Sample records for oil thousand barrels

  1. Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.

    E-Print Network [OSTI]

    billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

  2. DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR

    E-Print Network [OSTI]

    Karl, Terry

    2008-01-01T23:59:59.000Z

    the third largest proven oil reserves in the world; it maythird biggest known crude oil reserves. “This is a nationalGulf monarchies, where oil reserves per capita are 43 times

  3. DEMOCRACY OVER A BARREL: OIL, REGIME CHANGE AND WAR

    E-Print Network [OSTI]

    Karl, Terry

    2008-01-01T23:59:59.000Z

    of Aceh’s oil and natural gas resources as a main reason forthe “resource curse” is the fact that rich oil countries (Oil Wealth Dissatisfaction and Political Trust in Norway: A Resource

  4. New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbed Methane ProvedCrude

  5. North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013A4. Census RegionNorth+

  6. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+ Lease

  7. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2 3+ LeaseReserves

  8. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0Proved ReservesCoalbed+

  9. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0Proved

  10. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan FebFullProved+ Lease

  11. Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet) Year Jan Feb+

  12. Illinois Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet) Year Jan

  13. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProduction (Billion+

  14. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)ThousandProduction

  15. Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA -Proved+

  16. Wyoming Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear Jan FebOECD/IEA

  17. Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 Independent StatisticsCrude Oil

  18. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude Oil +

  19. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011Crude Oil

  20. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProvedCrude Oil

  1. Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a

    E-Print Network [OSTI]

    Weston, Ken

    Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

  2. U.S. Product Supplied of Distillate Fuel Oil (Thousand Barrels per Day)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision2009 2010 2011Product

  3. ,"Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per Thousand CubicMarketedCrude Oil

  4. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

  5. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate Proved Reserves (Million Barrels)"

  6. U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720Sales (Million Barrels)

  7. ,"Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars per ThousandCoalbed+

  8. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude Oil +

  9. ,"Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPriceShareCrude Oil + Lease

  10. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil + Lease

  11. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil + Lease

  12. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrude Oil + Lease

  13. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude Oil +

  14. U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New120,814 136,9322009 2010(Billion CubicCrude Oil

  15. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShale ProvedCrude Oil

  16. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonshCrude Oil + Lease

  17. ,"California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrude Oil Reserves

  18. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet AfterCrude Oil + Lease

  19. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil +

  20. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas,PlantCrude Oil

  1. ,"New Mexico--East Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas,Crude Oil

  2. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRising U.S. oil

  3. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected to rise in

  4. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected to rise into

  5. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShale ProvedCrudeCrude Oil

  6. U.S. Natural Gas Total Liquids Extracted (Thousand Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1 Year-2Feet)Total

  7. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    Remain Stable Despite Oil Production Cut. Octo- ber25.Chevron Expects Daily Oil Production of 620,000 Barrels in2008f. Oil Production Reaches 1.9 Million Barrels Per Day.

  8. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    in U.S. real GDP and oil consumption, 1949-2006. slope =Historical Chinese oil consumption and projection of trend.1991-2006: Chinese oil consumption in millions of barrels

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  10. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

  11. Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play: Southwest Alabama

    SciTech Connect (OSTI)

    Mink, R.M.; Mancini, E.A. [Geological Survey of Alabama, Tuscaloosa, AL (United States)

    1995-10-01T23:59:59.000Z

    Exploration for Lower Cretaceous and Upper Jurassic reservoirs associated with updip basement structures currently is the most active exploratory oil play in Alabama. High initial flow rates, on the order of hundreds to thousands of barrels of oil per day, are commonly encountered at depths between 8,200 and 14,500 feet. Fifty-one fields have been established and 25 million barrels of oil have been produced from these fields developed in Lower Cretaceous Hosston and Upper Jurassic Haynesville, Smackover, and Norphlet reservoirs. Production from Smackover carbonates began at Toxey field in 1967 and from Haynesville sandstones at Frisco City field in 1986. As of September 1994, Smackover wells averaged 88 barrels of oil per day and Haynesville wells averaged 284 barrels of oil per day. In 1994, production was established in the Norphlet at North Excel field and in the Hosston at Pleasant Home field. Reservoirs in the updip basement structure play cluster in three distinct areas; (1) a western area on the Choctaw ridge complex, (2) a central area on the Conecuh ridge complex, and (3) an eastern area in the Conecuh embayment. Reservoir lithologies include Smackover limestones and dolostones and Hosston, Haynesville, Smackover, and Norphlet sandstones. Hydrocarbon traps are structural or combination traps where reservoirs occur on the flanks or over the crests of basement palohighs. An understanding of the complex reservoir properties and trap relationships is the key to successful discovery and development of Lower Cretaceous and Upper Jurassic oil reservoirs of the updip basement structure play of southwest Alabama.

  12. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  13. WHAT IS A RAIN BARREL? A rain barrel is any type of container used to catch

    E-Print Network [OSTI]

    Blanchette, Robert A.

    or pet consumption. · Due to lack of research data, water collected in a rain barrel is not recommended

  14. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    and ranks 17th in crude oil production globally (EIA 2008).the country’s crude oil production averaged only 157,770s production of nearly 2 million barrels of crude oil per

  15. FISSION REACTORS KEYWORDS: core-barrel vibra-

    E-Print Network [OSTI]

    Demazière, Christophe

    FISSION REACTORS KEYWORDS: core-barrel vibra- tions, in-core neutron noise, shell- mode vibrations CALCULATION OF THE NEUTRON NOISE INDUCED BY SHELL-MODE CORE-BARREL VIBRATIONS IN A 1-D, TWO-GROUP, TWO-REGION SLAB REACTOR MODEL CARL SUNDE,* CHRISTOPHE DEMAZI�RE, and IMRE PÁZSIT Chalmers University of Technology

  16. Peak Oil, Peak Energy Mother Nature Bats Last

    E-Print Network [OSTI]

    Sereno, Martin

    Peak Oil, Peak Energy Mother Nature Bats Last Martin Sereno 1 Feb 2011 (orig. talk: Nov 2004) #12;Oil is the Lifeblood of Industrial Civilization · 80 million barrels/day, 1000 barrels/sec, 1 cubicPods to the roads themselves) · we're not "addicted to oil" -- that's like saying a person has an "addiction

  17. Costs of Imported Crude Oil for Selected Crude Streams

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 51 Table 29. F.O.B. a Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  18. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  19. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  20. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect (OSTI)

    Milton, J.D. [CalResources LLC, Bakersfield, CA (United States); Edwards, E.B. [ Ogle & Heck, Carpinteria, CA (United States); Heck, R.G. [Ogle & Heck, Santa Barbara, CA (United States)] [and others

    1996-12-31T23:59:59.000Z

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  1. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect (OSTI)

    Milton, J.D. (CalResources LLC, Bakersfield, CA (United States)); Edwards, E.B. ( Ogle Heck, Carpinteria, CA (United States)); Heck, R.G. (Ogle Heck, Santa Barbara, CA (United States)) (and others)

    1996-01-01T23:59:59.000Z

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  2. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  3. Figure 4. World Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    4. World Oil Prices" " (2007 dollars per barrel)" ,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030...

  4. World Oil Prices in AEO2006 (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01T23:59:59.000Z

    World oil prices in the Annual Energy Outlook 2006 (AEO) reference case are substantially higher than those in the AEO2005 reference case. In the AEO2006 reference case, world crude oil prices, in terms of the average price of imported low-sulfur, light crude oil to U.S. refiners, decline from current levels to about $47 per barrel (2004 dollars) in 2014, then rise to $54 per barrel in 2025 and $57 per barrel in 2030. The price in 2025 is approximately $21 per barrel higher than the corresponding price projection in the AEO2005 reference case.

  5. HP-41C helps predict oil production

    SciTech Connect (OSTI)

    Bixler, B.

    1982-04-01T23:59:59.000Z

    A new program for the HP-41C hand-held programable computer predicts yearly oil production and water-oil ratios (WOR) given the following: (1) barrels original oil-in-place; (2) barrels cumulative oil production at start of the flood or at the beginning of the study if the flood is in progress; (3) percent of original oil-in-place ultimately recovered; (4) WOR at the beginning of the study; (5) WOR at abandonment; and (6) barrels total fluid produced per day. This method assumes that the plot of log WOR vs. CUM oil (cumulative oil to the end of the given year) is linear and that the combined production (withdrawal) rate of oil and water is constant for the life of the flood. Details of the program are given, along with a program listing, an example problem, and a bar code listing.

  6. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information AdministrationPetroleum Marketing Annual 1998 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  7. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information AdministrationPetroleum Marketing Annual 1999 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  8. Table 30. Landed Costs of Imported Crude Oil for Selected Crude...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 53 Table 30. Landed Costs of Imported Crude Oil for Selected Crude Streams (Dollars per Barrel) - Continued Year...

  9. History of Heating Oil Reserve Releases

    Broader source: Energy.gov [DOE]

    The Northeast Home Heating Oil Reserve (NEHHOR), a one million barrel supply of ultra low sulfur distillate (diesel), was created to build a buffer to allow commercial companies to compensate for...

  10. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  11. Production of Shale Oil

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits...

  12. Replacing the whole barrel of oil with plants and microbes

    SciTech Connect (OSTI)

    Simmons, Blake

    2013-05-29T23:59:59.000Z

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  13. Replacing the whole barrel of oil with plants and microbes

    ScienceCinema (OSTI)

    Simmons, Blake

    2014-06-24T23:59:59.000Z

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  14. New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed Methane Proved+

  15. New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN ECoalbed Methane

  16. California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million

  17. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+ Lease Condensate

  18. Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c.+ Lease

  19. Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProduction (Billion+

  20. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)SecondProduction

  1. Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter Lease

  2. Indiana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015 Independent StatisticsCrude

  3. Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear JanProved Reserves+

  4. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear JanProved

  5. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2+

  6. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet) Decade Year-0 Year-1

  7. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 NProved Reserves (Billion

  8. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(MillionProductionReservesCrude

  9. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecade Year-0ProvedProved+

  10. Arkansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecade

  11. Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet) Year3:ProductionProved+

  12. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet)

  13. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production

  14. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan

  15. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number ofCoalbed Methane+

  16. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978. Number ofCoalbed

  17. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS willProved

  18. Ten Thousand Years of Solitude

    SciTech Connect (OSTI)

    Benford, G. (Los Alamos National Lab., NM (USA) California Univ., Irvine, CA (USA). Dept. of Physics); Kirkwood, C.W. (Los Alamos National Lab., NM (USA) Arizona State Univ., Tempe, AZ (USA). Coll. of Business Administration); Harry, O. (Los Alamos National Lab., NM (USA)); Pasqualetti, M.J. (Los Alamos National Lab., NM (USA) Arizona State Univ., Tempe, AZ (USA))

    1991-03-01T23:59:59.000Z

    This report documents the authors work as an expert team advising the US Department of Energy on modes of inadvertent intrusion over the next 10,000 years into the Waste Isolation Pilot Project (WIPP) nuclear waste repository. Credible types of potential future accidental intrusion into the WIPP are estimated as a basis for creating warning markers to prevent inadvertent intrusion. A six-step process is used to structure possible scenarios for such intrusion, and it is concluded that the probability of inadvertent intrusion into the WIPP repository over the next ten thousand years lies between one and twenty-five percent. 3 figs., 5 tabs.

  19. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  20. atlas sct barrel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of processors receiving the full granularity of data from a dedicated detector (Resistive Plate Chambers in the Barrel). Salamanna, G; The ATLAS collaboration 2009-01-01 35...

  1. atlas trt barrel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of processors receiving the full granularity of data from a dedicated detector (Resistive Plate Chambers in the Barrel). Salamanna, G; The ATLAS collaboration 2009-01-01 27...

  2. atlas sct barrels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of processors receiving the full granularity of data from a dedicated detector (Resistive Plate Chambers in the Barrel). Salamanna, G; The ATLAS collaboration 2009-01-01 35...

