National Library of Energy BETA

Sample records for oild gase nglf

  1. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.; Kulkarni, S.S.

    1986-08-26

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  2. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL); Kulkarni, Sudhir S. (Hoffman Estates, IL)

    1986-01-01

    Polar gases such as hydrogen sulfide, sulfur dioxide and ammonia may be separated from nonpolar gases such as methane, nitrogen, hydrogen or carbon dioxide by passing a mixture of polar and nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The use of such membranes as exemplified by polyethylene glycol and silicon rubber composited on polysulfone will permit greater selectivity accompanied by a high flux rate in the separation process.

  3. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, Santi (Hoffman Estates, IL)

    1986-01-01

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  4. Separation of polar gases from nonpolar gases

    DOE Patents [OSTI]

    Kulprathipanja, S.

    1986-08-19

    The separation of polar gases from nonpolar gases may be effected by passing a mixture of nonpolar gases over the face of a multicomponent membrane at separation conditions. The multicomponent membrane which is used to effect the separation will comprise a mixture of a glycol plasticizer having a molecular weight of from about 200 to about 600 and an organic polymer cast on a porous support. The porous support is pretreated prior to casting of the mixture thereon by contact with a polyhydric alcohol whereby the pores of the support are altered, thus adding to the increased permeability of the polar gas.

  5. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Zevenhoven, Ron

    Control of pollutants in flue gases and fuel gases Ron Zevenhoven Helsinki University of Technology Programme Solid Fuel Committee Ĺs, Norway Helsinki University of Technology Espoo, Finland #12;limited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3 Chapter 2 Flue gases and fuel gases 2.1 Introduction

  6. Guidance Document CompressedGases

    E-Print Network [OSTI]

    gases are toxic, flammable, pyrophoric, or corrosive. Liquefied compressed gases (cryogenic liquids of exposure may be delayed. Cold "Burns": Rapidly escaping gas from a cylinder can cause destruction freezing

  7. Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but

    E-Print Network [OSTI]

    Greenhouse Gases CHAPTER 4 Why some gases are greenhouse gases, but most aren't, and some. It has the essential ingre- dient of the greenhouse effect, but it is missing numerous things, the mixing ratio is currently about 390 ppm, and its pCO2 is about 390 atm. 29 #12;30 CHAPTER 4 Greenhouse

  8. Traffic Congestion and Greenhouse Gases

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2009-01-01

    TATES IS A source of greenhouse gas emissions, and thereforeis increased emissions of greenhouse gases. Althoughthat driving contributes to greenhouse gas emis- sions, the

  9. Investigating and Using Biomass Gases

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigating and Using Biomass Gases Grades: 9-12 Topic: Biomass Authors: Eric Benson and Melissa Highfill Owner: National Renewable Energy Laboratory This educational material is...

  10. Voluntary Reporting of Greenhouse Gases

    Reports and Publications (EIA)

    2011-01-01

    The Voluntary Reporting of Greenhouse Gases Program was suspended May 2011. It was a mechanism by which corporations, government agencies, individuals, voluntary organizations, etc., could report to the Energy Information Administration, any actions taken that have or are expected to reduce/avoid emissions of greenhouse gases or sequester carbon.

  11. Method of concurrently filtering particles and collecting gases

    DOE Patents [OSTI]

    Mitchell, Mark A; Meike, Annemarie; Anderson, Brian L

    2015-04-28

    A system for concurrently filtering particles and collecting gases. Materials are be added (e.g., via coating the ceramic substrate, use of loose powder(s), or other means) to a HEPA filter (ceramic, metal, or otherwise) to collect gases (e.g., radioactive gases such as iodine). The gases could be radioactive, hazardous, or valuable gases.

  12. Thermalization of Gases: A First Principles Approach

    E-Print Network [OSTI]

    Clifford Chafin

    2015-06-20

    Previous approaches of emergent thermalization for condensed matter based on typical wavefunctions are extended to generate an intrinsically quantum theory of gases. Gases are fundamentally quantum objects at all temperatures, by virtue of rapid delocalization of their constituents. When there is a sufficiently broad spread in the energy of eigenstates, a well-defined temperature is shown to arise by photon production when the samples are optically thick. This produces a highly accurate approximation to the Planck distribution so that thermalization arises from the initial data as a consequence of purely quantum and unitary dynamics. These results are used as a foil for some common hydrodynamic theory of ultracold gases. It is suggested here that strong history dependence typically remains in these gases and so limits the validity of thermodynamics in their description. These problems are even more profound in the extension of hydrodynamics to such gases when they are optically thin, even when their internal energy is not low. We investigate rotation of elliptically trapped gases and consistency problems with deriving a local hydrodynamic approach. The presence of vorticity that is "hidden" from order parameter approaches is discussed along with some buoyancy intrinsically associated with vorticity that gives essential quantum corrections to gases in the regimes where standard perturbation approaches to the Boltzmann equations are known to fail to converge. These results suggest that studying of trapped gases in the far from ultracold regions may yield interesting results not described by classical hydrodynamics.

  13. Scientific Achievement Networks of highly photoresponsive crystalline GaSe

    E-Print Network [OSTI]

    Geohegan, David B.

    Scientific Achievement Networks of highly photoresponsive crystalline GaSe nanosheets a crystalline GaSe target was adjusted to directly grow networks of interconnected triangular GaSe crystalline nanosheets of ~ 200 nm size (inset shows atomic

  14. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    Welcome to Greenhouse Gases: Science and Technology510) 486-7419 Welcome to Greenhouse Gases: Science andand interviews on greenhouse gas emissions science and

  15. The Greenhouse Gases, Regulated Emissions, and Energy Use in...

    Open Energy Info (EERE)

    The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Greenhouse Gases, Regulated...

  16. Energy Efficiency and Greenhouse Gases | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Greenhouse Gases Energy Efficiency and Greenhouse Gases Mission The team establishes an energy conservation program, as deemed appropriate for LM operations...

  17. Light Collection in Liquid Noble Gases

    SciTech Connect (OSTI)

    McKinsey, Dan [Yale University

    2013-05-29

    Liquid noble gases are increasingly used as active detector materials in particle and nuclear physics. Applications include calorimeters and neutrino oscillation experiments as well as searches for neutrinoless double beta decay, direct dark matter, muon electron conversion, and the neutron electric dipole moment. One of the great advantages of liquid noble gases is their copious production of ultraviolet scintillation light, which contains information about event energy and particle type. I will review the scintillation properties of the various liquid noble gases and the means used to collect their scintillation light, including recent advances in photomultiplier technology and wavelength shifters.

  18. Denitrification of combustion gases. [Patent application

    DOE Patents [OSTI]

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  19. Voluntary reporting of greenhouse gases, 1995

    SciTech Connect (OSTI)

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  20. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  1. Where do California's greenhouse gases come from?

    SciTech Connect (OSTI)

    Fischer, Marc

    2009-01-01

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  2. Where do California's greenhouse gases come from?

    ScienceCinema (OSTI)

    Fischer, Marc

    2013-05-29

    Last March, more than two years after California passed legislation to slash greenhouse gas emissions 25 percent by 2020, Lawrence Berkeley National Laboratory scientist Marc Fischer boarded a Cessna loaded with air monitoring equipment and crisscrossed the skies above Sacramento and the Bay Area. Instruments aboard the aircraft measured a cocktail of greenhouse gases: carbon dioxide from fossil fuel use, methane from livestock and landfills, CO2 from refineries and power plants, traces of nitrous oxide from agriculture and fuel use, and industrially produced other gases like refrigerants. The flight was part of the Airborne Greenhouse Gas Emissions Survey, a collaboration between Berkeley Lab, the National Oceanic and Atmospheric Administration, and the University of California, and UC Davis to pinpoint the sources of greenhouse gases in central California. The survey is intended to improve inventories of the states greenhouse gas emissions, which in turn will help scientists verify the emission reductions mandated by AB-32, the legislation enacted by California in 2006.

  3. Cmo simular flujo de gases reactivos con

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    żCómo simular flujo de gases reactivos con RetrasoCodeBright? Maarten W. Saaltink #12;Procesos Difusión de especies gaseosas Flujo de gas reactivo Se forma/consume especies gaseosas por reacciones dispersión #12;Tipos de fenómenos Descomposición de materia orgánica CH2O + O2(g) CO2(g) + H2O CH2O + 0.8NO3

  4. Detectability of biosignature gases in the atmospheres of terrestrial exoplanets

    E-Print Network [OSTI]

    Messenger, Stephen Joseph

    2013-01-01

    Biosignature gases in the atmosphere of an exoplanet provide a means by which we can deduce the possible existence of life on that planet. As the list of possible biosignature gases is ever growing, the need to determine ...

  5. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, Charles E. (Idaho Falls, ID)

    1997-01-01

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases.

  6. Method for enhancing microbial utilization rates of gases using perfluorocarbons

    DOE Patents [OSTI]

    Turick, C.E.

    1997-06-10

    A method of enhancing the bacterial reduction of industrial gases using perfluorocarbons (PFCs) is disclosed. Because perfluorocarbons (PFCs) allow for a much greater solubility of gases than water does, PFCs have the potential to deliver gases in higher concentrations to microorganisms when used as an additive to microbial growth media thereby increasing the rate of the industrial gas conversion to economically viable chemicals and gases. 3 figs.

  7. Scale-invariant nonlinear optics in gases

    E-Print Network [OSTI]

    Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L

    2015-01-01

    Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.

  8. Glass Membrane For Controlled Diffusion Of Gases

    DOE Patents [OSTI]

    Shelby, James E. (Alfred Station, NY); Kenyon, Brian E. (Pittsburgh, PA)

    2001-05-15

    A glass structure for controlled permeability of gases includes a glass vessel. The glass vessel has walls and a hollow center for receiving a gas. The glass vessel contains a metal oxide dopant formed with at least one metal selected from the group consisting of transition metals and rare earth metals for controlling diffusion of the gas through the walls of the glass vessel. The vessel releases the gas through its walls upon exposure to a radiation source.

  9. Method for controlling corrosion in thermal vapor injection gases

    DOE Patents [OSTI]

    Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

    1981-01-01

    An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

  10. The greenhouse gases HFCs, PFCs Danish consumption and emissions, 2007

    E-Print Network [OSTI]

    The greenhouse gases HFCs, PFCs and SF6 Danish consumption and emissions, 2007 Tomas Sander Poulsen AND EMISSION OF F-GASES 7 1.1.1 Consumption 7 1.1.2 Emission 7 1.1.3 Trends in total GWP contribution from F 21 4 EMISSION OF F-GASES 23 4.1.1 Emissions of HFCs from refrigerants 23 4.1.2 Emissions of HFCs from

  11. Deviation from the Knudsen law on quantum gases

    SciTech Connect (OSTI)

    Babac, Gulru

    2014-12-09

    Gas flow in micro/nano scale systems has been generally studied for the Maxwell gases. In the limits of very low temperature and very confined domains, the Maxwellian approximation can break down and the quantum character of the gases becomes important. In these cases, Knudsen law, which is one of the important equations to analyze rarefied gas flows is invalid and should be reanalyzed for quantum gases. In this work, the availability of quantum gas conditions in the high Knudsen number cases is discussed and Knudsen law is analyzed for quantum gases.

  12. Test Results For Physical Separation Of Tritium From Noble Gases...

    Office of Environmental Management (EM)

    Test Results For Physical Separation Of Tritium From Noble Gases And It's Implications For Sensitivity And Accuracy In Air And Stack Monitoring Test Results For Physical Separation...

  13. Finalize Historic National Program to Reduce Greenhouse Gases...

    Open Energy Info (EERE)

    Finalize Historic National Program to Reduce Greenhouse Gases and Improve Fuel Economy for Cars and Trucks Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Finalize...

  14. Voluntary reporting of greenhouse gases 1997

    SciTech Connect (OSTI)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  15. Removal of mercury from waste gases

    SciTech Connect (OSTI)

    Muster, U.; Marr, R.; Pichler, G.; Kremshofer, S.; Wilferl, R.; Draxler, J.

    1996-12-31

    Waste and process gases from thermal power, incineration and metallurgical plants or those from cement and alkali chloride industries contain metallic, inorganic and organic mercury. Widespread processes to remove the major amount of mercury are absorption and adsorption. Caused by the lowering of the emission limit from 200 to 50 {mu}g/m{sup 3} [STP] by national and European legislators, considerable efforts were made to enhance the efficiency of the main separation units of flue gas cleaning plants. Specially impregnated ceramic carriers can be used for the selective separation of metallic, inorganic and organic mercury. Using the ceramic reactor removal rates lower than 5 {mu}g/m{sup 3} [STP] of gaseous mercury and its compounds can be achieved. The ceramic reactor is active, regenerable and stable for a long term operation. 4 refs., 7 figs.

  16. AMIII Termodinamica dos Gases Ideais 17 de Janeiro de 2002

    E-Print Network [OSTI]

    Natário, José

    AMIII ­ Termodinâ??amica dos Gases Ideais 17 de Janeiro de 2002 N moles de um gâ??as ideal em equil dos gases ideais). A Primeira Lei da Termodinâ??amica afirma que existe uma funâ?şcâ?ťao E : M # R, dita pela Segunda Lei da Termodinâ??amica. 2 #12;

  17. Climate change and trace gases BY JAMES HANSEN

    E-Print Network [OSTI]

    Ford, Andrew

    Climate change and trace gases BY JAMES HANSEN 1,*, MAKIKO SATO 1 , PUSHKER KHARECHA 1 , GARY climate change that could run out of our control, with great dangers for humans and other creatures and the global environment. Keywords: climate change; trace gases; climate feedbacks; black carbon; sea level

  18. Continuous cryopump with a method for removal of solidified gases

    DOE Patents [OSTI]

    Carlson, L.W.; Herman, H.

    1988-05-05

    An improved cryopump for the removal of gases from a high vacuum, comprising a cryopanel incorporating honeycomb structure, refrigerant means thermally connected to the cryopanel, and a rotatable channel moving azimuthally around an axis located near the center of the cryopanel, removing gases adsorbed within the honeycomb structure by subliming them and conducting them outside the vacuum vessel. 4 figs.

  19. Regional respiratory tract absorption of inhaled reactive gases

    SciTech Connect (OSTI)

    Miller, F.J.; Overton, J.H.; Kimbell, J.S.; Russell, M.L.

    1992-06-29

    Highly reactive gases present unique problems due to the number of factors which must be taken into account to determine regional respiratory tract uptake. The authors reviewed some of the physical, chemical, and biological factors that affect dose and that must be understood to interpret toxicological data, to evaluate experimental dosimetry studies, and to develop dosimetry models. Selected dosimetry experiments involving laboratory animals and humans were discussed, showing the variability and uptake according to animal species and respiratory tract region for various reactive gases. New experimental dosimetry approaches, such as those involving isotope ratio mass spectroscopy and cyclotron generation reactive gases, were discussed that offer great promise for improving the ability to study regional respiratory tract absorption of reactive gases. Various dosimetry modeling applications were discussed which demonstrate: the importance of airflow patterns for site-specific dosimetry in the upper respiratory tract, the influence of the anatomical model used to make inter- and intraspecies dosimetric comparisons, the influence of tracheobronchial path length on predicted dose curves, and the implications of ventilatory unit structure and volume on dosimetry and response. Collectively, these examples illustrate important aspects of regional respiratory tract absorption of inhaled reactive gases. Given the complex nature of extent and pattern of injury in the respiratory tract from exposure to reactive gases, understanding interspecies differences in the absorption of reactive gases will continue to be an important area for study.

  20. Measuring non-condensable gases in steam

    SciTech Connect (OSTI)

    Doornmalen, J. P. C. M. van; Kopinga, K., E-mail: k.kopinga@tue.nl [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2013-11-15

    In surgery, medical devices that are used should be sterilized. To obtain surface steam sterilization conditions, not only in the sterilizer chamber itself but also in the loads to be sterilized, the amount of non-condensable gases (NCGs), for instance air, should be very low. Even rather small fractions of NCGs (below 1 %) seriously hamper steam penetration in porous materials or devices with hollow channels (e.g., endoscopes). A recently developed instrument which might detect the presence of residual NCGs in a reliable and reproducible way is the 3M{sup TM} Electronic Test System (ETS). In this paper, a physical model is presented that describes the behavior of this instrument. This model has been validated by experiments in which known fractions of NCGs were introduced in a sterilizer chamber in which an ETS was placed. Despite several approximations made in the model, a good agreement is found between the model predictions and the experimental results. The basic principle of the ETS, measuring the heat transfer by condensation on a cooled surface, permits a very sensitive detection of NCGs in harsh environments like water vapor at high temperatures and pressures. Our model may serve to develop adapted and optimized versions of this instrument for use outside the field of sterilization, e.g., in heat exchangers based on steam condensation.

  1. Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases

    E-Print Network [OSTI]

    2008-01-01

    households in reducing greenhouse gases. Energy Policy (Tradable Permits for Greenhouse Gas Emissions: a Primer WithEIA, 2006a. Emissions of Greenhouse Gases in the United

  2. Cryogenic method for measuring nuclides and fission gases

    DOE Patents [OSTI]

    Perdue, P.T.; Haywood, F.F.

    1980-05-02

    A cryogenic method is provided for determining airborne gases and particulates from which gamma rays are emitted. A special dewar counting vessel is filled with the contents of the sampling flask which is immersed in liquid nitrogen. A vertically placed sodium-iodide or germanium-lithium gamma-ray detector is used. The device and method are of particular use in measuring and identifying the radioactive noble gases including emissions from coal-fired power plants, as well as fission gases released or escaping from nuclear power plants.

  3. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, Claude R. (Paducah, KY); Ernstberger, Harold G. (Paducah, KY)

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  4. Method for monitoring stack gases for uranium activity

    DOE Patents [OSTI]

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  5. Modeling shows that alternative soil management can decrease greenhouse gases

    E-Print Network [OSTI]

    De Gryze, Steven; Albarracin, Maria Victoria; Catala-Luque, Rosa; Howitt, Richard E; Six, Johan

    2009-01-01

    warmer temperatures. Reducing greenhouse gases A (SacramentoMan. Yes Agricultural greenhouse-gas emis- sions can beWhether the decrease in greenhouse-gas emissions comes from

  6. Measuring the Isotopic Composition of Solar Wind Noble Gases

    E-Print Network [OSTI]

    Floss, Christine

    in meteorites are depleted by many orders of magnitude compared with the solar nebula and, although lunar soils the various components, these gases were extracted using stepped pyrolysis and analyzed in sensitive mass

  7. BIOSIGNATURE GASES IN H?-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    E-Print Network [OSTI]

    Seager, Sara

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H2-dominated atmospheres. We study biosignature gases on exoplanets with thin H2 atmospheres and habitable surface ...

  8. Low-Value Waste Gases as an Energy Source 

    E-Print Network [OSTI]

    Waibel, R. T.

    1996-01-01

    Waste gases with potentially useful fuel value are generated at any number of points in refineries, chemical plants and other industrial and commercial sites. The higher quality streams have been utilized successfully in fuel systems for years...

  9. Method of producing pyrolysis gases from carbon-containing materials

    DOE Patents [OSTI]

    Mudge, Lyle K. (Richland, WA); Brown, Michael D. (West Richland, WA); Wilcox, Wayne A. (Kennewick, WA); Baker, Eddie G. (Richland, WA)

    1989-01-01

    A gasification process of improved efficiency is disclosed. A dual bed reactor system is used in which carbon-containing feedstock materials are first treated in a gasification reactor to form pyrolysis gases. The pyrolysis gases are then directed into a catalytic reactor for the destruction of residual tars/oils in the gases. Temperatures are maintained within the catalytic reactor at a level sufficient to crack the tars/oils in the gases, while avoiding thermal breakdown of the catalysts. In order to minimize problems associated with the deposition of carbon-containing materials on the catalysts during cracking, a gaseous oxidizing agent preferably consisting of air, oxygen, steam, and/or mixtures thereof is introduced into the catalytic reactor at a high flow rate in a direction perpendicular to the longitudinal axis of the reactor. This oxidizes any carbon deposits on the catalysts, which would normally cause catalyst deactivation.

  10. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999) Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  11. Viscosities of natural gases at high pressures and high temperatures 

    E-Print Network [OSTI]

    Viswanathan, Anup

    2007-09-17

    Estimation of viscosities of naturally occurring petroleum gases provides the information needed to accurately work out reservoir-engineering problems. Existing models for viscosity prediction are limited by data, especially at high pressures...

  12. Studying coherence in ultra-cold atomic gases

    E-Print Network [OSTI]

    Miller, Daniel E. (Daniel Edward)

    2007-01-01

    This thesis will discuss the study of coherence properties of ultra-cold atomic gases. The atomic systems investigated include a thermal cloud of atoms, a Bose-Einstein condensate and a fermion pair condensate. In each ...

  13. Radio-frequency spectroscopy of ultracold atomic Fermi gases

    E-Print Network [OSTI]

    Schirotzek, Andre

    2010-01-01

    This thesis presents experiments investigating the phase diagram of ultracold atomic Fermi gases using radio-frequency spectroscopy. The tunability of many experimental parameters including the temperature, the interparticle ...

  14. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  15. Process for the removal of acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  16. Non-hydrodynamic transport in trapped unitary Fermi gases

    E-Print Network [OSTI]

    Jasmine Brewer; Paul Romatschke

    2015-08-05

    Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of non-hydrodynamic modes. We review non-hydrodynamic modes in kinetic theory and gauge/gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data, we find hints of non-hydrodynamic modes in cold Fermi gases in two and three dimensions.

  17. Non-hydrodynamic transport in trapped unitary Fermi gases

    E-Print Network [OSTI]

    Brewer, Jasmine

    2015-01-01

    Many strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of non-hydrodynamic modes. We review non-hydrodynamic modes in kinetic theory and gauge/gravity duality and discuss their signatures in trapped Fermi gases close to unitarity. Reanalyzing previously published experimental data, we find hints of non-hydrodynamic modes in cold Fermi gases in two and three dimensions.

  18. Biological production of ethanol from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2000-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products is disclosed. The method includes introducing the waste gases into a bioreactor where they are fermented to various product, such as organic acids, alcohols H.sub.2, SCP, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  19. Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

    E-Print Network [OSTI]

    Dennis, J A

    1971-01-01

    Energy loss characteristics of heavy ions in nitrogen, carbon dioxide, argon, hydrocarbon gases and tradescantia tissue

  20. Process for removal of carbonyl sulfide in liquified hydrocarbon gases with absorption of acid gases

    SciTech Connect (OSTI)

    Beavon, D.K.; Mackles, M.

    1980-11-11

    Liquified hydrocarbon gases containing at least carbonyl sulfide as an impurity are purified by intimately mixing the liquified hydrocarbon gas with an aqueous absorbent for hydrogen sulfide in a hydrolysis zone maintained at a temperature and a pressure sufficient to maintain the liquified hydrocarbon gas in the liquid state and hydrolyze the carbonyl sulfide to hydrogen sulfide and carbon dioxide. The liquified hydrocarbon gas containing at least a portion of the formed carbonyl sulfide and carbon dioxide is separated from the liquid absorbent and passed to an absorption zone where it is contacted with a liquid hydrogen sulfide absorbent where at least the formed hydrogen sulfide is separated from the liquified petroleum gas. A stage of absorption of at least hydrogen sulfide may proceed mixing of the liquified hydrocarbon gas with the absorbent in the hydrolysis reaction zone. The absorbent employed does not combine irreversibly with carbonyl sulfide, hydrogen sulfide, and carbon dioxide, and preferably is an aqueous solution of diethanolamine.

  1. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, K.C.; Markun, F.; Zawadzki, M.T.

    1998-04-28

    An apparatus and method are disclosed for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir. 6 figs.

  2. Fluid clathrate system for continuous removal of heavy noble gases from mixtures of lighter gases

    DOE Patents [OSTI]

    Gross, Kenneth C. (Bolingbrook, IL); Markun, Francis (Joliet, IL); Zawadzki, Mary T. (South Bend, IN)

    1998-01-01

    An apparatus and method for separation of heavy noble gas in a gas volume. An apparatus and method have been devised which includes a reservoir containing an oil exhibiting a clathrate effect for heavy noble gases with a reservoir input port and the reservoir is designed to enable the input gas volume to bubble through the oil with the heavy noble gas being absorbed by the oil exhibiting a clathrate effect. The gas having reduced amounts of heavy noble gas is output from the oil reservoir, and the oil having absorbed heavy noble gas can be treated by mechanical agitation and/or heating to desorb the heavy noble gas for analysis and/or containment and allow recycling of the oil to the reservoir.

  3. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (San Pablo, CA)

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  4. Emissions Of Greenhouse Gases From Rice Agriculture

    SciTech Connect (OSTI)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small. 4). Nitrous Oxide Emissions From Rice Fields Increase as Methane Emissions Drop. Inundated conditions favor anaerobic methane production with high emission rates and de-nitrification resulting in modest nitrous oxide emissions. Under drier conditions such as intermittent flooding, methane emissions fall and nitrous oxide emissions increase. Increased nitrogen fertilizer use increases nitrous oxide emissions and is usually accompanied by reduced organic matter applications which decreases methane emissions. These mechanisms cause a generally inverse relationship between methane and nitrous oxide emissions. Reduction of methane from rice agriculture to control global warming comes with tradeoffs with increased nitrous oxide emissions. 5). High Spatial Resolution Maps of Emissions Produced. Maps of methane and nitrous oxide emissions at a resolution of 5 min × 5 min have been produced based on the composite results of this research. These maps are necessary for both scientific and policy uses.

  5. Emissions of greenhouse gases in the United States 1997

    SciTech Connect (OSTI)

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  6. Method for removing acid gases from a gaseous stream

    DOE Patents [OSTI]

    Gorin, Everett (San Rafael, CA); Zielke, Clyde W. (McMurray, PA)

    1981-01-01

    In a process for hydrocracking a heavy aromatic polynuclear carbonaceous feedstock containing reactive alkaline constituents to produce liquid hydrocarbon fuels boiling below about 475.degree. C. at atmospheric pressure by contacting the feedstock with hydrogen in the presence of a molten metal halide catalyst, thereafter separating a gaseous stream containing hydrogen, at least a portion of the hydrocarbon fuels and acid gases from the molten metal halide and regenerating the molten metal halide, thereby producing a purified molten metal halide stream for recycle to the hydrocracking zone, an improvement comprising; contacting the gaseous acid gas, hydrogen and hydrocarbon fuels-containing stream with the feedstock containing reactive alkaline constituents to remove acid gases from the acid gas containing stream. Optionally at least a portion of the hydrocarbon fuels are separated from gaseous stream containing hydrogen, hydrocarbon fuels and acid gases prior to contacting the gaseous stream with the feedstock.

  7. “Hard probes” of strongly-interacting atomic gases

    SciTech Connect (OSTI)

    Nishida, Yusuke

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  8. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, G.I.; Dietz, R.N.

    1994-04-05

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons. 8 figures.

  9. Carbonaceous adsorbent regeneration and halocarbon displacement by hydrocarbon gases

    DOE Patents [OSTI]

    Senum, Gunnar I. (Patchogue, NY); Dietz, Russell N. (Patchogue, NY)

    1994-01-01

    This invention describes a process for regeneration of halocarbon bearing carbonaceous adsorbents through which a carbonaceous adsorbent is contacted with hydrocarbon gases, preferably propane, butane and pentane at near room temperatures and at atmospheric pressure. As the hydrocarbon gases come in contact with the adsorbent, the hydrocarbons displace the halocarbons by physical adsorption. As a result of using this process, the halocarbon concentration and the hydrocarbon eluant is increased thereby allowing for an easier recovery of pure halocarbons. By using the process of this invention, carbonaceous adsorbents can be regenerated by an inexpensive process which also allows for subsequent re-use of the recovered halocarbons.

  10. Methods, systems, and devices for deep desulfurization of fuel gases

    DOE Patents [OSTI]

    Li, Liyu (Richland, WA); King, David L. (Richland, WA); Liu, Jun (Richland, WA); Huo, Qisheng (Richland, WA)

    2012-04-17

    A highly effective and regenerable method, system and device that enables the desulfurization of warm fuel gases by passing these warm gasses over metal-based sorbents arranged in a mesoporous substrate. This technology will protect Fischer-Tropsch synthesis catalysts and other sulfur sensitive catalysts, without drastic cooling of the fuel gases. This invention can be utilized in a process either alone or alongside other separation processes, and allows the total sulfur in such a gas to be reduced to less than 500 ppb and in some instances as low as 50 ppb.

  11. Castaing Instability and Precessing Domains in Confined Alkali Gases

    E-Print Network [OSTI]

    A. Kuklov; A. E. Meyerovich

    2002-02-05

    We explore analogy between two-component quantum alkali gases and spin-polarized helium systems. Recent experiments in trapped gases are put into the frame of the existing theory for Castaing instability in transverse channel and formation of homogeneous precessing domains in spin-polarized systems. Analogous effects have already been observed in spin-polarized $% ^{3}He$ and $^{3}He- ^{4}He$ mixtures systems. The threshold effect of the confining potential on the instability is analyzed. New experimental possibilities for observation of transverse instability in a trap are discussed.

  12. Removal of sulfur and nitrogen containing pollutants from discharge gases

    DOE Patents [OSTI]

    Joubert, James I. (Pittsburgh, PA)

    1986-01-01

    Oxides of sulfur and of nitrogen are removed from waste gases by reaction with an unsupported copper oxide powder to form copper sulfate. The resulting copper sulfate is dissolved in water to effect separation from insoluble mineral ash and dried to form solid copper sulfate pentahydrate. This solid sulfate is thermally decomposed to finely divided copper oxide powder with high specific surface area. The copper oxide powder is recycled into contact with the waste gases requiring cleanup. A reducing gas can be introduced to convert the oxide of nitrogen pollutants to nitrogen.

  13. Conserving Energy by Recovering Heat from Hot Waste Gases 

    E-Print Network [OSTI]

    Magnuson, E. E.

    1979-01-01

    ;::;,. """"= ;e - -e-- - ~ ------- ., ~ A~ PULL THRU - WITH SUPPLEMENTARY BURNER t t - ~"~ ~ - t77 7'0.. Fig. No. B ;i' ~ A+-, j + ~ ~s:- i.I A..-J PUSH THRU OR PULL THRU - W ITII SUPPI F'MF'NTARY ALJRNER years later a steel company discharging... BY RECOVERING HEAT FROM HOT WASTE GASES E. E. Magnuson Consultant and Training Director Eclipse Lookout Co. - Division of Eclipse, Inc. Chattanooga, Tennessee Intent of this paper is to show how recovery of heat in hot waste gases reduces nation...

  14. Welcome to Greenhouse Gases: Science and Technology: Editorial

    SciTech Connect (OSTI)

    Oldenburg, C.M.; Maroto-Valer, M.M.

    2011-02-01

    This editorial introduces readers and contributors to a new online journal. Through the publication of articles ranging from peer-reviewed research papers and short communications, to editorials and interviews on greenhouse gas emissions science and technology, this journal will disseminate research results and information that address the global crisis of anthropogenic climate change. The scope of the journal includes the full spectrum of research areas from capture and separation of greenhouse gases from flue gases and ambient air, to beneficial utilization, and to sequestration in deep geologic formations and terrestrial (plant and soil) systems, as well as policy and technoeconomic analyses of these approaches.

  15. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming

    E-Print Network [OSTI]

    Svensen, Henrik

    Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming Henrik Svensen a carbon cycle. The event lasted for approximately 200,000 years and was manifested by a global warming, and the Toarcian global warming. © 2007 Elsevier B.V. All rights reserved. Keywords: climate change; Toarcian

  16. Use of low temperature blowers for recirculation of hot gases

    DOE Patents [OSTI]

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  17. Ozone-depleting substances and the greenhouse gases HFCs, PFCs

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 19 3.1 IMPORTS AND EXPORTS 19 3.1.1 CFCs 19 3.1.2 Tetrachloromethane 19 3

  18. Lieb-Thirring Bounds for Interacting Bose Gases

    E-Print Network [OSTI]

    Douglas Lundholm; Fabian Portmann; Jan Philip Solovej

    2015-02-02

    We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied to various types of interactions, including hard sphere (in 3D) and hard disk (in 2D) as well as a general class of homogeneous potentials.

  19. Thermodynamic and hydrodynamic behaviour of interacting Fermi gases

    E-Print Network [OSTI]

    Goulko, Olga

    2012-01-10

    Fermionic matter is ubiquitous in nature, from the electrons in metals and semiconductors or the neutrons in the inner crust of neutron stars, to gases of fermionic atoms, like 40K or 6Li that can be created and studied under laboratory conditions...

  20. OPTIONS FOR ABATING GREENHOUSE GASES FROM EXHAUST STREAMS.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-12-01

    This report examines different alternatives for replacing, treating, and recycling greenhouse gases. It is concluded that treatment (abatement) is the only viable short-term option. Three options for abatement that were tested for use in semiconductor facilities are reviewed, and their performance and costs compared. This study shows that effective abatement options are available to the photovoltaic (PV) industry, at reasonable cost.

  1. HTheorems in some kinetic models of chemically reacting dense gases

    E-Print Network [OSTI]

    Polewczak, Jacek

    gases: -- search for the RET (Revised Enskog Theory) analog's of the reacting hard­sphere system -- H as perturbations to the non­reactive terms. This was confirmed in a series of papers by B.Shizgal and M.Karplus (J by an equilibrium computations, where solvent e#ects enter through the free energy at the transition state. (for

  2. Predicted Abundances of Carbon Compounds in Volcanic Gases on Io

    E-Print Network [OSTI]

    Laura Schaefer; Bruce Fegley Jr

    2004-09-17

    We use chemical equilibrium calculations to model the speciation of carbon in volcanic gases on Io. The calculations cover wide temperature (500-2000 K), pressure (10^-8 to 10^+2 bars), and composition ranges (bulk O/S atomic ratios \\~0 to 3), which overlap the nominal conditions at Pele (1760 K, 0.01 bar, O/S ~ 1.5). Bulk C/S atomic ratios ranging from 10^-6 to 10^-1 in volcanic gases are used with a nominal value of 10^-3 based upon upper limits from Voyager for carbon in the Loki plume on Io. Carbon monoxide and CO2 are the two major carbon gases under all conditions studied. Carbonyl sulfide and CS2 are orders of magnitude less abundant. Consideration of different loss processes (photolysis, condensation, kinetic reactions in the plume) indicates that photolysis is probably the major loss process for all gases. Both CO and CO2 should be observable in volcanic plumes and in Io's atmosphere at abundances of several hundred parts per million by volume for a bulk C/S ratio of 10^-3.

  3. Uniqueness of chemical equilibria in ideal mixtures of ideal gases Joseph M. Powersa

    E-Print Network [OSTI]

    forces between mol- ecules of the same type. Ideal mixtures, which include gases which obey Dalton's law

  4. System for trapping and storing gases for subsequent chemical reduction to solids

    DOE Patents [OSTI]

    Vogel, John S. (San Jose, CA); Ognibene, Ted J. (Oakland, CA); Bench, Graham S. (Livermore, CA); Peaslee, Graham F. (Holland, MI)

    2009-11-03

    A system for quantitatively reducing oxide gases. A pre-selected amount of zinc is provided in a vial. A tube is provided in the vial. The zinc and the tube are separated. A pre-selected amount of a catalyst is provided in the tube. Oxide gases are injected into the vial. The vial, tube, zinc, catalyst, and the oxide gases are cryogenically cooled. At least a portion of the vial, tube, zinc, catalyst, and oxide gases are heated.

