Joachim; Quinn, Thomas

2003-01-01T23:59:59.000Z

438

Gasoline: An adaptable implementation of TreeSPH  

E-Print Network [OSTI]

The key algorithms and features of the Gasoline code for parallel hydrodynamics with self-gravity are described. Gasoline is an extension of the efficient Pkdgrav parallel N-body code using smoothed particle hydrodynamics. Accuracy measurements, performance analysis and tests of the code are presented. Recent successful Gasoline applications are summarized. These cover a diverse set of areas in astrophysics including galaxy clusters, galaxy formation and gas-giant planets. Future directions for gasdynamical simulations in astrophysics and code development strategies for tackling cutting edge problems are discussed.

James Wadsley; Joachim Stadel; Thomas Quinn

2003-03-24T23:59:59.000Z

439

Application of High-Temperature Simulated Distillation to the Residuum Oil Supercritical Extraction Process in Petroleum Refining  

Science Journals Connector (OSTI)

......fractions from the residual oil supercritical...JOURNAL ARTICLE The gas chromatographic method...presented for refinery residual feed, deasphalted...fractions from the residual oil supercritical...fuels, gasoline, turbine (jet) fuels, diesel...high-value deasphalted gas oil (DAO) from......

Joe C. Raia; Dan C. Villalanti; Murugesan Subramanian; Bruce Williams

2000-01-01T23:59:59.000Z

440

Combustion analysis of a direct injection diesel engine when fuelled with sunflower methyl ester and its diesel blends  

Science Journals Connector (OSTI)

Uncertainty in the availability of petroleum-based fuels in the near future and stringent pollution norms have triggered a search for renewable and clean-burning fuels. The use of vegetable oil as an alternative fuel has for long been in the pipeline, but its direct use has been limited because of its higher viscosity. In this work, sunflower oil was taken as feedstock and the feasibility of sunflower oil methyl ester (SFME) as an alternative fuel for diesel engines was investigated. Tests were conducted in a 4.4 kW, single cylinder, naturally aspirated direct injection diesel engine. It was observed that the premixed combustion phase of SFME and its blends were less intense compared with diesel oil. In addition, it was observed that SFME and its blends had slightly lower thermal efficiency and lower tailpipe emissions than diesel oil.

G. Lakshmi Narayana Rao; S. Saravanan; P. Selva Ilavarasi; G. Devasagayam

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Tailoring key fuel properties of diesel–biodiesel–ethanol blends for diesel engine  

Science Journals Connector (OSTI)

Alternative fuel research for the profusely growing number of diesel run automotive has intensified due to environmental reasons and turmoil in petroleum market. Government initiatives all around the world, their energy policies and steps to emphasis the use of biodiesel; proved biodiesel as a number one renewable substitute for No. 2 diesel fuels. Among all biodiesel feedstock, palm oil is a potential source with higher yield rate without much fertilizer use especially in tropical region. However, the application of transesterified palm biodiesel is objected by many auto-manufacturers due to adverse effects on engine in long term operation. The aim of this study was to modify the key fuel properties of palm biodiesel which causes engine fouling in long term operation. A significant amount of work is devoted to mix biodiesel and diesel at arbitrary percentages and test engine performance. Numerous fuel additives are developed for biodiesels automotive use. In this study, chemical properties of biodiesel are tailored by ethanol and an optimum formulation is derived mathematically. Ethanol is used at a controlled proportion (6%) with palm oil methyl ester (POME) as additive to reduce the higher viscosity of POME. This optimum palm biodiesel–ethanol blend was mixed at varying proportions (i.e. 0–30%) with No. 2 diesel to produce ternary blends of diesel–palm biodiesel–ethanol. Cold flow properties (such as, could point, pour point) of these ternary blends has improved and minute percentage of ethanol adding did not adversely affect the oxidation stability and corrosiveness of the fuel blend. Ethanol has significantly reduces the flash point, but the flammability of ternary blends is classified as Class II; similar to that of diesel. Cetane number is reduced in ternary blends by ethanol. So, palm biodiesel with minute percentage of anhydrous ethanol as additive in the ternary blend significantly improved key fuel properties significantly.

Md. Jayed Hussan; Masjuki Hj. Hassan; Md. Abul Kalam; Liaquat Ali Memon

2013-01-01T23:59:59.000Z

442

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

443

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

99.2 - 105.3 See footnotes at end of table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

444

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Gasoline and Diesel Fuel Update (EIA)

66.6 - 72.3 See footnotes at end of table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD...

445

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

133.6 - 276.4 See footnotes at end of table. 220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

446

Petroleum Products Table 43. Refiner Motor Gasoline Volumes...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

201.3 - 453.3 See footnotes at end of table. 262 Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type,...