  3. North Dakota Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per Thousand Cubic3.74

  4. Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

    E-Print Network [OSTI]

    Aubert, B; Colas, Jacques; Delebecque, P; Di Ciaccio, L; El-Kacimi, M; Ghez, P; Girard, C; Gouanère, M; Goujdami, D; Jérémie, A; Jézéquel, S; Lafaye, R; Massol, N; Perrodo, P; Przysiezniak, H; Sauvage, G; Thion, J; Wingerter-Seez, I; Zitoun, R; Zolnierowski, Y; Alforque, R; Chen, H; Farrell, J; Gordon, H; Grandinetti, R; Hackenburg, R W; Hoffmann, A; Kierstead, J A; Köhler, J; Lanni, F; Lissauer, D; Ma, H; Makowiecki, D S; Müller, T; Norton, S; Radeka, V; Rahm, David Charles; Rehak, M; Rajagopalan, S; Rescia, S; Sexton, K; Sondericker, J; Stumer, I; Takai, H; Belymam, A; Benchekroun, D; Driouichi, C; Hoummada, A; Hakimi, M; Knee, Michael; Stroynowski, R; Wakeland, B; Datskov, V I; Drobin, V; Aleksa, Martin; Bremer, J; Carli, T; Chalifour, M; Chevalley, J L; Djama, F; Ema, L; Fabre, C; Fassnacht, P; Gianotti, F; Gonidec, A; Hansen, J B; Hervás, L; Hott, T; Lacaste, C; Marin, C P; Pailler, P; Pleskatch, A; Sauvagey, D; Vandoni, Giovanna; Vuillemin, V; Wilkens, H; Albrand, S; Belhorma, B; Collot, J; de Saintignon, P; Dzahini, D; Ferrari, A; Fulachier, J; Gallin-Martel, M L; Hostachy, J Y; Laborie, G; Ledroit-Guillon, F; Martin, P; Muraz, J F; Ohlsson-Malek, F; Saboumazrag, S; Viret, S; Othegraven, R; Zeitnitz, C; Banfi, D; Carminati, L; Cavalli, D; Citterio, M; Costa, G; Delmastro, M; Fanti, M; Mandelli, L; Mazzanti, M; Tartarelli, F; Augé, E; Baffioni, S; Bonis, J; Bonivento, W; Bourdarios, C; de La Taille, C; Fayard, L; Fournier, D; Guilhem, G; Imbert, P; Iconomidou-Fayard, L; Le Meur, G; Mencik, M; Noppe, J M; Parrour, G; Puzo, P; Rousseau, D; Schaffer, A C; Seguin-Moreau, N; Serin, L; Unal, G; Veillet, J J; Wicek, F; Zerwas, D; Astesan, F; Bertoli, W; Canton, B; Fleuret, F; Imbault, D; Lacour, D; Laforge, B; Schwemling, P; Abouelouafa, M; Ben-Mansour, A; Cherkaoui, R; El-Mouahhidi, Y; Ghazlane, H; Idrissi, A; Bazizi, K; England, D; Glebov, V; Haelen, T; Lobkowicz, F; Slattery, P F; Belorgey, J; Besson, N; Boonekamp, M; Durand, D; Ernwein, J; Mansoulié, B; Molinie, F; Meyer, J P; Perrin, P; Schwindling, J; Taguet, J P; Zaccone, Henri; Lund-Jensen, B; Rydström, S; Tayalati, Y; Botchev, B; Finocchiaro, G; Hoffman, J; McCarthy, R L; Rijssenbeek, M; Steffens, J; Zdrazil, M; Braun, H M

    2006-01-01T23:59:59.000Z

    The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

  5. Launcher barrel for the lethality test system railgun

    SciTech Connect (OSTI)

    Sims, J.R.; Christensen, K.E.; Cummings, C.E.; Calkins, N.C.

    1986-01-01T23:59:59.000Z

    A reusable plasma armature railgun barrel design is described. This barrel was designed and is being fabricated at the Los Alamos National Laboratory for use in a kinetic energy lethality test system. The performance goals for this barrel are (1) that it be able to withstand the loads generated when accelerating a 30-g projectile to a velocity of 15 km/s without sustaining permanent damage, (2) that it have multiple shot capability, and, (3) that it be capable of being repaired and/or modified. The barrel consists of a multipiece modular core contained in an outer structural shell. The core assembly, composed of rails and insulators, is accessible for repair or replacement. The outer structural shell is designed to allow access to the core and is used to preload the core compressively. The barrel design incorporates various features that will allow the use of stronger and stiffer materials such as structural ceramics and reinforced coppers as they become available.

  6. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  7. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    in barrels per day Year Cantarell Other oilfields TotalOil: What the fall in Cantarell’s production means. ” 12To make matters worse Cantarell’s output is beginning to

  8. Hydrocarbon analysis of shrimp from oil polluted waters 

    E-Print Network [OSTI]

    DeWitt, Bernard John

    1982-01-01T23:59:59.000Z

    and approximately 2, 000 barrels per day until it was finally capped (Anon, , 1980a). Ixtoc I, the worlds' largest oil spill, was fi- nally capped on March 24, 1980, after spilling over 2. 6 million barrels of oil into the Gulf of Mexico, most of which... in the transoceanic shipment of crude oil, as well as increased offshore exploratory drilling. This demand has led to several major oil spills such as the wreck of the "Torrey Can- yon" off the coast of England which released 100, 000 tons of crude oil (Blumer...

  9. TABLE07.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    7. PAD District I-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil ......

  10. TABLE11.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (Thousand Barrels) Table 11. PAD District II-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum January-July 2004 Products, Crude Oil...

  11. TABLE15.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 15. PAD District III-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  12. TABLE19.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Table 19. PAD District IV-Year-to-Date Supply, Disposition, and Ending Stocks of Crude Oil and Petroleum (Thousand Barrels) January-July 2004 Products, Crude Oil...

  13. ThousandWorlds Collected Issue 1

    E-Print Network [OSTI]

    Multiple Contributors

    1986-01-01T23:59:59.000Z

    NDtfbRLDS COLLECTED Covers: Carol Walske Dedication Welcome to ThousandWorlds Background to ThousandWorlds cartoon It's A Man's World That Share of Glory/The Father The Gem of Harrrow (filk) That Share of Glory/The Uncles The Gdnvue Saga, Downport version...

  14. Oil, Environment, and Influence Proposed in 2007 to the UN

    E-Print Network [OSTI]

    New Hampshire, University of

    Oil, Environment, and Influence Levi Byers 4/14/11 #12; Proposed in 2007 to the UN and agreed upon in August 2010 Ecuador will indefinitely forgo 900 million barrels of oil in the ITT-Block of the Amazon) by not exploiting the oil in the Yasuni reserve, avoiding deforestation, promoting reforestation and reducing

  15. Lower Oil Prices: A Reason to Give Thanks GENE EPSTEIN

    E-Print Network [OSTI]

    California at Davis, University of

    Lower Oil Prices: A Reason to Give Thanks By GENE EPSTEIN Nov. 29, 2014 1:31 a.m. ET I give thanks thanks for an oil price that fell below $70 a barrel Friday, mainly because it bodes well for general early this year ("Here Comes $75 Oil," March 31). Amy Jaffe, executive director of energy

  16. Comparing Control Constructs by Typing Double-barrelled CPS Transforms

    E-Print Network [OSTI]

    Thielecke, Hayo

    Comparing Control Constructs by Typing Double-barrelled CPS Transforms Hayo Thielecke School Kingdom Copyright 2000 ACM 0-89791-88-6/97/05 ..$5.00 the bare essentials of labelling and jumping, so

  17. The Gamma Intensity Monitor at the Crystal-Barrel-Experiment

    E-Print Network [OSTI]

    McGehee, William R

    2008-01-01T23:59:59.000Z

    This thesis details the motivation, design, construction, and testing of the Gamma Intensity Monitor (GIM) for the Crystal-Barrel-Experiment at the Universität Bonn. The CB-ELSA collaboration studies the baryon excitation ...

  18. atlas superconducting barrel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Level- 1 Muon consists of an array of processors receiving the full granularity of data from a dedicated detector (Resistive Plate Chambers in the Barrel). Salamanna, G;...

  19. DATE A DAtabase of TIM Barrel 2.1 Introduction......................................................................................

    E-Print Network [OSTI]

    Babu, M. Madan

    24 DATE ­ A DAtabase of TIM Barrel Enzymes 2.1 Introduction...................................................................................... 2.2 Objective and salient features of the database .................................... 2.2.1 Choice on the database............................................... 2.4 Features

  20. Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak?

    E-Print Network [OSTI]

    Ito, Garrett

    Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak? Larry Hughes and Jacinda Rudolph With the exception of two oil shocks in the 1970s, world oil production that production will increase to about 96 million barrels a day. If this target is met, world oil production

  1. SELF CHECKOUT Wow! Thousands of people

    E-Print Network [OSTI]

    Fisher, Kathleen

    PLASTIC A3CANNED GOODS Wow! Thousands of people are responding to our messages..... 83% in TX, 17% in FL STORAGE AND HOSTING CENTER The gas station energy costs are down 15%! What is the status of construction

  2. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1999 359 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  4. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Gasoline and Diesel Fuel Update (EIA)

    Marketing Annual 1996 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  5. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1997 401 Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) - Continued...

  6. The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both its magnitude --nearly 5

    E-Print Network [OSTI]

    Entekhabi, Dara

    PROBLEM The 2010 Deepwater Horizon (DH) oil spill in the Gulf of Mexico was unprecedented in both of Mexico during the Deepwater Horizon oil spill. This satellite image shows the oil slick off its magnitude -- nearly 5 million barrels of oil spilled over nearly three months -- and its location

  7. POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS

    E-Print Network [OSTI]

    Fox, J.P.

    2013-01-01T23:59:59.000Z

    and inorganic carbon, The solid waste, referred to as spent45 Kg (25 to 100 pounds) of solid waste per barrel of oil,be disposed with other solid wastes in an on-site solid

  8. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  9. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  10. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  11. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergyawards contract for sludgeDOE toDevelopmentDOE

  12. Comparing Control Constructs by Double-barrelled CPS Hayo Thielecke

    E-Print Network [OSTI]

    Thielecke, Hayo

    Comparing Control Constructs by Double-barrelled CPS Hayo Thielecke (h classical in the source of the CPS transform break the linearity of continuation use in the target. Keywords operators to the bare essentials of labelling and jumping, so that there are no longer any distracting

  13. UNCORRECTED Reliability analysis of hybrid ceramic/steel gun barrels

    E-Print Network [OSTI]

    Grujicic, Mica

    UNCORRECTED PROOF Reliability analysis of hybrid ceramic/steel gun barrels M. GRUJICIC1 , J. R. Optimization of the main design, materials and processing parameters in order to minimize the failure. To achieve the aforementioned range, accuracy and impact energy objectives, new generations of advanced guns

  14. Conceptual design for the STAR barrel electromagnetic calorimeter support rings

    SciTech Connect (OSTI)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.

    1994-02-15T23:59:59.000Z

    The STAR electromagnetic calorimeter (EMC) will be used to measure the energy of photons and electrons from collisions of beams of particles in the RHIC accelerator under construction at Brookhaven National Laboratory. The present design is documented in the EMC Conceptual Design Report, and consists of a cylindrical barrel and two flat endcap calorimeter sections. The barrel EMC will consist of 120 modules, each subtending 6{degrees} in azimuthal angle about the beam ({phi}), and half the barrel length. Each module will be subdivided into ``towers`` of alternating scintillator and lead, which project to the nominal interaction point. There is a strong coupling between the designs for the EMC and for the conventional solenoidal magnet, which will be located immediately outside the barrel EMC. For example, the inner radius of the magnet must be minimized to lower costs and to reduce the STAR detector`s outer diameter to fit within constraints of the existing detector building. This condition requires the calorimeter modules to be just thick enough to accomplish physics goals and to support their weight with small deflections. This note describes progress in the design of the EMC support rings. Several ring designs and methods of construction have been considered. In addition, installation and alignment problems for both the rings and the rails have been considered in more depth. Finally, revised stress calculations for the recommended ring designs have been performed. Most of this work has been done in close collaboration with the STAR magnet subgroup.

  15. BX in situ oil shale project. Quarterly technical progress report, September 1-November 30, 1981

    SciTech Connect (OSTI)

    Dougan, P.M.

    1981-12-20T23:59:59.000Z

    September 1, 1981-November 30, 1981, was the fourth consecutive quarter of superheated steam injection at the BX In Situ Oil Shale Project. During the quarter, 117,520 barrels of water as steam were injected into project injection wells at an average wellhead temperature of 715/sup 0/F and an average wellhead pressure of 1378 PSIG. During the same period, 148,516 barrels of fluid were produced from the project production wells for a produced-to-injected fluid ratio of 1.26 to 1.0. Net oil production for the quarter was 169 barrels.