  5. Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and

    E-Print Network [OSTI]

    Dufresne, Jean-Louis

    Impacts of greenhouse gases and aerosol direct and indirect effects on clouds and radiation/C.N.R.S., Villeneuve d'Ascq, France Among anthropogenic perturbations of the Earth's atmosphere, greenhouse gases the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate

  6. Analise Matematica III Turma Especial Ficha Extra 3 Termodinamica dos Gases Ideais

    E-Print Network [OSTI]

    Natário, José

    Anâ??alise Matemâ??atica III ­ Turma Especial Ficha Extra 3 ­ Termodinâ??amica dos Gases Ideais N estado dos gases ideais: PV = NRT (onde R â??e a constante dos gases ideais). A Primeira Lei da Termodinâ??amica pela Segunda Lei da Termodinâ??amica. 2 #12;

  7. D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases

    E-Print Network [OSTI]

    Jackman, Charles H.

    O(1 D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases Munkhbayar Baasandorj) and greenhouse gases (GHGs) is reaction with the O(1 D) atom. In this study, rate coefficients, k, for the O(1 D) and greenhouse gases (GHGs). Quantifying the atmospheric loss processes of ODSs and GHGs is essential

  8. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, Michael (Los Alamos, NM)

    1995-01-01

    A plasma cell for destroying hazardous gases. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required.

  9. The extreme nonlinear optics of gases and femtosecond optical filamentation

    SciTech Connect (OSTI)

    Milchberg, H. M.; Chen, Y.-H.; Cheng, Y.-H.; Jhajj, N.; Palastro, J. P.; Rosenthal, E. W.; Varma, S.; Wahlstrand, J. K.; Zahedpour, S. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2014-10-15

    Under certain conditions, powerful ultrashort laser pulses can form greatly extended, propagating filaments of concentrated high intensity in gases, leaving behind a very long trail of plasma. Such filaments can be much longer than the longitudinal scale over which a laser beam typically diverges by diffraction, with possible applications ranging from laser-guided electrical discharges to high power laser propagation in the atmosphere. Understanding in detail the microscopic processes leading to filamentation requires ultrafast measurements of the strong field nonlinear response of gas phase atoms and molecules, including absolute measurements of nonlinear laser-induced polarization and high field ionization. Such measurements enable the assessment of filamentation models and make possible the design of experiments pursuing applications. In this paper, we review filamentation in gases and some applications, and discuss results from diagnostics developed at Maryland for ultrafast measurements of laser-gas interactions.

  10. Apparatus for the plasma destruction of hazardous gases

    DOE Patents [OSTI]

    Kang, M.

    1995-02-07

    A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

  11. Frequency-dependent fluctuation-dissipation relations in granular gases

    E-Print Network [OSTI]

    Guy Bunin; Yair Shokef; Dov Levine

    2008-05-19

    The Green-Kubo relation for two models of granular gases is discussed. In the Maxwell model in any dimension, the effective temperature obtained from the Green-Kubo relation is shown to be frequency independent, and equal to the average kinetic energy, known as the granular temperature. In the second model analyzed, a mean-field granular gas, the collision rate of a particle is taken to be proportional to its velocity. The Green-Kubo relation in the high frequency limit is calculated for this model, and the effective temperature in this limit is shown to be equal to the granular temperature. This result, taken together with previous results, showing a difference between the effective temperature at zero frequency (the Einstein relation) and the granular temperature, shows that the Green-Kubo relation for granular gases is violated.

  12. Clostridium stain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (2207 Tall Oaks Dr., Fayetteville, AR 72703)

    1997-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  13. Clostridium strain which produces acetic acid from waste gases

    DOE Patents [OSTI]

    Gaddy, J.L.

    1997-01-14

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 4 figs.

  14. Wave Speed in the Macroscopic Extended Model for Ultrarelativistic Gases

    E-Print Network [OSTI]

    F. Borghero; F. Demontis; S. Pennisi

    2010-12-07

    An exact macroscopic extended model for ultrarelativistic gases, with an arbitrary number of moments, is present in the literature. Here we exploit equations determining wave speeds for that model. We find interesting results; for example, the whole system for their determination can be divided into independent subsystems and some, but not all, wave speeds are expressed by rational numbers. Moreover, the extraordinary property that these wave speeds for the macroscopic model are the same of those in the kinetic model, is proved.

  15. Emission of reduced malodorous sulfur gases from wastewater treatment plants

    SciTech Connect (OSTI)

    Devai, I.; DeLaune, R.D.

    1999-03-01

    The emission of malodorous gaseous compounds from wastewater collection and treatment facilities is a growing maintenance and environmental problem. Numerous gaseous compounds with low odor detection thresholds are emitted from these facilities. Sulfur-bearing gases represent compounds with the lowest odor detection threshold. Using solid adsorbent preconcentration and gas chromatographic methods, the quantity and composition of reduced malodorous sulfur gases emitted from various steps of the treatment process were determined in wastewater treatment plants in Baton Rouge, Louisiana. Hydrogen sulfide, which is a malodorous, corrosive, and potentially toxic gas, was the most dominant volatile reduced sulfur (S) compound measured. Concentrations were not only more than the odor detection threshold of hydrogen sulfide, but above levels that may affect health during long-term exposure. The concentrations of methanethiol, dimethyl sulfide, carbon disulfide, and carbonyl sulfide were significantly less than hydrogen sulfide. However, even though emissions of reduced sulfur gases other than hydrogen sulfide were low, previous studies suggested that long-term exposure to such levels may cause respiratory problems and other symptoms.

  16. Greenhouse gases mitigation options and strategies for Tanzania

    SciTech Connect (OSTI)

    Mwandosya, M.J.; Meena, H.E.

    1996-12-31

    Tanzania became a party to the United Nations Framework on Climate Change (UN FCCC) when she ratified the Convention in March, 1996. Now that Tanzania and other developing countries are Parties to the UN FCCC, compliance with its provisions is mandatory. The legal requirements therefore provide a basis for their participation in climate change studies and policy formulation. All parties to the Convention are required by Article 4.1 of the United Nations Convention on Climate Change (UN FCCC) to develop, periodically update, publish, and make available national inventories of anthropogenic emissions and removal of greenhouse gases that are not controlled by the Montreal Protocol. This study on possible options for the mitigation of greenhouse gases in Tanzania is a preliminary effort towards the fulfilment of the obligation. In order to fulfil their obligations under the UN FCCC and have a meaningful mitigation assessment, identification and quantification of anthropogenic sources of atmospheric emissions of greenhouse gases in the country was undertaken. In this respect, the study of anthropogenic emissions by source and removals by sink of GHGs in Tanzania was done with the main objective of increasing the quantity and quality of base-line data available in order to further scientific understanding of the relationship of greenhouse gas emissions to climate change. Furthermore, the study facilitated identification of national policy and technological options that could reduce the level of emissions in the country.

  17. Emissions of greenhouse gases in the United States 1996

    SciTech Connect (OSTI)

    1997-10-01

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1990, with annual updates thereafter. This report is the fifth annual update, covering national emissions over the period 1989--1995, with preliminary estimates of emissions for 1996. The estimates contained in this report have been revised from those in last year`s report. Emissions estimates for carbon dioxide are reported in metric tons of carbon; estimates for other gases are reported in metric tons of gas. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapter 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Five appendixes are included with this report. 216 refs., 11 figs., 38 tabs.

  18. Chemical production from industrial by-product gases: Final report

    SciTech Connect (OSTI)

    Lyke, S.E.; Moore, R.H.

    1981-04-01

    The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

  19. Thermodynamics of sustaining gases in the roughness of submerged superhydrophobic surfaces

    E-Print Network [OSTI]

    Neelesh A. Patankar

    2015-05-22

    Rough surfaces submerged in a liquid can remain almost dry if the liquid does not fully wet the roughness and gases are sustained in roughness grooves. Such partially dry surfaces can help reduce drag or enhance boiling. Gases sustained in roughness grooves would be composed of air and the vapor phase of the liquid itself. The thermodynamics of sustaining vapor was considered in a prior work [Patankar, Soft Matter, 2010, 6:1613]. Here, the thermodynamics of sustaining gases (e.g. air) is considered. Governing equations are presented along with a solution methodology to determine a critical condition to sustain gases. The critical roughness scale to sustain gases is estimated for different degrees of saturation of gases dissolved in the liquid. It is shown that roughness spacings of less than a micron are essential to sustain gases on surfaces submerged in water at atmospheric pressure. This is consistent with prior empirical data.

  20. Nonperturbative Predictions for Cold Atom Bose Gases with Tunable Interactions

    SciTech Connect (OSTI)

    Cooper, Fred; Chien, Chih-Chun; Mihaila, Bogdan; Timmermans, Eddy; Dawson, John F.

    2010-12-10

    We derive a theoretical description for dilute Bose gases as a loop expansion in terms of composite-field propagators by rewriting the Lagrangian in terms of auxiliary fields related to the normal and anomalous densities. We demonstrate that already in leading order this nonperturbative approach describes a large interval of coupling-constant values, satisfies Goldstone's theorem, yields a Bose-Einstein transition that is second order, and is consistent with the critical temperature predicted in the weak-coupling limit by the next-to-leading-order large-N expansion.

  1. An Effective Method of Accelerating Bose Gases Using Magnetic Coils

    E-Print Network [OSTI]

    Lu, Haichang; Zhai, Yueyang; Pan, Ruizhi; Yang, Shifeng

    2014-07-23

    are settled around an ultra-vacuum glass container on a cop- per supporter that can be cooled by water. To prevent the eddy current in the copper frame when being ener- gized, some crucial parts in the holder are fabricated with gaps. The potential energy... the relationship of different current supply and delay time versus the ultimate velocity of the atom,we theoretically predict the method of accelerating the gases to an expected velocity. This method is of great convenience and significance for the applications...

  2. Liquefaction and storage of thermal treatment off-gases

    SciTech Connect (OSTI)

    Stull, D.M. . Rocky Flats Plant); Golden, J.O. )

    1992-09-08

    A fluidized bed catalytic oxidation unit is being developed for use in the destruction of mixed waste at the Rocky Flats Plant. Cyclones, filters, in situ neutralization of acid gases, and a catalytic converter are used to meet emission standards. Because there is concern by the public that these measures may not be adequate, two off-gas capture systems were evaluated. Both systems involve liquefaction of carbon dioxide produced in the oxidation process. The carbon dioxide would be released only after analysis proved that all appropriate emission standards are met.

  3. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, Raymond J. (Mt. Prospect, IL); Kurek, Paul R. (Schaumburg, IL)

    1988-01-01

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  4. Separation of gases through gas enrichment membrane composites

    DOE Patents [OSTI]

    Swedo, R.J.; Kurek, P.R.

    1988-07-19

    Thin film composite membranes having as a permselective layer a film of a homopolymer of certain vinyl alkyl ethers are useful in the separation of various gases. Such homopolymers have a molecular weight of greater than 30,000 and the alkyl group of the vinyl alkyl monomer has from 4 to 20 carbon atoms with branching within the alkyl moiety at least at the carbon atom bonded to the ether oxygen or at the next adjacent carbon atom. These membranes show excellent hydrolytic stability, especially in the presence of acidic or basic gaseous components.

  5. Two-phase compressibility factors for retrograde gases 

    E-Print Network [OSTI]

    Rayes, Daniel George

    1989-01-01

    . K. , M Cain, W. D. , Jr. and Jennings, J. W. : "An Improved Method for the Determination of the Reservoir Specific Gravity for Retrograde Gases, " JPT (July 1989) 747-752. 7. Craft, B. C. and Hawkins, M. F. : A li P 1 m R rv ir En ine rin...). Variable Mean Standard Deviation Minimum Maximum H2S CO2 N2 CI C2 C3 IC4 NC4 IC5 NC5 C6 C7+ M. W. C7+ S. G. C7+ 1, 01840 0. 00997 0. 02545 0. 01840 0. 73233 0. 07584 0. 03948 0. 00859 0. 01482 0. 00611 0. 00637 0. 00857 0. 05404...

  6. Prospecting by sampling and analysis of airborne particulates and gases

    DOE Patents [OSTI]

    Sehmel, G.A.

    1984-05-01

    A method is claimed for prospecting by sampling airborne particulates or gases at a ground position and recording wind direction values at the time of sampling. The samples are subsequently analyzed to determine the concentrations of a desired material or the ratios of the desired material to other identifiable materials in the collected samples. By comparing the measured concentrations or ratios to expected background data in the vicinity sampled, one can select recorded wind directions indicative of the upwind position of the land-based source of the desired material.

  7. Hazardous Gases VASILIS M. FTHENAKIS Department of Applied Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous Gases

  8. EIA-Voluntary Reporting of Greenhouse Gases Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowers forecastof Greenhouse Gases Program

  9. Instantaneous and efficient surface wave excitation of a low pressure gas or gases

    DOE Patents [OSTI]

    Levy, Donald J. (Berkeley, CA); Berman, Samuel M. (San Francisco, CA)

    1988-01-01

    A system for instantaneously ionizing and continuously delivering energy in the form of surface waves to a low pressure gas or mixture of low pressure gases, comprising a source of rf energy, a discharge container, (such as a fluorescent lamp discharge tube), an rf shield, and a coupling device responsive to rf energy from the source to couple rf energy directly and efficiently to the gas or mixture of gases to ionize at least a portion of the gas or gases and to provide energy to the gas or gases in the form of surface waves. The majority of the rf power is transferred to the gas or gases near the inner surface of the discharge container to efficiently transfer rf energy as excitation energy for at least one of the gases. The most important use of the invention is to provide more efficient fluorescent and/or ultraviolet lamps.

  10. Electron Stimulated Desorption of Condensed Gases on Cryogenic Surfaces

    E-Print Network [OSTI]

    Tratnik, H; Hilleret, Noël

    2005-01-01

    In ultra-high vacuum systems outgassing from vacuum chamber walls and desorption from surface adsorbates are usually the factors which in°uence pressure and residual gas composition. In particular in beam vacuum systems of accelerators like the LHC, where surfaces are exposed to intense synchro- tron radiation and bombardment by energetic ions and electrons, properties like the molecular desorption yield or secondary electron yield can strongly in°uence the performance of the accelerator. In high-energy particle accelerators operating at liquid helium temperature, cold surfaces are exposed to the bombardment of energetic photons, electrons and ions. The gases released by the subsequent desorption are re-condensed on the cold surfaces and can be re-desorbed by the impinging electrons and ions. The equilibrium coverage reached on the surfaces exposed to the impact of energetic particles depends on the desorption yield of the condensed gases and can a®ect the operation of the accelerator by modifying th...

  11. Emissions of greenhouse gases in the United States 1995

    SciTech Connect (OSTI)

    1996-10-01

    This is the fourth Energy Information Administration (EIA) annual report on US emissions of greenhouse gases. This report presents estimates of US anthropogenic (human-caused) emissions of carbon dioxide, methane, nitrous oxide, and several other greenhouse gases for 1988 through 1994. Estimates of 1995 carbon dioxide, nitrous oxide, and halocarbon emissions are also provided, although complete 1995 estimates for methane are not yet available. Emissions of carbon dioxide increased by 1.9% from 1993 to 1994 and by an additional 0.8% from 1994 to 1995. Most carbon dioxide emissions are caused by the burning of fossil fuels for energy consumption, which is strongly related to economic growth, energy prices, and weather. The US economy grew rapidly in 1994 and slowed in 1995. Estimated emissions of methane increased slightly in 1994, as a result of a rise in emissions from energy and agricultural sources. Estimated nitrous oxide emissions increased by 1.8% in 1995, primarily due to increased use of nitrogen fertilizers and higher output of chemicals linked to nitrous oxide emissions. Estimated emissions of hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs), which are known to contribute to global warming, increased by nearly 11% in 1995, primarily as a result of increasing substitution for chlorofluorocarbons (CFCs). With the exception of methane, the historical emissions estimates presented in this report are only slightly revised from those in last year`s report.

  12. Process for recovery of sulfur from acid gases

    DOE Patents [OSTI]

    Towler, Gavin P. (Kirkbymoorside, GB2); Lynn, Scott (Pleasant Hill, CA)

    1995-01-01

    Elemental sulfur is recovered from the H.sub.2 S present in gases derived from fossil fuels by heating the H.sub.2 S with CO.sub.2 in a high-temperature reactor in the presence of a catalyst selected as one which enhances the thermal dissociation of H.sub.2 S to H.sub.2 and S.sub.2. The equilibrium of the thermal decomposition of H.sub.2 S is shifted by the equilibration of the water-gas-shift reaction so as to favor elemental sulfur formation. The primary products of the overall reaction are S.sub.2, CO, H.sub.2 and H.sub.2 O. Small amounts of COS, SO.sub.2 and CS.sub.2 may also form. Rapid quenching of the reaction mixture results in a substantial increase in the efficiency of the conversion of H.sub.2 S to elemental sulfur. Plant economy is further advanced by treating the product gases to remove byproduct carbonyl sulfide by hydrolysis, which converts the COS back to CO.sub.2 and H.sub.2 S. Unreacted CO.sub.2 and H.sub.2 S are removed from the product gas and recycled to the reactor, leaving a gas consisting chiefly of H.sub.2 and CO, which has value either as a fuel or as a chemical feedstock and recovers the hydrogen value from the H.sub.2 S.

  13. Dark resonances for ground state transfer of molecular quantum gases

    E-Print Network [OSTI]

    Manfred J. Mark; Johann G. Danzl; Elmar Haller; Mattias Gustavsson; Nadia Bouloufa; Olivier Dulieu; Houssam Salami; Tom Bergeman; Helmut Ritsch; Russell Hart; Hanns-Christoph Nägerl

    2008-11-05

    One possible way to produce ultracold, high-phase-space-density quantum gases of molecules in the rovibronic ground state is given by molecule association from quantum-degenerate atomic gases on a Feshbach resonance and subsequent coherent optical multi-photon transfer into the rovibronic ground state. In ultracold samples of Cs_2 molecules, we observe two-photon dark resonances that connect the intermediate rovibrational level |v=73,J=2> with the rovibrational ground state |v=0,J=0> of the singlet $X^1\\Sigma_g^+$ ground state potential. For precise dark resonance spectroscopy we exploit the fact that it is possible to efficiently populate the level |v=73,J=2> by two-photon transfer from the dissociation threshold with the stimulated Raman adiabatic passage (STIRAP) technique. We find that at least one of the two-photon resonances is sufficiently strong to allow future implementation of coherent STIRAP transfer of a molecular quantum gas to the rovibrational ground state |v=0,J=0>.

  14. Alkali and Halogen Chemistry in Volcanic Gases on Io

    E-Print Network [OSTI]

    Laura Schaefer; Bruce Fegley Jr

    2004-09-20

    We use chemical equilibrium calculations to model the speciation of alkalis and halogens in volcanic gases emitted on Io. The calculations cover wide temperature (500-2000 K) and pressure (10^-6 to 10^+1 bars) ranges, which overlap the nominal conditions at Pele (T = 1760 K, P = 0.01 bars). About 230 compounds of 11 elements (O, S, Li, Na, K, Rb, Cs, F, Cl, Br, I) are considered. We predict the major alkali and halogen species in a Pele-like volcanic gas and the major alklai and halogen condensates. We also model disequilibrium chemistry of the alkalis and halogens in the volcanic plume. Based on this work and our prior modeling for Na, K, and Cl in a volcanic plume, we predict the major loss processes for the alkali halide gases are photolysis and/or condensation onto grains. On the basis of elemental abundances and photochemical lifetimes, we recommend searching for gaseous KCl, NaF, LiF, LiCl, RbF, RbCl, CsF, and CsCl around volcanic vents during eruptions. Based on abundance considerations and observations of brown dwarfs, we also recommend a search of Io's extended atmosphere and the Io plasma torus for neutral and ionized Li, Cs, Rb, and F.

  15. Finite-size energy of non-interacting Fermi gases

    E-Print Network [OSTI]

    Martin Gebert

    2014-06-14

    We prove the asymptotics of the difference of the ground-state energies of two non-interacting $N$-particle Fermi gases on the half line of length $L$ in the thermodynamic limit up to order $1/L$. We are particularly interested in subdominant terms proportional to $1/L$, called finite-size energy. In the nineties Affleck and co-authors [Aff97, ZA97, AL94] claimed that the finite-size energy equals the decay exponent occuring in Anderson's orthogonality catastrophe. It turns out that the finite-size energy depends on the details of the thermodynamic limit and typically also includes a linear term in the scattering phase shift.

  16. Elliptic flow and nearly perfect fluidity in dilute Fermi gases

    E-Print Network [OSTI]

    Thomas Schaefer

    2010-12-16

    In this contribution we summarize recent progress in understanding the shear viscosity of strongly correlated dilute Fermi gases. We discuss predictions from kinetic theory, and show how these predictions can be tested using recent experimental data on elliptic flow. We find agreement between theory and experiments in the high temperature regime $T\\gg T_F$, where $T_F$ is the the temperature where quantum degeneracy effects become important. In the low temperature regime, $T\\sim T_F$, the strongest constraints on the shear viscosity come from experimental studies of the damping of collective modes. These experiments indicate that $\\eta/s\\lsim 0.5\\hbar/k_B$, where $\\eta$ is the shear viscosity and $s$ is the entropy density.

  17. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    SciTech Connect (OSTI)

    Borghero, F.; Demontis, F.; Pennisi, S.

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  18. The exponent in the orthogonality catastrophe for Fermi gases

    E-Print Network [OSTI]

    Martin Gebert; Heinrich Küttler; Peter Müller; Peter Otte

    2015-06-15

    We quantify the asymptotic vanishing of the ground-state overlap of two non-interacting Fermi gases in $d$-dimensional Euclidean space in the thermodynamic limit. Given two one-particle Schr\\"odinger operators in finite-volume which differ by a compactly supported bounded potential, we prove a power-law upper bound on the ground-state overlap of the corresponding non-interacting $N$-particle systems. We interpret the decay exponent $\\gamma$ in terms of scattering theory and find $\\gamma = \\pi^{-2}{\\lVert\\arcsin{\\lvert T_E/2\\rvert}\\rVert}_{\\mathrm{HS}}^2$, where $T_E$ is the transition matrix at the Fermi energy $E$. This exponent reduces to the one predicted by Anderson [Phys. Rev. 164, 352-359 (1967)] for the exact asymptotics in the special case of a repulsive point-like perturbation.

  19. Nuclear magnetic resonance imaging with hyper-polarized noble gases

    SciTech Connect (OSTI)

    Schmidt, D.M.; George, J.S.; Penttila, S.I.; Caprihan, A.

    1997-10-01

    This is the final report of a six-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The nuclei of noble gases can be hyper polarized through a laser-driven spin exchange to a degree many orders of magnitude larger than that attainable by thermal polarization without requiring a strong magnetic field. The increased polarization from the laser pumping enables a good nuclear magnetic resonance (NMR) signal from a gas. The main goal of this project was to demonstrate diffusion-weighted imaging of such hyper-polarized noble gas with magnetic resonance imaging (MRI). Possible applications include characterizing porosity of materials and dynamically imaging pressure distributions in biological or acoustical systems.

  20. Noble gases and cosmogenic radionuclides in the Eltanin Pacific meteorite

    SciTech Connect (OSTI)

    Bogard, D D; Garrison, D H; Caffee, M W; Kyte, F; Nishiizumi, K

    2000-01-14

    A 1.5 cm long, 1.2 g specimen of the Eltanin meteorite was found at 10.97 m depth in Polarstern piston core PS2704-1. The early studies indicated that the small fragments of the Eltanin meteorite was debris from a km-sized asteroid which impacted into the deep-ocean basin. In this study, the authors measured {sup 39}Ar-{sup 40}Ar age, noble gases, and cosmogenic radionuclides in splits of specimen as a part of consortium studies of Eltanin meteorite. They concluded that the specimen was about 3 m deep from the asteroid surface. The exposure age of the Eltanin asteroid was about 20 Myr.

  1. Free Energies of Dilute Bose gases: upper bound

    E-Print Network [OSTI]

    Jun Yin

    2010-12-19

    We derive a upper bound on the free energy of a Bose gas system at density $\\rho$ and temperature $T$. In combination with the lower bound derived previously by Seiringer \\cite{RS1}, our result proves that in the low density limit, i.e., when $a^3\\rho\\ll 1$, where $a$ denotes the scattering length of the pair-interaction potential, the leading term of $\\Delta f$ the free energy difference per volume between interacting and ideal Bose gases is equal to $4\\pi a (2\\rho^2-[\\rho-\\rhoc]^2_+)$. Here, $\\rhoc(T)$ denotes the critical density for Bose-Einstein condensation (for the ideal gas), and $[\\cdot ]_+$ $=$ $\\max\\{\\cdot, 0\\}$ denotes the positive part.

  2. Loschmidt echo in one-dimensional interacting Bose gases

    SciTech Connect (OSTI)

    Lelas, K.; Seva, T.; Buljan, H.

    2011-12-15

    We explore Loschmidt echo in two regimes of one-dimensional interacting Bose gases: the strongly interacting Tonks-Girardeau (TG) regime, and the weakly interacting mean-field regime. We find that the Loschmidt echo of a TG gas decays as a Gaussian when small (random and time independent) perturbations are added to the Hamiltonian. The exponent is proportional to the number of particles and the magnitude of a small perturbation squared. In the mean-field regime the Loschmidt echo shows richer behavior: it decays faster for larger nonlinearity, and the decay becomes more abrupt as the nonlinearity increases; it can be very sensitive to the particular realization of the noise potential, especially for relatively small nonlinearities.

  3. Catalytic process for removing toxic gases from gas streams

    SciTech Connect (OSTI)

    Baglio, J.A.; Gaudet, G.G.; Palilla, F.C.

    1983-02-22

    A multi-stage process for reducing the content of sulfurcontaining gases-notably hydrogen sulfide, sulfur dioxide, carbonyl sulfide and carbon disulfide-in waste gas streams is provided. In the first stage, the gas stream is passed through a reaction zone at a temperature between about 150 and 350/sup 0/C in the presence of a pretreated novel catalyst of the formula xLn/sub 2/O/sub 3/ in which Ln is yttrium or a rare earth element and T is cobalt, iron or nickel, and each of x and y is independently a number from 0 to 3, said catalyst being substantially non-crystalline and having a surface area of from about 10 m/sup 2//g to about 40 m/sup 2//g. The preferred catalyst is one in which Ln is lanthanum, T is cobalt, and x and y range from 1 to 3, including non-integers. The first stage yields a product stream having a reduced content of sulfur-containing gases, including specifically, substantial reduction of carbonyl sulfide and virtual elimination of carbon disulfide. An intermediate stage is a claus reaction, which may take place in one or more reaction zones, at temperatures less than about 130/sup 0/ C, in the presence of known catalysts such as bauxite, alumina or cobalt molybdates. The final stage is the air oxidation of hydrogen sulfide at a temperature between about 150 and 300/sup 0/ C in the presence of a catalyst usable in first stage.

  4. Abstract--Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high

    E-Print Network [OSTI]

    Mason, Andrew

    Abstract--Airborne pollution and explosive gases threaten human health and occupational safety and a thumb-drive sized prototype system. I. INTRODUCTION xposure to air pollution consistently ranks among to occupational safety as energy demands rise. Airborne pollutants and explosive gases vary in both time and space

  5. IUPAC-NIST Solubility Data Series 70. Solubility of Gases in Glassy Polymers

    E-Print Network [OSTI]

    Magee, Joseph W.

    IUPAC-NIST Solubility Data Series 70. Solubility of Gases in Glassy Polymers Volume Editors Russell Synthesis, Moscow, Russia Received December 11, 1998 Solubility of gases in polymers is an important in polymers is a fun- damental concern in such areas as food packaging, beverage storage, and polymer pro

  6. Fluctuations and State Preparation in Quantum Degenerate Gases of Sodium and Lithium

    E-Print Network [OSTI]

    Fluctuations and State Preparation in Quantum Degenerate Gases of Sodium and Lithium by Edward Su and State Preparation in Quantum Degenerate Gases of Sodium and Lithium by Edward Su Submitted- periments with sodium and lithium in optical lattices. We describe progress towards the implementation

  7. Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES

    E-Print Network [OSTI]

    Anlage, Steven

    ABSTRACT Title of Dissertation: HIGH POWER NONLINEAR PROPAGATION OF LASER PULSES IN TENUOUS GASES gas focusing, is observed. For even higher powers, the laser pulse is partially trapped by the plasma laser pulses in tenuous gases is studied. The dynamics of these pulses will be affected by nonlinear

  8. Glass surface deactivants for sulfur-containing gases

    SciTech Connect (OSTI)

    Farwell, S.O.; Gluck, S.J.

    1980-10-01

    In gas chromatographic technique for measuring reduced sulfur-containing gases in biogenic air fluxes, the major problem seemed to be the irreversible adsorption of the polar sulfur compounds on the glass surfaces of the cryogenic sampling traps. This article discusses the comparative degrees of Pyrex glass surface passivation for over 25 chemical deactivants and their related pretreatment procedures. Since H/sub 2/S was discovered to be the sulfur compound with a consistently lower recovery efficiency than COS, CH/sub 3/SH, CH/sub 3/SCH, CS/sub 2/ or CH/sub 3/SSCH/sub 3/, the percent recovery for H/sub 2/S was employed as the indicator of effectiveness for the various deactivation treatments. Tables are presented summarizing the mean H/sub 2/S recoveries for chlorosilane deactivants and for the mean H/sub 2/S recoveries for different pyrex surface pretreatments with an octadecyltrialkoxysilane deactivation. The general conclusion of this investigation is that the relative degree of passivation for glass surfaces by present deactivation techniques is dependent on the types of analyzed compounds and the nature of the glass surface.

  9. Noble gases on metal surfaces: Insights on adsorption site preference

    SciTech Connect (OSTI)

    Chen, De-Li; Al-Saidi, W. A.; Johnson, J. Karl

    2011-12-19

    We use a nonlocal van der Waals density functional (vdW-DF) approach to reexamine the problem of why noble gases are experimentally observed to adsorb on low-coordination atop sites rather than on high-coordination hollow sites for several different metal surfaces. Previous calculations using density functional theory (DFT) within the local density approximation (LDA) ascribed the site preference to reduced Pauli repulsion at atop sites, largely due to reduced exchange repulsion within LDA-DFT. In contrast, our vdW-DF calculations show that site preference is not due to differences in the exchange repulsion at all, but rather the result of a delicate balance between the electrostatic and kinetic energies; surprisingly, exchange-correlation energies play a negligible role in determining site preference. In contrast to previous calculations, we find that experimental results cannot be explained in terms of binding energy differences between atop and hollow sites. Instead, we show that the hollow sites are transition states rather than minima on the two-dimensional potential energy surface, and therefore not likely to be observed in experiments. This phenomenon is quite general, holding for close-packed and non-close-packed metal surfaces. We show that inclusion of nonlocal vdW interactions is crucial for obtaining results in quantitative agreement with experiments for adsorption energies, equilibrium distances, and vibrational energies.

  10. On flame kernel formation and propagation in premixed gases

    SciTech Connect (OSTI)

    Eisazadeh-Far, Kian; Metghalchi, Hameed [Northeastern University, Mechanical and Industrial Engineering Department, Boston, MA 02115 (United States); Parsinejad, Farzan [Chevron Oronite Company LLC, Richmond, CA 94801 (United States); Keck, James C. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-15

    Flame kernel formation and propagation in premixed gases have been studied experimentally and theoretically. The experiments have been carried out at constant pressure and temperature in a constant volume vessel located in a high speed shadowgraph system. The formation and propagation of the hot plasma kernel has been simulated for inert gas mixtures using a thermodynamic model. The effects of various parameters including the discharge energy, radiation losses, initial temperature and initial volume of the plasma have been studied in detail. The experiments have been extended to flame kernel formation and propagation of methane/air mixtures. The effect of energy terms including spark energy, chemical energy and energy losses on flame kernel formation and propagation have been investigated. The inputs for this model are the initial conditions of the mixture and experimental data for flame radii. It is concluded that these are the most important parameters effecting plasma kernel growth. The results of laminar burning speeds have been compared with previously published results and are in good agreement. (author)

  11. Process for removal of sulfur compounds from fuel gases

    DOE Patents [OSTI]

    Moore, Raymond H. (Richland, WA); Stegen, Gary E. (Richland, WA)

    1978-01-01

    Fuel gases such as those produced in the gasification of coal are stripped of sulfur compounds and particulate matter by contact with molten metal salt. The fuel gas and salt are intimately mixed by passage through a venturi or other constriction in which the fuel gas entrains the molten salt as dispersed droplets to a gas-liquid separator. The separated molten salt is divided into a major and a minor flow portion with the minor flow portion passing on to a regenerator in which it is contacted with steam and carbon dioxide as strip gas to remove sulfur compounds. The strip gas is further processed to recover sulfur. The depleted, minor flow portion of salt is passed again into contact with the fuel gas for further sulfur removal from the gas. The sulfur depleted, fuel gas then flows through a solid absorbent for removal of salt droplets. The minor flow portion of the molten salt is then recombined with the major flow portion for feed to the venturi.

  12. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    SciTech Connect (OSTI)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  13. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, J.O.; Remenyik, C.J.

    1994-08-09

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure is disclosed. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel. 5 figs.

  14. Device for accurately measuring mass flow of gases

    DOE Patents [OSTI]

    Hylton, James O. (Clinton, TN); Remenyik, Carl J. (Knoxville, TN)

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  15. Atmospheric Trace Gases from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products are indexed and searchable through a customized interface powered by ORNL's Mercury search engine. Products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Some of the collections may also be included in the CDIAC publication, Trends Online: A Compendium of Global Change Data. Most data sets, many with numerous data files, are free to download from CDIAC's ftp area. The collections under the CDIAC heading of Atmospheric Trace Gases include: Atmospheric Carbon Dioxide, Atmospheric Methane, Atmospheric Carbon Monoxide, Atmospheric Hydrogen, Isotopes in Greenhouse Gases, Radionuclides, Aerosols, and Other Trace Gases.

  16. Surface interactions involved in flashover with high density electronegative gases.

    SciTech Connect (OSTI)

    Hodge, Keith Conquest; Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Wallace, Zachariah Red; Lehr, Jane Marie

    2010-01-01

    This report examines the interactions involved with flashover along a surface in high density electronegative gases. The focus is on fast ionization processes rather than the later time ionic drift or thermalization of the discharge. A kinetic simulation of the gas and surface is used to examine electron multiplication and includes gas collision, excitation and ionization, and attachment processes, gas photoionization and surface photoemission processes, as well as surface attachment. These rates are then used in a 1.5D fluid ionization wave (streamer) model to study streamer propagation with and without the surface in air and in SF6. The 1.5D model therefore includes rates for all these processes. To get a better estimate for the behavior of the radius we have studied radial expansion of the streamer in air and in SF6. The focus of the modeling is on voltage and field level changes (with and without a surface) rather than secondary effects, such as, velocities or changes in discharge path. An experiment has been set up to carry out measurements of threshold voltages, streamer velocities, and other discharge characteristics. This setup includes both electrical and photographic diagnostics (streak and framing cameras). We have observed little change in critical field levels (where avalanche multiplication sets in) in the gas alone versus with the surface. Comparisons between model calculations and experimental measurements are in agreement with this. We have examined streamer sustaining fields (field which maintains ionization wave propagation) in the gas and on the surface. Agreement of the gas levels with available literature is good and agreement between experiment and calculation is good also. Model calculations do not indicate much difference between the gas alone versus the surface levels. Experiments have identified differences in velocity between streamers on the surface and in the gas alone (the surface values being larger).

