Sample records for oil zone fairways

  1. Zone Choices NorthFairwayRd.

    E-Print Network [OSTI]

    Collins, Gary S.

    .Valley Rd. Illinois St. To Palouse, Hwy. 27 North Fairway Rd. Valley Rd. Basketball Courts To WSU Visitor

  2. Fractal Graphics Proprietary Limited 39 Fairway, Nedlands,

    E-Print Network [OSTI]

    Boschetti, Fabio

    1 Fractal Graphics Proprietary Limited 39 Fairway, Nedlands, Western Australia, Australia 6009 djh@fractalgraphics.com.au 2 Fractal Graphics Proprietary Limited 39 Fairway, Nedlands, Western Australia, Australia 6009 nja

  3. NorthFairwayRd. Indoor Practice

    E-Print Network [OSTI]

    Collins, Gary S.

    St. AnthonySt. HallDr. KennyDr. DeaneDr. Janet St. Whitman St. Palouse St.Olsen St. Main St. Paradise St. Mc.Valley Rd. Illinois St. To Palouse, Hwy. 27 North Fairway Rd. Round Top Terrace Steptoe Kamiak Valley Road

  4. Neutral zone: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports on the Neutral Zone between Kuwait and Saudi Arabia, much in the news during the Gulf war, that returned to production in June when offshore output resumed at a rate of 100,000 bpd. By this month, offshore production should have attained near its pre-war level of 250,000 bpd. Because of war damage onshore, production will not be restarted onshore for some time. Neutral Zone oil is jointly owned by Kuwait and Saudi Arabia. Texaco's Getty unit operates some 900 mostly pumping wells in South Umm Gudair, Wafra and South Fawaris onshore fields. However, only about 50 were producing 130,000 bpd last August when Iraqis invaded. Japan's Arabian Oil Co. operates 165 wells-all flowing-in offshore Khafji, Hout and Lulu fields that have a maximum productive capacity of about 300,000 bpd.

  5. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial Grades: 9-12Play Fairway Analysis

  6. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway Analysis pfw-webinar.pptx

  7. Fairway, Kansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°, -122.822032° LoadingFairway,

  8. Seismic low-frequency effects from oil-saturated reservoir zones

    E-Print Network [OSTI]

    Goloshubin, Gennady M.; Korneev, Valeri A.; Vingalov, Vjacheslav M.

    2002-01-01T23:59:59.000Z

    frequency effects from oil-saturated reservoir zones Gennadyeffects from oil-saturated reservoir zones. The seismic datatwo different types of oil-saturated reservoirs (Fig.2). The

  9. Morphodynamics Suriname River: study of mud transport and impact due to lowering the fairway channel:.

    E-Print Network [OSTI]

    Loose, M.

    2008-01-01T23:59:59.000Z

    ??inland transportation of goods. The artificial fairway channel provides entrance to the port of Paramaribo and Paranam. The motivation for this thesis project is the (more)

  10. Oil flow resumes in war torn onshore Neutral Zone

    SciTech Connect (OSTI)

    Not Available

    1992-03-09T23:59:59.000Z

    Oil production has resumed in the war ravaged onshore fields of the Neutral Zone between Saudi Arabia and Kuwait 1 year after the end of Persian Gulf War. Initial production of about 40,000 b/d is expected to rise to 60,000 b/d by year end. This paper reports that prior to the January-February 1991 war to oust occupying Iraqi military forces from Kuwait, the Neutral Zone's Wafra, South Umm Gudair, and South Fuwaris onshore fields produced about 135,000 b/d.

  11. Play Fairway Analysis FOA Selections | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21, 2015 7:00AM to 10:30AMPlay Fairway Analysis FOA

  12. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  13. The Effects of Three-Dimensional Canopy Management on Overseeded Warm-Season Fairway Turf

    E-Print Network [OSTI]

    as a sustainable warm-season turfgrass but a lack of cultural management data has hindered its acceptance. FineThe Effects of Three-Dimensional Canopy Management on Overseeded Warm-Season Fairway Turf Scientist: Kurt Steinke, Department of Soil and Crop Sciences Funding: $7,000 The objectives are to 1) discover

  14. Characterization of DOE reference oil shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale

    SciTech Connect (OSTI)

    Miknis, F. P.; Robertson, R. E.

    1987-09-01T23:59:59.000Z

    Measurements have been made on the chemical and physical properties of two oil shales designated as reference oil shales by the Department of Energy. One oil shale is a Green River Formation, Parachute Creek Member, Mahogany Zone Colorado oil shale from the Exxon Colony mine and the other is a Clegg Creek Member, New Albany shale from Kentucky. Material balance Fischer assays, carbon aromaticities, thermal properties, and bulk mineralogic properties have been determined for the oil shales. Kerogen concentrates were prepared from both shales. The measured properties of the reference shales are comparable to results obtained from previous studies on similar shales. The western reference shale has a low carbon aromaticity, high Fischer assay conversion to oil, and a dominant carbonate mineralogy. The eastern reference shale has a high carbon aromaticity, low Fischer assay conversion to oil, and a dominant silicate mineralogy. Chemical and physical properties, including ASTM distillations, have been determined for shale oils produced from the reference shales. The distillation data were used in conjunction with API correlations to calculate a large number of shale oil properties that are required for computer models such as ASPEN. There was poor agreement between measured and calculated molecular weights for the total shale oil produced from each shale. However, measured and calculated molecular weights agreed reasonably well for true boiling point distillate fractions in the temperature range of 204 to 399/sup 0/C (400 to 750/sup 0/F). Similarly, measured and calculated viscosities of the total shale oils were in disagreement, whereas good agreement was obtained on distillate fractions for a boiling range up to 315/sup 0/C (600/sup 0/F). Thermal and dielectric properties were determined for the shales and shale oils. The dielectric properties of the reference shales and shale oils decreased with increasing frequency of the applied frequency. 42 refs., 34 figs., 24 tabs.

  15. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01T23:59:59.000Z

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  16. The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding

    SciTech Connect (OSTI)

    Brown, Lewis R.; Byrnes, Martin J.; Stephens, James O.; Vadie, Alex A.

    1999-07-01T23:59:59.000Z

    This project was designed to demonstrate that a microbially enhanced oil recovery process (MEOR), developed in part under DOE Contract No. DE-AC22-90BC14665, will increase oil recovery from fluvial dominated deltaic oil reservoirs. The process involves stimulating the in-situ indigenous microbial population in the reservoir to grow in the more permeable zones, thus diverting flow to other areas of the reservoir, thereby increasing the effectiveness of the waterflood. This five and a half year project is divided into three phases, Phase I, Planning and Analysis (9 months), Phase II, Implementation (45 months), and Phase III, Technology Transfer (12 months). Phase I was completed and reported in the first annual report. This fifth annual report covers the completion of Phase II and the first six months of Phase III.

  17. Method for establishing a combustion zone in an in situ oil shale retort having a pocket at the top

    DOE Patents [OSTI]

    Cha, Chang Y. (1904 Glenmont Dr., Bakersfield, CA 93309)

    1980-01-01T23:59:59.000Z

    An in situ oil shale retort having a top boundary of unfragmented formation and containing a fragmented permeable mass has a pocket at the top, that is, an open space between a portion of the top of the fragmented mass and the top boundary of unfragmented formation. To establish a combustion zone across the fragmented mass, a combustion zone is established in a portion of the fragmented mass which is proximate to the top boundary. A retort inlet mixture comprising oxygen is introduced to the fragmented mass to propagate the combustion zone across an upper portion of the fragmented mass. Simultaneously, cool fluid is introduced to the pocket to prevent overheating and thermal sloughing of formation from the top boundary into the pocket.

  18. Application of Biodegradable Oils (VOS{sup TM}) for Treatment of Chlorinated Ethenes in the Vadose Zone - 12085

    SciTech Connect (OSTI)

    Riha, Brian D.; Noonkester, Jay V.; Looney, Brian B.; Hyde, W. Keith; Walker, Richard W. [Savannah River National Laboratory, Aiken, SC (United States); Richardson, Stephen D.; Elkins, Brad; Beckwith, Walter [EOS Remediation, LLC, Raleigh, NC (United States)

    2012-07-01T23:59:59.000Z

    Few active remediation alternatives are available to treat residual chlorinated volatile organic compounds (cVOCs) within the vadose zone. Soil vapor extraction (SVE) can be very effective at removing cVOCs in permeable soils; however, recoveries decline substantially in low permeability zones where mass transfer is diffusion-limited. Entrapped cVOCs in these zones represent a slow but continuous source of contamination to underlying groundwater. An ongoing field study was initiated at the Department of Energy's Savannah River Site (SRS) to evaluate an in situ biological treatment technology to address cVOC contamination in the vadose zone. Developed by Savannah River National Laboratory (SRNL), VOS{sup TM} is a thixotropic (shear thinning) formulation of biodegradable oil, water, nutrients, buffers, and de-chlorinating bacteria (Dehalococcoides sp.) that is designed to sequester and biodegrade slow-diffusing cVOCs from unsaturated, low permeable soils. Injection of 871 L (230 gal) of VOS{sup TM} resulted in a rapid and significant decrease in cVOC gas concentration, generation of cVOC daughter products, a decrease in oxygen concentration, and an increase in carbon dioxide and methane production. (authors)

  19. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  20. Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai,

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    SPE 112976 Understanding the Rate of Clean Up for Oil Zones after a Gel Treatment R.S. Seright, SPE, New Mexico Petroleum Recovery Research Center, W. Brent Lindquist, SPE, and Rong Cai, Stony Brook at the 2008 SPE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, U.S.A., 19­23 April 2008. This paper

  1. The utilization of the microflora indigenous to and present in oil-bearing formations to selectively plug the more porous zones thereby increasing oil recovery during waterflooding, Class 1

    SciTech Connect (OSTI)

    Stephens, James O.; Brown, Lewis R.; Vadie, A. Alex

    2000-02-02T23:59:59.000Z

    The objectives of this project were (1) to demonstrate the in situ microbial population in a fluvial dominated deltaic reservoir could be induced to proliferate to such an extent that they will selectively restrict flow in the more porous zones in the reservoir thereby forcing injection water to flow through previously unswept areas thus improving the sweep efficiency of the waterflood and (2) to obtain scientific validation that microorganisms are indeed responsible for the increased oil recovery. One expected outcome of this new technology was the prolongation of economical life of the reservoir, i.e. economical oil recovery should continue for much longer periods in areas of the reservoir subjected to the MPPM technology than it would if it followed its historic trend.

  2. Fairway | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°, -122.822032° Loading

  3. ENERGY IN THE PACIFIC COASTAL ZONE DOES D.O.E. HAVE A ROLE?

    E-Print Network [OSTI]

    Ritschard, Ronald L.

    2013-01-01T23:59:59.000Z

    Coastal Zone annual oil production, 10 E + 06 bbl per year.58 percent of all regional oil production is in the coastalgenerating capacity, crude oil production~ total petroleum

  4. An investigation of the evolution and present distribution of residual oil zones (ROZ) in the Permian Basin, West Texas and its implications for carbon dioxide

    E-Print Network [OSTI]

    Texas at Austin, University of

    , and widespread development of CO2-EOR in the Permian Basin have made production from ROZ economically attractive) in the Permian Basin, West Texas and its implications for carbon dioxide (CO2) storage West, L. 1 logan significant new resources for tertiary oil production through carbon dioxide (CO2) enhanced oil recovery (CO2

  5. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  6. Oil shale retorting method and apparatus

    SciTech Connect (OSTI)

    York, E.D.

    1983-03-22T23:59:59.000Z

    Disclosed is an improved method and apparatus for the retorting of oil shale and the formation of spent oil shale having improved cementation properties. The improved method comprises passing feed comprising oil shale to a contacting zone wherein the feed oil shale is contacted with heat transfer medium to heat said shale to retorting temperature. The feed oil shale is substantially retorted to form fluid material having heating value and forming partially spent oil shale containing carbonaceous material. At least a portion of the partially spent oil shale is passed to a combustion zone wherein the partially spent oil shale is contacted with oxidizing gas comprising oxygen and steam to substantially combust carbonaceous material forming spent oil shale having improved cementation properties.

  7. Liquid zone seal

    DOE Patents [OSTI]

    Klebanoff, Leonard E. (Dublin, CA)

    2001-01-01T23:59:59.000Z

    A seal assembly that provides a means for establishing multiple pressure zones within a system. The seal assembly combines a plate extending from the inner wall of a housing or inner enclosure that intersects with and is immersed in the fluid contained in a well formed in a tray contained within the enclosure. The fluid is a low vapor pressure oil, chemically inert and oxidation resistant. The use of a fluid as the sealing component provides a seal that is self-healing and mechanically robust not subject to normal mechanical wear, breakage, and formation of cracks or pinholes and decouples external mechanical vibrations from internal structural members.

  8. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,E . 1977; Mercury in Oil Shale from the Mahogany Zone the

  9. MERCURY EMISSIONS FROM A SIMULATED IN-SITU OIL SHALE RETORT

    E-Print Network [OSTI]

    Fox, J. P.

    2012-01-01T23:59:59.000Z

    from a Simulated In-Situ Oil Shale J. P. Fox, J. J. Duvall,of elements in rich oil shales of the Green River Formation,V. E . 1977; Mercury in Oil Shale from the Mahogany Zone

  10. Uniqueness Conditions in a Hyperbolic Model for Oil Recovery by Steamdrive.

    E-Print Network [OSTI]

    temperature in which oil, non­condensing gas (steam) and connate water are present. In the downstream cold for gas/oil in the steam zone and for oil/water in the cold zone, lead to a complete solution of the modelUniqueness Conditions in a Hyperbolic Model for Oil Recovery by Steamdrive. J. Bruining Dietz

  11. OIL SHALE

    E-Print Network [OSTI]

    Fields (in-situ Combustion Approach; M. V. Kk; G. Guner; S. Bagci?

    Seyitmer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

  12. Dorchester County- Renewable Zoning

    Broader source: Energy.gov [DOE]

    Dorchester County zoning codes specifically permit solar arrays and small wind turbines in many zoning districts.

  13. Renewable Energy Renaissance Zones

    Broader source: Energy.gov [DOE]

    In 2006, Michigan enacted legislation allowing for the creation of Renewable Energy Renaissance Zones (RERZ). Renaissance zones -- renewable energy renaissance zones are just one type -- offer...

  14. Enterprise Zone Program (Georgia)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program provides various tax incentives to businesses within designated underdeveloped zones in rural or urban areas. The State Enterprise Zone program intends to improve...

  15. Play Fairway Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | Department ofpermitPerformance Audit ofProducing cleanDisease

  16. FACT SHEET! 2013 What is ShoreZone?

    E-Print Network [OSTI]

    , British Columbia, Washington and Oregon. The North Slope and Kotzebue Sound mapping is now completed trackline by a unique time code, providing a GPS position on the coastline for each image. Figure 3. Oil and sediment type. Highest values indicate an oil residence time of months to years. Hig Higman/ShoreZone Mary

  17. Cracking blends of gas oil and residual oil

    SciTech Connect (OSTI)

    Myers, G.D.

    1988-03-01T23:59:59.000Z

    In a catalytic cracking process unit wherein a gas oil feed is cracked in a cracking zone at an elevated temperature in the presence of a cracking catalyst, the cracking catalyst is regenerated in a regeneration zone by burning coke of the catalyst, and catalyst is circulated between the cracking zone and the regeneration zone. The improvement is described for obtaining a naphtha product of improved octane number comprising introducing sufficient of a nickel and vanadium metals-containing heavy feedstock with the gas oil feed introduced into the cracking zone to deposit nickel and vanadium metals on the catalyst and raise the nickel and metals-content of the catalyst to a level ranging from about 1500 to about 6000 parts per million of the metals expressed as equivalent nickel, based on the weight of the catalyst, and maintaining the nickel and vanadium metals level on the catalyst by withdrawing high nickel and vanadium metals containing catalyst and adding low nickel and vanadium metals-containing catalyst to the regeneration zone.

  18. Technology Zones (Virginia)

    Broader source: Energy.gov [DOE]

    Virginias 26 designated Technology Zones offer tax relief in the form of abatements, credits, deductions, deferrals, exemptions, or rebates. Local governments may designate technology zones to...

  19. Enterprise Zone Incentives (Florida)

    Broader source: Energy.gov [DOE]

    Enterprise Zone Incentives encourage business growth within certain geographic areas targeted for economic revitalization. Businesses which create jobs within a designated zone are eligible for...

  20. Enterprise Zone Program (Alabama)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program provides certain tax incentives to corporations, partnerships and proprietorships that locate or expand within designated Enterprise Zones. In addition to state-level...

  1. Not Excavated (still on site) As All data Zone 1 Zone 2 Zone 3 Zone 4

    E-Print Network [OSTI]

    .12 11.68 10.29 AL: 50 xrf_allzones_20060810 Page 1 of 174notx summary #12;Mo All data Zone 1 Zone 2 Zone.35 2.36 2.37 U95: 57.95 62.41 60.56 51.63 70.50 U99: 58.98 64.27 62.34 52.75 74.38 AL: 550 xrf99: 12.48 AL: xrf_allzones_20060810 Page 3 of 174x summary #12;Mo All data Zone 1 Zone 2 Zone 3 Zone

  2. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01T23:59:59.000Z

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  3. Reinvestment Zones (Texas)

    Broader source: Energy.gov [DOE]

    Reinvestment Zones a local economic development tool used by municipalities and counties throughout the state of Texas. These zones can be created for the purpose of granting local businesses ad...