  16. OFFICE OF RESPONSE AND RESTORATION EMERGENCY RESPONSE DIVISION Other Significant Oil Spills

    E-Print Network [OSTI]

    in the Gulf of Mexico While there have been many oil spills in the Gulf of Mexico in past decades, six stand impact: Ixtoc The largest oil spill in North America occurred in the Gulf of Mexico. The 200- foot, Louisiana, spilling 65,500 barrels (2.7 million gallons) of Venuzuelan crude oil into the Gulf of Mexico

  17. Predicting Three-Dimensional Structures of Transmembrane Domains of -Barrel Membrane Proteins

    E-Print Network [OSTI]

    Dai, Yang

    for -barrel membrane proteins, and the lack of an overall quantitative theoretical understandingPredicting Three-Dimensional Structures of Transmembrane Domains of -Barrel Membrane Proteins Information ABSTRACT: -Barrel membrane proteins are found in the outer membrane of gram-negative bacteria

  18. TABLES2.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Unaccounted for crude oil represents the difference between the supply and disposition of crude...

  19. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Net Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, 2005 (Thousand Barrels) Receipts Shipments Net Receipts Receipts Shipments...

  20. TABLE14.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I ......

  1. TABLE42.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    2. PAD District II-Year-to-Date Imports of Crude Oil and Petroleum Products by Country of Origin, a (Thousand Barrels) January-July 2004 Arab OPEC ......

  2. Shale oil by 1990

    SciTech Connect (OSTI)

    Isaac, E.D.; Svoboda, D.

    1981-01-01T23:59:59.000Z

    Commercial processing of oil shale is currently being carried out in two countries, these being Manchuria and Estonia. Germany, Israel, Australia, Brazil and the United States are planning commercial development of oil shale during the 1980's. In the United States, developers currently pursuing production facilities in the Piceance Basin in Colorado are the Union Oil Company; Colony Development Company, now owned by Tosco and Exxon; Occidental Oil Shale Inc.; The Rio Blanco Shale Company (Amoco and Gulf) CA Tract; The Cathedral Bluff's Oil Shale Company (Oxy and Tenneco) at CB tract; The Anvil Points Bureau of Mines Site under the direction of DOE which has been leased to the Paraho Development Company to optimize their process; and Superior Oil. Superior Oil plans to recover Negcolite and Dowsonite that are associated with their oil shale. The processes used by these companies are described briefly. These are the Union B process, Tosco II process, Paraho process, and Occidental process. It is estimated that between 400,000 to 500,000 barrels per day (63,600 to 79,500 m/sup 3//day) production would be achieved by 1990 if all of the effects on the infrastructure are planned for and constructed in an orderly manner.

  3. Spot-Oiling Johnsongrass.

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01T23:59:59.000Z

    kerosene or diesel fuel oil reduced the stand of the grass 95 percent following 4 applications in each of 4 tests. Ten thousand gallons of this mixture were used at College Station for crown-oiling scattered second gowth Johnsongrass in 49 1 acres... and kerosene kill tender second-growth ~hnsongrass when temperatures are high. lowever, they are slow in killing the grass uring low temperatures and when the grass .ears the boot stage. Oil-soluble dinitro and :her proved fortifiers can be added to diesel...

  4. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  5. Proceedings, 2005 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 541-545. Ten Years of Realtime, Near-Surface Current Observations Supporting Oil Spill Response1

    E-Print Network [OSTI]

    2000 barrels of Bunker C oil into the Gulf of Mexico off Texas' coast. Sea conditions dispersedProceedings, 2005 International Oil Spill Conference. American Petroleum Institute, Washington, DC. pp. 541-545. Ten Years of Realtime, Near-Surface Current Observations Supporting Oil Spill Response1

  6. Augmenting a Microbial Selective Plugging Technique with Polymer Flooding to Increase the Efficiency of Oil Recovery - A Search for Synergy

    SciTech Connect (OSTI)

    Brown, Lewis R.; Pittman Jr., Charles U.; Lynch, F. Leo; Vadie, A. Alex

    2003-02-10T23:59:59.000Z

    The overall objective of this project was to improve the effectiveness of a microbial selective plugging technique of improving oil recovery through the use of polymer floods. More specifically, the intent was to increase the total amount of oil recovered and to reduce the cost per barrel of incremental oil.

  7. Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery

    E-Print Network [OSTI]

    Huff, Breanna

    2014-08-31T23:59:59.000Z

    in the sampled location. Initial production of early wells ranged from 800 to 2,000 barrels of oil and 300,000 to 500,000 cubic meters of gas daily (Cooperative Refinery Association, 1949). The majority of wells, however, initially produced from 200 to 400... to 15 barrels (Cooperative Refinery Association, 1949). This decrease in productivity led to the undertaking of secondary methods to repressure the reservoir to enhance oil recovery. Water flooding of the Wellington field was initiated in February 1953...

  8. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

    2006-07-01T23:59:59.000Z

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  9. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  10. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1995 337 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  11. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  12. Baseballs and Barrels: World Statistics Day | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof EnergyBILIWG:Background:BagdadBaseballs and Barrels:

  13. An analysis of increasing the size of the strategic petroleum reserve to one billion barrels

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Department of Energy's Office of Energy Emergency Policy and Evaluation requested that the Energy Information Administration complete an analysis of the proposed expansion in the Strategic Petroleum Reserve (SPR) from its currently planned size of 750 million barrels to 1000 million barrels. Because the SPR contains only 580 million barrels at this point in time, the benefits and costs of increasing the SPR from 600 to 750 million barrels were also estimated. This report documents the assumptions, methodology, and results of the analysis. 17 figs., 15 tabs.

  14. The Bayou Choctaw Oil Shipment Test

    SciTech Connect (OSTI)

    Bauer, S.J.; Ballard, S.; Barker, G.T.

    1994-05-01T23:59:59.000Z

    In early October of 1993, an oil shipment of about 1 million barrels was made from the Bayou Choctaw Strategic Petroleum Reserve storage facility to St. James Terminal. During the shipment, oil temperatures and soil temperatures along the pipeline were recorded. The field data were used to make estimations of soil thermal properties, thermal conductivity and specific heat. These data were also used to validate and calibrate a heat transfer code, OILPIP, which has been used to calculate pipeline cooling of oil during a drawdown.

  15. DURABLE GLASS FOR THOUSANDS OF YEARS

    SciTech Connect (OSTI)

    Jantzen, C.

    2009-12-04T23:59:59.000Z

    The durability of natural glasses on geological time scales and ancient glasses for thousands of years is well documented. The necessity to predict the durability of high level nuclear waste (HLW) glasses on extended time scales has led to various thermodynamic and kinetic approaches. Advances in the measurement of medium range order (MRO) in glasses has led to the understanding that the molecular structure of a glass, and thus the glass composition, controls the glass durability by establishing the distribution of ion exchange sites, hydrolysis sites, and the access of water to those sites. During the early stages of glass dissolution, a 'gel' layer resembling a membrane forms through which ions exchange between the glass and the leachant. The hydrated gel layer exhibits acid/base properties which are manifested as the pH dependence of the thickness and nature of the gel layer. The gel layer ages into clay or zeolite minerals by Ostwald ripening. Zeolite mineral assemblages (higher pH and Al{sup 3+} rich glasses) may cause the dissolution rate to increase which is undesirable for long-term performance of glass in the environment. Thermodynamic and structural approaches to the prediction of glass durability are compared versus Ostwald ripening.

  16. ,"New Mexico Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:04:18 PM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  17. Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Valley Of Ten Thousand Smokes Region Area (Kodosky & Keith,...

  18. ,"New York Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:12:04 AM" "Back to Contents","Data 1: New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"...

  19. ,"New York Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013...

  20. ,"New York Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2013 ,"Release...

  1. Water Sampling At Valley Of Ten Thousand Smokes Region Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Valley Of Ten Thousand Smokes Region Area (Keith, Et Al., 1992)...

  2. Beneficiation-hydroretort processing of US oil shales, engineering study

    SciTech Connect (OSTI)

    Johnson, L.R.; Riley, R.H.

    1988-12-01T23:59:59.000Z

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  3. Tapered laser rods as a means of minimizing the path length of trapped barrel mode rays

    DOE Patents [OSTI]

    Beach, Raymond J.; Honea, Eric C.; Payne, Stephen A.; Mercer, Ian; Perry, Michael D.

    2005-08-30T23:59:59.000Z

    By tapering the diameter of a flanged barrel laser rod over its length, the maximum trapped path length of a barrel mode can be dramatically reduced, thereby reducing the ability of the trapped spontaneous emission to negatively impact laser performance through amplified spontaneous emission (ASE). Laser rods with polished barrels and flanged end caps have found increasing application in diode array end-pumped laser systems. The polished barrel of the rod serves to confine diode array pump light within the rod. In systems utilizing an end-pumping geometry and such polished barrel laser rods, the pump light that is introduced into one or both ends of the laser rod, is ducted down the length of the rod via the total internal reflections (TIRs) that occur when the light strikes the rod's barrel. A disadvantage of using polished barrel laser rods is that such rods are very susceptible to barrel mode paths that can trap spontaneous emission over long path lengths. This trapped spontaneous emission can then be amplified through stimulated emission resulting in a situation where the stored energy available to the desired lasing mode is effectively depleted, which then negatively impacts the laser's performance, a result that is effectively reduced by introducing a taper onto the laser rod.

  4. Price of Compressed U.S. Natural Gas Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice8.PDF Table5 Preliminary OilThousand

  5. Market analysis of shale oil co-products. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  6. Powers of Ten Thousand: Navigating in Large Information Spaces

    E-Print Network [OSTI]

    Powers of Ten Thousand: Navigating in Large Information Spaces Henry Lieberman Media Laboratory large display space, for example, a street map of the entire United States? The traditional solution, on a scale of at least 1 to 10,000. Powers of ten thousand The book and film Powers of Ten [Morrison

  7. 5/20/09 9:14 AMPhysics in the oil sands of Alberta -Physics Today March 2009 Page 1 of 4http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_62/iss_3/31_1.shtml?type=PTFAVE

    E-Print Network [OSTI]

    Podgornik, Rudolf

    New Books New Products Letters Most popular articles Physics in the oil sands of Alberta March 2009 billion barrels. Over the past decade, production of crude oil from the oil sands has grown to well over 15/20/09 9:14 AMPhysics in the oil sands of Alberta - Physics Today March 2009 Page 1 of 4http

  8. Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications

    E-Print Network [OSTI]

    Slatton, Clint

    Local Frequency Based Estimators for Anomaly Detection in Oil and Gas Applications Alexander Singh industrial applications such as the smart grid and oil and gas are continuously monitored. The massive to positively impact the bottom line. In the oil and gas industry, modern oil rigs are outfitted with thousands

  9. Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

  10. ,"Federal Offshore--California Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per Thousand CubicMarketedCrude OilLiquids

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Movements of Crude Oil and Petroleum Products by Pipeline, Tanker, and Barge Between PAD Districts, 2005 (Thousand Barrels) 2 3 5 1 3 4 5 1 2 Crude Oil 35 5,081 0 5,627 13,335...

  12. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    Movements of Crude Oil and Petroleum Products by Tanker and Barge Between PAD Districts, 2005 (Thousand Barrels) 2 3 5 1 3 5 1 New England Crude Oil 35 149 0 3,170 0 0 0 0...

  13. Petroleum Supply Monthly

    Gasoline and Diesel Fuel Update (EIA)

    October 2011 Table 55. Stocks of Crude Oil and Petroleum Products by PAD District, October 2011 (Thousand Barrels) Commodity PAD Districts U.S. Total 1 2 3 4 5 Crude Oil...

  14. Fact #745: September 17, 2012 Vehicles per Thousand People: U...

    Broader source: Energy.gov (indexed) [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010....

  15. Kansas Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb MarProved Reserves

  16. New York Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousand CubicSeparation 29 0 10

  17. North Dakota Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0 Year-1 (Million Cubic Feet)Proved Reserves

  18. Ohio Natural Gas Liquids Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecade Year-0Separation 9Year Jan Feb Mar

  19. Oklahoma Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto ChinaThousandDecadeSales (Billion Cubic Feet)Year

  20. Pennsylvania Natural Gas Liquids Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (NumberThousand Cubic Feet)17Withdrawals (MillionProved

  1. Unitizing and waterflooding the California Yowlumne Oil Field

    SciTech Connect (OSTI)

    Burzlaff, A.A.