  17. Nonperturbative Effects on the Ferromagnetic Transition in Repulsive Fermi Gases

    E-Print Network [OSTI]

    Lianyi He; Xu-Guang Huang

    2012-04-26

    It is generally believed that a dilute spin-1/2 Fermi gas with repulsive interactions can undergo a ferromagnetic phase transition to a spin-polarized state at a critical gas parameter $(k_{\\rm F}a)_c$. Previous theoretical predictions of the ferromagnetic phase transition have been based on the perturbation theory, which treats the gas parameter as a small number. On the other hand, Belitz, Kirkpatrick, and Vojta (BKV) have argued that the phase transition in clean itinerant ferromagnets is generically of first order at low temperatures, due to the correlation effects that lead to a nonanalytic term in the free energy. The second-order perturbation theory predicts a first-order phase transition at $(k_{\\rm F}a)_c=1.054$, consistent with the BKV argument. However, since the critical gas parameter is expected to be of order O(1), perturbative predictions may be unreliable. In this paper we study the nonperturbative effects on the ferromagnetic phase transition by summing the particle-particle ladder diagrams to all orders in the gas parameter. We consider a universal repulsive Fermi gas where the effective range effects can be neglected, which can be realized in a two-component Fermi gas of $^6$Li atoms by using a nonadiabatic field switch to the upper branch of a Feshbach resonance with a positive s-wave scattering length. Our theory predicts a second-order phase transition, which indicates that ferromagnetic transition in dilute Fermi gases is possibly a counterexample to the BKV argument. The predicted critical gas parameter $(k_{\\rm F}a)_c=0.858$ is in good agreement with the recent quantum Monte Carlo result $(k_{\\rm F}a)_c=0.86$ for a nearly zero-range potential [S. Pilati, \\emph{et al}., Phys. Rev. Lett. {\\bf 105}, 030405 (2010)]. We also compare the spin susceptibility with the quantum Monte Carlo result and find good agreement.

  18. Methods for separating oxygen from oxygen-containing gases

    DOE Patents [OSTI]

    Mackay, Richard (Lafayette, CO); Schwartz, Michael (Boulder, CO); Sammells, Anthony F. (Boulder, CO)

    2000-01-01

    This invention provides mixed conducting metal oxides particularly useful for the manufacture of catalytic membranes for gas-phase oxygen separation processes. The materials of this invention have the general formula: A.sub.x A'.sub.x A".sub.2-(x+x') B.sub.y B'.sub.y B".sub.2-(y+y') O.sub.5+z ; where x and x' are greater than 0; y and y' are greater than 0; x+x' is less than or equal to 2; y+y' is less than or equal to 2; z is a number that makes the metal oxide charge neutral; A is an element selected from the f block lanthanide elements; A' is an element selected from Be, Mg, Ca, Sr, Ba and Ra; A" is an element selected from the f block lanthanides or Be, Mg, Ca, Sr, Ba and Ra; B is an element selected from the group consisting of Al, Ga, In or mixtures thereof; and B' and B" are different elements and are independently selected from the group of elements Mg or the d-block transition elements. The invention also provides methods for oxygen separation and oxygen enrichment of oxygen deficient gases which employ mixed conducting metal oxides of the above formula. Examples of the materials used for the preparation of the membrane include A.sub.x Sr.sub.x' B.sub.y Fe.sub.y' Co.sub.2-(y+y') O.sub.5+z, where x is about 0.3 to about 0.5, x' is about 1.5 to about 1.7, y is 0.6, y' is between about 1.0 and 1.4 and B is Ga or Al.

  19. Rethinking Downstream Regulation: California's Opportunity to Engage Households in Reducing Greenhouse Gases

    E-Print Network [OSTI]

    2008-01-01

    greenhouse gases. Energy Policy (2008), doi:10.1016/j.rebound effect—a survey. Energy Policy 28 (6-7), 389–401.and climate policy. Energy Policy 32 (4), 481–491. Leiby,

  20. Kinetic modeling of nitric oxide removal from exhaust gases by Selective Non-Catalytic Reduction 

    E-Print Network [OSTI]

    Chenanda, Cariappa Mudappa

    1993-01-01

    Selective Non-Catalytic Reduction is one of the most promising techniques for the removal of oxides of nitrogen from combustion exhaust gases. These techniques are based on the injection of certain compounds, such as cyanuric acid and ammonia...

  1. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOE Patents [OSTI]

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  2. Metal-organic frameworks with high capacity and selectivity for harmful gases

    E-Print Network [OSTI]

    Yaghi, Omar M.

    , MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethyl- ene oxide, and carbon monoxide. Kinetic breakthrough measure- ments are used to determine the calculated dynamic adsorption capacity of each

  3. Quantifying emissions of greenhouse gases from South Asia through a targeted measurement campaign

    E-Print Network [OSTI]

    Ganesan, Anita Lakshmi

    2013-01-01

    Methane (CH 4 ), nitrous oxide (N20) and sulfur hexafluoride (SF6) are powerful greenhouse gases with global budgets that are well-known but regional distributions that are not adequately constrained for the purposes of ...

  4. Quantum coherence and magnetism in bosonic and fermionic gases of ultracold atoms

    E-Print Network [OSTI]

    Jo, Gyu-Boong

    2010-01-01

    In this thesis, two sets of experimental studies in bosonic and fermionic gases are described. In the first part of the thesis, itinerant ferromagnetism was studied in a strongly interacting Fermi gas of ultracold atoms. ...

  5. Biological sweetening of energy gases mimics in biotrickling filters Marc Fortuny a,c

    E-Print Network [OSTI]

    : Hydrogen sulfide; Gas sweetening; Biotrickling filter; Desulfurization; Fuel gas; Biogas 1. Introduction in energy-rich gases such as biogas from anaerobic digesters which may contain H2S concentrations exceeding

  6. Eddy covariance flux measurements of pollutant gases in urban Mexico City

    E-Print Network [OSTI]

    Velasco, Erik

    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric ...

  7. Method of removing and recovering elemental sulfur from highly reducing gas streams containing sulfur gases

    DOE Patents [OSTI]

    Gangwal, Santosh K.; Nikolopoulos, Apostolos A.; Dorchak, Thomas P.; Dorchak, Mary Anne

    2005-11-08

    A method is provided for removal of sulfur gases and recovery of elemental sulfur from sulfur gas containing supply streams, such as syngas or coal gas, by contacting the supply stream with a catalyst, that is either an activated carbon or an oxide based catalyst, and an oxidant, such as sulfur dioxide, in a reaction medium such as molten sulfur, to convert the sulfur gases in the supply stream to elemental sulfur, and recovering the elemental sulfur by separation from the reaction medium.

  8. Iron-based alloys with corrosion resistance to oxygen-sulfur mixed gases

    DOE Patents [OSTI]

    Natesan, K.

    1992-11-17

    An iron-based alloy with improved performance with exposure to oxygen-sulfur mixed gases with the alloy containing about 9--30 wt. % Cr and a small amount of Nb and/or Zr implanted on the surface of the alloy to diffuse a depth into the surface portion, with the alloy exhibiting corrosion resistance to the corrosive gases without bulk addition of Nb and/or Zr and without heat treatment at temperatures of 1000--1100 C. 7 figs.

  9. Emissions of greenhouse gases in the United States, 1985--1990

    SciTech Connect (OSTI)

    Not Available

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  10. Zevenhoven & Kilpinen Greenhouse Gases, Ozone-Depleting Gases 19.6.2001 9-1 Figure 9.1 Increasing world population

    E-Print Network [OSTI]

    Zevenhoven, Ron

    ), methane (CH4) and nitrous oxide (N2O) trap the outgoing solar radiation that is reflected by the earth by blocking "hard" ultraviolet solar radiation. #12;Zevenhoven & Kilpinen Greenhouse Gases, Ozone by using experimental data from e.g. air trapped in polar ice. CO2 concentrations started to rise in ~1800

  11. Waste Heat Recovery from High Temperature Off-Gases from Electric Arc Furnace

    SciTech Connect (OSTI)

    Nimbalkar, Sachin U [ORNL; Thekdi, Arvind [E3M Inc; Keiser, James R [ORNL; Storey, John Morse [ORNL

    2014-01-01

    This article presents a study and review of available waste heat in high temperature Electric Arc Furnace (EAF) off gases and heat recovery techniques/methods from these gases. It gives details of the quality and quantity of the sensible and chemical waste heat in typical EAF off gases, energy savings potential by recovering part of this heat, a comprehensive review of currently used waste heat recovery methods and potential for use of advanced designs to achieve a much higher level of heat recovery including scrap preheating, steam production and electric power generation. Based on our preliminary analysis, currently, for all electric arc furnaces used in the US steel industry, the energy savings potential is equivalent to approximately 31 trillion Btu per year or 32.7 peta Joules per year (approximately $182 million US dollars/year). This article describes the EAF off-gas enthalpy model developed at Oak Ridge National Laboratory (ORNL) to calculate available and recoverable heat energy for a given stream of exhaust gases coming out of one or multiple EAF furnaces. This Excel based model calculates sensible and chemical enthalpy of the EAF off-gases during tap to tap time accounting for variation in quantity and quality of off gases. The model can be used to estimate energy saved through scrap preheating and other possible uses such as steam generation and electric power generation using off gas waste heat. This article includes a review of the historical development of existing waste heat recovery methods, their operations, and advantages/limitations of these methods. This paper also describes a program to develop and test advanced concepts for scrap preheating, steam production and electricity generation through use of waste heat recovery from the chemical and sensible heat contained in the EAF off gases with addition of minimum amount of dilution or cooling air upstream of pollution control equipment such as bag houses.

  12. System and method for converting wellhead gas to liquefied petroleum gases (LPG)

    SciTech Connect (OSTI)

    May, R.L.; Sinclair, B.W.

    1984-07-31

    A method of converting natural wellhead gas to liquefied petroleum gases (LPG) may comprise the steps of: separating natural gas from petroleum fluids exiting a wellhead; compressing the natural gas; refrigerating the natural gas, liquefying at least a portion thereof; separating LPG from gas vapors of the refrigerated natural gas; storing the separated LPG in a storage tank with a vapor space therein; and recirculating a portion of the LPG vapors in the storage tank with the natural gas exiting the wellhead to enhance recovery of LPG. A system for performing the method may comprise: a two-stage gas compressor connected to the wellhead; a refrigeration unit downstream of the gas compressor for refrigerating the compressed gases therefrom; at least one product separator downstream of the refrigerator unit for receiving refrigerated and compressed gases discharged from the refrigerator unit and separating LPG therein from gases remaining in vapor form; and a storage tank for receiving and storing the separated LPG therein, the storage tank having a vapor space therein connected upstream of the gas compressor through a pressure regulator allowing recirculation of some LPG vapors with the natural gases through said system.

  13. Growing consumption of petroleum products worldwide has resulted in the proliferation of vessels carrying oil, chemicals, and gases

    E-Print Network [OSTI]

    Neimark, Alexander V.

    Growing consumption of petroleum products worldwide has resulted in the proliferation of vessels carrying oil, chemicals, and gases into our harbors. Meeting our society's surging demand for commodities

  14. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOE Patents [OSTI]

    Walker, Richard J. (Bethel Park, PA)

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  15. The Spectral Backbone of Excitation Transport in Ultra-Cold Rydberg Gases

    E-Print Network [OSTI]

    Scholak, Torsten; Buchleitner, Andreas

    2014-01-01

    The spectral structure underlying excitonic energy transfer in ultra-cold Rydberg gases is studied numerically, in the framework of random matrix theory, and via self-consistent diagrammatic techniques. Rydberg gases are made up of randomly distributed, highly polarizable atoms that interact via strong dipolar forces. Dynamics in such a system is fundamentally different from cases in which the interactions are of short range, and is ultimately determined by the spectral and eigenvector structure. In the energy levels' spacing statistics, we find evidence for a critical energy that separates delocalized eigenstates from states that are localized at pairs or clusters of atoms separated by less than the typical nearest-neighbor distance. We argue that the dipole blockade effect in Rydberg gases can be leveraged to manipulate this transition across a wide range: As the blockade radius increases, the relative weight of localized states is reduced. At the same time, the spectral statistics -- in particular, the den...

  16. Emission of biogenic sulfur gases from Chinese paddy soil and rice plant

    SciTech Connect (OSTI)

    Zhen Yang [Nanjing Univ. of Science and Technology (China); Li Kong [Nanjing Agricultural Univ. (China)

    1996-12-31

    Biogenic sulfur gases emitted from terrestrial ecosystem may play in important role in global sulfur cycle and have a profound influence on global climate change. But very little is known concerning emissions from paddy soil and rice plant, which are abundant in many parts of the world. As a big agricultural country, this is about 33 million hectare rice planted in China. With laboratory incubation and closed chamber method in the field, the biogenic sulfur gases emitted from Chinese paddy soil and rice plant were detected in both conditions: hydrogen sulfide (H{sub 2}S), carbonyl sulfide (COS), methyl mercaptan (MSH), carbon disulfide (CS{sub 2}), dimethyl sulfide (DMS) and dimethyl disulfide (DMDS). Among which, DMS was predominant part of sulfur emission. Emission of sulfur gases from different paddy field exhibit high spatial and temporal variability. The application of fertilizer and organic manure, total sulfur content in wetland, air temperature were positively correlated to the emission of volatile sulfur gases from paddy soil. Diurnal and seasonal variation of total volatile sulfur gases and DMS indicate that their emissions were greatly influenced by the activity of the rice plant. The annual emission of total volatile sulfur gases, from Nanjing paddy field is ranged from 4.0 to 9.5 mg S m{sup -2}yr{sup -1}, that of DMS is ranged from 3.1 to 6.5 mg S m{sup -2}yr{sup -1}. Rice plant could absorb COS gas, that may be one of the sinks of COS.

  17. Comparison of heavy ion-induced K? x-ray satellite spectra from gases and solids 

    E-Print Network [OSTI]

    Demarest, John Allen

    1977-01-01

    COMPARISON OF HEAVY ION-INDUCED IQX X-RAY SATELLITE SPECTRA FROM GASES AND SOLIDS A Thesis by JOHN ALLEN DEMAREST Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1977 Ma)or Subject: Chemistry COMPARISON OF HEAVY ION-INDUCED Ks X-RAY SATELLITE SPECTRA FROM GASES AND SOLIDS A Thesis by JOHN ALLEN DEMAREST Approved as to style and content by (Chairman of Committee) 7&F~. ~MA (Head...

  18. Energies and damping rates of elementary excitations in spin-1 Bose-Einstein condensed gases

    E-Print Network [OSTI]

    Gergely Szirmai; Peter Szepfalusy; Krisztian Kis-Szabo

    2003-05-15

    Finite temperature Green's function technique is used to calculate the energies and damping rates of elementary excitations of the homogeneous, dilute, spin-1 Bose gases below the Bose-Einstein condensation temperature both in the density and spin channels. For this purpose the self-consistent dynamical Hartree-Fock model is formulated, which takes into account the direct and exchange processes on equal footing by summing up certain classes of Feynman diagrams. The model is shown to fulfil the Goldstone theorem and to exhibit the hybridization of one-particle and collective excitations correctly. The results are applied to the gases of ^{23}Na and ^{87}Rb atoms.

  19. High-temperature sorbent method for removal of sulfur containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1984-06-19

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorption capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  20. High-temperature sorbent method for removal of sulfur-containing gases from gaseous mixtures

    DOE Patents [OSTI]

    Young, J.E.; Jalan, V.M.

    1982-07-07

    A copper oxide-zinc oxide mixture is used as a sorbent for removing hydrogen sulfide and other sulfur containing gases at high temperatures from a gaseous fuel mixture. This high-temperature sorbent is especially useful for preparing fuel gases for high temperature fuel cells. The copper oxide is initially reduced in a preconditioning step to elemental copper and is present in a highly dispersed state throughout the zinc oxide which serves as a support as well as adding to the sulfur sorbtion capacity. The spent sorbent is regenerated by high-temperature treatment with an air fuel, air steam mixture followed by hydrogen reduction to remove and recover the sulfur.

  1. On the global distribution of neutral gases in Titan's upper atmosphere and its effect on the thermal structure

    E-Print Network [OSTI]

    Mueller-Wodarg, Ingo

    distribution of neutral gases by winds and diffusion. Our calculations suggest that solar driven dynamics at equinox near 1400 km reaching up to 50%. The reverse happens on the dayside, where lighter gases and vertical winds, and thereby adiabatic heating and cooling. On the dayside, changes in solar EUV absorption

  2. Method and apparatus for separating gases based on electrically and magnetically enhanced monolithic carbon fiber composite sorbents

    DOE Patents [OSTI]

    Judkins, R.R.; Burchell, T.D.

    1999-07-20

    A method for separating gases or other fluids involves placing a magnetic field on a monolithic carbon fiber composite sorption material to more preferentially attract certain gases or other fluids to the sorption material to which a magnetic field is applied. This technique may be combined with the known pressure swing adsorption'' technique utilizing the same sorption material. 1 fig.

  3. Revised and Updated Thermochemical Properties of the Gases Mercapto ,,HS..., Disulfur Monoxide ,,S2O..., Thiazyl ,,NS...,

    E-Print Network [OSTI]

    Fegley Jr., Bruce

    in the 4th edition of the NIST-JANAF Thermochemical Tables. Updated enthalpies of formation were includedRevised and Updated Thermochemical Properties of the Gases Mercapto ,,HS..., Disulfur Monoxide ,,S2 to compute the thermochemical tables for four ideal gases: mercapto HS , disulfur monox- ide (S2O), thiazyl

  4. BoseEinstein condensation of atomic gases Frederic Chevy and Jean Dalibard

    E-Print Network [OSTI]

    Dalibard, Jean

    Bose­Einstein condensation of atomic gases Fr´ed´eric Chevy and Jean Dalibard Laboratoire Kastler The discovery of the superfluid transition of liquid helium [1, 2] marked the first achievement of Bose­Einstein, gaseous Bose­Einstein condensates (BECs) discovered in 1995 after the development of laser cooling

  5. Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases

    E-Print Network [OSTI]

    Kolstad, Charles

    Kolstad: EKC Dec 2005 Interpreting Estimated Environmental Kuznets Curves for Greenhouse Gases to avoid damage from climate change and regulations limiting greenhouse gas emissions at the country level to the Socioeconomic Drivers of Greenhouse Gas Emissions. As the issue was framed (Leifman and Heil, 2005

  6. ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE GASES FOR THE UK

    E-Print Network [OSTI]

    Bateman, Ian J.

    ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE GASES FOR THE UK by W. Neil Adger Katrina are listed at the back of this publication. #12;ANTHROPOGENIC AND NATURAL SOURCES AND SINKS OF GREENHOUSE The Climate Change Framework Convention will require countries to calculate inventories of greenhouse gas

  7. Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases Bogdan Mihaila,1

    E-Print Network [OSTI]

    Mihaila, Bogdan

    Spin noise spectroscopy to probe quantum states of ultracold fermionic atom gases Bogdan Mihaila,1 2006 We theoretically demonstrate that optical measurements of electron spin noise can interactions predict entirely new sets of resonances in the spin noise spectrum. Once the correct effective

  8. Integrated Model for Production-Distribution Coordination in an Industrial Gases Supply-chain

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    and their demand/consumption profiles Max/Min inventory at production sites and customer locations Max and Respective Production limits Daily Electricity Prices (off-peak and peak) Customers and their demand/consumptionIntegrated Model for Production-Distribution Coordination in an Industrial Gases Supply-chain Pablo

  9. CLIMATICALLY-ACTIVE GASES IN THE EASTERN BOUNDARY UPWELLING AND OXYGEN MINIMUM ZONE (OMZ) SYSTEMS

    E-Print Network [OSTI]

    Garbe, Christoph S.

    . In this contribution we introduce Index Terms-- Air-Sea Interactions, Fluxes, Green House Gases, Satellite Retrieval) contribute very significantly to the gas exchange between the ocean and the atmosphere, notably with respect (Oxygen Minimum Zone) contribute very significantly to the gas exchange between the ocean

  10. Experiments on the reduction of nitric oxide from exhaust gases by selective non-catalytic reactions 

    E-Print Network [OSTI]

    Narney, John Kenneth

    1993-01-01

    The use of ammonia in a selective non-catalytic process for the removal of nitric oxide (NO) from exhaust gases was studied. A quartz lined flow reactor system was constructed in order to examine the behavior of the process with 15% oxygen...

  11. Ozone-depleting substances and the greenhouse gases HFCs, PFCs and

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 18 3.1 IMPORTS AND EXPORTS 18 3.1.1 CFCs 18 3.1.2 Tetrachloromethane 19 3

  12. Heavy noble gases in solar wind delivered by Genesis mission Alex Meshik a,

    E-Print Network [OSTI]

    knowledge of the isotopic composition of the heavy noble gases in solar wind and, by inference, the Sun measured in the Genesis solar wind collectors generally agree with the less precise values obtained from), captured by Genesis Mission collectors (http://genesismis- sion.jpl.nasa.gov/; Burnett et al., 2003

  13. Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases in Soils

    E-Print Network [OSTI]

    Vallino, Joseph J.

    Effects of Biochar and Basalt Additions on Carbon Sequestration and Fluxes of Greenhouse Gases Emissions--Carbon Dioxide Emissions--Sequestration and Storage--Biochar--Basalt--Organic Fertilizers, this investigation focuses on the range of potential of different soil additives to enhance sequestration and storage

  14. AMIII -Termodin^amica dos Gases Ideais 17 de Janeiro de 2002

    E-Print Network [OSTI]

    Ferreira dos Santos, Pedro

    AMIII - Termodin^amica dos Gases Ideais 17 de Janeiro de 2002 N moles de um g´as ideal em equil ideais). A Primeira Lei da Termodin^amica afirma que existe uma fun¸c~ao E : M R, dita a energia interna pela Segunda Lei da Termodin^amica. 2 #12;

  15. AMIII -Termodin^amica dos Gases Ideais 10 de Julho de 2002

    E-Print Network [OSTI]

    Granja, Gustavo

    AMIII - Termodin^amica dos Gases Ideais 10 de Julho de 2002 N moles de um g´as ideal em equil ideais). A Primeira Lei da Termodin^amica afirma que existe uma fun¸c~ao E : M R, dita a energia interna pela Segunda Lei da Termodin^amica. 2 #12;

  16. Analise Matematica III -Turma Especial Ficha Extra 2 -Termodin^amica dos Gases Ideais

    E-Print Network [OSTI]

    Natário, José

    An´alise Matem´atica III - Turma Especial Ficha Extra 2 - Termodin^amica dos Gases Ideais N Termodin^amica afirma que existe uma fun¸c~ao E : M R, dita a energia interna do g´as, cuja derivada garantida em sistemas termodin^amicos gerais pela Segunda Lei da Termodin^amica. 2 #12;

  17. Isotopic studies of rare gases in terrestrial samples and natural nucleosynthesis

    SciTech Connect (OSTI)

    Not Available

    1990-07-01

    This project is concerned with research in rare gas mass spectrometry. We read the natural record that isotopes of the rare gases provide. We study fluids using a system (RARGA) that is sometimes deployed in the field. In 1990 there was a strong effort to reduce the backlog of RARGA samples on hand, so that it was a year of intensive data gathering. Samples from five different areas in the western United States and samples from Guatemala and Australia were analyzed. In a collaborative study we also began analyzing noble gases from rocks associated with the fluids. An important objective, continuing in 1991, is to understand better the reasons for somewhat elevated {sup 3}He/{sup 4}He ratios in regions where there is no contemporary volcanism which could produce the effect by addition of mantle helium. Our helium data have given us and our collaborators some insights, which are to be followed up, into gold mineralization in geothermal regions. Our DOE work in calibrating a sensitive laser microprobe mass spectrometer for noble gases in fluid inclusions continues. Having completed a series of papers on noble gases in diamonds, we next will attempt to make precise isotopic measurements on xenon from mantle sources, in search of evidence for terrestrially elusive {sup 244}Pu decay.

  18. Steam Production from Waste Stack Gases in a Carbon Black Plant 

    E-Print Network [OSTI]

    Istre, R. I.

    1981-01-01

    Waste stack gases from carbon black plant bag filters are used as fuel to produce superheated steam - G25 PSIG and 7500F. This steam is out into a steam header that serves Conoco plants in the Lake Charles, Louisiana area. Combustion of the waste...

  19. Theoretical Gas Phase Mass Transfer Coefficients for Endogenous Gases in the Lungs

    E-Print Network [OSTI]

    George, Steven C.

    Theoretical Gas Phase Mass Transfer Coefficients for Endogenous Gases in the Lungs PETER CONDORELLI, is produced within the tissue of the airways of the lungs.16 As an intercellular messenger, NO is involved is available regarding the basic gas exchange dynamics of NO in the lungs. Ingested ethanol EtOH is transported

  20. Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network infrastructures are

    E-Print Network [OSTI]

    Politčcnica de Catalunya, Universitat

    Abstract--Energy consumption and the concomitant Green House Gases (GHG) emissions of network on the overall power consumption and on the GHG emissions with just 25% of green energy sources. I. INTRODUCTION]. In the zero carbon approach, renewable (green) energy sources (e.g. sun, wind, tide) are employed and no GHGs

  1. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The origins and concentrations of water, carbon, nitrogen and noble gases on Earth Bernard Marty (PSN) are still present in the mantle, presumably signing the sequestration of PSN gas at an early), and up to ~500 ppm C, both largely sequestrated in the solid Earth. This volatile content is equivalent

  2. Influence of Induced Interactions on the Superfluid Transition in Dilute Fermi Gases

    E-Print Network [OSTI]

    H. Heiselberg; C. J. Pethick; H. Smith; L. Viverit

    2000-04-20

    We calculate the effects of induced interactions on the transition temperature to the BCS state in dilute Fermi gases. For a pure Fermi system with 2 species having equal densities, the transition temperature is suppressed by a factor $(4e)^{1/3}\\approx 2.2$, and for $\

  3. Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases

    E-Print Network [OSTI]

    Arblaster, Julie

    Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases J 2010; accepted 19 October 2010; published 19 January 2011. [1] Future anthropogenic climate change simulations. Citation: Arblaster, J. M., G. A. Meehl, and D. J. Karoly (2011), Future climate change

  4. LETTER doi:10.1038/nature10176 Increased soil emissions of potent greenhouse gases

    E-Print Network [OSTI]

    Osenberg, Craig W.

    , such as microbial activity and water content1,2 . In turn, these changes might be expected to alter the production and consumption of the important greenhouse gases nitrous oxide (N2O) and methane (CH4) (refs 2, 3). However, these emissions are expected to negate at least 16.6 per cent of the climate change miti- gation potential

  5. Electronic structure of the Si(111):GaSe van der Waals-like surface termination

    E-Print Network [OSTI]

    Olmstead, Marjorie

    Electronic structure of the Si(111):GaSe van der Waals-like surface termination Reiner Rudolph-like surface termination has been determined by angle-resolved photoelectron spectroscopy using photons. This explains both the absence of a surface core-level shift in Si 2p photoelectron spectra of the terminated

  6. Documentation for Emissions of Greenhouse Gases in the United States 2008

    Reports and Publications (EIA)

    2011-01-01

    The Energy Policy Act of 1992 required the U.S. Energy Information Administration (EIA) to prepare an inventory of aggregate U.S. national emissions of greenhouse gases for the period 1987-1990, with annual updates thereafter. This report documents the methodology for the seventeenth annual inventory, covering national emissions over the period 1990-2008.

  7. Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials

    E-Print Network [OSTI]

    Stillinger, Frank

    Classical disordered ground states: Super-ideal gases and stealth and equi-luminous materials of wave vectors; and iii "equi-luminous" materials, which scatter radiation equally intensely of many-particle systems--the zero-temperature particle ar- rangement that minimizes potential energy per

  8. Predictive Modeling of Mercury Speciation in Combustion Flue Gases Using GMDH-Based Abductive Networks

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    and boiler operating conditions. Prediction performance compares favourably with neural network models for future work to further improve performance. Index Terms: Mercury speciation, Flue gases, Boiler emissions activities are coal-fired electric utility boilers, where speciation depends on the operating conditions

  9. Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells

    E-Print Network [OSTI]

    Stockie, John

    Heat and Mass Transfer Modeling of Dry Gases in the Cathode of PEM Fuel Cells M.J. Kermani1 J and N2, through the cathode of a proton exchange membrane (PEM) fuel cell is studied numerically) an energy equation, written in a form that has enthalpy as the dependent variable. Keywords: PEM fuel cells

  10. The sulfur content of volcanic gases on Mars Fabrice Gaillard, a

    E-Print Network [OSTI]

    Boyer, Edmond

    The sulfur content of volcanic gases on Mars Fabrice Gaillard, a and Bruno Scaillet1, a a CNRS sulfur contents of the martian regolith and lack of detection of extensive carbonate deposits suggest that the latest geological events that shaped the landscapes of Mars were dominated by acidic waters possibly

  11. Plasmon mass and Drude weight in strongly spin-orbit-coupled two-dimensional electron gases 

    E-Print Network [OSTI]

    Agarwal, Amit; Chesi, Stefano; Jungwirth, T.; Sinova, Jairo; Vignale, G.; Polini, Marco.

    2011-01-01

    -coupled 2D electron and hole gases, which are promising candidates for semiconductor spintronics,1 (ii) graphene2 (a monolayer of carbon atoms arranged in a 2D honeycomb lattice), which has attracted a great deal of interest because of the massless...

  12. Survey and assessment of the effects of nonconventional gases on gas distribution equipment

    SciTech Connect (OSTI)

    Jasionowski, W.J.; Scott, M.I.; Gracey, W.C.

    1982-10-01

    A literature search and a survey of the gas industry were conducted to assess potential problems in the distribution of nonconventional gases. Available literature did not uncover data that would describe potential problems or substantiate the presence of harmful trace elements in final gas compositions produced from various SNG processes. Information from the survey indicates that some companies have encountered problems with nonconventional gases and extraneous additives such as landfill gas, refinery off-gases, oil gas, carbureted water gas, coke-oven gas, propane-air, and compressor lubricant oils. These nonconventional gases and compressor oils may 1) cause pipeline corrosion, 2) degrade some elastomeric materials and greases and affect the integrity of seals, gaskets, O-rings, and meter and regulator diaphragms, and 3) cause operational and safety problems. The survey indicated that 62% of the responding companies plan to use supplemental gas, with most planning on more than one type. Distribution companies intend to significantly increase their use of polyethylene piping from 11.6% in 1980 to 22.4% in 2000 for gas mains and from 33.4% to 50.3% in 2000 for gas service lines.

  13. Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying the

    E-Print Network [OSTI]

    Jackson, Robert B.

    Noble gases identify the mechanisms of fugitive gas contamination in drinking-water wells overlying 12, 2014 (received for review November 27, 2013) Horizontal drilling and hydraulic fracturing have and economic sustainability of shale-gas extraction. We analyzed 113 and 20 samples from drinking-water wells

  14. H-Theorems in some kinetic models of chemically reacting dense gases

    E-Print Network [OSTI]

    Polewczak, Jacek

    gases: ­ search for the RET (Revised Enskog Theory) analog's of the reacting hard-sphere system ­ H as perturbations to the non-reactive terms. This was confirmed in a series of papers by B.Shizgal and M.Karplus (J by an equilibrium computations, where solvent effects enter through the free energy at the transition state. (for

  15. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases

    E-Print Network [OSTI]

    Seager, S; Hu, R

    2013-01-01

    Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

  16. Comment on "Radiative forcings for 28 potential Archean greenhouse gases" by Byrne and Goldblatt (2014)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kochanov, R. V.; Gordon, I. E.; Rothman, L. S.; Sharpe, S. W.; Johnson, T. J.; Sams, R. L.

    2015-08-25

    In the recent article by Byrne and Goldblatt, "Radiative forcing for 28 potential Archean greenhouse gases", Clim. Past. 10, 1779–1801 (2014), the authors employ the HITRAN2012 spectroscopic database to evaluate the radiative forcing of 28 Archean gases. As part of the evaluation of the status of the spectroscopy of these gases in the selected spectral region (50–1800 cm-1), the cross sections generated from the HITRAN line-by-line parameters were compared with those of the PNNL database of experimental cross sections recorded at moderate resolution. The authors claimed that for NO2, HNO3, H2CO, H2O2, HCOOH, C2H4, CH3OH and CH3Br there exist largemore »or sometimes severe disagreements between the databases. In this work we show that for only three of these eight gases a modest discrepancy does exist between the two databases and we explain the origin of the differences. For the other five gases, the disagreements are not nearly at the scale suggested by the authors, while we explain some of the differences that do exist. In summary, the agreement between the HITRAN and PNNL databases is very good, although not perfect. Typically differences do not exceed 10 %, provided that HITRAN data exist for the bands/wavelengths of interest. It appears that a molecule-dependent combination of errors has affected the conclusions of the authors. In at least one case it appears that they did not take the correct file from PNNL (N2O4 (dimer)+ NO2 was used in place of the monomer). Finally, cross sections of HO2 from HITRAN (which do not have a PNNL counterpart) were not calculated correctly in BG, while in the case of HF misleading discussion was presented there based on the confusion by foreign or noise features in the experimental PNNL spectra.« less

  17. Molybdenum-based additives to mixed-metal oxides for use in hot gas cleanup sorbents for the catalytic decomposition of ammonia in coal gases

    DOE Patents [OSTI]

    Ayala, Raul E. (Clifton Park, NY)

    1993-01-01

    This invention relates to additives to mixed-metal oxides that act simultaneously as sorbents and catalysts in cleanup systems for hot coal gases. Such additives of this type, generally, act as a sorbent to remove sulfur from the coal gases while substantially simultaneously, catalytically decomposing appreciable amounts of ammonia from the coal gases.

  18. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01

    gases measured over Alberta oil sands mining operationsand Lee, P. : Does the Alberta tar sands industry pollute?gases measured over Alberta oil sands mining operations: 76

  19. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, Darren J. (Morgantown, WV); Bonk, Donald L. (Louisville, OH); Dowdy, Thomas E. (Orlando, FL)

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  20. Methane activation using noble gases in a dielectric barrier discharge reactor

    SciTech Connect (OSTI)

    Jo, Sungkwon; Hoon Lee, Dae; Seok Kang, Woo; Song, Young-Hoon

    2013-08-15

    The conversion of methane is measured in a planar-type dielectric barrier discharge reactor using three different noble gases—He, Ne, and Ar—as additives. The empirical results obtained clearly indicate that methane activation is considerably affected by thy type of noble gas used. Through 0-D calculations, the discharge parameters inside the reactor, i.e., electron temperature and electron density, are estimated using experiment results. A comparison of the discharge characteristics and experimental results shows that the electron temperature is an important factor in achieving high methane activation and the mixture with Ar gas shows the highest methane conversion. These results are constructed using the mechanisms of energy and charge transfer from excited and ionized noble gas atoms to methane molecules, considering the number density of active atoms of noble gases. Finally, electron temperatures obtained for gas mixtures having different reactant compositions and concentrations are analyzed to estimate methane activation.

  1. A comprehensive study of different gases in inductively coupled plasma torch operating at one atmosphere

    SciTech Connect (OSTI)

    Punjabi, Sangeeta B.; Joshi, N. K.; Mangalvedekar, H. A.; Lande, B. K.; Das, A. K.; Kothari, D. C.

    2012-01-15

    A numerical study is done to understand the possible operating regimes of RF-ICP torch (3 MHz, 50 kW) using different gases for plasma formation at atmospheric pressure. A two dimensional numerical simulation of RF-ICP torch using argon, nitrogen, oxygen, and air as plasma gas has been investigated using computational fluid dynamic (CFD) software fluent{sup (c)}. The operating parameters varied here are central gas flow, sheath gas flow, RF-power dissipated in plasma, and plasma gas. The temperature contours, flow field, axial, and radial velocity profiles were investigated under different operating conditions. The plasma resistance, inductance of the torch, and the heat distribution for various plasma gases have also been investigated. The plasma impedance of ICP torch varies with different operating parameters and plays an important role for RF oscillator design and power coupling. These studies will be useful to decide the design criteria for ICP torches required for different material processing applications.