  4. Enterprise Zone Program (Illinois)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program provides eligible businesses that relocate or expand to a designated zone with tax incentives such as: 1) an investment tax credit; 2) a job tax credit for each job...

  5. Enhanced Enterprise Zones (Missouri)

    Broader source: Energy.gov [DOE]

    Enhanced Enterprise Zones aim at attracting new businesses or promoting an expansion of existing business in Missouri Enhanced Enterprise Zone. Tax credits will be an amount authorized by DED,...

  6. Alternative Energy Zone (Ohio)

    Broader source: Energy.gov [DOE]

    Ohio's Alternative Energy Zones are made possible through Ohio's Senate Bill 232, which reduced taxes on alternative energy projects. The Alternative Energy Zones are designated on a county-by...

  7. Oil shale retorting and combustion system

    DOE Patents [OSTI]

    Pitrolo, Augustine A. (Fairmont, WV); Mei, Joseph S. (Morgantown, WV); Shang, Jerry Y. (Fairfax, VA)

    1983-01-01T23:59:59.000Z

    The present invention is directed to the extraction of energy values from l shale containing considerable concentrations of calcium carbonate in an efficient manner. The volatiles are separated from the oil shale in a retorting zone of a fluidized bed where the temperature and the concentration of oxygen are maintained at sufficiently low levels so that the volatiles are extracted from the oil shale with minimal combustion of the volatiles and with minimal calcination of the calcium carbonate. These gaseous volatiles and the calcium carbonate flow from the retorting zone into a freeboard combustion zone where the volatiles are burned in the presence of excess air. In this zone the calcination of the calcium carbonate occurs but at the expense of less BTU's than would be required by the calcination reaction in the event both the retorting and combustion steps took place simultaneously. The heat values in the products of combustion are satisfactorily recovered in a suitable heat exchange system.

  8. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  9. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  10. Carbometallic oil conversion with ballistic separation

    SciTech Connect (OSTI)

    Walters, P.W.; Benslay, R.M.; Barger, D.F.

    1991-09-03T23:59:59.000Z

    This patent describes improvement in a method for converting carbo-metallic containing residual oils to form upgraded liquid products by mixing. The improvement comprises: discharging the suspension from the reaction zone at a velocity of 55 to 100 ft/sec. imparting greater momentum to the solid particles than to the hydrocarbon product vapors whereby instantaneous separation of at least about 80 wt % of the vapors from the solid particles occurs; encouraging separation of solids from remaining vapors following discharge from the reaction zone by diverting solids from the remaining vapors by directional impingement on a target baffle and by providing a lower pressure vapor recovery zone in open communication with one or more cyclone separation zones outside the reaction zone open end; recovering solid particles separated by momentum from the suspension and diverted laterally from the vapor recovery zone as a mass of collected solid particles; stripping and regenerating the collected the particles in a sequence of separate zones; and recycling hot regenerated solids to the reaction zone for contact with the residual oil feed.

  11. In situ retorting or oil shale

    SciTech Connect (OSTI)

    Hettinger, W.P. Jr.

    1984-09-11T23:59:59.000Z

    An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

  12. Varying heating in dawsonite zones in hydrocarbon containing formations

    SciTech Connect (OSTI)

    Vinegar, Harold J. (Bellaire, TX); Xie, Xueying (Houston, TX); Miller, David Scott (Katy, TX)

    2009-07-07T23:59:59.000Z

    A method for treating an oil shale formation comprising dawsonite includes assessing a dawsonite composition of one or more zones in the formation. Heat from one or more heaters is provided to the formation such that different amounts of heat are provided to zones with different dawsonite compositions. The provided heat is allowed to transfer from the heaters to the formation. Fluids are produced from the formation.

  13. Bioconversion of Heavy oil.

    E-Print Network [OSTI]

    Steinbakk, Sandra

    2011-01-01T23:59:59.000Z

    ??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

  14. Mathematical models of interconnections between composition and properties of oils in the Apsheron oil-and gas-bearing region of Azerbaijan

    SciTech Connect (OSTI)

    Buryakovsky, L.A.; Dzhevanshir, R.D. (Inst. of Deep Oil and Gas Deposits, Azerbaijan Academy of Sciences, 33 Narimanov Prospect, Baku 370143, Azerbaijan (SU))

    1992-01-01T23:59:59.000Z

    This paper reports on the example of oils in the Apsheron oil- and gas-bearing region and Apsheron archipelago located in the western part of the Southern Caspian depression, of which the authors have developed mathematical models of a group hydrocarbon composition; interconnection between oil density and content of asphalt-resin materials, benzine, and ligroin; interconnections between oil density and viscosity and temperature; and interconnections between content of asphalt-resin properties and low-temperature fractions. The models obtained enable us to extrapolate factual data on composition and properties of oils beyond the limits of fixed depths of burial of oil-saturated reservoirs both to a zone of great depths and increased temperatures where hydrocarbons were in a gaseous or oil and gaseous state, and to a zone of near-surface conditions where oils acquire the consistency of asphalts.

  15. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

  16. Oil and Gas CDT Predicting fault permeability at depth: incorporating natural

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Predicting fault permeability at depth: incorporating natural permeability controls on fluid flow in oil and gas reservoirs. Fault zones are composed of many deformation elements will receive 20 weeks bespoke, residential training of broad relevance to the oil and gas industry: 10 weeks

  17. Ignition technique for an in situ oil shale retort

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO)

    1983-01-01T23:59:59.000Z

    A generally flat combustion zone is formed across the entire horizontal cross-section of a fragmented permeable mass of formation particles formed in an in situ oil shale retort. The flat combustion zone is formed by either sequentially igniting regions of the surface of the fragmented permeable mass at successively lower elevations or by igniting the entire surface of the fragmented permeable mass and controlling the rate of advance of various portions of the combustion zone.

  18. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect (OSTI)

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12T23:59:59.000Z

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  19. Renaissance Zones (North Dakota)

    Broader source: Energy.gov [DOE]

    Renaissance Zones allow qualifying businesses and individuals to claim one or more tax incentives for purchasing, leasing, or making improvements to real property located in a North Dakota...

  20. Enterprise Zones (Iowa)

    Broader source: Energy.gov [DOE]

    The Enterprise Zones Program is an incentive for business expansion designed to stimulate development by targeting economically distressed areas in Iowa. Through state and local tax incentives,...

  1. Fluidized bed retorting of eastern oil shale

    SciTech Connect (OSTI)

    Gaire, R.J.; Mazzella, G.

    1989-03-01T23:59:59.000Z

    This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

  2. NOAAINMFS Developments NOAA Raises Coastal Zone Management Status

    E-Print Network [OSTI]

    attention on the coastal zone for deepwater ports, floating nuclear power plants, and offshore oil and gas to eight vessels supplying three processing plants, with a total output of around 1.2 million pounds of the deep-sea red crab, and declining consumer buying power, make the fu- ture for the red crab market

  3. Hydrotreating of oil from eastern oil shale

    SciTech Connect (OSTI)

    Scinta, J.; Garner, J.W.

    1984-01-01T23:59:59.000Z

    Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

  4. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    ) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

  5. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  6. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    . ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

  7. Queen Anne's County- Solar Zoning

    Broader source: Energy.gov [DOE]

    Queen Anne's County zoning code allows for ground mounted solar arrays in areas zoned as "open space," "agricultural," and "countryside" districts.

  8. Opportunity and Enterprise Zones (Oklahoma)

    Broader source: Energy.gov [DOE]

    Opportunity and Enterprise Zones provide enhanced financial incentives for businesses located in such zones aimed at stimulating economic expansion in rural and disadvantaged communities...

  9. Keystone Opportunity Zones (Pennsylvania)

    Broader source: Energy.gov [DOE]

    Keystone Opportunity Zones allows businesses located within designated areas to qualify for a tax exemption, deduction, credit, or abatement of state and local taxes such as sales and use tax,...

  10. Development Opportunity Zone Credit

    Broader source: Energy.gov [DOE]

    The Development Opportunity Zone Credits incent new and expanding businesses in the Cities of Beloit, Janesville and Kenosha by providing non-refundable tax credits to assist with the creation and...

  11. Enterprise Zone Program (Texas)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program eligible projects to apply for state sales and use tax refunds on purchases of all taxable items purchased for use at qualified business sites related to the project or...

  12. Enterprise Zone Program (Louisiana)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program is a jobs incentive program providing Louisiana income and franchise tax credits to businesses hiring at least 35% of net, new jobs from targeted groups. Enterprise...

  13. Streamside Management Zones (Montana)

    Broader source: Energy.gov [DOE]

    This chapter sets streamside management zones as encompassing a strip at least 50 feet wide on each side of a stream, lake, or other body of water, measured from the ordinary high-water mark, and...

  14. Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

  16. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  17. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of AmericasDowns and Jeffrey A. Bader, Oil-Hungry China Belongs at BigChina, Africa, and Oil, (Council on Foreign Relations,

  18. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  1. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, OPEC Crude Oil Production (Excluding Lease2008, from EIA, Crude Oil Production. Figure 16. U.S.

  2. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline, NBER Working Paper.2006. Chinas Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand, Energy Journal 23(1),

  4. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

  5. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, Chinas oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

  7. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    by this point, Chinas demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

  8. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand, Energy Journal 23(1),2006. Chinas Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,

  10. Biochemically enhanced oil recovery and oil treatment

    SciTech Connect (OSTI)

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  11. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  12. Distribution and origin of sulfur in Colorado oil shale

    SciTech Connect (OSTI)

    Dyni, J.R.

    1983-04-01T23:59:59.000Z

    The sulfur content of 1,225 samples of Green River oil shale from two core holes in the Piceance Creek Basin, Colorado, ranges from nearly 0 to 4.9 weight percent. In one core hole, the average sulfur content of a sequence of oil shale 555 m thick, which represents nearly the maximum thickness of oil shale in the basin, is 0.76 weight percent. The vertical distribution of sulfur through the oil shale is cyclic. As many as 25 sulfur cycles have lateral continuity and can be traced between the core holes. Most of the sulfur resides in iron sulfides (pyrite, marcasite, and minor. pyrrhotite), and small amounts are organically bound in kerogen. In general, the concentration of sulfur correlates moderately with oil shale yield, but the degree of association ranges from quite high in the upper 90 m of the oil shale sequence to low or none in the leached zone and in illitic oil shale in the lower part of the sequence. Sulfur also correlates moderately with iron in the carbonate oil shale sequence, but no correlation was found in the illitic samples. Sulfide mineralization is believed to have occurred during early and late stages of diagenesis, and after lithification, during development of the leached zone. Significant amounts of iron found in ankeritic dolomite and in illite probably account for the lack of a strong correlation between sulfur and iron.

  13. Unsaturated Zone I. Overview

    E-Print Network [OSTI]

    Chapter 2 Unsaturated Zone I. Overview If the Yucca Mountain site is deemed suitable for re of the extent of welding, the tuffs within the UZ at Yucca Mountain are grouped informally into hydrogeologic Yucca Mountain is illustrated in Figure 2-1 on page 14. A. Why UZ Was Chosen Initial studies of Yucca

  14. Horizontal low-void retorting of eastern and western oil shale

    SciTech Connect (OSTI)

    Fahy, L.J.

    1986-02-01T23:59:59.000Z

    Horizontal in situ retorting processes have been developed to recover oil from thin, shallow oil shale deposits. To date the most successful field tests have been conducted in Green River oil shale located in Utah. Consideration is being given to applying this technology to the New Albany oil shales in Indiana. Western Research Institute (WRI) conducted two horizontal in situ oil shale experiments using eastern oil shale and the results are compared with results obtained from a similar experiment using Green River oil shale. The objectives of the three experiments were to simulate the horizontal retorting process and determine oil yield, retorting zone profiles and product characteristics using alternative operating conditions for eastern and western oil shales. The tests proved that horizontal retorting could be simulated in the laboratory. However, air bypass problems occurred in the experiments, which probably reduced oil recovery compared with recovery from field tests. During the eastern oil shale tests plugging was encountered in the gas recovery system because of the production of a solid material containing sulfur compounds. This plugging could be a potential problem for future laboratory and field experimentation. The oil produced from eastern oil shale has different properties from western shale oil. The oil is highly aromatic and when hydrogenated may yield a prototype high density jet fuel. 10 refs., 8 figs., 11 tabs.

  15. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  16. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  18. EnginEEring ZonE "The Engineering Zone

    E-Print Network [OSTI]

    Tobar, Michael

    EnginEEring ZonE "The Engineering Zone will push the limits in collaborative learning and research, and empower people to change the world. "Winthrop Professor John Dell Dean, Faculty of Engineering, Computing and Mathematics #12;2 | nEw CEntury Campaign ­ EnginEEring ZonE #12;nEw CEntury Campaign ­ EnginEEring ZonE | 3

  19. Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process

    SciTech Connect (OSTI)

    Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

    1994-12-31T23:59:59.000Z

    Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

  20. www.VadoseZoneJournal.org Vadose Zone Journal

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    and internationally. The high proportion of scholarly submissions from international scien- tists outsidewww.VadoseZoneJournal.org Vadose Zone Journal: The First Ten Years We proudly present a special section inspired by the 10-year anniversary of Vadose Zone Journal. From the outset, the journal

  1. Radiant zone heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-12-27T23:59:59.000Z

    A system includes a particulate matter (PM) filter including an upstream end for receiving exhaust gas and a downstream end. A radiant zoned heater includes N zones, where N is an integer greater than one, wherein each of the N zones includes M sub-zones, where M is an integer greater than or equal to one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones, restricts exhaust gas flow in a portion of the PM filter that corresponds to the selected one of the N zones, and deactivates non-selected ones of the N zones.

  2. City of Austin- Zoning Code

    Broader source: Energy.gov [DOE]

    The Zoning Code (Chapter 25-2) of the Austin City Code provides a height limitation exemption for solar installations. Solar installations may exceed the zoning district height limit by 15% or the...

  3. The Enterprise Zone (Rhode Island)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone offers tax incentives to business expanding their workforce by 5% at facilities in designated enterprise zones. The tax credit is equal to 50% of the annual wages paid to a new...

  4. Empowerment Zone Tax Credit (Montana)

    Broader source: Energy.gov [DOE]

    The Empowerment Zone Tax Credit allows for eligible businesses located in such zones a $500 credit against income tax liability for each qualifying employee the first year, $1,000 for the second...

  5. Geothermal Play Fairway Analysis (Video) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost

  6. Play Fairway Analysis Poster Session | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research | Department ofpermitPerformance Audit ofProducing cleanDisease |Play

  7. Vadose zone water fluxmeter

    DOE Patents [OSTI]

    Faybishenko, Boris A.

    2005-10-25T23:59:59.000Z

    A Vadose Zone Water Fluxmeter (WFM) or Direct Measurement WFM provides direct measurement of unsaturated water flow in the vadose zone. The fluxmeter is a cylindrical device that fits in a borehole or can be installed near the surface, or in pits, or in pile structures. The fluxmeter is primarily a combination of tensiometers and a porous element or plate in a water cell that is used for water injection or extraction under field conditions. The same water pressure measured outside and inside of the soil sheltered by the lower cylinder of the fluxmeter indicates that the water flux through the lower cylinder is similar to the water flux in the surrounding soil. The fluxmeter provides direct measurement of the water flow rate in the unsaturated soils and then determines the water flux, i.e. the water flow rate per unit area.

  8. Alberta Health Services, Calgary Zone

    E-Print Network [OSTI]

    Habib, Ayman

    Organizational Chart ­ AHS, Calgary Zone, Community, Rural and Mental Health Page 12 Organizational Chart ­ AHS, Calgary Zone, Addiction and Mental Health Page 13 Organizational Chart ­ AHS, Calgary Zone, Clinical specialty care clinics. 3) Increasing efficiency in our specialty clinics. 4) Standardizing care

  9. AN ENGINE OIL LIFE ALGORITHM.

    E-Print Network [OSTI]

    Bommareddi, Anveshan

    2009-01-01T23:59:59.000Z

    ??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil (more)

  10. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  11. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  12. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  14. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  15. Physical properties of soils contaminated by oil lakes, Kuwait

    SciTech Connect (OSTI)

    Mohammad, A.S. [Kuwait Univ., Safat (Kuwait); Wahba, S.A.; Al-Khatieb, S.O. [Arabian Gulf Univ. (Bahrain)

    1996-08-01T23:59:59.000Z

    In preparation for a marine assault by the coalition forces, the Iraqi Army heavily mined Kuwait`s coastal zone and the oil fields. Over a million mines were placed on the Kuwait soil. Burning of 732 oil wells in the State of Kuwait due to the Iraqi invasion caused damages which had direct and indirect effect on environment. A total of 20-22 million barrels of spilled crude oil were collected in natural desert depressions and drainage network which formed more than 300 oil lakes. The total area covered with oil reached 49 km{sup 2}. More than 375 trenches revealed the existence of hard, massive caliche (CaCO{sub 3}) subsoil which prevent leached oil from reaching deeper horizons, and limited the maximum depth of penetration to 1.75 m. Total volume of soil contaminated reached 22,652,500 m{sup 3} is still causing environmental problems and needs an urgent cleaning and rehabilitation. Kuwait Oil Company has recovered approximately 21 million barrels from the oil lakes since the liberation of Kuwait. In our examined representative soil profiles the oil penetration was not deeper than 45 cm. Infiltration rate, soil permeability, grain size distribution, aggregates formation and water holding capacity were assessed. 15 refs., 5 figs., 5 tabs.

