Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Buckling of oil storage tanks in SPPL tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used as the basis of the code for both tip-over and bucking have little resemblance to the actual tank behavior.

Shih, C.F.; Babcock, C.D.

1987-05-01T23:59:59.000Z

2

Buckling of oil storage tanks in sppl tank farm during the 1979 Imperial Valley earthquake  

SciTech Connect

An oil storage tank that suffered damage during the 1979 Imperial Valley earthquake is studied using a laboratory model. The tank is unanchored and includes a floating roof. The tank is subjected to a single horizontal axis base excitation. Buckling is studied under both harmonic and simulated earthquake base motion. The model buckling results are in reasonable agreement with the field observations. It was also found that the floating roof has no effect on the buckling behavior. Comparison with the API design provisions shows that the empirical model used for both tip-over and buckling have little resemblance to the actual tank behavior

Shih, C.F.; Babcock, C.D.

1984-06-01T23:59:59.000Z

3

Maintenance Scheduling of Oil Storage Tanks using Tabu-based Genetic Algorithm *  

E-Print Network (OSTI)

Maintenance Scheduling of Oil Storage Tanks using Tabu-based Genetic Algorithm * Sheng-Tun Li1 the distribution channel of products, which consists of gas stations, pipelines, and storage tanks. Due days or 50,000 kiloliters. Therefore, they unavoidably have to rent tanks from the domestic oil

Chen, Shu-Ching

4

Onboard Storage Tank Workshop  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

5

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

6

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

7

Enhanced Integrity LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years close attention has been given to increasing the integrity of LNG storage tanks. The M.W. Kellogg Company is a participant in four major LNG projects that incorporate enhanced integrity LNG storag...

W. S. Jacobs; S. E. Handman

1986-01-01T23:59:59.000Z

8

Frangible roof joint behavior of cylindrical oil storage tanks designed to API 650 rules  

SciTech Connect

This paper presents the results of an investigation into the frangible joint behavior of tanks designed to API 650 rules. In such tanks, the roof-to-shell joint is intended to fail in the event of overpressurization, venting the tank and containing any remaining fluid. The reasoning behind present API design formulas is reviewed. Combustion analyses, structural analyses, and the results of testing are presented. Results show that higher pressures are reached before frangible joint failure than predicted by the present API 650 calculation. One consequence is that (for empty tanks) uplift of the bottom can be expected to occur more frequently than predicted using API 650. However, uplift does not necessarily mean bottom failure. Instead, the relative strength of the shell-to-bottom and roof-to-shell joints will determine failure. This ratio is larger for larger tanks. Recommendations are made as to possible changes in the design approach of API 650.

Lu, Z.; Swenson, D.V.; Fenton, D.L. [Kansas State Univ., Manhattan, KS (United States). Mechanical Engineering Dept.

1996-08-01T23:59:59.000Z

9

Investigating leaking underground storage tanks  

E-Print Network (OSTI)

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

10

Underground Storage Tanks: New Fuels and Compatibility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C桭ostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

11

Tips For Residential Heating Oil Tank Owners  

E-Print Network (OSTI)

路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 路 Tips For Residential Heating Oil Tank Owners Source: DEP Fact Sheet Residential heating oil tanks are used to store fuel for furnaces or boilers to heat homes. The tanks can either be aboveground tanks, normally located in basements or utility rooms

Maroncelli, Mark

12

Above Ground Storage Tank (AST) Inspection Form  

E-Print Network (OSTI)

Above Ground Storage Tank (AST) Inspection Form Petroleum Bulk Storage Form Facility Name: ______________________ Tank No:_______________ Date:_____________ Inspection Parameter Result Comments/Corrective Actions 1. Is there leaking in the interstitial space (not DRY)? YES/NO/NA 2. Tank surface shows signs of leakage? YES/NO/NA 3

Pawlowski, Wojtek

13

Storage Tanks (Arkansas) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Tanks (Arkansas) Storage Tanks (Arkansas) Storage Tanks (Arkansas) < Back Eligibility Commercial Construction Fuel Distributor Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Storage Tanks regulations is a set of rules and permit requirements mandated by the Arkansas Pollution and Ecology Commission in order to protect the public health and the lands and the waters of the State of Arkansas. They are promulgated pursuant to Arkansas Code Annotated 8-7-801 and the Petroleum Storage Trust Fund Act 8-7-901. It covers all storage tanks, above (AST) and underground (UST). Most importantly these regulations establish that all owners and operators of storage tanks must

14

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

15

Comparative safety analysis of LNG storage tanks  

SciTech Connect

LNG storage tank design and response to selected release scenarios were reviewed. The selection of the scenarios was based on an investigation of potential hazards as cited in the literature. A review of the structure of specific LNG storage facilities is given. Scenarios initially addressed included those that most likely emerge from the tank facility itself: conditions of overfill and overflow as related to liquid LNG content levels; over/underpressurization at respective tank vapor pressure boundaries; subsidence of bearing soil below tank foundations; and crack propagation in tank walls due to possible exposure of structural material to cryogenic temperatures. Additional scenarios addressed include those that result from external events: tornado induced winds and pressure drops; exterior tank missile impact with tornado winds and rotating machinery being the investigated mode of generation; thermal response due to adjacent fire conditions; and tank response due to intense seismic activity. Applicability of each scenario depended heavily on the specific tank configurations and material types selected. (PSB)

Fecht, B.A.; Gates, T.E.; Nelson, K.O.; Marr, G.D.

1982-07-01T23:59:59.000Z

16

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Onboard Storage Tank Workshop to someone by E-mail Share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Facebook Tweet about Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Twitter Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Google Bookmark Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Delicious Rank Fuel Cell Technologies Office: Onboard Storage Tank Workshop on Digg Find More places to share Fuel Cell Technologies Office: Onboard Storage Tank Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

17

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

18

Bonfire Tests of High Pressure Hydrogen Storage Tanks | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonfire Tests of High Pressure Hydrogen Storage Tanks Bonfire Tests of High Pressure Hydrogen Storage Tanks These slides were presented at the International Hydrogen Fuel and...

19

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive...

20

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for...

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

22

Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promulgation of Promulgation of Renewable Fuel Storage Tank Regulations to someone by E-mail Share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Facebook Tweet about Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Twitter Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Google Bookmark Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Delicious Rank Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on Digg Find More places to share Alternative Fuels Data Center: Promulgation of Renewable Fuel Storage Tank Regulations on AddThis.com... More in this section... Federal

23

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

24

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network (OSTI)

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

25

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network (OSTI)

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

26

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

27

NMAC 20.5 Petroleum Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

Petroleum Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 20.5 Petroleum Storage TanksLegal Abstract...

28

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

29

E-Print Network 3.0 - aboveground storage tanks Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: aboveground storage tanks...

30

Hydrogen Storage "Think Tank" Report  

Energy.gov (U.S. Department of Energy (DOE))

This report is a compilation of information exchanged at a forum on March 14, 2003 in Washington, DC. The forum was assembled for innovative and non-conventional brainstorming on this issue of hydrogen storage technologies.

31

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

32

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES  

E-Print Network (OSTI)

PRESSURIZATION OF FIXED ROOF STORAGE TANKS DUE TO EXTERNAL FIRES Fabien FouiHen, INERIS, Parc. Reflections led on this accident have pushed to consider the phenomenon of tank pressurization as a potential initiating event of the fire ball observed. In concrete terms, when a fixed roof storage tank is surrounded

Paris-Sud XI, Universit茅 de

33

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

34

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

35

Idaho DEQ Storage Tanks Webpage | Open Energy Information  

Open Energy Info (EERE)

Tanks Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho DEQ Storage Tanks Webpage Abstract This webpage provides an overview of the...

36

NMED Petroleum Storage Tank Bureau webpage | Open Energy Information  

Open Energy Info (EERE)

Tank Bureau webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: NMED Petroleum Storage Tank Bureau webpage Abstract This is the website for the...

37

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

38

Bonfire Tests of High Pressure Hydrogen Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bonfire Tests of High Pressure Hydrogen Storage Tanks International Hydrogen Fuel and Pressure Vessel Forum 2010Beijing, P.R. China September 27, 2010 Bonfire Tests of High...

39

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

40

Solar radiation effects on evaporative losses of floating roof storage tanks  

Science Journals Connector (OSTI)

There are 40 storage tanks in the Khark Island for storing crude oil. Considering the hot summers of the island, light hydrocarbons vaporise and vented to the atmosphere. This process causes environmental pollution and also affects the quality of the crude oil besides the economic detriment. Therefore, crude oil evaporation loss associated with the storage tank is an important issue which should be carefully investigated to identify the potential means of its reduction. The aim of the present work is to determine the evaporative losses from external floating storage tanks and to study the absorptivity effects of their exterior surface paint on the losses due to the solar irradiation. The API standards along with the thermal analysis of the tank have been employed to evaluate the tank temperature variations and the evaporative losses of a typical tank based on the actual ambient conditions of the Khark Island. The results show that the paints with low absorptivity can reduce the evaporative losses significantly. Furthermore, experimental data has been provided to validate the calculated tank temperature variations, and reasonable agreements have been found. [Received: April 10, 2010; Accepted: May 31, 2010

Mahmood Farzaneh-Gord; Amin Nabati; Hamid Niazmand

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

42

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

43

Fuel Cell Technologies Office: Onboard Storage Tank Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Onboard Storage Tank Workshop Onboard Storage Tank Workshop The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned about research and development (R&D) needs; regulations, codes and standards (RCS); and a path forward to enable the successful deployment of hydrogen storage tanks in early market fuel cell applications. The workshop also included initial follow up to the DOE and Department of Transportation (DOT) International Workshop on Compressed Natural Gas and Hydrogen Fuels held on December 10-11, 2009. Here you will find information about Workshop proceedings including all presentations. Agenda and Notes The following agenda and notes provide summary information about the workshop.

44

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

45

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

46

Underground storage tank 511-D1U1 closure plan  

SciTech Connect

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

47

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NM Underground Storage Tank RegistrationLegal Published NA Year Signed or Took Effect 2012 Legal Citation...

48

ARM 17-56 - Underground Storage Tanks Petroleum and Chemical...  

Open Energy Info (EERE)

Underground Storage Tanks Petroleum and Chemical Substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-56 -...

49

Robotic Inspection System for Bulk Liquid Storage Tanks  

E-Print Network (OSTI)

for aboveground storage tanks (ASTs) requires: drainage of the product; cleaning of the vessel with water or solvents; physical removal, collection and containment of petroleum and chemical waste residues, including the waste streams created by the cleaning...

Hartsell, D. R.; Hakes, K. J.

50

30 TAC, part 1, chapter 334 Underground storage tanks general...  

Open Energy Info (EERE)

Underground storage tanks general provisions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC, part 1, chapter 334...

51

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

Report on technical assessment of cyro-compressed hydrogen storage tank systems for automotive applications.

52

A model for a variable-volume, density-stratified, liquid desiccant storage tank.  

E-Print Network (OSTI)

??A stratified, single-vessel liquid desiccant storage tank is an attractive option for the seasonal storage of solar energy. Maintaining stratified storage preserves the chemical energy (more)

Mallinak, Jason

2012-01-01T23:59:59.000Z

53

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

54

Stress evaluation of the primary tank of a double-shell underground storage tank facility  

SciTech Connect

A facility called the Multi-Function Waste Tank Facility (MWTF) is being designed at the Department of Energy`s Hanford site. The MWTF is expected to be completed in 1998 and will consist of six underground double-shell waste storage tanks and associated systems. These tanks will provide safe and environmentally acceptable storage capacity to handle waste generated during single-shell and double-shell tank safety mitigation and remediation activities. This paper summarizes the analysis and qualification of the primary tank structure of the MWTF, as performed by ICF Kaiser Hanford during the latter phase of Title 1 (Preliminary) design. Both computer finite element analysis (FEA) and hand calculations methods based on the so-called Tank Seismic Experts Panel (TSEP) Guidelines were used to perform the analysis and evaluation. Based on the evaluations summarized in this paper, it is concluded that the primary tank structure of the MWTF satisfies the project design requirements. In addition, the hand calculations performed using the methodologies provided in the TSEP Guidelines demonstrate that, except for slosh height, the capacities exceed the demand. The design accounts for the adverse effect of the excessive slosh height demand, i.e., inadequate freeboard, by increasing the hydrodynamic wall and roof pressures appropriately, and designing the tank for such increased pressures.

Atalay, M.B. [ICF Kaiser Engineers, Inc., Oakland, CA (United States); Stine, M.D. [ICF Kaiser Hanford Co., Richland, WA (United States); Farnworth, S.K. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-01T23:59:59.000Z

55

Performance comparison of thermal energy storage oils for solar cookers during charging  

Science Journals Connector (OSTI)

Abstract Charging experiments to evaluate the thermal performance of three thermal energy storage oils for solar cookers are presented. An experimental setup using an insulated 20燣 storage tank is used to perform the experiments. The three thermal oils evaluated are Sunflower Oil, Shell Thermia C and Shell Thermia B. Energy and exergy based thermal performance parameters are evaluated. A new parameter, the exergy factor, is proposed which evaluates the ratio of the exergy content to the energy content. Sunflower Oil performs better than the other thermal oils under high power charging. Thermal performances of the oils are comparable under low power charging.

Ashmore Mawire; Abigail Phori; Simeon Taole

2014-01-01T23:59:59.000Z

56

RCRA closure plan for underground storage tank 105-C  

SciTech Connect

A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste`s pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement.

Miles, W.C. Jr.

1990-10-01T23:59:59.000Z

57

Soil load above Hanford waste storage tanks (2 volumes)  

SciTech Connect

This document is a compilation of work performed as part of the Dome Load Control Project in 1994. Section 2 contains the calculations of the weight of the soil over the tank dome for each of the 75-feet-diameter waste-storage tanks located at the Hanford Site. The chosen soil specific weight and soil depth measured at the apex of the dome crown are the same as those used in the primary analysis that qualified the design. Section 3 provides reference dimensions for each of the tank farm sites. The reference dimensions spatially orient the tanks and provide an outer diameter for each tank. Section 4 summarizes the available soil surface elevation data. It also provides examples of the calculations performed to establish the present soil elevation estimates. The survey data and other data sources from which the elevation data has been obtained are printed separately in Volume 2 of this Supporting Document. Section 5 contains tables that provide an overall summary of the present status of dome loads. Tables summarizing the load state corresponding to the soil depth and soil specific weight for the original qualification analysis, the gravity load requalification for soil depth and soil specific weight greater than the expected actual values, and a best estimate condition of soil depth and specific weight are presented for the Double-Shell Tanks. For the Single-Shell Tanks, only the original qualification analysis is available; thus, the tabulated results are for this case only. Section 6 provides a brief overview of past analysis and testing results that given an indication of the load capacity of the waste storage tanks that corresponds to a condition approaching ultimate failure of the tank. 31 refs.

Pianka, E.W. [Advent Engineering Services, Inc., San Ramon, CA (United States)

1995-01-25T23:59:59.000Z

58

Optimized LNG Storage Tanks for Fleet-Size Refueling Stations with Local LNG Liquefiers  

Science Journals Connector (OSTI)

The capacity of a liquid natural gas (LNG) storage tank in a LNG fleet-size refueling station is determined in ... . These considerations drive the selection of the LNG storage tank size upwards. On the other han...

J. A. Barclay; A. J. Corless; E. H. Nelson

1998-01-01T23:59:59.000Z

59

E-Print Network 3.0 - argon storage tanks Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

storage tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: argon storage tanks Page: << < 1 2 3 4 5 > >> 1 Large and Small (Far and Near) Liquid...

60

7 C.C.R. 1101-14 - Underground Storage Tanks and Aboveground...  

Open Energy Info (EERE)

1101-14 - Underground Storage Tanks and Aboveground Storage tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 7 C.C.R....

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

OAR 340-150 - DEQ Underground Storage Tank Rules | Open Energy...  

Open Energy Info (EERE)

Storage Tank RulesLegal Abstract Provide for the regulation of underground storage tanks. Published NA Year Signed or Took Effect 2003 Legal Citation OAR 340-150 (1990) DOI...

62

Rollover Test in LNG Storage Tank and Simulation Model  

Science Journals Connector (OSTI)

As is widely known, in 1971 an accident occurred at the LNG terminal in La Spezia1, Italy, in which a sharp increase in the quantity of boil off gas was observed in a storage tank. This phenomenon was called roll...

Y. Sugawara; A. Kubota; S. Muraki

1984-01-01T23:59:59.000Z

63

Modeling and simulation of a high pressure hydrogen storage tank with Dynamic Wall.  

E-Print Network (OSTI)

??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is (more)

Cumalioglu, Ilgaz

2005-01-01T23:59:59.000Z

64

Modeling and simulation of a high pressure hydrogen storage tank with dynamic wall.  

E-Print Network (OSTI)

??Hydrogen storage is one of the divisions of hydrogen powered vehicles technology. To increase performances of high pressure hydrogen storage tanks, a multilayered design is (more)

Cumalioglu, Ilgaz

2005-01-01T23:59:59.000Z

65

Thermal buckling of metal oil tanks subject to an adjacent fire  

E-Print Network (OSTI)

Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

Liu, Ying

2011-01-01T23:59:59.000Z

66

Thermal buckling of metal oil tanks subject to an adjacent fire  

E-Print Network (OSTI)

Fire is one of the main hazards associated with storage tanks containing flammable liquids. These tanks are usually closely spaced and in large groups, so where a petroleum fire occurs, adjacent tanks are susceptible to ...

Liu, Ying

2011-11-22T23:59:59.000Z

67

Integrated heat exchanger design for a cryogenic storage tank  

SciTech Connect

Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth, from Earth, or in space are envisioned for automobiles, aircraft, rockets, and spacecraft. These advancements rely on practical ways of storage, transfer, and handling of liquid hydrogen. Focusing on storage, an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125,000-liter capacity horizontal cylindrical tank, with vacuum jacket and multilayer insulation, and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening, complete modularity, pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification, and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach, problem solving, and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

Fesmire, J. E.; Bonner, T.; Oliveira, J. M.; Johnson, W. L.; Notardonato, W. U. [NASA Kennedy Space Center, Cryogenics Test Laboratory, NE-F6, KSC, FL 32899 (United States); Tomsik, T. M. [NASA Glenn Research Center, 21000 Brookpark Road, Cleveland, OH 44135 (United States); Conyers, H. J. [NASA Stennis Space Center, Building 3225, SSC, MS 39529 (United States)

2014-01-29T23:59:59.000Z

68

Integrated heat exchanger design for a cryogenic storage tank  

Science Journals Connector (OSTI)

Field demonstrations of liquid hydrogen technology will be undertaken for the proliferation of advanced methods and applications in the use of cryofuels. Advancements in the use of cryofuels for transportation on Earth from Earth or in space are envisioned for automobiles aircraft rockets and spacecraft. These advancements rely on practical ways of storage transfer and handling of liquid hydrogen. Focusing on storage an integrated heat exchanger system has been designed for incorporation with an existing storage tank and a reverse Brayton cycle helium refrigerator of capacity 850 watts at 20 K. The storage tank is a 125 000-liter capacity horizontal cylindrical tank with vacuum jacket and multilayer insulation and a small 0.6-meter diameter manway opening. Addressed are the specific design challenges associated with the small opening complete modularity pressure systems re-certification for lower temperature and pressure service associated with hydrogen densification and a large 8:1 length-to-diameter ratio for distribution of the cryogenic refrigeration. The approach problem solving and system design and analysis for integrated heat exchanger are detailed and discussed. Implications for future space launch facilities are also identified. The objective of the field demonstration will be to test various zero-loss and densified cryofuel handling concepts for future transportation applications.

2014-01-01T23:59:59.000Z

69

GRR/Section 18-UT-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-UT-a - Underground Storage Tank GRR/Section 18-UT-a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-a - Underground Storage Tank 18UTAUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Underground Storage Tank Act Triggers None specified Click "Edit With Form" above to add content 18UTAUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Utah Department of Environmental Quality Division of Environmental Response and Remediation oversees the underground storage tank (UST) program in

70

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

71

GRR/Section 18-AK-a - Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-AK-a - Storage Tank Registration GRR/Section 18-AK-a - Storage Tank Registration < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-AK-a - Storage Tank Registration 18AKA - StorageTankRegistration (1).pdf Click to View Fullscreen Contact Agencies Alaska Department of Environmental Conservation Regulations & Policies AS 46.03.380 As 46.03.385 18 AAC 78 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18AKA - StorageTankRegistration (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Any project that requires installation or operation of a storage tank must

72

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

73

Estimating Residual Solids Volume In Underground Storage Tanks  

SciTech Connect

The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

2014-01-08T23:59:59.000Z

74

Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry  

E-Print Network (OSTI)

Hydrogen Storage Using Lightweight Tanks Andrew H. Weisberg, Blake Myers, and Gene Berry Lawrence As tooling was being designed for compressed hydrogen tank experiments, a series of discoveries were made. Their preliminary results may change the best solutions to hydrogen storage. Recent Progress LLNL tank design

75

E-Print Network 3.0 - anechoic water tank Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2, and 3 including steam drums, water drums, firebox, and exhaust stack. All tanks including... Side of Surface Condenser < Fuel Oil Storage Tanks < Chilled Water...

76

CFD Simulation on LNG Storage Tank to Improve Safety and Reduce Cost  

Science Journals Connector (OSTI)

When a storage tank containing LNG (Liquefied Natural Gas) is further filled with different-density LNG, stratification may occur. It occasionally results ... study on tank filling procedures with different-densi...

Kazuo Koyama

2007-01-01T23:59:59.000Z

77

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

SciTech Connect

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

78

GRR/Section 18-CO-a - Underground Storage Tank Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-a - Underground Storage Tank Permit GRR/Section 18-CO-a - Underground Storage Tank Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-a - Underground Storage Tank Permit 18COAUndergroundStorageTankPermit (1).pdf Click to View Fullscreen Contact Agencies Colorado Department of Labor and Employment Regulations & Policies Solid Waste Disposal Act 7 CCR 1101-14 Article 2 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18COAUndergroundStorageTankPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The design, installation, registration, construction, and operation of

79

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

80

GRR/Section 18-NV-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

a - Underground Storage Tank a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-a - Underground Storage Tank 18NVAUndergroundStorageTank.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVAUndergroundStorageTank.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) administers the Underground Storage Tank (UST) Program for the State of Nevada.

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

82

GRR/Section 18-ID-a - Underground Storage Tank Systems | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-ID-a - Underground Storage Tank Systems GRR/Section 18-ID-a - Underground Storage Tank Systems < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-a - Underground Storage Tank Systems 18IDAUndergroundStorageTankSystems.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.07 Rules Regulating Underground Storage Tank Systems Triggers None specified Click "Edit With Form" above to add content 18IDAUndergroundStorageTankSystems.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Idaho Department of Environmental Quality (DEQ) requires notification

83

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were...

84

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Energy.gov (U.S. Department of Energy (DOE))

This report examines performance and cost of compressed hydrogen storage tank systems compared to the US Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications.

85

Numerical simulation of Large Solar Hot Water system in storage tank.  

E-Print Network (OSTI)

??This research is aimed to study the storage tank design parameters effects on the efficiency of the large solar hot water system. Detailed CFD simulation (more)

Shue, Nai-Shen

2012-01-01T23:59:59.000Z

86

Analysis of the rigid porous manifold as an effevtive device to stratify solar thermal storage tanks.  

E-Print Network (OSTI)

??One of the most effective and simplest methods to maintain thermal stratification of solar hot water storage tanks during charge and discharge is the use (more)

Ghosh, Vivekananda

2011-01-01T23:59:59.000Z

87

Two-tank working gas storage system for heat engine  

DOE Patents (OSTI)

A two-tank working gas supply and pump-down system is coupled to a hot gas engine, such as a Stirling engine. The system has a power control valve for admitting the working gas to the engine when increased power is needed, and for releasing the working gas from the engine when engine power is to be decreased. A compressor pumps the working gas that is released from the engine. Two storage vessels or tanks are provided, one for storing the working gas at a modest pressure (i.e., half maximum pressure), and another for storing the working gas at a higher pressure (i.e., about full engine pressure). Solenoid valves are associated with the gas line to each of the storage vessels, and are selectively actuated to couple the vessels one at a time to the compressor during pumpdown to fill the high-pressure vessel with working gas at high pressure and then to fill the low-pressure vessel with the gas at low pressure. When more power is needed, the solenoid valves first supply the low-pressure gas from the low-pressure vessel to the engine and then supply the high-pressure gas from the high-pressure vessel. The solenoid valves each act as a check-valve when unactuated, and as an open valve when actuated.