  2. Travelling waves in a mixture of gases with bimolecular reversible reactions

    E-Print Network [OSTI]

    A. Rossani; A. M. Scarfone

    2003-12-01

    Starting from the kinetic approach for a mixture of reacting gases whose particles interact through elastic scattering and a bimolecular reversible chemical reaction, the equations that govern the dynamics of the system are obtained by means of the relevant Boltzmann-like equation. Conservation laws are considered. Fluid dynamic approximations are used at the Euler level to obtain a close set of PDEs for six unknown macroscopic fields. The dispersion relation of the mixture of reacting gases is explicitly derived in the homogeneous equilibrium state. A set of ODE that governs the propagation of a plane travelling wave is obtained using the Galilei invariance. After numerical integration some solutions, including the well-known Maxwellian and the hard spheres cases, are found for various meaningful interaction laws. The main macroscopic observables for the gas mixture such as the drift velocity, temperature, total density, pressure and its chemical composition are shown.

  3. Free cooling and high-energy tails of granular gases with variable restitution coefficient

    E-Print Network [OSTI]

    Ricardo J. Alonso; Bertrand Lods

    2010-05-31

    We prove the so-called generalized Haff's law yielding the optimal algebraic cooling rate of the temperature of a granular gas described by the homogeneous Boltzmann equation for inelastic interactions with non constant restitution coefficient. Our analysis is carried through a careful study of the infinite system of moments of the solution to the Boltzmann equation for granular gases and precise Lp estimates in the selfsimilar variables. In the process, we generalize several results on the Boltzmann collision operator obtained recently for homogeneous granular gases with constant restitution coefficient to a broader class of physical restitution coefficients that depend on the collision impact velocity. This generalization leads to the so-called L1-exponential tails theorem. for this model.

  4. Non-equilibrium electron transport in gases: Influence of magnetic fields on temporal and spatial relaxation

    SciTech Connect (OSTI)

    White, R. D.; Dujko, S.; Ness, K. F. [School of Mathematics, Physics and IT, James Cook University, Townsville, QLD (Australia); Li, B. [School of Physics, University of Sydney, NSW 2006 (Australia); Robson, R. E. [Research School of Physical Sciences, Australian National University, ACT 2600 (Australia); School of Mathematics, Physics and IT, James Cook University, Townsville, QLD (Australia)

    2006-12-01

    The ability to control the temporal and spatial relaxation of electron swarms in gases through application of an orthogonal magnetic field is examined via solutions of Boltzmann's equation. Multi-term solutions of Boltzmann's equation are presented for two specific applications: temporal relaxation in the time-dependent hydrodynamic regime, and spatial relaxation in the steady state non-hydrodynamic regime. We highlight the commonality of methods and techniques for handling the velocity dependence of the phase-space distribution function as well as their point of departure for treating the spatial dependence. We present results for model and real gases highlighting the explicit influence of the magnetic field on spatial and temporal relaxation characteristics, including the existence of transiently negative diffusion coefficients.

  5. Membranes, methods of making membranes, and methods of separating gases using membranes

    DOE Patents [OSTI]

    Ho, W. S. Winston

    2012-10-02

    Membranes, methods of making membranes, and methods of separating gases using membranes are provided. The membranes can include at least one hydrophilic polymer, at least one cross-linking agent, at least one base, and at least one amino compound. The methods of separating gases using membranes can include contacting a gas stream containing at least one of CO.sub.2, H.sub.2S, and HCl with one side of a nonporous and at least one of CO.sub.2, H.sub.2S, and HCl selectively permeable membrane such that at least one of CO.sub.2, H.sub.2S, and HCl is selectively transported through the membrane.

  6. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOE Patents [OSTI]

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  7. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); MacKenzie, Patricia D. (Berkeley, CA)

    1985-01-01

    Contaminating basic gases, i.e., ammonia, and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with steam, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  8. Process for removal of ammonia and acid gases from contaminated waters

    DOE Patents [OSTI]

    King, C.J.; Mackenzie, P.D.

    1982-09-03

    Contaminating basic gases, i.e., ammonia and acid gases, e.g., carbon dioxide, are removed from process waters or waste waters in a combined extraction and stripping process. Ammonia in the form of ammonium ion is extracted by an immiscible organic phase comprising a liquid cation exchange component, especially an organic phosphoric acid derivative, and preferably di-2-ethyl hexyl phosphoric acid, dissolved in an alkyl hydrocarbon, aryl hydrocarbon, higher alcohol, oxygenated hydrocarbon, halogenated hydrocarbon, and mixtures thereof. Concurrently, the acidic gaseous contaminants are stripped from the process or waste waters by stripping with stream, air, nitrogen, or the like. The liquid cation exchange component has the ammonia stripped therefrom by heating, and the component may be recycled to extract additional amounts of ammonia.

  9. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, J.L.

    1998-09-15

    A method and apparatus are disclosed for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration. 5 figs.

  10. Biological production of acetic acid from waste gases with Clostridium ljungdahlii

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    1998-01-01

    A method and apparatus for converting waste gases from industrial processes such as oil refining, carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various organic acids or alcohols by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified. In an exemplary recovery process, the bioreactor raffinate is passed through an extraction chamber into which one or more non-inhibitory solvents are simultaneously introduced to extract the product. Then, the product is separated from the solvent by distillation. Gas conversion rates can be maximized by use of centrifuges, hollow fiber membranes, or other means of ultrafiltration to return entrained anaerobic bacteria from the bioreactor raffinate to the bioreactor itself, thus insuring the highest possible cell concentration.

  11. Temperature jump in degenerate quantum gases in the presence of a Bose - Einstein condensate

    E-Print Network [OSTI]

    A. V. Latyshev; A. A. Yushkanov

    2010-01-04

    We construct a kinetic equation modeling the behavior of degenerate quantum Bose gases whose collision rate depends on the momentum of elementary excitations. We consider the case where the phonon component is the decisive factor in the elementary excitations. We analytically solve the half-space boundary value problem of the temperature jump at the boundary of the degenerate Bose gas in the presence of a Bose -- Einstein condensate.

  12. MRI of the lung gas-space at very low-field using hyperpolarized noble gases

    E-Print Network [OSTI]

    MRI of the lung gas-space at very low-field using hyperpolarized noble gases Arvind K. Venkatesha such as in the lungs. In HP gas MRI the signal-to-noise ratio (SNR) depends only weakly on the static magnetic field (B of the lungs in humans and in rats, obtained at a field of only 15 millitesla (150 Gauss). © 2003 Elsevier Inc

  13. Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases

    SciTech Connect (OSTI)

    Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

    2001-11-06

    The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

  14. One-dimensional ultracold atomic gases: impact of the effective range on integrability

    E-Print Network [OSTI]

    Tom Kristensen; Ludovic Pricoupenko

    2015-06-12

    The one-dimensional one-component Bose and Fermi gases are considered in a regime of large effective range. We focus our study on the three-body problem, which is at the heart of the integra-bility issue. For fermions, the vicinity of the integrability is characterized by large deviations with respect to the predictions of the Bethe ansatz. For the consistency of the contact model, it appears essential to take into account the contact of three particles.

  15. Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits27,Network Newsletter Green PowerGreenhouse Gases,

  16. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    SciTech Connect (OSTI)

    Chen, De-Li; Al-Saidi, W. A.; Johnson, J. Karl

    2012-10-24

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  17. Emissions of greenhouse gases in the United States, 1987--1994

    SciTech Connect (OSTI)

    1995-09-25

    The Energy Information Administration (EIA) is required by the Energy Policy Act of 1992 to prepare a report on aggregate US national emissions of greenhouse gases for the period 1987--1992, with annual updates thereafter. This is the third annual update report,covering national emissions over the period 1987--1993, with preliminary estimates of US carbon dioxide and halocarbon emissions for 1994. Calculating national aggregate emissions(or ``national inventories``) of greenhouse gases is a recently developed form of intellectual endeavor. Greenhouse gas emissions are rarely measured directly or reported to statistical agencies. Thus, to prepare emissions inventories usually requires inferring emissions indirectly from information collected for other purposes. Both the available information and the inferences drawn may be of varying reliability. Chapter 1 of this report briefly recapitulates some background information about global climate change and the greenhouse effect and discusses important recent developments in global climate change activities. Chapters 2 through 6 cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons, and criteria pollutants, respectively. Chapter 7 describes potential sequestration and emissions of greenhouse gases as a result of land use changes.

  18. Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases

    E-Print Network [OSTI]

    Bogdan Mihaila; Scott A. Crooker; Krastan B. Blagoev; Dwight G. Rickel; Peter B. Littlewood; Darryl L. Smith

    2006-01-01

    Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-integer spin) atoms offer exciting opportunities to directly test theoretical models of related many-body fermion systems that are inaccessible to experimental manipulation, such as neutron stars and quark-gluon plasmas. However, the microscopic interactions between fermions are potentially quite complex, and experiments in ultracold gases to date cannot clearly distinguish between the qualitatively different microscopic models that have been proposed. Here, we theoretically demonstrate that optical measurements of electron spin noise -- the intrinsic, random fluctuations of spin -- can probe the entangled quantum states of ultracold fermionic atomic gases and unambiguously reveal the detailed nature of the interatomic interactions. We show that different models predict different sets of resonances in the noise spectrum, and once the correct effective interatomic interaction model is identified, the line-shapes of the spin noise can be used to constrain this model. Further, experimental measurements of spin noise in classical (Boltzmann) alkali vapors are used to estimate the expected signal magnitudes for spin noise measurements in ultracold atom systems and to show that these measurements are feasible.

  19. The Spectral Backbone of Excitation Transport in Ultra-Cold Rydberg Gases

    E-Print Network [OSTI]

    Torsten Scholak; Thomas Wellens; Andreas Buchleitner

    2014-11-26

    The spectral structure underlying excitonic energy transfer in ultra-cold Rydberg gases is studied numerically, in the framework of random matrix theory, and via self-consistent diagrammatic techniques. Rydberg gases are made up of randomly distributed, highly polarizable atoms that interact via strong dipolar forces. Dynamics in such a system is fundamentally different from cases in which the interactions are of short range, and is ultimately determined by the spectral and eigenvector structure. In the energy levels' spacing statistics, we find evidence for a critical energy that separates delocalized eigenstates from states that are localized at pairs or clusters of atoms separated by less than the typical nearest-neighbor distance. We argue that the dipole blockade effect in Rydberg gases can be leveraged to manipulate this transition across a wide range: As the blockade radius increases, the relative weight of localized states is reduced. At the same time, the spectral statistics -- in particular, the density of states and the nearest neighbor level spacing statistics -- exhibits a transition from approximately a 1-stable L\\'evy to a Gaussian orthogonal ensemble. Deviations from random matrix statistics are shown to stem from correlations between interatomic interaction strengths that lead to an asymmetry of the spectral density and profoundly affect localization properties. We discuss approximations to the self-consistent Matsubara-Toyozawa locator expansion that incorporate these effects.

  20. High-Pressure Phase Equilibria of Ionic Liquids and Compressed Gases for Applications in Reactions and Absorption Refrigeration

    E-Print Network [OSTI]

    Ren, Wei

    2009-12-29

    properties, especially their lack of volatility. However, using ionic liquids over common organic solvents has several challenges, i.e., higher viscosity (lower diffusivity) than common organic solvents; lower solubility of reaction gases and large number...

  1. An analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons

    E-Print Network [OSTI]

    Stohl, A.

    A new analytical inversion method has been developed to determine the regional and global emissions of long-lived atmospheric trace gases. It exploits in situ measurement data from three global networks and builds on ...

  2. Accuracy of truncated Leiden and Berlin virial expansions for pure gases and sealing joints between silicon carbide and stainless steel 

    E-Print Network [OSTI]

    Santana Rodriguez, Gabriel Enrique

    2003-01-01

    Pure gases such as methane, carbon dioxide and steam were used to make comparisons between Leiden and Berlin virial expansions for the calculation of the compressibility factor, fugacity coefficient and enthalpy residual. ...

  3. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    SciTech Connect (OSTI)

    Moskovitz, Yevgeny [Middle Tennessee State Univ., Murfreesboro, TN (United States). Dept. of Chemistry; Univ. of Capetown (South Africa). Dept. of Chemistry, Scientific Computing Research Unit; Yang, Hui [Middle Tennessee State Univ., Murfreesboro, TN (United States). Dept. of Chemistry

    2015-01-01

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distribution functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.

  4. The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

    SciTech Connect (OSTI)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.; Tol, Richard

    2014-01-01

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papers have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.

  5. Unconventional states and geometric effects in mesoscopic systems of ultra-cold atomic Fermi gases

    SciTech Connect (OSTI)

    Bolech, C. J.

    2014-10-15

    During the last decade, experiments all over the world started to test the superconducting state of matter using a newly developed mesoscopic tunable system: trapped ultra-cold atomic gases. Theorists and experimentalists hand-in-hand are now able to advance our understanding of the superconducting state by asking new questions that probe further into the physical mechanisms underlying the phenomenon and the door is open to the exploration of exotic unconventional superconducting states. In particular, a series of experiments on systems of trapped cold atomic gases were aimed at studying the effects of polarization on superconducting pairing. Two different experimental groups encountered surprising qualitative and quantitative discrepancies which seemed to be a function of the confining geometry and the cooling protocol. Our numerical studies demonstrate a tendency towards metastability and suggest an explanation for the observed discrepancy. From our calculations, the most likely solution which is consistent with the experiments supports a state strikingly similar to the so called FFLO state (after Ferrell, Fulde, Larkin and Ovchinnikov), which had been theorized long ago but eluded detection so far. Moreover, the three-dimensional scenario described above is reminiscent of predictions for one-dimensional systems of dilute polarized attractive gases and another set of ultra-cold-atom experiments incorporates optical lattices to study this reduced-dimensionality setting. The measurements are in quantitative agreement with theoretical calculations (using a wide array of numerical and analytic techniques) in which a partially polarized phase is found to be the one-dimensional analogue of the FFLO state. Moreover, exploring the dimensional-crossover regime, our latest findings indicate that the mesoscopic nature of these quasi-one-dimensional systems favors the appearance of a new type of Mott phase transition involving an emergent pair-superfluid of equal-spin fermions.

  6. Modelling of noble anaesthetic gases and high hydrostatic pressure effects in lipid bilayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moskovitz, Yevgeny; Yang, Hui

    2015-01-08

    Our objective was to study molecular processes that might be responsible for inert gas narcosis and high-pressure nervous syndrome. The classical molecular dynamics trajectories (200 ns-long) of dioleoylphosphatidylcholine (DOPC) bilayers simulated by the Berger force field were evaluated for water and the atomic distribution of noble gases around DOPC molecules at a pressure range of 1 - 1000 bar and temperature of 310 Kelvin. Xenon and argon have been tested as model gases for general anesthetics, and neon has been investigated for distortions that are potentially responsible for neurological tremor at hyperbaric conditions. The analysis of stacked radial pair distributionmore »functions of DOPC headgroup atoms revealed the explicit solvation potential of gas molecules, which correlates with their dimensions. The orientational dynamics of water molecules at the biomolecular interface should be considered as an influential factor; while excessive solvation effects appearing in the lumen of membrane-embedded ion channels could be a possible cause of inert gas narcosis. All the noble gases tested exhibit similar patterns of the order parameter for both DOPC acyl chains, which is opposite to the patterns found for the order parameter curve at high hydrostatic pressures in intact bilayers. This finding supports the ‘critical volume’ hypothesis of anesthesia pressure reversal. The irregular lipid headgroup-water boundary observed in DOPC bilayers saturated with neon in the pressure range of 1 - 100 bar could be associated with the possible manifestation of neurological tremor at the atomic scale. The non-immobilizer neon also demonstrated the highest momentum impact on the normal component of the DOPC diffusion coefficient representing monolayers undulations rate, which indicates enhanced diffusivity, rather than atom size, as the key factor.« less

  7. Raman Scattering Sensor for On-Line Monitoring of Amines and Acid Gases

    SciTech Connect (OSTI)

    Uibel, Rory; Smith, Lee

    2010-05-20

    Sulfur and CO2 removal from hydrocarbon streams and power plant effluents are a major problem. The sulfur is normally in the form of H2S. These two acid gases are scrubbed using aqueous amine solutions that are difficult to control with conventional technology. Process Instruments Inc. developed Raman scattering technology for on-line, real-time monitoring of amine streams to improve their efficiency in scrubbing H2S and CO2 from hydrocarbon streams and power plant effluents. Improved control of amine and acid gas concentrations will allow refineries, natural gas processes and power plants to more efficiently scrub Sulfur and CO2, saving energy, time and financial resources.

  8. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    SciTech Connect (OSTI)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  9. Molecular dynamics of gases and vapors in nanoporous solids. Final LDRD project report

    SciTech Connect (OSTI)

    Pohl, P.I.

    1996-08-01

    This report provides a study of gases in microporous solids using molecular modeling. The theory of gas transport in porous materials as well as the molecular modeling literature is briefly reviewed. Work complete is described and analyzed with retard to the prevailing theory. The work covers two simple subjects, construction of porous solid models and diffusion of He, H{sub 2}, Ar and CH{sub 4} down a pressure gradient across the material models as in typical membrane permeation experiments. The broader objective is to enhance our capability to efficiently and accurately develop, produce and apply microporous materials.

  10. Sampling and analysis of hydrocarbons in combustion gases. Annual report, October 1979-September 1980

    SciTech Connect (OSTI)

    Johnson, I.; Myles, K.M.; Siczek, A.A.

    1981-04-01

    The purpose of these studies is to develop a method for the chemical analysis of ultratrace levels of polycyclic organic compounds in the flue gases from fluidized-bed combustors. Methods which have the potential for real time analysis have been studied. Two methods, double mass spectrometry and laser ionization mass spectrometry, appear to be promising. A brief review of current analytical methods has been made. A brief examination of fly ash from fluidized-bed combustion revealed no carcinogenic species although samples collected during fluidized-bed combustor startup were found to be mutagenic.

  11. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  12. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  13. Enhancement of NMR and MRI in the presence of hyperpolarized noble gases

    DOE Patents [OSTI]

    Pines, Alexander; Budinger, Thomas; Navon, Gil; Song, Yi-Qiao; Appelt, Stephan; Bifone, Angelo; Taylor, Rebecca; Goodson, Boyd; Seydoux, Roberto; Room, Toomas; Pietrass, Tanja

    2004-11-16

    The present invention relates generally to nuclear magnetic resonance (NMR) techniques for both spectroscopy and imaging. More particularly, the present invention relates to methods in which hyperpolarized noble gases (e.g., Xe and He) are used to enhance and improve NMR and MRI. Additionally, the hyperpolarized gas solutions of the invention are useful both in vitro and in vivo to study the dynamics or structure of a system. When used with biological systems, either in vivo or in vitro, it is within the scope of the invention to target the hyperpolarized gas and deliver it to specific regions within the system.

  14. Overview of the Flammability of Gases Generated in Hanford Waste Tanks

    SciTech Connect (OSTI)

    LA Mahoney; JL Huckaby; SA Bryan; GD Johnson

    2000-07-21

    This report presents an overview of what is known about the flammability of the gases generated and retained in Hanford waste tanks in terms of the gas composition, the flammability and detonability limits of the gas constituents, and the availability of ignition sources. The intrinsic flammability (or nonflammability) of waste gas mixtures is one major determinant of whether a flammable region develops in the tank headspace; other factors are the rate, surface area, volume of the release, and the tank ventilation rate, which are not covered in this report.

  15. EIA-Voluntary Reporting of Greenhouse Gases Program - What are Greenhouse

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets 9, 3:00MarketsProgramGases?

  16. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect (OSTI)

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  17. Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion

    SciTech Connect (OSTI)

    Severinghaus, J.P.; Bender, M.L. [Univ. of Rhode Island, RI (United States)] [Univ. of Rhode Island, RI (United States); Keeling, R.F. [Scripps Institution of Oceanography, LaJolla, CA (United States)] [Scripps Institution of Oceanography, LaJolla, CA (United States); Broecker, W.S. [Lamont-Doherty Earth Observatory, Palisades, NY (United States)] [Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    1996-03-01

    Air sampled from the moist unsaturated zone in a sand dune exhibits depletion in the heavy isotopes of N{sub 2} and O{sub 2}. We propose that the depletion is caused by a diffusive flux of water vapor out of the dune, which sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N{sub 2} and O{sub 2} diffuse back more slowly, resulting in a steady-state depletion of the heavy isotopesin the dune interior. We predict the effect`s magnitude with molecular diffusion theory and reproduce it in a laboratory simulation, finding good agreement between field, theory, and lab. The magnitude of the effect is governed by the ratio of the binary diffusivities against water vapor of a pair of gases, and increases {approximately} linearly with the difference between the water vapor mole fraction of the site and the advectively mixed reservoir with which it is in diffusive contact (in most cases the atmosphere). 32 refs., 1 fig., 3 tabs.

  18. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    E-Print Network [OSTI]

    He, Lianyi; Cao, Gaoqing; Hu, Hui; Liu, Xia-Ji

    2015-01-01

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of the weakly interacting Bose condensate in the BEC limit and the weakly interacting Fermi liquid in the BCS limit. The inadequacy of the 2D mean-field theory indicates that the quantum fluctuations are much more pronounced than those in 3D. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of 2D Bose gases and deter...

  19. JV Task 125-Mercury Measurement in Combustion Flue Gases Short Course

    SciTech Connect (OSTI)

    Dennis Laudal

    2008-09-30

    The short course, designed to train personnel who have an interest in measuring mercury in combustion flue gases, was held twice at the Drury Inn in Marion, Illinois. The short course helped to provide attendees with the knowledge necessary to avoid the many pitfalls that can and do occur when measuring mercury in combustion flue gases. The first short course, May 5-8, 2008, included both a classroom-type session and hands-on demonstration of mercury-sampling equipment. The hands-on demonstration of equipment was staged at Southern Illinois Power Cooperative. Not including the Illinois Clean Coal Institute and the U.S. Department of Energy project managers, there were 12 attendees. The second short course was conducted September 16-17, 2008, but only included the classroom portion of the course; 14 people attended. In both cases, lectures were provided on the various mercury measurement methods, and interaction between attendees and EERC research personnel to discuss specific mercury measurement problems was promoted. Overall, the response to the course was excellent.

  20. Fluctuations of the number of particles within a given volume in cold quantum gases

    SciTech Connect (OSTI)

    Astrakharchik, G. E.; Combescot, R.; Pitaevskii, L. P.

    2007-12-15

    In ultracold gases many experiments use atom imaging as a basic observable. The resulting image is averaged over a number of realizations and mostly only this average is used. Only recently the noise has been measured to extract physical information. In the present paper we investigate the quantum noise arising in these gases at zero temperature. We restrict ourselves to the homogeneous situation and study the fluctuations in particle number found within a given volume in the gas, and more specifically inside a sphere of radius R. We show that zero-temperature fluctuations are not extensive and the leading term scales with sphere radius R as R{sup 2} ln R (or ln R) in three- (or one-) dimensional systems. We calculate systematically the next term beyond this leading order. We consider first the generic case of a compressible superfluid. Then we investigate the whole Bose-Einstein-condensation (BEC) -BCS crossover, and in particular the limiting cases of the weakly interacting Bose gas and of the free Fermi gas.

  1. Polaronic atom-trimer continuity in three-component Fermi gases

    E-Print Network [OSTI]

    Nishida, Yusuke

    2014-01-01

    Recently it has been proposed that three-component Fermi gases may exhibit a new type of crossover physics in which an unpaired Fermi sea of atoms smoothly evolves into that of trimers in addition to the ordinary BCS-BEC crossover of condensed pairs. Here we study its corresponding polaron problem in which a single impurity atom of one component interacts with condensed pairs of the other two components with equal populations. By developing a variational approach in the vicinity of a narrow Feshbach resonance, we show that the impurity atom smoothly changes its character from atom to trimer with increasing the attraction and eventually there is a sharp transition to dimer. The emergent polaronic atom-trimer continuity can be probed in ultracold atoms experiments with the inverse radio-frequency spectroscopy. Our novel crossover wave function properly incorporating the polaronic atom-trimer continuity will provide a useful basis to further investigate the phase diagram of three-component Fermi gases in more ge...

  2. Investigation of light emission from a parallel-plate avalanche chamber filled with noble gases and with TEA, TMAE, and $H_{2}O$ vapours at atmospheric pressure

    E-Print Network [OSTI]

    Peskov, Vladimir; Dominik, Wojciech; Sauli, Fabio

    1989-01-01

    Investigation of light emission from a parallel-plate avalanche chamber filled with noble gases and with TEA, TMAE, and $H_{2}O$ vapours at atmospheric pressure

  3. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    DOE Patents [OSTI]

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  4. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    SciTech Connect (OSTI)

    DeLuchi, M.A.

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  5. Analytical limits for cold-atom Bose gases with tunable interactions

    SciTech Connect (OSTI)

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Cooper, Fred; Dawson, John F.

    2011-08-15

    We discuss the equilibrium properties of dilute Bose gases using a nonperturbative formalism based on auxiliary fields related to the normal and anomalous densities. We show analytically that for a dilute Bose gas of weakly interacting particles at zero temperature, the leading-order auxiliary field (LOAF) approximation leads to well-known analytical results. Close to the critical point the LOAF predictions are the same as those obtained using an effective field theory in the large-N approximation. We also report analytical approximations for the LOAF results in the unitarity limit, which compare favorably with our numerical results. LOAF predicts that the equation of state for the Bose gas in the unitarity limit is E/(pV)=1, unlike the case of the Fermi gas when E/(pV)=3/2.

  6. Orbital-Specific Exchange Potentials for Noble Gases with Depurated Inversion of Hartree-Fock wavefunctions

    E-Print Network [OSTI]

    Mendez, M P A; Miraglia, J E

    2015-01-01

    Exchange potentials for specific orbitals of noble gases are calculated by inverting the corresponding Hartree-Fock wavefunctions. This procedure was performed by using a Depurated Inversion Method, which is presented here. The basic idea of the method relies upon the substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham equation. Through inversion, the corresponding effective potential were obtained. A further depuration of the potential should be performed. It consists in a careful optimization which shatters the poles and also ensures the fulfillment of the appropriate boundary conditions. The method is not restricted to the ground state or to a nodeless orbital. It allows to reproduce the input energies and wavefunctions with a remarkable degree of accuracy.

  7. Role of fourth-order phase-space moments in collective modes of trapped Fermi gases

    SciTech Connect (OSTI)

    Chiacchiera, Silvia; Lepers, Thomas; Davesne, Dany; Urban, Michael

    2011-10-15

    We study the transition from hydrodynamic to collisionless behavior in collective modes of ultracold trapped Fermi gases. To that end, we solve the Boltzmann equation for the trapped Fermi gas via the moments method. We showed previously that it is necessary to go beyond second-order moments if one wants to reproduce the results of a numerical solution of the Boltzmann equation. Here, we will give the detailed description of the method including fourth-order moments. We apply this method to the case of realistic parameters, and compare the results for the radial quadrupole and scissors modes at unitarity to experimental data obtained by the Innsbruck group. It turns out that the inclusion of fourth-order moments clearly improves the agreement with the experimental data. In particular, the fourth-order moments reduce the effect of collisions and therefore partially compensate the effect of the enhanced in-medium cross section at low temperatures.

  8. Method for determining the concentration of atomic species in gases and solids

    DOE Patents [OSTI]

    Loge, Gary W. (304 Cheryl Ave., Los Alamos, NM 87544)

    1998-01-01

    Method for determining the concentration of atomic species in gases and solids. Measurement of at least two emission intensities from a species in a sample that is excited by incident laser radiation. Which generates a plasma therein after a sufficient time period has elapsed and during a second time period, permits an instantaneous temperature to be established within the sample. The concentration of the atomic species to be determined is then derived from the known emission intensity of a predetermined concentration of that species in the sample at the measured temperature, a quantity which is measured prior to the determination of the unknown concentration, and the actual measured emission from the unknown species, or by this latter emission and the emission intensity of a species having known concentration within the sample such as nitrogen for gaseous air samples.

  9. Method for determining the concentration of atomic species in gases and solids

    DOE Patents [OSTI]

    Loge, Gary W. (2998 Plaza Blanca, Santa Fe, NM 87505)

    1999-01-01

    Method for determining the concentration of atomic species in gases and solids. Measurement of at least two emission intensities from a species in a plasma containing the species after a sufficient time period has elapsed after the generation of the plasma and during a second time period, permits an instantaneous temperature to be established within the sample. The concentration of the atomic species to be determined is then derived from the known emission intensity of a predetermined concentration of that species in the sample at the measured temperature, a quantity which is measured prior to the determination of the unknown concentration, and the actual measured emission from the unknown species, or by this latter emission and the emission intensity of a species having known concentration within the sample.

  10. On a Link between Classical Phenomenological Laws of Gases and Quantum Mechanics

    E-Print Network [OSTI]

    Yarman, Tolga; Korfali, Onder

    2008-01-01

    In this paper we find a connection between the macroscopic classical laws of gases and the quantum mechanical description of molecules, composing an ideal gas. In such a gas, the motion of each individual molecule can be considered independently on all other molecules, and thus the macroscopic parameters of ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of molecules. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, in the classical law of adiabatic expansion, i.e.PV^5/3=const, can be derived, based on quantum mechanics. Physical implications of the result we disclose are discussed. In any case, our finding proves, seemingly for the first time, a macroscopic manifestation of a quantum mechanical behavior, and this in relation to classical thermodynamics.

  11. On a Link between Classical Phenomenological Laws of Gases and Quantum Mechanics

    E-Print Network [OSTI]

    Tolga Yarman; Alexander Kholmetskii; Onder Korfali

    2008-05-29

    In this paper we find a connection between the macroscopic classical laws of gases and the quantum mechanical description of molecules, composing an ideal gas. In such a gas, the motion of each individual molecule can be considered independently on all other molecules, and thus the macroscopic parameters of ideal gas, like pressure P and temperature T, can be introduced as a result of simple averaging over all individual motions of molecules. It is shown that for an ideal gas enclosed in a macroscopic cubic box of volume V, the constant, in the classical law of adiabatic expansion, i.e.PV^5/3=const, can be derived, based on quantum mechanics. Physical implications of the result we disclose are discussed. In any case, our finding proves, seemingly for the first time, a macroscopic manifestation of a quantum mechanical behavior, and this in relation to classical thermodynamics.

  12. Atom chip apparatus for experiments with ultracold rubidium and potassium gases

    SciTech Connect (OSTI)

    Ivory, M. K.; Ziltz, A. R.; Fancher, C. T.; Pyle, A. J.; Sensharma, A.; Chase, B.; Field, J. P.; Garcia, A.; Aubin, S.; Jervis, D.

    2014-04-15

    We present a dual chamber atom chip apparatus for generating ultracold {sup 87}Rb and {sup 39}K atomic gases. The apparatus produces quasi-pure Bose-Einstein condensates of 10{sup 4} {sup 87}Rb atoms in an atom chip trap that features a dimple and good optical access. We have also demonstrated production of ultracold {sup 39}K and subsequent loading into the chip trap. We describe the details of the dual chamber vacuum system, the cooling lasers, the magnetic trap, the multicoil magnetic transport system, the atom chip, and two optical dipole traps. Due in part to the use of light-induced atom desorption, the laser cooling chamber features a sufficiently good vacuum to also support optical dipole trap-based experiments. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, atom interferometry, novel chip-based traps, and studies of one-dimensional many-body systems.

  13. Calculations for Extended Thermodynamics of dense gases up to whatever order and with only some symmetries

    E-Print Network [OSTI]

    S Pennisi

    2014-10-15

    The 14 moments model for dense gases, introduced in the last years by Ruggeri, Sugiyama and collaborators, is here considered. They have found the closure of the balance equations up to second order with respect to equilibrium; subsequently, Carrisi has found the closure up to whatever order with respect to equilibrium, but for a more constrained system where more symmetry conditions are imposed. Here the closure is obtained up to whatever order and without imposing the supplementary conditions. It comes out that the first non symmetric parts appear only at third order with respect to equilibrium, even if Ruggeri and Sugiyama found a non symmetric part proportional to an arbitrary constant also at first order with respect to equilibrium. Consequently, this constant must be zero, as Ruggeri, Sugiyama assumed in the applications and on an intuitive ground.

  14. Low-dimensional weakly interacting Bose gases: Nonuniversal equations of state

    SciTech Connect (OSTI)

    Astrakharchik, G. E.; Boronat, J.; Mazzanti, F.; Kurbakov, I. L.; Lozovik, Yu. E.

    2010-01-15

    The zero-temperature equation of state is analyzed in low-dimensional bosonic systems. We propose to use the concept of energy-dependent s-wave scattering length for obtaining estimations of nonuniversal terms in the energy expansion. We test this approach by making a comparison to exactly solvable one-dimensional problems and find that the generated terms have the correct structure. The applicability to two-dimensional systems is analyzed by comparing with results of Monte Carlo simulations. The prediction for the nonuniversal behavior is qualitatively correct and the densities, at which the deviations from the universal equation of state become visible, are estimated properly. Finally, the possibility of observing the nonuniversal terms in experiments with trapped gases is also discussed.

  15. Carbonaceous material for production of hydrogen from low heating value fuel gases

    DOE Patents [OSTI]

    Koutsoukos, Elias P. (Los Angeles, CA)

    1989-01-01

    A process for the catalytic production of hydrogen, from a wide variety of low heating value fuel gases containing carbon monoxide, comprises circulating a carbonaceous material between two reactors--a carbon deposition reactor and a steaming reactor. In the carbon deposition reactor, carbon monoxide is removed from a fuel gas and is deposited on the carbonaceous material as an active carbon. In the steaming reactor, the reactive carbon reacts with steam to give hydrogen and carbon dioxide. The carbonaceous material contains a metal component comprising from about 75% to about 95% cobalt, from about 5% to about 15% iron, and up to about 10% chromium, and is effective in suppressing the production of methane in the steaming reactor.

  16. An Accelerated Multiboson Algorithm for Coulomb Gases with Dynamical Dielectric Effects

    E-Print Network [OSTI]

    A. Duncan; R. D. Sedgewick

    2006-02-27

    A recent reformulation [1] of the problem of Coulomb gases in the presence of a dynamical dielectric medium showed that finite temperature simulations of such systems can be accomplished on the basis of completely local Hamiltonians on a spatial lattice by including additional bosonic fields. For large systems, the Monte Carlo algorithm proposed in Ref. [1] becomes inefficient due to a low acceptance rate for particle moves in a fixed background multiboson field. We show here how this problem can be circumvented by use of a coupled particle-multiboson update procedure that improves acceptance rates on large lattices by orders of magnitude. The method is tested on a one-component plasma with neutral dielectric particles for a variety of system sizes.

  17. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect (OSTI)

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  18. Mass-transport models to predict toxicity of inhaled gases in the upper respiratory tract

    SciTech Connect (OSTI)

    Hubal, E.A.C.; Fedkiw, P.S.; Kimbell, J.S. [North Carolina State Univ., Raleigh, NC (United States)

    1996-04-01

    Mass-transport (the movement of a chemical species) plays an important role in determining toxic responses of the upper respiratory tract (URT) to inhaled chemicals. Mathematical dosimetry models incorporate physical characteristics of mass transport and are used to predict quantitative uptake (absorption rate) and distribution of inhaled gases and vapors in the respiratory tract. Because knowledge of dose is an essential component of quantitative risk assessment, dosimetry modeling plays an important role in extrapolation of animal study results to humans. A survey of existing mathematical dosimetry models for the URT is presented, limitations of current models are discussed, and adaptations of existing models to produce a generally applicable model are suggested. Reviewed URT dosimetry models are categorized as early, lumped-parameter, and distributed-parameter models. Specific examples of other relevant modeling work are also presented. 35 refs., 11 figs., 1 tab.