  16. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  17. Primary zone air proportioner

    DOE Patents [OSTI]

    Cleary, Edward N. G. (San Diego, CA)

    1982-10-12T23:59:59.000Z

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  18. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    SciTech Connect (OSTI)

    Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

    1996-08-01T23:59:59.000Z

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  19. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

  20. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

  1. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  2. Saturated Zone Colloid Transport

    SciTech Connect (OSTI)

    H. S. Viswanathan

    2004-10-07T23:59:59.000Z

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly sorbed onto this fraction of colloids also transport without retardation. The transport times for these radionuclides will be the same as those for nonsorbing radionuclides. The fraction of nonretarding colloids developed in this analysis report is used in the abstraction of SZ and UZ transport models in support of the total system performance assessment (TSPA) for the license application (LA). This analysis report uses input from two Yucca Mountain Project (YMP) analysis reports. This analysis uses the assumption from ''Waste Form and In-Drift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary'' that plutonium and americium are irreversibly sorbed to colloids generated by the waste degradation processes (BSC 2004 [DIRS 170025]). In addition, interpretations from RELAP analyses from ''Saturated Zone In-Situ Testing'' (BSC 2004 [DIRS 170010]) are used to develop the retardation factor distributions in this analysis.

  3. Geothermal: Educational Zone

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATEDOEFinal REducational Zone

  4. Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado

    SciTech Connect (OSTI)

    Cole, R.D.

    1984-04-01T23:59:59.000Z

    Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

  5. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  6. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  8. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  9. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    21, 2008. Ying, Wang. China, Venezuela firms to co-developApril 21, China and Venezuela sign oil agreements. Chinaaccessed April 21, Venezuela and China sign oil deal. BBC

  10. Oil Sands Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

  11. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01T23:59:59.000Z

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  12. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  13. Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas

    SciTech Connect (OSTI)

    Freed, R.L.

    1981-01-01T23:59:59.000Z

    Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortgage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed-layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well.

  14. Oil and gas basins in the former Soviet Union

    SciTech Connect (OSTI)

    Clayton, J. (Geological Survey, Denver, CO (United States))

    1993-09-01T23:59:59.000Z

    The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

  15. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  16. Manufacture of refrigeration oils

    SciTech Connect (OSTI)

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08T23:59:59.000Z

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  17. Western Renewable Energy Zones (Presentation)

    SciTech Connect (OSTI)

    Hein, J.

    2011-06-01T23:59:59.000Z

    This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

  18. Mandatory Shoreland Zoning Act (Maine)

    Broader source: Energy.gov [DOE]

    The Mandatory Shoreline Zoning Act functions as a directive for municipalities, who are required to adopt, administer, and enforce local ordinances that regulate land use activities in the...

  19. Hydrodynamic effects on Mission Canyon (Mississippian) oil accumulations, Billings Nose area, North Dakota

    SciTech Connect (OSTI)

    Berg, R.R. (Texas A M Univ., College Station, TX (United States)); DeMis, W.D. (Marathon Oil Co., Houston, TX (United States)); Mitsdarffer, A.R. (Dupont Environmental Remediation Services, Houston, TX (United States))

    1994-04-01T23:59:59.000Z

    Mission Canyon oil production on the south flank of the Williston basin provides an example of an area in the mature stage of exploration that shows significant hydrodynamic effects on oil accumulations related to stratigraphic traps. The effects are illustrated by the Billings Nose fields and the Elkhorn Ranch field. The reservoirs have low hydraulic gradients of about 2 m/km (10 ft/mi), tilted oil-water contacts with gradients of 5 m/km (25 ft/mi), and variable formation-water salinities that range from brackish to highly saline. Oil accumulations in some zones are displayed off structure and downdip to the northeast, parallel to porosity pinch-outs. Other zones are pure hydrodynamic closure. Future success in exploration and development in the play will depend on recognizing the hydrodynamic effects and predicting oil displacement. 34 refs., 15 figs., 1 tab.

  20. Breathing zone air sampler

    SciTech Connect (OSTI)

    Tobin, John (Bethel Park, PA)

    1989-01-01T23:59:59.000Z

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  1. Breathing zone air sampler

    SciTech Connect (OSTI)

    Tobin, J.

    1989-08-22T23:59:59.000Z

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  2. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  4. Carcinogenicity Studies of Estonian Oil Shale Soots

    E-Print Network [OSTI]

    A. Vosamae

    determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

  5. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  6. Devonian-Mississippian oil shale resources of Kentucky: a summary

    SciTech Connect (OSTI)

    Barron, L.S.; Robl, T.L.; Kung, J.; Obley, J.

    1985-02-01T23:59:59.000Z

    Assessment of the oil shale resources in Kentucky has continued with 75 NX cores available where the oil shale crops out or is overlain by relatively thin cover in the area from Estill County westward to Bullitt County. In this 14 county area, the total black shale section thins across the crest of the Cincinnati arch and changes stratigraphically from that characteristic of the Ohio Shale in Estill County to that of the New Albany Shale in Bullitt County. Despite this stratigraphic transition the two high-carbon zones (greater than 8.0% carbon) can be traced across the arch. As the traverse is followed from the east, the intervening low-carbon zones thin such that at the crest of the arch, there are areas where the entire section of black shale contains more than 8% carbon. Then upon leaving the crest the two high-carbon zones separate again with one remaining at the very top of the section and one in the lower part. In the 14 county area, there are approximately 3.8 x 10/sup 5/ acres of oil shale outcrop and approximately 7.8 x 10/sup 5/ acres underlain by oil shale at relatively shallow depths.

  7. Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

  8. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is peak oil a genuine concern? Why did oil prices ...

  9. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  10. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

  11. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  12. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  13. Gas-assisted gravity drainage (GAGD) process for improved oil recovery

    DOE Patents [OSTI]

    Rao, Dandina N. (Baton Rouge, LA)

    2012-07-10T23:59:59.000Z

    A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

  14. In situ method for recovering hydrocarbon from subterranean oil shale deposits

    SciTech Connect (OSTI)

    Friedman, R.H.

    1987-11-03T23:59:59.000Z

    This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

  15. Enterprise Zone Tax Credits (Wisconsin)

    Broader source: Energy.gov [DOE]

    The purpose for the Enterprise Zone Tax Credits is to incent projects involving major expansion of existing Wisconsin businesses or relocation of major business operations from other states to...

  16. Unsaturated Zone Hydrology Jasper Vrugt

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    CEE 271 Unsaturated Zone Hydrology Instructor Jasper Vrugt Engineering Tower #834E / #536 (LAB) Tel.: 505-231-2698 jasper @uci.edu Office Hours: By Appointment Lecture, 1 hour; discussion, 20 minutes: ICS

  17. Method for forming an in situ oil shale retort with horizontal free faces

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO); Fernandes, Robert J. (Bakersfield, CA)

    1983-01-01T23:59:59.000Z

    A method for forming a fragmented permeable mass of formation particles in an in situ oil shale retort is provided. A horizontally extending void is excavated in unfragmented formation containing oil shale and a zone of unfragmented formation is left adjacent the void. An array of explosive charges is formed in the zone of unfragmented formation. The array of explosive charges comprises rows of central explosive charges surrounded by a band of outer explosive charges which are adjacent side boundaries of the retort being formed. The powder factor of each outer explosive charge is made about equal to the powder factor of each central explosive charge. The explosive charges are detonated for explosively expanding the zone of unfragmented formation toward the void for forming the fragmented permeable mass of formation particles having a reasonably uniformly distributed void fraction in the in situ oil shale retort.

  18. Marathon Oil Company

    E-Print Network [OSTI]

    unknown authors

    Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 10124 Ma with an initial

  19. Synthetic aircraft turbine oil

    SciTech Connect (OSTI)

    Yaffe, R.

    1982-03-16T23:59:59.000Z

    Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

  20. Chinas Oil Diplomacy with Russia.

    E-Print Network [OSTI]

    Chao, Jiun-chuan

    2011-01-01T23:59:59.000Z

    ??In Chinas view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain long term (more)

  1. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  2. Peak oil: diverging discursive pipelines.

    E-Print Network [OSTI]

    Doctor, Jeff

    2012-01-01T23:59:59.000Z

    ??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as (more)

  3. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  4. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and EnvironmentResponsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion

  5. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, Organized Labor in Venezuela 1958-1991: Behavior

  6. Combination process for upgrading residual oils

    SciTech Connect (OSTI)

    Busch, L.E.; Walters, P.W.; Zandona, O.

    1990-01-16T23:59:59.000Z

    This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

  7. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01T23:59:59.000Z

    Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

  8. Economic evaluation of mine assisted oil recovery using a reservoir simulator

    E-Print Network [OSTI]

    Fontaine, Russell Charles

    1985-01-01T23:59:59.000Z

    OF FIGURES APPENDIX 8 Page I Map of Texas Showing Location of Pecos County. . . . 80 Oil and Gas Field Map of West Texas Showing Location of Pecos Valley High Gravity Field . . . . . . . . . 81 Structure Contour Map of Pecos Valley High Gravity Field... - Both Patterns . 112 34 Gas Production Curve for Lower Zone - Both Patterns. 113 35 Sensitivity Analysis for Pattern ?1 36 Sensitivity Analysis for Pattern ?2 37 Sensitivity to Oil Price - Both Patterns 114 115 116 1. INTRODUCTION 1. 1 General...

  9. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2006-04-02T23:59:59.000Z

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  10. Paraho oil shale module. Site development plan, Task 4

    SciTech Connect (OSTI)

    Not Available

    1981-10-01T23:59:59.000Z

    A management plan and schedule which covers all requirements for gaining access to the site and for conducting a Paraho Process demonstration program have been prepared. The oil shale available should represent a regional resource of suitable size and quality for commercial development. Discussed in this report are: proof of ownership; requirements for rights-of-way for access to the site; local zoning restrictions; water rights; site availability verification; and other legal requirements. (DMC)

  11. Innovation and Success in Planning and Zoning

    Broader source: Energy.gov [DOE]

    This document summarizes several successful initiatives to implement solar-friendly planes and zoning codes.

  12. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

  13. Process for heating coal-oil slurries

    DOE Patents [OSTI]

    Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

    1984-01-03T23:59:59.000Z

    Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

  14. Imbibition assisted oil recovery

    E-Print Network [OSTI]

    Pashayev, Orkhan H.

    2004-11-15T23:59:59.000Z

    analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

  15. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  16. Production of Shale Oil

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

  17. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01T23:59:59.000Z

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  18. Biocatalysis in Oil Refining

    SciTech Connect (OSTI)

    Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

    2007-01-01T23:59:59.000Z

    Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

  19. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  20. Overlap zoned electrically heated particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Chapman, Mark R [Brighton, MI

    2011-07-19T23:59:59.000Z

    A system includes a particulate matter (PM) filter that includes an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than or equal to one, and wherein the N zones and the M sub-zones are arranged in P layers, where P is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  1. Optimising the Use of Spent Oil Shale.

    E-Print Network [OSTI]

    FOSTER, HELEN,JANE

    2014-01-01T23:59:59.000Z

    ??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could (more)

  2. Oil Prices and Long-Run Risk.

    E-Print Network [OSTI]

    READY, ROBERT

    2011-01-01T23:59:59.000Z

    ??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low (more)

  3. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  4. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    that in a declining oil reservoir, seismic waves sent acrosswells. Because oil reservoirs are often at kilometers orproximity to the oil reservoir. Our analysis suggests there

  5. A laboratory study of oil recovery by in-situ combustion with the addition of water

    E-Print Network [OSTI]

    Alderman, John H

    1968-01-01T23:59:59.000Z

    face at the inlet and the combustion zone, the temperature in Run 2 dropped to a lower level than in Run I, because the injected water removed heat in addition to normal heat loss. The temperature in the area between the sand face and the combustion... and sixteen inches. This area is also the location of the oil bank, After water injection the steam zone increased in length. At 2. 85 hours the steam zone extended from seventeen inches to twenty-four inches. The pressure 46 profile at 2. 90 hours in Run...

  6. Improved oil recovery using bacteria isolated from North Sea petroleum reservoirs

    SciTech Connect (OSTI)

    Davey, R.A.; Lappin-Scott, H. [Univ. of Exeter (United Kingdom)

    1995-12-31T23:59:59.000Z

    During secondary oil recovery, water is injected into the formation to sweep out the residual oil. The injected water, however, follows the path of least resistance through the high-permeability zones, leaving oil in the low-permeability zones. Selective plugging of these their zones would divert the waterflood to the residual oil and thus increase the life of the well. Bacteria have been suggested as an alternative plugging agent to the current method of polymer injection. Starved bacteria can penetrate deeply into rock formations where they attach to the rock surfaces, and given the right nutrients can grow and produce exo-polymer, reducing the permeability of these zones. The application of microbial enhanced oil recovery has only been applied to shallow, cool, onshore fields to date. This study has focused on the ability of bacteria to enhance oil recovery offshore in the North Sea, where the environment can be considered extreme. A screen of produced water from oil reservoirs (and other extreme subterranean environments) was undertaken, and two bacteria were chosen for further work. These two isolates were able to grow and survive in the presence of saline formation waters at a range of temperatures above 50{degrees}C as facultative anaerobes. When a solution of isolates was passed through sandpacks and nutrients were added, significant reductions in permeabilities were achieved. This was confirmed in Clashach sandstone at 255 bar, when a reduction of 88% in permeability was obtained. Both isolates can survive nutrient starvation, which may improve penetration through the reservoir. Thus, the isolates show potential for field trials in the North Sea as plugging agents.

  7. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  8. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect (OSTI)

    J. Conca

    2000-12-20T23:59:59.000Z

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  9. Statewide Empire Zone Program (New York)

    Broader source: Energy.gov [DOE]

    Business that do not meet the requirements for standard financing, but are in need of capital, may qualify for NYBDCs Statewide Empire Zone Program. The Statewide Zone Capital Corporation (SZCC),...

  10. Renewable Energy Generation Zone Property Tax Abatement

    Broader source: Energy.gov [DOE]

    Local areas in Mimssouri can be designated as Renewable Energy Generation Zones and receive property tax abatements as part of the Enhanced Enterprise Zone program. Legislation (H.B. 737) enacted...

  11. Enterprise Zone Sales Tax Exemption (Kansas)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Sales Tax Exemption offers businesses located in such economic development zones a 100 percent sales tax exemption on the purchase of labor and materials to construct or remodel...

  12. Delineating Groundwater Sources and Protection Zones

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    : Groundwater protection zones for five city-owned water supply wells in Sebastopol, Calif. Zones were City of Sebastopol Demonstration Project report by Leah G. Walker, California Dept. of Health Services

  13. Local Option- Rural Renewable Energy Development Zones

    Broader source: Energy.gov [DOE]

    Cities, counties, or several contiguous counties in Oregon can set up Rural Renewable Energy Development Zones. The zone can only cover territory outside of the urban growth boundary of any large...

  14. Virginia Enterprise Zone Job Creation Grant (Virginia)

    Broader source: Energy.gov [DOE]

    The Virginia Enterprise Zone Job Creation Grant provides cash grants to businesses located in Enterprise zones that create permanent new jobs over a four-job threshold. State incentives are...

  15. The Border Cities Enterprise Zone Program (Minnesota)

    Broader source: Energy.gov [DOE]

    The Border Cities Enterprise Zone Program provides business tax credits to businesses that invest, develop, expand, and create jobs in identified Border-Cities Enterprise Zones. Companies may be...

  16. Enterprise Zone Real Property Investment Grant (Virginia)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Real Property Investment Grantprovides qualified zone investors with cash grants for industrial, commercial or mixed use property. The grant is equal to 20% of the excess...

  17. Small Wind Innovation Zone and Model Ordinance

    Broader source: Energy.gov [DOE]

    In May 2009, the Iowa legislature created the Small Wind Innovation Zone Program, which allows any city, county, or other political subdivision to create small wind innovation zones that promote...

  18. Keystone Innovation Zone Tax Credit Program (Pennsylvania)

    Broader source: Energy.gov [DOE]

    The Keystone Innovation Zone Tax Credit Program provides tax credits to companies less than eight years old who operate within designated innovation zones. A total pool of $25 million in tax...

  19. Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".

    E-Print Network [OSTI]

    Maroncelli, Mark

    Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

  20. Raw shale dissolution as an aid in determining oil shale mineralogy

    SciTech Connect (OSTI)

    Duewer, T.I.; Foster, K.G.; Coburn, T.T.

    1991-11-11T23:59:59.000Z

    With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus_minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

  1. Raw shale dissolution as an aid in determining oil shale mineralogy

    SciTech Connect (OSTI)

    Duewer, T.I.; Foster, K.G.; Coburn, T.T.

    1991-11-11T23:59:59.000Z

    With an accurate oil shale mineralogy, one can begin to unravel the inorganic and organic aspects of retorting and combustion chemistry. We evaluated three modern elemental analysis procedures (ICP-AES, XRF, and PIXE) with the aim of improving our knowledge of the mineral matrix. A New Albany Shale (Clegg Creek Member) specimen (NA13) and a Mahogany Zone Green River Formation oil shale from Anvil Points (AP24) were the two materials analyzed. These were oil shales that we had used in our pilot retort. We set a modest goal: determination of those materials present at greater than a 1% level with a relative accuracy of {plus minus}10%. Various total dissolution methods and pre-treatement procedures were examined. The routine ICP-AES method that we adopted had precision and accuracy that exceeded our initial goals. Partial dissolution of carbonate minerals in acetic acid was slow but highly selective. The clay mineral content of both shales was deduced from the time dependence of dissolution in 6N HCl. An Al:K ratio of 3 indicated selective HCl solubility of the clay, illite. Our eastern oil shale from Kentucky was remarkably similar in mineral composition to high-grade-zone New Albany Shale samples from Kentucky, Indiana, and Illinois that others had subjected to careful mineral analysis. A Mahogany Zone Green River Formation oil shale from the Colony Mine had slightly different minor mineral components (relative to AP24) as shown by its gas evolution profile.