    1983-03-01T23:59:59.000Z

    The Yowlumne field, located at the southern end of the San Joaquin Valley of California, is one of the largest new onshore oil fields discovered in California in the past twenty years. The field, at an average depth of 12,200', has produced over 42 million barrels of oil since its discovery in 1974. In May, 1982, a portion of the Yowlumne field was unitized and called Yowlumne Unit ''B''. Nine operators and about 160 royalty owners cooperated to form this unit. A two phase unitization formula based on remaining primary and initial hydrocarbon pore volume was used to form Unit ''B''. A secondary waterflood project is being implemented which is estimated to increase oil recovery by some 25 million barrels.

  2. U.S. monthly oil production tops 8 million barrels per day for...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    growth is expected to slow in 2016, but natural gas production is still forecast to top 80 billion cubic feet per day for the first time. Most of the growth in gas production...

  3. ,"Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane Proved Reserves (Billion

  4. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, WetCoalbed+

  5. ,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlant

  6. ,"U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillateReserves+ Lease

  7. ,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ Lease Condensate

  8. ,"U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpected Future Production+ Lease

  9. ,"U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural Gas Plant Stocks ofReserves in

  10. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. UndergroundStateCoalbed

  11. ,"West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNetCoalbed Methane Proved+

  12. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead PriceNetCoalbed Methane

  13. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (DollarsSummary"Coalbed Methane+

  14. Gulf of Mexico Federal Offshore Crude Oil Proved Reserves (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter LeaseMeters

  15. Secretary Bodman Announces Sale of 11 Million Barrels of Crude Oil from the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8) Teachers$17.5Part of FirstofNation's

  16. U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720 22 27 17Acquisitions

  17. U.S. Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720 22 27

  18. U.S. Crude Oil + Lease Condensate Reserves Extensions (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun602 1,39720 22 27Extensions

  19. U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality",Area: U.S. East Coast (PADD 1) New England (PADD 1A)20,798 18,578 17,508

  20. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuickEnergy V-Belts with Notched orEnergy

  1. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East Coast (PADDU.S. crude

  2. U.S. crude oil production expected to top 9 million barrels per day in December

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East Coast (PADDU.S.

  3. ,"Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlantCoalbed

  4. ,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural

  5. ,"Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbed Methane Proved+

  6. ,"Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease Condensate Proved Reserves

  7. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice (Dollars+ Lease

  8. ,"Indiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+NonassociatedPrice+ Lease Condensate

  9. ,"Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)" ,"ClickCoalbed+

  10. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed Methane Proved Reserves+ Lease

  11. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas,Coalbed Methane ProvedCrude

  12. ,"Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated NaturalCoalbedLNGLNGCoalbed Methane+

  13. ,"Miscellaneous States Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbed Methane

  14. ,"Miscellaneous States Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbed

  15. ,"Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNet WithdrawalsWellheadCoalbed+

  16. ,"Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough+ Lease

  17. ,"New Mexico Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed Methane Proved+

  18. ,"New Mexico Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural GasCoalbed Methane

  19. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed Methane Proved

  20. ,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlantCoalbed MethaneShaleCoalbedCrude

  1. ,"North Dakota Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPriceCoalbed Methane Proved+ Lease

  2. ,"North Dakota Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPriceCoalbed Methane Proved+

  3. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July0

  4. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues Cells Webinar, July0Energy Replacing the

  5. Exploring the Environmental Preference of Weak Interactions in ( / )8 Barrel Proteins

    E-Print Network [OSTI]

    Babu, M. Madan

    Exploring the Environmental Preference of Weak Interactions in ( / )8 Barrel Proteins S of Biotechnology and Chemical Engineering, Vellore Institute of Technology, Vellore, India 2 MRC Laboratory of Molecular Biology, Cambridge, United Kingdom 3 National Center for Biotechnology Information, National

  6. Forecasting future oil production in Norway and the UK: a general improved methodology

    E-Print Network [OSTI]

    Fievet, Lucas; Cauwels, Peter; Sornette, Didier

    2014-01-01T23:59:59.000Z

    We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 188 +/- 10 million barrels for Norway and 98 +/- 10 million barrels for the UK, which are respectively 45% and 66% above the predictions using the standard methodology.

  7. North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013 Next1.878 2.358Year

  8. Ohio Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2Year Jan Feb

  9. Ohio Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1 2YearYearWellhead

  10. Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Year Jan Feb Mar AprYear

  11. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Year JanYearWellhead

  12. Oregon Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9YearperFeet)Year Jan

  13. Oregon Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan Feb Mar Apr

  14. Pennsylvania Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year JanCubic Feet)Year Jan

  15. Pennsylvania Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year JanCubicperWellhead Price

  16. Utah Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197 14,1978.Barrels)YearWellhead

  17. Extreme wave events during hurricanes can seriously jeopardize the integrity and safety of offshore oil and gas operations in the Gulf of Mexico. Validation of wave forecast for

    E-Print Network [OSTI]

    oil and gas operations in the Gulf of Mexico. Validation of wave forecast for significant wave heights of Mexico. Before the storm, it produced 148,000 barrels of oil equivalent per day and 160 million cubic over the warm Gulf of Mexico water between 26 and 28 August, and became a category 5 hurricane by 1200

  18. Alaska Oil and Gas Exploration, Development, and Permitting Project

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall

    2006-03-31T23:59:59.000Z

    This is the final technical report for Project 15446, covering the grant period of October 2002 through March 2006. This project connects three parts of the oil exploration, development, and permitting process to form the foundation for an advanced information technology infrastructure to better support resource development and resource conservation. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. The broad goal of this grant is to increase domestic production from Alaska's known producing fields through the implementation of preferred upstream management practices. (PUMP). Internet publication of extensive and detailed geotechnical data is the first task, improving the permitting process is the second task, and building an advanced geographical information system to offer continuing support and public access of the first two goals is the third task. Excellent progress has been made on all three tasks; the technical objectives as defined by the approved grant sub-tasks have been met. The end date for the grant was March 31, 2006.

  19. Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, October, November, December 1983

    SciTech Connect (OSTI)

    Henderson, K.B.

    1984-03-01T23:59:59.000Z

    Retort No. 27 was ignited on August 11, 1983 and by December 31 had completed 139 days of operation and produced 11,420 barrels of oil. Retort No. 28 was ignited on October 18, 1983 and on December 31 had completed 74 days of operation and produced 5,285 barrels of oil. The off-gas processing plants for the two retorts was completed and put through a shakedown run. Concentration levels of H/sub 2/S and NH/sub 3/ in the retort off gas did not warrant plant operation in the fourth quarter. Environmental studies are reported.

  20. Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM

    SciTech Connect (OSTI)

    Mark B. Murphy

    2005-09-30T23:59:59.000Z

    The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

  1. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  2. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  3. Quantitative/Statistical Approach to Bullet-to-Firearm Identification with Consecutively Manufactured Barrels

    SciTech Connect (OSTI)

    Peter Striupaitis; R.E. Gaensslen

    2005-01-30T23:59:59.000Z

    Efforts to use objective image comparison and bullet scanning technologies to distinguish bullets from consecutively manufactured handgun barrels from two manufacturers gave mixed results. The ability of a technology to reliably distinguish between matching and non-matching bullets, where the non-matching bullets were as close in pattern to the matching ones as is probably possible, would provide evidence that the distinctions could be made ''objectively'', and independently of human eyes. That evidence is identical or very close to what seems to be needed to satisfy Daubert standards. It is fair to say that the FTI IBIS image comparison technology correctly distinguished between all the Springfield barrel bullets, and between most but not all of the HiPoint barrel bullets. In the HiPoint cases that were not distinguished 100% of the time, they would he distinguished correctly at least 83% of the time. These results, although obviously limited to the materials used in the comparisons, provide strong evidence that barrel-to-bullet matching is objectively reliable. The results with SciClops were less compelling. The results do not mean that bullet-to-barrel matching is not objectively reliable--rather, they mean that this version of the particular technology could not quite distinguish between these extremely similar yet different bullets as well as the image comparison technology did. In a number of cases, the numerical results made the correct distinctions, although they were close to one another. It is hard to say from this data that this technology differs in its ability to make distinctions between the manufacturers, because the results are very similar with both. The human examiner results were as expected. We did not expect any misidentifications, and there were not any. It would have been preferable to have a higher return rate, and thus more comparisons in the overall sample. As noted, the ''consecutively manufactured barrel exercise'' has been done before, with the same outcome.

  4. Approaches to sheltered-water oil spills

    SciTech Connect (OSTI)

    Jacobs, M.A.; Waldron, D.M. [Clean Seas LLC, Carpinteria, CA (United States)

    1996-10-01T23:59:59.000Z

    Technology has produced more effective and efficient oil removal equipment for on-water cleanup in the past five years. Much of the innovation has been to increase recovery capacity to meet the planning volumes required to government regulations. However, more than 95 percent of the spills are relatively small. Large equipment, often requiring large platforms, is not very useful and is difficult/expensive to operate on small spills. In addition, damage from spills results when oil impacts shorelines. The emphasis on spill response should address the ability of the equipment to remove oil in a nearshore environment. Clean Seas has been attempting to address this need since the Avila Pipeline spill in 1992, in which a 180 barrel spill resulted in about $18 million damage/cleanup cost.

  5. Results of the Weeks Island Strategic Petroleum Reserve Oil Leak Risk Assessment Study

    SciTech Connect (OSTI)

    Molecke, M.A.; Hinkebein, T.E.; Bauer, S.J.; Linn, J.K.

    1999-01-01T23:59:59.000Z

    This study evaluated multiple, long-term environmental oil-contamination risk scenarios that could result from the potential leakage of UP to 1.5 million barrels of crude oil entombed in the Weeks Island SPR mine following site decommissioning and abandonment, and up to 100 years thereafter. This risk assessment also provides continuity with similar risk evaluations performed earlier and documented in the 1995 DOE Environmental Assessment for Decommissioning the Strategic Petroleum Reserve Weeks Island Facility (EA). This current study was requested by the DOE to help them determine if their previous Finding of No Significant Impact (FONSI), in the EA, is still valid or needs to be rescinded. Based on the calculated environmental risk results (in terms of clean-up and remediation expenses) presented in this risk assessment, including the calculated average likelihoods of oil release and potential oil-leakage volumes, none of the evaluated risk events would appear to satisfy the definition of significant environmental impact in National Environmental Policy Act (NEPA) terminology. The DOE may combine these current results with their earlier evaluations and interpretations in the 1995 EA in order to assess whether the existing FONSI is still accurate, acceptable, and valid. However, from a risk evaluation standpoint, the assessment of impacts appears to be the same whether only 10,000 to 30,000 barrels of crude oil (as considered in the 1995 EA), or up to 1.5 million barrels of oil (as considered herein) are abandoned in the Weeks Island SPR facility.

  6. Oil shale-A new frontier

    SciTech Connect (OSTI)

    Mc Dermott, W.F.

    1980-12-01T23:59:59.000Z

    Occidental began its development of the Modified In-Situ retorting process in the late 1960's. The first field work commenced at the Logan Wash property in 1972. Three research retorts were constructed and burned, utilizing two different methods of forming the retort. Following this successful research work, three commercial sized retorts were constructed. Over 100,000 barrels of oil have been produced to date. Two additional full-scale retorts are under development at Logan Wash. The results of the Logan Wash program are being used in the design and construction of the C.B. Federal Prototype Lease Tract. This 5,000 acre tract is leased to the Cathedral Bluffs Shale Oil Company, a partnership between Tenneco and Occidental, with Occidental as the operator, by the Department of Interior. Site work began in 1977 and currently three (3) large shafts are being sunk to a depth of about 1900 ft. to access the oil shale formation. The operation will commence in 1985 and reach full production in 1990. Both Modified In-Situ and surface retorting will be used to produce a nominal 100,000 barrels per day. The mine will hoist 60,000 tons per day and will use 3,400 underground workers in the mining, construction of the retorts, and the operation of the retorts. This combination of underground activities creates a unique challenge to the design and operation of such a facility.

  7. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  8. North Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8

  9. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) Liquids LeaseBarrels) Crude Oil

  10. Energy Conservation and Cogeneration in Bottom-of-the-Barrel Processes

    E-Print Network [OSTI]

    Fleming, J. B.; Chang, C. P.; Pierce, V. E.