  19. Process for coal liquefaction by separation of entrained gases from slurry exiting staged dissolvers

    DOE Patents [OSTI]

    Givens, Edwin N. (Bethlehem, PA); Ying, David H. S. (Macungie, PA)

    1983-01-01

    There is described an improved liquefaction process by which coal is converted to a low ash and low sulfur carbonaceous material that can be used as a fuel in an environmentally acceptable manner without costly gas scrubbing equipment. In the process, coal is slurried with a solvent, passed through a preheater and at least two dissolvers in series in the presence of hydrogen-rich gases at elevated temperatures and pressures. Solids, including mineral ash and unconverted coal macerals are separated from the condensed dissolver effluent. In accordance with the improved process, fresh hydrogen is fed to each dissolver and the entrained gas from each dissolver is separated from the slurry phase and removed from the reactor system before the condensed phase is passed to the next dissolver in the series. In accordance with another process, the feeds to the dissolvers are such that the top of each downstream dissolver is used as a gas-liquid separator.

  20. Renormalization group theory of condensable gases: General remarks and a discussion of water

    SciTech Connect (OSTI)

    White, J.A.

    1993-04-01

    The preceding talks by Tewari and by Zhang illustrates aspects of a renormalization group theory of condensable gases that appears to be capable of describing reduced volumetric properties of several rather different types of fluids to a reasonable approximation near the critical point using as input only a knowledge of the critical compressibility ratio Z{sub c}, and in a rather large extended neighborhood of the critical point by introducing only a small number of additional parameters. When an attempt is made to apply the same approach to an extended neighborhood of the critical point of water, it is found that at least one additional parameter is required beyond the minimal argon, ethane, and helium-4 over comparably large regions of density, temperature, and pressure.

  1. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    E-Print Network [OSTI]

    Lianyi He; Haifeng Lv; Gaoqing Cao; Hui Hu; Xia-Ji Liu

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the 2D mean-field theory indicates that the quantum fluctuations are much more pronounced than those in 3D. In this work, we show that the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of 2D Bose gases and determine the ratio of the composite boson scattering length $a_{\\rm B}$ to the fermion scattering length $a_{\\rm 2D}$. We find $a_{\\rm B}\\simeq 0.56 a_{\\rm 2D}$, in good agreement with the exact four-body calculation. We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.

  2. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2000 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2001-11-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.

  3. Spectral investigations of photoionized plasmas induced in atomic and molecular gases using nanosecond extreme ultraviolet (EUV) pulses

    SciTech Connect (OSTI)

    Bartnik, A.; Fiedorowicz, H.; Wachulak, P. [Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland)

    2014-07-15

    In this paper, results of spectral investigations of low temperature photoionized plasmas, created by irradiation of gases with intense pulses of extreme ultraviolet (EUV) radiation from a laser-produced plasma (LPP) source, are presented. The LPP source was based on a double-stream KrXe/He gas-puff target irradiated with 4?ns/0.8?J/10?Hz Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region ????10–12?nm; however, spectrally integrated intensity at longer wavelengths was also significant. The EUV beam was focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in formation of photoionized plasmas emitting radiation in the EUV range. Radiation spectra, measured for plasmas produced in various gases, are dominated by emission lines, originating from single charged ions. Significant differences in spectral intensities and distributions between plasmas created in neon and molecular gases were observed.

  4. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOE Patents [OSTI]

    Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  5. Investigation of feasibility of injecting power plant waste gases for enhanced coalbed methane recovery from low rank coals in Texas 

    E-Print Network [OSTI]

    Saugier, Luke Duncan

    2004-09-30

    Greenhouse gases such as carbon dioxide (CO2) may be to blame for a gradual rise in the average global temperature. The state of Texas emits more CO2 than any other state in the U.S., and a large fraction of emissions are ...

  6. PhD position In situ assessment of greenhouse gases and ammonia emissions from livestock systems in East Africa

    E-Print Network [OSTI]

    Anderson, Charles W.

    in East Africa The International Livestock Research Institute (ILRI, www.ilri.org) in cooperation on greenhouse gases (GHG) and ammonia emissions from different livestock systems in East Africa. The candidate Africa by means of a combination of chamber measurements, eddy covariance techniques and other

  7. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  8. Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under dc and ac fields

    E-Print Network [OSTI]

    Economou, Demetre J.

    Temporal evolution of the electron energy distribution function in oxygen and chlorine gases under for publication 19 February 1993) An analysis of the temporal evolution of the electron energy distribution of the distribution function is dominant. The electron energy distribution function (EEDF) can be derived from

  9. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    SciTech Connect (OSTI)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  10. Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases in the CMIP5 Models

    E-Print Network [OSTI]

    Barnes, Elizabeth A.

    Response of the Midlatitude Jets, and of Their Variability, to Increased Greenhouse Gases This work documents how the midlatitude, eddy-driven jets respond to climate change using model output from Atlantic, the North Pacific, and the Southern Hemisphere jets. The analysis is not limited to annual- mean

  11. A New Technique for Studying the Fano Factor And the Mean Energy Per Ion Pair in Counting Gases

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Panksky, A.; Breskin, A.; Chechik, R.

    1996-04-01

    A new method is presented for deriving the Fano factor and the mean energy per ion pair in the ultrasoft x-ray energy range. It is based on counting electrons deposited by a photon in a low-pressure gas, and is applicable for all counting gases. The energy dependence of these parameters for several hydrocarbons and gas mixtures is presented.

  12. PII S0016-7037(01)00802-X Volatilization kinetics of silicon carbide in reducing gases: An experimental study with

    E-Print Network [OSTI]

    PII S0016-7037(01)00802-X Volatilization kinetics of silicon carbide in reducing gases August 21, 2001) Abstract--The volatilization kinetics of single crystal -SiC, polycrystalline -Si in terrestrial rocks (Bauer et al., 1963; Marshint- sev et al., 1982; Leung, 1990; Filippidis, 1993), although

  13. Auxiliary field formalism for dilute fermionic atom gases with tunable interactions

    SciTech Connect (OSTI)

    Mihaila, Bogdan; Chien, Chih-Chun; Timmermans, Eddy; Dawson, John F.; Cooper, Fred

    2011-05-15

    We develop the auxiliary field formalism corresponding to a dilute system of spin-1/2 fermions. This theory represents the Fermi counterpart of the Bose-Einstein condensation (BEC) theory developed recently by F. Cooper et al. [Phys. Rev. Lett. 105, 240402 (2010)] to describe a dilute gas of Bose particles. Assuming tunable interactions, this formalism is appropriate for the study of the crossover from the regime of Bardeen-Cooper-Schriffer (BCS) pairing to the regime of BEC in ultracold fermionic atom gases. We show that when applied to the Fermi case at zero temperature, the leading-order auxiliary field (LOAF) approximation gives the same equations as obtained in the standard BCS variational picture. At finite temperature, LOAF leads to the theory discussed by Sa de Melo, Randeria, and Engelbrecht [Phys. Rev. Lett. 71, 3202 (1993); Phys. Rev. B 55, 15153 (1997)]. As such, LOAF provides a unified framework to study the interacting Fermi gas. The mean-field results discussed here can be systematically improved on by calculating the one-particle irreducible action corrections, order by order.

  14. Common Origin of Power-law Tails in Income Distributions and Relativistic Gases

    E-Print Network [OSTI]

    Modanese, G

    2015-01-01

    Power-law tails are ubiquitous in income distributions and in the energy distributions of diluted relativistic gases. We analyze the conceptual link between these two cases. In economic interactions fat tails arise because the richest individuals enact some protection mechanisms ("saving propensity") which allow them to put at stake, in their interactions, only a small part of their wealth. In high-energy particle collisions something similar happens, in the sense that when particles with very large energy collide with slow particles, then as a sole consequence of relativistic kinematics (mass dilation), they tend to exchange only a small part of their energy; processes like the frontal collision of two identical particles, where the exchanged energy is 100%, are very improbable, at least in a diluted gas. We thus show how in two completely different systems, one of socio-economic nature and one of physical nature, a certain feature of the binary microscopic interactions leads to the same consequence in the m...

  15. Highly concentrated nebular noble gases in porous nanocarbon separates from the Saratov (L4) meteorite

    SciTech Connect (OSTI)

    Amari, Sachiko; Matsuda, Jun-ichi; Stroud, Rhonda M.; Chisholm, Matthew F.

    2013-11-20

    The majority of heavy noble gases (Ar, Kr, and Xe) in primitive meteorites are stored in a poorly understood phase called Q. Although Q is thought to be carbonaceous, the full identity of the phase has remained elusive for almost four decades. In order to better characterize phase Q and, in turn, the early solar nebula, we separated carbon-rich fractions from the Saratov (L4) meteorite. We chose this meteorite because Q is most resistant in thermal alteration among carbonaceous noble gas carriers in meteorites and we hoped that, in this highly metamorphosed meteorite, Q would be present but not diamond: these two phases are very difficult to separate from each other. One of the fractions, AJ, has the highest {sup 132}Xe concentration of 2.1 × 10{sup –6} cm{sup 3} STP g{sup –1}, exceeding any Q-rich fractions that have yet been analyzed. Transmission electron microscopy studies of the fraction AJ and a less Q-rich fraction AI indicate that they both are primarily porous carbon that consists of domains with short-range graphene orders, with variable packing in three dimensions, but no long-range graphitic order. The relative abundance of Xe and C atoms (6:10{sup 9}) in the separates indicates that individual noble gas atoms are associated with only a minor component of the porous carbon, possibly one or more specific arrangements of the nanoparticulate graphene.

  16. Common Origin of Power-law Tails in Income Distributions and Relativistic Gases

    E-Print Network [OSTI]

    G. Modanese

    2015-09-05

    Power-law tails are ubiquitous in income distributions and in the energy distributions of diluted relativistic gases. We analyze the conceptual link between these two cases. In economic interactions fat tails arise because the richest individuals enact some protection mechanisms ("saving propensity") which allow them to put at stake, in their interactions, only a small part of their wealth. In high-energy particle collisions something similar happens, in the sense that when particles with very large energy collide with slow particles, then as a sole consequence of relativistic kinematics (mass dilation), they tend to exchange only a small part of their energy; processes like the frontal collision of two identical particles, where the exchanged energy is 100%, are very improbable, at least in a diluted gas. We thus show how in two completely different systems, one of socio-economic nature and one of physical nature, a certain feature of the binary microscopic interactions leads to the same consequence in the macroscopic distribution for the income or respectively for the energy.

  17. Energy and structure of dilute hard- and soft-sphere gases

    E-Print Network [OSTI]

    F. Mazzanti; A. Polls; A. Fabrocini

    2003-05-21

    The energy and structure of dilute hard- and soft-sphere Bose gases are systematically studied in the framework of several many-body approaches, as the variational correlated theory, the Bogoliubov model and the uniform limit approximation, valid in the weak interaction regime. When possible, the results are compared with the exact diffusion Monte Carlo ones. A Jastrow type correlation provides a good description of the systems, both hard- and soft-spheres, if the hypernetted chain energy functional is freely minimized and the resulting Euler equation is solved. The study of the soft-spheres potentials confirms the appearance of a dependence of the energy on the shape of the potential at gas paremeter values of $x \\sim 0.001$. For quantities other than the energy, such as the radial distribution functions and the momentum distributions, the dependence appears at any value of $x$. The occurrence of a maximum in the radial distribution function, in the momentum distribution and in the excitation spectrum is a natural effect of the correlations when $x$ increases. The asymptotic behaviors of the functions characterizing the structure of the systems are also investigated. The uniform limit approach results very easy to implement and provides a good description of the soft-sphere gas. Its reliability improves when the interaction weakens.

  18. Quantified estimates of total GWPs for greenhouse gases taking into account tropospheric chemistry

    SciTech Connect (OSTI)

    Wuebbles, D.J.; Tamaresis, J.S.; Patten, K.O.

    1993-11-01

    The purpose of this report is to give interim account of the progress being made at Lawrence Livermore National Laboratory (LLNL) in developing an improved capability for assessing the direct and indirect effects on Global Warming Potentials. Much of our current efforts are being devoted to improving the capability for modeling of global tropospheric processes in our state-of-the-art zonally-averaged chemical-radiative-transport model of the troposphere and stratosphere. These efforts are in preparation for an improved evaluation and better quantification of the indirect GWPs resulting from effects on tropospheric ozone from ethane and other gases with significant human-related emissions. There are three major findings that should result from this project that should have significant impacts on EPA and its programs. First, the current and ongoing studies of the direct and indirect GWPs should have a significant influence on the continuing national and international assessments of climate change. Second, the improved capability for modeling of chemical and physical processes should lead to enhanced understanding of the controlling factors influencing ozone, hydroxyl and other key tropospheric constituents. Third, the enhanced modeling capability should be important to future studies of human-related influences on tropospheric and stratospheric chemical processes.

  19. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

    2000-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condense one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is not liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  20. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text

    SciTech Connect (OSTI)

    DeLuchi, M.A. [California Univ., Davis, CA (United States)

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

  1. Apparatus and process for the refrigeration, liquefaction and separation of gases with varying levels of purity

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); McKellar, Michael G. (Idaho Falls, ID)

    2002-01-01

    A process for the separation and liquefaction of component gasses from a pressurized mix gas stream is disclosed. The process involves cooling the pressurized mixed gas stream in a heat exchanger so as to condensing one or more of the gas components having the highest condensation point; separating the condensed components from the remaining mixed gas stream in a gas-liquid separator; cooling the separated condensed component stream by passing it through an expander; and passing the cooled component stream back through the heat exchanger such that the cooled component stream functions as the refrigerant for the heat exchanger. The cycle is then repeated for the remaining mixed gas stream so as to draw off the next component gas and further cool the remaining mixed gas stream. The process continues until all of the component gases are separated from the desired gas stream. The final gas stream is then passed through a final heat exchanger and expander. The expander decreases the pressure on the gas stream, thereby cooling the stream and causing a portion of the gas stream to liquify within a tank. The portion of the gas which is hot liquefied is passed back through each of the heat exchanges where it functions as a refrigerant.

  2. CO.sub.2 separation from low-temperature flue gases

    DOE Patents [OSTI]

    Dilmore, Robert (Irwin, PA); Allen, Douglas (Salem, MA); Soong, Yee (Monroeville, PA); Hedges, Sheila (Bethel Park, PA)

    2010-11-30

    Two methods are provide for the separation of carbon dioxide from the flue gases. The first method utilizes a phase-separating moiety dissolved in an aqueous solution of a basic moiety to capture carbon dioxide. The second method utilizes a phase-separating moiety as a suspended solid in an aqueous solution of a basic moiety to capture carbon dioxide. The first method takes advantage of the surface-independent nature of the CO.sub.2 absorption reactions in a homogeneous aqueous system. The second method also provides permanent sequestration of the carbon dioxide. Both methods incorporate the kinetic rate enhancements of amine-based scrubbing while eliminating the need to heat the entire amine solution (80% water) in order to regenerate and release CO.sub.2. Both methods also take advantage of the low-regeneration temperatures of CO.sub.2-bearing mineral systems such as Na.sub.2CO.sub.3/NaHCO.sub.3 and K.sub.2CO.sub.3/KHCO.sub.3.

  3. Microscopic description of anisotropic low-density dipolar Bose gases in two dimensions

    SciTech Connect (OSTI)

    Macia, A.; Mazzanti, F.; Boronat, J.; Zillich, R. E.

    2011-09-15

    A microscopic description of the zero-energy two-body ground state and many-body static properties of anisotropic homogeneous gases of bosonic dipoles in two dimensions at low densities is presented and discussed. By changing the polarization angle with respect to the plane, we study the impact of the anisotropy, present in the dipole-dipole interaction, on the energy per particle, comparing the results with mean-field predictions. We restrict the analysis to the regime where the interaction is always repulsive, although the strength of the repulsion depends on the orientation with respect to the polarization field. We present a series expansion of the solution of the zero-energy two-body problem, which allows us to find the scattering length of the interaction and to build a suitable Jastrow factor that we use as a trial wave function for both a variational and diffusion Monte Carlo simulation of the infinite system. We find that the anisotropy has an almost negligible impact on the ground-state properties of the many-body system in the universal regime where the scattering length governs the physics of the system. We also show that scaling in the gas parameter persists in the dipolar case up to values where other isotropic interactions with the same scattering length yield different predictions.

  4. Mobility of singly-charged lanthanide cations in rare gases: Theoretical assessment of the state specificity

    SciTech Connect (OSTI)

    Buchachenko, Alexei A.; Viehland, Larry A.

    2014-03-21

    High quality, ab initio calculations are reported for the potential energy curves governing the interactions of four singly-charged lanthanide ions (Yb{sup +}, Eu{sup +}, Lu{sup +}, and Gd{sup +}) with the rare gases (RG = He–Xe). Scalar-relativistic coupled cluster calculations are used for the first three S-state ions, but for Gd{sup +}({sup 10}D°) it is necessary to take the interaction anisotropy into account with the help of the multi-reference technique. The potential energy curves are used to determine the ion mobility and other transport properties describing the motion of the ions through the dilute RG, both as functions of the temperature, T, in the low-field limit, and at fixed T as functions of the ratio of the electrostatic field strength to the gas number density, E/N. The calculated mobilities are in good agreement with the very limited experimental data that have become available recently. The calculations show a pronounced dependence of the transport properties on the electronic configuration of the ion, as well as a significant effect of the spin-orbit coupling on the transport properties of the Gd{sup +} ion, and predict that state-specific mobilities could be detectable in Gd{sup +}–RG experiments.

  5. Lecture notes on thermodynamics of ideal string gases and its application in cosmology

    E-Print Network [OSTI]

    Lihui Liu

    2014-12-05

    In these lecture notes I give a pedagogical introduction to the thermodynamics of ideal string gases. The computation of thermodynamic quantities in the canonical ensemble formalism will be shown in detail with explicit examples. Attention will be given mainly to the thermodynamical consequences of string degrees of freedom, where I will especially address i) the Hagedorn temperature, a critical temperature above which the canonical ensemble description breaks down, which can be the onset point of some instability of the string gas; ii) the phase structure arising from compactification, embodied in the moduli-dependence of the Helmholtz free energy, which corrects the tree-level vacuum and can provide mechanism for moduli stabilization. Then I will briefly explain the implementation of string gas thermodynamics in cosmology, showing a simple example which gives rise to a radiation-dominated early universe. Further phenomenological issues and open questions will be discussed qualitatively with references indicated, including the Hagedorn instability in the resolution of the initial singularity, moduli stabilization, generation of hierarchy, radiative symmetry breaking and primordial cosmological fluctuations.

  6. Are Greenhouse Gases Changing ENSO Precursors in the Western North Pacific?

    SciTech Connect (OSTI)

    Wang, S-Y (Simon); Heureux, Michelle L.; Yoon, Jin-Ho

    2013-09-01

    Using multiple observational and modeling datasets, we document a strengthening relationship between boreal winter sea surface temperature anomalies (SSTA) in the western North Pacific (WNP) and the development of the El Nino-Southern Oscillation (ENSO) one year later. The increased WNP-ENSO association emerged in the mid 20th century and has grown through the present, reaching correlation coefficients as high as ~0.70 in recent decades. Fully coupled climate experiments with the Community Earth System Model (CESM) replicate the WNP-ENSO association and indicate that greenhouse gases (GHG) are largely responsible for the observed increase. We speculate that shifts in the location and amplitudes of positive SST trends in the subtropical-tropical western Pacific impacts the low-level circulation so that WNP variability is increasingly influencing the development of ENSO one year later. A strengthened GHG-driven relationship between the WNP and ENSO provides an example of how anthropogenic climate change can potentially improve the skill of intraseasonal-to-interannual climate prediction.

  7. Treatment of PDMS surfaces using pulsed DBD plasmas: comparing the use of different gases and its influence on adhesion

    E-Print Network [OSTI]

    Nascimento, Fellype do; Machida, Munemasa; Parada, Sergio

    2015-01-01

    In this work we present some results of the treatment of polydimethylsiloxane (PDMS) surfaces using pulsed dielectric barrier discharge plasmas. The results of plasma treatment using different gases to produce the plasmas (argon, argon plus water, helium, helium plus water, nitrogen and nitrogen plus water) were compared testing the adhesion between two PDMS samples for each kind of plasma. We also studied the water contact angle in function of plasma process time of PDMS surfaces with each kind of plasma. The plasmas were characterized by optical emission spectroscopy to identify the emitting species and determine plasma temperatures through comparison with emission spectra simulations. Measurements of power delivered to the plasmas were also performed. Plasmas of all gases are good enough for surface treatment with long exposure time. But when only a few discharges are applied the best choice is the helium plasma.

  8. Calculo Diferencial e Integral II Exercicio de Aplicac~ao 2 -Termodin^amica dos Gases Ideais

    E-Print Network [OSTI]

    Natário, José

    C´alculo Diferencial e Integral II Exerc´icio de Aplica¸c~ao 2 - Termodin^amica dos Gases Ideais N dV + F P dP. A Primeira Lei da Termodin^amica afirma que existe uma fun¸c~ao E : M R, dita^amicos gerais pela Segunda Lei da Termodin^amica. 2 #12;

  9. Van der Waals Epitaxial Growth of Single-Crystal Two-Dimensional GaSe on Graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming-Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; et al

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore »of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  10. Van der Waals epitaxial growth of two-dimensional single-crystalline GaSe domains on graphene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xufan; Basile, Leonardo; Huang, Bing; Ma, Cheng; Lee, Jaekwang; Vlassiouk, Ivan V.; Puretzky, Alexander A.; Lin, Ming -Wei; Chi, Miaofang; Idrobo Tapia, Juan Carlos; et al

    2015-07-22

    Two-dimensional (2D) van der Waals (vdW) heterostructures are a family of artificially-structured materials that promise tunable optoelectronic properties for devices with enhanced functionalities. Compared to stamping, direct epitaxy of vdW heterostructures is ideal for clean interlayer interfaces and scalable device fabrication. Here, we explore the synthesis and preferred orientations of 2D GaSe atomic layers on graphene (Gr) by vdW epitaxy. Guided by the wrinkles on graphene, GaSe nuclei form that share a predominant lattice orientation. Due to vdW epitaxial growth many nuclei grow as perfectly aligned crystals and coalesce to form large (tens of microns), single-crystal flakes. Through theoretical investigationsmore »of interlayer energetics, and measurements of preferred orientations by atomic-resolution STEM and electron diffraction, a 10.9 interlayer rotation of the GaSe lattice with respect to the underlying graphene is found to be the most energetically preferred vdW heterostructure with the largest binding energy and the longest-range ordering. These GaSe/Gr vdW heterostructures exhibit an enhanced Raman E21g band of monolayer GaSe along with highly-quenched photoluminescence due to strong charge transfer. Despite the very large lattice mismatch of GaSe/Gr through vdW epitaxy, the predominant orientation control and convergent formation of large single-crystal flakes demonstrated here is promising for the scalable synthesis of large-area vdW heterostructures for the development of new optical and optoelectronic devices.« less

  11. From SO{sub 2} to greenhouse gases: trends and events shaping future emissions trading programs in the United States

    SciTech Connect (OSTI)

    Joseph Kruger

    2005-06-15

    Cap-and-trade programs have become widely accepted for the control of conventional air pollution in the United States. However, there is still no political consensus to use these programs to address greenhouse gases. Meanwhile, in the wake of the success of the US SO{sub 2} and NOx trading programs, private companies, state governments, and the European Union are developing new trading programs or other initiatives that may set precedents for a future national US greenhouse gas trading scheme. This paper summarizes the literature on the 'lessons learned' from the SO{sub 2} trading program for greenhouse gas trading, including lessons about the potential differences in design that may be necessary because of the different sources, science, mitigation options, and economics inherent in greenhouse gases. The paper discusses how the programs and initiatives mentioned above have been shaped by lessons from past trading programs and whether they are making changes to the SO{sub 2} model to address greenhouse gases. It concludes with an assessment of the implications of these initiatives for a future US national greenhouse gas trading program. 91 refs., 2 tabs.

  12. GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual

    SciTech Connect (OSTI)

    B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

    1998-10-01

    Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

  13. Soft x-ray generation in gases with an ultrashort pulse laser

    SciTech Connect (OSTI)

    Ditmire, T.R.

    1996-01-08

    An experimental investigation of soft x-ray production resulting from the interaction of intense near infra-red laser radiation with gases is presented in this thesis. Specifically, soft x-ray generation through high order harmonic generation or exploiting intense inverse bremsstrahlung heating is examined. Most of these studies are conducted with femtosecond, terawatt class Cr:LiSrAlF{sub 6} (LiSAF) laser, though results derived from studies with other laser systems are presented as well. The majority of this work is devoted to experimental investigations, however, theoretical and computational models are developed to interpret the data. These studies are motivated by the possibility of utilizing the physics of intense laser/matter interactions as a potential compact source of bright x-rays. Consequently, the thrust of many of the experiments conducted is aimed at characterizing the x-rays produced for possible use in applications. In general, the studies of this manuscript fall into three categories. First, a unique 130 fs, 8 TW laser that is based on chirped pulse amplification, is described, and its performance is evaluated. The generation of x-rays through high order harmonics is then discussed with emphasis on characterizing and optimizing harmonic generation. Finally, the generation of strong, incoherent x-ray radiation by the intense irradiation of large (>1,000 atom) clusters in gas jets, is explored. The physics of laser energy absorption by clusters illuminated with intensities of 10{sup 15} to 10{sup 17} W/cm{sup 2} is considered in detail. X-ray spectroscopy of the hot plasmas that result from the irradiation of the clusters is conducted, and energy transport and kinetics issues in these plasmas are discussed.

  14. Investigation of Tunable Diode Spectroscopy for Monitoring Gases in Geothermal Plants

    SciTech Connect (OSTI)

    J. K. Partin

    2006-08-01

    The results of an investigation directed at the development of instrument-tation for the real-time monitoring of gases, such as hydrogen sulfide (H2S) and chloride (HCl), in geothermal process streams is described. The geothermal power industry has an interest in the development of new low maintenance techniques since improved capabilities could lead to considerable cost savings through the optimization of various gas abatement processes. Tunable diode laser spectroscopy was identified as a candidate tech-nology for this application and a commercial instrument was specified and procured for testing. The measurement principle involved the use of solid state diode lasers and frequency modulation techniques. The gallium arsenide diode lasers employed emit light in the 0.7 to 2.0 micron region of the electromagnetic spectrum. This region contains the overtone and combination absorption bands of a number of species of industrial interest, including H2S and HCl. A particular device can be tuned over a small range to match the absorption line by changing its applied temperature and current. The diode current can also be sinusoidally modulated in frequency as it is tuned across the line. This modulation allows measurements to be conducted at frequencies where the laser intensity noise is minimal; and therefore, very high signal-to-noise measurements are possible. The feasibility of using this technology in various types of geothermal process streams has been explored. The results of laboratory and field studies are presented along with new advances in laser technology that could allow more sensitive and selective measurements to be performed.

  15. Theoretical investigation of the impact of grain boundaries and fission gases on UO2 thermal conductivity

    SciTech Connect (OSTI)

    Du, Shiyu; Andersson, Anders D.; Germann, Timothy C.; Stanek, Christopher R.

    2012-05-02

    Thermal conductivity is one of the most important metrics of nuclear fuel performance. Therefore, it is crucial to understand the impact of microstructure features on thermal conductivity, especially since the microstructure evolves with burn-up or time in the reactor. For example, UO{sub 2} fuels are polycrystalline and for high-burnup fuels the outer parts of the pellet experience grain sub-division leading to a very fine grain structure. This is known to impact important physical properties such as thermal conductivity as fission gas release. In a previous study, we calculated the effect of different types of {Sigma}5 grain boundaries on UO{sub 2} thermal conductivity and predicted the corresponding Kapitza resistances, i.e. the resistance of the grain boundary in relation to the bulk thermal resistance. There have been reports of pseudoanisotropic effects for the thermal conductivity in cubic polycrystalline materials, as obtained from molecular dynamics simulations, which means that the conductivity appears to be a function of the crystallographic direction of the temperature gradient. However, materials with cubic symmetry should have isotropic thermal conductivity. For this reason it is necessary to determine the cause of this apparent anisotropy and in this report we investigate this effect in context of our earlier simulations of UO{sub 2} Kapitza resistances. Another source of thermal resistance comes from fission products and fission gases. Xe is the main fission gas and when generated in sufficient quantity it dissolves from the lattice and forms gas bubbles inside the crystalline structure. We have performed studies of how Xe atoms dissolved in the UO{sub 2} matrix or precipitated as bubbles impact thermal conductivity, both in bulk UO{sub 2} and in the presence of grain boundaries.

  16. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2007-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 130-156 seconds at 120-140 C to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases, evaluate removal capabilities of hydrogen sulfide and COS from coal gases with formulated catalysts, and develop an economic regeneration method of deactivated catalysts. Simulated coal gas mixtures consist of 3,300-3,800-ppmv hydrogen sulfide, 1,600-1,900 ppmv sulfur dioxide, 18-21 v% hydrogen, 29-34 v% CO, 8-10 v% CO{sub 2}, 5-18 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 114-132 SCCM. The temperature of the reactor is controlled in an oven at 120-140 C. The pressure of the reactor is maintained at 116-129 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is

  17. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K.C. Kwon

    2009-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2}S in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash coat, and catalytic metals, to develop a regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor. The task of developing kinetic rate equations and modeling the direct oxidation process to assist in the design of large-scale plants will be abandoned since formulation of catalysts suitable for the removal of H{sub 2}S and COS is being in progress. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. Experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 46-570 seconds under reaction conditions to formulate catalysts suitable for the removal of H{sub 2}S and COS from coal gases and evaluate their capabilities in reducing hydrogen sulfide and COS in coal gases. Simulated coal gas mixtures consist of 3,200-4,000-ppmv hydrogen sulfide, 1,600-20,000-ppmv sulfur dioxide, 18-27 v% hydrogen, 29-41 v% CO, 8-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of simulated coal gas mixtures to the reactor are 30 - 180 cm{sup 3}/min at 1 atm and 25 C (SCCM). The temperature of the reactor is controlled in an oven at 120-155 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio

  18. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions

    E-Print Network [OSTI]

    Guenther, A. B.

    The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1) is a modeling framework for estimating fluxes of biogenic compounds between terrestrial ecosystems and the atmosphere using simple mechanistic ...

  19. Fact #825: June 16, 2014 Tier 3 Non-Methane Organic Gases Plus Nitrogen Oxide Emission Standards, Model Years 2017-2025

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency finalized Tier 3 emission standards in a rule issued in March 2014. One effect of the rule is a decrease in the combined amount of non-methane organic gases ...

  20. Distinguishing the impacts of ozone-depleting substances and well-mixed greenhouse gases on Arctic stratospheric ozone and temperature trends

    E-Print Network [OSTI]

    Rieder, Harald E.

    Whether stratospheric cooling due to increases in well-mixed greenhouse gases (WMGHG) could increase the depletion of Arctic stratospheric ozone has been the subject of scientific and public attention for decades. Here we ...

  1. A comparison of hydrocarbon gases from springs and seeps of varied geologic provinces of the northwestern US

    SciTech Connect (OSTI)

    Lorenson, T.D.; Kvenvolden, K.A. (Geological Survey, Menlo Park, CA (United States))

    1993-04-01

    The northwestern US hosts a remarkable quantity and variety of thermal springs and seeps. Although many studies have dealt with the liquids and non-hydrocarbon gases emanating from these sources, few have focused on hydrocarbon gases. methane in particular is now recognized as an important reactive trace gas in the earth's atmosphere. To understand better the magnitude and occurrence of natural sources of hydrocarbons to the atmosphere, the authors have begun a survey of these gases throughout the northwestern US. This area encompasses a number of different tectonic regimes: the Yellowstone Hot Spot, the northern Basin and Range province, the Cascade volcanic arc, and the Cascadia subduction complex. Methane is present in each area at concentration levels ranging from about 2 ppmv (parts per million by volume) to 99.9% (by volume). Hydrothermal activity in the Yellowstone area produces spring gases containing less than 4% methane, with CO[sub 2] as the balance gas. The Teton area has a wide variety of gas compositions with either methane, carbon dioxide, or nitrogen as the primary gas component. In the northern Great Basin, thermal springs and seeps typically occur along fault zones at the base of mountain ranges. Methane concentrations range from 0.2 to 47%, with HMW HC concentrations from 0 to 3,100 ppmv. Areas covered by the Cenozoic Columbia River basalts and the basalts of the Snake River Plain continue to have high heat flow and produce thermal springs and seeps, usually along fault zones. Gases from the southern Cascade volcanic arc (Mt. Shasta and Mt. Lassen) are composed typically of carbon dioxide, with minor amounts of methane (less than 0.2%); however some fumaroles at Mt. Lassen have minor quantities of HMW HC. Along the Pacific coast, melanges of the Cascadia subduction complex host many seeps and springs. In some seeps the gas consists almost exclusively of methane (94.3 to 99.9%) with amounts of HMW HC ranging from about 5 ppmv to 3.5%.

  2. Effect of Using Inert and Non-Inert Gases on the Thermal Degradation and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region 

    E-Print Network [OSTI]

    Eseltine, Dustin E.

    2012-02-14

    OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS REGION A Thesis by DUSTIN E. ESELTINE Submitted to the Office of Graduate Studies of Texas A&M University... and Fuel Properties of Biomass in the Torrefaction and Pyrolysis Region Copyright 2011 Dustin E. Eseltine EFFECT OF USING INERT AND NON-INERT GASES ON THE THERMAL DEGRADATION AND FUEL PROPERTIES OF BIOMASS IN THE TORREFACTION AND PYROLYSIS...

  3. Proceedings of the International Workshop on Sustainable ForestManagement: Monitoring and Verification of Greenhouse Gases

    SciTech Connect (OSTI)

    Sathaye (Ed.), Jayant; Makundi (Ed.), Willy; Goldberg (Ed.),Beth; Andrasko (Ed.), Ken; Sanchez (Ed.), Arturo

    1997-07-01

    The International Workshop on Sustainable Forest Management: Monitoring and Verification of Greenhouse Gases was held in San Jose, Costa Rica, July 29-31, 1996. The main objectives of the workshop were to: (1) assemble key practitioners of forestry greenhouse gas (GHG) or carbon offset projects, remote sensing of land cover change, guidelines development, and the forest products certification movement, to offer presentations and small group discussions on findings relevant to the crucial need for the development of guidelines for monitoring and verifying offset projects, and (2) disseminate the findings to interested carbon offset project developers and forestry and climate change policy makers, who need guidance and consistency of methods to reduce project transaction costs and increase probable reliability of carbon benefits, at appropriate venues. The workshop brought together about 45 participants from developed, developing, and transition countries. The participants included researchers, government officials, project developers, and staff from regional and international agencies. Each shared his or her perspectives based on experience in the development and use of methods for monitoring and verifying carbon flows from forest areas and projects. A shared sense among the participants was that methods for monitoring forestry projects are well established, and the techniques are known and used extensively, particularly in production forestry. Introducing climate change with its long-term perspective is often in conflict with the shorter-term perspective of most forestry projects and standard accounting principles. The resolution of these conflicts may require national and international agreements among the affected parties. The establishment of guidelines and protocols for better methods that are sensitive to regional issues will be an important first step to increase the credibility of forestry projects as viable mitigation options. The workshop deliberations led to three primary outputs: (1) a Workshop Statement in the JI Quarterly, September, 1996; (2) the publication of a series of selected peer-reviewed technical papers from the workshop in a report of the Lawrence Berkeley National Laboratory (LBNL. 40501); and (3) a special issue of the journal ''Mitigation and Adaptation Strategies for Global Change'', Kluwer Academic Publishers. The outputs will be distributed to practitioners in this field and to negotiators attending the Framework Convention on Climate Change (FCCC) deliberations leading up to the Third conference of Parties in Kyoto, in December 1997.

  4. Gas release during salt-well pumping: Model predictions and laboratory validation studies for soluble and insoluble gases

    SciTech Connect (OSTI)

    Peurrung, L.M.; Caley, S.M.; Gauglitz, P.A.