  2. Santa Clara County- Zoning Ordinance (California)

    Broader source: Energy.gov [DOE]

    Santa Clara County's Zoning Ordinance includes standards for wind and solar structures for residential, agricultural, and commercial uses.

  3. Eastern Energy Zones Mapping Tool

    Broader source: Energy.gov [DOE]

    The Eastern Interconnection States Planning Council (EISPC) has released the Energy Zones (EZ) Mapping Tool, a free, web-based interactive tool that will help states and other stakeholders in the Eastern Interconnection identify geographic areas suitable for the development of clean energy resources (natural gas, sequestration or utilitization locations for C02 from coal, nuclear, and renewable) which can potentially provide significant amounts of new electric power generation.

  4. Spot-Oiling Johnsongrass.

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01T23:59:59.000Z

    I TEXAS AGRICULTURAL EXTENSIO-N SERVICE G. G. Gibson, Director, College Station, Texas [Blank Page in Original Bulletin] I the bast I ir used the low I . .. 1 the fol or mort , needed SPOT-OILING JOHNSONGRASS H. E. Rea, M. J. Norris..., and Fred C. Elliott* Texas A. & M. College System ~HNSONGRASS CAN BE killed to the i ground by the application of 1 / 3 teaspoonful of a herbicidal oil to the crown of each stem. Eradication of established Johnsongrass can be obtained in a single...

  5. Oil | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOfficeOil Oil For the

  6. Virent is Replacing Crude Oil

    Broader source: Energy.gov [DOE]

    Breakout Session 2AConversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

  7. Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil

    E-Print Network [OSTI]

    Fu, Xuebing

    2012-08-20T23:59:59.000Z

    was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively...

  8. Oil and Gas Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

  9. Oil and Gas Conservation (Montana)

    Broader source: Energy.gov [DOE]

    Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

  10. Process for the production of refrigerator oil

    SciTech Connect (OSTI)

    Kunihiro, T.; Tsuchiya, K.

    1985-06-04T23:59:59.000Z

    A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

  11. Combustion Air Zone (CAZ) Best Practices | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Combustion Air Zone (CAZ) Best Practices Combustion Air Zone (CAZ) Best Practices Combustion Air Zone (CAZ) Best Practices Webinar. Presentation More Documents & Publications...

  12. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01T23:59:59.000Z

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  13. Analysis Patterns for Oil Refineries

    E-Print Network [OSTI]

    Lei Zhen; Guangzhen Shao

    We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

  14. Oil and Gas Air Heaters

    E-Print Network [OSTI]

    Kou, G.; Wang, H.; Zhou, J.

    2006-01-01T23:59:59.000Z

    , the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

  15. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  16. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  17. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

  18. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. (BHP Petroleum, Melbourne, Victoria (Australia))

    1989-09-01T23:59:59.000Z

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  19. World Oil Transit Chokepoints

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  20. Naphthenic lube oils

    SciTech Connect (OSTI)

    Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

    1985-05-07T23:59:59.000Z

    A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

  1. Oil and Global Adjustment

    E-Print Network [OSTI]

    Brad Setser

    2007-01-01T23:59:59.000Z

    The current account surplus of the worlds major oil exporting economies defined as the IMFs fuel-exporting emerging economies plus Norway increased from $110b to about $500b between 2002 and 2006. 2 In 2006, the current account surplus of the Gulf

  2. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin (Westland, MI)

    2000-05-09T23:59:59.000Z

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  5. Improved techniques for fluid diversion in oil recovery. Final report

    SciTech Connect (OSTI)

    Seright, R.

    1996-01-01T23:59:59.000Z

    This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

  6. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    SciTech Connect (OSTI)

    Lin, Chen-Luh; Miller, Jan

    2011-03-01T23:59:59.000Z

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (?m) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  7. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  8. Accommodation Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple2Abrams,AccionaAccommodation Zone

  9. Rift Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia Blue RidgeUniversity ofGeothermal FacilityRenewableRifle,Zone

  10. Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.

    E-Print Network [OSTI]

    Rafiq, Shuddhasattwa

    2009-01-01T23:59:59.000Z

    ??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies (more)

  11. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

  12. STUDIES TO SUPPORT DEPLOYMENT OF EDIBLE OILS AS THE FINAL CVOC REMEDIATION IN T AREA SUMMARY REPORT

    SciTech Connect (OSTI)

    Riha, B; Brian02 Looney, B; Miles Denham, M; Christopher Bagwell, C; Richard Hall, R; Carol Eddy-Dilek, C

    2006-10-31T23:59:59.000Z

    The purpose of these studies was to determine the feasibility of using edible oils for remediation of the low but persistent chlorinated solvent (cVOC) groundwater contamination at the SRS T-Area. The following studies were completed: (1) Review of cVOC degradation processes and edible oil delivery for enhanced bioremediation. (2) Column studies to investigate placing neat oil on top of the water table to increase oil saturation and sequestration. (3) Analysis of T-Area groundwater geochemistry to determine the applicability of edible oils for remediation at this site. (4) Microcosm studies to evaluate biotic and abiotic processes for the T-Area groundwater system and evaluation of the existing microbial community with and with out soybean oil amendments. (5) Monitoring of a surrogate vadose zone site undergoing edible oil remediation at the SRS to understand partitioning and biotransformation products of the soybean oil. (6) Design of a delivery system for neat and emulsified edible oil deployment for the T-Area groundwater plume. A corresponding white paper is available for each of the studies listed. This paper provides a summary and overview of the studies completed for the remediation of the T-Area groundwater plume using edible oils. This report begins with a summary of the results and a brief description of the preliminary oil deployment design followed by brief descriptions of T-Area and current groundwater conditions as related to edible oil deployment. This is followed by a review of the remediation processes using edible oils and specific results from modeling, field and laboratory studies. Finally, a description of the preliminary design for full scale oil deployment is presented.

  13. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  14. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01T23:59:59.000Z

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  15. Oil Price Volatility

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0

  16. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (MillionExpectedChangesAdministration Cost and

  17. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  18. Using simple models to describe oil production from unconventional reservoirs.

    E-Print Network [OSTI]

    Song, Dong Hee

    2014-01-01T23:59:59.000Z

    ??Shale oil (tight oil) is oil trapped in low permeability shale or sandstone. Shale oil is a resource with great potential as it is heavily (more)

  19. Refraction of shear zones in granular materials

    E-Print Network [OSTI]

    Tamas Unger

    2007-01-08T23:59:59.000Z

    We study strain localization in slow shear flow focusing on layered granular materials. A heretofore unknown effect is presented here. We show that shear zones are refracted at material interfaces in analogy with refraction of light beams in optics. This phenomenon can be obtained as a consequence of a recent variational model of shear zones. The predictions of the model are tested and confirmed by 3D discrete element simulations. We found that shear zones follow Snell's law of light refraction.

  20. Unconventional oil market assessment: ex situ oil shale.

    E-Print Network [OSTI]

    Castro-Dominguez, Bernardo

    2010-01-01T23:59:59.000Z

    ??This thesis focused on exploring the economic limitations for the development of western oil shale. The analysis was developed by scaling a known process and (more)

  1. BEG/CEE-UT Think Corner Research Note, June 2012, 1 Think Corner Research Note

    E-Print Network [OSTI]

    Texas at Austin, University of

    fairways, and build a renaissance in natural gas and, even more startling, U.S. Lower 48 oil production are looming that will affect both oil and natural gas. Figure 1. U.S. Natural Gas Performance, End of Decade. Gülen, 2011, Persistent Puzzles in Commodity Markets: Global Oil Prices. Expert report prepared for U.S

  2. The Ohio Enterprise Zone program (Ohio)

    Broader source: Energy.gov [DOE]

    The Ohio Enterprise Zone program is an economic development tool administered by municipal and county governments that provides real and personal property tax exemptions to businesses making...

  3. Maricopa County- Renewable Energy Systems Zoning Ordinance

    Broader source: Energy.gov [DOE]

    The Maricopa County Zoning Ordinance contains provisions for siting renewable energy systems. The ordinance defines renewable energy as "energy derived primarily from sources other than fossil...

  4. Enterprise Zone Retraining Credit Program (South Carolina)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Retraining Credit Program is a discretionary incentive that helps existing industries maintain their competitive edge and retain their existing workforce by allowing them to...

  5. Anomalous zones in Gulf Coast Salt domes with special reference to Big Hill, TX, and Weeks Island, LA

    SciTech Connect (OSTI)

    Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Thoms, R.L. [AGM, Inc., College Station, TX (United States); Autin, W.J.; McCulloh, R.P. [Louisiana Geological Survey, Baton Rouge, LA (United States); Denzler, S.; Byrne, K.O. [Acres International Corp., Amherst, NY (United States)

    1993-07-01T23:59:59.000Z

    Anomalous features in Gulf Coast Salt domes exhibit deviations from normally pure salt and vary widely in form from one dome to the next, ranging considerably in length and width. They have affected both conventional and solution mining in several ways. Gas outbursts, insolubles, and potash (especially carnallite) have led to the breakage of tubing in a number of caverns, and caused irregular shapes of many caverns through preferential leaching. Such anomalous features essentially have limited the lateral extent of conventional mining at several salt mines, and led to accidents and even the closing of several other mines. Such anomalous features, are often aligned in anomalous zones, and appear to be related to diapiric processes of salt dome development. Evidence indicates that anomalous zones are found between salt spines, where the differential salt intrusion accumulates other materials: Anhydrite bands which are relatively strong, and other, weaker impurities. Shear zones and fault displacement detected at Big Hill and Weeks Island domes have not yet had any known adverse impacts on SPR oil storage, but new caverns at these sites conceivably may encounter some potentially adverse conditions. Seismic reflection profiles at Big Hill dome have shown numerous fractures and faults in the caprock, and verified the earlier recognition of a major shear zone transecting the entire salt stock and forming a graben in the overlying caprock. Casing that is placed in such zones can be at risk. Knowledge of these zones should create awareness of possible effects rather than preclude the future emplacement of caverns. To the extent possible, major anomalous zones and salt stock boundaries should be avoided. Shear zones along overhangs may be particularly hazardous, and otherwise unknown valleys in the top of salt may occur along shear zones. These zones often can be mapped geophysically, especially with high-resolution seismic techniques.

  6. Oil and gas developments in Middle East in 1985

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1986-10-01T23:59:59.000Z

    Petroleum production in Middle East countries during 1985 totaled 3,837,580,000 bbl (an average rate of 10,513,917 BOPD), down 2.2% from the revised 1984 total of 3,924,034,000 bbl. Iran, Iraq, Dubai, Oman, and Syria had significant increases; Kuwait, Kuwait-Saudi Arabia Divided Neutral Zone, Saudi Arabia, and Qatar had significant decreases. New fields went on production in Iraq, Abu Dhabi, Oman, and Syria. In North Yemen, the first ever oil production in that country was nearing the start-up stage at year end. 9 figures, 9 tables.

  7. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  8. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  9. BP Oil Spill November 10, 2011

    E-Print Network [OSTI]

    Lega, Joceline

    BP Oil Spill Qiyam Tung November 10, 2011 1 Introduction Figure 1: BP Oil spill (source: http://thefoxisblack.com/2010/05/02/the-bp-oil-spill-in-the-gulf-of-mexico/) Last year, there was a major oil spill caused major techniques to minimize the threat once it happened. What kind of damage would an oil spill like this cause

  10. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01T23:59:59.000Z

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  11. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28T23:59:59.000Z

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  12. Carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Myers, G.D.

    1987-11-24T23:59:59.000Z

    This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

  13. Maps of crude oil futures

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01T23:59:59.000Z

    The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

  14. Oil and macroeconomy in China.

    E-Print Network [OSTI]

    Hu, Lin

    2008-01-01T23:59:59.000Z

    ??This paper uses two different approaches to investigate the relationship between the oil price shock and the macroeconomy in China. The first approach is the (more)

  15. Oil and Gas Exploration (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

  16. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  17. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  18. 5/14/10 6:44 AMHow to Clean Up the Oil |Triple Pundit Page 1 of 3http://www.triplepundit.com/2010/05/how-to-clean-up-the-oil/

    E-Print Network [OSTI]

    Hazen, Terry

    , dumping 220,000 tons of heavy crude oil into the Atlantic. The spill was so large that the entire Brittany in 11 million gallons of heavy crude entering Prince William Sound and despoiling 1300 miles of pristine for numerous dead zones already existing in the Gulf of Mexico, the result of fertilizer-laden water coming

  19. Hybrid Zones and Sexual Selection 503 HYBRID ZONES AND SEXUAL SELECTION: INSIGHTS FROM

    E-Print Network [OSTI]

    Hybrid Zones and Sexual Selection 503 HYBRID ZONES AND SEXUAL SELECTION: INSIGHTS FROM THE AWASH BABOON HYBRID ZONE (Papio hamadryas anubis x P. h. hamadryas) Thore J. Bergman and Jacinta C. Beehner, have focused on the impact of sexual selection on populations of naturally occurring hybrid animals

  20. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Bio-trade 402 Third Avenue ·Ottawa, Ontario ·Canada K. Market Determining Factors 5. EU Country Perspectives 6. Potential European Markets 6.1. Pulp Mill Lime

  1. Oil burner nozzle

    DOE Patents [OSTI]

    Wright, Donald G. (Rockville Center, NY)

    1982-01-01T23:59:59.000Z

    An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

  2. Residential heating oil price

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil price

  3. Residential heating oil price

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil

  4. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827 TableB (11-19-10)Fuel Oil

  5. Crude Oil Domestic Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0

  6. Crude Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries08,909

  7. Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary 2013 (Thousand

  8. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  9. Deep Vadose Zone Applied Field Research Initiative

    E-Print Network [OSTI]

    .S. Department of Energy (DOE) Office of Environmental Management and the Richland Operations Office to develop and fate of deep vadose zone contamination in order to protect our nation's water resources. To that end) Devising means to implement and monitor flux reduction strategies to reduce vadose zone contamination below

  10. Oil resources: the key to prosperity or to poverty? : Influence of oil price shocks on spending of oil revenues.

    E-Print Network [OSTI]

    Selivanova, Olga

    2008-01-01T23:59:59.000Z

    ??Abundant natural resources, in particular oil, play an important role in the economics of many countries. The oil price shocks that have been happening continuously (more)

  11. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

  12. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

  13. Membrane degumming of crude vegetable oil

    E-Print Network [OSTI]

    Lin, Lan

    1997-01-01T23:59:59.000Z

    Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

  14. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  15. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

  16. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    Elevated Temperature Corrosion of Oil Shale Retort Componentin In-Situ Oil Shale Retorts," NACE Corrosion 80, Paper No.6-10, 1981 CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A.

  17. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

  18. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

  19. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  20. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  1. Crude oil and crude oil derivatives transactions by oil and gas producers.

    E-Print Network [OSTI]

    Xu, He

    2007-01-01T23:59:59.000Z

    ??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not (more)

  2. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30T23:59:59.000Z

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  3. www.fightbac.o anola oil is

    E-Print Network [OSTI]

    Ca co Th Ca "Canola" c which is Addition Ca he Ca in Th ca Ca m C know? anola oil is ooking oils. he average anola oil is comes fro s another nal Inform anola oil is eart healthy anola oil is n the world. he part of th anola meal anola oil ca many crop va ano the lowest . canola see a good sou m

  4. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  5. Process oil manufacturing process

    SciTech Connect (OSTI)

    Corman, B.G.; Korbach, P.F.; Webber, K.M.

    1989-01-31T23:59:59.000Z

    A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

  6. Oil market in international and Norwegian perspectives.

    E-Print Network [OSTI]

    Singsaas, Julia Nazyrova

    2009-01-01T23:59:59.000Z

    ??Crude oil is the most important energy source in global perspective. About 35 percent of the worlds primary energy consumption is supplied by oil, followed (more)

  7. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  8. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

  9. A network design model for multi-zone truckload shipments

    E-Print Network [OSTI]

    Maheshwari, Nimish

    2006-04-12T23:59:59.000Z

    for multi-zone dispatching method to solve this issue. Multi-zone dispatching is a method in which a service area is divided into many zones. Truckload within a zone is carried by local drivers and the truckload between zones is carried by lane drivers...

  10. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27T23:59:59.000Z

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  11. e n e r g y Unconventional Oil Production

    E-Print Network [OSTI]

    Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

    Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

  12. The Politics of Mexicos Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

  13. Separation of oil-soluble sulfonates from sulfonated oils

    SciTech Connect (OSTI)

    Ul'yanenko, V.I.; Yur'eva, N.P.; Sergeev, V.P.

    1987-01-01T23:59:59.000Z

    The authors aimed at developing a method for the complete recovery, from oil solutions, of oil-water-soluble sulfonates meeting the specifications, along with oils at least 99% pure, suitable for further processing. As the starting material the authors used an experimental batch of sulfonated and neutralized distillate lube stocks produced by selective solvent treatment. In determining the optimal extraction parameters, the authors investigated the influence of the solvent to original feed (S:F) weight ratio and the influence of the isopropyl alcohol (IPA) concentration on the composition of the sulfonates and oils recovered at 60/sup 0/C with a settling time of 2 h. The optimal conditions for two-stage extraction were found through a study of the influence of temperature and settling time on the compositions of the sulfonates and oils with S:F = 1.2:1 and with an IPA concentration of 40%. The process technology for two-stage recovery of oils and sulfonates from oil solutions was worked out in a pilot unit.