    1982-01-01T23:59:59.000Z

    Due to the increased use of coal and the reduced demand for Bunker C and other heavy liquid fuels, more refiners are adding or increasing the capacity of their facilities for converting the bottom-of-the-barrel streams into more desirable products...

  11. U.S. Footage Drilled for Crude Oil Developmental Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbedavailable6:Developmental Wells

  12. U.S. Footage Drilled for Crude Oil Exploratory Wells (Thousand Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet) U.S. Coalbedavailable6:Developmental Wells Wells

  13. U.S. Nominal Cost per Crude Oil Well Drilled (Thousand Dollars per Well)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar AprYear JanFeet) Sales

  14. U.S. Real Cost per Crude Oil, Natural Gas, and Dry Well Drilled (Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb MarRevision2009 2010(Million

  15. Barrel empties: focus on recent US import trends

    SciTech Connect (OSTI)

    Not Available

    1988-06-17T23:59:59.000Z

    The announced letter of intent of June 16, 1988, for a 50-50 joint venture between Aramco and Texaco, can be taken as positive (a glass half full) or negative (a glass half empty). The same could be said for the authors graph above, showing that for crude and products, the oil-rich US is 65% independent (half full), but 35% dependent (half empty). The debate is hindered by misfit headlines and political reactions to each statistical release. There's consensus that dependence will increase, but none yet for how to best cope with it. That missing consensus can come only from a realistic view to include qualitative and quantitative changes for each refined product over time, featured in this issue. Also presented in this issue are the following: (1) the ED refining netback data for the US Gulf and West Coasts, Rotterdam and Singapore for early June 1988; and (2) the ED fuel price/tax series for countries of the Western Hemisphere, June 1988 edition. 13 figures, 5 tables.

  16. Massive Gulf leak ushers in age of tough oil

    SciTech Connect (OSTI)

    NONE

    2010-08-15T23:59:59.000Z

    A recent public opinion poll released on June 24, 2010, concluded that 63 percent of those surveyed support the idea that reducing emissions and increasing alternative energy are worth pursuing even if that means increased costs. The Energy Information Administration's latest Annual Energy Outlook shows that the current financial crisis has reduced U.S. oil imports from their all time peak of 60 percent and projects a gradually declining percentage through 2035 under the reference case, and even lower if oil prices remain high -- reaching $210 per barrel by 2035 in 2008 dollars.

  17. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  18. Iowa Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 Year-20 0 0

  19. Kansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear Jan Feb Mar Apr MayDecade

  20. South Carolina Natural Gas Industrial Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116Cubic Feet)Feet)

  1. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)

  2. Sweetgrass, MT Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1Cubic Feet)Cubic

  3. Tennessee Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S.Decade Year-0 Year-1 Year-2 Year-3

  4. Texas Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14Decade Year-0Year

  5. Texas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubicSeparation 7,559Nov-14Decade

  6. Illinois Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousand Cubic Feet)%Year JanYear

  7. Illinois Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLess thanThousandUnderground Storage

  8. Vermont Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (BillionThousand27,262Feet)

  9. Missouri Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73Thousand%Year Jan Feb

  10. Missouri Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)Thousand CubicWellhead Price

  11. Wyoming Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousand Cubic%perYear JanFoot)Year Jan Feb Mar

  12. Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1(MillionExtensionsThousandUnderground Storage Volume (Million

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ","MTTUAR501","MTTSCP51","MTTRIP51","MTTEXP51","MTTUPP51","MTTSTP51" "Date","U.S. Field Production of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Renewable Fuels...

  14. TABLE17.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    January-July 2004 (Thousand Barrels per Day) Crude Oil ... E 3,124 - 6,137 214 -1,839 226 0 7,411 (s) 0 Natural Gas Liquids and LRGs...

  15. TABLE12.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    July 2004 (Thousand Barrels per Day) Crude Oil ... E 430 - 1,116 -87 1,883 -72 0 3,397 17 0 Natural Gas Liquids and LRGs ... 302 144 81...

  16. TABLES6.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    S6. Residual Fuel Oil Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a A negative number indicates a decrease in stocks and a positive number...

  17. TABLE16.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    July 2004 (Thousand Barrels per Day) Crude Oil ... E 3,108 - 6,177 285 -1,830 -31 0 7,770 0 0 Natural Gas Liquids and LRGs ... 1,209 520...

  18. TABLES5.CHP:Corel VENTURA

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    S5. Distillate Fuel Oil Supply and Disposition, 1988 - Present (Thousand Barrels per Day, Except Where Noted) a Stocks are totals as of end of period. Distillate stocks located in...

  19. TABLES3.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    S3. Crude Oil and Petroleum Product Imports, 1988 - Present (Thousand Barrels per Day) See footnotes at end of table. 1988 Average ... 300 58 345 343 92 80 0 0 1989...

  20. TABLE13.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    January-July 2004 (Thousand Barrels per Day) Crude Oil ... E 433 - 1,075 -71 1,877 26 0 3,275 15 0 Natural Gas Liquids and LRGs ... 302...

  1. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...

    Broader source: Energy.gov (indexed) [DOE]

    41: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions - Dataset Fact 841: October 6, 2014 Vehicles per Thousand People: U.S. vs. Other World Regions -...

  2. Fact #778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India Fact 778: May 6, 2013 Vehicles per Thousand Persons Rising Quickly in China and India The number of...

  3. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

  4. Site geotechnical considerations for expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels

    SciTech Connect (OSTI)

    Neal, J.T. (Sandia National Labs., Albuquerque, NM (United States)); Whittington, D.W. (USDOE Strategic Petroleum Reserve Project Management Office, New Orleans, LA (United States)); Magorian, T.R. (Magorian (Thomas R.), Amherst, NY (United States))

    1991-01-01T23:59:59.000Z

    Eight Gulf Coast salt domes have emerged as candidate sites for possible expansion of the Strategic Petroleum Reserve (SPR) to one billion barrels. Two existing SPR sites, Big Hill, TX, and Weeks Island, LA, are among the eight that are being considered. To achieve the billion barrel capacity, some 25 new leached caverns would be constructed, and would probably be established in two separate sites in Louisiana and Texas because of distribution requirements. Geotechnical factors involved in siting studies have centered first and foremost on cavern integrity and environmental acceptability, once logistical suitability is realized. Other factors have involved subsidence and flooding potential, loss of coastal marshlands, seismicity, brine injection well utility, and co-use by multiple operators. 5 refs., 11 figs., 2 tabs.

  5. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  6. Air quality analysis of Phase I of the proposed oil backout legislation. [Lead abstract

    SciTech Connect (OSTI)

    Streets, D.G.

    1980-10-01T23:59:59.000Z

    This report presents an air quality analysis of Phase I of the President's proposed legislation to reduce the use of oil and natural gas in electric utility power plants by approximately 1 x 10/sup 6/ barrels of oil per day. The report analyzes changes in sulfur dioxide and nitrogen oxide emissions that would accompany the conversions. Local and regional impacts on ambient sulfur dioxide and sulfate concentrations are examined. Finally, the cost-effectiveness of certain control options and the effectiveness of converting the specified plants in reducing oil consumption without excessive environmental or cost impacts are discussed. Separate abstracts are prepared for the 6 chapters.

  7. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey Jr; Craig D. Morgan; Roger L. Bon

    2003-07-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the third quarter of the first project year (January 1 through March 31, 2003). This work included gathering field data and analyzing best practices in the eastern Uinta Basin, Utah, and the Colorado portion of the Paradox Basin. Best practices used in oil fields of the eastern Uinta Basin consist of conversion of all geophysical well logs into digital form, running small fracture treatments, fingerprinting oil samples from each producing zone, running spinner surveys biannually, mapping each producing zone, and drilling on 80-acre (32 ha) spacing. These practices ensure that induced fractures do not extend vertically out of the intended zone, determine the percentage each zone contributes to the overall production of the well, identify areas that may be by-passed by a waterflood, and prevent rapid water breakthrough. In the eastern Paradox Basin, Colorado, optimal drilling, development, and production practices consist of increasing the mud weight during drilling operations before penetrating the overpressured Desert Creek zone; centralizing treatment facilities; and mixing produced water from pumping oil wells with non-reservoir water and injecting the mixture into the reservoir downdip to reduce salt precipitation, dispose of produced water, and maintain reservoir pressure to create a low-cost waterflood. During this quarter, technology transfer activities consisted of technical presentations to members of the Technical Advisory Board in Colorado and the Colorado Geological Survey. The project home page was updated on the Utah Geological Survey Internet web site.

  8. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01T23:59:59.000Z

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  9. Natural Gas and Crude Oil Prices in AEO (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    If oil and natural gas were perfect substitutes in all markets where they are used, market forces would be expected to drive their delivered prices to near equality on an energy-equivalent basis. The price of West Texas Intermediate (WTI) crude oil generally is denominated in terms of barrels, where 1 barrel has an energy content of approximately 5.8 million Btu. The price of natural gas (at the Henry Hub), in contrast, generally is denominated in million Btu. Thus, if the market prices of the two fuels were equal on the basis of their energy contents, the ratio of the crude oil price (the spot price for WTI, or low-sulfur light, crude oil) to the natural gas price (the Henry Hub spot price) would be approximately 6.0. From 1990 through 2007, however, the ratio of natural gas prices to crude oil prices averaged 8.6; and in the Annual Energy Outlook 2009 projections from 2008 through 2030, it averages 7.7 in the low oil price case, 14.6 in the reference case, and 20.2 in the high oil price case.

  10. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  11. Increased Alberta bitumen production results in prorationing of light oil production

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    During January to May 1986, shut-in production of light oil in Alberta averaged 109,000 barrels per day. The peak month was April with a shut-in of 164,000 barrels per day. The cause of the shut-in is insufficient pipeline delivery capacity. Both the Interprovincial and TransMountain systems have been operating at full capacity since November 1985. The Rangeland system has also been utilized to its capacity in late spring. This paper discusses the history of the Alberta Proration Plan dating from 1950, the operation of the plan during the recent past years, and the resulting effects of an increase in bitumen production on the transport capacity for light oil.

  12. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30T23:59:59.000Z

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  13. Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983

    SciTech Connect (OSTI)

    Evans, R.A.

    1998-06-01T23:59:59.000Z

    Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

  14. Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays

    SciTech Connect (OSTI)

    Chatrchyan, S. [Yerevan Physics Institute (Aremenia); et al.,

    2010-03-01T23:59:59.000Z

    The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 to 8% depending on the location.

  15. U.S. Natural Gas Plant Liquids, Reserves Sales (Million Barrels)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion Cubic Feet)Year Jan Feb Mar Apr MayBarrels)

  16. Price of Texas Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollarsThousandTexas

  17. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.; Brame, Scott; Current, Caitlin J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  18. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  19. commencement N university of Illinois COLLEGE OF MEDICINEdoctor of philosophy Degree CANDIDATES N two thousand AND THIRTEEN Jill Bennett

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    CANDIDATES N two thousand AND THIRTEEN Jill Bennett Hometown: Portland, Oregon Education: University

  20. How can we build an oil reserve without offending the Saudis

    SciTech Connect (OSTI)

    Madison, C.

    1980-06-28T23:59:59.000Z

    Congress has ordered the Department of Energy to resume filling the strategic oil reserves at about the same 100,000 barrels of crude oil a day as the government fields at Elk Hills, California produce. Pressure to increase this amount while a world surplus exists will be strong, even though members of the Organization of Petroleum Exporting Countries (OPEC) have threatened to reduce their production if the US takes such action. The concept of a strategic reserve of 750 million barrels (a 90-day supply) first emerged as a way to separate foreign-policy decisions from foreign-oil supplies. The present level of 92 million barrels (12-13-days imports), however, has made the reserve a political issue. Delays were caused by a combination of site problems, budget cuts, market disruptions, and policy changes. The debate centers on timing - when the US should return to the market to continue filling the storage sites. US relations with Saudi Arabia are sensitive to Middle East peace agreements, the security of Saudi Arabian territory, and the security of Saudi Arabian production levels. The foreign-policy implications and their severity are disputed. (DCK)

  1. AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS

    E-Print Network [OSTI]

    Lucarelli, Bart

    2013-01-01T23:59:59.000Z

    MBtu) Savings/ Investment Ratio (SIR) Oil Barrel (MBtu)Funding) DOE Investment per Potential Barrel of Oil SavingsSO% DOE Investment per Potential Barrel of Oil Savings

  2. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper gasolineU.S. crude

  3. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper gasolineU.S.