    1997-08-01

    The Hanford Site has 149 single-shell tanks (SSTs) containing radioactive wastes that are complex mixes of radioactive and chemical products. Of these, 67 are known or suspected to have leaked liquid from the tanks into the surrounding soil. Salt-well pumping, or interim stabilization, is a well-established operation for removing drainable interstitial liquid from SSTs. The overall objective of this ongoing study is to develop a quantitative understanding of the release rates and cumulative releases of flammable gases from SSTs as a result of salt-well pumping. The current study is an extension of the previous work reported by Peurrung et al. (1996). The first objective of this current study was to conduct laboratory experiments to quantify the release of soluble and insoluble gases. The second was to determine experimentally the role of characteristic waste heterogeneities on the gas release rates. The third objective was to evaluate and validate the computer model STOMP (Subsurface Transport over Multiple Phases) used by Peurrung et al. (1996) to predict the release of both soluble (typically ammonia) and insoluble gases (typically hydrogen) during and after salt-well pumping. The fourth and final objective of the current study was to predict the gas release behavior for a range of typical tank conditions and actual tank geometry. In these models, the authors seek to include all the pertinent salt-well pumping operational parameters and a realistic range of physical properties of the SST wastes. For predicting actual tank behavior, two-dimensional (2-D) simulations were performed with a representative 2-D tank geometry.

  5. Impact of rising greenhouse gases on mid-latitude storm tracks and associated hydroclimate variability and change

    SciTech Connect (OSTI)

    Seager, Richard

    2014-12-08

    Project Summary This project aimed to advance physical understanding of how and why the mid-latitude jet streams and storm tracks shift in intensity and latitude in response to changes in radiative forcing with an especial focus on rising greenhouse gases. The motivation, and much of the work, stemmed from the importance that these mean and transient atmospheric circulation systems have for hydroclimate. In particular drying and expansion of the subtropical dry zones has been related to a poleward shift of the mid-latitude jets and storm tracks. The work involved integrated assessment of observation and model projections as well as targeted model simulations.

  6. Stopping power for a charged particle moving through three-dimensional nonideal finite-temperature electron gases

    SciTech Connect (OSTI)

    Zhang Ya; Song Yuanhong; Wang Younian [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China)

    2011-07-15

    We investigate the interaction of a charged particle with nonideal 3D electron gases by using the quantum hydrodynamic (QHD) theory. The stopping power for a nonideal electron gas at a finite-temperature has been theoretically analyzed and numerically calculated. In our calculation, the impact of nonideality and temperature on stopping power is stressed and clearly presented. The QHD dielectric function is obtained and compared to random-phase approximation result. It is shown that the QHD theory can properly describe the stopping power for higher particle velocities greater than the Bohr velocity.

  7. Apparatus for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom

    DOE Patents [OSTI]

    Tom, Glenn M. (New Milford, CT); Brown, Duncan W. (Wilton, CT)

    1991-01-08

    An apparatus for purifying a gaseous mixture comprising arsine, phosphine, ammonia, and/or inert gases, to remove Lewis acid and/or oxidant impurities therefrom, comprising a vessel containing a bed of a scavenger, the scavenger including a support having associated therewith an anion which is effective to remove such impurities, such anion being selected from one or more members of the group consisting of: (i) carbanions whose corresponding protonated compounds have a pK.sub.a value of from about 22 to about 36; and (ii) anions formed by reaction of such carbanions with the primary component of the mixture.

  8. Long-lived states with well-defined spins in spin-$1/2$ homogeneous Bose gases

    E-Print Network [OSTI]

    Yurovsky, Vladimir A

    2015-01-01

    Many-body eigenfunctions of the total spin operator can be constructed from the spin and spatial wavefunctions with non-trivial permutation symmetries. Spin-dependent interactions can lead to relaxation of the spin eigenstates to the thermal equilibrium. The relaxation rate is evaluated here for two- and three-dimensional gases using the chaotic behavior of the thermally-equilibrium spatial state. Dependence of the rate on the total spin and its projection is separated into a factor, which is independent of the gas dimensionality, temperature, and density. This factor can be controlled by a Feshbach resonance, leading to suppression of the relaxation rate by several orders of magnitude.

  9. Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities

    SciTech Connect (OSTI)

    Cushman, R.M.; Stoss, F.W. |

    1994-01-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

  10. Evaluation of metallic foils for preconcentration of sulfur-containing gases with subsequent flash desorption/flame photometric detection

    SciTech Connect (OSTI)

    Kagel, R.A.; Farwell, S.O.

    1986-05-01

    Ag, Ni, Pd, Pt, Rh, and W foils were examined for their collective efficiencies toward seven sulfur-containing gases, i.e., H/sub 2/S, CH/sub 3/SH, CH/sub 3/SCH/sub 3/, CH/sub 3/SSCH/sub 3/, CS/sub 2/, COS, and SO/sub 2/. Low- and sub-part-per-billion (v/v) concentrations of these individual sulfur gases in air were drawn through a fluorocarbon resin cell containing a mounted 30-mm x 7-mm x 0.025-mm metal foil. The preconcentrated species were then thermally desorbed by a controlled pulse of current through the foil. The desorbed sample plug was swept in precleaned zero air from the fluorocarbon resin cell to a flame photometric detector. Sampling flow rate, ambient temperature, sample humidity, and common oxidants were examined for their effects on the collection efficiencies of these sulfur compounds on platinum and palladium foils. Analytical characteristics of this metal foil collection/flash desorption/flame photometric detector (MFC/FD/FPD) technique include a sulfur gas detectability of less than 50 pptr (parts per trillion) (v/v), a response repeatability of at least 95%, and field portable collection cells and instrumentation. The results are discussed both in terms of potential analytical applications of MFC/FD/FPD and in terms of their relationship to characterized models of gas adsorption on solid surfaces. 33 references, 6 figures, 3 tables.

  11. Combustion systems and power plants incorporating parallel carbon dioxide capture and sweep-based membrane separation units to remove carbon dioxide from combustion gases

    DOE Patents [OSTI]

    Wijmans, Johannes G. (Menlo Park, CA); Merkel, Timothy C (Menlo Park, CA); Baker, Richard W. (Palo Alto, CA)

    2011-10-11

    Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.

  12. Conversion of Hydrogen Sulfide in Coal Gases to Liquid Elemental Sulfur with Monolithic Catalysts

    SciTech Connect (OSTI)

    K. C. Kwon

    2006-09-30

    Removal of hydrogen sulfide (H{sub 2}S) from coal gasifier gas and sulfur recovery are key steps in the development of Department of Energy's (DOE's) advanced power plants that produce electric power and clean transportation fuels with coal and natural gas. These plants will require highly clean coal gas with H{sub 2}S below 1 ppmv and negligible amounts of trace contaminants such as hydrogen chloride, ammonia, alkali, heavy metals, and particulate. The conventional method of sulfur removal and recovery employing amine, Claus, and tail-gas treatment is very expensive. A second generation approach developed under DOE's sponsorship employs hot-gas desulfurization (HGD) using regenerable metal oxide sorbents followed by Direct Sulfur Recovery Process (DSRP). However, this process sequence does not remove trace contaminants and is targeted primarily towards the development of advanced integrated gasification combined cycle (IGCC) plants that produce electricity (not both electricity and transportation fuels). There is an immediate as well as long-term need for the development of cleanup processes that produce highly clean coal gas for next generation power plants. To this end, a novel process is now under development at several research organizations in which the H{sub 2} in coal gas is directly oxidized to elemental sulfur over a selective catalyst. Such a process is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S In the Single-Step Sulfur Recovery Process (SSRP), the direct oxidation of H{sub 2}S to elemental sulfur in the presence of SO{sub 2} is ideally suited for coal gas from commercial gasifiers with a quench system to remove essentially all the trace contaminants except H{sub 2}S. This direct oxidation process has the potential to produce a super clean coal gas more economically than both conventional amine-based processes and HGD/DSRP. The H{sub 2} and CO components of syngas appear to behave as inert with respect to sulfur formed at the SSRP conditions. One problem in the SSRP process that needs to be eliminated or minimized is COS formation that may occur due to reaction of CO with sulfur formed from the Claus reaction. The objectives of this research are to formulate monolithic catalysts for removal of H{sub 2}S from coal gases and minimum formation of COS with monolithic catalyst supports, {gamma}-alumina wash or carbon coats, and catalytic metals, to develop a catalytic regeneration method for a deactivated monolithic catalyst, to measure kinetics of both direct oxidation of H{sub 2}S to elemental sulfur with SO{sub 2} as an oxidizer and formation of COS in the presence of a simulated coal gas mixture containing H{sub 2}, CO, CO{sub 2}, and moisture, using a monolithic catalyst reactor, and to develop kinetic rate equations and model the direct oxidation process to assist in the design of large-scale plants. This heterogeneous catalytic reaction has gaseous reactants such as H{sub 2}S and SO{sub 2}. However, this heterogeneous catalytic reaction has heterogeneous products such as liquid elemental sulfur and steam. To achieve the above-mentioned objectives using a monolithic catalyst reactor, experiments on conversion of hydrogen sulfide into elemental sulfur and formation of COS were carried out for the space time range of 40-560 seconds at 120-150 C to evaluate effects of reaction temperatures, total pressure, space time, and catalyst regeneration on conversion of hydrogen sulfide into elemental sulfur and formation of COS. Simulated coal gas mixtures consist of 3,600-4,000-ppmv hydrogen sulfide, 1,800-2,000 ppmv sulfur dioxide, 23-27 v% hydrogen, 36-41 v% CO, 10-12 v% CO{sub 2}, 0-10 vol % moisture, and nitrogen as remainder. Volumetric feed rates of a simulated coal gas mixture to the reactor are 30-180 SCCM. The temperature of the reactor is controlled in an oven at 120-150 C. The pressure of the reactor is maintained at 40-210 psia. The molar ratio of H{sub 2}S to SO{sub 2} in the monolithic catalyst reactor is mai

  13. Oceanic Trace Gases Numeric Data Packages from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    CDIAC products include numeric data packages, publications, trend data, atlases, models, etc. and can be searched for by subject area, keywords, authors, product numbers, time periods, collection sites, spatial references, etc. Most data sets or packages, many with numerous data files, are free to download from CDIAC's ftp area. CDIAC lists the following numeric data packages under the broad heading of Oceanic Trace Gases: Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16S_2005 ( 01/11/05 - 022405) • Determination of Carbon Dioxide, Hydrographic, and Chemical Parameters during the R/V Nathaniel B. Palmer Cruise in the Southern Indian Ocean (WOCE Section S04I, 050396 - 070496) • Inorganic Carbon, Nutrient, and Oxygen Data from the R/V Ronald H. Brown Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Section A16N_2003a (060403 – 081103) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Maurice Ewing Cruise in the Atlantic Ocean (WOCE Section A17, 010494 - 032194) • Global Ocean Data Analysis Project GLODAP: Results and Data • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruises in the North Atlantic Ocean on WOCE Sections AR24 (1102 – 120596) and A24, A20, and A22 (053097 – 090397) • Carbon Dioxide, Hydrographic and Chemical Data Obtained During the Nine R/V Knorr Cruises Comprising the Indian Ocean CO2 Survey (WOCE Sections I8SI9S, I9N, I8NI5E, I3, I5WI4, I7N, I1, I10, and I2; 120 194 – 012296) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Meteor Cruise 28/1 in the South Atlantic Ocean (WOCE Section A8, 032994 - 051294) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Cruise 138-3, -4, and -5 in the South Pacific Ocean (WOCE Sections P6E, P6C, and P6W, 050292 - 073092) • Global Distribution of Total Inorganic Carbon and Total Alkalinity below the deepest winter mixed layer depths • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, 080492 – 102192) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Hesperides Cruise in the Atlantic Ocean (WOCE Section A5, 071492 - 081592) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean (WOCE Section P10, 100593 – 111093) • The International Intercomparison Exercise of Underway fCO2 Systems during the R/V Meteor Cruise 36/1 in the North Atlantic Ocean • Carbon Dioxide, Hydrographic, and Chemical Data Obtained during the R/V Meteor Cruise 22/5 in the South Atlantic Ocean (WOCE Section A10, Dec. 1992-Jan, 1993) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the South Pacific Ocean (WOCE Sections P16A/P17A, P17E/P19S, and P19C, R/V Knorr , Oct. 1992-April 1993) • Surface Water and Atmospheric Underway Carbon Data Obtained During the World Ocean Circulation Experiment Indian Ocean Survey Cruises (R/V Knorr, Dec. 1994 – Jan, 1996) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Akademik Ioffe Cruise in the South Pacific Ocean (WOCE Section S4P, Feb.-April 1992) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-1 in the Equatorial Pacific Ocean (WOCE section P17C) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas Washington Cruise TUNES-3 in the Equatorial Pacific Ocean (WOCE section P16C) • Carbon-14 Measurements in Surface Water CO2 from the Atlantic, Indian and Pacific Oceans, 1965-1994 • Carbon Dioxide, Hydrographic, and Chemical Data Obtained During R/V Meteor Cruise 18/1 in the North Atlantic Ocean (WOCE Section A1E) • Carbon Dioxide, Hydrographic, and Chemical Data Obtained in the Central South Pacific Ocean (WOCE Sections P17S and P16S) during the TUNES-2 Expedition of the R/V Th

  14. Carbon Dioxide Information Analysis Center and World Data Center for Atmospheric Trace Gases Fiscal Year 2001 Annual Report

    SciTech Connect (OSTI)

    Cushman, R.M.

    2002-10-15

    The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change, including concentrations of carbon dioxide (CO{sub 2}) and other radiatively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of CO{sub 2} and other trace gases to the atmosphere; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels. CDIAC is located within the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. CDIAC is co-located with ESD researchers investigating global-change topics, such as the global carbon cycle and the effects of carbon dioxide on climate and vegetation. CDIAC staff are also connected with current ORNL research on related topics, such as renewable energy and supercomputing technologies. CDIAC is supported by the Environmental Sciences Division (Jerry Elwood, Director) of DOE's Office of Biological and Environmental Research. CDIAC represents DOE in the multi-agency Global Change Data and Information System (GCDIS). Wanda Ferrell is DOE's Program Manager with overall responsibility for CDIAC. Roger Dahlman is responsible for CDIAC's AmeriFlux tasks, and Anna Palmisano for CDIAC's Ocean Data tasks. CDIAC is made up of three groups: Data Systems, Information Services, and Computer Systems, with nineteen full-time or part-time staff. The following section provides details on CDIAC's staff and organization. The Data Systems Group identifies and obtains databases important to global-change research; analyzes data; compiles needed databases; provides data management and support to specific programs [e.g., NARSTO, Free-Air CO{sub 2} Enrichment (FACE), AmeriFlux, Oceans]; and prepares documentation to ensure the long-term utility of CDIAC's data holdings. The Information Services Group responds to data and information requests; maintains records of all request activities; analyzes user statistics; assists in Web development and maintenance; and produces CDIAC's newsletter (CDIAC Communications), the fiscal year annual reports, and various information materials. The Computer Systems Group provides computer system support for all CDIAC and WDC activities; designs and maintains CDIAC's computing system network; ensures compliance with ORNL/DOE computing security regulations; ensures long-term preservation of CDIAC data holdings through systematic backups; evaluates, develops, and implements software; ensures standards compliance; generates user statistics; provides Web design, development, and oversight; and provides systems analysis and programming assistance for scientific data projects.

  15. Methods of forming and using porous structures for energy efficient separation of light gases by capillary condensation

    DOE Patents [OSTI]

    Calamur, Narasimhan (Lemont, IL); Carrera, Martin E. (Naperville, IL); Devlin, David J. (Los Alamos, NM); Archuleta, Tom (Espanola, NM)

    2000-01-01

    The present invention relates to an improved method and apparatus for separating one or more condensable compounds from a mixture of two or more gases of differing volatilities by capillary fractionation in a membrane-type apparatus, and a method of forming porous structures therefor. More particularly, the invention includes methods of forming and using an apparatus consisting, at least in part, of a porous structure having capillary-type passages extending between a plurality of small openings on the first side and larger openings on a second side of the structure, the passages being adapted to permit a condensed liquid to flow therethrough substantially by capillary forces, whereby vapors from the mixture are condensed, at least in part, and substantially in and adjacent to the openings on the first side, and are caused to flow in a condensed liquid state, substantially in the absence of vapor, from the openings on the first side to the openings on the second side.

  16. Ground state of a mixture of two bosonic Calogero-Sutherland gases with strong odd-wave interspecies attraction

    SciTech Connect (OSTI)

    Girardeau, M. D.; Astrakharchik, G. E.

    2010-04-15

    A model of two Calogero-Sutherland Bose gases A and B with strong odd-wave AB attractions induced by a p-wave AB Feshbach resonance is studied. The ground-state wave function is found analytically by a Bose-Bose duality mapping, which permits one to accurately determine static physical properties by a Monte Carlo method. The condensation of particles or particle pairs (molecules) is tested by analyzing the presence of the off-diagonal long-range order in one- or two- body density matrices. The p-wave symmetry of AB interaction makes possible quasicondensation of type A particles at the Fermi momentum of the B component. The zero-temperature phase diagram is drawn in terms of densities and interaction strengths.

  17. Upper ocean model of dissolved atmospheric gases. Final report for the period 1 August 1991--31 May 1995

    SciTech Connect (OSTI)

    Schudlich, R.; Emerson, S.

    1996-05-01

    This report summarizes results from three years of funding for a modelling study of processes controlling the distribution of metabolic chemical tracers in surface waters. We determined concentrations of the gases O{sub 2}, Ar, N{sub 2}, and the stable isotope ratio ({sup 18}O/{sup 16}O) of molecular oxygen in surface waters at Station ALOHA in conjunction with the Global Ocean Flux Study (GOFS) Hawaiian Ocean Time-series project during the years 1989- 90 and 1992-93. Under this contract we have incorporated chemical tracers into an existing ocean mixed-layer model to simulate the physical processes controlling the distribution and seasonal cycle of dissolved gases in the upper ocean. The broad background of concurrent chemical, physical, and biological measurements at Station ALOHA provides enough redundancy of ``ground truth`` to assess the model`s accuracy. Biological oxygen production estimated from modelled chemical tracers agrees with estimates based on measurement of carbon fluxes into the deep ocean and nitrate fluxes into the upper ocean during 1989-90 and 1992-93, verifying for the first time the utility of chemical tracers for determining biological fluxes in the ocean. Our results suggest that in the euphotic zone (the upper 100 m of the ocean), the net biological O{sub 2} production is 1.0-2. 0 moles m{sup -2}yr{sup - 1}. Inert gas (Ar, N{sub 2}) supersaturation levels show that air and bubble injection are important modes of air-sea gas transfer in the Station ALOHA region.

  18. The effect of diluent gases on ignition delay times in the shock tube and in the rapid compression machine

    SciTech Connect (OSTI)

    Wuermel, J.; Silke, E.J.; Curran, H.J.; O Conaire, M.S.; Simmie, J.M.

    2007-10-15

    The diluent gas used in the preparation of test fuel/oxygen mixtures is inert and does not take part in the chemical reaction. However, it does have an effect on the measured ignition delay time both in rapid compression machines and in shock tubes - argon decelerates ignition in the RCM, but accelerates it in the shock tube under some conditions. This opposite effect is due to the times scales involved in these experimental devices. Typical ignition delay times in the RCM are in the region of 1-200 ms, while those in the shock tube are much shorter (10-1000 {mu}s). Comparative RCM experiments and simulations for helium, argon, xenon, and nitrogen have shown extreme heat loss in the postcompression period, particularly for helium. Autoignition measurements of 2,3-dimethylpentane have highlighted a direct dependency of ignition delay time on the type of diluent used, where longer ignition delay time were recorded with argon. This increased ignition delay time is due to the extreme cooling of argon in the postcompression period. This observation was strengthened by comparative experiments with helium and argon, where the diluent effect was even stronger for helium, caused by its higher thermal conductivity. In the shock tube, the diluent effect is opposite to that in the RCM. For dilute mixtures of isooctane, calculations have predicted that mixtures with argon will ignite faster than those with nitrogen, based on the relative heat capacities of the two diluent gases. Overall, we conclude that the choice of diluent gases in experimental devices must be made with care, as ignition delay times can depend strongly on the type of diluent gas used. (author)

  19. The HIPPO (HIAPER Pole-to-Pole Observations) study of the carbon cycle and greenhouse gases measured meteorology, atmospheric chemistry, and aerosol constituents along transects from approximately pole-to-pole

    E-Print Network [OSTI]

    .) · Ancillary flight information, field catalogs, data quality reports, software, and documentation · Pole products and user documentation. Files are in ASCII text format. Products include: · A comprehensive merged structure data: 1) greenhouse gases and carbon cycle gases, 2) ozone and water vapor, 3) black carbon

  20. The field of BoseEinstein condensation in atomic gases has been full of sur-prises. What happened after the first realization of BoseEinstein condensates

    E-Print Network [OSTI]

    Foreword The field of Bose­Einstein condensation in atomic gases has been full of sur- prises. What happened after the first realization of Bose­Einstein condensates in 1995 has far exceeded the vision of their creators. Originally, I expected interesting studies of equilibrium properties and dynamics, but the Bose

  1. Efficient all-optical production of large [superscript 6]Li quantum gases using D[subscript 1] gray-molasses cooling

    E-Print Network [OSTI]

    Burchianti, A.

    We use a gray molasses operating on the D[subscript 1] atomic transition to produce degenerate quantum gases of [superscript 6]Li with a large number of atoms. This sub-Doppler cooling phase allows us to lower the initial ...

  2. Fig. 2: Performance of the optically-pumped electron spin filter with different quenching gases. For each run, the gas pressure was ~200 mTorr, the pump

    E-Print Network [OSTI]

    Gay, Timothy J.

    Fig. 2: Performance of the optically-pumped electron spin filter with different quenching gases. For each run, the gas pressure was ~200 mTorr, the pump wavelength 794.976 nm, and the pump spectral FWHM ~2 GHz. The energy of the electrons incident on the collision cell was ~3 eV. In the optically-pumped

  3. Space Science Technology Health General Sci-fi & Gaming Oddities International Business Politics Education Entertainment Sports Electronic Nose Sniffs Out Toxic Gases

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    , 12:37 CDT Imagine a polka-dotted postage stamp that can sniff out poisonous gases or deadly toxins a series of tiny colored dots ­ each a different pigment ­ on an inert backing such as paper, plastic brings us one step closer to having a small wearable sensor that can detect multiple airborne toxins

  4. BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL AND SURFACE PROPERTIES FROM THE ORAC-AATSR RETRIEVAL

    E-Print Network [OSTI]

    Oxford, University of

    BIOMASS BURNING IN THE AMAZON: LINKS BETWEEN BURNING, SCIAMACHY TRACE GASES, AND AEROSOL@atm.ox.ac.uk AEROSOL AND GAS PROPERTIESSEASONALITY OF BURNING Biomass burning in the Amazon shows strong seasonal in aerosol optical depth (AOD) and effective radius, linked to biomass burning through detected fires. Use

  5. Black holes as gases of punctures with a chemical potential: Bose-Einstein condensation and logarithmic corrections to the entropy

    E-Print Network [OSTI]

    Olivier Asin; Jibril Ben Achour; Marc Geiller; Karim Noui; Alejandro Perez

    2014-12-18

    We study the thermodynamical properties of black holes when described as gases of indistinguishable punctures with a chemical potential. In this picture, which arises from loop quantum gravity, the black hole microstates are defined by finite families of half-integers spins coloring the punctures, and the near-horizon energy measured by quasi-local stationary observers defines the various thermodynamical ensembles. The punctures carry excitations of quantum geometry in the form of quanta of area, and the total horizon area $a_\\text{H}$ is given by the sum of these microscopic contributions. We assume here that the system satisfies the Bose-Einstein statistics, and that each microstate is degenerate with a holographic degeneracy given by $\\exp\\big(\\lambda a_\\text{H}/\\ell_\\text{Pl}^2\\big)$ and $\\lambda>0$. We analyze in detail the thermodynamical properties resulting from these inputs, and in particular compute the grand canonical entropy. We explain why the requirements that the temperature be fixed to the Unruh temperature and that the chemical potential vanishes do not specify completely the semi-classical regime of large horizon area, and classify in turn what the various regimes can be. When the degeneracy saturates the holographic bound ($\\lambda=1/4$), there exists a semi-classical regime in which the subleading corrections to the entropy are logarithmic. Furthermore, this regime corresponds to a Bose-Einstein condensation, in the sense that it is dominated by punctures carrying the minimal (or ground state) spin value $1/2$.

  6. Magnetic transport apparatus for the production of ultracold atomic gases in the vicinity of a dielectric surface

    E-Print Network [OSTI]

    Haendel, S; Wiles, T P; Hopkins, S A; Cornish, S L

    2011-01-01

    We present an apparatus designed for studies of atom-surface interactions using quantum degenerate gases of $^{85}$Rb and $^{87}$Rb in the vicinity of a room temperature dielectric surface. The surface to be investigated is a super-polished face of a glass Dove prism mounted in a glass cell under ultra-high vacuum (UHV). To maintain excellent optical access to the region surrounding the surface magnetic transport is used to deliver ultracold atoms from a separate vacuum chamber housing the magneto-optical trap (MOT). We present a detailed description of the vacuum apparatus highlighting the novel design features; a low profile MOT chamber and the inclusion of an obstacle in the transport path. We report the characterization and optimization of the magnetic transport around the obstacle, achieving transport efficiencies of 70% with negligible heating. Finally we demonstrate the loading of a hybrid optical-magnetic trap with $^{87}$Rb and the creation of Bose-Einstein condensates via forced evaporative cooling ...

  7. Water injection as a means for reducing non-condensible andcorrosive gases in steam produced from vapor-dominated reservoirs

    SciTech Connect (OSTI)

    Pruess, Karsten; Spycher, Nicolas; Kneafsey, Timothy J.

    2007-01-08

    Large-scale water injection at The Geysers, California, hasgenerated substantial benefits in terms of sustaining reservoir pressuresand production rates, as well as improving steam composition by reducingthe content of non-condensible gases (NCGs). Two effects have beenrecognized and discussed in the literature as contributing to improvedsteam composition, (1) boiling of injectate provides a source of "clean"steam to production wells, and (2) pressurization effects induced byboiling of injected water reduce upflow of native steam with large NCGconcentrations from depth. In this paper we focus on a possibleadditional effect that could reduce NCGs in produced steam by dissolutionin a condensed aqueous phase.Boiling of injectate causes pressurizationeffects that will fairly rapidly migrate outward, away from the injectionpoint. Pressure increases will cause an increase in the saturation ofcondensed phase due to vapor adsorption on mineral surfaces, andcapillary condensation in small pores. NCGs will dissolve in theadditional condensed phase which, depending upon their solubility, mayreduce NCG concentrations in residual steam.We have analyzed thepartitioning of HCl between vapor and aqueous phases, and have performednumerical simulations of injection into superheated vapor zones. Oursimulations provide evidence that dissolution in the condensed phase canindeed reduce NCG concentrations in produced steam.

  8. Program plan for evaluation and remediation of the generation and release of flammable gases in Hanford Site waste tanks

    SciTech Connect (OSTI)

    Johnson, G.D.

    1991-08-01

    This program plan describes the activities being conducted for the resolution of the flammable gas problem that is associated with 23 high-level waste tanks at the Hanford Site. The classification of the wastes in all of these tanks is not final and some wastes may not be high-level wastes. However, until the characterization and classification is complete, all the tanks are treated as if they contain high-level waste. Of the 23 tanks, Tank 241-SY-101 (referred to as Tank 101-SY) has exhibited significant episodic releases of flammable gases (hydrogen and nitrous oxide) for the past 10 years. The major near-term focus of this program is for the understanding and stabilization of this tank. An understanding of the mechanism for gas generation and the processes for the episodic release will be obtained through sampling of the tank contents, laboratory studies, and modeling of the tank behavior. Additional information will be obtained through new and upgraded instrumentation for the tank. A number of remediation, or stabilization, concepts will be evaluated for near-term (2 to 3 years) applications to Tank 101-SY. Detailed safety assessments are required for all activities that will occur in the tank (sampling, removal of equipment, and addition of new instruments). This program plan presents a discussion of each task, provides schedules for near-term activities, and gives a summary of the expected work for fiscal years 1991, 1992, and 1993. 16 refs., 7 figs., 8 tabs.

  9. A density functional theory study of magneto-electric Jones birefringence of noble gases, furan homologues, and mono-substituted benzenes

    SciTech Connect (OSTI)

    Fahleson, Tobias; Norman, Patrick; Coriani, Sonia; Rizzo, Antonio; Rikken, Geert L. J. A.

    2013-11-21

    We report on the results of a systematic ab initio study of the Jones birefringence of noble gases, of furan homologues, and of monosubstituted benzenes, in the gas phase, with the aim of analyzing the behavior and the trends within a list of systems of varying size and complexity, and of identifying candidates for a combined experimental/theoretical study of the effect. We resort here to analytic linear and nonlinear response functions in the framework of time-dependent density functional theory. A correlation is made between the observable (the Jones constant) and the atomic radius for noble gases, or the permanent electric dipole and a structure/chemical reactivity descriptor as the para Hammett constant for substituted benzenes.

  10. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    SciTech Connect (OSTI)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on-road vehicles: the MCMA motor vehicles produce abundant amounts of primary PM, elemental carbon, particle-bound polycyclic aromatic hydrocarbons, carbon monoxide and a wide range of air toxics; the feasibility of using eddy covariance techniques to measure fluxes of volatile organic compounds in an urban core and a valuable tool for validating local emissions inventory; a much better understanding of the sources and atmospheric loadings of volatile organic compounds; the first spectroscopic detection of glyoxal in the atmosphere; a unique analysis of the high fraction of ambient formaldehyde from primary emission sources; characterization of ozone formation and its sensitivity to VOCs and NOx; a much more extensive knowledge of the composition, size distribution and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models; evaluations of significant errors that can arise from standard air quality monitors for O3 and NO2; and the implementation of an innovative Markov Chain Monte Carlo method for inorganic aerosol modeling as a powerful tool to analyze aerosol data and predict gas phase concentrations where these are unavailable. During the MILAGRO Campaign the collaborative team utilized a combination of central fixed sites and a mobile laboratory deployed throughout the MCMA to representative urban and boundary sites to measure trace gases and fine particles. Analysis of the extensive 2006 data sets has confirmed the key findings from MCMA-2002/2003; additionally MCMA-2006 provided more detailed gas and aerosol chemistry and wider regional scale coverage. Key results include an updated 2006 emissions inventory; extension of the flux system to measure fluxes of fine particles; better understanding of the sources and apportionment of aerosols, including contribution from biomass burning and industrial sources; a comprehensive evaluation of metal containing particles in a com

  11. The solvation radius of silicate melts based on the solubility of noble gases and scaled particle theory

    SciTech Connect (OSTI)

    Ottonello, Giulio; Richet, Pascal

    2014-01-28

    The existing solubility data on noble gases in high-temperature silicate melts have been analyzed in terms of Scaling Particle Theory coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM). After a preliminary analysis of the role of the contracted Gaussian basis sets and theory level in reproducing appropriate static dipole polarizabilities in a vacuum, we have shown that the procedure returns Henry's law constants consistent with the values experimentally observed in water and benzene at T = 25?°C and P = 1 bar for the first four elements of the series. The static dielectric constant (?) of the investigated silicate melts and its optical counterpart (?{sup ?}) were then resolved through the application of a modified form of the Clausius-Mossotti relation. Argon has been adopted as a probe to depict its high-T solubility in melts through an appropriate choice of the solvent diameter ?{sub s}, along the guidelines already used in the past for simple media such as water or benzene. The ?{sub s} obtained was consistent with a simple functional form based on the molecular volume of the solvent. The solubility calculations were then extended to He, Ne, and Kr, whose dispersive and repulsive coefficients are available from theory and we have shown that their ab initio Henry's constants at high T reproduce the observed increase with the static polarizability of the series element with reasonable accuracy. At room temperature (T = 25?°C) the calculated Henry's constants of He, Ne, Ar, and Kr in the various silicate media predict higher solubilities than simple extrapolations (i.e., Arrhenius plots) based on high-T experiments and give rise to smooth trends not appreciably affected by the static polarizabilities of the solutes. The present investigation opens new perspectives on a wider application of PCM theory which can be extended to materials of great industrial interest at the core of metallurgical processes, ceramurgy, and the glass industry.

  12. Production of ethanol from refinery waste gases. Phase 3. Engineering development. Annual report, April 1, 1995--May 15, 1996

    SciTech Connect (OSTI)

    Arora, D.; Basu, R.; Phillips, J.R.; Wikstrom, C.V.; Clausen, E.C; Gaddy, J.L.

    1996-11-01

    Refineries discharge large volumes of H2, CO, and CO 2 from cracking, coking, and hydrotreating operations. This R&D program seeks to develop, demonstrate, and commercialize a biological process for converting these waste gases into ethanol for blending with gasoline. A 200,000 BPD refinery could produce up to 38 million gallons ethanol per year. The program is being conducted in 3 phases: II, technology development; III, engineering development; and IV, demonstration. Phase I, exploratory development, has been completed. The research effort has yielded two strains (Isolates O-52 and C-01) which are to be used in the pilot studies to produce ethanol from CO, CO2, and H2 in petroleum waste gas. Results from single continuous stirred tank reactor (CSTR) laboratory tests have shown that 20-25 g/L ethanol can be produced with < 5 g/L acetic acid byproduct. Laboratory studies with two CSTRs in series have yielded ethanol concentrations of 30-35 g/L with 2-4 g/L acetic acid byproduct. Water recycle from distillation back to the fermenter shows that filtration of the water before distillation eliminates the recycle of toxic materials back to the fermenter. Product recovery in the process will use direct distillation to the azeotrope, followed by adsorption to produce neat ethanol. This is less energy intensive than e.g. solvent extraction, azeotropic distillation, or pervaporation. Economic projections are quite attractive; the economics are refinery stream dependent and thus vary depending on refinery location and operation.

  13. Removal potential of toxic 2378-substituted PCDD/F from incinerator flue gases by waste-derived activated carbons

    SciTech Connect (OSTI)

    Hajizadeh, Yaghoub; Onwudili, Jude A.; Williams, Paul T.

    2011-06-15

    The application of activated carbons has become a commonly used emission control protocol for the removal or adsorption of persistent organic pollutants from the flue gas streams of waste incinerators. In this study, the 2378-substituted PCDD/F removal efficiency of three types of activated carbons derived from the pyrolysis of refuse derived fuel, textile waste and scrap tyre was investigated and compared with that of a commercial carbon. Experiments were carried out in a laboratory scale fixed-bed reactor under a simulated flue gas at 275 deg. C with a reaction period of four days. The PCDD/F in the solid matrices and exhaust gas, were analyzed using gas chromatography coupled with a triple quadrupole mass spectrometer. In the absence of activated carbon adsorbent, there was a significant increase in the concentration of toxic PCDD/F produced in the reacted flyash, reaching up to 6.6 times higher than in the raw flyash. In addition, there was a substantial release of PCDD/F into the gas phase, which was found in the flue gas trapping system. By application of the different commercial, refuse derived fuel, textile and tyre activated carbons the total PCDD/F toxic equivalent removal efficiencies in the exhaust gas stream were 58%, 57%, 64% and 52%, respectively. In general, the removal of the PCDDs was much higher with an average of 85% compared to PCDFs at 41%. Analysis of the reacted activated carbons showed that there was some formation of PCDD/F, for instance, a total of 60.6 {mu}g I-TEQ kg{sup -1} toxic PCDD/F was formed in the refuse derived fuel activated carbon compared to 34 {mu}g I-TEQ kg{sup -1} in the commercial activated carbon. The activated carbons derived from the pyrolysis of waste, therefore, showed good potential as a control material for PCDD/F emissions in waste incinerator flue gases.