  14. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01T23:59:59.000Z

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  15. Apparatus and method for igniting an in situ oil shale retort

    DOE Patents [OSTI]

    Chambers, Carlon C. (Grand Junction, CO)

    1981-01-01T23:59:59.000Z

    A method and apparatus for conducting such method are disclosed for igniting a fragmented permeable mass of formation particles in an in situ oil shale retort. The method is conducted by forming a hole through unfragmented formation to the fragmented mass. An oxygen-containing gas is introduced into the hole. A fuel is introduced into a portion of the hole spaced apart from the fragmented mass. The fuel and oxygen-containing gas mix forming a combustible mixture which is ignited for establishing a combustion zone in a portion of the hole spaced apart from the fragmented mass. The hot gas generated in the combustion zone is conducted from the hole into the fragmented mass for heating a portion of the fragmented mass above an ignition temperature of oil shale.

  16. Research on oil recovery mechanisms in heavy oil reservoirs

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

    2000-03-16T23:59:59.000Z

    The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

  17. No Oil: The coming Utopia/Dystopia and Communal Possibilities

    E-Print Network [OSTI]

    Miller, Timothy

    2006-03-01T23:59:59.000Z

    supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

  18. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  19. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  20. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  1. Enhanced oil recovery system

    DOE Patents [OSTI]

    Goldsberry, Fred L. (Spring, TX)

    1989-01-01T23:59:59.000Z

    All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

  2. Oil field management system

    DOE Patents [OSTI]

    Fincke, James R.

    2003-09-23T23:59:59.000Z

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  3. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  4. Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions

    SciTech Connect (OSTI)

    Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

    1992-06-01T23:59:59.000Z

    The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

  5. International Oil and Gas Board International Oil and Gas Board...

    Open Energy Info (EERE)

    Oil and Gas Board Address Place Zip Website Abu Dhabi Supreme Petroleum Council Abu Dhabi Supreme Petroleum Council Abu Dhabi http www abudhabi ae egovPoolPortal WAR appmanager...

  6. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, R.; Walton, O.; Lewis, A.E.; Braun, R.

    1983-09-21T23:59:59.000Z

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650 to 700/sup 0/C for use as a process heat source.

  7. Combustion heater for oil shale

    DOE Patents [OSTI]

    Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA); Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  8. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Vadose Zone Soil Moisture Wicking Using Super Absorbent Polymers. Abstract: Super-absorbent polymers (SAPs) have...

  9. Development of Characterization Technology for Fault Zone Hydrology

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2010-01-01T23:59:59.000Z

    TECHNOLOGY FOR FAULT ZONE HYDROLOGY Kenzi Karasaki Lawrencefor characterizing the hydrology of fault zones, recognizingstructure of faults to hydrology, that it still may be

  10. Geodetic Survey At Walker-Lane Transitional Zone Region (Blewitt...

    Open Energy Info (EERE)

    Zone Region (Blewitt Et Al, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geodetic Survey Activity Date...

  11. Compound and Elemental Analysis At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Coolbaugh, Et Al., 2010) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Compound and Elemental Analysis...

  12. Teleseismic-Seismic Monitoring At Walker-Lane Transitional Zone...

    Open Energy Info (EERE)

    Zone Region (Biasi, Et Al., 2008) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity...

  13. Isotopic Analysis At Walker-Lane Transitional Zone Region (Kennedy...

    Open Energy Info (EERE)

    Zone Region (Kennedy & Van Soest, 2007) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Isotopic Analysis- Fluid Activity...

  14. Modeling-Computer Simulations At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Modeling-Computer Simulations At Central Nevada Seismic Zone Region (Biasi, Et Al., 2009) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region...

  15. DOE New Madrid Seismic Zone Electric Utility Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 DOE New Madrid Seismic Zone Electric Utility Workshop Summary Report - August 2010 The DOE New Madrid...

  16. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental...

  17. Perched-Water Analysis Related to Deep Vadose Zone Contaminant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and Impact to Groundwater. Perched-Water Analysis Related to Deep Vadose Zone Contaminant Transport and...

  18. Emission Zone Control in Blue Organic Electrophosphorescent Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zone Control in Blue Organic Electrophosphorescent Devices Through Chemical Modification of Host Materials . Emission Zone Control in Blue Organic Electrophosphorescent Devices...

  19. Workers Create Demolition Zone at Hanford Site's Plutonium Finishing...

    Broader source: Energy.gov (indexed) [DOE]

    Create Demolition Zone at Hanford Site's Plutonium Finishing Plant Workers Create Demolition Zone at Hanford Site's Plutonium Finishing Plant August 28, 2014 - 12:00pm Addthis The...

  20. Sandia National Laboratories: NASA Award for Marginal Ice Zone...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECClimateAnalysisNASA Award for Marginal Ice Zone Observations and Process Experiment (MIZOPEX) NASA Award for Marginal Ice Zone Observations and Process Experiment...

  1. Kentucky Economic Opportunity Zone Program (KEOZ) (Kentucky)

    Broader source: Energy.gov [DOE]

    The Kentucky Economic Opportunity Zone Program (KEOZ) focuses on the development of areas with high unemployment and poverty levels. The program provides an income tax credit of up to 100% of the...

  2. Pine Tree Development Zones Program (Maine)

    Broader source: Energy.gov [DOE]

    The Pine Tree Development Zones program offers eligible businesses the chance to reduce, and sometimes eliminate, state taxes for up to ten years. There is a statutory requirement of hiring a...

  3. Vadose Zone Transport Field Study: Status Report

    SciTech Connect (OSTI)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30T23:59:59.000Z

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of the past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.

  4. The Enterprise Zone Program (District of Columbia)

    Broader source: Energy.gov [DOE]

    The Enterprise Zone Program offers the following tax incentives to businesses in certain District neighborhoods: Employee Tax Credits--up to $3000 for each full-time employee; Work Opportunity...

  5. Maryland Enterprise Zone Tax Credits (Maryland)

    Broader source: Energy.gov [DOE]

    Businesses locating in a Maryland Enterprise Zone may be eligible for income tax and real property tax credits in return for job creation and investments. Businesses located in one of two focus...

  6. Job Opportunity Building Zones (JOBZ) Initiative (Minnesota)

    Broader source: Energy.gov [DOE]

    Minnesotas Job Opportunity Building Zones (JOBZ) Initiative state and local tax incentives to qualified companies that expand or relocate in targeted areas outside the Twin Cities metropolitan...

  7. OIL & GAS HISTORY 1 History in California

    E-Print Network [OSTI]

    OIL & GAS HISTORY 1 History in California 4 Superior figures refer to references at the end of the essay. OIL AND GAS PRODUCTION California oil was always a valued commodity. When the Spanish explorers landed in California in the 1500s, they found Indians gathering asphaltum (very thick oil) from natural

  8. THE RIMINI PROTOCOL Oil Depletion Protocol

    E-Print Network [OSTI]

    Keeling, Stephen L.

    Soaring oil prices have drawn attention to the issue of the relative supply and demand for crude oil1 THE RIMINI PROTOCOL an Oil Depletion Protocol ~ Heading Off Economic Chaos and Political Conflict During the Second Half of the Age of Oil As proposed at the 2003 Pio Manzu Conference

  9. EMPLOYEE BENEFIT SERVICE Signature Service Oil Change

    E-Print Network [OSTI]

    New Mexico, University of

    UNM Staff EMPLOYEE BENEFIT SERVICE Jiffy Lube Signature Service Oil Change Fast - No Appointment We change your oil with up to 5 quarts of major brand motor oil We install a new oil fi We visually inspect. ASE training programs · Jiffy Lube uses top quality products that meet or exceed vehicle warranty

  10. Canadian Oil Sands: Canada's Energy Advantage

    E-Print Network [OSTI]

    Boisvert, Jeff

    crude oil production, global energy demand, the estimated reserves and resources at Syncrude, views that the world will need oil for decades to come, the expectations regarding oil sands productive capacityCanadian Oil Sands: Canada's Energy Advantage 0 #12;Forward looking information 1 In the interest

  11. Estimates of Oil Reserves Jean Laherrere

    E-Print Network [OSTI]

    O'Donnell, Tom

    Estimates of Oil Reserves Jean Laherrere e-mail: jean.laherrere@wanadoo.fr sites: http will solve the present problems on welfare, retirement and they would dearly love to see the reserves of oil or oil reserves is a political act. The SEC, to satisfy bankers and shareholders, obliges the oil

  12. Cheaper oil extraction Taking a closer look

    E-Print Network [OSTI]

    solvent for commercial-scale enhanced oil recovery to increase the amount of crude oil that canCONTENTS Cheaper oil extraction Taking a closer look at the eye Computational Science takes inside for more details #12;Greener, cheaper oil extraction Geographical and geological concerns

  13. Liens for Oil and Gas Operations (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains regulations concerning lien allowances made to operators of oil and gas operations.

  14. Favorable conditions noted for Australia shale oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

  15. Bureau of Land Management Oil Shale Development

    E-Print Network [OSTI]

    Utah, University of

    Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

  16. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  17. 1 What is Oil ? General information

    E-Print Network [OSTI]

    Kammen, Daniel M.

    such as shale oil or synthetic crude oil from tar sands (see Table 4.1). A whole range of petroleum products69 1 What is Oil ? General information Petroleum is a complex mixture of liquid hydrocarbons in sedimentary rock. Coming from the Latin petra, meaning rock, and oleum, meaning oil, the word "petroleum

  18. Research on Oil Recovery Mechanisms in Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Louis M. Castanier; William E. Brigham

    1998-03-31T23:59:59.000Z

    The goal of this project is to increase recovery of heavy oils. Towards that goal studies are being conducted in how to assess the influence of temperature and pressure on the absolute and relative permeability to oil and water and on capillary pressure; to evaluate the effect of different reservoir parameters on the in site combustion process; to develop and understand mechanisms of surfactants on for the reduction of gravity override and channeling of steam; and to improve techniques of formation evaluation.

  19. Zone heated diesel particulate filter electrical connection

    DOE Patents [OSTI]

    Gonze, Eugene V. (Pinckney, MI); Paratore, Jr., Michael J. (Howell, MI)

    2010-03-30T23:59:59.000Z

    An electrical connection system for a particulate filter is provided. The system includes: a particulate filter (PF) disposed within an outer shell wherein the PF is segmented into a plurality of heating zones; an outer mat disposed between the particulate filter and the outer shell; an electrical connector coupled to the outer shell of the PF; and a plurality of printed circuit connections that extend along the outer surface of the PF from the electrical connector to the plurality of heating zones.

  20. Zone methods and the fermion sign problem

    E-Print Network [OSTI]

    Dean Lee

    2002-09-03T23:59:59.000Z

    We review a recently proposed approach to the problem of alternating signs for fermionic many body Monte Carlo simulations in finite temperature simulations. We derive an estimate for fermion wandering lengths and introduce the notion of permutation zones, special regions of the lattice where identical fermions may interchange and outside of which they may not. Using successively larger permutation zones, one can extrapolate to obtain thermodynamic observables in regimes where direct simulation is impossible.

  1. Treating nahcolite containing formations and saline zones

    DOE Patents [OSTI]

    Vinegar, Harold J

    2013-06-11T23:59:59.000Z

    A method for treating a nahcolite containing subsurface formation includes removing water from a saline zone in or near the formation. The removed water is heated using a steam and electricity cogeneration facility. The heated water is provided to the nahcolite containing formation. A fluid is produced from the nahcolite containing formation. The fluid includes at least some dissolved nahcolite. At least some of the fluid is provided to the saline zone.

  2. Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas

    E-Print Network [OSTI]

    Yang, Zhenyu

    Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

  3. Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Development of a SUNTANS Baroclinic Model for 3D Oil Pollution Tracking Heriot) Key Words Oil Spill, HF Radar, Trajectory Forecasting, Hydrodynamic Modelling, Oil Chemistry Overview In an oil spill emergency, an operational system must forecast ocean and weather conditions in addition

  4. 2 SPRAY OILS--BEYOND 2000 Modern use of petroleum-derived oils as agricultural crop

    E-Print Network [OSTI]

    Agnello, Arthur M.

    2 SPRAY OILS--BEYOND 2000 Abstract Modern use of petroleum-derived oils as agricultural crop among oils of common origin and manufacture. The importance of the emulsifier used with the oil of these products. Introduction Petroleum oils have been in use as crop protectants for over a hundred years

  5. OilEd: a Reason-able Ontology Editor for the Semantic Web

    E-Print Network [OSTI]

    Stevens, Robert

    the full power of an expressive web ontology language (OIL). OilEd uses reasoning to support ontology been merged under the name DAML+OIL, although there are some differences between the approaches usedOilEd: a Reason-able Ontology Editor for the Semantic Web Sean Bechhofer, Ian Horrocks, Carole

  6. OIL IN THE OPEN WATER Oil in the open water may a ect the health of

    E-Print Network [OSTI]

    OIL IN THE OPEN WATER Oil in the open water may a ect the health of microscopic plants and animals. Far beneath the surface, corals and other deepwater communities might also be a ected. OIL AND HUMAN AND SEDIMENTS · Water quality surveys · Transect surveys to detect submerged oil · Oil plume modeling · Sediment

  7. Energy Policy 34 (2006) 515531 Have we run out of oil yet? Oil peaking analysis from

    E-Print Network [OSTI]

    price shocks and economic downturns. Over the next 30 years oil demand is expected to grow by 60Energy Policy 34 (2006) 515­531 Have we run out of oil yet? Oil peaking analysis from an optimist of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range

  8. Oil shale: The environmental challenges III

    SciTech Connect (OSTI)

    Petersen, K.K.

    1983-01-01T23:59:59.000Z

    This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

  9. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11T23:59:59.000Z

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  10. Figure 4. World Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

  11. Method for enhanced oil recovery

    DOE Patents [OSTI]

    Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

    1980-01-01T23:59:59.000Z

    The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

  12. Oil and Gas Conservation (Nebraska)

    Broader source: Energy.gov [DOE]

    This section establishes the state's interest in encouraging the development, production, and utilization of natural gas and oil resources in a manner which will prevent waste and lead to the...

  13. Method for retorting oil shale

    DOE Patents [OSTI]

    Shang, Jer-Yu; Lui, A.P.

    1985-08-16T23:59:59.000Z

    The recovery of oil from oil shale is provided in a fluidized bed by using a fluidizing medium of a binary mixture of carbon dioxide and 5 steam. The mixture with a steam concentration in the range of about 20 to 75 volume percent steam provides an increase in oil yield over that achievable by using a fluidizing gas of carbon dioxide or steam alone when the mixture contains higher steam concentrations. The operating parameters for the fluidized bed retorted are essentially the same as those utilized with other gaseous fluidizing mediums with the significant gain being in the oil yield recovered which is attributable solely to the use of the binary mixture of carbon dioxide and steam. 2 figs.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  15. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01T23:59:59.000Z

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  16. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II

  17. Enhanced oil recovery in Rumania

    SciTech Connect (OSTI)

    Carcoana, A.N.

    1982-01-01T23:59:59.000Z

    The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhanced oil recovery. The results and the difficulties encountered are briefly discussed and also the potential of EOR methods in Romania are presented. 17 refs.

  18. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    -heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

  19. Enhanced oil recovery in Rumania

    SciTech Connect (OSTI)

    Carcoana, A.N.

    1982-01-01T23:59:59.000Z

    The wide oil field experience of the Romanian oil men in producing hydrocarbon reservoirs is based on an old tradition, but only after 1945 reservoir engineering studies were started in Romania. Beginning with 1950 conventional recovery methods expanded continually. During the last 10 years, however, the crude oil, as energy resource, has become of tremendous importance. The need for increasing the ultimate oil recovery has been felt in Romania as everywhere else. To attain this goal EOR methods were and are tested and expanded on a commercial scale. The paper describes the application of the fire-floods to a broad range of Romanian oil reservoirs and crude properties and reviews the field tests of polymer flooding, surfactant flooding and alkaline flooding. A commercial scale project with cyclic steam injection is presented and also the use of the domestic CO/sub 2/ sources to enhance oil recovery. The results and the diffuculties encountered are briefly discussed and also the potential of EOR methods in Romania are presented.

  20. Progressive flow cracking of coal/oil mixtures with high metals content catalyst

    SciTech Connect (OSTI)

    Zandona, O.J.

    1989-10-10T23:59:59.000Z

    This patent describes a process for economically producing liquid fuel products at least partly from coal. It comprises: introducing a progressive flow catalytic cracking zone a charge stock comprising a pumpable mixture of solid, particulate coal and carbo-metallic oil and forming within the zone a stream having a linear velocity of at least about 25 feet per second. The stream comprising the charge stock and a hydrocarbon zeolite cracking catalyst promoting dehydrogenation of the charge stock; forming mobile hydrogen within the zone by the dehydrogenation; introducing the mobile hydrogen into the stream by dehydrogenation of the charge stock in the absence of added molecular hydrogen, thereby producing liquid products from the charge stock while laying down coke on the hydrocarbon cracking catalyst in the range of about 0.3% to about 3% and thereby producing spent catalyst; separating from the spent catalyst the liquid products.