Hindes, Clyde J. (Troy, NY)

1987-01-01T23:59:59.000Z

88

Aluminium alloy based hydrogen storage tank operated with sodium aluminium hexahydride Na3AlH6  

Science Journals Connector (OSTI)

Abstract Here we present the development of an aluminium alloy based hydrogen storage tank, charged with Ti-doped sodium aluminium hexahydride Na3AlH6. This hydride has a theoretical hydrogen storage capacity of 3爉ass-% and can be operated at lower pressure compared to sodium alanate NaAlH4. The tank was made of aluminium alloy EN AW 6082 T6. The heat transfer was realised through an oil flow in a bayonet heat exchanger, manufactured by extrusion moulding from aluminium alloy EN AW 6060 T6. Na3AlH6 is prepared from 4爉ol-% TiCl3 doped sodium aluminium tetrahydride NaAlH4 by addition of two moles of sodium hydride NaH in ball milling process. The hydrogen storage tank was filled with 213爂 of doped Na3AlH6 in dehydrogenated state. Maximum of 3.6爂 (1.7爉ass-% of the hydride mass) of hydrogen was released from the hydride at approximately 450燢 and the same hydrogen mass was consumed at 2.5燤Pa hydrogenation pressure. 45 cycle tests (rehydrogenation and dehydrogenation) were carried out without any failure of the tank or its components. Operation of the tank under real conditions indicated the possibility for applications with stationary HT-PEM fuel cell systems.

R. Urbanczyk; K. Peinecke; M. Felderhoff; K. Hauschild; W. Kersten; S. Peil; D. Bathen

2014-01-01T23:59:59.000Z

89

H.A.R. 11-281 - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

1 - Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-281 - Underground Storage...

90

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage  

E-Print Network (OSTI)

Hydrogen Composite Tank Program Principal Investigator: Dr. Neel Sirosh, Director of Fuel Storage "TriShield" tank technology (see Fig. 1) meets the percent weight, energy density, and specific energy reductions are possible with further optimization. Fig. 1 TriShieldTM Type IV Tank The 5,000 and 10,000 psi

91

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, 揟echnical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.

Kerry L. Nisson

2012-10-01T23:59:59.000Z

92

Feasibility report on criticality issues associated with storage of K Basin sludge in tanks farms  

SciTech Connect

This feasibility study provides the technical justification for conclusions about K Basin sludge storage options. The conclusions, solely based on criticality safety considerations, depend on the treatment of the sludge. The two primary conclusions are, (1) untreated sludge must be stored in a critically safe storage tank, and (2) treated sludge (dissolution, precipitation and added neutron absorbers) can be stored in a standard Double Contained Receiver Tank (DCRT) or 241-AW-105 without future restrictions on tank operations from a criticality safety perspective.

Vail, T.S.

1997-05-29T23:59:59.000Z

93

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

94

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for  

E-Print Network (OSTI)

Performance of a solid oxide fuel cell CHP system coupled with a hot water storage tank for single storage tank is studied. Thermal stratification in the tank increases the heat recovery performance of the residence. Two fuels are considered, namely syngas and natural gas. The tank model considers the temperature

Berning, Torsten

95

Airborne Emissions from Storage Tanks: What's New on the Regulatory Front and How to Cope with the Changes  

E-Print Network (OSTI)

The U.S. EPA is developing new maximum achievable control technology (MACT) rules, which include provisions for aboveground storage tanks (AST's). While each industry category will have its own MACT rule, the trend for storage tank requirements...

Ferry, R. L.

96

Increasing CO2 Storage in Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

97

Department of Mechanical Engineering Spring 2013 Improving the Efficiency of a Non-Pressurized Thermal Storage Tank  

E-Print Network (OSTI)

-Pressurized Thermal Storage Tank Overview Hydroflex had provided the team with a tank and the heat exchanger coil that was to be used to heat the tank. While attempting to improve the tank's efficiency, the team was required to keep certain parameters of the tank the same, such as it insulation and the type of coil that was used

Demirel, Melik C.

98

Polymers for subterranean containment barriers for underground storage tanks (USTs). Letter report on FY 1992 activities  

SciTech Connect

The US Department of Energy (DOE) set up the Underground Storage Tank Integrated Demonstration Program (USTID) to demonstrate technologies for the retrieval and treatment of tank waste, and closure of underground storage tanks (USTs). There are more than 250 underground storage tanks throughout the DOE complex. These tanks contain a wide variety of wastes including high level, low level, transuranic, mixed and hazardous wastes. Many of the tanks have performed beyond the designed lifetime resulting in leakage and contamination of the local geologic media and groundwater. To mitigate this problem it has been proposed that an interim subterranean containment barrier be placed around the tanks. This would minimize or prevent future contamination of soil and groundwater in the event that further tank leakages occur before or during remediation. Use of interim subterranean barriers can also provide sufficient time to evaluate and select appropriate remediation alternatives. The DOE Hanford site was chosen as the demonstration site for containment barrier technologies. A panel of experts for the USTID was convened in February, 1992, to identify technologies for placement of subterranean barriers. The selection was based on the ability of candidate grouts to withstand high radiation doses, high temperatures and aggressive tank waste leachates. The group identified and ranked nine grouting technologies that have potential to place vertical barriers and five for horizontal barriers around the tank. The panel also endorsed placement technologies that require minimal excavation of soil surrounding the tanks.

Heiser, J.H.; Colombo, P.; Clinton, J.

1992-12-01T23:59:59.000Z

99

EIS-0212: Safe Interim Storage of Hanford Tank Wastes, Hanford Site, Richland, WA  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement asseses Department of Energy and Washington State Department of Ecology maintanence of safe storage of high-level radioactive wastes currently stored in the older single-shell tanks, the Watchlist Tank 101-SY, and future waste volumes associated with tank farm and other Hanford facility operations, including a need to provide a modern safe, reliable, and regulatory-compliant replacement cross-site transfer capability. The purpose of this action is to prevent uncontrolled releases to the environment by maintaining safe storage of high-level tank wastes.

100

EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

44: Melton Valley Storage Tanks Capacity Increase Project- Oak 44: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee SUMMARY This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge, Tennessee, for liquid low-level radioactive waste. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 25, 1995 EA-1044: Finding of No Significant Impact Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee May 25, 1995 EA-1044: Final Environmental Assessment

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

SORPTION OF URANIUM, PLUTONIUM AND NEPTUNIUM ONTO SOLIDS PRESENT IN HIGH CAUSTIC NUCLEAR WASTE STORAGE TANKS  

SciTech Connect

Solids such as granular activated carbon, hematite and sodium phosphates, if present as sludge components in nuclear waste storage tanks, have been found to be capable of precipitating/sorbing actinides like plutonium, neptunium and uranium from nuclear waste storage tank supernatant liqueur. Thus, the potential may exists for the accumulation of fissile materials in such nuclear waste storage tanks during lengthy nuclear waste storage and processing. To evaluate the nuclear criticality safety in a typical nuclear waste storage tank, a study was initiated to measure the affinity of granular activated carbon, hematite and anhydrous sodium phosphate to sorb plutonium, neptunium and uranium from alkaline salt solutions. Tests with simulated and actual nuclear waste solutions established the affinity of the solids for plutonium, neptunium and uranium upon contact of the solutions with each of the solids. The removal of plutonium and neptunium from the synthetic salt solution by nuclear waste storage tank solids may be due largely to the presence of the granular activated carbon and transition metal oxides in these storage tank solids or sludge. Granular activated carbon and hematite also showed measurable affinity for both plutonium and neptunium. Sodium phosphate, used here as a reference sorbent for uranium, as expected, exhibited high affinity for uranium and neptunium, but did not show any measurable affinity for plutonium.

Oji, L; Bill Wilmarth, B; David Hobbs, D

2008-05-30T23:59:59.000Z

102

Resource Conservation and Recovery Act (RCRA) Part B permit application for tank storage units at the Oak Ridge Y-12 Plant  

SciTech Connect

In compliance with the Resource Conservation and Recovery Act (RCRA), this report discusses information relating to permit applications for three tank storage units at Y-12. The storage units are: Building 9811-1 RCRA Tank Storage Unit (OD-7); Waste Oil/Solvent Storage Unit (OD-9); and Liquid Organic Solvent Storage Unit (OD-10). Numerous sections discuss the following: Facility description; waste characteristics; process information; groundwater monitoring; procedures to prevent hazards; contingency plan; personnel training; closure plan, post closure plan, and financial requirements; record keeping; other federal laws; organic air emissions; solid waste management units; and certification. Sixteen appendices contain such items as maps, waste analyses and forms, inspection logs, equipment identification, etc.

Not Available

1994-05-01T23:59:59.000Z

103

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: 08-02-01, Underground Storage Tank 15-02-01, Irrigation Piping 16-02-03, Underground Storage Tank 16-02-04, Fuel Oil Piping 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

Alfred Wickline

2007-04-01T23:59:59.000Z

104

Underground storage tank compliance activities at the Hanford Site  

SciTech Connect

The Hanford Site covers 560 mi{sup 2} of semi-arid land that is owned by the US Government and managed by the US Department of Energy-Richland Operations Office (DOE-RL). It is located in the Columbia Basin and northwest of the City of Richland, Washington, which lies approximately 5 mi from the southernmost portion of the Hanford Site boundary and is the nearest population center. In early 1943, the US Army Corps of Engineers selected the Hanford Site for the production and purification of plutonium. The purpose of this report is fourfold: it describes the underground storage tanks (UST) at the Hanford Site regulated by title 40 Code of Federal Regulations (CFR) 280 (EPA 1988a); it defines the compliance programs completed, underway, or planned by the affected Hanford Site contractors; it provides costs of program compliance; and it defines long-range planning to comply with 40 CFR 280 after 1998. 5 refs., 1 fig., 2 tabs.

Morton, M.R.; Mihalic, M.A.

1990-08-01T23:59:59.000Z

105

Heat pump water heater and storage tank assembly  

DOE Patents (OSTI)

A water heater and storage tank assembly comprises a housing defining a chamber, an inlet for admitting cold water to the chamber, and an outlet for permitting flow of hot water from the chamber. A compressor is mounted on the housing and is removed from the chamber. A condenser comprises a tube adapted to receive refrigerant from the compressor, and winding around the chamber to impart heat to water in the chamber. An evaporator is mounted on the housing and removed from the chamber, the evaporator being adapted to receive refrigerant from the condenser and to discharge refrigerant to conduits in communication with the compressor. An electric resistance element extends into the chamber, and a thermostat is disposed in the chamber and is operative to sense water temperature and to actuate the resistance element upon the water temperature dropping to a selected level. The assembly includes a first connection at an external end of the inlet, a second connection at an external end of the outlet, and a third connection for connecting the resistance element, compressor and evaporator to an electrical power source.

Dieckmann, John T. (Belmont, MA); Nowicki, Brian J. (Watertown, MA); Teagan, W. Peter (Acton, MA); Zogg, Robert (Belmont, MA)

1999-09-07T23:59:59.000Z

106

U.S. Department of Energy Onboard Storage Tank Workshop Notes  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Onboard Storage Tank Workshop Workshop Notes April 29, 2010 Sandia National Laboratories - Livermore, CA 2 Report from the Onboard Storage Tank Workshop Livermore, CA April 29 th , 2010 The Onboard Storage Tank Workshop was held on April 29 th , 2010, at Sandia National Laboratories (SNL) in Livermore, CA. The Workshop was co-hosted by SNL and the United States Department of Energy (DOE). The purpose of the Workshop was to identify key issues including research and development (R&D) needs, regulations, codes and standards (RCS), and a path forward to enable the deployment of hydrogen storage tanks in early market fuel cell applications. Background The objectives of the Workshop were to: * Provide initial follow up to the DOE and Department of Transportation (DOT)

107

IDAPA 58.01.07 - Rules Regulating Underground Storage Tank Systems...  

Open Energy Info (EERE)

Rules Regulating Underground Storage Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: IDAPA 58.01.07 - Rules...

108

UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...  

Open Energy Info (EERE)

UC 19-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. -...

109

MCA 75-11-501 et seq. - Montana Underground Storage Tank Act...  

Open Energy Info (EERE)

ActLegal Abstract Sets forth statutory requirements for regulating underground storage tanks. Published NA Year Signed or Took Effect 1997 Legal Citation 75-11-501 et seq., MCA...

110

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

Fuel Cell Technologies Publication and Product Library (EERE)

This technical report describes DOE's assessment of the performance and cost of compressed hydrogen storage tank systems for automotive applications. The on-board performance (by Argonne National Lab)

111

E-Print Network 3.0 - acid storage tank Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Attachment A PPOP 08.10 Summary: < Refrigerant Storage Tanks Ventilated vaults: < Acid Vaults (May or may not require a permit depending... Side of...

112

Long Term Solar Heat Storage through Underground Water Tanks for the Heating of Housing  

Science Journals Connector (OSTI)

This project consists in the development of design methods of solar plants for heating of housing by means of the interseasonal storage of solar energy through water tanks located under or...

M. Cucumo; V. Marinelli; G. Oliveti; A. Sabato

1983-01-01T23:59:59.000Z

113

Different Models for Determination of Thermal Stratification in A Solar Storage Tank  

Science Journals Connector (OSTI)

In this work two different models are shown for describing the thermal stratification in the solar storage tank of the solar water heating system. The first model was ... hour from the average hourly data of the

P. G閏zy-V韌; I. Farkas

2009-01-01T23:59:59.000Z

114

GRR/Section 18-HI-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon 禄 GRR/Section 18-HI-a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-HI-a - Underground Storage Tank 18HIAUndergroundStorageTankPermit.pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Solid and Hazardous Waste Branch Regulations & Policies Hawaii Administrative Regulations Title 11, Chapter 281 Triggers None specified Click "Edit With Form" above to add content 18HIAUndergroundStorageTankPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative

115

Analysis of thermal transfer of reinforced concrete submarine oil tanks  

SciTech Connect

The temperature distributions of reinforced concrete submarine oil tanks (RCSOT) obtained by the flat wall method and the cylinder wall method, are compared with the experimental data of the thermal transfer of the RCSOT. The precision and suitable scope of the different methods are discussed. The principle for selecting analysis method for solving thermal transfer of the RCSOT is given. The analytical and experimental temperature distributions show that the wall of the RCSOT should consist of double layer walls and the empty space between double layer walls should be filled with sand or other heat insulation materials to reduce the temperature difference between the inner and outer surfaces of the wall and to prevent the concrete from cracking.

Song, Y.P.; Zhao, G.F. [Dalian Univ. of Technology (China)

1994-12-31T23:59:59.000Z

116

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network (OSTI)

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

117

Technical Assessment of Compressed Hydrogen Storage Tank Systems...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

metrics include the off-board Well-to-Tank (WTT) energy efficiency and greenhouse gas (GHG) emissions. Cost metrics include the refueling costs and combined fuel system...

118

South Tank Farm underground storage tank inspection using the topographical mapping system for radiological and hazardous environments  

SciTech Connect

During the winter of 1997 the Topographical Mapping System (TMS) for hazardous and radiological environments and the Interactive Computer-Enhanced Remote-Viewing System (ICERVS) were used to perform wall inspections on underground storage tanks (USTs) W5 and W6 of the South Tank Farm (STF) at Oak Ridge National Laboratory (ORNL). The TMS was designed for deployment in the USTs at the Hanford Site. Because of its modular design, the TMS was also deployable in the USTs at ORNL. The USTs at ORNL were built in the 1940s and have been used to store radioactive waste during the past 50 years. The tanks are constructed with an inner layer of Gunite{trademark} that has been spalling, leaving sections of the inner wall exposed. Attempts to quantify the depths of the spalling with video inspection have proven unsuccessful. The TMS surface-mapping campaign in the STF was initiated to determine the depths of cracks, crevices, and/or holes in the tank walls and to identify possible structural instabilities in the tanks. The development of the TMS and the ICERVS was initiated by DOE for the purpose of characterization and remediation of USTs at DOE sites across the country. DOE required a three-dimensional, topographical mapping system suitable for use in hazardous and radiological environments. The intended application is mapping the interiors of USTs as part of DOE`s waste characterization and remediation efforts, to obtain both baseline data on the content of the storage tank interiors and changes in the tank contents and levels brought about by waste remediation steps. Initially targeted for deployment at the Hanford Site, the TMS has been designed to be a self-contained, compact, and reconfigurable system that is capable of providing rapid variable-resolution mapping information in poorly characterized workspaces with a minimum of operator intervention.

Armstrong, G.A.; Burks, B.L.; Hoesen, S.D. van

1997-07-01T23:59:59.000Z

119

Underground storage tank 291-D1U1: Closure plan  

SciTech Connect

The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

120

Alternative methods for proposed explosive demolition of large, obsolete pol storage tanks, Fort Leonard Wood, Missouri. Technical report  

SciTech Connect

A desk study was undertaken to assess explosion demolition methodologies that would allow Army Explosive Ordinance Demolition (EOD) engineer teams assigned to Ft. Leonard Wood to safely and effectively demolish to ground level three very large metal POL (petroleum, oil, and lubricant) storage tanks. These tanks have outlived their usefulness and are scheduled for removal by the most rapid and cost effective method. An analysis by Ft. Leonard Wood determined explosive demolition to be the method of choice. A primary concern was possible corollary damage to nearby military and civilian housing and occupants. This study investigated several explosive sources and methodologies and provided predictions of corollary damage effects versus distance from the charge to be expected for explosive charge weights ranging from 10 to 500 lb. Prediction curves were developed for both ideal and average weather conditions.

Ingram, J.K.; Cheek, J.B.

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Imaging and Characterizing the Waste Materials Inside an Underground Storage Tank Using Seismic Normal Modes  

SciTech Connect

It is necessary to know something about the nature of the wastes in a Hanford underground storage tank (UST) so that the correct hardware can be inserted into a tank for sampling, sluicing, or pumping operations. It is also important to know if a layer of gas exists beneath solid and liquid layers of waste. Given that the tank will have only one liquid observation well (LOW), the authors examined the information that could be obtained from the natural seismic vibrations of a tank as a whole; that is, the normal modes of that tank. As in the case of a bell, the natural vibration, or normal modes, of a tank depend on many things, including the construction of the tank, the kinds of waste materials in the tank, the amount of each material in the tank, and where the energy is placed that excites the vibrations (i.e., where you will ''hit'' the tank). The nature of a normal mode of vibration can be given by its frequency and amplitude. For any given frequency, the amplitude of vibration can be given as a function of position in and around the tank. Since they assumed that one would be ''listening'' to a tank from locations along a LOW, they show their computed amplitudes as a function of position inside and around the tank, and in the case of the physical models they display the observations along various lines inside the tank model. This allowed us to see the complex geometry of each mode of oscillation as a function of increasing frequency.

M. N. Toksoz; R. M. Turpening

1999-09-14T23:59:59.000Z

122

Modeling and analysis of ORNL horizontal storage tank mobilization and mixing  

SciTech Connect

The retrieval and treatment of radioactive sludges that are stored in tanks constitute a prevalent problem at several US Department of Energy sites. The tanks typically contain a settled sludge layer with non-Newtonian rheological characteristics covered by a layer of supernatant. The first step in retrieval is the mobilization and mixing of the supernatant and sludge in the storage tanks. Submerged jets have been proposed to achieve sludge mobilization in tanks, including the 189 m{sup 3} (50,000 gallon) Melton Valley Storage tanks (MVST) at Oak Ridge National Laboratory (ORNL) and the planned 378 m{sup 3} (100,000 gallon) tanks being designed as part of the MVST Capacity Increase Project (MVST-CIP). This report focuses on the modeling of mixing and mobilization in horizontal cylindrical tanks like those of the MVST design using submerged, recirculating liquid jets. The computer modeling of the mobilization and mixing processes uses the TEMPEST computational fluid dynamics program (Trend and Eyler 1992). The goals of the simulations are to determine under what conditions sludge mobilization using submerged liquid jets is feasible in tanks of this configuration, and to estimate mixing times required to approach homogeneity of the contents.

Mahoney, L.A.; Terrones, G.; Eyler, L.L.

1994-06-01T23:59:59.000Z

123

Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington  

SciTech Connect

This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

Not Available

1994-07-01T23:59:59.000Z

124

Underground storage tank 253-D1U1 Closure Plan  

SciTech Connect

This report is a closure plan for a diesel fuel tank at the Lawrence Livermore National Laboratory. Included are maps of the site, work plans, and personnel information regarding training and qualification.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

125

DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards Storage Contracts for Northeast Home Heating Oil Reserve Awards Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation in Groton, CT for 400,000 barrels, and Global Companies LLC in Revere, MA for 250,000 barrels. The procurement was conducted by the Defense Logistics Agency (DLA Energy), acting as the agent for DOE. Acquisition of storage services for an additional 350,000 barrels is planned to complete the establishment of a

126

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

127

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

128

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities...

129

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

燭he objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities...

130

Pressure Build?Up in LNG and LH2 Vehicular Cryogenic Storage Tanks  

Science Journals Connector (OSTI)

The use of LNG and LH2 as fuels in heavy duty vehicles is increasing steadily because cryogenic liquids provides superior volumetric and gravimetric energy densities compared to other means of on?board storage. Although several sizes and types of tanks exist a typical vehicular storage tank has a volume of ?400 liters (?100 gallons). The pressure in the ullage space of a tank freshly filled is usually ?0.25 MPa but may vary during use from ?0.25 MPa (?20 psig) to ?0.92 MPa (?120 psig). Cryogenic vehicular tanks are typically dual?walled stainless steel vessels with vacuum and superinsulation isolation between the inner and outer vessel walls. The heat leaks into such tanks are measured as a percentage boil?off per day. For a storage tank of vehicular size range the boil?off may be ? 1 % day depending upon the cryogen and the quality of the tank. The corresponding heat leak into the cryogenic liquid vaporizes a certain amount of liquid that in turn increases the pressure in the tank which in turn significantly influences the properties of the cryogens. We have used a novel approach to calculate the increase in pressure of LNG and LH2 in a closed cryogenic vessel with a fixed heat leak as a function of time using real equations of state for the properties of the cryogens. The method and results for the time it takes for a freshly filled tank to increase in pressure from the filling pressure of ?0.25 MPa to a venting pressure of ?1.73 MPa are presented.

J. A. Barclay; A. M. Rowe; M. A. Barclay

2004-01-01T23:59:59.000Z

131

Review of sensors for the in situ chemical characterization of the Hanford underground storage tanks  

SciTech Connect

Lawrence Livermore National Laboratory (LLNL), in the Technical Task Plan (TTP) SF-2112-03 subtask 2, is responsible for the conceptual design of a Raman probe for inclusion in the in-tank cone penetrometer. As part of this task, LLNL is assigned the further responsibility of generating a report describing a review of sensor technologies other than Raman that can be incorporated in the in-tank cone penetrometer for the chemical analysis of the tank environment. These sensors would complement the capabilities of the Raman probe, and would give information on gaseous, liquid, and solid state species that are insensitive to Raman interrogation. This work is part of a joint effort involving several DOE laboratories for the design and development of in-tank cone penetrometer deployable systems for direct UST waste characterization at Westinghouse Hanford Company (WHC) under the auspices of the U.S. Department of Energy (DOE) Underground Storage Tank Integrated Demonstration (UST-ID).

Kyle, K.R.; Mayes, E.L.

1994-07-29T23:59:59.000Z

132

American Petroleum Institute (API) Standard 653 compliance program for aboveground storage tanks  

SciTech Connect

With increased pressure from federal regulators to inspect and maintain aboveground storage tanks -- and with no specific guidelines in API (American Petroleum Institute) Standard 653, Tank Inspection, Repair, Alteration, and Reconstruction -- the need to develop an effective compliance program is warranted. Although many programs can be developed to comply with API Standard 653, this paper presents one interpretation of the document. An API Standard 653 compliance program has several components, including inspection scheduling, engineering evaluations, documentation, repairs and alterations, and the possibility of hydrotesting. Each of these components is integral to the other. Effective coordination of these activities will minimize tank downtime.