  14. Experimental validation of the dual positive and negative ion beam acceleration in the plasma propulsion with electronegative gases thruster

    SciTech Connect (OSTI)

    Rafalskyi, Dmytro, E-mail: dmytro.rafalskyi@lpp.polytechnique.fr; Popelier, Lara; Aanesland, Ane [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universités, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-02-07

    The PEGASES (Plasma Propulsion with Electronegative Gases) thruster is a gridded ion thruster, where both positive and negative ions are accelerated to generate thrust. In this way, additional downstream neutralization by electrons is redundant. To achieve this, the thruster accelerates alternately positive and negative ions from an ion-ion plasma where the electron density is three orders of magnitude lower than the ion densities. This paper presents a first experimental study of the alternate acceleration in PEGASES, where SF{sub 6} is used as the working gas. Various electrostatic probes are used to investigate the source plasma potential and the energy, composition, and current of the extracted beams. We show here that the plasma potential control in such system is key parameter defining success of ion extraction and is sensitive to both parasitic electron current paths in the source region and deposition of sulphur containing dielectric films on the grids. In addition, large oscillations in the ion-ion plasma potential are found in the negative ion extraction phase. The oscillation occurs when the primary plasma approaches the grounded parts of the main core via sub-millimetres technological inputs. By controlling and suppressing the various undesired effects, we achieve perfect ion-ion plasma potential control with stable oscillation-free operation in the range of the available acceleration voltages (±350?V). The measured positive and negative ion currents in the beam are about 10?mA for each component at RF power of 100?W and non-optimized extraction system. Two different energy analyzers with and without magnetic electron suppression system are used to measure and compare the negative and positive ion and electron fluxes formed by the thruster. It is found that at alternate ion-ion extraction the positive and negative ion energy peaks are similar in areas and symmetrical in position with +/? ion energy corresponding to the amplitude of the applied acceleration voltage.

  15. Effect of SO2 on oxidation of metallic materials in CO2/H2O-rich gases relevant to oxyfuel environments

    SciTech Connect (OSTI)

    Huczkowski, P.; Olszewski, T.; Schiek, M.; Lutz, B.; Holcomb, G.; Shemet, V.; Meier, G. H.; Singheiser, L.; Quadakkers, W. J.

    2012-09-19

    This report is a description of research performed by the Jülich Research Centre. Their conclusions outline the effects of SO2 additions on oxide formations and the interaction of other gases in oxvyfuel environments.

  16. Chapter 22 Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (EPA 2010b). The GHGs present in the earth's atmosphere include water vapor (H 2 O), ozone (O 3 ), CO 2 , methane (CH 4 ), nitrous oxide (N 2 O), and trace amounts of...

  17. Driven inelastic Maxwell gases

    E-Print Network [OSTI]

    V. V. Prasad; Sanjib Sabhapandit; Abhishek Dhar

    2015-07-22

    We consider the inelastic Maxwell model, which consists of a collection of particles that are characterized by only their velocities, and evolving through binary collisions and external driving. At any instant, a particle is equally likely to collide with any of the remaining particles. The system evolves in continuous time with mutual collisions and driving taken to be point processes with rates $\\tau_c^-{1}$ and $\\tau_w^{-1}$ respectively. The mutual collisions conserve momentum and are inelastic, with a coefficient of restitution $r$. The velocity change of a particle with velocity $v$, due to driving, is taken to be $\\Delta v=-(1+r_w) v+\\eta$, mimicking the collision with a vibrating wall, where $r_w$ the coefficient of restitution of the particle with the "wall" and $\\eta$ is Gaussian white noise. The Ornstein-Uhlenbeck driving mechanism given by $\\frac{dv}{dt}=-\\Gamma v+\\eta$ is found to be a special case of the driving modeled as a point process. Using both the continuum and discrete versions we show that while the equations for the one-particle and the two-particle velocity distribution functions do not close, the joint evolution equations of the variance and the two-particle velocity correlation functions close. With the exact formula for the variance we find that, for $r_w\

  18. Carbon Bearing Trace Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery ActToolsForNorthfor

  19. Greenhouse Gases into Gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreenGreen

  20. Finite range and upper branch effects on itinerant ferromagnetism in repulsive Fermi gases: Bethe–Goldstone ladder resummation approach

    SciTech Connect (OSTI)

    He, Lianyi

    2014-12-15

    We investigate the ferromagnetic transition in repulsive Fermi gases at zero temperature with upper branch and effective range effects. Based on a general effective Lagrangian that reproduces precisely the two-body s-wave scattering phase shift, we obtain a nonperturbative expression of the energy density as a function of the polarization by using the Bethe–Goldstone ladder resummation. For hard sphere potential, the predicted critical gas parameter k{sub F}a=0.816 and the spin susceptibility agree well with the results from fixed-node diffusion Monte Carlo calculations. In general, positive and negative effective ranges have opposite effects on the critical gas parameter k{sub F}a: While a positive effective range reduces the critical gas parameter, a negative effective range increases it. For attractive potential or Feshbach resonance model, the many-body upper branch exhibits an energy maximum at k{sub F}a=? with ?=1.34 from the Bethe–Goldstone ladder resummation, which is qualitatively consistent with experimental results. The many-body T-matrix has a positive-energy pole for k{sub F}a>? and it becomes impossible to distinguish the bound state and the scattering state. These positive-energy bound states become occupied and therefore the upper branch reaches an energy maximum at k{sub F}a=?. In the zero range limit, there exists a narrow window (0.86

  1. Adsorption and Separation of Light Gases on an Amino-Functionalized Metal–Organic Framework: An Adsorption and In Situ XRD Study

    SciTech Connect (OSTI)

    Couck S.; Stavitski E.; Gobehiya, E.; Kirschhock, C.E.A.; Serra-Crespo, P.; Juan-Alcaniz, J.; Martinez Joaristi, A.; Gascon, J.; Kapteijn, F.; Baron, G. V.; Denayer J.F.M.

    2012-02-29

    The NH{sub 2}-MIL-53(Al) metal-organic framework was studied for its use in the separation of CO{sub 2} from CH{sub 4}, H{sub 2}, N{sub 2} C{sub 2}H{sub 6} and C{sub 3}H{sub 8} mixtures. Isotherms of methane, ethane, propane, hydrogen, nitrogen, and CO{sub 2} were measured. The atypical shape of these isotherms is attributed to the breathing properties of the material, in which a transition from a very narrow pore form to a narrow pore form and from a narrow pore form to a large pore form occurs, depending on the total pressure and the nature of the adsorbate, as demonstrated by in-situ XRD patterns measured during adsorption. Apart from CO{sub 2}, all tested gases interacted weakly with the adsorbent. As a result, they are excluded from adsorption in the narrow pore form of the material at low pressure. CO{sub 2} interacted much more strongly and was adsorbed in significant amounts at low pressure. This gives the material excellent properties to separate CO{sub 2} from other gases. The separation of CO{sub 2} from methane, nitrogen, hydrogen, or a combination of these gases has been demonstrated by breakthrough experiments using pellets of NH{sub 2}-MIL-53(Al). The effect of total pressure (1-30 bar), gas composition, temperature (303-403 K) and contact time has been examined. In all cases, CO{sub 2} was selectively adsorbed, whereas methane, nitrogen, and hydrogen nearly did not adsorb at all. Regeneration of the adsorbent by thermal treatment, inert purge gas stripping, and pressure swing has been demonstrated. The NH{sub 2}-MIL-53(Al) pellets retained their selectivity and capacity for more than two years.

  2. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect (OSTI)

    Hai Xiao; Junhang Dong; Jerry Lin; Van Romero

    2011-12-31

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project â??DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases.â?ť This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  3. Aerosol generation by liquid breakup resulting from sparging of molten pools of corium by gases released during core/concrete interactions

    SciTech Connect (OSTI)

    Ginsberg, T.

    1985-01-01

    Aerosol release is expected from a pool of molten corium that is agitated by gases that would emerge from concrete during the core/concrete interactions phase of a core meltdown accident in a light water reactor. A corium flow-regime-dependent model is developed for aerosol generation by mechanical breakup of the melt by the flowing vapors. Previous work reported in the literature is used to identify the dominant corium gas/liquid flow regimes and to formulate the flow/regime transition criteria. Models are presented for the calculation of an aerosol entrainment rate under conditions of bubbly- and churn-turbulent, two-phase pool conditions.

  4. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    SciTech Connect (OSTI)

    Akagi, Sheryl; Yokelson, Robert J.; Burling, Ian R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, Gavin; Sullivan, Amy; Lee, Taehyoung; Kredenweis, Sonia; Urbanski, Shawn; Reardon, James; Griffith, David WT; Johnson, Timothy J.; Weise, David

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ?HCN/?CO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of hours to a day. It was possible to measure the chemical evolution of the plume on four of the fires and significant ozone (O3) formation (?O3/?CO from 10-90%) occurred in all of these plumes. Slower O3 production was observed on a cloudy day with low co-emissions of NOx and the fastest O3 production was observed on a sunny day when the plume almost certainly incorporated significant additional NOx by passing over the Columbia, SC metropolitian area. Due to rapid plume dilution, it was only possible to acquire high quality downwind data for two other species (formaldehyde and methanol) on two of the fires. In all four cases significant increases were observed. This is likely the first direct observation of post-emission methanol production in biomass burning plumes and the precursors likely included terpenes.

  5. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector

    SciTech Connect (OSTI)

    Yamashita, Masatsugu, E-mail: m-yama@riken.jp; Takahashi, Hideki; Otani, Chiko [RIKEN Center for Advanced Photonics, 519-1399 Aobaaramaki, Aoba-ku, Sendai 980-0845 (Japan); Ouchi, Toshihiko [Corporate R and D Headquarters, Canon Inc., 30-2 Shimomaruko 3-Chome, Ohta-ku, Tokyo 145-8501 (Japan)

    2014-02-03

    We present a reflection-type ultra-broadband terahertz (THz) time-domain spectroscopic ellipsometry system covering the frequency range of 0.5–30 THz. GaP (110) and z-cut GaSe crystals are used as emitters to generate the THz and mid-infrared pulses, respectively, and a photoconductive antenna switch using a low-temperature grown GaAs epitaxial layer transferred on Si substrate was used as a detector. By changing the emitter between the GaP and GaSe crystals, the measurable frequency range can be easily switched from the 0.5–7.8 THz range to the 7.8–30 THz range without additional optical alignment. We demonstrated the measurement of the dielectric function in a p-type InAs wafer and the optical conductivity of an indium tin oxide (ITO) thin film. The obtained carrier density and the mobility of the ITO thin film show good agreement with that obtained by the Hall measurement.

  6. Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases

    SciTech Connect (OSTI)

    Prather, Michael J.

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  7. Predictive Modeling of Steam Condensation onto Finned Tubes in the Presence of Noncondensable Gases for Passive Safety Reactor Containment Heat Exchangers

    SciTech Connect (OSTI)

    Munoz-Cobo, Jose Luis [Universidad Politecnica de Valencia (Spain); Palomo, Maria Jose [Universidad Politecnica de Valencia (Spain); Herranz, Luis Enrique [CIEMAT (Spain)

    2001-04-15

    A mechanistic model is presented to predict the steam condensation on containment finned tubes in the presence of noncondensables (NCs). The total thermal resistance from bulk gas to coolant is formulated as a parallel combination of the convective and condensation gas resistances coupled in series to those of the condensate layer, the wall, and the coolant.The condensate layer thermal resistance is calculated by means of an Adamek-based model, while the gas mixture thermal resistance is formulated based on diffusion layer modeling.The model results are compared with the available experimental data of Wanniarachi and Rose for pure steam condensation on finned tubes and with the data of Mazzochi for condensation in the presence of NC gases.

  8. Screening of remote charge scattering sites from the oxide/silicon interface of strained Si two-dimensional electron gases by an intermediate tunable shielding electron layer

    SciTech Connect (OSTI)

    Huang, Chiao-Ti, E-mail: chiaoti@princeton.edu; Li, Jiun-Yun; Chou, Kevin S.; Sturm, James C. [Department of Electrical Engineering, Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-06-16

    We report the strong screening of the remote charge scattering sites from the oxide/semiconductor interface of buried enhancement-mode undoped Si two-dimensional electron gases (2DEGs), by introducing a tunable shielding electron layer between the 2DEG and the scattering sites. When a high density of electrons in the buried silicon quantum well exists, the tunneling of electrons from the buried layer to the surface quantum well can lead to the formation of a nearly immobile surface electron layer. The screening of the remote charges at the interface by this newly formed surface electron layer results in an increase in the mobility of the buried 2DEG. Furthermore, a significant decrease in the minimum mobile electron density of the 2DEG occurs as well. Together, these effects can reduce the increased detrimental effect of interface charges as the setback distance for the 2DEG to the surface is reduced for improved lateral confinement by top gates.

  9. Index of refraction of gases for matter waves: effect of the motion of the gas particles on the calculation of the index

    E-Print Network [OSTI]

    Caroline Champenois; Marion Jacquey; Steven Lepoutre; Matthias Büchner; Gérard Trénec; Jacques Vigué

    2007-11-09

    Two different formulae relating the index of refraction $n$ of gases for atom waves to the scattering amplitude have been published. We show here that these two formulae are not consistent with the definition of the total scattering cross-section while the formula developed by one of us (C.C.) in her thesis is in agreement with this standard knowledge. We discuss this result, in particular in the neutron case for which such an index was first introduced. We finally evaluate the index of refraction as a function of well known quantities and we discuss the order of magnitude of the ratio of $(n-1)/n_t$, where $n_t$ is the gas density.

  10. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    SciTech Connect (OSTI)

    Almeida, P. G. C.; Benilov, M. S.

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently, but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.

  11. Non-invasive in situ plasma monitoring of reactive gases using the floating harmonic method for inductively coupled plasma etching application

    SciTech Connect (OSTI)

    Lee, J. H.; Kim, M. J.; Yoon, Y. S.

    2013-04-15

    The floating harmonic method was developed for in situ plasma diagnostics of allowing real time measurement of electron temperature (T{sub e}) and ion flux (J{sub ion}) without contamination of the probe from surface modification by reactive species. In this study, this novel non-invasive diagnostic system was studied to characterize inductively coupled plasma of reactive gases monitoring T{sub e} and J{sub ion} for investigating the optimum plasma etching conditions and controlling of the real-time plasma surface reaction in the range of 200-900 W source power, 10-100 W bias power, and 3-15 mTorr chamber pressure, respectively.

  12. Probing photo-ionization: experiments on positive streamers in pure gases and mixtures This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Ebert, Ute

    Probing photo-ionization: experiments on positive streamers in pure gases and mixtures This article. Phys. 43 (2010) 145204 (16pp) doi:10.1088/0022-3727/43/14/145204 Probing photo-ionization: experiments/145204 Abstract Positive streamers are thought to propagate by photo-ionization; the parameters of photo

  13. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore »cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is anticipated that they will be included in a future public release of WRF-Chem.« less

  14. EDDY RESOLVING NUTRIENT ECODYNAMICS IN THE GLOBAL PARALLEL OCEAN PROGRAM AND CONNECTIONS WITH TRACE GASES IN THE SULFUR, HALOGEN AND NMHC CYCLES

    SciTech Connect (OSTI)

    S. CHU; S. ELLIOTT

    2000-08-01

    Ecodynamics and the sea-air transfer of climate relevant trace gases are intimately coupled in the oceanic mixed layer. Ventilation of species such as dimethyl sulfide and methyl bromide constitutes a key linkage within the earth system. We are creating a research tool for the study of marine trace gas distributions by implementing coupled ecology-gas chemistry in the high resolution Parallel Ocean Program (POP). The fundamental circulation model is eddy resolving, with cell sizes averaging 0.15 degree (lat/long). Here we describe ecochemistry integration. Density dependent mortality and iron geochemistry have enhanced agreement with chlorophyll measurements. Indications are that dimethyl sulfide production rates must be adjusted for latitude dependence to match recent compilations. This may reflect the need for phytoplankton to conserve nitrogen by favoring sulfurous osmolytes. Global simulations are also available for carbonyl sulfide, the methyl halides and for nonmethane hydrocarbons. We discuss future applications including interaction with atmospheric chemistry models, high resolution biogeochemical snapshots and the study of open ocean fertilization.

  15. Study of dust particle charging in weakly ionized inert gases taking into account the nonlocality of the electron energy distribution function

    SciTech Connect (OSTI)

    Filippov, A. V. Dyatko, N. A.; Kostenko, A. S.

    2014-11-15

    The charging of dust particles in weakly ionized inert gases at atmospheric pressure has been investigated. The conditions under which the gas is ionized by an external source, a beam of fast electrons, are considered. The electron energy distribution function in argon, krypton, and xenon has been calculated for three rates of gas ionization by fast electrons: 10{sup 13}, 10{sup 14}, and 10{sup 15} cm{sup ?1}. A model of dust particle charging with allowance for the nonlocal formation of the electron energy distribution function in the region of strong plasma quasi-neutrality violation around the dust particle is described. The nonlocality is taken into account in an approximation where the distribution function is a function of only the total electron energy. Comparative calculations of the dust particle charge with and without allowance for the nonlocality of the electron energy distribution function have been performed. Allowance for the nonlocality is shown to lead to a noticeable increase in the dust particle charge due to the influence of the group of hot electrons from the tail of the distribution function. It has been established that the screening constant virtually coincides with the smallest screening constant determined according to the asymptotic theory of screening with the electron transport and recombination coefficients in an unperturbed plasma.

  16. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M.; Rovere, E.L.L.; Mahler, C.F.

    2013-05-15

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities’ boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  17. An empirical dependence of frequency in the oscillatory sorption of H2 and D2 in Pd on the first ionization potential of noble gases

    E-Print Network [OSTI]

    Lalik, Erwin

    2011-01-01

    Oscillatory heat evolution in sorption of H2 and D2 in Pd can be induced by admixture of ca. 10 % vol. of inert gases He, Ne, Ar, Kr or N2 to either isotope prior to its contact with palladium powder. The oscillations are represented in a form of calorimetric time series, recorded using gas flow-through microcalorimeter at the temperatures of 75 {\\deg}C for D2 and 106 {\\deg}C for H2. For both D2 and H2, the oscillation parameters changes as a function of the kind of inert gas used: the amplitude increases and the frequency decreases in passing from He to Kr. An empirical dependence of the oscillation frequencies observed for various admixtures and normalized with respect to Kr has been found. Accordingly, the frequency is a function of a product of the first ionization potential and the square root of atomic mass of the inert gas (He, Ne, Ar, Kr or N2). On the other hand, invariance of the thermal effects of sorption is evident from the integrated areas under the calorimetric time series yielding the molar he...

  18. Linear electric field frequency shift (important for next generation electric dipole moment searches) induced in confined gases by a magnetic field gradient

    E-Print Network [OSTI]

    Authors A. L. Barabanov; R. Golub; S. K. Lamoreaux

    2006-07-17

    The search for particle electric dipole moments (edm) represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known $\\overrightarrow{v}\\times \\overrightarrow{E}$ field with magnetic field gradients (often referred to as the geometric phase effect (Commins, ED; Am. J. Phys. \\QTR{bf}{59}, 1077 (1991), Pendlebury, JM \\QTR{em}{et al;} Phys. Rev. \\QTR{bf}{A70}, 032102 (2004)). This interaction produces a frequency shift linear in the electric field, mimicking an edm. In this work we introduce an analytic form for the velocity auto-correlation function which determines the velocity-position correlation function which in turn determines the behavior of the frequency shift (Lamoreaux, SK and Golub, R; Phys. Rev \\QTR{bf}{A71}, 032104 (2005)) and show how it depends on the operating conditions of the experiment. We also discuss some additional issues.

  19. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5 4.3 Emission standards for NOx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 2.6 Emission standards and exhaust gas composition . . . . . . . . . . . . . . . . . 2-10 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

  20. Processes to remove acid forming gases from exhaust gases

    DOE Patents [OSTI]

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  1. Chlorofluorocarbons, Sulfur Hexafluoride, and Dissolved Permanent Gases in Ground Water from Selected Sites In and Near the Idaho National Engineering and Environmental Laboratory, Idaho, 1994 - 1997

    SciTech Connect (OSTI)

    Busenberg, E.; Plummer, L.N.; Bartholomay, R.C.; Wayland, J.E.

    1998-08-01

    From July 1994 through May 1997, the U.S. Geological Survey, in cooperations with the Department of Energy, sampled 86 wells completed in the Snake River Plain aquifer at and near the Idaho National Engineering and Environmental Laboratory (INEEL). The wells were sampled for a variety of constituents including one- and two-carbon halocarbons. Concentrations of dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and trichlorotrifluororoethane (CFC-113) were determined. The data will be used to evaluate the ages of ground waters at INEEL. The ages of the ground water will be used to determine recharge rates, residence time, and travel time of water in the Snake River Plain aquifer in and near INEEL. The chromatograms of 139 ground waters are presented showing a large number of halomethanes, haloethanes, and haloethenes present in the ground waters underlying the INEEL. The chromatograms can be used to qualitatively evaluate a large number of contaminants at parts per trillion to parts per billion concentrations. The data can be used to study temporal and spatial distribution of contaminants in the Snake River Plain aquifer. Representative compressed chromatograms for all ground waters sampled in this study are available on two 3.5-inch high density computer disks. The data and the program required to decompress the data can be obtained from the U.S. Geological Survey office at Idaho Falls, Idaho. Sulfur hexafluoride (SF6) concentrations were measured in selected wells to determine the feasibility of using this environmental tracer as an age dating tool of ground water. Concentrations of dissolved nitrogen, argon, carbon dioxide, oxygen, and methane were measured in 79 ground waters. Concentrations of dissolved permanent gases are tabulated and will be used to evaluate the temperature of recharge of ground water in and near the INEEL.

  2. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore »sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  3. Transition from band insulator to Bose-Einstein-condensate superfluid and Mott state of cold Fermi gases with multiband effects in optical lattices

    SciTech Connect (OSTI)

    Watanabe, Ryota; Imada, Masatoshi

    2009-10-15

    We study two models realized by two-component Fermi gases loaded in optical lattices. We clarify that multiband effects inevitably caused by the optical lattices generate a rich structure, when the systems crossover from the region of weakly bound molecular bosons to the region of strongly bound atomic bosons. Here the crossover can be controlled by attractive fermion interaction. One of the present models is a case with attractive fermion interaction, where an insulator-superfluid transition takes place. The transition is characterized as the transition between a band insulator and a Bose-Einstein condensate superfluid state. Differing from the conventional Bardeen-Cooper-Schrieffer (BCS) superfluid transition, this transition shows unconventional properties. In contrast to the one-particle excitation gap scaled by the superfluid order parameter in the conventional BCS transition, because of the multiband effects, a large gap of one-particle density of states is retained all through the transition, although the superfluid order grows continuously from zero. A re-entrant transition with lowering temperature is another unconventionality. The other model is the case with coexisting attractive and repulsive interactions. Within a mean-field treatment, we find a new insulating state, an orbital ordered insulator. This insulator is one candidate for the Mott insulator of molecular bosons and is the first example that the orbital internal degrees of freedom of molecular bosons appears explicitly. Besides the emergence of a new phase, a coexisting phase also appears where superfluidity and an orbital order coexist just by doping holes or particles. The insulating and superfluid particles show differentiation in momentum space as in the high-T{sub c} cuprate superconductors.

  4. Improved correlations for retrograde gases 

    E-Print Network [OSTI]

    Crogh, Arne

    1996-01-01

    , Gravity from 0. 6 to 0. 8 ? Trcndline, Rich Gas, Gravity from 1. 2 to 1. 4 Data Points, Rich Gas, Gravity from 1. 2 to 1 4 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1 Dimensionless Pressure, (pr'pd) Fig. 2. 2 - Dimensionless C3 Composition Versus... Pressure, (prpd) Fig. 2. 4 - Dimensionless ABVC7+ Versus Dimensionless Pressure. 1. 2 9 + L3 U M C 0 6 a I. l 1. 0 0. 9 0. 8 0. 7 0. 6 oss o a a & o o o o o o o -. . . . . Trendline, Lean Gas, Gravity from 0. 6 to 0. 8 o Data Points...

  5. Curbing Greenhouse Gases: Agriculture's Role

    E-Print Network [OSTI]

    McCarl, Bruce A.

    the Kyoto results in more detail elsewhere in this issue. Emissions trading - Creating a market for emission rights Importantly, the Protocol encourages emissions trading. Emissions are limited by country emissions trading system, much like the trading scheme used in the U.S. acid #12;3 rain program. The total

  6. Turning greenhouse gases into gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are under way to find ways to prevent, capture and sequester-perhaps even bury-CO2 emissions and reduce their negative effects. But some researchers say CO2 is getting a bad...

  7. Freezing Light via hot gases

    E-Print Network [OSTI]

    Olga Kocharovskaya; Yuri Rostovtsev; Marlan O. Scully

    2000-10-09

    We prove that it is possible to freeze a light pulse (i.e., to bring it to a full stop) or even to make its group velocity negative in a coherently driven Doppler broadened atomic medium via electromagnetically induced transparency (EIT). This remarkable phenomenon of the ultra-slow EIT polariton is based on the spatial dispersion of the refraction index $n(\\w,k)$, i.e., its wavenumber dependence, which is due to atomic motion and provides a negative contribution to the group velocity. This is related to, but qualitatively different from, the recently observed light slowing caused by large temporal (frequency) dispersion.

  8. Traffic Congestion and Greenhouse Gases

    E-Print Network [OSTI]

    Barth, Matthew; Boriboonsomsin, Kanok

    2009-01-01

    80 percent of these emissions are from cars and trucks. Toit to an emissions model for a modern passenger car, we cana car’s engine is running but it is not moving, its emission

  9. Method for detecting toxic gases

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Zaromb, Solomon (Hinsdale, IL); Findlay, Jr., Melvin W. (Bolingbrook, IL)

    1991-01-01

    A method capable of detecting low concentrations of a pollutant or other component in air or other gas, utilizing a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component, and an electrochemical sensor responsive to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor.

  10. Method for detecting toxic gases

    DOE Patents [OSTI]

    Stetter, J.R.; Zaromb, S.; Findlay, M.W. Jr.

    1991-10-08

    A method is disclosed which is capable of detecting low concentrations of a pollutant or other component in air or other gas. This method utilizes a combination of a heating filament having a catalytic surface of a noble metal for exposure to the gas and producing a derivative chemical product from the component. An electrochemical sensor responds to the derivative chemical product for providing a signal indicative of the product. At concentrations in the order of about 1-100 ppm of tetrachloroethylene, neither the heating filament nor the electrochemical sensor is individually capable of sensing the pollutant. In the combination, the heating filament converts the benzyl chloride to one or more derivative chemical products which may be detected by the electrochemical sensor. 6 figures.

  11. Green house gases Ozone depletion

    E-Print Network [OSTI]

    Zevenhoven, Ron

    · Advantages ­ CO2 at high partial pressures ­ Solvent scrubbing is proven technology ­ Benefits from improved ­ Gasification is quite different from combustion ­ Not widely demonstrated, reliability is an issue Coal Coal preparation gasification O2 gas cooling and clean-up H2O gas shift H2S, CO2 removal synthesis separation

  12. Lyapunov spectrum of granular gases

    SciTech Connect (OSTI)

    McNamara, Sean; Mareschal, Michel

    2001-06-01

    We calculate and study the Lyapunov spectrum of a granular gas maintained in a steady state by an isokinetic thermostat. Considering restitution coefficients greater than unity allows us to show that the spectra change smoothly and continuously at equilibrium. The shearing instability of the granular gas, however, provokes an abrupt change in the structure of the spectrum. The relationship between various physically relevant quantities and the energy dissipation rate differs from previously studied nonequilibrium steady states.

  13. Guidance Document CompressedGases

    E-Print Network [OSTI]

    of exposure may be delayed. Cold "Burns": Rapidly escaping gas from a cylinder can cause destruction freezing code requirements. 4. To transport a cylinder, close valve, remove regulator, attach safety cap. Strap

  14. Thermomagnetic Force in Polyatomic Gases 

    E-Print Network [OSTI]

    Larchez, M. E.; Adair, Thomas W.

    1971-01-01

    The Wind-Evaporation-Sea Surface Temperature (WES) feedback is believedto play an important role in the tropics, where climate variability is governed byatmosphere-ocean coupled interactions. This dissertation reports on ...

  15. ARM - What are Greenhouse Gases?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site

  16. Greenhouse Gases Converted to Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3DGreenGreen isGreenhouse

  17. Detailed discussion of a linear electric field frequency shift (important for next generation) electric dipole moment searches) induced in confined gases by a magnetic field gradient: Implications for electric dipole moment experiments (II)

    E-Print Network [OSTI]

    A. L. Barabanov; R. Golub; S. K. Lamoreaux

    2005-12-20

    The search for particle electric dipole moments represents a most promising way to search for physics beyond the standard model. A number of groups are planning a new generation of experiments using stored gases of various kinds. In order to achieve the target sensitivities it will be necessary to deal with the systematic error resulting from the interaction of the well-known E x v field with magnetic field gradients (often referred to as the geometric phase effect [9,10]). This interaction produces a frequency shift linear in the electric field, mimicking an edm. In this work we introduce an analytic model for the correlation function which determines the behavior of the frequency shift [11], and show in detail how it depends on the operating conditions of the experiment. We also propose a method to directly measure ths correlation function under the exact conditions of a given experiment.

  18. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO? radical chemistry, and N?O? heterogeneous hydrolysis

    SciTech Connect (OSTI)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.; Gilles, Marry K.; Hubbe, John M.; Jayne, J. T.; Kleinman, Lawrence I.; Laskin, Alexander; Madronich, Sasha; Onasch, Timothy B.; Pekour, Mikhail S.; Springston, Stephen R.; Thornton, Joel A.; Tivanski, Alexei V.; Worsnop, Douglas R.

    2010-06-22

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.

  19. Zevenhoven & Kilpinen FLUE GASES and FUEL GASES 19.6.2001 2-1 Chapter 2 Flue gases and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    , trace elements such as mercury and nickel, and super-toxics such as dioxins. All these compounds) and several other trace elements, acidic compounds such as HCl and HF, and dioxins/furans must be controlled.1 Introduction Combustion processes for heat and power generation and the incineration of household waste

  20. Industrial Gases as a Vehicle for Competitiveness 

    E-Print Network [OSTI]

    Dale, J. R.

    1992-01-01

    and process cost reductions led to investment in gas process development. The use of nitrogen in industrial processes went from by-product to primary gas produced in less than ten years. The nature of the cryogenic liquefaction process is such that a... ratio of three volumes of nitrogen to one of oxygen is optimal for merchant plan loading and costs. The specific power requirement for the liquefaction of nitrogen gas has gone from 2.0 kwh/ccf to 1.4 kwh/ccf. This represents a thirty percent...

  1. Thermal Maps of Gases in Heterogeneous Reactions

    E-Print Network [OSTI]

    Jarenwattananon, Nanette N; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R; Yaghi, Omar M; Bouchard, Louis-S

    2015-01-01

    Over 85% of all chemical industry products are made using catalysts, with the overwhelming majority of these employing heterogeneous catalysts functioning at the gas-solid interface. Consequently, optimizing catalytic reactor design attracts much effort. Such optimization relies on heat transfer and fluid dynamics modeling coupled to surface reaction kinetics. The complexity of these systems demands many approximations, which can only be tested with experimental observations of quantities such as temperature, pressure, concentrations, flow rates, etc. One essential measurement is a map of the spatial variation in temperature throughout the catalyst bed. We present here the first non-invasive maps of gas temperatures in catalyst-filled reactors, including high spatial resolution maps in microreactors enabled by parahydrogen. The thermal maps reveal energy flux patterns whose length scale correlates with the catalyst packing. By exploiting the motional averaging under a weak applied magnetic-field gradient, the...

  2. Nonhydrocarbon Gases Removed from Natural Gas (Summary)

    U.S. Energy Information Administration (EIA) Indexed Site

    8 2009 2010 2011 2012 2013 View History U.S. 718,674 721,507 836,698 867,922 768,598 722,527 1973-2013 Federal Offshore Gulf of Mexico 0 0 0 0 0 0 1997-2013 Alabama 17,394 16,658...

  3. Experiments with interacting Bose and Fermi gases

    E-Print Network [OSTI]

    Stan, Claudiu Andrei

    2005-01-01

    In the past few years, the study of trapped fermionic atoms evolved from the first cooling experiments which produced quantum degenerate samples to becoming one of the most exciting branches of current atomic physics ...

  4. Nonhydrocarbon Gases Removed from Natural Gas (Summary)

    Gasoline and Diesel Fuel Update (EIA)

    NA NA NA NA NA NA 1973-2015 Federal Offshore Gulf of Mexico NA NA NA NA NA NA 1997-2015 Alabama NA NA NA NA NA NA 1991-2015 Alaska NA NA NA NA NA NA 1996-2015 Arizona NA NA NA NA...

  5. Eliminating the effects of greenhouse gases

    SciTech Connect (OSTI)

    Straitz, J.F. III [NAO Inc., Philadelphia, PA (United States)

    1996-11-01

    From 1993 to 1997, more than $600 million will be invested in about 190 new landfill gas energy projects, 75% of which will generate 400 megawatts of electric power. Most of the others will pump methane (CH{sub 4}) directly into natural gas transmission lines or be used to power steam generators. U.S. landfills now produce about 40 million tons of landfill gas per year, and half that tonnage is CH{sub 4}, an alternate fuel. By the year 2000, 90% of all federal and state fleet vehicles must be powered by alternate fuels. Twenty-million tons of CH{sub 4}, converted to compressed natural gas (CNG) at municipal and private landfill refueling stations, could power 8 million natural gas vehicles (NGV). In addition to conserving 8 billion gallons of gasoline per year that would help to reduce this nation`s trade unbalance, the clean-burning CNG would also reduce airborne pollutants.

  6. Reliable noninvasive measurement of blood gases

    DOE Patents [OSTI]

    Thomas, Edward V. (Albuquerque, NM); Robinson, Mark R. (Albuquerque, NM); Haaland, David M. (Albuquerque, NM); Alam, Mary K. (Albuquerque, NM)

    1994-01-01

    Methods and apparatus for, preferably, determining noninvasively and in vivo at least two of the five blood gas parameters (i.e., pH, PCO.sub.2, [HCO.sub.3.sup.- ], PO.sub.2, and O.sub.2 sat.) in a human. The non-invasive method includes the steps of: generating light at three or more different wavelengths in the range of 500 nm to 2500 nm; irradiating blood containing tissue; measuring the intensities of the wavelengths emerging from the blood containing tissue to obtain a set of at least three spectral intensities v. wavelengths; and determining the unknown values of at least two of pH, [HCO.sub.3.sup.- ], PCO.sub.2 and a measure of oxygen concentration. The determined values are within the physiological ranges observed in blood containing tissue. The method also includes the steps of providing calibration samples, determining if the spectral intensities v. wavelengths from the tissue represents an outlier, and determining if any of the calibration samples represents an outlier. The determination of the unknown values is performed by at least one multivariate algorithm using two or more variables and at least one calibration model. Preferably, there is a separate calibration for each blood gas parameter being determined. The method can be utilized in a pulse mode and can also be used invasively. The apparatus includes a tissue positioning device, a source, at least one detector, electronics, a microprocessor, memory, and apparatus for indicating the determined values.

  7. Getter pump for hydrogen and hydrocarbon gases

    DOE Patents [OSTI]

    Hsu, Wen Ling

    1987-10-14

    A gettering device for hydrogen isotopes and gaseous hydrocarbons based on the interaction of a plasma and graphite used as cathodic material. The plasma is maintained at a current density within the range of about 1 to about 1000 mA/cm/sup 2/. The graphite may be heated to a temperature greater than 1000/degree/C. The new device offers high capacity, low noise, and gas species selectivity. 2 figs.