  1. Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated

    E-Print Network [OSTI]

    Roy, Ankur, 1976-

    2003-01-01T23:59:59.000Z

    Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

  2. Oil Mist Compliance

    SciTech Connect (OSTI)

    Lazarus, Lloyd

    2009-02-02T23:59:59.000Z

    This report summarizes activities at the KCP related to evaluating and modifying machine tools in order to be in compliance with Section 23 of DOE 10 CFR 851, Worker Safety and Health Program. Section 851.23 (a) states that Contractors must comply with the following safety and health standards that are applicable to the hazards in their covered workplace, and subsection 9 contains the following applicable standard: American Congress of Governmental Industrial Hygienists (ACGIH), Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices, (2005) (incorporated by reference, see 851.27) when the ACGIH Threshold Limit Values are lower (more protective) than permissible exposure limits in 29 CFR 1910. In the 2005 ACGIH Threshold Limit Value book a Notice of Change was issued for exposure to mineral oil mist used in metalworking fluids (MWFs). The effects of planning for the new facility and which machine tools would be making the transition to the new facility affected which machine tools were modified.

  3. Reservoir characteristics of Putnam zone (Silurian Interlake Formation) lithofacies, southwestern Williston basin

    SciTech Connect (OSTI)

    Inden, R. (LSSI, Denver, CO (United States)); Oglesby, C. (Bass Enterprises, Fort Worth, TX (United States)); Byrnes, A. (Geocore, Loveland, CO (United States)); Cluff, B. (The Discovery Group, Denver, CO (United States))

    1991-06-01T23:59:59.000Z

    Reservoirs in the Putnam zone (lower Interlake Formation) in the southwestern part of the Williston basin include oolitic-pellet dolomite grainstone, fossil-pellet grainstone, and a wide spectrum of reef-related, fossil-corral dolomite packstones and coral-stromatoporoid rudstone/boundstones. Each of these potential reservoirs has a unique pore system and, thus a different set of petrophysical properties which define their reservoir characteristics. Oolitic grainstones have a homogeneous intercrystalline-micro-crystalline pore system, whereas the fossil-pellet dolomite grainstone facies consists of separate mesovugs dispersed in well-interconnected intercrystalline porosity. Capillary pressure curves indicate that pore-throat heterogeneity is greater, and entry pressures lower, for reefal lithofacies than for pelletal grainstones. These curves also demonstrate why many of the producing fields tend to have high water cuts. In many oolitic-pellet grainstone units, irreducible water saturations of 10% would not be reached until a hydrocarbon column of 700 ft was reached. High water production characteristics are therefore expected because Red River/Interlake structures attain only 50-100 ft of closure. This, however, does not mean that Putnam is not an economic zone, especially as a secondary objective. Wells in Putnam and Crane fields, for instance, have reserves in excess of 300,000 bbl of oil. The reservoirs here may be dominated by the reef-related facies, which have an extremely high relative permeability to oil.

  4. Clay-Oil Droplet Suspensions in Electric Field.

    E-Print Network [OSTI]

    Kjerstad, Knut Brndbo

    2012-01-01T23:59:59.000Z

    ?? Silicone oil droplets containing synthetic smectite clay submerged in another immiscible organic oil have been studied by observing clay particle movement, oil circulation and (more)

  5. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    waged for control of oil reserves. A brutal war wracked theguarantee rights to the oil reserves, offer an opportunitygles over control of oil reserves, but it also encompasses

  6. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation...

  7. Drunk On Oil: Russian Foreign Policy 2000-2007

    E-Print Network [OSTI]

    Brugato, Thomas

    2008-01-01T23:59:59.000Z

    Julia. World Stocks Sag as Oil Price Surges. The NewCollapse: Grain and Oil, On the Issues, Am. Enterpriseet. al. , Unrelenting Oil Addiction, Russ. in Global

  8. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01T23:59:59.000Z

    in Alaskan North Slope oil production facilities. Title:Profiling Despite oil production from several major16) was isolated from oil-production water and has optimal

  9. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    J. Regular conventional oil production to 2100 and resource10% of total US oil production in 2004, almost entirelysteam-induced heavy oil production in Cali- fornia [30].

  10. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    producer sur- plus from oil production and fuel consumption,to reduction in crude oil production. The competitive modelsurplus from oil consumption and production. Our baseline

  11. Oil and Natural Gas Subsector Cybersecurity Capability Maturity...

    Broader source: Energy.gov (indexed) [DOE]

    Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) Oil and Natural Gas Subsector Cybersecurity Capability Maturity Model (February 2014) The Oil...

  12. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    response to high oil prices and geopolitical threats tofor the e?ect of the oil price through the price elasticityprojections, corresponding oil price series are extracted

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    ENHANCED OIL RECOVERY of carbon value and enhanced oil recovery The potential forCO 2 injection for enhanced oil recovery may differ from the

  14. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    Front in Cabinda, 47 Security: oil operations, 182 83,Like an Oil Company: Space, Security and Global Capital inarms deals and private security than oil exploitation (HRW

  15. Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Upgrading Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading PNNL report-out at the CTAB webinar on Bio-Oil Upgrading. ctabwebinarbiooilsupgrading.pdf More...

  16. Growing Energy - How Biofuels Can Help End America's Oil Dependence...

    Broader source: Energy.gov (indexed) [DOE]

    Growing Energy - How Biofuels Can Help End America's Oil Dependence Growing Energy - How Biofuels Can Help End America's Oil Dependence America's oil dependence threatens our...

  17. Oil Shale and Other Unconventional Fuels Activities | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

  18. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01T23:59:59.000Z

    anaerobic thermophilic oil reservoir and well communities.been detected in hot oil reservoirs and production fluids (other thermophilic oil reservoirs and wells suggests that

  19. An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for

    E-Print Network [OSTI]

    An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

  20. ON HYDRODYNAMIC MOTIONS IN DEAD ZONES

    SciTech Connect (OSTI)

    Oishi, Jeffrey S. [Department of Astronomy, 601 Campbell Hall, University of California at Berkeley, Berkeley, CA 94720-3411 (United States); Mac Low, Mordecai-Mark, E-mail: jsoishi@astro.berkeley.ed, E-mail: mordecai@amnh.or [Department of Astrophysics, American Museum of Natural History, 79th Street at Central Park West, New York, NY 10024-5192 (United States)

    2009-10-20T23:59:59.000Z

    We investigate fluid motions near the midplane of vertically stratified accretion disks with highly resistive midplanes. In such disks, the magnetorotational instability drives turbulence in thin layers surrounding a resistive, stable dead zone. The turbulent layers in turn drive motions in the dead zone. We examine the properties of these motions using three-dimensional, stratified, local, shearing-box, non-ideal, magnetohydrodynamical simulations. Although the turbulence in the active zones provides a source of vorticity to the midplane, no evidence for coherent vortices is found in our simulations. It appears that this is because of strong vertical oscillations in the dead zone. By analyzing time series of azimuthally averaged flow quantities, we identify an axisymmetric wave mode particular to models with dead zones. This mode is reduced in amplitude, but not suppressed entirely, by changing the equation of state from isothermal to ideal. These waves are too low frequency to affect sedimentation of dust to the midplane, but may have significance for the gravitational stability of the resulting midplane dust layers.

  1. Crude oil prices and petroleum inventories : remedies for a broken oil price forecasting model.

    E-Print Network [OSTI]

    Grimstad, Dan

    2007-01-01T23:59:59.000Z

    ??The empirical relationship between crude oil prices and petroleum inventories has been exploited in a number of short-term oil price forecasting models. Some of the (more)

  2. Future North Sea oil production and its implications for Swedish oil supply regarding the transport sector.

    E-Print Network [OSTI]

    Sllh, David

    2012-01-01T23:59:59.000Z

    ?? Historically, it has been negative to be dependent on only one resource, in the current situation this resource represents oil. The oil dependence is (more)

  3. Understanding the Impact of Open-Framework Conglomerates on Water-Oil Displacements: Victor Interval of the Ivishak Reservoir, Prudhoe Bay Field, Alaska

    E-Print Network [OSTI]

    Gershenzon, Naum I; Ritzi, Robert W; Dominic, David F

    2014-01-01T23:59:59.000Z

    The Victor Unit of the Ivishak Formation in the Prudhoe Bay Oilfield is characterized by high net-to-gross fluvial sandstones and conglomerates. The highest permeability is found within sets of cross-strata of open-framework conglomerate (OFC). They are preserved within unit bar deposits and assemblages of unit bar deposits within compound (braid) bar deposits. They are thief zones limiting enhanced oil recovery. We incorporate recent research that has quantified important attributes of their sedimentary architecture within preserved deposits. We use high-resolution models to demonstrate the fundamental aspects of their control on oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. We found that when the pressure gradient is oriented perpendicular to the paleoflow direction, the total oil production and the water breakthrough time are larger, and remaining oil saturation is smaller, than when it is oriented parallel to paleoflow. The pressure differe...

  4. Zoned electrical heater arranged in spaced relationship from particulate filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI

    2011-11-15T23:59:59.000Z

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas and a downstream end. A zoned heater is arranged spaced from the upstream end and comprises N zones, where N is an integer greater than one, wherein each of the N zones comprises M sub-zones, where M is an integer greater than one. A control module selectively activates at least a selected one of the N zones to initiate regeneration in downstream portions of the PM filter from the one of the N zones and deactivates non-selected ones of the N zones.

  5. Bio-oil fractionation and condensation

    DOE Patents [OSTI]

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02T23:59:59.000Z

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  6. Oil Price Shocks: Causes and Consequences

    E-Print Network [OSTI]

    Lutz Kilian; Key Words

    Research on oil markets conducted during the last decade has challenged long-held beliefs about the causes and consequences of oil price shocks. As the empirical and theoretical models used by economists have evolved, so has our understanding of the determinants of oil price shocks and of the interaction between oil markets and the global economy. Some of the key insights are that the real price of oil is endogenous with respect to economic fundamentals, and that oil price shocks do not occur ceteris paribus. This makes it necessary to explicitly account for the demand and supply shocks underlying oil price shocks when studying their transmission to the domestic economy. Disentangling cause and effect in the relationship between oil prices and the economy requires structural models of the global economy including oil and other commodity markets.

  7. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  8. Crude oil prices: Are our oil markets too tight?

    SciTech Connect (OSTI)

    Simmons, M.R. [Simmons and Co. International, Houston, TX (United States)

    1997-02-01T23:59:59.000Z

    The answer to the question posed in the title is that tightness in the market will surely prevail through 1997. And as discussed herein, with worldwide demand expected to continue to grow, there will be a strong call on extra oil supply. Meeting those demands, however, will not be straightforward--as many observers wrongly believe--considering the industry`s practice of maintaining crude stocks at ``Just in time`` inventory levels. Further, impact will be felt from the growing rig shortage, particularly for deepwater units, and down-stream capacity limits. While these factors indicate 1997 should be another good year for the service industry, it is difficult to get any kind of consensus view from the oil price market. With most observers` information dominated by the rarely optimistic futures price of crude, as reflected by the NYMEX, the important fact is that oil prices have remained stable for three years and increased steadily through 1996.

  9. Oil history, potential converge in Azerbaijan

    SciTech Connect (OSTI)

    Narimanov, A.A. [State Oil Co. of Azerbaijan, Baku (Azerbaijan); Palaz, I. [Amoco Production Co., Houston, TX (United States)

    1995-05-22T23:59:59.000Z

    Azerbaijan, the oldest known oil producing region in the world, still holds great potential for new discoveries and increased production. A multi-billion dollar production sharing agreement was recently signed with a consortium of primarily western oil companies to develop three oil fields in the Caspian Sea. Soon, Azerbaijan will offer new exploration acreage both offshore and onshore. This paper describes the history of oil production in Azerbaijan, offshore developments, tectonics, stratigraphy, petroleum traps, mud volcanoes, and short summaries of several oil producing areas. Current production is about 9 million tons/yr of oil and 7 billion cu m/yr of natural gas.

  10. Stratigraphy and organic petrography of Mississippian and Devonian oil shale at the Means Project, East-Central Kentucky

    SciTech Connect (OSTI)

    Solomon, B.J.; Hutton, A.C.; Henstridge, D.A.; Ivanac, J.F.

    1985-02-01T23:59:59.000Z

    The Means Oil Shale Project is under consideration for financial assistance by the US Synthetic Fuels Corporation. The project site is located in southern Montgomery County, about 45 miles east of Lexington, Kentucky. In the site area the Devonian Ohio Shale and the Mississippian Sunbury Shale are under study; these oil shales were deposited in the Appalachian Basin. The objective of the Means Project is to mine, using open pit methods, an ore zone which includes the Sunbury and upper Cleveland and which excludes the Bedford interburden. The thick lower grade oil shale below this ore zone renders the higher grade shale at the base of the Huron commercially unattractive. The oil shale at Means has been classified as a marinite, an oil shale containing abundant alginite of marine origin. Lamalginite is the dominant liptinite and comprises small, unicellular alginite with weak to moderate fluorescence at low rank and a distinctive lamellar form. Telalginite, derived from large colonial or thick-walled, unicellular algae, is common in several stratigraphic intervals.

  11. Deficit Irrigation Programs for Water Conservation in the Management of Bermudagrass Fairways in Texas

    E-Print Network [OSTI]

    Hejl, Reagan Wesley

    2014-04-29T23:59:59.000Z

    successive years without irrigation suggests a cumulative effect of drought stress on bermudagrass health and vigor. Traffic treatments delayed recovery across all irrigation levels. Greenhouse investigations into irrigation water quality (reverse osmosis (RO...

  12. Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-08-01T23:59:59.000Z

    This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

  14. Oil shale technology. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This collaborative project with industrial participants studied oil shale retorting through an integrated program of fundamental research, mathematical model development and operation of a 4-tonne-per-day solid recirculation oil shale test unit. Quarterly, project personnel presented progress and findings to a Project Guidance Committee consisting of company representatives and DOE program management. We successfully operated the test unit, developed the oil shale process (OSP) mathematical model, evaluated technical plans for process scale up and determined economics for a successful small scale commercial deployment, producing premium motor fuel, specility chemicals along with electricity co-production. In budget negotiations, DOE funding for this three year CRADA was terminated, 17 months prematurely, as of October 1993. Funds to restore the project and continue the partnership have not been secured.

  15. Shale Oil Value Enhancement Research

    SciTech Connect (OSTI)

    James W. Bunger

    2006-11-30T23:59:59.000Z

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  16. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

  17. The Politics of Mexicos Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    based on the current oil reserves and oil production? 2) Forto either increase its oil reserves or decrease its oilthe world in terms of oil reserves by having 16,041 million

  18. Pipeline Flow Behavior of Water-In-Oil Emulsions.

    E-Print Network [OSTI]

    Omer, Ali

    2009-01-01T23:59:59.000Z

    ??Water-in-oil (W/O) emulsions consist of water droplets dispersed in continuous oil phase. They are encountered at various stages of oil production. The oil produced from (more)

  19. Cursed Resources? Political Conditions and Oil Market Volatility*

    E-Print Network [OSTI]

    Edwards, Paul N.

    a country's political conditions affect oil production within its borders. We show production, with very democratic regimes exhibiting less volatility in their oil production than more of oil production volatility. Our finding has implications both for understanding world oil markets

  20. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    and Weimer, D.L. (1984) Oil prices shock, market response,OPEC behavior and world oil prices (pp. 175-185) London:many decades. Recent high oil prices have caused oil-holding

  1. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Oil Production The production of crude oil can generally beNorth Slope crude, Q it is the oil production per perioddiscoveries, production, costs, and prices of crude oil.

  2. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    threatening to onshore oil investments in Cabinda. It usedto a $2.2 billion oil and gas investment in Block 14. Oil,the full burden of capital investment, oil corporations also

  3. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Fig. 1, where aggregate demand for oil is denoted D + D ? ,oil-exporting and oil-importing countries demand functionsinelastic global demand for crude oil, the elasticity of the

  4. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    2007, Measurement of Oil and Gas Emissions from a Marine2007, Measurement of Oil and Gas Emissions from a MarineTides and the emission of oil and gas from an abandoned oil

  5. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  6. Heavy oil production from Alaska

    SciTech Connect (OSTI)

    Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31T23:59:59.000Z

    North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

  7. Effect of core length and injection rate on the displacement of oil from porous media by microemulsions

    E-Print Network [OSTI]

    Akkad, Ruwaid Ahmed

    1974-01-01T23:59:59.000Z

    is the volumetric injection rate, cm /sec. Blackwell verified the theoretical predictions of Aris for low 15 rates and small capillaries. He also demonstrated the importance of molecular diffusion in providing complete displacement of the oil by solvents... mixing zone, percent PV 104 116 75 33 10 000 5000 ~ VERTICAL HORIZONTAL RATE: 2. 8 FT/DAY 1000 50 30 50 70 90 110 130 PORE VOLUME INJECTED PERCENT FIGURE 8 EFFECT OF GRAVITY ON THE SIZE OF MIXING ZONE LOW RATE 34 10 000 5000 ~ HORIKONTAl L...

  8. Low pour crude oil compositions

    SciTech Connect (OSTI)

    Motz, K.L.; Latham, R.A.; Statz, R.J.

    1990-05-22T23:59:59.000Z

    This patent describes and improvement in the process of transporting waxy crude oils through a pipeline. It comprises: incorporating into the crude oil an effective pour point depressant amount of an additive comprising a polymer selected from the group consisting of copolymers of ethylene and acrylonitrile, and terpolymers of ethylene, acrylonitrile and a third monomer selected from the group consisting of vinyl acetate, carbon monoxide, alkyl acrylates, alkyl methacrylates, alkyl vinyl ethers, vinyl chloride, vinyl fluoride, acrylic acid, and methacrylic acid, wherein the amount of third monomer in the terpolymer ranges from about 0.1 to about 10.0 percent by weight.