Butler, D.M.; Stadler, P.M. (Chicago Bridge Iron Co., Oak Brook, IL (United States))

1994-03-01T23:59:59.000Z

133

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

134

Experimental study of a thermosyphon solar water heater coupled to a fibre-reinforced plastic (FRP) storage tank  

Science Journals Connector (OSTI)

The thermal performance of the thermosyphon solar water heater was analyzed to show its ... %. Also, an analysis of the temperature storage characteristics of a novel fibre-reinforced plastic (FRP) storage tank w...

P. N. Nwosu; O. U. Oparaku; W. I. Okonkwo; G. O. Unachukwu

2011-09-01T23:59:59.000Z

135

Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] 1995/01eis0212_cl.html[6/27/2011 1:02:59 PM] Final Environmental Impact Statement Safe Interim Storage Of Hanford Tank Wastes DOE/EIS-0212 VOLUME 1 OF 2 VOLUME 1 FINAL ENVIRONMENTAL IMPACT STATEMENT SAFE INTERIM STORAGE OF HANFORD TANK WASTES Hanford Site Richland, Washington October, 1995 WASHINGTON STATE DEPARTMENT OF ECOLOGY NUCLEAR WASTE PROGRAM LACEY, WASHINGTON 98503 U.S. DEPARTMENT OF ENERGY RICHLAND OPERATIONS OFFICE

136

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

137

Implementation plan for Title 40 Code of Federal Regulations Parts 280 and 281; Final rules for underground storage tanks  

SciTech Connect

This report presents the schedules and methods required to comply with the newly promulgated Underground Storage Tank (UST) Regulations Title 40 Code of Federal Regulations (CFR) 280 and 281. These rules were promulgated by the US Environmental Protection Agency (EPA) on September 23, 1988, and became effective December 22, 1988. These regulations are required by Subtitle I of the Resource Conservation and Recovery Act of 1976. Their purpose is to protect the groundwater supplies of the United States in the following ways: Closing old tanks; detecting and remediating tank leaks and spills; establishing stringent standards for new tanks; and upgrade of existing tanks to new-tank standards. 3 refs., 5 tabs.

Stupka, R.C.

1989-04-01T23:59:59.000Z

138

A visual assessment of the concrete vaults which surround underground waste storage tanks  

SciTech Connect

Radioactive waste produced at the Savannah River Site (SRS) is stored in underground tanks. There are four different waste tank designs. For each waste tank design the outermost containment shield between the waste and the soil is a concrete vault surrounding the carbon steel liner(s). Should the primary and/or secondary liner be breached, the concrete vault would slow transport of the waste so that contamination of the soil is minimized. The type 3 waste tanks have a stated design life of 40--60 years. With the uncertainty of the schedule for transfer of the waste to the Defense Waste Processing Facility, it is conceivable that the tanks will be required to function past their design life. The Department of Energy formed a Waste Tank Structural Integrity Panel to investigate the potential for aging and degradation of underground radioactive waste storage tanks employed in the weapons complex. The panel is focusing on how each site in the complex: (1) inspects the waste tanks for degradation, (2) understands the potential degradation mechanisms which may occur at their sites, and (3) mitigates the known potential degradation mechanisms. In addition to the carbon steel liners, the degradation of the concrete vault has also been addressed by the panel. High Level Waste Engineering (HLWE) at SRS has formed a task team to identify key issues that determine and/or effect the condition of the concrete. In June 1993, slides were reviewed which showed the inside of the concrete vault in Type 1, 2, and 4 tanks. The authors subsequently visited the tank farm and assessed the visible portions of the outer concrete vault. Later a team of engineers knowledgeable in concrete degradation performed a walk-down. Photographs showing the concrete condition were taken at this time. This report summarizes the findings of these walk-downs and reinforces previous recommendations.

Wiersma, B.J.; Shurrab, M.S.

1993-12-01T23:59:59.000Z

139

Simplified design and evaluation of liquid storage tanks relative to earthquake loading  

SciTech Connect

A summary of earthquake-induced damage in liquid storage tanks is provided. The general analysis steps for dynamic response of fluid-filled tanks subject to horizontal ground excitation are discussed. This work will provide major attention to the understanding of observed tank-failure modes. These modes are quite diverse in nature, but many of the commonly appearing patterns are believed to be shell buckling. A generalized and simple-to-apply shell loading will be developed using Fluegge shell theory. The input to this simplified analysis will be horizontal ground acceleration and tank shell form parameters. A dimensionless parameter will be developed and used in predictions of buckling resulting from earthquake-imposed loads. This prediction method will be applied to various tank designs that have failed during major earthquakes and during shaker table tests. Tanks that have not failed will also be reviewed. A simplified approach will be discussed for early design and evaluation of tank shell parameters and materials to provide a high confidence of low probability of failure during earthquakes.

Poole, A.B.

1994-06-01T23:59:59.000Z

140

Forklift Storage Tank R&D: Timely, Critical, Exemplary  

Energy.gov (U.S. Department of Energy (DOE))

Download presentation slides from the DOE Fuel Cell Technologies Program webinar, Material Characterization of Storage Vessels for Fuel Cell Forklifts, presented by Sandia National Laboratories on August 14, 2012.

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of stored H 2 . References 1. Berry, G., Aceves, S., Espinosa, F., Ross, T., Switzer, V., Smith, R., and Weisberg, A., "Compact L(H 2 ) Storage with Extended Dormancy in Cryogenic...

142

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building  

E-Print Network (OSTI)

Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building Na Zhu*, Yu Lei, Pingfang Hu, Linghong Xu, Zhangning Jiang Department of Building Environment and Equipment Engineering... heat pump system integrated with phase change cooling storage technology could save energy and shift peak load. This paper studied the optimal design of a ground source heat pump system integrated with phase change thermal storage tank in an office...

Zhu, N.

2014-01-01T23:59:59.000Z

143

Results Of Routine Strip Effluent Hold Tank, Decontaminated Salt Solution Hold Tank, Caustic Wash Tank And Caustic Storage Tank Samples From Modular Caustic-Side Solvent Extraction Unit During Macrobatch 6 Operations  

SciTech Connect

Strip Effluent Hold Tank (SEHT), Decontaminated Salt Solution Hold Tank (DSSHT), Caustic Wash Tank (CWT) and Caustic Storage Tank (CST) samples from the Interim Salt Disposition Project (ISDP) Salt Batch (揗acrobatch) 6 have been analyzed for 238Pu, 90Sr, 137Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The Pu, Sr, and Cs results from the current Macrobatch 6 samples are similar to those from comparable samples in previous Macrobatch 5. In addition the SEHT and DSSHT heel samples (i.e. 憄reliminary) have been analyzed and reported to meet NGS Demonstration Plan requirements. From a bulk chemical point of view, the ICPES results do not vary considerably between this and the previous samples. The titanium results in the DSSHT samples continue to indicate the presence of Ti, when the feed material does not have detectable levels. This most likely indicates that leaching of Ti from MST has increased in ARP at the higher free hydroxide concentrations in the current feed.

Peters, T. B.

2014-01-02T23:59:59.000Z

144

CSER 94-004: Criticality safety of double-shell waste storage tanks  

SciTech Connect

This criticality safety evaluation covers double-shell waste storage tanks (DSTs), double-contained receiver tanks (DCRTs), vault tanks, and the 242-A Evaporator located in the High Level Waste (HLW) Tank Farms on the Hanford Site. Limits and controls are specified and the basis for ensuring criticality safety is discussed. A minimum limit of 1,000 is placed upon the solids/plutonium mass ratio in incoming waste. The average solids/Pu mass ratio over all waste in tank farms is estimated to be about 74,500, about 150 times larger than required to assure subcriticality in homogeneous waste. PFP waste in Tank-102-SY has an estimated solids/Pu mass ratio of 10,000. Subcriticality is assured whenever the plutonium concentration is less than 2.6 g. The median reported plutonium concentration for 200 samples of waste solids is about 0.01 g (0.038 g/gal). A surveillance program is proposed to increase the knowledge of the waste and provide added assurance of the high degree of subcriticality.

Rogers, C.A.

1994-09-22T23:59:59.000Z

145

Numerical Simulation of Single- and Dual-media Thermocline Tanks for Energy Storage in Concentrating Solar Power Plants  

Science Journals Connector (OSTI)

Abstract A single molten-salt thermocline tank is a low-cost alternative to conventional multiple-tank systems for concentrating solar power thermal energy storage. Thermocline tanks are typically composed of molten salt and a filler material that provides sensible heat capacity at reduced cost; such tanks are referred to as a dual-media thermocline (DMT). However, inclusion of quartzite rock filler introduces the potential for mechanical ratcheting of the tank wall during thermal cycling. To avoid this potential thermomechanical mode of failure, the tank can be operated solely with molten salt, as a single-medium thermocline (SMT) tank. In the absence of a filler material to suppress formation of tank-scale convection eddies, the SMT tank may exhibit undesirable internal fluid flows in the tank cross-section. The performance of DMT and SMT tanks is compared under cyclic operation, assuming adiabatic external wall boundary conditions. A computational fluid dynamics model is used to solve for the spatial temperature and velocity distributions within the tank. For the DMT tank, a two-temperature model is used to account for the non-thermal equilibrium between the molten salt and the filler material, and Forchheimer's extension of Darcy's Law is added to the porous-medium formulation of the laminar momentum equation. The governing equations are solved numerically using a finite volume approach. For adiabatic external boundaries, the SMT tank yields a percentage point increase in the first and second law efficiencies relative to the DMT tank. Future work is needed to compare the thermocline tank designs with respect to capital cost and storage performance under non-adiabatic wall boundaries.

C. Mira-Hern醤dez; S.M. Flueckiger; S.V. Garimella

2014-01-01T23:59:59.000Z

146

E-Print Network 3.0 - aboveground oil storage Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

is to document established procedures for routine inspection of aboveground storage tanks... for physical plant. POLICY PROCEDURE 1. General Policy a. Definitions (1)...

147

Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report  

SciTech Connect

Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

1980-12-01T23:59:59.000Z

148

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030  

SciTech Connect

The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-10T23:59:59.000Z

149

EIS-0062: Double-Shell Tanks for Defense High Level Waste Storage, Savannah River Site, Aiken, SC  

Energy.gov (U.S. Department of Energy (DOE))

This EIS analyzes the impacts of the various design alternatives for the construction of fourteen 1.3 million gallon high-activity radioactive waste tanks. The EIS further evaluates the effects of these alternative designs on tank durability, on the ease of waste retrieval from such tanks, and the choice of technology and timing for long-term storage or disposal of the wastes.

150

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

151

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

contamination, environment, environmental impact, environmental pollution, model, oil spill, storage facility, tank, water pollution, wave (water), additive, administration, barrier, book, brine,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

152

EIS-0063: Waste Management Operations, Double-Shell Tanks for Defense High Level Radioactive Waste Storage, Hanford Site, Richland, Washington  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the existing tank design and consider additional specific design and safety feature alternatives for the thirteen tanks being constructed for storage of defense high-level radioactive liquid waste at the Hanford Site in Richland, Washington. This statement supplements ERDA-1538, "Final Environmental Statement on Waste Management Operation."

153

Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

09-33 09-33 Technical Assessment of Cryo-Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne

154

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar  

E-Print Network (OSTI)

List of Publications A Numerical Study of Transient Mixed Convection Flows in a Thermal Storage Tank, J. Solar Energy Eng. 105, 246颅253 (1983) (with A.M.C. Chan & D. Giusti) An Approximate Analytical

Smereka, Peter

155

Technical assessment of compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect

The performance and cost of compressed hydrogen storage tank systems has been assessed and compared to the U.S. Department of Energy (DOE) 2010, 2015, and ultimate targets for automotive applications. The on-board performance and high-volume manufacturing cost were determined for compressed hydrogen tanks with design pressures of 350 bar ({approx}5000 psi) and 700 bar ({approx}10,000 psi) capable of storing 5.6 kg of usable hydrogen. The off-board performance and cost of delivering compressed hydrogen was determined for hydrogen produced by central steam methane reforming (SMR). The main conclusions of the assessment are that the 350-bar compressed storage system has the potential to meet the 2010 and 2015 targets for system gravimetric capacity but will not likely meet any of the system targets for volumetric capacity or cost, given our base case assumptions. The 700-bar compressed storage system has the potential to meet only the 2010 target for system gravimetric capacity and is not likely to meet any of the system targets for volumetric capacity or cost, despite the fact that its volumetric capacity is much higher than that of the 350-bar system. Both the 350-bar and 700-bar systems come close to meeting the Well-to-Tank (WTT) efficiency target, but fall short by about 5%. These results are summarized.

Hua, T. Q.; Ahluwalia, R. K.; Peng, J. K.; Kromer, M.; Lasher, S.; McKenney, K.; Law, K.; Sinha, J. (Nuclear Engineering Division); (TIAX, LLC)

2011-02-09T23:59:59.000Z

156

Equipment design guidance document for flammable gas waste storage tank new equipment  

SciTech Connect

This document is intended to be used as guidance for design engineers who are involved in design of new equipment slated for use in Flammable Gas Waste Storage Tanks. The purpose of this document is to provide design guidance for all new equipment intended for application into those Hanford storage tanks in which flammable gas controls are required to be addressed as part of the equipment design. These design criteria are to be used as guidance. The design of each specific piece of new equipment shall be required, as a minimum to be reviewed by qualified Unreviewed Safety Question evaluators as an integral part of the final design approval. Further Safety Assessment may be also needed. This guidance is intended to be used in conjunction with the Operating Specifications Documents (OSDs) established for defining work controls in the waste storage tanks. The criteria set forth should be reviewed for applicability if the equipment will be required to operate in locations containing unacceptable concentrations of flammable gas.

Smet, D.B.

1996-04-11T23:59:59.000Z

157

Rainwater harvesting systems that collect and convey rain-water from roofs to storage tanks are often the best or only  

E-Print Network (OSTI)

tanks are often the best or only source of water for many communities in the developing world. A common are swept into the storage tank along with the rainwater. While some systems divert the "first flush into gutters, through a series of pipes and into storage tanks. Three rainwater harvesting systems

Polz, Martin

158

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 7 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs. The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard.

FOWLER KD

2007-12-27T23:59:59.000Z

159

METHODOLOGY AND CALCULATIONS FOR THE ASSIGNMENT OF WASTE GROUPS FOR THE LARGE UNDERGROUND WASTE STORAGE TANKS AT THE HANFORD SITE  

SciTech Connect

The Hanford Site contains 177 large underground radioactive waste storage tanks (28 double-shell tanks and 149 single-shell tanks). These tanks are categorized into one of three waste groups (A, B, and C) based on their waste and tank characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement gas release event. Assignments of waste groups to the 177 double-shell tanks and single-shell tanks, as reported in this document, are based on a Monte Carlo analysis of three criteria. The first criterion is the headspace flammable gas concentration following release of retained gas. This criterion determines whether the tank contains sufficient retained gas such that the well-mixed headspace flammable gas concentration would reach 100% of the lower flammability limit if the entire tank's retained gas were released. If the volume of retained gas is not sufficient to reach 100% of the lower flammability limit, then flammable conditions cannot be reached and the tank is classified as a waste group C tank independent of the method the gas is released. The second criterion is the energy ratio and considers whether there is sufficient supernatant on top of the saturated solids such that gas-bearing solids have the potential energy required to break up the material and release gas. Tanks that are not waste group C tanks and that have an energy ratio < 3.0 do not have sufficient potential energy to break up material and release gas and are assigned to waste group B. These tanks are considered to represent a potential induced flammable gas release hazard, but no spontaneous buoyant displacement flammable gas release hazard. Tanks that are not waste group C tanks and have an energy ratio {ge} 3.0, but that pass the third criterion (buoyancy ratio < 1.0, see below) are also assigned to waste group B. Even though the designation as a waste group B (or A) tank identifies the potential for an induced flammable gas release hazard, the hazard only exists for specific operations that can release the retained gas in the tank at a rate and quantity that results in reaching 100% of the lower flammability limit in the tank headspace. The identification and evaluation of tank farm operations that could cause an induced flammable gas release hazard in a waste group B (or A) tank are included in other documents. The third criterion is the buoyancy ratio. This criterion addresses tanks that are not waste group C double-shell tanks and have an energy ratio {ge} 3.0. For these double-shell tanks, the buoyancy ratio considers whether the saturated solids can retain sufficient gas to exceed neutral buoyancy relative to the supernatant layer and therefore have buoyant displacement gas release events. If the buoyancy ratio is {ge} 1.0, that double-shell tank is assigned to waste group A. These tanks are considered to have a potential spontaneous buoyant displacement flammable gas release hazard in addition to a potential induced flammable gas release hazard. This document categorizes each of the large waste storage tanks into one of several categories based on each tank's waste characteristics. These waste group assignments reflect a tank's propensity to retain a significant volume of flammable gases and the potential of the waste to release retained gas by a buoyant displacement event. Revision 8 is the annual update of the calculations of the flammable gas Waste Groups for DSTs and SSTs.

WEBER RA

2009-01-16T23:59:59.000Z

160

Crude Oil Stocks at Tank Farms & Pipelines  

Gasoline and Diesel Fuel Update (EIA)

Stocks at Tank Farms & Pipelines Stocks at Tank Farms & Pipelines (Thousand Barrels) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 263,633 264,749 252,781 242,174 232,837 248,898 1981-2013 East Coast (PADD 1) 2,000 1,635 1,585 1,793 1,507 2,033 1981-2013 Midwest (PADD 2) 100,842 101,525 99,186 89,116 84,420 84,878 1981-2013 Cushing, OK 49,237 50,172 48,671 40,459 34,809 33,017 2004-2013 Gulf Coast (PADD 3) 121,316 121,816 113,846 112,745 112,059 122,497 1981-2013 Rocky Mountain (PADD 4) 12,813 12,512 12,003 12,181 12,858 12,956 1981-2013 West Coast (PADD 5) 26,662 27,261 26,161 26,339 21,993 26,534 1981-2013

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

New Method for Stock-Tank Oil Compositional Analysis  

Science Journals Connector (OSTI)

......laboratory methods. Hardware platform As noted previously, traditional...was required. The hardware platform was designed to use metal...difficult on an offshore oil platform, as they require the preparation...several solvents and toxic chemicals. The first limitation addressed......

Kristine McAndrews; John Nighswander; Konstantin Kotzakoulakis; Paul Ross; Helmut Schroeder

162

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

163

Treatment, storage, and disposal alternatives for the gunite and associated tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

The gunite and associated tanks (GAAT) are inactive, liquid low-level waste tanks located in and around the North and South Tank Farms at Oak Ridge National Laboratory. These underground tanks are the subject of an ongoing treatability study that will determine the best remediation alternatives for the tanks. As part of the treatability study, an assessment of viable treatment, storage, and disposal (TSD) alternatives has been conducted. The report summarizes relevant waste characterization data and statistics obtained to date. The report describes screening and evaluation criteria for evaluating TSD options. Individual options that pass the screening criteria are described in some detail. Order-or-magnitude cost estimates are presented for each of the TSD system alternatives. All alternatives are compared to the baseline approach of pumping all of the GAAT sludge and supernate to the Melton Valley Storage Tank (MVST) facility for eventual TSD along with the existing MOST waste. Four TSD systems are identified as alternatives to the baseline approach. The baseline is the most expensive of the five identified alternatives. The least expensive alternative is in-situ grouting of all GAAT sludge followed by in-situ disposal. The other alternatives are: (1) ex-situ grouting with on-site storage and disposal at Nevada Test Site (NTS); (2) ex-situ grouting with on-site storage and disposal at NTS and the Waste Isolation Pilot Plant (WIPP); and (3) ex-situ vitrification with on-site storage and disposal at NTS and WIPP.

DePew, R.E.; Rickett, K. [Advanced Systems Technology, Inc., Oak Ridge, TN (United States); Redus, K.S. [MACTEC, Oak Ridge, TN (United States); DuMont, S.P. [Hazardous and Medical Waste Services, Inc. (United States); Lewis, B.E.; DePaoli, S.M.; Van Hoesen, S.D. Jr. [Oak Ridge National Lab., TN (United States)

1996-05-01T23:59:59.000Z

164

Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501  

SciTech Connect

The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

2013-07-01T23:59:59.000Z

165

Application of Quantitative NDE Techniques to High Level Waste Storage Tanks  

SciTech Connect

As various issues make the continued usage of high-level waste storage tanks attractive, there is an increasing need to sharpen the assessment of their structural integrity. One aspect of a structural integrity program, nondestructive evaluation, is the focus of this paper. In September 2000, a program to support the sites was initiated jointly by Tanks Focus Area and Characterization, Monitoring, and Sensor Technologies Crosscutting Program of the Office of Environmental Management, Department of Energy (DOE). The vehicle was the Center for Nondestructive Evaluation, one of the National Science Foundation's Industry/University Cooperative Research Centers that is operated in close collaboration with the Ames Laboratory, USDOE. The support activities that have been provided by the center will be reviewed. Included are the organization of a series of annual workshops to allow the sites to share experiences and develop coordinated approaches to common problems, the development of an electronic source of relevant information, and assistance of the sites on particular technical problems. Directions and early results on some of these technical assistance projects are emphasized. Included are the discussion of theoretical analysis of ultrasonic wave propagation in curved plates to support the interpretation of tandem synthetic aperture focusing data to detect flaws in the knuckle region of double shell tanks; the evaluation of guided ultrasonic waves, excited by couplant free, electromagnetic acoustic transducers, to rapidly screen for inner wall corrosion in tanks; the use of spread spectrum techniques to gain information about the structural integrity of concrete domes; and the use of magnetic techniques to identify the alloys used in the construction of tanks.

Thompson, R. B.; Rehbein, D. K.; Bastiaans, G.; Terry, M.; Alers, R.

2002-02-25T23:59:59.000Z

166

Fluid dynamic studies for a simulated Melton Valley Storage Tank slurry  

SciTech Connect

The Melton Valley Storage Tanks (MVSTs), are used for the collection and storage of remote-handled radioactive liquid wastes. These wastes, which were typically acidic when generated, were neutralized with the addition of sodium hydroxide to protect the storage tanks from corrosion, but this caused the transuranic and heavy metals to precipitate. These wastes will eventually need to be removed from the tanks for ultimate disposal. The objective of the research activities discussed in this report is to support the design of a pipeline transport system between the MVSTs and a treatment facility. Since the wastes in the MVSTs are highly radioactive, a surrogate slurry was developed for this study. Rheological properties of the simulated slurry were determined in a test loop in which the slurry was circulated through three pipeline viscometers of different diameters. Pressure drop data at varying flow rates were used to obtain shear stress and shear rate data. The data were analyzed, and the slurry rheological properties were analyzed by the Power Law model and the Bingham plastic model. The plastic viscosity and yield stress data obtained from the rheological tests were used as inputs for a piping design software package, and the pressure drops predicted by the software compared well with the pressure drop data obtained from the test loop. The minimum transport velocity was determine for the slurry by adding known nominal sizes of glass spheres to the slurry. However, it was shown that the surrogate slurry exhibited hindered settling, which may substantially decrease the minimum transport velocity. Therefore, it may be desired to perform additional tests with a surrogate with a lower concentration of suspended solids to determine the minimum transport velocity.

Hylton, T.D.; Youngblood, E.L.; Cummins, R.L.

1994-07-01T23:59:59.000Z

167

DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary  

SciTech Connect

This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis.

DeMuth, S.F.

1996-10-01T23:59:59.000Z

168

ADMINISTRATIVE AND ENGINEERING CONTROLS FOR THE OPERATION OF VENTILATION SYSTEMS FOR UNDERGROUND RADIOACTIVE WASTE STORAGE TANKS  

SciTech Connect

Liquid radioactive wastes from the Savannah River Site are stored in large underground carbon steel tanks. The majority of the waste is confined in double shell tanks, which have a primary shell, where the waste is stored, and a secondary shell, which creates an annular region between the two shells, that provides secondary containment and leak detection capabilities should leakage from the primary shell occur. Each of the DST is equipped with a purge ventilation system for the interior of the primary shell and annulus ventilation system for the secondary containment. Administrative flammability controls require continuous ventilation to remove hydrogen gas and other vapors from the waste tanks while preventing the release of radionuclides to the atmosphere. Should a leak from the primary to the annulus occur, the annulus ventilation would also serve this purpose. The functionality of the annulus ventilation is necessary to preserve the structural integrity of the primary shell and the secondary. An administrative corrosion control program is in place to ensure integrity of the tank. Given the critical functions of the purge and annulus ventilation systems, engineering controls are also necessary to ensure that the systems remain robust. The system consists of components that are constructed of metal (e.g., steel, stainless steel, aluminum, copper, etc.) and/or polymeric (polypropylene, polyethylene, silicone, polyurethane, etc.) materials. The performance of these materials in anticipated service environments (e.g., normal waste storage, waste removal, etc.) was evaluated. The most aggressive vapor space environment occurs during chemical cleaning of the residual heels by utilizing oxalic acid. The presence of NO{sub x} and mercury in the vapors generated from the process could potentially accelerate the degradation of aluminum, carbon steel, and copper. Once identified, the most susceptible materials were either replaced and/or plans for discontinuing operations are executed.