  4. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper gasolineU.S.monthly

  5. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaper

  6. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRising U.S. oiloil

  7. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRising U.S.

  8. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRising U.S.summer

  9. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRising

  10. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. drivers

  11. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.

  12. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. 2014

  13. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. 2014U.S.

  14. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.

  15. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. Record

  16. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.

  17. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. Natural

  18. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. Natural

  19. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S. Natural

  20. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.

  1. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.

  2. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshortCheaperRisingU.S.Households

  3. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices

  4. EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:Deployment ActivitiesAgeDieselDieselJanuary 12,EIA revises up

  5. U.S. crude oil production expected to top 8 million barrels per day, highest output since 1988

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heatingintensityArea: U.S. East Coast (PADDU.S. crude

  6. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShale ProvedCrudeCrudeCrude

  7. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePriceShaleonshCrudeCoalbedCrude

  8. ,"California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed Methane

  9. A New Four-Barrel Pellet Injection System for the TJ-II Stellarator

    SciTech Connect (OSTI)

    Combs, Stephen Kirk [ORNL] [ORNL; Foust, Charles R [ORNL] [ORNL; McGill, James M [ORNL] [ORNL; Baylor, Larry R [ORNL] [ORNL; Caughman, John B [ORNL] [ORNL; Fehling, Dan T [ORNL] [ORNL; Harris, Jeffrey H [ORNL] [ORNL; Meitner, Steven J [ORNL] [ORNL; Rasmussen, David A [ORNL] [ORNL; McCarthy, K. J. [EURATOM-CIEMAT, Madrid, Spain] [EURATOM-CIEMAT, Madrid, Spain; Chamorro, M. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Garcia, R. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Hildago, C. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Medrano, M. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain; Unamuno, R. [Laboratory Nacional de Fusion, Madrid, Spain] [Laboratory Nacional de Fusion, Madrid, Spain

    2011-01-01T23:59:59.000Z

    A new pellet injection system for the TJ-II stellarator has been developed/constructed as part of a collaboration between the Oak Ridge National Laboratory (ORNL) and the Centro de Investigaciones Energ ticas, Medioambientales y Tecnol gicas (CIEMAT). ORNL is providing most of the injector hardware and instrumentation, the pellet diagnostics, and the pellet transport tubes; CIEMAT is responsible for the injector stand/interface to the stellarator, cryogenic refrigerator, vacuum pumps/ballast volumes, gas manifolds, remote operations, plasma diagnostics, and data acquisition. The pellet injector design is an upgraded version of that used for the ORNL injector installed on the Madison Symmetric Torus (MST). It is a four-barrel system equipped with a cryogenic refrigerator for in situ hydrogen pellet formation and a combined mechanical punch/propellant valve system for pellet acceleration (speeds ~100 to 1000 m/s). On TJ-II, it will be used as an active diagnostic and for fueling. To accommodate the plasma experiments planned for TJ-II, pellet sizes significantly smaller than those typically used for the MST application are required. The system will initially be equipped with four different pellet sizes, with the gun barrel bores ranging between ~0.5 to 1.0 mm. The new system is almost complete and is described briefly here, highlighting the new features added since the original MST injector was constructed. Also, the future installation on TJ-II is reviewed.

  10. Role of modern climate and hydrology in world oil preservation

    SciTech Connect (OSTI)

    Szatmari, P. (Petrobras Research Center, Rio de Janeiro (Brazil))

    1992-12-01T23:59:59.000Z

    The accumulation of oil requires a favorable source, a reservoir, good seal-rock quality, and suitably timed thermal history and structuring. The accumulated oil, especially its light fractions, may be subsequently removed by hydrologically controlled processes such as water washing, biodegradation, and tilting of the oil-water contact. These processes are dependent on the climate. In regions that have become increasingly cold or dry during late Cenozoic time, low rainfall, low ground-water flow rates, and low input of nutrients and microorganisms have protected the oil; in warm or temperate rainy climates, high flow rates and high input of nutrients and microorganisms have led to partial or total removal of oil. Thus, most of the rich (>500,000 barrels/day) oil provinces on land are in cold or dry regions, where water is recharged in highlands that receive little rain (<500 mm/yr), such as Texas, Oklahoma, Wyoming, Alaska's North Slope, California, Algeria, Libya, Egypt, the Middle East, the Volga-Ural basin, and western Siberia. Where upland recharge areas are warm or temperate and rainy, as in the eastern United States, western Europe, sub-Saharan Africa, Brazil, India, and most of China, rich oil provinces on land (outside young deltas) are rare, and biodegradation is widespread. 32 refs., 2 figs.

  11. Major Oil Plays In Utah And Vicinity

    SciTech Connect (OSTI)

    Thomas Chidsey

    2007-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s. The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) A

  12. California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude Oil + Lease

  13. Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptemberProcessed in(Million Barrels) Crude Oil

  14. Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels) Crude Oil

  15. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  16. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  17. Open Cluster Open Cluster Open Cluster A group of several thousand stars

    E-Print Network [OSTI]

    Bechtold, Jill

    Open Cluster Open Cluster Open Cluster A group of several thousand stars which formed within the same nebula. The Pleides, or Seven Sisters, are the most visible stars in this cluster in the Milky Way. Mass:10-10,000 SM StarPower Points: 11 A group of several thousand stars which formed within the same

  18. Recovery of bypassed oil in the Dundee Formation (Devonian) of the Michigan Basin using horizontal drains. Final report, April 28, 1994--December 31, 1997

    SciTech Connect (OSTI)

    Wood, J.R.; Pennington, W.D.

    1998-09-01T23:59:59.000Z

    Total hydrocarbon production in the Michigan Basin has surpassed 1 billion barrels (Bbbls) and total unrecovered reserves are estimated at 1--2 BBbls. However, hydrocarbon production in Michigan has fallen from 35 MMbbls/yr in 1979 to about 10 MMbbls/yr in 1996. In an effort to slow this decline, a field demonstration project designed around using a horizontal well to recover bypassed oil was designed and carried out at Crystal Field in Montcalm County, MI. The project had two goals: to test the viability of using horizontal wells to recover bypassed oil from the Dundee Formation, and to characterize additional Dundee reservoirs (29) that are look alikes to the Crystal Field. As much as 85 percent of the oil known to exist in the Dundee Formation in the Michigan Basin remains in the ground as bypassed oil. Early production techniques in the 137 fields were poor, and the Dundee was at risk of being abandoned, leaving millions of barrels of oil behind. Crystal Field in Montcalm County, Michigan is a good example of a worn out field. Crystal Field was once a prolific producer which had been reduced to a handful of wells, the best of which produced only 5 barrels per day. The demonstration well drilled as a result of this project, however, has brought new life to the Crystal Field. Horizontal drilling is one of the most promising technologies available for oil production. The new well was completed successfully in October of 1995 and has been producing 100 barrels of oil per day, 20 times better than the best conventional well in the field.

  19. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of...

  20. ALASKA OIL AND GAS EXPLORATION, DEVELOPMENT, AND PERMITTING PROJECT

    SciTech Connect (OSTI)

    Richard McMahon; Robert Crandall; Chas Dense; Sean Weems

    2003-08-04T23:59:59.000Z

    The objective of this project is to eliminate three closely inter-related barriers to oil production in Alaska through the use of a geographic information system (GIS) and other information technology strategies. These barriers involve identification of oil development potential from existing wells, planning projects to efficiently avoid conflicts with other interests, and gaining state approvals for exploration and development projects. Each barrier is the result of either current labor-intensive methods or poorly accessible information. This project brings together three parts of the oil exploration, development, and permitting process to form the foundation for a more fully integrated information technology infrastructure for the State of Alaska. This web-based system will enable the public and other review participants to track permit status, submit and view comments, and obtain important project information online. By automating several functions of the current manual process, permit applications will be completed more quickly and accurately, and agencies will be able to complete reviews with fewer delays. The application will include an on-line diagnostic Coastal Project Questionnaire to determine the suite of permits required for a specific project. The application will also automatically create distribution lists based on the location and type of project, populate document templates for project review start-ups, public notices and findings, allow submission of e-comments, and post project status information on the Internet. Alaska has nearly one-quarter of the nation's supply of crude oil, at least five billion barrels of proven reserves. The American Association of Petroleum Geologists report that the 1995 National Assessment identified the North Slope as having 7.4 billion barrels of technically recoverable oil and over 63 trillion cubic feet of natural gas. From these reserves, Alaska produces roughly one-fifth of the nation's daily crude oil production, or approximately one million barrels per day from over 1,800 active wells. Currently, State of Alaska agencies use multiple, independent systems to identify, authenticate, and authorize customers for online transactions. Consumers of online state services may be required to manage multiple online ''profiles,'' and during a permit review process valuable time may be lost verifying identity or reconciling differences in applicant information when agency records disagree. The state's Information Technology Group is developing a shared applicant profile system that will provide an additional opportunity to demonstrate data sharing between agencies.

  1. Light yield of Kuraray SCSF-78MJ scintillating fibers for the Gluex barrel calorimeter

    SciTech Connect (OSTI)

    Beattie, T.D.; Fischer, A.P.; Krueger, S.T.; Lolos, G.J.; Papandreou, Z.; Plummer, E.L.; Semenov, A.Yu.; Semenova, I.A.; Sichello, L.M.; Teigro, L.A.; Smith, E S [JLAB

    2014-09-01T23:59:59.000Z

    Over three quarters of a million 1-mm-diameter 4-m-long Kuraray double-clad SCSF-78MJ (blue-green) scintillating fibers have been used in the construction of the GlueX electromagnetic barrel calorimeter for the Hall D experimental program at Jefferson Lab. The quality of a random sample of 4,750 of these fibers was evaluated by exciting the fibers at their mid point using a 90Sr source in order to determine the light yield using a calibrated vacuum photomultiplier as the photosensor. A novel methodology was developed to extract the number of photoelectrons detected for measurements where individual photoelectron peaks are not discernible. The average number of photoelectrons from this sample of fibers was 9.17±0.6 at a source distance of 200 cm from the PMT.

  2. OPTIMIZING CENTRIFUGAL BARREL POLISHING FOR MIRROR FINISH SRF CAVITY AND RF TESTS AT JEFFERSON LAB

    SciTech Connect (OSTI)

    Ari Palczewski, Rongli Geng, Hui Tian

    2012-07-01T23:59:59.000Z

    We performed Centrifugal Barrel Polishing (CBP) on a 1.3 GHz fine grain TESLA single cell cavity and 1.5 GHz fine grain CEBAF high gradient superconducting radio frequency (SRF) single cell cavity following a modified recipe originally developed at Fermi National Accelerator Lab (FNAL). We were able to obtain a mirror like surface similar to that obtained at FNAL, while reducing the number of CBP steps and total processing time. This paper will discuss the change in surface and subsequent cavity performance post CBP, after a 800 C bake (no pre-bake chemistry) and minimal controlled electro-polishing (10 micron). In addition to Q vs. E{sub ACC} thermometry mapping with preheating characteristics and optical inspection of the cavity after CBP will also be shown.