  9. Residential heating oil price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil price

  10. Residential heating oil price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil price9,

  11. Residential heating oil price increases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheating oil

  12. Residential heating oil prices decline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A Bheating oil priceheatingheating oil

  13. Industrial Utilization of Coal-Oil Mixtures

    E-Print Network [OSTI]

    Dunn, J. E.; Hawkins, G. T.

    1982-01-01T23:59:59.000Z

    Coal-oil mixtures (COM) are receiving increasing interest as economical alternatives to residual fuel oil and natural gas used in heavy industrial and utility applications. Four basic approaches are currently employed in the manufacture of COM...

  14. Completion of Oil Wells May 4, 2003

    E-Print Network [OSTI]

    Rudge, John

    Completion of Oil Wells John Rudge May 4, 2003 1 Introduction After the initial drilling of an oil the small gap, lubrication theory can be used to study the flow. Non-dimensionalise all lengths on the gap

  15. An experimental investigation into oil mist lubrication

    E-Print Network [OSTI]

    Kannan, Krishna

    2000-01-01T23:59:59.000Z

    Oil mist lubrication offers many advantages over sump lubrication. Unfortunately, mist lubrication generates sub-micrometer sized aerosol particles (fines) that escape from the oil mist lubrication system. These particles are an environmental hazard...

  16. Low-rank coal oil agglomeration

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

    1991-01-01T23:59:59.000Z

    A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

  17. Microbial enhanced oil recovery and compositions therefor

    DOE Patents [OSTI]

    Bryant, Rebecca S. (Bartlesville, OK)

    1990-01-01T23:59:59.000Z

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  18. Method of removing polychlorinated biphenyl from oil

    DOE Patents [OSTI]

    Cook, G.T.; Holshouser, S.K.; Coleman, R.M.; Harless, C.E.; Whinnery, W.N. III

    1982-03-17T23:59:59.000Z

    Polychlorinated biphenyls are removed from oil by extracting the biphenyls into methanol. The mixture of methanol and extracted biphenyls is distilled to separate methanol therefrom, and the methanol is recycled for further use in extraction of biphenyls from oil.

  19. Oil, Gas, and Mining Leases (Nebraska)

    Broader source: Energy.gov [DOE]

    This section contains rules on oil, gas, and mining leases, and grants authority to the State of Nebraska and local governments to issue leases for oil and gas mining and exploration on their lands.

  20. Oil and Gas Conservation (South Dakota)

    Broader source: Energy.gov [DOE]

    The Minerals and Mining Program oversees the regulation of oil and gas exploration, recovery, and reclamation activities in South Dakota. Permits are required for drilling of oil or gas wells, and...

  1. Regulation of Oil and Gas Resources (Florida)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment...

  2. Interstate Oil and Gas Conservation Compact (Montana)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  3. Oil and Gas on Public Lands (Texas)

    Broader source: Energy.gov [DOE]

    The School Land Board may choose to lease lands for the production of oil and natural gas, on the condition that oil and gas resources are leased together and separate from other minerals. Lands...

  4. Conservation of Oil and Gas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the production, storage, or transportation of oil or gas in a manner, in an amount, or under conditions that constitute waste. Actions which may lead to the waste of oil...

  5. Interstate Oil and Gas Conservation Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states,...

  6. Virginia Gas and Oil Act (Virginia)

    Broader source: Energy.gov [DOE]

    The Gas and Oil Act addresses the exploration, development, and production of oil and gas resources in the Commonwealth of Virginia. It contains provisions pertaining to wells and well spacing,...

  7. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    to reduction in crude oil production. The competitive modelbarrel of crude oil is allocated to gasoline production. The

  8. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    world consumption of crude oil, consumption grew from 2005mark). Although consumption of crude oil in the Middle East,

  9. Measurement of Oil and Gas Emissions from a Marine Seep

    E-Print Network [OSTI]

    Leifer, Ira; Boles, J R; Luyendyk, B P

    2007-01-01T23:59:59.000Z

    with offshore oil production, Geology, 27(11), 1047-1050,Coal Oil Point, California, Marine and Petroleum Geology 22(

  10. POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE

    E-Print Network [OSTI]

    V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

    alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

  11. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect (OSTI)

    Not Available

    1991-02-22T23:59:59.000Z

    Under the Cooperative Agreement with DOE, Bechtel and Pennsylvania Electric Company (Penelec) will jointly demonstrate Bechtel's confined zone dispersion (CZD) process for removing both sulfur and nitrogen pollutants from the flue gases leaving a coal-fired boiler. Demonstration testing of the CZD process will be conducted on the 147 MWe coal-fired generating Seward Station Unit 15 of Penelec. The test will utilize one-half of the existing flue gas capacity, and will be designed to demonstrate the viability of the process and its operability at a total cost of less than $300/ton of SO{sub 2} removed. The CZD process involves injecting a finely atomized slurry of reactive lime into the duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the sulfur dioxide (SO{sub 2}) in the gas, and the reaction products dry to form solid particles. An electrostatic precipitator (ESP) downstream from the point of injection captures the reaction products, along with the fly ash entrained in the flue gas. 2 figs.

  12. Process for tertiary oil recovery using tall oil pitch

    DOE Patents [OSTI]

    Radke, C.J.

    1983-07-25T23:59:59.000Z

    A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

  13. Site-Scale Saturated Zone Flow Model

    SciTech Connect (OSTI)

    G. Zyvoloski

    2003-12-17T23:59:59.000Z

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca Mountain using FEHM V 2.20 are being carried out in the model report, ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The velocity fields are calculated by the flow model, described herein, independent of the transport processes, and are then used as inputs to the transport model. Justification for this abstraction is presented in the model report, ''Saturated Zone Flow and Transport Model Abstraction'', MDL-NBS-HS-000021 (BSC 2003 [164870]).

  14. Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter

    E-Print Network [OSTI]

    Long, David G.

    Estimating Surface Oil Extent from the Deepwater Horizon Oil Spill using ASCAT Backscatter Richard Provo, UT 84602 Abstract--The damping effects of oil on capillary ocean waves alter the backscattered backscatter from the ocean surface uncontaminated by surface oil. Large differences between expected

  15. BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons

    E-Print Network [OSTI]

    Toohey, Darin W.

    BP Oil Spill and Air Chemistry Crude oil contains various hydrocarbons NOAA and CIRES here at CU went to the oil spill in an aircraft that was equipped with instruments to measure the air quality. 1/3 of the oil dissolved into the water column (methane completely, benzene and ethane almost completely) Showed

  16. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, Henry M. (Overland Park, KS); Bohnert, George W. (Harrisonville, MO); Olson, Ronald B. (Kansas City, MO); Hand, Thomas E. (Lee's Summit, MO)

    1998-01-27T23:59:59.000Z

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in as liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic.

  17. Method to separate and recover oil and plastic from plastic contaminated with oil

    DOE Patents [OSTI]

    Smith, H.M.; Bohnert, G.W.; Olson, R.B.; Hand, T.E.

    1998-01-27T23:59:59.000Z

    The present invention provides a method to separate and recover oils and recyclable plastic from plastic contaminated with oil. The invention utilizes the different solubility of oil in a liquid or supercritical fluid as compared to a gas to effect separation of the oil from the plastic. 3 figs.

  18. Canadian oil market review shows growing influence of heavy oil and bitumen

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    Canadian oil demand and consumption, crude oil received at refineries, oil well productivity including shut-in production, and exports and imports are discussed. Both light and heavy oil, natural gas, and bitumen are included in the seasonally-adjusted data presented.

  19. Tea Oil Camellia: a New Edible Oil Crop for the United States John M. Ruter

    E-Print Network [OSTI]

    Radcliffe, David

    1 Tea Oil Camellia: a New Edible Oil Crop for the United States© John M. Ruter The University@uga.edu INTRODUCTION Camellia oleifera has been cultivated in China as a source of edible oil. oleifera as a commercial oil seed crop for the southeast (Ruter, 2002). Considerable research is being

  20. Interactive coastal oil spill transport model

    E-Print Network [OSTI]

    Thalasila, Nanda K.

    1992-01-01T23:59:59.000Z

    . 6 fuel oils, diesel or No. 2 fuel oils, and light petroleum products such as kerosenes or gasolines. Crude oils of different ge- ologic and geographic sources vary widely in composition. Thousands of individual compounds, mostly hydrocarbons... Composition (by Weight) of Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 16 IV Comparison of Solubilities for Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 17 V Biodegradation Rates of Crude Oils...

  1. Straight Vegetable Oil as a Diesel Fuel?

    SciTech Connect (OSTI)

    Not Available

    2006-04-01T23:59:59.000Z

    Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

  2. FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE

    E-Print Network [OSTI]

    M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

    combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

  3. Division of Oil, Gas, and Mining Permitting

    E-Print Network [OSTI]

    Utah, University of

    " or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

  4. Carbon sequestration in depleted oil shale deposits

    SciTech Connect (OSTI)

    Burnham, Alan K; Carroll, Susan A

    2014-12-02T23:59:59.000Z

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  5. Cooking with Healthier Fats and Oils When you do use fats

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Cooking with Healthier Fats and Oils When you do use fats and oils, choose those with less Oil Use this chart to help you choose products with less saturated fat. Look for the to findLessOfteneOftenChooseMor Canola Oil Safflower Oil Sesame Oil Sunflower Oil Corn Oil Olive Oil Soybean Oil Margarine (tub) Peanut

  6. Carcinogenicity Studies of Estonian Oil Shale Soots

    E-Print Network [OSTI]

    A. Vosamae

    Several series of chronic experiments in white mice and white rats were carried out in order to determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All the investigated samples of soot showed a relatively low (from 14 to 1200 ppm) benzo

  7. Canadian Oil Sands: Canada An Emerging Energy

    E-Print Network [OSTI]

    Boisvert, Jeff

    of the oil sands over the next 25 years. The use of the term "reserves" in the global context is really, royalty and regulatory regimes and the accuracy of the estimates of Canadian Oil Sands' reserves volumes1 Canadian Oil Sands: Canada ­ An Emerging Energy Superpower 0 University of Alberta February 8

  8. IMPROVING SANDSTONE MATRIX STIMULATION OF OIL

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    IMPROVING SANDSTONE MATRIX STIMULATION OF OIL WELLS BY GAS PRECONDITIONING M. A. Aggour, M. Al, Dhahran, Saudi Arabia ABSTRACT Experience has shown that for sandstone formations, oil wells respond to matrix acidizing in a different manner as compared to gas wells. For oil wells, the improvement

  9. IXTOC OIL SPILL ASSESSMENT FINAL REPORT

    E-Print Network [OSTI]

    Mathis, Wayne N.

    IXTOC OIL SPILL ASSESSMENT FINAL REPORT EXECUTIVE SUMMARY Prepared for : Bureau of Land Management in input of tar/oil to the Texas Gulf Coast (Geyer ;, 1981) have less of an obvious ecological impact, if any . The Brittany coast of France has been affected for several years by the acute oil input from

  10. OIL in a Nutshell I. Horrocksb

    E-Print Network [OSTI]

    van Harmelen, Frank

    OIL in a Nutshell D. Fensela I. Horrocksb F. van Harmelena,c S. Deckerd M. Erdmann e M. Kleina a VU) and is available at http://www.ontoknowledge.org/oil. Why we need a joint standard for describing ontologies. In this paper, we sketch a proposal for such a standard. It is called OIL, the Ontology Interchange Language

  11. Oil Price and the Dollar Virginie Coudert

    E-Print Network [OSTI]

    Boyer, Edmond

    Oil Price and the Dollar Virginie Coudert , Valerie Mignon , Alexis Penot 6th April 2005 Abstract The aim of this paper is to test whether a stable long-term relationship exists between oil prices and causality study between the two variables. Our results indicate that causality runs from oil prices

  12. A Systems Approach to Managing Oil

    E-Print Network [OSTI]

    van Dorp, Johan Ren

    A Systems Approach to Managing Oil Transportation Risk in Prince William Sound Jason R. W. Merrick Received April 21, 2000; revised June 12, 2000; accepted June 26, 2000MANAGING OIL TRANSPORTATION RISK about the safety of oil transportation in the Prince William Sound, Alaska. As a result, a large number

  13. Enhanced oil recovery using hydrogen peroxide injection

    SciTech Connect (OSTI)

    Moss, J.T. Jr.; Moss, J.T.

    1995-02-01T23:59:59.000Z

    NOVATEC received an US Patent on a novel method to recovery viscous oil by hydrogen peroxide injection. The process appears to offer several significant improvements over existing thermal methods of oil recovery. Tejas joined NOVATEC to test the process in the laboratory and to develop oil field applications and procedures.

  14. Fish Oil Industry in South America

    E-Print Network [OSTI]

    Fish Oil Industry in South America UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE FISHERIES, H. E. Crowther, Director Fish Oil Industry in South America By -J. R. SANCHEZ TORRES Chief, "Fish Oils, " M. E. Stansby, editor, Avi Publishing Company, Westport, Connecticut, 1967. Circular 282

  15. What's Driving Oil Prices? James L. Smith

    E-Print Network [OSTI]

    O'Donnell, Tom

    Issues in Energy Federal Reserve Bank of Dallas November 2, 2006 The Price of OPEC Oil ($/bbl) $0 $20 $40;8 DIFFERENCES AMONG OPEC MEMBERS Proved Oil Crude Oil Reserves to GDP Reserves Production Production Ratio Member $ per capita bbl per capita bbl per capita years Algeria 3,113 373 15 25 Indonesia 1,290 20 2 11

  16. Oil Trading Simon Basey / November 28, 2013

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    . A hurricane develops in the Gulf of Mexico and threatens to shut in crude production. d. New data indicatesOil Trading Simon Basey / November 28, 2013 #12;2 What does IST do? Imports crude oil and other Markets BP's equity crude oil, NGLs and natural gas Generates entrepreneurial trading income Manages BP

  17. Politics of oil and revolution in Iran

    SciTech Connect (OSTI)

    Bakhash, S.

    1982-01-01T23:59:59.000Z

    Elements of continuity and change in Iran's post-revolution oil strategy, the domestic forces that helped to shape oil policy, the regional repercussions of the Iranian revolution, and the manner in which the Iranian authorities have reacted to changes in the oil market over the past three and half years are examined.

  18. Oil shale technology and evironmental aspects

    SciTech Connect (OSTI)

    Scinta, J.

    1982-01-01T23:59:59.000Z

    Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

  19. Australian developments in oil shale processing

    SciTech Connect (OSTI)

    Baker, G.L.

    1981-01-01T23:59:59.000Z

    This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

  20. Optimize carbon dioxide sequestration, enhance oil recovery

    E-Print Network [OSTI]

    - 1 - Optimize carbon dioxide sequestration, enhance oil recovery January 8, 2014 Los Alamos simulation to optimize carbon dioxide (CO2) sequestration and enhance oil recovery (CO2-EOR) based on known production. Due to carbon capture and storage technology advances, prolonged high oil prices

  1. Kuwait: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports that the major event in Kuwait today is the ongoing effort to control blowouts stemming from Iraqi demolition of oil wells and producing facilities last February. A total of 732 wells---about two- thirds of all wells in Kuwait---were blown up. All but 80 caught on fire.

  2. Bakken Shale Oil Production Trends

    E-Print Network [OSTI]

    Tran, Tan

    2012-07-16T23:59:59.000Z

    to study this Type of behavior because of scattering data, which leads to erroneous interpretation for the analysis. These production Types, especially Types I and II will give a new type curve matches for shale oil wells above or below the bubble point....

  3. Biosurfactant and enhanced oil recovery

    DOE Patents [OSTI]

    McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

    1985-06-11T23:59:59.000Z

    A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

  4. Urea dewaxing of naphthene oils

    SciTech Connect (OSTI)

    Mead, Th. C.; Wright, J. H.

    1985-03-12T23:59:59.000Z

    In an improved urea dewaxing process a urea/alcohol slurry chilled to 60/sup 0/ F. to 65/sup 0/ F. is added to a naphthenic distillate chilled to 60/sup 0/ F. to 65/sup 0/ F. to produce a refrigerator oil with improved low temperature properties.

  5. Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze Car Batteries

    E-Print Network [OSTI]

    Maroncelli, Mark

    Used Oil, Antifreeze, and Car Battery Recycling in Centre County* Location Used Oil Used Antifreeze) 237-0121 Yes No No #12;Location Used Oil Used Antifreeze Car Batteries Valvoline Instant Oil Change-9929 Yes Yes Yes * See the DEP website, www.dep.state.pa.us/cgi_apps/oil, for used oil recycling locations

  6. Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas

    SciTech Connect (OSTI)

    James Spillane

    2005-10-01T23:59:59.000Z

    The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

  7. Rosedale Ranch oil field, new shallow pay in an old field

    SciTech Connect (OSTI)

    Nahama, R.; Sterling, R. (Nahama and Weagant Energy Co., Bakersfield, CA (United States))

    1991-02-01T23:59:59.000Z

    The Rosedale Ranch oil field, located on Sec. 1,2, T29S, R26E, in Kern County, California, was discovered by Chevron in 1959. The main pay zone was the Miocene Lerdo sandstone at 4,400 ft depth. Sixty-four wells have been drilled to date by Chevron to develop the lower zone. Five wells were completed in the shallower Pliocene Etchegoin Formation. Nahama and Weagant Energy Company in 1985 drilled 3,800 ft well based on a prospect by consultant Ernie Rennie to test the Etchegoin, resulting in a discovery. a total of 13 wells have been drilled to date producing approximately 500 BOPD from the Etchegoin with additional development potential present. The completion technique proved to be critical to good initial production. Nahama and Weagant Energy Company tried slotted lines against the formation with poor results. Subsequent recompletions with undereaming, gravelpacking, and larger slotted lines have resulted in commercial rates out of the Etchegoin. The Rosedale Ranch oil field is located on a faulted anticlinal structure. The main fault is north-trending down to the basin normal fault. Oil produced from the Etchegoin is 13{degree} gravity.