Wiersma, B.; Hansen, A.

2013-11-13T23:59:59.000Z

169

Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank  

DOE Patents (OSTI)

The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

170

Technical assessment of cryo-compressed hydrogen storage tank systems for automotive applications.  

SciTech Connect

On-board and off-board performance and cost of cryo-compressed hydrogen storage has been assessed and compared to the DOE 2010, 2015 and ultimate targets for automotive applications. The Gen-3 prototype system of Lawrence Livermore National Laboratory was modeled to project the performance of a scaled-down 5.6-kg usable hydrogen storage system. The on-board performance of the system and high-volume manufacturing cost were determined for liquid hydrogen refueling with a single-flow nozzle and a pump that delivers 1.5 kg/min of liquid H{sub 2} to the insulated cryogenic tank capable of being pressurized to 272 atm (4000 psi). The off-board performance and cost of delivering liquid hydrogen were determined for two scenarios in which hydrogen is produced by central steam methane reforming (SMR) and by central electrolysis using electricity from renewable sources. The main conclusions from the assessment are that the cryo-compressed storage system has the potential of meeting the ultimate target for system gravimetric capacity and the 2015 target for system volumetric capacity (see Table I). The system compares favorably with targets for durability and operability although additional work is needed to understand failure modes for combined pressure and temperature cycling. The system may meet the targets for hydrogen loss during dormancy under certain conditions of minimum daily driving. The high-volume manufacturing cost is projected to be 2-4 times the current 2010 target of $4/kWh. For the reference conditions considered most applicable, the fuel cost for the SMR hydrogen production and liquid H{sub 2} delivery scenario is 60%-140% higher than the current target of $2-$3/gge while the well-to-tank efficiency is well short of the 60% target specified for off-board regenerable materials.

Ahluwalia, R. K.; Hua, T. Q.; Peng, J.-K.; Lasher, S.; McKenney, K.; Sinha, J.; Nuclear Engineering Division; TIAX LLC

2010-03-03T23:59:59.000Z

171

SAVANNAH RIVER SITE INCIPIENT SLUDGE MIXING IN RADIOACTIVE LIQUID WASTE STORAGE TANKS DURING SALT SOLUTION BLENDING  

SciTech Connect

This paper is the second in a series of four publications to document ongoing pilot scale testing and computational fluid dynamics (CFD) modeling of mixing processes in 85 foot diameter, 1.3 million gallon, radioactive liquid waste, storage tanks at Savannah River Site (SRS). Homogeneous blending of salt solutions is required in waste tanks. Settled solids (i.e., sludge) are required to remain undisturbed on the bottom of waste tanks during blending. Suspension of sludge during blending may potentially release radiolytically generated hydrogen trapped in the sludge, which is a safety concern. The first paper (Leishear, et. al. [1]) presented pilot scale blending experiments of miscible fluids to provide initial design requirements for a full scale blending pump. Scaling techniques for an 8 foot diameter pilot scale tank were also justified in that work. This second paper describes the overall reasons to perform tests, and documents pilot scale experiments performed to investigate disturbance of sludge, using non-radioactive sludge simulants. A third paper will document pilot scale CFD modeling for comparison to experimental pilot scale test results for both blending tests and sludge disturbance tests. That paper will also describe full scale CFD results. The final paper will document additional blending test results for stratified layers in salt solutions, scale up techniques, final full scale pump design recommendations, and operational recommendations. Specifically, this paper documents a series of pilot scale tests, where sludge simulant disturbance due to a blending pump or transfer pump are investigated. A principle design requirement for a blending pump is UoD, where Uo is the pump discharge nozzle velocity, and D is the nozzle diameter. Pilot scale test results showed that sludge was undisturbed below UoD = 0.47 ft{sup 2}/s, and that below UoD = 0.58 ft{sup 2}/s minimal sludge disturbance was observed. If sludge is minimally disturbed, hydrogen will not be released. Installation requirements were also determined for a transfer pump which will remove tank contents, and which is also required to not disturb sludge. Testing techniques and test results for both types of pumps are presented.

Leishear, R.; Poirier, M.; Lee, S.; Steeper, T.; Fowley, M.; Parkinson, K.

2011-01-12T23:59:59.000Z

172

Crude oil contaminated soil washing in air sparging assisted stirred tank reactor using biosurfactants  

Science Journals Connector (OSTI)

This study investigated the removal of crude oil from soil using air sparging assisted stirred tank reactors. Two surfactants (rhamnolipid and sodium dodecyl sulfate, SDS) were tested and the effects of different parameters (i.e. temperature, surfactant concentrations, washing time, volume/mass ratio) were investigated under varying washing modes namely, stirring only, air sparging only and the combination of stirring and air sparging. The results showed that SDS removed more than 80% crude oil from non-weathered soil samples, whist rhamnolipid showed similar oil removal at the third and fourth levels of the parameters tested. The oil removal ability of the seawater prepared solutions were better than those of the distilled water solutions at the first and second levels of temperature and concentration of surfactant solutions. This approach of soil washing was noted to be effective in reducing the amount of oil in soil. Therefore we suggested that a field scale test be conducted to assess the efficiency of these surfactants.

Kingsley Urum; Turgay Pekdemir; David Ross; Steve Grigson

2005-01-01T23:59:59.000Z

173

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

174

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2012 (EIA)

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

175

Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-10/24 ANL-10/24 Technical Assessment of Compressed Hydrogen Storage Tank Systems for Automotive Applications Nuclear Engineering Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information

176

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 4  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 4) presents the standards and requirements for the following sections: Radiation Protection and Operations.

Not Available

1994-04-01T23:59:59.000Z

177

High level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 6  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 6) outlines the standards and requirements for the sections on: Environmental Restoration and Waste Management, Research and Development and Experimental Activities, and Nuclear Safety.

Not Available

1994-04-01T23:59:59.000Z

178

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 4  

SciTech Connect

Radiation protection of personnel and the public is accomplished by establishing a well defined Radiation Protection Organization to ensure that appropriate controls on radioactive materials and radiation sources are implemented and documented. This Requirements Identification Document (RID) applies to the activities, personnel, structures, systems, components, and programs involved in executing the mission of the Tank Farms. The physical boundaries within which the requirements of this RID apply are the Single Shell Tank Farms, Double Shell Tank Farms, 242-A Evaporator-Crystallizer, 242-S, T Evaporators, Liquid Effluent Retention Facility (LERF), Purgewater Storage Facility (PWSF), and all interconnecting piping, valves, instrumentation, and controls. Also included is all piping, valves, instrumentation, and controls up to and including the most remote valve under Tank Farms control at any other Hanford Facility having an interconnection with Tank Farms. The boundary of the structures, systems, components, and programs to which this RID applies, is defined by those that are dedicated to and/or under the control of the Tank Farms Operations Department and are specifically implemented at the Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

179

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

180

Welding Hot Cracking of Side Shell of Drilling-Well Oil Storage Ship  

Science Journals Connector (OSTI)

...Cracks were found in the weld metal (WM) of weld-section of side shell of drilling-well oil storage ship when performing post weld radiographic...

Zhi-wei Yu; Xiao-lei Xu

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sampling and analysis of radioactive liquid wastes and sludges in the Melton Valley and evaporator facility storage tanks at ORNL  

SciTech Connect

The sampling and analysis of the radioactive liquid wastes and sludges in the Melton Valley Storage Tanks (MVSTs), as well as two of the evaporator service facility storage tanks at ORNL, are described. Aqueous samples of the supernatant liquid and composite samples of the sludges were analyzed for major constituents, radionuclides, total organic carbon, and metals listed as hazardous under the Resource Conservation and Recovery Act (RCRA). Liquid samples from five tanks and sludge samples from three tanks were analyzed for organic compounds on the Environmental Protection Agency (EPA) Target Compound List. Estimates were made of the inventory of liquid and sludge phases in the tanks. Descriptions of the sampling and analytical activities and tabulations of the results are included. The report provides data in support of the design of the proposed Waste Handling and Packaging Plant, the Liquid Low-Level Waste Solidification Project, and research and development activities (R D) activities in developing waste management alternatives. 7 refs., 8 figs., 16 tabs.

Sears, M.B.; Botts, J.L.; Ceo, R.N.; Ferrada, J.J.; Griest, W.H.; Keller, J.M.; Schenley, R.L.

1990-09-01T23:59:59.000Z

182

Request for closure, underground storage tank 2130-U: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

SciTech Connect

This document presents a summary of the activities and analytical data related to the removal of underground storage tank (UST) 2130-U, previously located at the Oak Ridge Y-12 Plant. Removal of this tank was conducted in accordance with Tennessee Department of Environment and Conservation (TDEC) regulation 1200-1-15 (1992). A completed copy of the State of Tennessee, Division of Underground Storage Tanks, Permanent Closure Report Form is included as Appendix A of this document Based on the information and data presented herein, the Oak Ridge Y-12 Plant requests permanent closure for the tank 2130-U site.

Not Available

1993-12-01T23:59:59.000Z

183

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network (OSTI)

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility, (more)

豷tensen, Marie

2005-01-01T23:59:59.000Z

184

Revised corrective action plan for underground storage tank 2331-U at the Building 9201-1 Site  

SciTech Connect

This document represents the Corrective Action Plan for underground storage tank (UST) 2331-U, previously located at Building 9201-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Tank 2331-U, a 560-gallon UST, was removed on December 14, 1988. This document presents a comprehensive summary of all environmental assessment investigations conducted at the Building 9201-1 Site and the corrective action measures proposed for remediation of subsurface petroleum product contamination identified at the site. This document is written in accordance with the regulatory requirements of the Tennessee Department of Environment and Conservation (TDEC) Rule 1200-1-15-.06(7).

Bohrman, D.E.; Ingram, E.M. [Oak Ridge Y-12 Plant, TN (United States)

1993-09-01T23:59:59.000Z

185

Allegations of diversion and substitution of crude oil. Bayou Choctaw Storage Site, Strategic Petroleum Reserve  

SciTech Connect

Investigation did not substantiate allegations that crude oil destined for the Strategic Petroleum Reserve storage site at Bayou Choctaw was diverted to private use and some other material substituted in its place. However, recommendations are made for handling intermediate transport and storage systems for crude oil to tighten security aspects. (PSB)

Not Available

1984-03-30T23:59:59.000Z

186

U.S. Crude Oil Production Forecast-Analysis of Crude Types  

Gasoline and Diesel Fuel Update (EIA)

oil production by crude type as it would be delivered from well-site or lease storage tanks. Once the oil enters transportation and distribution systems, it may be commingled...

187

Oil: Collection and Storage Procedure: 8.00 Version 3.0  

E-Print Network (OSTI)

Oil: Collection and Storage Procedure: 8.00 Version 3.0 Effective Date: 11/12/2013 A. Purpose To ensure that all used oil is collected and stored in a manner consistent with all applicable Federal, State, and Local used oil regulations and Columbia University Spill Prevention, Control

Jia, Songtao

188

Closure Report for Corrective Action Unit 124, Storage Tanks, Nevada Test Site, Nevada with Errata Sheet, Revision 0  

SciTech Connect

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 124, Storage Tanks, Nevada Test Site (NTS), Nevada. This report complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended January 2007). This CR provides documentation and justification for the closure of CAU 124 without further corrective action. This justification is based on process knowledge and the results of the investigative activities conducted in accordance with the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (NNSA/NSO, 2007). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. Therefore, this information will not be repeated in this CR.

Alfred Wickline

2008-01-01T23:59:59.000Z

189

Underground storage tank management plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

The Underground Storage Tank (UST) Program at the Oak Ridge Y-12 Plant was established to locate UST systems at the facility and to ensure that all operating UST systems are free of leaks. UST systems have been removed or upgraded in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance. With the closure of a significant portion of the USTs, the continuing mission of the UST Management Program is to manage the remaining active UST systems and continue corrective actions in a safe regulatory compliant manner. This Program outlines the compliance issues that must be addressed, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Program provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. The plan is divided into three major sections: (1) regulatory requirements, (2) active UST sites, and (3) out-of-service UST sites. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Program, and the procedures and guidance for compliance.

NONE

1997-09-01T23:59:59.000Z

190

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 134, Aboveground Storage Tanks. CAU 134 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996; as amended February 2008) and consists of four Corrective Action Sites (CASs) located in Areas 3, 15, and 29 of the Nevada Test Site (NTS) (Figure 1): (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain. CAS 03-01-03 consists of a mud tank that is located at the intersection of the 3-07 and the 3-12 Roads in Area 3 of the NTS. The tank and its contents are uncontaminated and will be dispositioned in accordance with applicable federal, state, and local regulations. This CAS will be closed by taking no further action. CAS 03-01-04 consists of a potable water tank that is located at the Core Complex in Area 3 of the NTS. The tank will be closed by taking no further action. CAS 15-01-05 consists of an aboveground storage tank (AST) and associated impacted soil, if any. This CAS is located on a steep slope near the Climax Mine in Area 15 of the NTS. The AST is empty and will be dispositioned in accordance with applicable federal, state, and local regulations. Soil below the AST will be sampled to identify whether it has been impacted by chemicals at concentrations exceeding the action levels. It appears that the tank is not at its original location. Soil will also be sampled at the original tank location, if it can be found. If soil at either location has been impacted at concentrations that exceed the action levels, then the extent of contamination will be identified and a use restriction (UR) will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent and can be readily excavated. If action levels are not exceeded, then no further action is required. CAS 29-01-01 consists of soil that has been impacted by a release or operations from an active diesel AST that fuels the generator at the Shoshone Receiver Site in Area 29 of the NTS. Soil below the AST will be sampled to identify whether it has been impacted at concentrations exceeding the action levels. If it is, then the extent of contamination will be identified and a UR will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent, can be readily excavated, and it is determined that clean closure is feasible based upon site conditions. If action levels are not exceeded, then no further action is required. Based on review of the preliminary assessment information for CAU 134 and recent site inspections, there is sufficient process knowledge to close CAU 134 using the SAFER process.

NSTec Environmental Restoration

2008-05-31T23:59:59.000Z

191

Chiller Start/Stop Optimization for a Campus-wide Chilled Water System with a Thermal Storage Tank Under a Four-Period Electricity Rate Schedule  

E-Print Network (OSTI)

The existence of a 1.4-million-gallon chilled water thermal storage tank greatly increases the operational flexibility of a campuswide chilled water system under a four-part electricity rate structure. While significant operational savings can...

Zhou, J.; Wei, G.; Turner, W. D.; Deng, S.; Claridge, D.; Contreras, O.

2002-01-01T23:59:59.000Z

192

Thermal Storage Commercial Plant Design Study for a 2-Tank Indirect Molten Salt System: Final Report, 13 May 2002 - 31 December 2004  

SciTech Connect

Subcontract report by Nexant, Inc., and Kearney and Associates regarding a study of a solar parabolic trough commercial plant design with 2-tank indirect molten salt thermal storage system.

Kelly, B.; Kearney, D.

2006-07-01T23:59:59.000Z

193

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA- 731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, S.K.

2002-01-31T23:59:59.000Z

194

Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System - 1997 Notice of Violation Consent Order  

SciTech Connect

This Quality Assurance Project Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System is one of two documents that comprise the Sampling and Analysis Plan for the HWMA/RCRA closure certification of the TRA-731 caustic and acid storage tank system at the Idaho National Engineering and Environmental Laboratory. This plan, which provides information about the project description, project organization, and quality assurance and quality control procedures, is to be used in conjunction with the Field Sampling Plan for the HWMA/RCRA Closure Certification of the TRA-731 Caustic and Acid Storage Tank System. This Quality Assurance Project Plan specifies the procedures for obtaining the data of known quality required by the closure activities for the TRA-731 caustic and acid storage tank system.

Evans, Susan Kay; Orchard, B. J.

2002-01-01T23:59:59.000Z

195

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: 01-02-01, Underground Storage Tank 07-02-01, Underground Storage Tanks 10-02-01, Underground Storage Tank 20-02-03, Underground Storage Tank 20-99-05, Tar Residue 22-02-02, Buried UST Piping 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels, leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The following text summarizes the SAFER activities that will support the closure of CAU 130: Perform site preparation activities (e.g., utilities clearances, geophysical surveys). Move or remove and dispose of debris at various CASs, as required. Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. If no COCs are present at a CAS, establish no further action as the corrective action. If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. Obtain consensus from NDEP that the preferred closure option is sufficient to protect human health and the environment. Close the underground storage tank(s) and their contents, if any, in accordance with Nevada Administrative Code regulations. Remove the lead brick(s) found at any CAS in accordance with the Resource Conservation and Recovery Act.

Alfred Wickline

2008-07-01T23:59:59.000Z

196

Basic and Acidic Leaching of Sludge from Melton Valley Storage Tank W-25  

SciTech Connect

Bench-scale leaching tests were conducted with samples of tank waste sludge from the Melton Valley Storage Tank (MVST) Facility at Oak Ridge National Laboratory (ORNL) to evaluate separation technology processes for use in concentrating the radionuclides and reducing the volume of waste for final disposal. This paper discusses the hot cell apparatus, the characterization of the sludge, the leaching methodology, and the results obtained from a variety of basic and acidic leaching tests of samples of sludge at ambient temperature. Basic leaching tests were also conducted at 75 and 95 deg C. The major alpha-,gamma., and beta-emitting radionuclides in the centrifuged, wet sludge solids were {sup 137}Cs, {sup 60}Co, {sup 154}Eu, {sup 241}Am, {sup 244}Cm {sup 90}Sr, Pu, U, and Th. The other major metals (in addition to the U and Th) and anions were Na, Ca, Al, K, Mg, NO{sub 3}{sup -},CO{sub 3}{sup 2-}, OH{sup -}, and O{sup 2-} organic carbon content was 3.0 +/- 1.0%. The pH was 13. A surprising result was that about 93% of the {sup 137}Cs in the centrifuged, wet sludge solids was bound in the solids and could not be solubilized by basic leaching at ambient temperature and 75 deg C. However, the solubility of the {sup 137}Cs was enhanced by heating the sludge to 95 deg C. In one of the tests,about 42% of the {sup 137}Cs was removed by leaching with 6.3 M NaOH at 95 deg C.Removing {sup 137}Cs from the W-25 sludge with nitric acid was a slow process. About 13% of the {sup 137}Cs was removed in 16 h with 3.0 M HNO{sub 3}. Only 22% of the {sup 137}Cs was removed in 117 h usi 6.0 M HNO{sub 3}. Successive leaching of sludge solids with 0.5 M, 3.0 M, 3.0 M; and 6.0 M HNO{sub 3} for a total mixing time of 558 h removed 84% of the {sup 137}Cs. The use of caustic leaching prior to HNO{sub 3} leaching, and the use of HF with HNO{sub 3} in acidic leaching, increased the rate of {sup 137}Cs dissolution. Gel formation proved to be one of the biggest problems associated with HNO{sub 3} leaching of the W-25 sludge.

Collins, J.L., Egan, B.Z., Beahm, E.C., Chase, C.W., Anderson, K.K.

1997-10-01T23:59:59.000Z

197

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

198

Structural Integrity Program for the 300,000-Gallon Radioactive Liquid Waste Storage Tanks at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report provides a record of the Structural Integrity Program for the 300,000-gal liquid waste storage tanks and associated equipment at the Idaho Nuclear Technology and Engineering Center, as required by U.S. Department of Energy M 435.1-1, 揜adioactive Waste Management Manual. This equipment is known collectively as the Tank Farm Facility. This report is an update, and replaces the previous report by the same title issued April 2003. The conclusion of this report is that the Tank Farm Facility tanks, vaults, and transfer systems that remain in service for storage are structurally adequate, and are expected to remain structurally adequate over the remainder of their planned service life through 2012. Recommendations are provided for continued monitoring of the Tank Farm Facility.

Bryant, Jeffrey W.

2010-08-12T23:59:59.000Z

199

Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 1. Basic formulation  

SciTech Connect

This paper presents a computer code that analyses the performance of storage tanks using water as the working fluid. The new aspects of the authors work include the following items: (a) the transient Navier-Stokes equations are expressed in two-dimensional Cartesian and cylindrical coordinates, under the assumption of the Boussinesq approximation, (b) the effective viscosity and thermal diffusivity are evaluated by using a simplified form of the Deardorff turbulence model, (c) the energy equation is solved over a domain which includes the tank and a large portion of the surrounding soil, (d) some properly defined source terms have been introduced in the governing equations to describe inlet/outlet devices inside the tank, and localized friction losses, and (e) the boundary conditions are time-dependent to correctly describe the daily heat exchanges between tank, solar collectors and heat pumps for space conditioning. The Finite Differences (FD) technique and an improved formulation of the Marker and Cell (MAC) method are used to solve the conservation equations. Comparisons with literature studies indicate discrepancies between 0.02 and 0.5%. The results of several tests simulating realistic operating conditions will be shown in the second part of the paper.

Parrini, F.; Vitale, S.; Alabiso, M. (ENEL-Italian National Electricity Board-CRTN, Milan (Italy)); Castellano, L. (MATEC S.r.l., Milan (Italy))

1992-08-01T23:59:59.000Z

200

Carbon capture and sequestration versus carbon capture utilisation and storage for enhanced oil recovery  

Science Journals Connector (OSTI)

There are 74 integrated carbon capture projects worldwide currently listed by the Global ... oil recovery and those for permanent storage of carbon dioxide in saline aquifers or in depleted ... challenges related...

Bob Harrison; Gioia Falcone

2014-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone  

Science Journals Connector (OSTI)

Abstract The small fuel cell is being researched as an alternative power source to the Li-ion battery in mobile phone. In this paper, a direct hydrogen fuel cell system which powers a mobile phone without a supplementary battery is compactly integrated below 25爉l volume at the backside of the phone. The system consists of a small (8爉l) metal hydride hydrogen storage tank with 4燣 hydrogen storage or an energy density of ?640燱爃/L, a thin air-breathing planar polymer electrolyte membrane fuel cell (PEMFC) stack (13.44燾m2犠3爉m for a volumetric power density of 335燱/L), miniature pressure regulator, and a high efficiency DC朌C voltage converting circuitry. The hydrogen storage tank is packed with the AB5 type metal hydride alloy. The eight-cell air-breathing planar stack (8爉l) is very thin (3爉m) due to a thin flexible printed circuit board current collectors as well as a unique riveting assembly and is capable of a robust performance of 2.68燱 (200爉W/cm2). A miniature pressure regulator is compact with fluidic and electrical connections within 4爉l. A miniature DC朌C voltage converter operates at an overall efficiency of 90%. Consequently, the estimated energy density of a fully integrated fuel cell system is 205燱爃/L (70.5燱爃/kg).

Sung Han Kim; Craig M. Miesse; Hee Bum Lee; Ik Whang Chang; Yong Sheen Hwang; Jae Hyuk Jang; Suk Won Cha

2014-01-01T23:59:59.000Z

202

Practical guidelines for small-volume additions of uninhibited water to waste storage tanks  

SciTech Connect

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A.

1994-12-01T23:59:59.000Z

203

Practical guidelines for small volume additions of uninhibited water to waste storage tanks  

SciTech Connect

Allowable volumes of uninhibited water additions to waste tanks are limited to volumes in which hydroxide and nitrite inhibitors reach required concentrations by diffusion from the bulk waste within five days. This diffusion process was modeled conservatively by Fick`s second law of diffusion. The solution to the model was applied to all applicable conditions which exist in the waste tanks. Plant engineers adapted and incorporated the results into a practical working procedure for controlling and monitoring the addition of uninhibited water. Research, technical support, and field engineers worked together to produce an effective solution to a potential waste tank corrosion problem.