  8. Modeling non-CO? greenhouse gases

    E-Print Network [OSTI]

    Hyman, Robert C.

    Although emissions of CO? are the largest anthropogenic contributor to the risks of climate change, other substances are important in the formulation of a cost-effective response. To provide improved facilities for addressing ...

  9. Adsorption of gases on carbon molecular sieves

    SciTech Connect (OSTI)

    Vyas, S.N.; Patwardhan, S.R.; Vijayalakshmi, S. (Indian Inst. of Technology, Bombay (India). Dept. of Chemical Engineering); Ganesh, K.S. (Hindustan Petroleum Corp. Ltd., Bombay (India))

    1994-12-01

    Adsorption on carbon molecular sieves (CMS) prepared by coke deposition has become an interesting area of adsorption due to its microporous nature and favorable separation factor on size and shape selectivity basis for many gaseous systems. In the present work CMS was synthesized from coconut shell through three major steps, namely, carbonization, activation, and coke deposition by hydrocarbon cracking. The crushed, washed, and sieved granules of coconut shell (particle size 2--3 mm) were pretreated with sodium silicate solution and oven-dried at 150 C to create the inorganic sites necessary for coke deposition. Carbonization and activation of the dried granules were carried out at 800 C, for 30 min each. The activated char thus produced was subjected to hydrocarbon cracking at 600 C for periods varying from 30 to 180 min. The product samples were characterized in terms of adsorption isotherm, kinetic adsorption curve, surface area, pore volume, pore size distribution, and characteristic energy for adsorption by using O[sub 2], N[sub 2], C[sub 2]H[sub 2], CO[sub 2], C[sub 3]H[sub 6], and CH[sub 4].

  10. Tracking Quasiclassical Chaos in Ultracold Boson Gases

    SciTech Connect (OSTI)

    Lepers, Maxence; Zehnle, Veronique; Garreau, Jean Claude [Laboratoire de Physique des Lasers, Atomes et Molecules, Universite des Sciences et Technologies de Lille, CNRS, F-59655 Villeneuve d'Ascq Cedex (France)

    2008-10-03

    We study the dynamics of an ultracold boson gas in a lattice submitted to a constant force. We track the route of the system towards chaos created by the many-body-induced nonlinearity and show that relevant information can be extracted from an experimentally accessible quantity, the gas mean position. The threshold nonlinearity for the appearance of chaotic behavior is deduced from Kolmogorov-Arnold-Moser arguments and agrees with the value obtained by calculating the associated Lyapunov exponent.

  11. Fluidized bed pyrolysis to gases containing olefins

    SciTech Connect (OSTI)

    Kuester, J.L.

    1980-01-01

    Recent gasification data are presented for a system designed to produce liquid hydrocarbon fuel from various biomass feedstocks. The factors under investigation were feedstock type, fluidizing gas type, residence time, temperature and catalyst usage. The response was gas phase composition. A fluidized bed system was utilized with a separate regenerator-combustor. An olefin content as high as 39 mole % was achieved. Hydrogen/carbon monoxide ratios were easily manipulated via steam addition over a broad range with an autocatalytic effect apparent for most feedstocks.

  12. Perdido LF-Gase to Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    This presentation was given at the July 17, 2012, Community Renewable Energy Deployment webinar on successful landfill gas-to-energy projects.

  13. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Office of Scientific and Technical Information (OSTI)

    give a higher lower limit value than the completely vaporized sample. Conversely, the heavy fractions or residue give a smaller lower limit value. For this reason, there is...

  14. Photosensitive dopants for liquid noble gases

    DOE Patents [OSTI]

    Anderson, David F. (Wheaton, IL)

    1988-01-01

    In an ionization type detector for high energy radiation wherein the energy of incident radiation is absorbed through the ionization of a liquid noble gas and resulting free charge is collected to form a signal indicative of the energy of the incident radiation, an improvement comprising doping the liquid noble gas with photosensitive molecules to convert scintillation light due to recombination of ions, to additional free charge.

  15. Experimental equilibrium structures of solids and gases 

    E-Print Network [OSTI]

    Reilly, Anthony M.

    In the past sixty years, X-ray, neutron and electron dffraction have emerged as the structural techniques of choice in the solid state. However, despite many advances in theory and instrumentation, these diffraction ...

  16. ARM - Lesson Plans: Dissolved Gases in Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimate in the

  17. ARM - Danger of Increased Greenhouse Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments? We would love to hear from you! Send us agovInstrumentswrf-chemMeetingsCoverListDanger of Increased

  18. Nonhydrocarbon Gases Removed from Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year6-2015 Arkansas NA NA

  19. Nonhydrocarbon Gases Removed from Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6Year6-2015 Arkansas NA

  20. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gasPurchase, Delivery, and Storage of

  1. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gasPurchase, Delivery, and Storage

  2. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgramExemptionsProteinTotal natural gasPurchase, Delivery, and

  3. Green House Gases | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Lowď‚— We want USDOE to vitrify allfromGreen House

  4. FLAMMABILITY CHARACTERISTICS OF COMBUSTIBLE GASES AND VAPORS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansasCommunitiesofExtrans - PermeationGovernment DEPARTMENTNNSS

  5. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton Delivery and Removal inPublications&Purchase,

  6. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProton Delivery and Removal

  7. Refinery Yield of Liquefied Refinery Gases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product:7a.CORPORATION /AnalysisProduct:

  8. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr

  9. Nonhydrocarbon Gases Removed from Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr721,507 836,698 867,922 768,598 368,469

  10. HELSINKI UNIVERSITY OF TECHNOLOGY ENE-47.153 Greenhouse gases andGreenhouse gases and

    E-Print Network [OSTI]

    Zevenhoven, Ron

    UNIVERSITY OF TECHNOLOGY ENE-47.153 COCO22 emissions andemissions and thermal process efficiencythermal

  11. Uniform electron gases: III. Low-density gases on three-dimensional spheres

    E-Print Network [OSTI]

    Agboola, Davids; Gill, Peter M W; Loos, Pierre-François

    2015-01-01

    By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e.~the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems, and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e. the minimum-energy arrangement of $n$ point charges) on the 3-sphere for various values of $n$. We have found 11 special values of $n$ whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids ...

  12. EIA-Voluntary Reporting of Greenhouse Gases Program - Greenhouse Gases and

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998, and 2002 bForestFinancialGlobal

  13. Quantifying, characterizing and controlling information flow in ultracold atomic gases

    E-Print Network [OSTI]

    Haikka, Pinja; de Chiara, Gabriele; Palma, Massimo; Maniscalco, Sabrina

    2011-01-01

    We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

  14. Quantifying, characterizing and controlling information flow in ultracold atomic gases

    E-Print Network [OSTI]

    Pinja Haikka; Suzanne McEndoo; Gabriele de Chiara; Massimo Palma; Sabrina Maniscalco

    2011-05-24

    We study quantum information flow in a model comprising of an impurity qubit immersed in a Bose-Einstein condensed reservoir. We demonstrate how information flux between the qubit and the condensate can be manipulated by engineering the ultracold reservoir within experimentally realistic limits. We place a particular emphasis on non-Markovian dynamics, characterized by a reversed flow of information from the background gas to the qubit and identify a controllable crossover between Markovian and non-Markovian dynamics in the parameter space of the model.

  15. Process for the removal of acid gases from gaseous streams

    SciTech Connect (OSTI)

    Blytas, G.C.; Diaz, Z.

    1982-11-16

    Hydrogen sulfide, carbon dioxide, and carbonyl sulfide are removed from a gas stream in a staged procedure by: absorption of the CO/sub 2/ and COS; conversion of the hydrogen sulfide to produce sulfur in an absorbent mixture; hydrolysis of the carbonyl sulfide to produce a gas stream of hydrogen sulfide and carbon dioxide; and removal of the hydrogen sulfide from the gas stream.

  16. Novel ground states of Bose-condensed gases

    E-Print Network [OSTI]

    Abo-Shaeer, Jamil R

    2005-01-01

    Bose-Einstein condensates (BEC) provide a novel tool for the study of macroscopic quantum phenomena and condensed matter systems. Two of the recent frontiers, quantized vortices and ultracold molecules, are the subject of ...

  17. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect (OSTI)

    Hanson, R.K.; Bowman, C.T. [Stanford Univ., CA (United States)

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  18. Method and apparatus for measuring purity of noble gases

    DOE Patents [OSTI]

    Austin, Robert (Largo, FL)

    2008-04-01

    A device for detecting impurities in a noble gas includes a detection chamber and a source of pulsed ultraviolet light. The pulse of the ultraviolet light is transferred into the detection chamber and onto a photocathode, thereby emitting a cloud of free electrons into the noble gas within the detection chamber. The cloud of electrons is attracted to the opposite end of the detection chamber by a high positive voltage potential at that end and focused onto a sensing anode. If there are impurities in the noble gas, some or all of the electrons within the cloud will bond with the impurity molecules and not reach the sensing anode. Therefore, measuring a lower signal at the sensing anode indicates a higher level of impurities while sensing a higher signal indicates fewer impurities. Impurities in the range of one part per billion can be measured by this device.

  19. SUBTASK 7.2 GLOBAL WARMING AND GREEHOUSE GASES

    SciTech Connect (OSTI)

    Jaroslav Solc; Kurt Eylands; Jaroslav Solc Jr.

    2005-01-01

    Evaluation of current climatic trends and reconstruction of paleoclimatic conditions for Devils Lake have been conducted based on diatom-inferred salinity for the last 2000 years. The 3-year cross-disciplinary research, funded by the U.S. Department of Energy (DOE) was carried out by the Energy & Environmental Research Center (EERC) and St. Croix Watershed Research Station (SCWRS) at the Science Museum of Minnesota. The results indicate that frequent climatic fluctuations resulting in alternating periods of drought and wet conditions are typical for the northern Great Plains and suggest that the severity and length of extremes exceeded those on modern record. Devils Lake has experienced five fresh periods and two minor freshening periods in the last 2000 years. Transitions between fresh and saline periods have been relatively fast, representing lake level changes that have been similar to those observed in the last 150 years. From 0 to 1070 A.D., Devils Lake showed more variable behavior, with fresh phases centered at 200, 500, 700, and 1000 A.D. From 1070 A.D. to present, Devils Lake was generally saline, experiencing two minor freshening periods at 1305-1315 and 1800-1820 A.D and the major current freshening from 1960 A.D. to present.

  20. Quantum materials research with ultra-cold atomic gases

    E-Print Network [OSTI]

    Plotkin, Steven S.

    in these models to reproduce specific phenomena - examples include · high-Tc superconductivity What is its

  1. Compressibility factors for retrograde gases: a new correlation 

    E-Print Network [OSTI]

    Corredor Real, Jairo Hernando

    1991-01-01

    CI o CD ID CI N O CD IA O O CD O 00 CD 00 O O CQ CD CD F) 0& CD O CD O CD N N o o CO IA N 00 CD N N Q) CD CD ID CO P3 O N O O o O VO O 00 N O O CD N CO ICI O O IA LD N N P O N CD O CD O N CO IA N... CD N IA 00 N O ID dl CL O CL Cd O ID 0 e 12 &C O CI O h O e O) O C dl OI O 13 z e Cd CL O 0 e Id K O ID e Cd Q3 Cd Cd ID D I O ID 0$ C e D I e Cd X e Id CL e C Cd 0 0) C dl Cd Cd 0 O Z CI...

  2. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, John D. (Blackfoot, ID); Meikrantz, David H. (Idaho Falls, ID); Tuggle, Dale G. (Los Alamos, NM)

    1997-01-01

    A method and apparatus for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes.

  3. Method for the purification of noble gases, nitrogen and hydrogen

    DOE Patents [OSTI]

    Baker, J.D.; Meikrantz, D.H.; Tuggle, D.G.

    1997-09-23

    A method and apparatus are disclosed for the purification and collection of hydrogen isotopes in a flowing inert gaseous mixture containing impurities, wherein metal alloy getters having the capability of sorbing non-hydrogen impurities such as oxygen, carbon dioxide, carbon monoxide, methane, ammonia, nitrogen and water vapor are utilized to purify the gaseous mixture of impurities. After purification hydrogen isotopes may be more efficiently collected. A plurality of parallel process lines utilizing metal getter alloys can be used to provide for the continuous purification and collection of the hydrogen isotopes. 15 figs.

  4. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    2008-01-15

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  5. Greenhouse Gases, Regulated Emissions, and Energy Use in Transportatio...

    Open Energy Info (EERE)

    Argonne National Laboratory Focus Area: GHG Inventory Development Topics: Analysis Tools Website: greet.es.anl.gov Transport Toolkit Region(s): Global, Australia & North...

  6. ORIGINAL PAPER Contributions of solar and greenhouse gases forcing

    E-Print Network [OSTI]

    Park, Rokjin

    and West 2006; Lean and Rind 2008; Sch- wartz et al. 2010). There is no doubt that the climate sci- ence radiative flux from Responsible editor: S. Hong. H.-G. Lim School of Environmental Science and Engineering to the surface of Earth (Trenberth et al. 2007). In addition to the GHG forcings, however, radiative forcings due

  7. Plasma-chemical waste treatment of acid gases

    SciTech Connect (OSTI)

    Harkness, J.B.L.; Doctor, R.D.; Daniels, E.J.

    1993-09-01

    The research to date has shown that a H{sub 2}S waste-treatment process based on plasma-chemical dissociation technology is compatible with refinery and high-carbon-oxide acid-gas streams. The minor amounts of impurities produced in the plasma-chemical reactor should be treatable by an internal catalytic reduction step. Furthermore, the plasma-chemical technology appears to be more efficient and more economical than the current technology. The principal key to achieving high conversions with relatively low energies of dissociation is the concept of the high-velocity, cyclonic-flow pattern in the plasma reaction zone coupled with the recycling of unconverted hydrogen sulfide. Future work will include testing the effects of components that might be carried over to the plasma reactor by ``upset`` conditions in the amine purification system of a plant and testing the plasma-chemical process on other industrial wastes streams that contain potentially valuable chemical reagents. The strategy for the commercialization of this technology is to form a Cooperative Research and Development Agreement with the Institute of Hydrogen Energy and Plasma Technology of the Russian Scientific Center/Kurchatov Institute and with an American start-up company to develop an ``American`` version of the process and to build a commercial-scale demonstration unit in the United States. The timetable proposed would involve building a ``field test`` facility which would test the plasma-chemical reactor and sulfur recovery unit operations on an industrial hydrogen sulfide waste s at a scale large enough to obtain the energy and material balance data required for a final analysis of the commercial potential of this technology. The field test would then be followed by construction of a commercial demonstration unit in two to three years. The commercial demonstration unit would be a fully integrated plant consisting of one commercial-scale module.

  8. Microbial removal of no.sub.x from gases

    DOE Patents [OSTI]

    Sublette, Kerry L. (Tulsa, OK)

    1991-01-01

    Disclosed is a process by which a gas containing nitric oxide is contacted with an anaerobic microbial culture of denitrifying bacteria to effect the chemical reduction of the nitric oxide to elemental nitrogen. The process is particularly suited to the removal of nitric oxide from flue gas streams and gas streams from nitric acid plants. Thiobacillus dentrificians as well as other bacteria are disclosed for use in the process.

  9. Characterization of lagoon gases by an electronic nose 

    E-Print Network [OSTI]

    Woodcock, Jane Catherine

    1997-01-01

    Manure management systems produce 10% of total US anthropogenic methane emissions, which is a concern since methane is a potent greenhouse gas. As intensive livestock production increases and anaerobic lagoons continue to play an important role...

  10. An Astrophysical View of Earth-Based Metabolic Biosignature Gases

    E-Print Network [OSTI]

    Seager, Sara

    Microbial life on Earth uses a wide range of chemical and energetic resources from diverse habitats. An outcome of this microbial diversity is an extensive and varied list of metabolic byproducts. We review key points of ...

  11. Ceramic membrane reactor with two reactant gases at different pressures

    DOE Patents [OSTI]

    Balachandran, Uthamalingam (Hinsdale, IL); Mieville, Rodney L. (Glen Ellyn, IL)

    2001-01-01

    The invention is a ceramic membrane reactor for syngas production having a reaction chamber, an inlet in the reactor for natural gas intake, a plurality of oxygen permeating ceramic slabs inside the reaction chamber with each slab having a plurality of passages paralleling the gas flow for transporting air through the reaction chamber, a manifold affixed to one end of the reaction chamber for intake of air connected to the slabs, a second manifold affixed to the reactor for removing the oxygen depleted air, and an outlet in the reaction chamber for removing syngas.

  12. Methods and systems for remote detection of gases

    DOE Patents [OSTI]

    Johnson, Timothy J

    2012-09-18

    Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.

  13. Methods and systems for remote detection of gases

    DOE Patents [OSTI]

    Johnson, Timothy J. (Pasco, WA)

    2007-11-27

    Novel systems and methods for remotely detecting at least one constituent of a gas via infrared detection are provided. A system includes at least one extended source of broadband infrared radiation and a spectrally sensitive receiver positioned remotely from the source. The source and the receiver are oriented such that a surface of the source is in the field of view of the receiver. The source includes a heating component thermally coupled to the surface, and the heating component is configured to heat the surface to a temperature above ambient temperature. The receiver is operable to collect spectral infrared absorption data representative of a gas present between the source and the receiver. The invention advantageously overcomes significant difficulties associated with active infrared detection techniques known in the art, and provides an infrared detection technique with a much greater sensitivity than passive infrared detection techniques known in the art.

  14. New model more accurately tracks gases for underground nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    knowledge about atmospheric conditions (e.g., the barometric pressure that creates a vacuum) and seasonal variabilities in different regions. This team's research investigated...

  15. Detailed Investigations of Interactions between Ionizing Radiation and Neutral Gases

    SciTech Connect (OSTI)

    Landers, Allen L

    2014-03-31

    We are investigating phenomena that stem from the many body dynamics associated with ionization of an atom or molecule by photon or charged particle. Our program is funded through the Department of Energy EPSCoR Laboratory Partnership Award in collaboration with Lawrence Berkeley National Laboratory. We are using variations on the well established COLTRIMS technique to measure ions and electrons ejected during these interactions. Photoionization measurements take place at the Advanced Light Source at LBNL as part of the ALS-COLTRIMS collaboration with the groups of Reinhard Dörner at Frankfurt and Ali Belkacem at LBNL. Additional experiments on charged particle impact are conducted locally at Auburn University where we are studying the dissociative molecular dynamics following interactions with either ions or electrons over a velocity range of 1 to 12 atomic units.

  16. ARM Carbon Cycle Gases Flasks at SGP Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    2013-03-26

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  17. Simulation of condensation systems in the presence of noncondensable gases 

    E-Print Network [OSTI]

    Raja, Laxminarayan Lakshmana

    1992-01-01

    , and turbine trip. The MOD3 version of RELAP5 has been developed jointly by the NRC and a consortium consisting of several of the countries and organizations in the U. S. that are members of the International Code Assessment and Applications Program (ICAP... of the loss of residual heat removal (RHR) system during midloop operations is also per- formed. The RELAP5(MOD3 thermal hydraulic code is utilized for the same. Two separate effects experiments were chosen for this study considering their relevance...

  18. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    around 1% of primary energy supply 3 . The hydroelectric andup to 10% of primary energy supply with projections of80% of the world's primary energy supply 3 . As for energy

  19. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-Print Network [OSTI]

    ), and several episodes in London (1). All fuels used by humans such as coal, oil, natural gas, peat, wood s for a concentration range of 300-1000 ppmv. All the absorbed SO2 was recovered in the biotrickling filter liquid of sulfite). The biotrickling filter liquid effluent was further processed biologically in a single post

  20. Remote NMR/MRI detection of laser polarized gases

    DOE Patents [OSTI]

    Pines, Alexander; Saxena, Sunil; Moule, Adam; Spence, Megan; Seeley, Juliette A.; Pierce, Kimberly L.; Han, Song-I; Granwehr, Josef

    2006-06-13

    An apparatus and method for remote NMR/MRI spectroscopy having an encoding coil with a sample chamber, a supply of signal carriers, preferably hyperpolarized xenon and a detector allowing the spatial and temporal separation of signal preparation and signal detection steps. This separation allows the physical conditions and methods of the encoding and detection steps to be optimized independently. The encoding of the carrier molecules may take place in a high or a low magnetic field and conventional NMR pulse sequences can be split between encoding and detection steps. In one embodiment, the detector is a high magnetic field NMR apparatus. In another embodiment, the detector is a superconducting quantum interference device. A further embodiment uses optical detection of Rb--Xe spin exchange. Another embodiment uses an optical magnetometer using non-linear Faraday rotation. Concentration of the signal carriers in the detector can greatly improve the signal to noise ratio.

  1. Emissions of greenhouse gases from the use of transportation...

    Office of Scientific and Technical Information (OSTI)

    maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The...

  2. New Materials for Capturing Carbon Dioxide from Combustion Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to its low value. Using the Ideal Adsorbed Solution Theory (IAST) (in solution thermodynamics, a predictive model that does not require any mixture data and is independent of...

  3. The thermodynamics of Fermi gases in three dimensional fuzzy space

    E-Print Network [OSTI]

    Scholtz, F G; Groenewald, H W

    2015-01-01

    We use the recently derived density of states for a particle confined to a spherical well in three dimensional fuzzy space to compute the thermodynamics of a gas of non-interacting fermions confined to such a well. Special emphasis is placed on non-commutative effects and in particular non-commutative corrections to the thermodynamics at low densities and temperatures are computed where the non-relativistic approximation used here is valid. Non-commutative effects at high densities are also identified, the most prominent being the existence of a minimal volume at which the gas becomes incompressible. The latter is closely related to a low/high density duality exhibited by these systems, which in turn is a manifestation of an infra-red/ultra violet duality in the single particle spectrum. Both non-rotating and slowly rotating gasses are studied. Approximations are benchmarked against exact numerical computations for the non-rotating case and several other properties of the gas are demonstrated with numerical c...

  4. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  5. Emissions of Greenhouse Gases in the United States 2009, DOE...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2 manufacture, and aluminum production. The sum of the energy subtotal and industrial processes equals unadjusted CO 2 emissions (5,513 MMTCO 2 e). The energy component of...

  6. Detection And Discrimination Of Pure Gases And Binary Mixtures...

    Office of Scientific and Technical Information (OSTI)

    modes individually. Authors: Loui, A ; Sirbuly, D J ; Elhadj, S ; McCall, S K ; Hart, B R ; Ratto, T V Publication Date: 2009-08-06 OSTI Identifier: 977223 Report...

  7. THE ROLE OF BUFFER GASES IN OPTOAOOUSTIC SPECTROSCOPY

    E-Print Network [OSTI]

    Thomas III, L.J.

    2011-01-01

    at 160 Torr Temp. 22.5° C e Pwr. abs. -1.6mW o c: N I I enTorr c ~O""'"' Temp.21.2°C Pwr. abs. -1.6 mW a c: en N 0 p4 at 760 Torr Temp. 22.4ac Pwr. abs. · 2.6mW I I I I I I I o

  8. Intensive Sampling Of Noble Gases In Fluids At Yellowstone- I...

    Open Energy Info (EERE)

    < 3 times the air value. Authors B. M. Kennedy, M. A. Lynch, J. H. Reynolds and S. P. Smith Published Journal Geochimica et Cosmochimica Acta, 1985 DOI 10.1016...

  9. Density and spin response functions in ultracold fermionic atom gases

    E-Print Network [OSTI]

    Bogdan Mihaila; Sergio Gaudio; Krastan B. Blagoev; Alexander V. Balatsky; Peter B. Littlewood; Darryl L. Smith

    2005-02-03

    We propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the momentum distribution of the density and spin response functions allows one to access separately the normal and anomalous densities. The change in sign at low momentum transfer of the density response function signals the transition between a BEC and a BCS regimes, characterized by small and large pairs, respectively. This change in sign of the density response function represents an unambiguous signature of the BEC to BCS crossover. Also, we predict spin rotational symmetry-breaking in this system.

  10. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    sources, energy efficiency and conservation, nuclear power,energy sources and future increased reliance on greater efficiency, renewables, nuclear

  11. Condensate fraction of cold gases in a nonuniform external potential

    SciTech Connect (OSTI)

    Astrakharchik, G. E.; Krutitsky, K. V.

    2011-09-15

    Exact calculation of the condensate fraction in multidimensional inhomogeneous interacting Bose systems in a confining potential of arbitrary shape is a difficult computational problem. We have developed an iterative procedure which allows us to calculate the condensate fraction as well as the corresponding eigenfunction of the one-body density matrix. We successfully validate this procedure in diffusion Monte Carlo simulations of a Bose gas in an optical lattice at zero temperature. We also discuss the relation between different criteria used for testing coherence in cold Bose systems, such as the fraction of particles that are superfluid, condensed, or in the zero-momentum state.

  12. MAGLUE: Measurement and Analysis of bioenergy greenhouse gases: Integrating GHGs

    E-Print Network [OSTI]

    sensors Temp and Rh probe Quantum sensor Rain gauge Wind monitor Soil meta-bar coding and meta by the Energy Technologies Institute (ETI). The Consortium are partners are: · Centre for Ecology and Hydrology and their impact on the UK energy system Integrating GHGs into LCAs and the UK Bioenergy Value Chain Modelling

  13. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    and conservation, nuclear power, or biofuels, each of thesetoday. Growth in nuclear power, which currently providesefficiency, renewables, nuclear power, and biofuels. A great

  14. Biological Removal of Siloxanes from Landfill and Digester Gases

    E-Print Network [OSTI]

    volatilize from waste at landfills and wastewater treatment plants (1). As a result, biogas produced, as well as an increase in maintenance costs (6, 7). The presence of VMSs in biogas is thus a challenge recommended by most equipment manufacturers for un- hindered use (6). Of all VMSs in biogas

  15. Semi-continuous detection of mercury in gases

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2011-12-06

    A new method for the semi-continuous detection of heavy metals and metalloids including mercury in gaseous streams. The method entails mass measurement of heavy metal oxides and metalloid oxides with a surface acoustic wave (SAW) sensor having an uncoated substrate. An array of surface acoustic wave (SAW) sensors can be used where each sensor is for the semi-continuous emission monitoring of a particular heavy metal or metalloid.

  16. ARM Carbon Cycle Gases Flasks at SGP Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  17. The safe use of low temperature liquefied gases 1. Introduction

    E-Print Network [OSTI]

    Martin, Ralph R.

    nitrogen, oxygen, argon and carbon dioxide into vacuum insulated tanks and evaporators (VITs and Vl for a multitude of different applications.These include food freezing and chilling, water treatment, chemical field. Liquid nitrogen, argon and oxygen are also supplied in smaller portable vacuum insulated vessels

  18. Earth is warm because of "greenhouse gases" in atmosphere

    E-Print Network [OSTI]

    Callender, Craig

    " properties of carbon dioxide, water. #12;Early 20th century, scientists realized that if CO2 content changed "Calculation shows that doubling or tripling the amount of the carbon dioxide in the atmosphere increases

  19. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1989-01-01

    The present disclosure relates to improved processes for treating hot sulfur-containing flue gas to remove sulfur therefrom. Processes in accorda The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531.

  20. Process for removing sulfur from sulfur-containing gases

    DOE Patents [OSTI]

    Rochelle, Gary T. (Austin, TX); Jozewicz, Wojciech (Chapel Hill, NC)

    1990-01-01

    The present disclosure relates to i The government may own certain rights in the present invention pursuant to EPA Cooperative Agreement CR 81-1531. This is a continuation of U.S. Ser. No. 928,337, filed Nov. 7, 1986, now U.S. Pat. No. 4,804,521.

  1. Three-body Recombination in Bose Gases with Large Scattering...

    Office of Scientific and Technical Information (OSTI)

    with large scattering length is applied to three-body recombination to a weakly bound s -wave state in a Bose gas. Our model independent analysis demonstrates that the three-body...

  2. Pairing and superfluidity in strongly interacting Fermi gases

    E-Print Network [OSTI]

    Schunck, Christian H. (Christian Heinrich)

    2008-01-01

    This thesis describes experiments with superfluid spin mixtures of ultracold fermionic 6Li atoms. The properties of the strongly interacting gas are studied in the crossover regime between Bose-Einstein condensation (BEC) ...

  3. Chapter 4 The Gaseous State Chemistry of Gases

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    .15 V = V0[1+(t/273.15oC)] Kelvin T = 273.15 + t(Celsius) #12;Boyle's Law · The stirling engine, a heat engine invented by a Scottish minister, has been considered for use in automobile engines because of its efficiency. In such an engine, a gas goes through a four-step cycle of (1) expansion at constant T, (2

  4. Enhanced ignition for I. C. engines with premixed gases

    SciTech Connect (OSTI)

    Dale, J.D.; Oppenheim, A.K.

    1981-01-01

    The development of lean charge, fast burn engines depends crucially on enhanced ignition. Enhanced ignition involves not only high energies and long duration of ignition, but also a wide dispersion of its sources, so that combustion is carried out at as many sites throughout the charge as possible. Upon this premise, various ignition systems for I.C. engines, operating with premixed charge, are reviewed. The systems are grouped as follows: high energy spark plugs; plasma jet igniters; photochemical, laser, and microwave ignition concepts; torch cells; divided chamber stratified charge engines; flame jet igniters; combustion jet ignition concepts; EGR ignition system. The first three derive the power from electrical energy, the rest are powered by exothermic chemical reactions. The review emphasizes the concept of staging the processes of initiation and propagation of combustion. Relative positions of various ignition systems are expressed on the plane of relative energies (the ratio of energy consumed by the ignition system, or contained in a pre-chamber, to that of the compressed charge in the main chamber) and relative volumes (the ratio of the volume of the pre-chamber to that of the compressed charge). In principle, ignition systems for engines operating with premixed charge lie on the half-plane of relative energies below one, between 10/sup -5/ for standard spark plugs to 10/sup -1/ for divided chamber stratified charge engines, while their relative volumes extend from 0 for spark igniters to 0.2 for stratified charge engines. This suggests that proper compartmentization of the combustion process may lead to significant improvements in both pollution emissions from the cylinder and specific fuel consumption of I.C. engines.

  5. Sorption of organic gases in residential bedrooms andbathrooms

    SciTech Connect (OSTI)

    Singer, B.C.; Hodgson, A.T.; Hotchi, T.; Ming, K.Y.; Sextro,R.G.; Wood, E.E.; Brown, N.J.

    2005-01-05

    Experiments were conducted to characterize organic gas sorption in residential bedrooms (n=4), bathrooms (n=2), and a furnished test chamber. Rooms were studied ''as-is'' with material surfaces and furnishings unaltered. Surface materials were characterized and areas quantified. Experiments included rapid volatilization of a volatile organic compound (VOC) mixture with the room closed and sealed for a 5-h Adsorb phase, followed by 30-min Flush and 2-h closed-room Desorb phases. The mixture included n-alkanes, aromatics, glycol ethers, 2-ethyl-1-hexanol, dichlorobenzene, and organophosphorus compounds. Measured gas-phase concentrations were fit to three variations of a mathematical model that considers sorption occurring at one surface sink and one potential embedded sink. The 2-parameter sink model tracked measurements for most compounds, but improved fits were obtained for some VOCs with a 3-parameter sink-diffusion or a 4-parameter two-sink model. Sorptive partitioning and initial adsorption rates increased with decreasing vapor pressure within each chemical class.

  6. Assessing Global Terrestrial Sources of Methyl Halides - Ozone Regulating Gases 

    E-Print Network [OSTI]

    Gancarczyk, Maciej

    2010-11-24

    Methyl bromide (CH3Br) and methyl chloride (CH3Cl) play significant roles in the depletion of the stratospheric ozone layer. The vast portion of methyl halide sources and sinks sources and sinks are natural in origin. The ...

  7. Welcome to Greenhouse Gases: Science and Technology: Editorial

    E-Print Network [OSTI]

    Oldenburg, C.M.

    2013-01-01

    International Energy Outlook, 2010. [Online]. Available at:Energy Agency, World Energy Outlook 2009. IEA: Paris,

  8. Cooling of hot gases by use of a spray tower 

    E-Print Network [OSTI]

    Pendleton, Elmer Lee

    1958-01-01

    , These included a sprayhead, number 5B Sprayco, which was located either at the top of the tower (A) or at a position four feet lower in the tower (B), a hot air inlet duct (C), an air outlet duct (D), a multiport gas burner (E), a ceramic checkerwork (F.... ?ne corresnonding m?ss w?s dote?- rrnrei) n-; use ? f su ~ table scales, . ni balances. Thc spec? f? cat iona I' or :j i'- ei' 'one. ? !'. )nws: ? ncp, a! i ' sty . ? i at?i. 'Fl. ? t"nr v: . , c ie. , " F. nu=rc. ured cy Can, " c? 0?ubdzv...

  9. ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Torn, Margaret

    Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.

  10. Helium Isotopes in Geothermal and Volcanic Gases of the Western...

    Open Energy Info (EERE)

    fluid as it flows eastward over the caldera. Decreasing Hecondensible-gas ( HeCO2) ratios accompanying this trend suggest that CO2 addition andor preferential helium...

  11. Helium Isotopes In Geothermal And Volcanic Gases Of The Western...

    Open Energy Info (EERE)

    be qualitative criteria for the absence of a magmatic heat source. To first order, He(CO2 + H2S) ratios are inversely correlated with 3He4He and are consistent with a...

  12. EIA - Greenhouse Gas Emissions - High-GWP gases

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of total HFC emissions, including the group of other HFCsPFCsPFPEs. To encourage vehicle manufacturers to reduce emissions of HFC-134a from mobile air conditioners, the...

  13. Argonne researchers create more accurate model for greenhouse gases from

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D SFederal8823 RevisionAprilSTEMfest |Nationalpeatlands |

  14. Finalize Historic National Program to Reduce Greenhouse Gases and Improve

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages RecentTempCampApplicationWorksheetWind-turbine-economics-teacher.pdfbyProject,Fuel

  15. Energy Efficiency and Greenhouse Gases | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor Innovative Solar PowerTribes to

  16. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 20102016 NewsUsers'OrganizationgovAboutAcronyms

  17. EIA-Voluntary Reporting of Greenhouse Gases Program - Reporting Guidelines

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReporting Guidelines Voluntary Reporting of

  18. EIA-Voluntary Reporting of Greenhouse Gases Program - Under Construction

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReporting Guidelines Voluntary Reporting ofUnder

  19. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46 1967-2010Year Jan Feb MarDecade

  20. Alabama Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46 1967-2010Year Jan Feb

  1. Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas andYearYearDecade

  2. Alaska Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32Elements) Gas andYearYearDecadeYear

  3. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar AprDecade

  4. Arizona Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan Feb Mar AprDecadeYear

  5. Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear Jan Feb MarReserves

  6. Arkansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - NaturalYear Jan Feb MarReservesYear Jan

  7. EIA - Greenhouse Gas Emissions - High-GWP gases

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic43,728 243,242ConsumersAnnual CoalOrigin65.

  8. California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15Feet)Feet) Decade

  9. California Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSalesFuelMay-15Feet)Feet)

  10. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct NovCubicYearYearNonhydrocarbon

  11. Colorado Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep Oct

  12. Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May JunYear JanDecade Year-0

  13. Florida Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar Apr May JunYear JanDecade

  14. Illinois Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb MarMay-15VentedNonhydrocarbon

  15. Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuelTotalSeparation 3,417

  16. Kansas Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecadeFuelTotalSeparation 3,417Year Jan

  17. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYear JanSameDecade Year-0

  18. Kentucky Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014Thousand CubicYear JanSameDecade

  19. Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotalYear JanSameFeet)

  20. Louisiana Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(MillionYear JanTotalYear