447

Fact #639: September 6, 2010 Gasoline Tax Rates by State  

Broader source: Energy.gov [DOE]

The Federal Excise Tax on motor gasoline is 18.4 cents per gallon for all states. Each state applies additional taxes which vary from state to state. As of July 2010, Alaska had the lowest overall...

448

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

449

FedEx Express Gasoline Hybrid Electric Delivery Truck Evaluation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicles currently in service. FedEx Express has deployed 20 gasoline hybrid electric vehicles (gHEVs) on parcel delivery routes in the Sacramento and Los Angeles areas. This...

450

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.55 a gallon on Monday. That's up 2-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

451

U.S. gasoline prices continue to increase (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

452

U.S. gasoline prices continue to increase (short version)  

Gasoline and Diesel Fuel Update (EIA)

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

453

U.S. gasoline prices increase slightly (long version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

454

U.S. gasoline prices continue to decrease (short version)  

Gasoline and Diesel Fuel Update (EIA)

The U.S. average retail price for regular gasoline fell to 3.51 a gallon on Monday. That's down a penny from a week ago and down 13 cents from a month ago, based on the weekly...

455

U.S. average gasoline price up slightly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.65 a gallon on Monday. That's up a tenth of a penny from a week ago, based on the weekly price survey by the U.S....

456

U.S. gasoline prices increase slightly (short version)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

average retail price for regular gasoline rose slightly to 3.36 a gallon on Monday. That's up 6-tenths of a penny from a week ago, based on the weekly price survey by the U.S....

457

U.S. gasoline prices continue to increase (long version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The U.S. average retail price for regular gasoline rose to 3.68 a gallon on Monday. That's up 4 12 cents from a week ago, based on the weekly price survey by the U.S. Energy...

458

U.S. Gasoline prices continue to increase (long version)  

U.S. Energy Information Administration (EIA) Indexed Site

average retail price for regular gasoline rose to 3.61 a gallon on Labor Day Monday. That's up 5.6 cents from a week ago, based on the weekly price survey by the U.S. Energy...

459

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

460

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

462

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Gasoline and Diesel Fuel Update (EIA)

2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

463

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

464

Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...  

Gasoline and Diesel Fuel Update (EIA)

71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

465

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information Administration...

466

The relation of octane number, compression ratio, and exhaust temperature in the gasoline engine  

E-Print Network [OSTI]

THE RELATION OF OCTANE NUMHER& COMPRESSION RATIO& AND EXHAUST TEMPERATURE IN THE GASOLINE ENGINE A Tbeaie Donald George Jentsch THE RELATION OF OCTANE NUMBER, COMHKSSION RATIO, EXHAUST TEMPERATURE IN THE GASOLINE ENGINE By Donald George... throttle settings) a. Table VI - Aviation Gasolines 22 26 b. Table VI (a) ? Automotive Gasolines . . . 33 2. Spark set for maximum power at full throttle (Speed 2000 RPH at various throttle settings) a. Table VII ? Aviation Gasolines . . . . . 34 b...

Jentsch, Donald George

2012-06-07T23:59:59.000Z

467

CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles  

Science Journals Connector (OSTI)

Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. ... We report herein a quantitative analysis of the CO2 emission benefits of diesel vehicles versus their gasoline equivalents for 2001 MY and 2015 MY in European and North American markets. ... However, more stringent tailpipe NOx emissions standards are likely to have a greater negative impact on diesel engines, further reducing the advantages of future diesels relative to gasoline engines. ...

J. L. Sullivan; R. E. Baker; B. A. Boyer; R. H. Hammerle; T. E. Kenney; L. Muniz; T. J. Wallington

2004-05-13T23:59:59.000Z

468

Restructuring: The Changing Face of Motor Gasoline Marketing  

Reports and Publications (EIA)

This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

2001-01-01T23:59:59.000Z

469

Determination of lead in gasoline by atomic absorption spectroscopy  

Science Journals Connector (OSTI)

A procedure has been developed for the direct determination of lead in gasoline by atomic absorption spectroscopy. This procedure is rapid, does not require expensive equipment, is remarkably free from interference by other trace elements present, and allows considerable variation in the sulfur and nitrogen content of the gasoline. It compares favorably with other existing procedures for this determination, such as X-ray fluorescence, wet chemical methods, and flame photometry.

J.W. Robinson

1961-01-01T23:59:59.000Z

470

Conversion of methane and acetylene into gasoline range hydrocarbons  

E-Print Network [OSTI]

CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2000 Major Subject: Chemical Engineering CONVERSION OF METHANE AND ACETYLENE INTO GASOLINE RANGE HYDROCARBONS A Thesis by AMMAR ALKHAWALDEH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment...