Hsu, T.C.; Wiersma, B.J.; Zapp, P.E.; Pike, J.A. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-11-01T23:59:59.000Z

204

Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options  

SciTech Connect

This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

Klem, M.J.

1996-10-23T23:59:59.000Z

205

Collection and Usage of Reliability Data for Risk Analysis of LNG Storage Tanks  

Science Journals Connector (OSTI)

Because of their inflammable contents LNG storage facilities are considered as installations with...

Dr.Ing. O. Klingm黮ler

1986-01-01T23:59:59.000Z

206

Strategic petroleum reserve (SPR): oil-storage cavern, Sulphur Mines 6 certification tests and analysis. [Louisiana  

SciTech Connect

Well leak tests and a cavern pressure test were conducted in June and July 1981 and indicated that oil leakage from the cavern is unlikely to exceed the DOE criterion if oil is stored at near atmospheric wellhead brine pressures and higher pressures are only used for short periods of oil fill and withdrawal. The data indicate that cavern structural failure during oil storage is unlikely and that there was no leakage from cavern 6 to the adjacent cavern 7. Because of the proximity of cavern 6 to cavern 7, it is recommended that a similar type of oil be stored in these two caverns.

Beasley, R.R.

1982-04-01T23:59:59.000Z

207

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network (OSTI)

tanks used at retail gas stations. The Energy Policy Act ofapplied had far more gas stations (the location of mostwith an average of 48 gas stations in the applicant cities

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

208

DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Complete Fill of Northeast Home to Complete Fill of Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil Reserve August 26, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy (DOE), through its agent DLA Energy, has issued a solicitation seeking commercial storage contracts for the remaining 350,000 barrels of ultra low sulfur distillate needed to complete the fill of the Northeast Home Heating Oil Reserve. Offers are due no later than 9:00 a.m., August 31, 2011. Earlier this year, DOE sold its entire inventory of heating oil stocks with plans to replace it with cleaner burning ultra low sulfur distillate. New storage contracts were awarded in August 2011 for 650,000 barrels, and awards from this solicitation will complete the fill of the one million

209

An Underground Storage Tank Integrated Demonstration report. Volume 1, Waste Characterization Data and Technology Development Needs Assessment  

SciTech Connect

The Waste Characterization Data and Technology Development Needs Assessment provides direct support to the Underground Storage Tank Integrated Demonstration (UST-ID). Key users of the study`s products may also include individuals and programs within the US Department of Energy (DOE) Office of Technology Development (EM-50), the Office of Waste Operations (EM-30), and the Office of Environmental Restoration (EM-40). The goal of this work is to provide the UST-ID with a procedure for allocating funds across competing characterization technologies in a timely and defensible manner. It resulted in three primary products: 1. It organizes and summarizes information on underground storage tank characterization data needs. 2. It describes current technology development activity related to each need and flags areas where technology development may be beneficial. 3. It presents a decision process, with supporting software, for evaluating, prioritizing, and integrating possible technology development funding packages. The data presented in this document can be readily updated as the needs of the Waste Operations and Environmental Restoration programs mature and as new and promising technology development options emerge.

Quadrel, M.J.; Hunter, V.L.; Young, J.K. [Pacific Northwest Lab., Richland, WA (United States); Lini, D.C.; Goldberg, C. [Westinghouse Hanford Co., Richland, WA (United States)

1993-04-01T23:59:59.000Z

210

Compressed/Liquid Hydrogen Tanks  

Energy.gov (U.S. Department of Energy (DOE))

Currently, DOE's physical hydrogen storage R&D focuses on the development of high-pressure (10,000 psi) composite tanks, cryo-compressed tanks, conformable tanks, and other advanced concepts...

211

Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings  

Energy.gov (U.S. Department of Energy (DOE))

Dr. Jani Lehto presentation at the May 9 Pyrolysis Oil Workshop on Known Challenges Associated with the Production, Transportation, Storage and Usage of Pyrolysis Oil in Residential and Industrial Settings.

212

Computation of fluid circulation in a cryogenic storage tank and heat transfer analysis during jet impingement.  

E-Print Network (OSTI)

??The study presents a systematic single and two-phase analysis of fluid flow and heat transfer in a liquid hydrogen storage vessel for both earth and (more)

Mukka, Santosh Kumar

2005-01-01T23:59:59.000Z

213

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network (OSTI)

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

214

Comparison between continuous stirred tank reactor extractor and soxhlet extractor for extraction of El-Lajjun oil shale  

SciTech Connect

Extraction on El-Lajjun oil shale in a continuous stirred tank reactor extractor (CSTRE) and a Soxhlet extractor was carried out using toluene and chloroform as solvents. Solvents were recovered using two distillation stages, a simple distillation followed by a fractional distillation. Gas chromotography was used to test for the existence of trapped solvent in the yield. It was found that extraction using a CSTRE gave a 12% increase in yield on average compared with the Soxhlet extractor, and an optimum shale size of 1.0mm offered a better yield and solvent recovery for both techniques. It was also found that an optimum ratio of solvent to oil shale of 2:1 gave the best oil yield. The Soxhlet extractor was found to offer an extraction rate of 1 hour to complete extraction compared with 4 hours in a CSTRE. The yield in a CSTRE was found to increase on increase of stirring. When extraction was carried out at the boiling point of the solvents in a CSTRE, the yield was found to increase by 30% on average compared to that of extraction when the solvent was at room temperature. When toluene was used for extraction, the average amount of bitumen extracted was 0.032 g/g of oil shale and 76.4% of the solvent recovered, compared with 0.037 g/g of oil shale and 84.1% of the solvent recovered using a Soxhlet extractor.

Anabtawi, M.Z. [Univ. of Bahrain, Isa Town (Bahrain)

1996-02-01T23:59:59.000Z

215

E-Print Network 3.0 - ax tank farm Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

In collaboration with The Dow Chemical Company 12;A tank farm is a set of storage tanks that hold finished product... product Dedicated Tanks Without available storage ......

216

HANFORD TANK CLEANUP UPDATE  

SciTech Connect

Access to Hanford's single-shell radioactive waste storage tank C-107 was significantly improved when workers completed the cut of a 55-inch diameter hole in the top of the tank. The core and its associated cutting equipment were removed from the tank and encased in a plastic sleeve to prevent any potential spread of contamination. The larger tank opening allows use of a new more efficient robotic arm to complete tank retrieval.

BERRIOCHOA MV

2011-04-07T23:59:59.000Z

217

Final Environmental Impact Statement (Supplement to ERDA-1537, September 1977) Waste Management Operations Double-Shell Tanks for Defense High-Level Radioactive Waste Storage Savannah River Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do Do E/EIS-0062 FINAL ENVIRONMENTAL IMPACT mATEIUIENT (Supplement to ERDA-1537, September 1977) Waste ~ Management Operations Savannah River Plant ! Aiken, South Carolina Double-Shell Tanks for Defense High-Level Radioactive Waste Storage April 1980 U.S. DEPARTMENT OF ENERGY WASHINGTON. D.C.20545 1980 WL 94273 (F.R.) NOTICES DEPARTMENT OF ENERGY Office of Deputy Assistant Secretary for Nuclear Waste Management Double-Shell Tanks for Defense High-Level Radioactive Waste Storage, Savannah River Plant, Aiken, S.C. Wednesday, July 9, 1980 *46154 Record of Decision Decision. The decision has been made to complete the construction of the 14 double-shell tanks and use them to store defense high-level radioactive waste at the Savannah River Plant (SRP). Background. The SRP, located near Aiken, South Carolina, is a major installation of the

218

Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel  

SciTech Connect

The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C,

Kass, Michael D [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL; Pawel, Steven J [ORNL

2012-07-01T23:59:59.000Z

219

Experimental investigation of the night heat losses of hot water storage tanks in thermosyphon solar water heaters  

Science Journals Connector (OSTI)

The effects of night heat losses on the performance of thermosyphon solar water heaters have been experimentally examined. Three typical thermosyphon solar water heating systems with different storage tank sizes were tested by utilising the method suggested by ISO 9459-2:95. The results were analysed to quantify the night heat losses and to investigate the effect that these may have on the system daily performance. Analysis of the results showed that a linear behavior of the heat losses with the night mean ambient temperature exists. The correlation coefficients of the linearity for the three systems under consideration range from 0.93 to 0.97 with the losses reaching almost 8000 kJ at a mean ambient air temperature of 10 癈. This value represents a significant percentage of the daily collected energy making the night losses one of the most important sources of energy loss in thermosyphonic systems.

Ioannis Michaelides; Polyvios Eleftheriou; George A. Siamas; George Roditis; Paraskevas Kyriacou

2011-01-01T23:59:59.000Z

220

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 7  

SciTech Connect

This Requirements Identification Document (RID) describes an Occupational Health and Safety Program as defined through the Relevant DOE Orders, regulations, industry codes/standards, industry guidance documents and, as appropriate, good industry practice. The definition of an Occupational Health and Safety Program as specified by this document is intended to address Defense Nuclear Facilities Safety Board Recommendations 90-2 and 91-1, which call for the strengthening of DOE complex activities through the identification and application of relevant standards which supplement or exceed requirements mandated by DOE Orders. This RID applies to the activities, personnel, structures, systems, components, and programs involved in maintaining the facility and executing the mission of the High-Level Waste Storage Tank Farms.

Not Available

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network (OSTI)

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants...

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

222

High-level waste storage tank farms/242-A evaporator Standards/Requirements Identification Document (S/RID), Volume 7. Revision 1  

SciTech Connect

The High-Level Waste Storage Tank Farms/242-A Evaporator Standards/Requirements Identification Document (S/RID) is contained in multiple volumes. This document (Volume 7) presents the standards and requirements for the following sections: Occupational Safety and Health, and Environmental Protection.

Burt, D.L.

1994-04-01T23:59:59.000Z

223

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network (OSTI)

s Leaking Underground Fuel Tanks (LUFTs). Submitted to theCalifornia抯 Underground Storage Tank Program. Submitted tos Leaking Underground Fuel Tanks by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

224

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program  

E-Print Network (OSTI)

DOE HydrogenDOE Hydrogen Composite Tank ProgramComposite Tank Program Dr. Neel Sirosh DIRECTOR and validate 5,000 psi storage tanksTank efficiency: 7.5 颅 8.5 wt% 路 Validate 5,000 psi in-tank-pressure regulators 颅 Total storage system efficiency: 5.7 wt% 路 Develop and validate 10,000 psi storage tanksTank

225

Teapot Dome: Characterization of a CO2-enhanced oil recovery and storage site in Eastern Wyoming  

Science Journals Connector (OSTI)

...storage, and underground coal gasification. Vicki Stamp has more than...unparalleled opportunity for industry and others to use the site...projects are intimately linked to industry-driven enhanced oil recovery...three-dimensional models United States waste disposal Wyoming GeoRef...

S. Julio Friedmann; Vicki W. Stamp

226

SPR Storage Sites | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

SPR Storage Sites SPR Storage Sites SPR Storage Sites SPR Storage Sites graphic Emergency crude oil is stored in the Strategic Petroleum Reserve in salt caverns. Created deep within the massive salt deposits that underlie most of the Texas and Louisiana coastline, the caverns offer the best security and are the most affordable means of storage, costing up to 10 times less than aboveground tanks and 20 times less than hard rock mines. Storage locations along the Gulf Coast were selected because they provide the most flexible means for connecting to the Nation's commercial oil transport network. Strategic Reserve oil can be distributed through interstate pipelines to nearly half of the Nation's oil refineries or loaded into ships or barges for transport to other refineries.

227

Effects of cavern depth on surface subsidence and storage loss of oil-filled caverns  

SciTech Connect

Finite element analyses of oil-filled caverns were performed to investigate the effects of cavern depth on surface subsidence and storage loss, a primary performance criteria of SPR caverns. The finite element model used for this study was axisymmetric, approximating an infinite array of caverns spaced at 750 ft. The stratigraphy and cavern size were held constant while the cavern depth was varied between 1500 ft and 3000 ft in 500 ft increments. Thirty year simulations, the design life of the typical SPR cavern, were performed with boundary conditions modeling the oil pressure head applied to the cavern lining. A depth dependent temperature gradient of 0.012{degrees}F/ft was also applied to the model. The calculations were performed using ABAQUS, a general purpose of finite element analysis code. The user-defined subroutine option in ABAQUS was used to enter an elastic secondary creep model which includes temperature dependence. The calculations demonstrated that surface subsidence and storage loss rates increase with increasing depth. At lower depths the difference between the lithostatic stress and the oil pressure is greater. Thus, the effective stresses are greater, resulting in higher creep rates. Furthermore, at greater depths the cavern temperatures are higher which also produce higher creep rates. Together, these factors result in faster closure of the cavern. At the end of the 30 year simulations, a 1500 ft-deep cavern exhibited 4 percent storage loss and 4 ft of subsidence while a 3000 ft-deep cavern exhibited 33 percent storage loss and 44 ft of subsidence. The calculations also demonstrated that surface subsidence is directly related to the amount of storage loss. Deeper caverns exhibit more subsidence because the caverns exhibit more storage loss. However, for a given amount of storage loss, nearly the same magnitude of surface subsidence was exhibited, independent of cavern depth.

Hoffman, E.L.

1992-01-01T23:59:59.000Z

228

Radiation doses and hazards from processing of crude oil at the Tema oil refinery in Ghana  

Science Journals Connector (OSTI)

......petroleum products and wastes at the Tema oil refinery...radionuclides in the wastes than the crude oil and...monitoring to establish long-term effect on both public...accumulate at the bottom of storage tanks, tubings and other...uncontrolled release of waste containing TENORM, concentrated......

E. O. Darko; D. O. Kpeglo; E. H. K. Akaho; C. Schandorf; P. A. S. Adu; A. Faanu; E. Abankwah; H. Lawluvi; A. R. Awudu

2012-02-01T23:59:59.000Z

229

EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

230

OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES  

SciTech Connect

Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

2011-07-14T23:59:59.000Z

231

Hydrogen Storage - Current Technology | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Current on-board hydrogen storage approaches involve compressed hydrogen gas tanks, liquid hydrogen tanks, cryogenic compressed hydrogen, metal hydrides,...

232

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

U.S. Department of Energy, Nevada Operations Office

1999-05-05T23:59:59.000Z

233

A sequential checklist for the assessment of natural attenuation of dissolved petroleum contaminant plumes from leaking underground storage tanks  

SciTech Connect

Estimates of the number of leaking underground storage tanks (UST) are measured in the hundreds of thousands in the United States alone. The discussion in this article largely pertains to the lighter motor fuels which contain aromatic petroleum hydrocarbons. These include benzene, toluene, ethylbenzene and xylenes (BTEX). The occurrence of dissolved BTEX groundwater contaminant plumes is most commonly associated with leaking gasoline USTs. However, their association with other petroleum products is not uncommon. this article and checklist provide guidance for completing UST assessments, which can support the decision-making process presented in the ASTM Emergency Standard Guide. Following the checklist will measure that the initial site assessment results in an accurate and functional characterization of the details and subtleties of the UST Source Impact Zone. This includes evaluating the UST area to identify release pathways for residual contamination in soil and groundwater. Based on the results obtained from the Source Impact Zone Evaluation, natural attenuation can be assessed for its applicability and performance.

De Rose, N. [Langan Engineering and Environmental Services, Inc., Doylestown, PA (United States)

1995-12-31T23:59:59.000Z

234

Rational analysis of mass, momentum, and heat transfer phenomena in liquid storage tanks under realistic operating conditions: 2. Application to a feasibility study  

Science Journals Connector (OSTI)

This is the second part of a two-part paper that deals with modelling the thermal performances of storage tanks of liquid water coupled with solar-assisted heatpump systems. The computer code THESTA, described in detail in the first part, has been applied to compare configurations which differ from one another in the distribution and thickness of the insulating panels. These numerical experiments show very clearly the capability of the code in simulating realistic operating conditions. The validity of the present release is also discussed. The results obtained have been assumed to be a reliable theoretical support to the definition of the features of the storage device of a pilot plant.

F. Parrini; S. Vitale; L. Castellano

1992-01-01T23:59:59.000Z

235

Experimental analysis of a direct expansion solar assisted heat pump with integral storage tank for domestic water heating under zero solar radiation conditions  

Science Journals Connector (OSTI)

This paper deals with the experimental evaluation of the performance of a direct expansion solar assisted heat pump water heating (DX-SAHPWH) system working under zero solar radiation conditions at static heating operation mode of the storage tank. The DX-SAHPWH system includes two bare solar collectors as evaporator, a \\{R134a\\} rotary-type hermetic compressor, a thermostatic expansion valve and a helical coil condenser immersed in a 300燣 water storage tank. The zero solar radiation and stable ambient air temperature working conditions were established by placing the solar collectors into a climate chamber. The analysis is based on experimental data taken from the DX-SAHPWH provided by the manufacturer and equipped with an appropriate data acquisition system. In the paper, the experimental facility, the data acquisition system and the experimental methodology are described. Performance parameters to evaluate the energy efficiency, such as COP and equivalent seasonal performance factors (SPFe) for the heating period, and the water thermal stratification in the storage tank are defined and obtained from the experimental data. Results from the experimental analysis under transient operating working conditions of the DX-SAHPWH system and its main components are shown and discussed. Lastly, the Huang and Lee DX-SAHPWH performance evaluation method was applied resulting in a characteristic COP of 3.23 for the DX-SAHPWH system evaluated under zero solar radiation condition.

Jos Fern醤dez-Seara; Carolina Pi馿iro; J. Alberto Dopazo; F. Fernandes; Paulo X.B. Sousa

2012-01-01T23:59:59.000Z

236

Strategic Petroleum Reserve oil-storage cavern: West Hackberry 6 recertification tests and analysis  

SciTech Connect

The final cavern pressure test and well leak test made in June-July 1981 indicated combined oil leakage from the three cavern entry wells will be well within the DOE leak rate criterion of 100 bbls/y per cavern at the most severe design operating conditions of the cavern. The tests did not indicate conclusively that there was no leakage from the cavern other than from the wells. However, they did give a positive indication of no leakage to cavern 9, the nearest cavern about 200 feet away. It is believed that serious structural failure of the cavern is unlikely during long term oil storage at normal pressures, or during accidental depressurization to oil head pressures.

Goin, K.L.

1982-03-01T23:59:59.000Z

237

Life Cycle Assessment of Thermal Energy Storage: Two-Tank Indirect and Thermocline  

SciTech Connect

In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

Heath, G.; Turchi, C.; Burkhardt, J.; Kutscher, C.; Decker, T.

2009-07-01T23:59:59.000Z

238

AX Tank Farm tank removal study  

SciTech Connect

This report considers the feasibility of exposing, demolishing, and removing underground storage tanks from the 241-AX Tank Farm at the Hanford Site. For the study, it was assumed that the tanks would each contain 360 ft{sup 3} of residual waste (corresponding to the one percent residual Inventory target cited in the Tri-Party Agreement) at the time of demolition. The 241-AX Tank Farm is being employed as a ''strawman'' in engineering studies evaluating clean and landfill closure options for Hanford single-shell tank farms. The report is one of several reports being prepared for use by the Hanford Tanks Initiative Project to explore potential closure options and to develop retrieval performance evaluation criteria for tank farms.

SKELLY, W.A.

1998-10-14T23:59:59.000Z

239

SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane  

SciTech Connect

The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

Eugene A. Fritzler

2005-09-01T23:59:59.000Z

240

Cornell University's Online Aboveground Petroleum Tank  

E-Print Network (OSTI)

Cornell University's Online Aboveground Petroleum Tank Inspection Program How To's Petroleum Bulk-material-storage/petroleum-bulk-storage/Documents/Inspect_GD.pdf What is Cornell University's Online Aboveground Petroleum Tank Inspection Program? Cornell University's Online Aboveground Petroleum Tank Inspection Program enables assigned tank inspectors to record

Pawlowski, Wojtek

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - automated tank calibrations Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Reviewed 809) Summary: Safe Operating Procedure (Reviewed 809) UNDERGROUND STORAGE TANKS - AUTOMATIC TANK GAUGING... tank gauging (ATG) system requirements for Underground...

242

Regulation of Leaky Underground Fuel Tanks: An Anatomy of Regulatory Failure  

E-Print Network (OSTI)

any leaks. (b) Most storage tank owners have only vagueaddition, regulations for tanks installed prior to Januarypertaining to existing tanks are more appropriately termed

White, Christen Carlson

1995-01-01T23:59:59.000Z

243

Accelerated safety analyses - structural analyses Phase I - structural sensitivity evaluation of single- and double-shell waste storage tanks  

SciTech Connect

Accelerated Safety Analyses - Phase I (ASA-Phase I) have been conducted to assess the appropriateness of existing tank farm operational controls and/or limits as now stipulated in the Operational Safety Requirements (OSRs) and Operating Specification Documents, and to establish a technical basis for the waste tank operating safety envelope. Structural sensitivity analyses were performed to assess the response of the different waste tank configurations to variations in loading conditions, uncertainties in loading parameters, and uncertainties in material characteristics. Extensive documentation of the sensitivity analyses conducted and results obtained are provided in the detailed ASA-Phase I report, Structural Sensitivity Evaluation of Single- and Double-Shell Waste Tanks for Accelerated Safety Analysis - Phase I. This document provides a summary of the accelerated safety analyses sensitivity evaluations and the resulting findings.

Becker, D.L.

1994-11-01T23:59:59.000Z

244

Optimal Tank Farm Operation Sebastian Terrazas-Moreno  

E-Print Network (OSTI)

Optimal Tank Farm Operation Sebastian Terrazas-Moreno Ignacio E. Grossmann John M. Wassick EWOIn collaboration with The Dow Chemical Company #12;A tank farm is a set of storage tanks that hold finished product until it is shipped Each tank can only hold one Loading of product takes place only from storage tanks

Grossmann, Ignacio E.

245

Predictive control and thermal energy storage for optimizing a multi-energy district boiler  

E-Print Network (OSTI)

and used when demand is high, instead of engaging the gas-fuel oil boiler. Keywords: multi-energy district believe that by 2015 the supply of oil and natural gas will be unable to keep up with demand [1 of La Rochelle (France) adding to the plant a controlled thermal storage tank. This plant supplies

Paris-Sud XI, Universit茅 de

246

Strategic Petroleum Reserve (SPR) oil storage cavern sulfur mines 7. Certification tests and analysis  

SciTech Connect

Cavern 7 at the Sulphur Mines, Louisiana SPR oil storage site was certified for oil storage on December 17, 1977. The Dowell Sonar caliper survey taken November 29, 1977, indicated a total cavern volume of 5.60 x 10/sup 6/ bbls. The surveys taken December 19, 1979, and June 10, 1981, indicated a total cavern volume of 6.33 x 10/sup 6/ and 6.36 x 10/sup 6/ bbls respectively. This volume increase was a result of continued brining, prior to June 10, 1981, to get brine enrichment for PPG. A well leak test in May 1981 indicated some well leakage. Well workover actions to repair well and wellhead leaks were taken by Texas Brine Corp/Dravo Utility Constructors, Inc. (TBC/DUCI). Testing was restarted in June 1981 using test procedures which were developed in conjunction with the procedures and testing of West Hackberry cavern 6. This report includes a general history of the cavern and a description of the certification testing, analyses, conclusions, and recommendations. The data from cavern 7 and 6 indicate no fluid communication between caverns. Cavern 7 is about 160 ft from the dome edge. The pressure data at maximum operating pressure is comparable to the data from both West Hackberry cavern 6 and Sulphur Mines cavern 6. Therefore, it is considered unlikely that there is a leak to the dome edge. The well test data indicates leaks in the well casing seat area are approximately 100 bbls/yr.

Beasley, R.R.