  3. Dosimetry assessments for the reactor pressure vessel and core barrel in UK PWR plant

    SciTech Connect (OSTI)

    Thornton, D.A.; Allen, D.A.; Huggon, A.P.; Picton, D.J.; Robinson, A.T.; Steadman, R.J. [Serco, Rutherford House, Quedgeley, Gloucester, Gl2 4NF (United Kingdom); Seren, T.; Lipponen, M.; Kekki, T. [VTT, Technical Research Centre of Finland, Otakaari 3 K, P.O. BOX 1000, Espoo, FI-02044 (Finland)

    2011-07-01T23:59:59.000Z

    Specimens for the Sizewell B reactor pressure vessel (RPV) inservice steels surveillance program are irradiated inside eight capsules located within the reactor pressure vessel and loaded prior to commissioning. The periodic removal of these capsules and testing of their contents provides material properties data at intervals during the lifetime of the plant. Neutron activation measurements and radiation transport calculations play an essential role in assessing the neutron exposure of the specimens and RPV. Following the most recent withdrawal, seven capsules have now been removed covering nine cycles of reactor operation. This paper summarizes the dosimetry results of the Sizewell B surveillance program obtained to date. In addition to an overview of the calculational methodology it includes a review of the measurements. Finally, it describes an extension of the methodology to provide dosimetry recommendations for the core barrel and briefly discusses the results that were obtained. (authors)

  4. Price of Michigan Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic Feet)ThousandMichigan

  5. Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousand Cubic Feet)

  6. Price of Sabine Pass, LA Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousand Cubic Feet)Cubic

  7. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars per(NominalCubic

  8. Price of Sumas, WA Liquefied Natural Gas Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)ThousandThousandDollars

  9. Major Oil Plays in Utah and Vicinity

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Douglas A. Sprinkel; Roger L. Bon; Hellmut H. Doelling

    2003-12-31T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Assoc

  10. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2003-01-01T23:59:59.000Z

    Utah oil fields have produced a total of 1.2 billion barrels (191 million m{sup 3}). However, the 15 million barrels (2.4 million m{sup 3}) of production in 2000 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the first quarter of the first project year (July 1 through September 30, 2002). This work included producing general descriptions of Utah's major petroleum provinces, gathering field data, and analyzing best practices in the Utah Wyoming thrust belt. Major Utah oil reservoirs and/or source rocks are found in Devonian through Permian, Jurassic, Cretaceous, and Tertiary rocks. Stratigraphic traps include carbonate buildups and fluvial-deltaic pinchouts, and structural traps include basement-involved and detached faulted anticlines. Best practices used in Utah's oil fields consist of waterflood, carbon-dioxide flood, gas-injection, and horizontal drilling programs. Nitrogen injection and horizontal drilling programs have been successfully employed to enhance oil production from the Jurassic Nugget Sandstone (the major thrust belt oil-producing reservoir) in Wyoming's Painter Reservoir and Ryckman Creek fields. At Painter Reservoir field a tertiary, miscible nitrogen-injection program is being conducted to raise the reservoir pressure to miscible conditions. Supplemented with water injection, the ultimate recovery will be 113 million bbls (18 million m{sup 3}) of oil (a 68 percent recovery factor over a 60-year period). The Nugget reservoir has significant heterogeneity due to both depositional facies and structural effects. These characteristics create ideal targets for horizontal wells and horizontal laterals drilled from existing vertical wells. Horizontal drilling programs were conducted in both Painter Reservoir and Ryckman Creek fields to encounter potential undrained compartments and increase the overall field recovery by 0.5 to 1.5 percent per horizontal wellbore. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation to the Wyoming State Geological Survey, and two publications. A project home page was set up on the Utah Geological Survey Internet web site.

  11. ,"West Virginia Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, andPrice (Dollars per Thousand Cubic

  12. Free Trade in Oil and Natural Gas, The Case for Lifting the Ban on U.S. Energy Exports

    E-Print Network [OSTI]

    Griffin, James M.; Gause, F. Gregory

    supplies at reasonable prices. Com- pared to higher international prices, they will not be at a competitive disadvantage. Will environmental issues be exacerbated? The environmental concerns associated with fracking, particularly those involving the dis..., and not with penaliz- ing domestically produced crude oils. Remem- ber that for each barrel not produced domes- tically, one will likely be imported from the Middle East. In sum, the technological revolution involving fracking and horizontal drilling once again has...

  13. Fact #841: October 6, 2014 Vehicles per Thousand People: U.S...

    Broader source: Energy.gov (indexed) [DOE]

    The graphs below show the number of motor vehicles per thousand people for select countries and regions. The data for the United States are displayed in the line which goes from...

  14. Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand CubicThousand

  15. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

  16. Environmental disaster or just a drop in the bucket: Texas scientists on the real effects of the Deewater Horizon oil spill

    E-Print Network [OSTI]

    Lee, Leslie

    2011-01-01T23:59:59.000Z

    that caused the leak. #22;ousands of barrels of oil leaked from the well each day until it was capped on July #23;#21;, #25;#24;#23;#24;. #22;e National Oceanic and Atmospheric Administration?s (NOAA) #28;nal total estimate, contested by BP for being too... of methane, creating huge plumes, McKinney said. Skimming the oil, using dispersants, and using bioremediation are all arti#28;cial processes for breaking down oil. Natural processes, such as photo-oxidation, physical breakdown from waves...

  17. Environmental disaster or just a drop in the bucket?: Texas scientists on the real effects of the Deepwater Horizon oil spill

    E-Print Network [OSTI]

    Lee, Leslie

    2011-01-01T23:59:59.000Z

    that caused the leak. #22;ousands of barrels of oil leaked from the well each day until it was capped on July #23;#21;, #25;#24;#23;#24;. #22;e National Oceanic and Atmospheric Administration?s (NOAA) #28;nal total estimate, contested by BP for being too... of methane, creating huge plumes, McKinney said. Skimming the oil, using dispersants, and using bioremediation are all arti#28;cial processes for breaking down oil. Natural processes, such as photo-oxidation, physical breakdown from waves...

  18. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  19. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31T23:59:59.000Z

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

  20. MAJOR OIL PLAYS IN UTAH AND VICINITY

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Craig D. Morgan; Kevin McClure; Grant C. Willis

    2003-09-01T23:59:59.000Z

    Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play; locations of major oil pipelines; descriptions of reservoir outcrop analogs; and identification and discussion of land use constraints. All play maps, reports, databases, and so forth, produced for the project will be published in interactive, menu-driven digital (web-based and compact disc) and hard-copy formats. This report covers research activities for the fourth quarter of the first project year (April 1 through June 30, 2003). This work included describing outcrop analogs to the Jurassic Nugget Sandstone and Pennsylvanian Paradox Formation, the major oil producers in the thrust belt and Paradox Basin, respectively. Production-scale outcrop analogs provide an excellent view, often in three dimensions, of reservoir-facies characteristics and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. The Nugget Sandstone was deposited in an extensive dune field that extended from Wyoming to Arizona. Outcrop analogs are found in the stratigraphically equivalent Navajo Sandstone of southern Utah which displays large-scale dunal cross-strata with excellent reservoir properties and interdunal features such as oases, wadi, and playa lithofacies with poor reservoir properties. Hydrocarbons in the Paradox Formation are stratigraphically trapped in carbonate buildups (or phylloid-algal mounds). Similar carbonate buildups are exposed in the Paradox along the San Juan River of southeastern Utah. Reservoir-quality porosity may develop in the types of facies associated with buildups such as troughs, detrital wedges, and fans, identified from these outcrops. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. During this quarter, technology transfer activities consisted of exhibiting the project plans, objectives, and products at a booth at the 2003 annual convention of the American Association of Petroleum Geologists. The project home page was updated on the Utah Geological Survey Internet web site.

  1. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  2. Heavy oil reservoirs recoverable by thermal technology. Annual report

    SciTech Connect (OSTI)

    Kujawa, P.

    1981-02-01T23:59:59.000Z

    The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

  3. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (Million Barrels)"

  4. New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) LiquidsCoalbedDecade Year-0Year

  5. New York Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 1967-2010 ImportsWellhead

  6. North Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 2013A4.Decade Year-0Year

  7. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

    2013-03-15T23:59:59.000Z

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  8. Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

  9. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  10. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand Cubic Feet)Cubic

  11. Price of Liquefied U.S. Natural Gas Exports to Russia (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand Cubic Feet)CubicCubic

  12. Price of Liquefied U.S. Natural Gas Re-Exports (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) OmanThousand

  13. Price of Maine Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic Feet)

  14. Price of Montana Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand Cubic

  15. Price of New Hampshire Natural Gas Exports (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) New Hampshire

  16. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) New

  17. Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet) NewCubic

  18. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet)(Dollars perCubic

  19. Price of Port Huron, MI Liquefied Natural Gas Exports (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet)Thousand CubicFeet)(Dollars

  20. Price of U.S. Liquefied Natural Gas Imports From Peru (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper Thousand

  1. Price of Washington Natural Gas Exports (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year JanThousand Cubic

  2. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)Thousand CubicCubic Feet)

  3. Romas, TX Natural Gas Pipeline Exports (Price) Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)Thousand CubicCubic Feet)Cubic

  4. Sabine Pass, LA Liquefied Natural Gas Exports Price (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet)ThousandKorea LiquefiedCubicCubic

  5. Price of Cove Point, MD Natural Gas LNG Total Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousand CubicThousandCubic Feet)

  6. A blending problem (Taha, Example 2.3-7, almost) An oil refinery has three stages of production: a distillation tower, which

    E-Print Network [OSTI]

    Galvin, David

    : a distillation tower, which takes in crude oil, up to a maximum of 650,000 barrels per day (bbl/day) and produces that maximizes profit. Note: Taha's Example 2.3-7 has distillation tower capacity 1,500,000 bbl/day, and is otherwise the same. 1 #12;Solution Let x1 be daily input to distillation tower Constraint: 0 x1 650000

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    over time even if the oil market were perfectly competitive.a big role in world oil markets, that era is long past.and re?ning oil and delivering it to the market. We could

  8. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    appeared in the world oil market in the last fifteen years.have on the world oil markets and international relationsthe stability of the oil markets. 11 This literature,

  9. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  10. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),the faster its growth in oil demand over the last half ofthe income elasticity of oil demand to fall signi?cantly.

  11. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  12. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  14. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  18. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  20. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01T23:59:59.000Z

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  1. Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003

    SciTech Connect (OSTI)

    James E. Francfort; Larry Zirker

    2003-11-01T23:59:59.000Z

    This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 259,398 test miles. This represents an avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.

  2. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Movements of Crude Oil and Petroleum Products by Pipeline Between PAD Districts, 2005 (Thousand Barrels) 2 3 1 3 4 1 2 Crude Oil 0 4,932 2,457 13,335 14,544 2,750 674,384 Petroleum...

  3. Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muoz Torres, J.1

    E-Print Network [OSTI]

    Texas at Austin, University of

    , the Eagle Ford Shale (EFS) play has had a remarkable development in natural gas and oil production. EFSEG39 Production patterns in Eagle Ford Shale (Decline Curve Analysis) Muñoz Torres, J.1 javier (bcf) of natural gas and 8,049 thousand barrels of oil. Up to 2020, it is expected that natural gas

  4. Search thousands of travel therapy destinations at: http://www.advanced-medical.net

    E-Print Network [OSTI]

    Weber, David J.

    Search thousands of travel therapy destinations at: http://www.advanced-medical.net Why do new grads travel with Advanced Medical? Mentorship: With accomplished mentors, new grad friendly facilities, and robust clinical support, trust Advanced Medical to take your professional growth seriously. Advanced

  5. PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors

    E-Print Network [OSTI]

    PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density. To understand the electronic structures of such systems and the corresponding carrier dynamics is essential

  6. Dams have played an important role in human development throughout the world for thousands

    E-Print Network [OSTI]

    Dams have played an important role in human development throughout the world for thousands of years dams (>15 m in height) and an estimated 800 000 small dams had been built worldwide (WCD 2000 than 22 000 large dams (but only 22 before 1949), China is the largest dam-building country; by way

  7. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  8. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    historical data for claiming to be able to predict oil pricehistorical data. The second is to look at the predictions of economic theory as to how oil prices

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  10. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  11. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  12. Boomtown blues: a community history of oil shale booms in the Colorado River Valley

    SciTech Connect (OSTI)

    Gulliford, A.J.

    1986-01-01T23:59:59.000Z

    The routes of early surveyors and explorers and the mining and agricultural history of the valley are examined in detail as are the ethnic origins of family networks that emerged over generations and were affected by the first oil shale boom between 1915-1925 when major oil companies acquired ranchland, water rights, and oil-shale claims in Garfield County, Colorado. The first boom faded and community equilibrium and solidarity were regained during the depression. By the mid-1970s, major national and international forces again focused on Garfield County and its three trillion barrels of oil locked in shale. President Carter's push for energy self-sufficiency as the moral equivalent of war, and loans made by the synthetic Fuels Corporation for oil shale development, came into direct conflict with national environmental groups and federal environmental laws. Local ranching communities became urbanized boomtowns, especially after Exxon, USA embarked on the $5 billion dollar Colony Oil Shale Project. Less than two years later, on May 2, 1982, Exxon announced the immediate closure of Colony and threw 2100 people out of work and eliminated $85 million in annual payroll from western Colorado. Social and psychological community effects of the oil shale boom and bust are vividly chronicled here.

  13. The social costs to the US of monopolization of the world oil market, 1972--1991

    SciTech Connect (OSTI)

    Greene, D.L.; Leiby, P.N.