Alkhawaldeh, Ammar

2012-06-07T23:59:59.000Z

471

Gasoline Engine Economy as Affected by the Time of Ignition  

E-Print Network [OSTI]

KU ScholarWorks | The University of Kansas Pre-1923 Dissertations and Theses Collection Gasoline Engine Economy as Affected by the Time of Ignition 1907 by George Jay Hopkins This work was digitized by the Scholarly Communications program staff... in the KU Libraries’ Center for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the University of Kansas in partial fulfillment of the requirements for the Degree of Bachelor of Science GASOLINE ENCUNE ECONOMY as Affected W the Time...

Hopkins, George Jay

1907-01-01T23:59:59.000Z

472

Gas-chromatographic analysis of straight-run gasolines  

SciTech Connect (OSTI)

A method has been developed for the gas chromatographic determination of the individual hydrocarbons in a wide fraction of straight-run gasoline, using a simple chromatograph equipped with two capillary columns coated with stationary phases of differing polarity in conjunction with a system for the automated treatment of the data. About 150 hydrocarbons present in straight-run gasolines were identified; their retention indices were calculated for a linear temperature programmed regime.

Kvasova, V.A.; Leont'eva, S.A.; Grinberg, A.A.; Rabinovich, A.B.; Shurygina, N.N.

1986-11-10T23:59:59.000Z

473

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

474

Production of synthetic gasoline and diesel fuel from nonpetroleum resources  

SciTech Connect (OSTI)

In late 1985, the New Zealand Gas-to-Gasoline Complex was successfully streamed producing high octane gasoline from natural gas. The heart of this complex is the Mobil fixed-bed Methanol-to-Gasoline (MTG) section which represents one of several newly developed technologies for production of synthetic gasoline and diesel fuels. All of these technologies are based on production of methanol by conventional technology, followed by conversion of the methanol to transportation fuel. The fixed-bed (MTG) process has been developed and commercialized. The fluid-bed version of the MTG process, which is now also available for commercial license, has a higher thermal efficiency and possesses substantial yield and octane number advantages over the fixed-bed. Successful scale-up was completed in 1984 in a 100 BPD semi-works plant in Wesseling, Federal Republic of Germany. The project was funded jointly by the U.S. and German governments and by the industrial participants: Mobil, Union Rheinsche Braunkohlen Kraftstoff, AG; and Uhde, GmbH. This fluid-bed MTG project was extended recently to demonstrate a related fluid-bed process for selective conversion of methanol to olefins (MTO). The MTO process can be combined with Mobil's commercially available olefins conversion process (Mobil-Olefins-to-Gasoline-and-Distillate, MOGD) for coproduction of high quality gasoline and distillate via methanol. This MTO process was also successfully demonstrated at the Wesseling semiworks with this project being completed in late 1985.

Tabak, S.A.; Avidan, A.A.; Krambeck, F.J.

1986-04-01T23:59:59.000Z

475

Conversion of gas-condensate straight-run gasolines to high-octane gasolines over zeolite catalysts modified with metal nanopowders  

Science Journals Connector (OSTI)

The acid and catalytic properties of zeolite catalysts modified with metal nanopowders (Cu, Zn, and W) were studied in the conversion of gas-condensate straight-run gasolines to high-liquid high-octane gasolines ...

V. I. Erofeev; A. S. Medvedev; I. S. Khomyakov…

2013-07-01T23:59:59.000Z

476

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

capita terms. When crude oil prices are used, these are theprices are driven by oil prices, moreover, and oil isby ‡uctuations in the crude oil price. The overall mean real

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

477

Heavy oil transportation by pipeline  

SciTech Connect (OSTI)

Worldwide there are a number of pipelines used to transport heavy crude oils. The operations are facilitated in a variety of ways. For example, the Alyeska pipeline is an insulated pipeline transporting warm oil over 800 miles. This 48-inch line experiences limited heat loss due to the insulation, volume of oil contained, and heat gain due to friction and pumping. Some European trunk lines periodically handle heavy and waxy crudes. This is achieved by proper sizing of batches, following waxy crudes with non-waxy crudes, and increased use of scrapers. In a former Soviet republic, the transportation of heavy crude oil by pipeline has been facilitated by blending with a lighter Siberian crude. The paper describes the pipeline transport of heavy crudes by Interprovincial Pipe Line Inc. The paper describes enhancing heavy oil transportation by emulsion formation, droplet suspension, dilution, drag reducing agents, and heating.