1982-05-01T23:59:59.000Z

247

Evaluating the effects of the number of caverns on the performance of underground oil storage facilities  

SciTech Connect

Three dimensional finite element calculations were performed to investigate the effect field size, in terms of the number of caverns, on the performance of SPR oil storage caverns leached in domal salt (interms of surface subsidence, storage losses, and cavern integrity). The calculations were performed for cavern fields containing 1, 7, 19, and an infinite number of caverns. The magnitude and volume of subsidence was significantly affected by increasing the number of caverns (nearly an order of magnitude increase was predicted for each increase in field size), while the extent of subsidence (approximately 2000 m fromthe center of the field) and storage loss were not. Furthermore, the percentage of storage loss volume manifested as surface subsidence increased as the cavern field was enlarged. This was attributed to elasticvolumetric dilatation of overlying strata. The multiple cavern calculations demonstrate that storage losses are greater for caverns farther from the center of the caverns field. Based on an accumulated strain stability criteria, the larger cavern fields are predicted to have a shorter life. This criteria also indicates that caverns on the periphery of a field may show signs of instability before the inner caverns. The West Hackberry site (containing 22 caverns) subsidence data closely agrees with the 19 cavern model subsidence predictions, providing confidence in the calculations. Even a 19 cavern field, substantially large by SPR standards, does not approach the behavior predicted by infinite cavern models (which are frequently used because they are economical). This demonstrates that 3D modeling is required to accurately investigate the performance of a multi-cavern array. Although based on a typical SPR cavern design, the results of this study describe mechanics common to all multi-cavern fields and should, in general, be useful tocavern engineers and architects.

Hoffman, E.L.; Ehgartner, B.L.

1992-01-01T23:59:59.000Z

248

18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents various nomographs, which are based on the guidelines presented in American Petroleum Institute (API) Publication No. 2519, and used to estimate the average evaporation loss from internal floating-roof tanks. The loss determined from the charts can be used to evaluate the economies of seal conversion and to reconcile refinery, petrochemical plant, and storage terminal losses. The losses represent average standing losses only and they do not cover losses associated with the movement of product into or out of the tank. The nomographs can estimate evaporation loss for product true vapor pressures (TVP) ranging from 1.5 to 14 psia, the most commonly used seals for average and tight fit conditions, tank diameters ranging from 50-250 ft, welded and bolted designs, and both self-supporting and column-supported fixed roof designs. Typical values of the deck fitting loss factors presented as a function of tank diameters in the API Publication 2519 have been used in the preparation of these nomographs. In addition, for the calculations of the evaporation loss for the bolted deck design, a typical deck seam loss factor value of 0.2 has been assumed.

2005-01-01T23:59:59.000Z

249

Physicochemical and sensory characteristics of virgin olive oils in relation to cultivar, extraction system and storage conditions  

Science Journals Connector (OSTI)

Abstract This research was carried out to evaluate the effects of variety, extraction system and storage conditions such as packaging type and temperature variation on the quality of virgin olive oil. Several parameters were studied, namely, quality indices, polyphenols, tocopherols, volatile compounds and sensory properties. Thus, two olive varieties Chemlali (Tunisia) and Coratina (Italy) were selected. The olive oils were extracted by different industrial processes (super press, dual and triple phase decanter) then stored in the established conditions (ambient and refrigerator temperature) in the following packaging materials: clear and dark glass bottles and metal bottles. The oils were analyzed before and after being stored for 9爉onths. Principal Component Analysis and Graphical Modeling were applied to fully explore the influence of the studied factors. Results revealed that among samples, oils from Coratina cultivar were the richest in ?-tocopherol while Chemlali oils contained the highest amount of ?-tocopherol. Quality indices namely K232 and K270 values were mainly influenced by the storage date and packaging material. Meanwhile, free acidity and peroxide value were mainly influenced by the extraction system. Concerning tocopherols, ?-tocopherol content was mainly influenced by the packaging material, ?-tocopherol was mainly affected by the storage date, for ?-tocopherol content the main influencing factor was the cultivar whereas for ?-tocopherol the main influencing factor was the extraction system. Regarding volatile compounds their amounts were influenced mainly by the storage date, that was influenced by the packaging material, where a considerable decrease was observed after storage which was reflected by the change of sensory characteristics of stored oils: loss of positive attributes fruitiness, bitterness and pungency and onset of defects which were mainly influenced by the storage date (fruity and bitter attributes), packaging material (pungent, rancid and fusty attributes) and extraction system (musty attribute).

Kaouther Ben-Hassine; Amani Taamalli; Sana Ferchichi; Anis Mlaouah; Cinzia Benincasa; Elvira Romano; Guido Flamini; Aida Lazzez; Naziha Grati-kamoun; Enzo Perri; Dhafer Malouche; Mohamed Hammami

2013-01-01T23:59:59.000Z

250

An Assessment of Technologies to Provide Extended Sludge Retrieval from Underground Storage Tanks at the Hanford Site  

SciTech Connect

The purpose of this study was to identify sludge mobilization technologies that can be readily installed in double-shell tanks along with mixer pumps to augment mixer pump operation when mixer pumps do not adequately mobilize waste. The supplementary technologies will mobilize sludge that may accumulate in tank locations out-of-reach of the mixer-pump jet and move the sludge into the mixer-pump range of operation. The identified technologies will be evaluated to determine if their performances and configurations are adequate to meet requirements developed for enhanced sludge removal systems. The study proceeded in three parallel paths to identify technologies that: (1) have been previously deployed or demonstrated in radioactive waste tanks, (2) have been specifically evaluated for their ability to mobilize or dislodge waste simulants with physical and theological properties similar to those anticipated during waste retrieval, and (3) have been used in similar industrial conditions, bu t not specifically evaluated for radioactive waste retrieval.

JA Bamberger

2000-08-02T23:59:59.000Z

251

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 5  

SciTech Connect

The Fire Protection functional area for the Hanford Site Tank Farm facilities and support structures is based on the application of relevant DOE orders, regulations, and industry codes and standards. The fire protection program defined in this document may be divided into three areas: (1) organizational, (2) administrative programmatic features, and (3) technical features. The information presented in each section is in the form of program elements and orders, regulations, industry codes, and standards that serve as the attributes of a fire protection program for the Tank Farm facilities. Upon completion this document will be utilized as the basis to evaluate compliance of the fire protection program being implemented for the Tank Farm facilities with the requirements of DOE orders and industry codes and standards.

Not Available

1994-04-01T23:59:59.000Z

252

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

253

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks 禄 Storage Environmental Risks 禄 Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

254

Tank characterization reference guide  

SciTech Connect

Characterization of the Hanford Site high-level waste storage tanks supports safety issue resolution; operations and maintenance requirements; and retrieval, pretreatment, vitrification, and disposal technology development. Technical, historical, and programmatic information about the waste tanks is often scattered among many sources, if it is documented at all. This Tank Characterization Reference Guide, therefore, serves as a common location for much of the generic tank information that is otherwise contained in many documents. The report is intended to be an introduction to the issues and history surrounding the generation, storage, and management of the liquid process wastes, and a presentation of the sampling, analysis, and modeling activities that support the current waste characterization. This report should provide a basis upon which those unfamiliar with the Hanford Site tank farms can start their research.

De Lorenzo, D.S.; DiCenso, A.T.; Hiller, D.B.; Johnson, K.W.; Rutherford, J.H.; Smith, D.J. [Los Alamos Technical Associates, Kennewick, WA (United States); Simpson, B.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-09-01T23:59:59.000Z

255

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network (OSTI)

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

256

Monthly Tank Inspection Log Name of Campus  

E-Print Network (OSTI)

Monthly Tank Inspection Log Name of Campus Street Address of Campus City, State, and Zip Code of Campus 1 of 2 1. Facility PBS Registration Number 6. DISTRIBUTE TO : 2. Tank Number 3. Tank Registered(S) Satisfactory Repair or Adjustment Required Not Applicable Additional Comments Attached ABOVEGROUND STORAGE TANK

Rosen, Jay

257

DOE Vehicular Tank Workshop Sandia National Laboratories  

E-Print Network (OSTI)

DOE Vehicular Tank Workshop Sandia National Laboratories Livermore, CA April 29, 2010 Thursday the deployment of hydrogen storage tanks in early market fuel cell applications for vehicles Workshop Objectives at the first workshop in more detail, including Type 4 tank and PRD testing, tank service life and tracking

258

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network (OSTI)

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

259

IMPROVEMENT OF METHANE STORAGE IN ACTIVATED CARBON USING METHANE HYDRATE  

E-Print Network (OSTI)

and particles. As the natural gas resources are enormous, it represents a good alternative to oil in term natural gas distribution network. Secondly, at low pressure, the tank geometry can adopt various shapes, gas storage INTRODUCTION. With the massive increase of the urban traffic, coupled with its large

Paris-Sud XI, Universit茅 de

260

Energy Storage and Solar Power: An Exaggerated Problem  

Science Journals Connector (OSTI)

...scale, that could reduce costs and dramatically...work to sub-tly reduce the storage problem...only when the consumption of oil falls significantly...By holding back water that would otherwise...solar sources make up a reasonably small...already available. Water tanks, rock beds...specially designed pools can be used for...

WILLIAM D. METZ

1978-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

The potential of glycerol in freezing preservation of turbine oil-degrading bacterial consortium and the ability of the revised consortium to degrade petroleum wastes  

Science Journals Connector (OSTI)

Abstract The turbine oil (TuO)-degrading bacterial consortium Tank-2 (original Tank-2) was preserved as a glycerol stock at?80牥C from 2009 to 2012. Storage methods have been unavailable so far for any TuO-degrading bacterial consortia or isolates. To evaluate the usefulness of glycerol stock, the original Tank-2 consortium frozen in glycerol at?80牥C was thawed and then revived by repeated culture in mineral salts medium (MSM) containing 0.5% (w/w) TuO (revived Tank-2). The revived Tank-2 consortium exhibited a high activity to degrade TuO, which was equivalent to that of original Tank-2. It also degraded car engine oil, used car engine oil, Arabian light and Vityaz crude oils and TuO in wastewater. These results indicated that a glycerol stock at?80牥C was useful for storing Tank-2. PCR-denaturing gradient gel electrophoresis (DGGE) that targeted the V3 regions of 16S rRNA gene sequences showed that the DGGE band profiles of principal bacteria were significantly different between the original and revived Tank-2 consortia and between the revived Tank-2 culture grown in MSM containing TuO and that grown in MSM containing other types of petroleum products. This suggested that bacterial strains inherently residing in Tank-2 could adjust their compositions based on the storage and culture conditions.

Kumiko Kurachi; Reia Hosokawa; Marina Takahashi; Hidetoshi Okuyama

2014-01-01T23:59:59.000Z

262

Lifecycle Verification of Polymeric Storage Tank Liners - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Barton Smith (Primary Contact) and Lawrence M. Anovitz Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, TN 37831 Phone: (865) 574-2196 Email: smithdb@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Start Date: June 2008 Projected End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Continue temperature cycling and permeation * measurements on tank liner polymers, and use permeation data to assess ability of tank liners to retain a steady-state hydrogen discharge rate that does not exceed 110% of the 75 normal cubic centimeters per minute (Ncc)/min permeation requirement of SAE International

263

TANK SPACE OPTIONS REPORT  

SciTech Connect

Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

WILLIS WL; AHRENDT MR

2009-08-11T23:59:59.000Z

264

Hydrogen Tank Testing R&D | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Tank Testing R&D Hydrogen Tank Testing R&D These slides were presented at the Onboard Storage Tank Workshop on April 29, 2010. hydrogentanktestingostw.pdf More Documents...

265

Effect of Heat Treatment Process on Mechanical Properties and Microstructure of a 9% Ni Steel for Large LNG Storage Tanks  

Science Journals Connector (OSTI)

In recent years, liquefied natural gas (LNG) has been massively consumed with rapid development of the economy in China because LNG has a higher value of combustion and ... oil and coal. Since the volume of LNG i...

J. M. Zhang; H. Li; F. Yang; Q. Chi

2013-12-01T23:59:59.000Z

266

Feasibility study for measurement of insulation compaction in the cryogenic rocket fuel storage tanks at Kennedy Space Center by fast/thermal neutron techniques  

SciTech Connect

The liquid hydrogen and oxygen cryogenic storage tanks at John F. Kennedy Space Center (KSC) use expanded perlite as thermal insulation. Some of the perlite may have compacted over time, compromising the thermal performance and also the structural integrity of the tanks. Neutrons can readily penetrate through the 1.75 cm outer steel shell and through the entire 120 cm thick perlite zone. Neutrons interactions with materials produce characteristic gamma rays which are then detected. In compacted perlite the count rates in the individual peaks in the gamma ray spectrum will increase. Portable neutron generators can produce neutron simultaneous fluxes in two energy ranges: fast (14 MeV) and thermal (25 meV). Fast neutrons produce gamma rays by inelastic scattering which is sensitive to Si, Al, Fe and O. Thermal neutrons produce gamma rays by radiative capture in prompt gamma neutron activation (PGNA), which is sensitive to Si, Al, Na, K and H among others. The results of computer simulations using the software MCNP and measurements on a test article suggest that the most promising approach would be to operate the system in time-of-flight mode by pulsing the neutron generator and observing the subsequent die away curve in the PGNA signal.

Livingston, R. A. [Materials Science and Engineering Dept., U. of Maryland, College Park, MD (United States); Schweitzer, J. S. [Physics Dept., U. of Connecticut, Storrs (United States); Parsons, A. M. [Goddard Space Flight Center, Greenbelt (United States); Arens, E. E. [John F. Kennedy Space Center, FL (United States)

2014-02-18T23:59:59.000Z

267

Gaseous and Liquid Hydrogen Storage  

Energy.gov (U.S. Department of Energy (DOE))

Today's state of the art for hydrogen storage includes 5,000- and 10,000-psi compressed gas tanks and cryogenic liquid hydrogen tanks for on-board hydrogen storage.

268

Technical requirements specification for tank waste retrieval  

SciTech Connect

This document provides the technical requirements specification for the retrieval of waste from the underground storage tanks at the Hanford Site. All activities covered by this scope are conducted in support of the Tank Waste Remediation System (TWRS) mission.

Lamberd, D.L.

1996-09-26T23:59:59.000Z

269

Three-dimensional numerical simulation of settling and resuspension of solids in storage tanks with air injection recirculators  

SciTech Connect

Transient three-dimensional finite-difference numerical modeling of flow with settling solids in a 3.7 x 10/sup 3/ m/sup 3/ tank was performed. The number-average diameter of the particles was 15..mu..m and nominal volumetric concentration was 24 percent. Using dilute suspension, concentration dependent viscosity, and settling velocity assumption, modeled air lift circulators were shown to be sufficient to maintain solids in suspension during normal operation. Resuspension of solids was also shown to be accomplished by impulsive circulator startup in the absence of particle agglomeration. Settling velocity was shown to be a dominant parameter under the assumptions made.

Eyler, L.L.

1984-01-01T23:59:59.000Z

270

High-level waste storage tank farms/242-A evaporator standards/requirements identification document (S/RID), Vol. 1  

SciTech Connect

The purpose of this Requirements Identification Document (RID) section is to identify, in one location, all of the facility specific requirements and good industry practices which are necessary or important to establish an effective Issues Management Program for the Tank Farm Facility. The Management Systems Functional Area includes the site management commitment to environmental safety and health (ES&H) policies and controls, to compliance management, to development and management of policy and procedures, to occurrence reporting and corrective actions, resource and issue management, and to the self-assessment process.

Not Available

1994-04-01T23:59:59.000Z

271

TEX-A-SYST: Reducing the Risk of Ground Water Contamination by Improving Petroleum Product Storage  

E-Print Network (OSTI)

This publication focuses on safe storage of gasoline, diesel, kerosene and liquid heating fuels. It includes information about storage tank location, tank design and installation, tank monitoring, and tank closure....

Harris, Bill L.; Hoffman, D.; Mazac Jr., F. J.; Kantor, A. S.

1997-08-29T23:59:59.000Z

272

Evaluation of the TORE(R)Lance for Radioactive Waste Mobilization and Retrieval from Underground Storage Tanks  

SciTech Connect

The TORE? Lance is a hand-held hydro transportation device with the ability to convey solids at pre-determined slurry concentrations over great distances. The TORE? Lance head generates a precessing vortex core to mobilize solids. Solids retrieval is accomplished using an eductor. The device contains no parts and requires pressurized fluid to operate the eductor and produce mobilization. Three configurations of TORE? Lance operation were evaluated for mobilization and eduction during these tests: compressed air, water, and an air and water mixture. These tests have shown that the TORE? Lance is a tool that can be used at Hanford for mobilization and retrieval of wastes. The system is versatile and can be configured for many types of applications. These studies showed that the diverse applications require unique solutions so care is recommended for TORE? Lance equipment selection for each application. The two components of the TORE? Lance are the precessing vortex for mobilizing and the eductor for retrieval. The precessing vortex is sensitive to fluid flow rate and pressure. In the hand-held unit these parameters are controlled both internally, by changing shim spacing, and externally by controlling the flow split between the eductor and the head. For in-tank applications out-of-tank control of both these parameters are recommended.

Bamberger, Judith A.; Bates, Cameron J.; Bates, James M.; White, M.

2002-09-25T23:59:59.000Z

273

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region抯 deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region抯 large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

274

Working Group Meeting Presentation Guidance at a Glance Distributed Reforming of Biomass Pyrolysis Oils  

E-Print Network (OSTI)

(75%) Char (13%) Gas (12%) Catalytic Auto-thermal Reforming of Bio-Oil at 650oC: 0.71 CH1.98O0.76 + 0 Case (Ethanol Case) Bio-oil Storage Tank $106,040 Reformer $803,000 Shift Reactor, PSA, BOP $1 Oils DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group Meeting November 6

275

Hanford Tank Waste Residuals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Hanford Tank Waste Residuals DOE HLW Corporate Board November 6, 2008 Chris Kemp, DOE ORP Bill Hewitt, YAHSGS LLC Hanford Tanks & Tank Waste * Single-Shell Tanks (SSTs) - ~27 million gallons of waste* - 149 SSTs located in 12 SST Farms - Grouped into 7 Waste Management Areas (WMAs) for RCRA closure purposes: 200 West Area S/SX T TX/TY U 200 East Area A/AX B/BX/BY C * Double-Shell Tanks (DSTs) - ~26 million gallons of waste* - 28 DSTs located in 6 DST Farms (1 West/5 East) * 17 Misc Underground Storage Tanks (MUST) * 43 Inactive MUST (IMUST) 200 East Area A/AX B/BX/BY C * Volumes fluctuate as SST retrievals and 242-A Evaporator runs occur. Major Regulatory Drivers * Radioactive Tank Waste Materials - Atomic Energy Act - DOE M 435.1-1, Ch II, HLW - Other DOE Orders * Hazardous/Dangerous Tank Wastes - Hanford Federal Facility Agreement and Consent Order (TPA) - Retrieval/Closure under State's implementation

276

Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jon Knudsen (Primary Contact), Don Baldwin Lincoln Composites 5117 N.W. 40 th Street Lincoln, NE 68524 Phone: (402) 470-5039 Email: jknudsen@lincolncomposites.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18062 Project Start Date: July 1, 2008 Project End Date: April 30, 2013 Fiscal Year (FY) 2012 Objectives The objective of this project is to design and develop the most effective bulk hauling and storage solution for hydrogen in terms of: Cost * Safety * Weight * Volumetric Efficiency * Technical Barriers This project addresses the following technical barriers

277

Economic analysis of using above ground gas storage devices for compressed air energy storage system  

Science Journals Connector (OSTI)

Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on...

Jinchao Liu; Xinjing Zhang; Yujie Xu; Zongyan Chen

2014-12-01T23:59:59.000Z

278

E-Print Network 3.0 - aqueous tank waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: by tank truck. The various wastes, when received, are pumped to storage tanks, then blended to produce... of Liquid Fluid Wastes General Description Light...

279

E-Print Network 3.0 - acidic tank waste Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

> >> 1 Attachment A PPOP 08.10 Summary: but not limited to: < East and West Condensate Tanks < DFT < Waste Pit < Surge Tank < Softeners < Polishers < RO... < Refrigerant Storage...

280

Tanks focus area. Annual report  

SciTech Connect

The U.S. Department of Energy Office of Environmental Management is tasked with a major remediation project to treat and dispose of radioactive waste in hundreds of underground storage tanks. These tanks contain about 90,000,000 gallons of high-level and transuranic wastes. We have 68 known or assumed leaking tanks, that have allowed waste to migrate into the soil surrounding the tank. In some cases, the tank contents have reacted to form flammable gases, introducing additional safety risks. These tanks must be maintained in the safest possible condition until their eventual remediation to reduce the risk of waste migration and exposure to workers, the public, and the environment. Science and technology development for safer, more efficient, and cost-effective waste treatment methods will speed up progress toward the final remediation of these tanks. The DOE Office of Environmental Management established the Tanks Focus Area to serve as the DOE-EM`s technology development program for radioactive waste tank remediation in partnership with the Offices of Waste Management and Environmental Restoration. The Tanks Focus Area is responsible for leading, coordinating, and facilitating science and technology development to support remediation at DOE`s four major tank sites: the Hanford Site in Washington State, Idaho National Engineering and Environmental Laboratory in Idaho, Oak Ridge Reservation in Tennessee, and the Savannah River Site in South Carolina. The technical scope covers the major functions that comprise a complete tank remediation system: waste retrieval, waste pretreatment, waste immobilization, tank closure, and characterization of both the waste and tank. Safety is integrated across all the functions and is a key component of the Tanks Focus Area program.

Frey, J.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

In-tank recirculating arsenic treatment system  

DOE Patents (OSTI)

A low-cost, water treatment system and method for reducing arsenic contamination in small community water storage tanks. Arsenic is removed by using a submersible pump, sitting at the bottom of the tank, which continuously recirculates (at a low flow rate) arsenic-contaminated water through an attached and enclosed filter bed containing arsenic-sorbing media. The pump and treatment column can be either placed inside the tank (In-Tank) by manually-lowering through an access hole, or attached to the outside of the tank (Out-of-Tank), for easy replacement of the sorption media.

Brady, Patrick V. (Albuquerque, NM); Dwyer, Brian P. (Albuquerque, NM); Krumhansl, James L. (Albuquerque, NM); Chwirka, Joseph D. (Tijeras, NM)

2009-04-07T23:59:59.000Z

282

High-Pressure Hydrogen Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8 February 8 th , 2005 Mark J. Warner, P.E. Principal Engineer Quantum Technologies, Inc. Irvine, CA Low Cost, High Efficiency, Low Cost, High Efficiency, High Pressure Hydrogen Storage High Pressure Hydrogen Storage This presentation does not contain any proprietary or confidential information. 70 MPa Composite Tanks Vent Line Ports Defueling Port (optional) Fill Port Filter Check Valve Vehicle Interface Bracket with Stone Shield In Tank Regulator with Solenoid Lock-off Pressure Relief Device Manual Valve Compressed Hydrogen Storage System In-Tank Regulator Pressure Sensor (not visible here) Pressure Relief Device (thermal) In Tank Gas Temperature Sensor Carbon Composite Shell (structural) Impact Resistant Outer Shell (damage resistant) Gas Outlet Solenoid Foam Dome (impact protection)

283

Ferrocyanide tank waste stability  

SciTech Connect

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove [sup 137]CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

284

ECOSYSTEM COMPONENT CHARACTERIZATION 461 Failing or nearby septic tank systems  

E-Print Network (OSTI)

ECOSYSTEM COMPONENT CHARACTERIZATION 461 路 Failing or nearby septic tank systems 路 Exfiltration from sanitary sewers in poor repair 路 Leaking underground storage tanks and pipes 路 Landfill seepage or natural environment Leaks from underground storage tanks and pipes are a common source of soil

Pitt, Robert E.

285

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,  

E-Print Network (OSTI)

FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For be divided into two parts: 路 Well-to-Tank (WTT) Feedstock extraction, transport, storage, processing, distribution, transport, and storageTank-to-Wheels (TTW) Refueling, consumption and evaporation The full

286

Hydrogen Storage Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

storing hydrogen include: Physical storage of compressed hydrogen gas in high pressure tanks (up to 700 bar) Physical storage of cryogenic liquid hydrogen (cooled to -253C, at...

287

E-Print Network 3.0 - active catch tanks Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

catch tanks Search Powered by Explorit Topic List Advanced Search Sample search results for: active catch tanks Page: << < 1 2 3 4 5 > >> 1 Tips For Residential Heating Oil Tank...