    1993-03-01T23:59:59.000Z

    The partial monopolization of the world oil market by the OPEC cartel has produced significant economic costs to the economies of the world. This paper reports estimates of the costs of monopolization of oil to the US over the period 1972--1991. Two fundamental assumptions of the analysis are, (1) that OPEC has acted as a monopoly, albeit with limited control, knowledge, and ability to act and, (2) that the US and other consuming nations could, through collective (social) action affect the cartel's ability to act as a monopoly. We measure total costs by comparing actual costs for the 1972--1991 period to a hypothetical more competitive'' world oil market scenario. By measuring past costs we avoid the enormous uncertainties about the future course of the world oil market and leave to the reader's judgment the issue of how much the future will be like the past. We note that total cost numbers cannot be used to determine the value of reducing US oil use by one barrel. They are useful for describing the overall size of the petroleum problem and are one important factor in deciding how much effort should be devoted to solving it. Monopoly pricing of oil transfers wealth from US oil consumers to foreign oil producers and, by increasing theeconomic scarcity of oil, reduces the economy's potential to produce. The actions of the OPEC cartel have also produced oil price shocks, both upward and downward, that generate additional costs because of the economy's inherent inability to adjust quickly to a large change in energy prices. Estimated total costs to the United States from these three sources for the 1972--1991 period are put at $4.1 trillion in 1990$($1.2 T wealth transfer, $0.8 T macroeconomic adjustment costs, $2.1 T potential GNP losses). The cost of the US's primary oil supply contingency program is small ($10 B) by comparison.

  14. The social costs to the US of monopolization of the world oil market, 1972--1991

    SciTech Connect (OSTI)

    Greene, D.L.; Leiby, P.N.

    1993-03-01T23:59:59.000Z

    The partial monopolization of the world oil market by the OPEC cartel has produced significant economic costs to the economies of the world. This paper reports estimates of the costs of monopolization of oil to the US over the period 1972--1991. Two fundamental assumptions of the analysis are, (1) that OPEC has acted as a monopoly, albeit with limited control, knowledge, and ability to act and, (2) that the US and other consuming nations could, through collective (social) action affect the cartel`s ability to act as a monopoly. We measure total costs by comparing actual costs for the 1972--1991 period to a hypothetical ``more competitive`` world oil market scenario. By measuring past costs we avoid the enormous uncertainties about the future course of the world oil market and leave to the reader`s judgment the issue of how much the future will be like the past. We note that total cost numbers cannot be used to determine the value of reducing US oil use by one barrel. They are useful for describing the overall size of the petroleum problem and are one important factor in deciding how much effort should be devoted to solving it. Monopoly pricing of oil transfers wealth from US oil consumers to foreign oil producers and, by increasing theeconomic scarcity of oil, reduces the economy`s potential to produce. The actions of the OPEC cartel have also produced oil price shocks, both upward and downward, that generate additional costs because of the economy`s inherent inability to adjust quickly to a large change in energy prices. Estimated total costs to the United States from these three sources for the 1972--1991 period are put at $4.1 trillion in 1990$($1.2 T wealth transfer, $0.8 T macroeconomic adjustment costs, $2.1 T potential GNP losses). The cost of the US`s primary oil supply contingency program is small ($10 B) by comparison.

  15. Apparatus and method for quantitative assay of samples of transuranic waste contained in barrels in the presence of matrix material

    DOE Patents [OSTI]

    Caldwell, J.T.; Herrera, G.C.; Hastings, R.D.; Shunk, E.R.; Kunz, W.E.

    1987-08-28T23:59:59.000Z

    Apparatus and method for performing corrections for matrix material effects on the neutron measurements generated from analysis of transuranic waste drums using the differential-dieaway technique. By measuring the absorption index and the moderator index for a particular drum, correction factors can be determined for the effects of matrix materials on the ''observed'' quantity of fissile and fertile material present therein in order to determine the actual assays thereof. A barrel flux monitor is introduced into the measurement chamber to accomplish these measurements as a new contribution to the differential-dieaway technology. 9 figs.

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  17. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  18. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  19. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  20. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  1. ,"California--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry NaturalCrude OilLiquids

  2. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    SciTech Connect (OSTI)

    Abdullin, S.; /Moscow, ITEP; Abramov, V.; /Serpukhov, IHEP; Acharya, B.; /Tata Inst.; Adam, N.; /Princeton U.; Adams, M.; /Illinois U., Chicago; Adzic, P.; /Belgrade U.; Akchurin, N.; /Texas Tech.; Akgun, U.; Albayrak, E.; /Iowa U.; Alemany-Fernandez, R.; Almeida, N.; /Lisbon, LIFEP /Democritos Nucl. Res. Ctr. /Virginia U. /Iowa State U.

    2009-01-01T23:59:59.000Z

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7 {+-} 1.6% and the constant term is 7.4 {+-} 0.8%. The corrected mean response remains constant within 1.3% rms.

  3. Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retort 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.

  4. ,"Virginia Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and NaturalWellhead Price (Dollars per Thousand

  5. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousandDollarsperFeet) Decade

  6. Price of Freeport, TX Natural Gas LNG Imports (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYearperThousandDollarsperFeet)

  7. Price of Highgate Springs, VT Natural Gas LNG Imports (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(Dollars per Thousand CubicDollars per

  8. New York Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet)(No intransit

  9. New York Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousand CubicFeet)perFeet)(No

  10. New York Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (Million CubicYear Jan Feb

  11. Nogales, AZ Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - -

  12. Nogales, AZ Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 - -Cubic

  13. Nogales, AZ Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawals (MillionNine8 2.415 -

  14. North Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthrough 1996) inThousandWithdrawalsElements)TotalDecade

  15. ,"Alabama Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPrice (Dollars per Thousand

  16. ,"Arizona Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead Price (Dollars per Thousand Cubic

  17. ,"Arkansas Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellhead PricePrice (Dollars per Thousand

  18. ,"Montana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPrice (Dollars per Thousand

  19. Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

  20. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29T23:59:59.000Z

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  1. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  2. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  3. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal drilling, as well as enhanced oil recovery...

  4. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal continuity, as well as enhanced oil recovery...

  5. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  6. A Bootstrap Approach to Computing Uncertainty in Inferred Oil and Gas Reserve Estimates

    SciTech Connect (OSTI)

    Attanasi, Emil D. [US Geological Survey MS 956 (United States)], E-mail: attanasi@usgs.gov; Coburn, Timothy C. [Abilene Christian University, Department of Management Science (United States)

    2004-03-15T23:59:59.000Z

    This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis.

  7. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  8. Proof-of-Concept Oil Shale Facility Environmental Analysis Program

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI's archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970's and early 1980's. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

  9. Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994

    SciTech Connect (OSTI)

    McDonald, W.J.

    1993-06-03T23:59:59.000Z

    Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

  10. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  11. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in Frio Fluvial-Deltaic Sandstone Reservoirs of South Texas

    SciTech Connect (OSTI)

    McRae, L.E.; Holtz, M.H.; Knox, P.R.

    1995-07-01T23:59:59.000Z

    The Frio Fluvial-Deltaic Sandstone Play of South Texas is one example of a mature play where reservoirs are being abandoned at high rates, potentially leaving behind significant unrecovered resources in untapped and incompletely drained reservoirs. Nearly 1 billion barrels of oil have been produced from Frio reservoirs since the 1940`s, yet more than 1.6 BSTB of unrecovered mobile oil is estimated to remain in the play. Frio reservoirs of the South Texas Gulf Coast are being studied to better characterize interwell stratigraphic heterogeneity in fluvial-deltaic depositional systems and determine controls on locations and volumes of unrecovered oil. Engineering data from fields throughout the play trend were evaluated to characterize variability exhibited by these heterogeneous reservoirs and were used as the basis for resource calculations to demonstrate a large additional oil potential remaining within the play. Study areas within two separate fields have been selected in which to apply advanced reservoir characterization techniques. Stratigraphic log correlations, reservoir mapping, core analyses, and evaluation of production data from each field study area have been used to characterize reservoir variability present within a single field. Differences in sandstone depositional styles and production behavior were assessed to identify zones with significant stratigraphic heterogeneity and a high potential for containing unproduced oil. Detailed studies of selected reservoir zones within these two fields are currently in progress.

  12. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  13. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  14. Fluidized-bed retorting of Colorado oil shale: Topical report. [None

    SciTech Connect (OSTI)

    Albulescu, P.; Mazzella, G.

    1987-06-01T23:59:59.000Z

    In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

  15. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  16. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  17. Oil shale mining cost analysis. Volume I. Surface retorting process. Final report

    SciTech Connect (OSTI)

    Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

    1981-01-01T23:59:59.000Z

    An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

  18. Shale oil demetallization process

    SciTech Connect (OSTI)

    Silverman, M. A.

    1985-08-13T23:59:59.000Z

    Trace metals, particularly As, Fe and Ni, are removed from hydrocarbonaceous oils, particularly shale oil by contacting the shale oil with quadrolobe alumina with or without a processing gas such as hydrogen or nitrogen at 500/sup 0/ F. to 800/sup 0/ F. at 250 to 750 psig and LHSV of 0.4 to 3.0 to deposit a portion of said trace metal onto said alumina and recover an oil product having substantially reduced amounts of trace metal.

  19. Oil Peak or Panic?

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

  20. Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM

    E-Print Network [OSTI]

    Lovley, Derek

    Microbial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM Microbial Fuel Cells Posted in Alternative Energy by admin. The other end of solar energy? As the search for fuel cells goes on, many environmentalists give all their attention to solar energy

  1. Iowa Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0 Year-1 (Million

  2. Iowa Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0Decade Year-0

  3. Kansas Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear JanDecade Year-0

  4. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268

  5. Kenai, AK Liquefied Natural Gas Exports Price (Dollars per Thousand Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYearDecade256,268Feet) Year

  6. Missouri Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)SameThousandYear Jan

  7. Price of Liquefied U.S. Natural Gas Exports by Truck (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (Dollars perCubic Feet) Decade

  8. Price of Liquefied U.S. Natural Gas Exports by Vessel (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (Dollars perCubicCubic Feet)

  9. Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet) Decade

  10. Price of Liquefied U.S. Natural Gas Exports to Brazil (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)

  11. Price of Liquefied U.S. Natural Gas Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)Cubic

  12. Price of Liquefied U.S. Natural Gas Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic Feet)CubicCubic

  13. Price of Liquefied U.S. Natural Gas Exports to Chile (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubic

  14. Price of Liquefied U.S. Natural Gas Exports to Chile (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet) Year

  15. Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet)

  16. Price of Liquefied U.S. Natural Gas Exports to China (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic Feet)Cubic

  17. Price of Liquefied U.S. Natural Gas Exports to India (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubic

  18. Price of Liquefied U.S. Natural Gas Exports to India (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubic Feet)

  19. Price of Liquefied U.S. Natural Gas Exports to Japan (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubic

  20. Price of Liquefied U.S. Natural Gas Exports to Japan (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubicCubic

  1. Price of Liquefied U.S. Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman (DollarsCubicCubicCubicCubicCubic

  2. Price of Liquefied U.S. Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic Feet) Oman

  3. Price of U.S. Liquefied Natural Gas Exports to Spain (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand Cubic

  4. Price of U.S. Liquefied Natural Gas Exports to Spain (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Feb Mar Apr May Jun Jul

  5. Price of U.S. Liquefied Natural Gas Imports From Oman (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Feb

  6. Price of U.S. Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper(DollarsCubic

  7. Price of U.S. Natural Gas Pipeline Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Year Jan Febper(DollarsCubicCubic

  8. Rhode Island Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663 3,430 4,062

  9. Rhode Island Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubic Feet) Yeara3,663(Million

  10. San Diego, CA Liquefied Natural Gas Exports to Mexico (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million Cubic(Million Cubic3

  11. Sherwood, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116 3,110 5,336Year Jan

  12. Sherwood, ND Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndia (Million2,116 3,110 5,336Year JanCubic

  13. South Carolina Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet) (MillionFeet)Year Jan

  14. South Dakota Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6 0.6 0.7Feet)Decade

  15. South Dakota Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet) Vehicle Fuel Price

  16. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3 0.3

  17. St. Clair, MI Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3 0.3Cubic Feet)

  18. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530Cubic

  19. Sumas, WA Natural Gas Pipeline Exports to Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousand CubicCubicIndiaFeet)6Feet)3Year12,530CubicCubic

  20. Sumas, WA Natural Gas Pipeline Imports From Canada (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) Decade Year-0 Year-1 Year-2 Year-3