Gerez, J.M.; Pick, A.R. [Interprovincial Pipe Line Inc., Edmonton, Alberta (Canada)

1996-12-31T23:59:59.000Z

478

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

479

Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blend Biofuel Blend Dispenser Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Dispenser Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Dispenser Labeling Requirement

480

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

Note: This page contains sample records for the topic "oils gasoline blending" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Blend Blend Purchase Requirement to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Purchase Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Purchase Requirement Diesel fuel that the New Hampshire Department of Transportation

482

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

483

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels  

E-Print Network [OSTI]

Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen

Jawitz, James W.

484

Radiation effects on polypropylene/polybutylene blends  

SciTech Connect (OSTI)

Polymer blends of polypropylene and polybutylene have been found to exhibit substantial maintenance of structural integrity after exposure to ionizing radiation. This radiation resistance has been found to be related to processing conditions and the resulting morphology of the blend. This article discusses (a) the processing conditions and the resulting mechanical properties after irradiation and (b) the role of morphology in this unexpected blend property.

Rolando, R.J. (3M Engineering Systems and Technology, St. Paul, MN (United States))

1993-06-01T23:59:59.000Z

485

Closed-loop study of the effects of multicycle re-refining of automotive lubricating oil  

SciTech Connect (OSTI)

Twenty-five gallons of a hydrofinished virgin lubricating oil basestock was blended with additives into a 10W30 crankcase oil. After the engines had been pruged with a flush oil, 11 vehicles were charged with the blended virgin oil. Mileages ranging from 2000 to over 3000 miles of use were accumulated before the oil was drained, re-refined and recharged to the vehicles. This cycle was repeated until the oil had been re-refined three times. At each stage, detailed analyses and compound characterizations were performed on both the oil being recycled and on the same oil which was re-refined but never charged to vehicles. The data showed no significant change in the composition of the base oil, except for a minor buildup of additive base oil, which was expected.

Reynolds, J.W.; Goetzinger, J.W.; Cotton, F.O.; Brinkman, D.W.; Whisman, M.L.

1982-03-01T23:59:59.000Z

486

Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: April 26, 7: April 26, 2004 State Gasoline Tax Rates to someone by E-mail Share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Facebook Tweet about Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Twitter Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Google Bookmark Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Delicious Rank Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on Digg Find More places to share Vehicle Technologies Office: Fact #317: April 26, 2004 State Gasoline Tax Rates on AddThis.com... Fact #317: April 26, 2004 State Gasoline Tax Rates At 7.5 cents per gallon, Georgia had the lowest state gasoline tax in the

487

Performance of Biofuels and Biofuel Blends  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Complete 4 Relevance Objective: Solve technical problems that are preventing expanded markets for current and future biofuels and biofuel blends Necessary to achieve MYPP...

488

Efficiency and Emissions Study of a Residential Micro-cogeneration System based on a Modified Stirling Engine and Fuelled by a Wood Derived Fas Pyrolysis Liquid-ethanol Blend.  

E-Print Network [OSTI]

??A residential micro-cogeneration system based on a Stirling engine unit was modified to operate with wood derived fast pyrolysis liquid (bio-oil)-ethanol blend. A pilot stabilized… (more)

Khan, Umer

2012-01-01T23:59:59.000Z

489

Experimental investigations on diesel engine fuelled with methyl esters of cotton seed oil  

Science Journals Connector (OSTI)

In this investigation, cotton seed methyl ester (CSME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst. The engine performance was analysed with different blends of biodiesel and was compared with neat diesel. It was concluded that the lower blends of biodiesel are closer to diesel as far as thermal efficiency is concerned. In the lower blends, the brakes specific fuel consumption is also comparatively reduced. The smoke density also increases for the blends of methyl ester of cotton seed oil diesel compared to neat diesel operation. The oxides of nitrogen (NOx) emission level are decreased with the blends of methyl ester of cotton seed oil compared to neat diesel. The results proved that the use of biodiesel (produced from cotton seed oil) in compression ignition engine is a viable alternative to diesel.

M. Saravanan; A. Anbarasu; M. Loganathan

2013-01-01T23:59:59.000Z

490

Gasoline from natural gas by sulfur processing. Quarterly report No. 5 for the period July 1994--September 1994  

SciTech Connect (OSTI)

Natural gas is an abundant resource in various parts of the world. The major component of natural gas is methane, often comprising over 90% of the hydrocarbon fraction of the gas. The expanded use of natural gas as fuel is often hampered because of difficulties in storing and handling a gaseous fuel. This is especially true for natural gas in remote areas such as the North Slope of Alaska. The successful implementation of a natural gas-to-gasoline process would decrease dependence on imported oil for transportation fuels. These factors make it very desirable to convert natural gas to more valuable liquids. There are commercial processes for converting natural gas to gasoline-range liquids. These processes, such as the Fischer-Tropsch synthesis and Mobil`s MTG (Methanol To Gasoline), start with the steam reforming of methane. Steam reforming of methane requires the removal of sulfur compounds present in natural gas down to less than 0.1 ppm. This additional gas cleanup step, with its additional cost, is necessary because the catalysts are quickly poisoned by sulfur compounds.