  8. Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery

    SciTech Connect (OSTI)

    Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

    2006-09-30T23:59:59.000Z

    This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

  9. Minimizing casing corrosion in Kuwait oil fields

    SciTech Connect (OSTI)

    Agiza, M.N.; Awar, S.A.

    1983-03-01T23:59:59.000Z

    Corrosion in production strings is a well known problem in Kuwait oil fields. Failure to remedy the affected wells results mainly in undesirable dump flooding of the oil reservoirs, or in oil seepage and hydrocarbon contamination in shallow water bearing strata. Any of these situations (unless properly handled) leads to a disastrous waste of oil resources. This study discusses casing leaks in Kuwait oil fields, the nature of the formations opposite the leaks and their contained fluids, and the field measures that can be adopted in order to avoid casing leak problems.

  10. Fluid outlet at the bottom of an in situ oil shale retort

    DOE Patents [OSTI]

    Hutchins, Ned M. (Grand Junction, CO)

    1984-01-01T23:59:59.000Z

    Formation is excavated from within the boundaries of a retort site in formation containing oil shale for forming at least one retort level void extending horizontally across the retort site, leaving at least one remaining zone of unfragmented formation within the retort site. A production level drift is excavated below the retort level void, leaving a lower zone of unfragmented formation between the retort level void and the production level drift. A plurality of raises are formed between the production level drift and the retort level void for providing product withdrawal passages distributed generally uniformly across the horizontal cross section of the retort level void. The product withdrawal passages are backfilled with a permeable mass of particles. Explosive placed within the remaining zone of unfragmented formation above the retort level void is detonated for explosively expanding formation within the retort site toward at least the retort level void for forming a fragmented permeable mass of formation particles containing oil shale within the boundaries of the retort site. During retorting operations products of retorting are conducted from the fragmented mass in the retort through the product withdrawal passages to the production level void. The products are withdrawn from the production level void.

  11. Mate Choice, Genetic Variation, and Population Structure in Hybrid Zones

    E-Print Network [OSTI]

    Culumber, Zachary Wyatt

    2012-02-14T23:59:59.000Z

    Natural hybrid zones provide opportunities to study a range of evolutionary phenomena from speciation to the genetic basis of fitness-related traits. Additionally, investing the structure of hybrid zones can provide valuable insight in the ecology...

  12. anatolian fault zone: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    across the Mudurnu segment of the North Anatolian Fault Zone (NAFZ) in northwestern Turkey Ben-Zion, Yehuda 2 Velocity contrast across the 1944 rupture zone of the North...

  13. Incentive zoning and environmental quality in Boston's Fenway neighborhood

    E-Print Network [OSTI]

    DeFlorio, Joshua (Joshua C.)

    2007-01-01T23:59:59.000Z

    A density bonus, also called incentive zoning, is a conditional liberalization of zoning regulations, allowing a real estate development to exceed as-of-right density limits in exchange for the in-kind provision or purchase ...

  14. USED MINERAL-BASED CRANKCASE OIL

    E-Print Network [OSTI]

    Used Mineral-Based Crankcase

    based crankcase oil vary depending on the brand and type of oil, whether gasoline or diesel fuel was used, the mechanical condition of the engine that the oil came from, and the amount of use between oil changes. Used oil is not naturally found in the environment. What happens to used mineral-based crankcase oil when it enters the environment? q Used mineral-based crankcase oil enters the air through the exhaust system during engine use. q It may enter water or soil when disposed of improperly. q The hydrocarbon components of the oil generally stick to the soil surface. q Some hydrocarbons evaporate into the air very quickly, and others evaporate more slowly. q Hydrocarbon components of the oil that enter surface water bind to small particles in the water and eventually settle to the bottom. q Hydrocarbons from used mineral-based crankcase oil may build up in shellfish or other organisms. q Some metals in used mineral-based crankcase oil dissolve in water and move through the s

  15. Shale mineralogy and burial diagenesis of Frio and Vicksburg Formations in two geopressured wells, McAllen Ranch area, Hidalgo County, Texas

    SciTech Connect (OSTI)

    Freed, R.L.

    1980-01-01T23:59:59.000Z

    Thirty-six shale samples ranging in depth from 1454 ft to 13,430 ft from Shell Oil Company No. 1 Dixie Mortage Loan well and 33 shale samples ranging in depth from 2183 ft to 13,632 ft from Shell Oil/Delhi-Taylor Oil Corporation No. 3 A.A. McAllen well were examined by x-ray techniques to determine the mineralogical parameters of the geopressured zone in the Vicksburg Fairway. Both wells have the same weight-percent trends with depth for the mineralogy: quartz, calcite, total clay, and potassium feldspar are constant; plagioclase feldspar gradually increases; kaolinite increases; discrete illite decreases; total mixed-layer illite-smectite (I/S) decreases; illite in mixed layer I/S increases; and smectite in mixed-layer I/S decreases. Chlorite is found only in the geopressured zone of each well. The Boles and Franks model is compatible with a steady supply of original mixed-layer I/S during the depositional history of the McAllen Ranch area. The constant content with depth of calcite, quartz, and potassium feldspar indicates that limited material, if any, is supplied by the shales to surrounding sands. The ions generated by changes within the clay minerals are involved in further clay mineral reactions as outlined above. In addition, magnesium and iron are involved in forming chlorite within the shales.

  16. Vadose Zone Transport Field Study: Summary Report

    SciTech Connect (OSTI)

    Ward, Andy L.; Conrad, Mark E.; Daily, William D.; Fink, James B.; Freedman, Vicky L.; Gee, Glendon W.; Hoversten, Gary M.; Keller, Jason M.; Majer, Ernest L.; Murray, Christopher J.; White, Mark D.; Yabusaki, Steven B.; Zhang, Z. F.

    2006-07-31T23:59:59.000Z

    From FY 2000 through FY 2003, a series of vadose zone transport field experiments were conducted as part of the U.S. Department of Energys Groundwater/Vadose Zone Integration Project Science and Technology Project, now known as the Remediation and Closure Science Project, and managed by the Pacific Northwest National Laboratory (PNNL). The series of experiments included two major field campaigns, one at a 299-E24-11 injection test site near PUREX and a second at a clastic dike site off Army Loop Road. The goals of these experiments were to improve our understanding of vadose zone transport processes; to develop data sets to validate and calibrate vadose zone flow and transport models; and to identify advanced monitoring techniques useful for evaluating flow-and-transport mechanisms and delineating contaminant plumes in the vadose zone at the Hanford Site. This report summarizes the key findings from the field studies and demonstrates how data collected from these studies are being used to improve conceptual models and develop numerical models of flow and transport in Hanfords vadose zone. Results of these tests have led to a better understanding of the vadose zone. Fine-scale geologic heterogeneities, including grain fabric and lamination, were observed to have a strong effect on the large-scale behavior of contaminant plumes, primarily through increased lateral spreading resulting from anisotropy. Conceptual models have been updated to include lateral spreading and numerical models of unsaturated flow and transport have revised accordingly. A new robust model based on the concept of a connectivity tensor was developed to describe saturation-dependent anisotropy in strongly heterogeneous soils and has been incorporated into PNNLs Subsurface Transport Over Multiple Phases (STOMP) simulator. Application to field-scale transport problems have led to a better understanding plume behavior at a number of sites where lateral spreading may have dominated waste migration (e.g. BC Cribs and Trenches). The improved models have been also coupled with inverse models and newly-developed parameter scaling techniques to allow estimation of field-scale and effective transport parameters for the vadose zone. The development and utility of pedotransfer functions for describing fine-scale hydrogeochemical heterogeneity and for incorporating this heterogeneity into reactive transport models was explored. An approach based on grain-size statistics appears feasible and has been used to describe heterogeneity in hydraulic properties and sorption properties, such as the cation exchange capacity and the specific surface area of Hanford sediments. This work has also led to the development of inverse modeling capabilities for time-dependent, subsurface, reactive transport with transient flow fields using an automated optimization algorithm. In addition, a number of geophysical techniques investigated for their potential to provide detailed information on the subtle changes in lithology and bedding surfaces; plume delineation, leak detection. High-resolution resistivity is now being used for detecting saline plumes at several waste sites at Hanford, including tank farms. Results from the field studies and associated analysis have appeared in more than 46 publications generated over the past 4 years. These publications include test plans and status reports, in addition to numerous technical notes and peer reviewed papers.

  17. Permutation zones and the fermion sign problem

    E-Print Network [OSTI]

    Dean Lee

    2002-10-22T23:59:59.000Z

    We present a new approach to the problem of alternating signs for fermionic many body Monte Carlo simulations. We demonstrate that the exchange of identical fermions is typically short-ranged even when the underlying physics is dominated by long distance correlations. We show that the exchange process has a maximum characteristic range of sqrt[2*(1-f)*beta*h] lattice sites, where beta is the inverse temperature, h is the hopping parameter, and f is the filling fraction. We introduce the notion of permutation zones, special regions of the lattice where identical fermions may interchange and outside of which they may not. Using successively larger permutation zones, one can extrapolate to obtain thermodynamic observables in regimes where direct simulation is impossible.

  18. Radioactive waste disposal in thick unsaturated zones

    SciTech Connect (OSTI)

    Winograd, I.J.

    1981-06-26T23:59:59.000Z

    Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolation is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere. 4 figures.

  19. Geothermometry At Central Nevada Seismic Zone Region (Shevenell...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Geothermometry At Central Nevada Seismic Zone Region (Shevenell & De Rocher, 2005) Exploration Activity Details Location...

  20. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  1. Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control

    SciTech Connect (OSTI)

    Robert A. Carrington; William C. Hecker; Reed Clayson

    2008-06-01T23:59:59.000Z

    Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established reburning chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

  2. Diesel particulate filter with zoned resistive heater

    SciTech Connect (OSTI)

    Gonze, Eugene V [Pinckney, MI

    2011-03-08T23:59:59.000Z

    A diesel particulate filter assembly comprises a diesel particulate filter (DPF) and a heater assembly. The DPF filters a particulate from exhaust produced by an engine. The heater assembly has a first metallic layer that is applied to the DPF, a resistive layer that is applied to the first metallic layer, and a second metallic layer that is applied to the resistive layer. The second metallic layer is etched to form a plurality of zones.

  3. Form-based zoning : what place is this code?

    E-Print Network [OSTI]

    Mehta, Shilpa, M.C.P. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Form-based zoning is a relatively recent innovation in zoning reform. Many cities in the U.S. have adopted form-based codes in lieu of or as a supplement to conventional zoning and many more are in the process of studying ...

  4. Development of a Hydrologic Characterization Technology for Fault Zones Final Report

    E-Print Network [OSTI]

    Karasaki, Kenzi

    2014-01-01T23:59:59.000Z

    Hydrologic Characterization Technology of Fault Zones, Phaseof Characterization Technology for Fault Zones, LBNL-1635E,Characterization on Technology of Fault Zones Phase II

  5. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31T23:59:59.000Z

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  6. SATURATED ZONE IN-SITU TESTING

    SciTech Connect (OSTI)

    P.W. REIMUS

    2004-11-08T23:59:59.000Z

    The purpose of this scientific analysis is to document the results and interpretations of field experiments that test and validate conceptual flow and radionuclide transport models in the saturated zone (SZ) near Yucca Mountain, Nevada. The test interpretations provide estimates of flow and transport parameters used in the development of parameter distributions for total system performance assessment (TSPA) calculations. These parameter distributions are documented in ''Site-Scale Saturated Zone Flow Model (BSC 2004 [DIRS 170037]), Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]), Saturated Zone Colloid Transport (BSC 2004 [DIRS 170006]), and ''Saturated Zone Flow and Transport Model Abstraction'' (BSC 2004 [DIRS 170042]). Specifically, this scientific analysis contributes the following to the assessment of the capability of the SZ to serve as part of a natural barrier for waste isolation for the Yucca Mountain repository system: (1) The bases for selection of conceptual flow and transport models in the saturated volcanics and the saturated alluvium located near Yucca Mountain. (2) Results and interpretations of hydraulic and tracer tests conducted in saturated fractured volcanics at the C-wells complex near Yucca Mountain. The test interpretations include estimates of hydraulic conductivities, anisotropy in hydraulic conductivity, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, matrix diffusion coefficients, fracture apertures, and colloid transport parameters. (3) Results and interpretations of hydraulic and tracer tests conducted in saturated alluvium at the Alluvial Testing Complex (ATC) located at the southwestern corner of the Nevada Test Site (NTS). The test interpretations include estimates of hydraulic conductivities, storativities, total porosities, effective porosities, longitudinal dispersivities, matrix diffusion mass transfer coefficients, and colloid transport parameters. (4) Comparisons of sorption parameter estimates for a reactive solute tracer (lithium ion) derived from the C-wells field tracer tests and laboratory tests using C-wells core samples. (5) Sorption parameter estimates for lithium ion derived from laboratory tests using alluvium samples from ATC well NC-EWDP-19D. These estimates will allow a comparison of laboratory- and field-derived sorption parameters to be made in saturated alluvium if cross-hole tracer tests are conducted at the ATC.

  7. Introduction to the Special Section in Vadose Zone Journal: Parameter Identification and Uncertainty Assessment in the Unsaturated Zone

    E-Print Network [OSTI]

    Vrugt, Jasper A.

    and Uncertainty Assessment in the Unsaturated Zone Jasper A. Vrugt* and Shlomo P. Neuman DURING the last few

  8. Methods and apparatuses for preparing upgraded pyrolysis oil

    DOE Patents [OSTI]

    Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

    2013-10-01T23:59:59.000Z

    Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

  9. Investigation of oil adsorption capacity of granular organoclay media and the kinetics of oil removal from oil-in-water emulsions

    E-Print Network [OSTI]

    Islam, Sonia

    2007-04-25T23:59:59.000Z

    Produced water, a byproduct of oil and gas production, includes almost 98% of all waste generated by oil and gas exploration and their production activities. This oil contaminated waste water has a great impact on our environment and is considered...

  10. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01T23:59:59.000Z

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  11. The entrainment of oil droplets in flow beneath an oil slick

    E-Print Network [OSTI]

    Chao, Chien-Hwa

    1973-01-01T23:59:59.000Z

    velocity, wind velocity and oil specific gravity, an equilibrium oil thickness will be reached if there is no loss of oil past the barrier. As the velocity is increased, the oil up- stream of the barrier increases in thickness and decreases in for- ward... for any given oil at which droplets are first formed and entrained. Below this speed there is no droplet formation and above this speed the number of droplets formed and the volume of oil entrained increases rapidly. The critical speed for droplet for...

  12. Angola: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports that prospects of Angola, free of political complications, are certain to bring a flurry of interest from oil firms and could mean an influx of foreign capital. Licensing will be under production-sharing terms, but incentives may be offered due to increased risks inherent in deeper water. Long term security and stability remain uncertain. In addition to Unita and previously communist MPLA, new factions from 16 years of civil war are gaining support and increasing possibilities for violence. Oil firms consider production-sharing terms high and current price cap clauses keep them from realizing benefits from price increases after contracts are signed. However, geology and exploration successes have overshadowed concerns.

  13. Iraq: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports that no reliable information on Iraqi E and P operations and only a few reports on oil field facilities damage have been available since last August. Most of what is known originated from the Middle East Economic Survey (MEES), the authoritative newsletter covering the Middle East. According to MEES reports in major northern oil fields (Kirkuk, Bai Hasan and Jambur) is put at 800,000 bpd. The northern fields and the pipeline system through Turkey to the Mediterranean Sea that serves as an export outlet for the area apparently were not damaged much by coalition air strikes or subsequent fighting by the Kurds. Last May production was estimated at 250,000 bpd, presumably from northern fields. If and when U.N. sanctions are lifted, Iraq should be able to export promptly through the Turkish line.

  14. Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone

    E-Print Network [OSTI]

    Wu, Y.

    2013-01-01T23:59:59.000Z

    in miscible-flood enhanced oil recovery. [Online] Am. Chem.in fractures for enhanced oil recovery. Colloids Surf. , A

  15. Chad: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    This paper reports on Mango 1, which is an exploration well started in September 1990 on a block adjacent to Lake Chad by Esso, Chevron and Shell was suspended after the coup in that nation's capital later in the year. The small Sedigi oil field, discovered in the 70s, will be developed with a pipeline to a 3,000-bpd refinery. Improved relations with Libya and future internal stability may further open the door to exploration.

  16. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  17. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    and Its Influence on Oil Production from Tight Reservoirscan affect well oil production. Specifically, pressure-Stress Sensitivity on Oil Production During oil production

  18. Performance of a Power Generator System Using Crude Plant Oil Blend with Diesel Fuel

    E-Print Network [OSTI]

    Tsair-wang Chung; Kuan-ting Liu; Mai-tzu Chen

    non-edible plant oils, Jatropha oil is the most potential one. Jatropha oil is non-eatable oil and has

  19. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    low-permeability tight oil reservoirs are inadvisable to beconditions, to study tight oil reservoir stress sensitivity.oil production from tight oil reservoirs, in addition to

  20. PREDICTIVE MODELS. Enhanced Oil Recovery Model

    SciTech Connect (OSTI)

    Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

    1992-02-26T23:59:59.000Z

    PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.