288

Corrective Action Decision Document for Corrective Action Unit 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada: Revision 0  

SciTech Connect

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's selection of recommended corrective action alternatives (CAAs) appropriate to facilitate the closure of Corrective Action Unit (CAU) 127: Areas 25 and 26 Storage Tanks, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 127 consists of twelve corrective action sites (CASs). Corrective action investigation (CAI) activities were performed from February 24, 2003, through May 2, 2003, with additional sampling conducted on June 6, 2003, June 9, 2003, and June 24, 2003. Analytes detected during these investigation activities were evaluated against preliminary action levels to identify contaminants of concern (COCs) for each CAS, resulting in the determination that only two of the CASs did not have COCs exceeding regulatory levels. Based on the evaluation of analytical data from the CAI, review of future and current operations in Areas 25 and 26 of the Nevada Test Site, and the detailed and comparative analysis of the potential CAAs, the following alternatives were developed for consideration: (1) No Further Action is the preferred corrective action for the two CASs (25-02-13, 26-02-01) identified with no COCs; (2) Clean Closure is the preferred corrective action for eight of the CASs (25-01-05, 25-23-11, 25-12-01, 25-01-06, 26-01-01, 26-01-02, 26-99-01, 26-23-01); and (3) Closure in Place is the preferred corrective action for the remaining two CASs (25-01-07, 25-02-02). These three alternatives were judged to meet all requirements for the technical components evaluated. Additionally, these alternatives meet all applicable state and federal regulations for closure of the sites at CAU 127 and will reduce potential future exposure pathways to the contaminated media.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-09-26T23:59:59.000Z

289

SLOSHING OF LIQUIDS IN RIGID ANNULAR CYLINDRICAL AND TORUS TANKS DUE TO SEISMIC GROUND MOTIONS  

E-Print Network (OSTI)

response of water in annular tank model of water = 1 underof Fixed-Base Liquid Storage Tank,'' U.S. , Japan Seminar onSloshing in Axisymmetric Tanks, 11 Ph.D. Dissertation,

Aslam, M.

2013-01-01T23:59:59.000Z

290

Behavior of Uranium(VI) during HEDPA Leaching for Aluminum Dissolution in Tank Waste Sludges  

E-Print Network (OSTI)

Aluminum Dissolution in Tank Waste Sludges Brian A. PowellThe underground storage tanks at the Hanford site containtime, the material in the tanks has stratified to produce a

Powell, Brian A.; Rao, Linfeng; Nash, Kenneth L.; Martin, Leigh

2006-01-01T23:59:59.000Z

291

Geotechnical properties of oil-contaminated Kuwaiti sand  

SciTech Connect

Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering] [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1995-05-01T23:59:59.000Z

292

FY 2014 Research Projects on CO2 Storage in Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE))

In FY 2014, the U.S. Department of Energy selected five projects focused on advancing the state of knowledge and developing and validating technologies that would allow for more effective storage...

293

Chapter 18 - Tanks  

Science Journals Connector (OSTI)

Publisher Summary This chapter describes the tank's vapor formation rate. When sizing the vapor piping for a manifold expansion roof tank system, the rate of vapor formation must be known. While the rate of vapor formation can be computed by longhand methods, the calculation is tedious and takes much valuable time. The chapter also explains the hand-held calculator program that simplifies dike computations. Earthen dikes are widely used all over the world to contain flammable volumes of above-ground storage. They perform two vital functions: to prevent loss of fluid into the environment and to reduce the likelihood of fire spreading from one tank to another. Sizing dikes by conventional methods is a time-consuming, trial-and-error process. A complete assessment of the problem involves: applicable codes and regulations; land area available; topography of the area; soil characteristics; and the stipulated volume contained by dike and other dimensions of the dike section.

E.W. McAllister

2009-01-01T23:59:59.000Z

294

Tank Closure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Closure Closure Sherri Ross Waste Removal and Tank Closure Waste Disposition Project Programs Division Savannah River Operations Office Presentation to the DOE HLW Corporate Board 2 飪 Overview and Status of SRS Tank Closure Program 飪 Issues/Challenges 飩 Communications 飩 Schedule Performance 飩 Ceasing Waste Removal 飩 Compliance with SC Water Protection Standards 飪 Questions? Topics 3 Overview of SRS Tank Closure Program 飪 Two Tank Farms - F Area and H Area 飪 Permitted by SC as Industrial Wastewater Facilities under the Pollution Control Act 飪 Three agency Federal Facility Agreement (FFA) 飩 DOE, SCDHEC, and EPA 飪 51 Tanks 飩 24 old style tanks (Types I, II and IV) 飪 Do not have full secondary containment 飪 FFA commitments to close by 2022 飪 2 closed in 1997

295

Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 25-25-09, Spill H940825C (from UST 25-3101-1) 25-25-14, Spill H940314E (from UST 25-3102-3) 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

296

Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: This page that refers the reader to the SIR document for additional information The cover, title, and signature pages of the SIR document The NDEP approval letter The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: 12-25-08, Spill H950524F (from UST 12-B-1) 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

297

BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT  

E-Print Network (OSTI)

2000-41 BEHAVIOUR OF A HIGHLY PRESSURISED TANK OF GHz, SUBMITTED TO A THERMAL OR MECHANICAL IMPACT will significantly reduce the volume of the necessary tank(s). Whatever this pressure and whatever the volume of the tank(s), the storage System must be designed in such a way that the consequences of an accident

Paris-Sud XI, Universit茅 de

298

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop  

E-Print Network (OSTI)

004.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing Discuss CNG Field Performance Data Discuss Safety Testing of Type 4 Tanks Current work to support Codes & Standards Development #12;3 Storage Tank Technologies 4 basic types of tank designs Type 1 颅 all metal

299

Opportunities for Using Anthropogenic CO2 for Enhanced Oil Recovery and CO2 Storage  

Science Journals Connector (OSTI)

Colorado and Wyoming ... At the end of a CO2 flood, essentially all of the CO2 that is originally purchased is stored in the reservoir when the operator closes the field at pressure. ... Under special conditions, such as gravity-stable CO2 flooding, the CO2-EOR process can store considerably more CO2 than the carbon content of the oil (Figure 7). ...

Michael L. Godec; Vello A. Kuuskraa; Phil Dipietro

2013-02-07T23:59:59.000Z

300

Effects of oil treating on shell egg quality during short-term storage  

E-Print Network (OSTI)

of Texas A, 8 c N, College for cooperating in the study and. providing the refrigerated storage fac111ti es. Nr. Fred. Gardner for providing valuable assistance in labora- tory techniques and. presentation of the data. Nr. John W1111am for aiding... test followsa Test ~HH U 't 1 . . . . . . . . . . . . 82. e 2 . . . . . . . . . . . . 81. C 3 . . . . . . . . . . . . 81. 6 5 . . . . . , . . . , . . 78. 5 6 . . . . . , . . . . . . 8O. 5 average . oaoo o ta o 81HO There wa. , no sigrificant d...

Schwall, Donald Vincent

1960-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Radionuclide Releases During Normal Operations for Ventilated Tanks  

SciTech Connect

This calculation estimates the design emissions of radionuclides from Ventilated Tanks used by various facilities. The calculation includes emissions due to processing and storage of radionuclide material.

Blunt, B.

2001-09-24T23:59:59.000Z

302

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

303

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

304

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

SciTech Connect

Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

2008-05-15T23:59:59.000Z

305

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

306

Oil-Fired Boilers and Furnaces | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces Oil-Fired Boilers and Furnaces May 16, 2013 - 3:15pm Addthis Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. Diagram of an oil boiler. New tanks are generally double-wall or have a spill container built underneath to reduce the chances of an oil spill. Typically, the tank drip pan shown here is required only for single-wall tanks and would extend the full width of the tank. | Photo courtesy State of Massachusetts. What does this mean for me? If you have an oil furnace or boiler, you can now burn oil blended

307

High Pressure Hydrogen Tank Manufacturing  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. August 11, 2011 This presentation does not contain any proprietary, confidential, or otherwise restricted information History of Innovations... Announced breakthrough in all-composite lightweight, high capacity, low-cost fuel storage technologies. * Developed a series of robust, OEM compatible electronic control products. Developed H 2 storage system for SunLine Tran-sit Hythane庐 bus. Awarded patent for integrated module including in-tank regulator * Developed high efficiency H 2 fuel storage systems for DOE Future Truck programs Developed H 2 storage and metering system for Toyota's FCEV platform. First to certify 10,000 psi systems in Japan

308

Assessing the operations of the bulk oil storage and Transportation Company Limited in petroleum products delivery to Northern Ghana.  

E-Print Network (OSTI)

??The government of Ghana realising the importance of petroleum products, established the Tema Oil Refinery (TOR) in 1961 in order to process crude oil into (more)

Moses Oswald Avoyingah Amoah

2011-01-01T23:59:59.000Z

309

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

310

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

311

Working and Net Available Shell Storage Capacity as of September...  

Gasoline and Diesel Fuel Update (EIA)

capacity and also allows for tracking seasonal shifts in petroleum product usage of tanks and underground storage. Using the new storage capacity data, it will be possible to...

312

Final Report for the DOE Chemical Hydrogen Storage Center of...  

Energy Savers (EERE)

of interest for further development into viable storage systems. High pressure hydrogen tanks, systems that store hydrogen in a cryocompressed state, or liquid hydrogen storage...

313

Hydrogen fuel closer to reality because of storage advances  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen fuel closer to reality because of storage advances Advances made in rechargeable solid hydrogen fuel storage tanks. March 21, 2012 Field experiments on the Alamosa Canyon...

314

Mathematical modelling of a metal hydride hydrogen storage system.  

E-Print Network (OSTI)

??In order for metal hydride hydrogen storage systems to compete with existing energy storage technology, such as gasoline tanks and batteries, it is important to (more)

MacDonald, Brendan David

2009-01-01T23:59:59.000Z

315

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing  

E-Print Network (OSTI)

Department of Energy Workshop High Pressure Hydrogen Tank Manufacturing Mark Leavitt Quantum Fuel for integrated module including in-tank regulator 路 Developed high efficiency H2 fuel storage systems for DOE tank efficiency, the highest weight efficiency ever demonstrated, in partnership with Lawrence

316

Tank Farms and Waste Feed Delivery - 12507  

SciTech Connect

The mission of the Department of Energy's Office of River Protection (ORP) is to safely retrieve and treat the 56 million gallons of Hanford's tank waste and close the Tank Farms to protect the Columbia River. Our discussion of the Tank Farms and Waste Feed Delivery will cover progress made to date with Base and Recovery Act funding in reducing the risk posed by tank waste and in preparing for the initiation of waste treatment at Hanford. The millions of gallons of waste are a by-product of decades of plutonium production. After irradiated fuel rods were taken from the nuclear reactors to the processing facilities at Hanford they were exposed to a series of chemicals designed to dissolve away the rod, which enabled workers to retrieve the plutonium. Once those chemicals were exposed to the fuel rods they became radioactive and extremely hot. They also couldn't be used in this process more than once. Because the chemicals are caustic and extremely hazardous to humans and the environment, underground storage tanks were built to hold these chemicals until a more permanent solution could be found. The underground storage tanks range in capacity from 55,000 gallons to more than 1 million gallons. The tanks were constructed with carbon steel and reinforced concrete. There are eighteen groups of tanks, called 'tank farms', some having as few as two tanks and others up to sixteen tanks. Between 1943 and 1964, 149 single-shell tanks were built at Hanford in the 200 West and East Areas. Heat generated by the waste and the composition of the waste caused an estimated 67 of these single-shell tanks to leak into the ground. Washington River Protection Solutions is the prime contractor responsible for the safe management of this waste. WRPS' mission is to reduce the risk to the environment that is posed by the waste. All of the pumpable liquids have been removed from the single-shell tanks and transferred to the double-shell tanks. What remains in the single-shell tanks are solid and semi-solid wastes. Known as salt-cakes, they have the consistency of wet beach sand. Some of the waste resembles small broken ice, or whitish crystals. Because the original pumps inside the tanks were designed to remove only liquid waste, other methods have been developed to reach the remaining waste. Access to the tank waste is through long, typically skinny pipes, called risers, extending out of the tanks. It is through these pipes that crews are forced to send machines and devices into the tanks that are used to break up the waste or push it toward a pump. These pipes range in size from just a few inches to just over a foot in diameter because they were never intended to be used in this manner. As part of the agreement regulating Hanford cleanup, crews must remove at least 99% of the material in every tank on the site, or at least as much waste that can be removed based on available technology. To date, seven single-shell tanks have been emptied, and work is underway in another 10 tanks in preparation for additional retrieval activities. Two barriers have been installed over single-shell tanks to prevent the intrusion of surface water down to the tanks, with additional barriers planned for the future. Single and double-shell tank integrity analyses are ongoing. Because the volume of the waste generated through plutonium production exceeded the capacity of the single-shell tanks, between 1968 and 1986 Hanford engineers built 28 double-shell tanks. These tanks were studied and made with a second shell to surround the carbon steel and reinforced concrete. The double-shell tanks have not leaked any of their waste. (authors)

Fletcher, Thomas; Charboneau, Stacy; Olds, Erik [US DOE (United States)

2012-07-01T23:59:59.000Z

317

Integrated investigation of seawater intrusion around oil storage caverns in a coastal fractured aquifer using hydrogeochemical and isotopic data  

Science Journals Connector (OSTI)

Summary Seawater intrusion can be activated by the construction of underground caverns which act as groundwater sinks near a coastal area. In an environment complicated with such artificial structures, seawater intrusion is not simple and thus needs to be evaluated by means of multiple analytical approaches. This study uses geochemical and isotopic indicators to assess the characteristics of salinized seepage into an underground oil storage cavern in Yeosu, Korea. Cl?/Br? ratios, principal component analysis (PCA) of chemical data, and stable isotope data were used to determine the origin and the extent of salinization. Indications of seawater intrusion into the cavern through fractured bedrocks were observed; however, it was highly probable that another source may have contributed to the observed salinity. The PCA results revealed that the seepage water chemistry was predominantly affected both by seawater mixing and cement material dissolution. The maximum seawater mixing ratio in the seepage water was estimated on the basis of the Cl?朆r? mixing ratio and the Cl??18O relation, with the results showing considerable variation ranging from less than 1% to as high as 14%, depending on the cavern location. The spatial variations in the chemical characteristics and in mixing ratios are believed to have resulted from the hydrogeological heterogeneity of the study site, as caused by both fractured aquifer and the cavern facilities.

Jeong-Won Lim; Eunhee Lee; Hee Sun Moon; Kang-Kun Lee

2013-01-01T23:59:59.000Z

318

Integration of remediation strategy with waste management capabilities and regulatory drivers for radioactive waste storage tanks at the Oak Ridge National Laboratory  

SciTech Connect

This paper addresses the plans and strategies for remediation of the Liquid Low-Level Waste (LLLW) system tanks that have been removed from service at the Oak Ridge National Laboratory (ORNL). The Superfund Amendments and Reauthorization Act of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requires a Federal Facility Agreement (FFA) for federal facilities placed on the National Priorities List. The Oak Ridge Reservation was placed on that list on December 21, 1989, and the agreement was signed in November 1991 by the U.S. Department of Energy Oak Ridge Operations Office (DOE-ORO), the EPA-Region IV, and the Tennessee Department of Environment and Conservation (TDEC). The effective date of the FFA is January 1, 1992. One requirement of the FFA is that LLLW tanks that are removed from service must be evaluated and remediated through the CERCLA process. The Environmental Restoration Program intends to meet this requirement by using a {open_quotes}streamlined{close_quote} approach for selected tanks. This approach will combine the CERCLA Site Investigation. Remedial Action, Feasibility Study, and Proposed Plan requirements into a single Interim Proposed Plan document. This streamlined approach is expected to reduce the time required to complete the regulatory process while attaining acceptable risk reduction in a cost-effective way.

Baxter, J.T. [H& R Technical Associates, Inc., Oak Ridge, TN (United States); Hepworth, H.K. [Northern Arizona Univ., Flagstaff, AZ (United States); Hooyman, J.H. [Oak Ridge National Lab., TN (United States)

1995-04-01T23:59:59.000Z

319

Dual Tank Fuel System  

DOE Patents (OSTI)

A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

Wagner, Richard William (Albion, NY); Burkhard, James Frank (Churchville, NY); Dauer, Kenneth John (Avon, NY)

1999-11-16T23:59:59.000Z

320

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network (OSTI)

1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

Mammoli, Andrea

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

River Protection Project (RPP) Tank Waste Retrieval and Disposal Mission Technical Baseline Summary Description  

SciTech Connect

This document is one of the several documents prepared by Lockheed Martin Hanford Corp. to support the U. S. Department of Energy's Tank Waste Retrieval and Disposal mission at Hanford. The Tank Waste Retrieval and Disposal mission includes the programs necessary to support tank waste retrieval; waste feed, delivery, storage, and disposal of immobilized waste; and closure of the tank farms.

DOVALLE, O.R.

1999-12-29T23:59:59.000Z

322

Chemical composition of Hanford Tank SY-102  

SciTech Connect

The US Department of Energy established the Tank Waste Remediation System (TWRS) to safely manage and dispose of the radioactive waste, both current and future, stored in double-shell and single-shell tanks at the Hanford sites. One major program element in TWRS is pretreatment which was established to process the waste prior to disposal using the Hanford Waste Vitrification Plant. In support of this program, Los Alamos National Laboratory has developed a conceptual process flow sheet which will remediate the entire contents of a selected double-shelled underground waste tank, including supernatant and sludge, into forms that allow storage and final disposal in a safe, cost-effective and environmentally sound manner. The specific tank selected for remediation is 241-SY-102 located in the 200 West Area. As part of the flow sheet development effort, the composition of the tank was defined and documented. This database was built by examining the history of liquid waste transfers to the tank and by performing careful analysis of all of the analytical data that have been gathered during the tank`s lifetime. In order to more completely understand the variances in analytical results, material and charge balances were done to help define the chemistry of the various components in the tank. This methodology of defining the tank composition and the final results are documented in this report.

Birnbaum, E.; Agnew, S.; Jarvinen, G.; Yarbro, S.

1993-12-01T23:59:59.000Z

323

Safety criteria for organic watch list tanks at the Hanford Site  

SciTech Connect

This document reviews the hazards associated with the storage of organic complexant salts in Hanford Site high-level waste single- shell tanks. The results of this analysis were used to categorize tank wastes as safe, unconditionally safe, or unsafe. Sufficient data were available to categorize 67 tanks; 63 tanks were categorized as safe, and four tanks were categorized as conditionally safe. No tanks were categorized as unsafe. The remaining 82 SSTs lack sufficient data to be categorized.Historic tank data and an analysis of variance model were used to prioritize the remaining tanks for characterization.

Meacham, J.E., Westinghouse Hanford

1996-08-01T23:59:59.000Z

324

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

325

Hydrogen Storage Research and Development Activities | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the National Hydrogen Storage Project. For compressed hydrogen, lightweight composite tanks with high pressure ratings (10,000 psi) and conformability are being developed. For...

326

Feed tank transfer requirements  

SciTech Connect

This document presents a definition of tank turnover. Also, DOE and PC responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements are presented for two cases (i.e., tank modifications occurring before tank turnover and tank modification occurring after tank turnover). Finally, records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor are presented.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

327

Light duty utility arm deployment in Hanford tank T-106  

SciTech Connect

An existing gap in the technology for the remediation of underground waste storage tanks filled by the Light Duty Utility Arm (LDUA) System. On September 27 and 30, 1996, the LDUA System was deployed in underground storage tank T-106 at Hanford. The system performed successfully, satisfying all objectives of the in-tank operational test (hot test); performing close-up video inspection of features of tank dome, risers, and wall; and grasping and repositioning in-tank debris. The successful completion of hot testing at Hanford means that areas of tank structure and waste surface that were previously inaccessible are now within reach of remote tools for inspection, waste analysis, and small-scale retrieval. The LDUA System has become a new addition to the arsenal of technologies being applied to solve tank waste remediation challenges.

Kiebel, G.R.

1997-07-01T23:59:59.000Z

328

EIS-0189: Tank Waste Remediation System (TWRS), Richland, WA (Programmatic)  

Energy.gov (U.S. Department of Energy (DOE))

This environmental impact statement evaluates the Department of Energy (DOE)'s, in cooperation with the Washington State Department of Ecology (Ecology), decisions on how to properly manage and dispose of Hanford Site tank waste and encapsulated cesium and strontium to reduce existing and potential future risk to the public, Site workers, and the environment. The waste includes radioactive, hazardous, and mixed waste currently stored in 177 underground storage tanks, approximately 60 other smaller active and inactive miscellaneous underground storage tanks (MUSTs), and additional Site waste likely to be added to the tank waste, which is part of the tank farm system. In addition, DOE proposes to manage and dispose of approximately 1,930 cesium and strontium capsules that are by-products of tank waste. The tank waste and capsules are located in the 200 Areas of the Hanford Site near Richland, Washington.

329

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

pub/oil/ Data_Catalog/Oil_and_Gas/Oil_?elds/CA_oil?elds.DAT.1993) A history of oil- and gas-well blowouts in California,Health Administration (2007), Oil and gas well drilling and

Jordan, Preston D.

2008-01-01T23:59:59.000Z

330

Redesigning experimental equipment for determining peak pressure in a simulated tank car transfer line  

E-Print Network (OSTI)

When liquids are transported from storage tanks to tank cars, improper order of valve openings can cause pressure surges in the transfer line. To model this phenomenon and predict the peak pressures in such a transfer line, ...

Diaz, Richard A

2007-01-01T23:59:59.000Z

331

Tank 241-S-102 fifth temporal study: Headspace gas and vapor characterization results from samples collected on February 11, 1997. Tank vapor characterization project  

SciTech Connect

This report presents tile results from analyses of samples taken from the headspace of waste storage tank 241-S-102 (Tank S-102) at the Hanford Site in Washington State. Tank headspace samples collected by SGN Eurlsys Service Corporation (SESC) were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by tile Vapor Analytical Laboratory (VAL) at PNNL. Vapor concentrations from sorbent trap samples are based oil measured sample volumes provided by SESC. Ammonia was determined to be above tile immediate notification limit of 150 ppm as specified by the sampling and analysis plan (SAP). Hydrogen was the principal flammable constituent of the Tank S-102 headspace, determined to be present at approximately 1.150% of its lower flammability limit (LFL). Total headspace flammability was estimated to be <1.624% of the LFL, Average measured concentrations of targeted gases, inorganic vapors, and selected organic vapors are provided in Table S.1. A summary of experimental methods, including sampling methodology, analytical procedures, and quality assurance and control methods are presented in Section 2.0. Detailed descriptions of tile analytical results are provided in Section 3.0.

Mitroshkov, A.V.; Evans, J.C.; Hayes, J.C. [and others

1997-09-01T23:59:59.000Z

332

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

333

Major Products Obtained from Plasma Torch Pyrolysis of Sunflower-Oil Cake  

Science Journals Connector (OSTI)

Therefore, biomass waste is one of the bioenergy sources and can be converted to syngas and liquid oil as a fuel or raw material to further produce chemical feedstocks. ... (1) Air compressor, (2) N2-separation device, (3) power-supply chopper, (4) argon cylinder, (5) sample input apparatus, (6) sample, (7) plasma torch and reactor, (8) water condenser bath, (9) quench system, (10) gas detectors and analytical instruments, (11) storage tank, and (12) direct burner. ...

Je-Lueng Shie; Ching-Yuan Chang; Wen-Kai Tu; Yu-Chieh Yang; Jui-Ke Liao; Chin-Ching Tzeng; Heng-Yi Li; Yuh-Jenq Yu; Ching-Hui Kuo; Lieh-Chih Chang

2007-09-26T23:59:59.000Z

334

Supplemental design requirements document, Multifunction Waste Tank Facility, Project W-236A. Revision 1  

SciTech Connect

The Multi-Function Waste Tank Facility (MWTF) consists of four, nominal 1 million gallon, underground double-shell tanks, located in the 200-East area, and two tanks of the same capacity in the 200-West area. MWTF will provide environmentally safe storage capacity for wastes generated during remediation/retrieval activities of existing waste storage tanks. This document delineates in detail the information to be used for effective implementation of the Functional Design Criteria requirements.

Groth, B.D.