Erekson, E.J.; Miao, F.Q.

1994-10-01T23:59:59.000Z

491

Combustion and emission characteristics of diesel engine fuelled with methyl esters of pungam oil and rice bran oil  

Science Journals Connector (OSTI)

Biodiesel derived from vegetable oils and animal fats can be used in diesel engines with little or no modifications. In this work, the combustion, performance and emission characteristics of various biodiesel (rice bran oil and pungam oil) and their blends are evaluated in a direct injection diesel engine. Lower ignition delay, higher peak pressure and heat release rate with almost same brake thermal efficiency are obtained for 20% biodiesel blend as compared with diesel fuel. They exhibited lower unburned hydrocarbon, carbon monoxide and soot emissions with a penalty of higher NOx emissions.

G. Lakshmi Narayana Rao; N. Nallusamy; S. Sampath; K. Rajagopal

2008-01-01T23:59:59.000Z

492

Co-pyrolysis of oil shale and High density polyethylene: Structural characterization of the oil  

Science Journals Connector (OSTI)

This study describes a detailed characterization of the oil obtained by co-pyrolysis of Tarfaya oil shale (Morocco) and high density polyethylene (HDPE) and by pyrolysis of oil shale and HDPE individually. The oil (obtained under the most suitable conditions, temperature of 500–525 °C and heating rate of 10 °C/min) was characterised by elemental analysis, nuclear magnetic resonance spectroscopy (1H NMR) and Fourier transform infrared spectroscopy (FTIR). In addition, column chromatography was used group composition of oil was determined. Gas chromatography was achieved on n-hexane fractions. Adding HDPE to the oil shale results in increased oil yields, which indicates synergetic effect between the oil shale and HDPE. The addition of HDPE to oil shale improved fuel properties of shale oil leading to a decrease in the oxygen content of shale oil. The results show that the oil obtained by co-pyrolysis has similar properties with commercial gasoline. HDPE acts as a hydrogenation medium for the oil shale product as revealed by FTIR results.

A. Aboulkas; T. Makayssi; L. Bilali; K. El harfi; M. Nadifiyine; M. Benchanaa

2012-01-01T23:59:59.000Z

493

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliot William

2009-01-01T23:59:59.000Z

494

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

An Analysis of Hybrid Tax Credits and the Gasoline TaxAn Analysis of Hybrid Tax Credits and the Gasoline Tax byAn Analysis of Hybrid Tax Credits and the Gasoline Tax by

Martin, Elliott William

2009-01-01T23:59:59.000Z

495

A Comparison of Ten Different Methods for the Analysis of Saturates, Olefins, Benzene, Total Aromatics, and Oxygenates in Finished Gasolines  

Science Journals Connector (OSTI)

......overview of the changing European gasoline specifications with time...combined. These reformulated gasolines may now contain straight run naphtha, fluid catalytically...analysis of hydrocarbon types in gasoline is the fluorescent indi- cator......

Jan Beens; Hans Thomas Feuerhelm; Jörg-Christian Fröhling; Jerry Watt; Gertjan Schaatsbergen

496

Estimation of Individual C8 to C10 Aromatic Hydrocarbons in Naphthas and Motor Gasolines by Capillary Gas Chromatography  

Science Journals Connector (OSTI)

......naphthas and motor gasolines is o f great importance...C10 aromatics in straight run, processed naphtha...reformed, and motor gasolines), or i n aromatic...analysis in any straight run, reformed naphthas, and gasolines with final boiling......

Basant Kumar; R.K. Kuchhal; Pradeep Kumar; P.L. Gupta

1986-03-01T23:59:59.000Z

497

Alternative Fuels Data Center: Biofuel Blending Capability Requirements and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuel Blending Biofuel Blending Capability Requirements and Regulations to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Google Bookmark Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Delicious Rank Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blending Capability Requirements and Regulations on AddThis.com... More in this section...

498

EffectsIntermediateEthanolBlends.pdf | Department of Energy  

Office of Environmental Management (EM)

ctsIntermediateEthanolBlends.pdf More Documents & Publications Effects of Intermediate Ethanol