1995-01-11T23:59:59.000Z

335

High-Level Liquid Waste Tank Integrity Workshop - 2008  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liquid Waste Tank Integrity Liquid Waste Tank Integrity Workshop - 2008 Karthik Subramanian Bruce Wiersma November 2008 High Level Waste Corporate Board Meeting karthik.subramanian@srnl.doe.gov bruce.wiersma@srnl.doe.gov 2 Acknowledgements * Bruce Wiersma (SRNL) * Kayle Boomer (Hanford) * Michael T. Terry (Facilitator) * SRS - Liquid Waste Organization * Hanford Tank Farms * DOE-EM 3 Background * High level radioactive waste (HLW) tanks provide critical interim confinement for waste prior to processing and permanent disposal * Maintaining structural integrity (SI) of the tanks is a critical component of operations 4 Tank Integrity Workshop - 2008 * Discuss the HLW tank integrity technology needs based upon the evolving waste processing and tank closure requirements along with its continued storage mission

336

Verification survey report of the south waste tank farm training/test tower and hazardous waste storage lockers at the West Valley demonstration project, West Valley, New York  

SciTech Connect

A team from ORAU's Independent Environmental Assessment and Verification Program performed verification survey activities on the South Test Tower and four Hazardous Waste Storage Lockers. Scan data collected by ORAU determined that both the alpha and alpha-plus-beta activity was representative of radiological background conditions. The count rate distribution showed no outliers that would be indicative of alpha or alpha-plus-beta count rates in excess of background. It is the opinion of ORAU that independent verification data collected support the site?s conclusions that the South Tower and Lockers sufficiently meet the site criteria for release to recycle and reuse.

Weaver, Phyllis C.

2012-08-29T23:59:59.000Z

337

Tank farm surveillance and waste status summary report for May 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding tank surveillance anomalies and ongoing investigations.

Hanlon, B.M.

1993-08-01T23:59:59.000Z

338

Double shell tank waste analysis plan  

SciTech Connect

Waste analysis plan for the double shell tanks. SD-WM-EV-053 is Superseding SD-WM-EV-057.This document provides the plan for obtaining information needed for the safe waste handling and storage of waste in the Double Shell Tank Systems. In Particular it addresses analysis necessary to manage waste according to Washington Administrative Code 173-303 and Title 40, parts 264 and 265 of the Code of Federal Regulations.

Mulkey, C.H.; Jones, J.M.

1994-12-15T23:59:59.000Z

339

Criticality Safety Evaluation of Hanford Tank Farms Facility  

SciTech Connect

Data and calculations from previous criticality safety evaluations and analyses were used to evaluate criticality safety for the entire Tank Farms facility to support the continued waste storage mission. This criticality safety evaluation concludes that a criticality accident at the Tank Farms facility is an incredible event due to the existing form (chemistry) and distribution (neutron absorbers) of tank waste. Limits and controls for receipt of waste from other facilities and maintenance of tank waste condition are set forth to maintain the margin subcriticality in tank waste.

WEISS, E.V.

2000-12-15T23:59:59.000Z

340

Hydrogen Tank Testing R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

04.29.2010 | Presented by Joe Wong, P.Eng. 04.29.2010 | Presented by Joe Wong, P.Eng. DOE Tank Safety Workshop Hydrogen Tank Safety Testing 1 POWERTECH - Hydrogen & CNG Services 飦 Certification testing of individual high pressure components 飦 Design Verification, Performance, End-of-Life testing of complete fuel systems 飦 Design, construction, and operation of Hydrogen Fill Stations 飦 Safety Studies 飦 Standards Development 2 PRESENTATION 飦 Discuss CNG Field Performance Data 飦 Discuss Safety Testing of Type 4 Tanks 飦 Current work to support Codes & Standards Development 3 Storage Tank Technologies 4 basic types of tank designs 飦 Type 1 - all metal 飦 Type 2 - metal liner with hoop wrapped composite 飦 Type 3 - metal liner with fully wrapped composite 飦 Type 4 - Plastic liner with

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Type I Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

I Tanks I Tanks * 12 Type I tanks were built between 1951-53 * 750,000 gallon capacity; 75 feet in diameter by 24 陆 feet high * Partial secondary containment with leak detection * Contain approximately 10 percent of the waste volume * 7 Type I tanks have leaked waste into the tank annulus; the amount of waste stored in these tanks is kept below the known leak sites that have appeared over the decades of

342

ROBOTIC TANK INSPECTION END EFFECTOR  

SciTech Connect

The objective of this contract between Oceaneering Space Systems (OSS) and the Department of Energy (DOE) was to provide a tool for the DOE to inspect the inside tank walls of underground radioactive waste storage tanks in their tank farms. Some of these tanks are suspected to have leaks, but the harsh nature of the environment within the tanks precludes human inspection of tank walls. As a result of these conditions only a few inspection methods can fulfill this task. Of the methods available, OSS chose to pursue Alternating Current Field Measurement (ACFM), because it does not require clean surfaces for inspection, nor any contact with the Surface being inspected, and introduces no extra by-products in the inspection process (no coupling fluids or residues are left behind). The tool produced by OSS is the Robotic Tank Inspection End Effector (RTIEE), which is initially deployed on the tip of the Light Duty Utility Arm (LDUA). The RTEE combines ACFM with a color video camera for both electromagnetic and visual inspection The complete package consists of an end effector, its corresponding electronics and software, and a user's manual to guide the operator through an inspection. The system has both coarse and fine inspection modes and allows the user to catalog defects and suspected areas of leakage in a database for further examination, which may lead to emptying the tank for repair, decommissioning, etc.. The following is an updated report to OSS document OSS-21100-7002, which was submitted in 1995. During the course of the contract, two related subtasks arose, the Wall and Coating Thickness Sensor and the Vacuum Scarifying and Sampling Tool Assembly. The first of these subtasks was intended to evaluate the corrosion and wall thinning of 55-gallon steel drums. The second was retrieved and characterized the waste material trapped inside the annulus region of the underground tanks on the DOE's tank farms. While these subtasks were derived from the original intent of the contract, the focus remains on the RTIEE.

Rachel Landry

1999-10-01T23:59:59.000Z

343

E-Print Network 3.0 - automotive hydrogen storage Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion and Utilization ; Renewable Energy 2 Hydrogen Composite Tank...

344

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

345

UNIT NUMBER SWMU 133 UNIT NAME C-611 Underaround Storaae Tank  

NLE Websites -- All DOE Office Websites (Extended Search)

33 UNIT NAME C-611 Underaround Storaae Tank REGULATORY STATUS: AOC LOCATION: Immediately south of C-611 APPROXIMATE DIMENSIONS: Unknown FUNCTION: Possible Diesel Storage...

346

Addendum to the corrective action plan for Underground Storage Tanks 1219-U, 1222-U, 2082-U, 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1: Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID {number_sign}0-010117  

SciTech Connect

This document represents an addendum to the Corrective Action Plan (CAP) for underground storage tanks 1219-U, 2082-U, and 2068-U located at Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, TN. The site of the four underground storage tanks is commonly referred to as the Rust Garage Facility. The original CAP was submitted to the Tennessee Department of Environment and Conservation (TDEC) for review in May 1992. During the time period after submission of the original CAP for the Rust Garage Facility, Y-12 Plant Underground Storage Tank (UST) Program personnel continued to evaluate improvements that would optimize resources and expedite the activities schedule presented in the original CAP. Based on these determinations, several revisions to the original corrective action process options for remediation of contaminated soils are proposed. The revised approach will involve excavation of the soils from the impacted areas, on-site thermal desorption of soil contaminants, and final disposition of the treated soils by backfilling into the subject site excavations. Based on evaluation of the corrective actions with regard to groundwater, remediation of groundwater under the Y-12 Plant CERCLA Program is proposed for the facility.

Not Available

1994-01-01T23:59:59.000Z

347

Heating Oil Reserve | Department of Energy  

Energy Savers (EERE)

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

348

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

349

Tanks Focus Area annual report FY2000  

SciTech Connect

The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

None

2000-12-01T23:59:59.000Z

350

Application of infrared imaging in ferrocyanide tanks  

SciTech Connect

This report analyzes the feasibility of using infrared imaging techniques and scanning equipment to detect potential hot spots within ferrocyanide waste tanks at the Hanford Site. A hot spot is defined as a volumetric region within a waste tank with an excessively warm temperature that is generated by radioactive isotopes. The thermal image of a hot spot was modeled by computer. this model determined the image an IR system must detect. Laboratory and field tests of the imaging system are described, and conclusions based on laboratory and field data are presented. The report shows that infrared imaging is capable of detecting hot spots in ferrocyanide waste tanks with depths of up to 3.94 m (155 in.). The infrared imaging system is a useful technology for initial evaluation and assessment of hot spots in the majority of ferrocyanide waste tanks at the Hanford Site. The system will not allow an exact hot spot and temperature determination, but it will provide the necessary information to determine the worst-case hot spot detected in temperature patterns. Ferrocyanide tanks are one type of storage tank on the Watch List. These tanks are identified as priority 1 Hanford Site Tank farm Safety Issues.

Morris, K.L.; Mailhot, R.B. Jr.; McLaren, J.M.; Morris, K.L.

1994-09-28T23:59:59.000Z

351

Appendix E: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

352

LCA (Life Cycle Assessment) of Parabolic Trough CSP: Materials Inventory and Embodied GHG Emissions from Two-Tank Indirect and Thermocline Thermal Storage (Presentation)  

SciTech Connect

In the United States, concentrating solar power (CSP) is one of the most promising renewable energy (RE) technologies for reduction of electric sector greenhouse gas (GHG) emissions and for rapid capacity expansion. It is also one of the most price-competitive RE technologies, thanks in large measure to decades of field experience and consistent improvements in design. One of the key design features that makes CSP more attractive than many other RE technologies, like solar photovoltaics and wind, is the potential for including relatively low-cost and efficient thermal energy storage (TES), which can smooth the daily fluctuation of electricity production and extend its duration into the evening peak hours or longer. Because operational environmental burdens are typically small for RE technologies, life cycle assessment (LCA) is recognized as the most appropriate analytical approach for determining their environmental impacts of these technologies, including CSP. An LCA accounts for impacts from all stages in the development, operation, and decommissioning of a CSP plant, including such upstream stages as the extraction of raw materials used in system components, manufacturing of those components, and construction of the plant. The National Renewable Energy Laboratory (NREL) is undertaking an LCA of modern CSP plants, starting with those of parabolic trough design.

Heath, G.; Burkhardt, J.; Turchi, C.; Decker, T.; Kutscher, C.

2009-07-20T23:59:59.000Z

353

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tubesheets mounted to the tank connections so that the tubesheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tubesheets on a square pitch and then on a rectangular pitch therebetween. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight.

Gillett, James E. (Greensburg, PA); Johnson, F. Thomas (Baldwin Boro, PA); Orr, Richard S. (Pittsburgh, PA); Schulz, Terry L. (Murrysville Boro, PA)

1993-01-01T23:59:59.000Z

354

A statistical analysis of well production rates from UK oil and gas fields Implications for carbon capture and storage  

Science Journals Connector (OSTI)

Abstract The number of wells required to dispose of global CO2 emissions by injection into geological formations is of interest as a key indicator of feasible deployment rate, scale and cost. Estimates have largely been driven by forecasts of sustainable injection rate from mathematical modelling of the CO2 injection process. Recorded fluid production rates from oil and gas fields can be considered an observable analogue in this respect. The article presents statistics concerning Cumulative average Bulk fluid Production (CBP) rates per well for 104 oil and gas fields from the UK offshore region. The term bulk fluid production is used here to describe the composite volume of oil, gas and water produced at reservoir conditions. Overall, the following key findings are asserted: (1) CBP statistics for UK offshore oil and gas fields are similar to those observed for CO2 injection projects worldwide. (2) 50% probability of non-exceedance (PNE) for CBP for oil and gas fields without water flood is around 0.35燤t/yr/well of CO2 equivalent. (3) There is negligible correlation between reservoir transmissivity and CBP. (4) Study of net and gross CBP for water flood fields suggest a 50% PNE that brine co-production during CO2 injection could lead to a 20% reduction in the number of wells required.

Simon A. Mathias; Jon G. Gluyas; Eric J. Mackay; Ward H. Goldthorpe

2013-01-01T23:59:59.000Z

355

Tank characterization report for single-shell tank 241-BY-104  

SciTech Connect

This characterization report summarizes the available information on the historical uses, current status, and the sampling and analysis results of waste contained in underground storage tank 241-BY-104. This report supports the requirements of the Hanford Federal Facility Agreement and Consent Order, Milestone M-44-09. Tank 241-BY-104 is one of 12 single-shell tanks located in the BY-Tank Farm in the 200 East Area of the Hanford Site. Tank 241-BY-104 entered service in the first quarter of 1950 with a transfer of metal waste from an unknown source. Through cascading, the tank was full of metal waste by the second quarter of 1951. The waste was sluiced in the second quarter of 1954. Uranium recovery (tributyl phosphate) waste was sent from tank 241-BY-107 during the second quarter of 1955 and from tank 241-BY-110 during the third quarter of 1955. Most of this waste was sent to a crib during the fourth quarter of 1955. During the third and fourth quarters of 1956 and the second and third quarters of 1957, the tank received waste from the in-plant ferrocyanide scavenging process (PFeCN2) from tanks 241-BY-106, -107, -108, and -110. This waste type is predicted to compose the bottom layer of waste currently in the tank. The tank received PUREX cladding waste (CWP) periodically from 1961 to 1968. Ion-exchange waste from cesium recovery operations was received from tank 241-BX-104 during the second and third quarters of 1968. Tank 241-BY-104 received evaporator bottoms waste from the in-tank solidification process that was conducted in the BY-Tank Farm 0247from tanks 241 -BY- 109 and 241 -BY- 1 12 from 1970 to 1974. The upper portion of tank waste is predicted to be composed of BY saltcake. Tank 241-BY-104 was declared inactive in 1977. Waste was saltwell pumped from the tank during the third quarter of 1982 and the fourth quarter of 1985. Table ES-1 and Figure ES-1 describe tank 241-BY-104 and its status. The tank has an operating capacity of 2,869 kL and presently contains an estimated 1,234 kL of noncomplexed waste. Of this total volume, 568 kL are estimated to be sludge and 666 kL are estimated to be saltcake. The Hanlon values are not used because they are inconsistent with waste surface level measurements, and they will not be updated until the tank level stabilizes and the new surface photos are taken. This report summarizes the collection and analysis of two rotary-mode core samples obtained in October and November 1995 and reported in the Final Report for Tank 241-BY-104, Rotary Mode Cores 116 and 117. Cores 116 and 117 were obtained from risers 5 and IIA, respectively. The sampling event was performed to satisfy the requirements listed in the following documents: Tank Safety Screening Data Quality Objective , Data Requirements for the Ferrocyanide Safety Issue Developed through the Data Quality Objective Process, Data Quality Objective to Support Resolution of the Organic Fuel Rich Tank Safety Issue, Test Plan for Samples from Hanford Waste Tanks 241-BY-103, BY-104, BY-105, BY-106, BY-108, BY-110, YY-103, U-105, U-107, U-108, and U-109.

Benar, C.J.

1996-09-26T23:59:59.000Z

356

Final Tank Closure and Waste Management Environmental Impact...  

NLE Websites -- All DOE Office Websites (Extended Search)

and treat the waste remaining in 177 underground storage tanks; store the high-level radioactive waste (HLW); dispose of the low-activity waste (LAW) at the Hanford Site...

357

FAFCO Ice Storage test report  

SciTech Connect

The Ice Storage Test Facility (ISTF) is designed to test commercial ice storage systems. FAFCO provided a storage tank equipped with coils designed for use with a secondary fluid system. The FAFCO ice storage system was tested over a wide range of operating conditions. Measured system performance during charging showed the ability to freeze the tank fully, storing from 150 to 200 ton-h. However, the charging rate showed significant variations during the latter portion of the charge cycle. During discharge cycles, the storage tank outlet temperature was strongly affected by the discharge rate and tank state of charge. The discharge capacity was dependent upon both the selected discharge rate and maximum allowable tank outlet temperature. Based on these tests, storage tank selection must depend on both charge and discharge conditions. This report describes FAFCO system performance fully under both charging and discharging conditions. While the test results reported here are accurate for the prototype 1990 FAFCO Model 200, currently available FAFCO models incorporate significant design enhancements beyond the Model 200. At least one major modification was instituted as a direct result of the ISTF tests. Such design improvements were one of EPRI`s primary goals in founding the ISTF.

Stovall, T.K.

1993-11-01T23:59:59.000Z

358

TANK48 CFD MODELING ANALYSIS  

SciTech Connect

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank to ensure uniformity of the discharge stream. Mixing is accomplished with one to four dual-nozzle slurry pumps located within the tank liquid. For the work, a Tank 48 simulation model with a maximum of four slurry pumps in operation has been developed to estimate flow patterns for efficient solid mixing. The modeling calculations were performed by using two modeling approaches. One approach is a single-phase Computational Fluid Dynamics (CFD) model to evaluate the flow patterns and qualitative mixing behaviors for a range of different modeling conditions since the model was previously benchmarked against the test results. The other is a two-phase CFD model to estimate solid concentrations in a quantitative way by solving the Eulerian governing equations for the continuous fluid and discrete solid phases over the entire fluid domain of Tank 48. The two-phase results should be considered as the preliminary scoping calculations since the model was not validated against the test results yet. A series of sensitivity calculations for different numbers of pumps and operating conditions has been performed to provide operational guidance for solids suspension and mixing in the tank. In the analysis, the pump was assumed to be stationary. Major solid obstructions including the pump housing, the pump columns, and the 82 inch central support column were included. The steady state and three-dimensional analyses with a two-equation turbulence model were performed with FLUENT{trademark} for the single-phase approach and CFX for the two-phase approach. Recommended operational guidance was developed assuming that local fluid velocity can be used as a measure of sludge suspension and spatial mixing under single-phase tank model. For quantitative analysis, a two-phase fluid-solid model was developed for the same modeling conditions as the single-phase model. The modeling results show that the flow patterns driven by four pump operation satisfy the solid suspension requirement, and the average solid concentration at the plane of the transfer pump inlet is about 12% higher than the tank average concentrations for the 70 inch tank level and about the same as the tank average value for the 29 inch liquid level. When one of the four pumps is not operated, the flow patterns are satisfied with the minimum suspension velocity criterion. However, the solid concentration near the tank bottom is increased by about 30%, although the average solid concentrations near the transfer pump inlet have about the same value as the four-pump baseline results. The flow pattern results show that although the two-pump case satisfies the minimum velocity requirement to suspend the sludge particles, it provides the marginal mixing results for the heavier or larger insoluble materials such as MST and KTPB particles. The results demonstrated that when more than one jet are aiming at the same position of the mixing tank domain, inefficient flow patterns are provided due to the highly localized momentum dissipation, resulting in inactive suspension zone. Thus, after completion of the indexed solids suspension, pump rotations are recommended to avoid producing the nonuniform flow patterns. It is noted that when tank liquid level is reduced from the highest level of 70 inches to the minimum level of 29 inches for a given number of operating pumps, the solid mixing efficiency becomes better since the ratio of the pump power to the mixing volume becomes larger. These results are consistent with the literature results.

Lee, S.

2011-05-17T23:59:59.000Z

359

Tank Farm Operations Surveillance Automation Analysis  

SciTech Connect

The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities.

MARQUEZ, D.L.

2000-12-21T23:59:59.000Z

360

Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report  

SciTech Connect

This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

Taylor, A

1980-02-29T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrocarbon analysis of shrimp from oil polluted waters  

E-Print Network (OSTI)

), serious pollution problems are caused by crude oils, residual fuel oils, lubricating oils and miscel- laneous tank washings, sludges and tarsi known collectively as persis- tant oils, to distinguish them from light fuel oils such as gasoline, kerosene... obtained from crude oil, die- sel oil and lubricating oil. These "fingerprints" were compared to "fingerprints" from shrimp to obtain parameters for assessing pollution of shrimp by crude oil and its derivatives. Using these parameters, contaminated...

DeWitt, Bernard John

1982-01-01T23:59:59.000Z

362

Strategic Petroleum Reserve (SPR) oil storage cavern sulphur mines 2-4-5 certification tests and analysis. Part I: 1981 testing. Part II: 1982 testing  

SciTech Connect

Well leak tests and a cavern pressure were conducted in June through December 1981, and are described in Part I. The tests did not indicate conclusively that there was no leakage from the cavern, but the data indicate that cavern structural failure during oil storage is unlikely. The test results indicated that retesting and well workover were desirable prior to making a decision on the cavern use. Well leak tests were conducted in March through May 1982, and are described in Part II. The tests indicated that there was no significant leakage from wells 2 and 4 but that the leakage from wells 2A and 5 exceeded the DOE criterion. Because of the proximity of cavern 2-4-5 to the edge of the salt, this cavern should be considered for only one fill/withdrawal cycle prior to extensive reevaluation. 57 figures, 17 tables.

Beasley, R.R.

1982-12-01T23:59:59.000Z

363

Tank characterization report: Tank 241-C-109  

SciTech Connect

Single-shell tank 241-C-109 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in September 1992. Analyses of materials obtained from tank 241-C-109 were conducted to support the resolution of the ferrocyanide unreviewed safety question (USQ) and to support Hanford Federal Facility Agreement and consent Order (Tri- Party Agreement) Milestone M-10-00. This report describes this analysis.

Simpson, B.C.; Borshiem, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

364

Enhanced Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reduce the life-cycle costs and accelerate the cleanup of the Cold War environmental legacy www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 cleanup of the Cold War environmental legacy Shirley J. Olinger Associate Principal Deputy for Corporate Operations EMAB Presentation June 23, 2011 EM Priorities: Activities to maintain a safe, secure, and compliant posture in the EM complex Radioactive tank waste stabilization, treatment, and disposal Spent (used) nuclear fuel storage, receipt, and disposition "To-Go Life-Cycle Costs" ($185B - $218B as of the FY 2012 Request) Programmatic support activities* 10% Radioactive tank waste stabilization, treatment and disposal 38% Excess facilities decontamination and decommissioning

365

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

366

Hydrgoen Storage Systems Analysis Working Group Meeting Summary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a survey they have initiated on solid state hydride tanks for hydrogen storage and other energy conversion applications. The IPHE (International Partnership for the Hydrogen...

367

SLUDGE BATCH 7 PREPARATION TANK 4 AND 12 CHARACTERIZATION  

SciTech Connect

Samples of PUREX sludge from Tank 4 and HM sludge from Tank 12 were characterized in preparation for Sludge Batch 7 (SB7) formulation in Tank 51. SRNL analyses on Tank 4 and Tank 12 were requested in separate Technical Assistance Requests (TAR). The Tank 4 samples were pulled on January 19, 2010 following slurry operations by F-Tank Farm. The Tank 12 samples were pulled on February 9, 2010 following slurry operations by H-Tank Farm. At the Savannah River National Laboratory (SRNL), two 200 mL dip samples of Tank 4 and two 200 mL dip samples of Tank 12 were received in the SRNL Shielded Cells. Each tank's samples were composited into clean 500 mL polyethylene storage bottles and weighed. The composited Tank 4 sample was 428.27 g and the composited Tank 12 sample was 502.15 g. As expected there are distinct compositional differences between Tank 4 and Tank 12 sludges. The Tank 12 slurry is much higher in Al, Hg, Mn, and Th, and much lower in Fe, Ni, S, and U than the Tank 4 slurry. The Tank 4 sludge definitely makes the more significant contribution of S to any sludge batch blend. This S, like that observed during SB6 washing, is best monitored by looking at the total S measured by digesting the sample and analyzing by inductively coupled plasma - atomic emission spectroscopy (ICPAES). Alternatively, one can measure the soluble S by ICP-AES and adjust the value upward by approximately 15% to have a pretty good estimate of the total S in the slurry. Soluble sulfate measurements by ion chromatography (IC) will be biased considerably lower than the actual total S, the difference being due to the non-sulfate soluble S and the undissolved S. Tank 12 sludge is enriched in U-235, and hence samples transferred into SRNL from the Tank Farm will need to be placed on the reportable special nuclear material inventory and tracked for total U per SRNL procedure requirements.

Bannochie, C.; Click, D.; Pareizs, J.

2010-05-21T23:59:59.000Z

368

Microsoft Word - CX-RossTransformerOilTerminalUpgradeFY12_WEB.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2012 4, 2012 REPLY TO ATTN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum Brett Sherer Project Manager - KEP-4 Proposed Action: Ross Transformer Oil Terminal Upgrade Work Order #: 00298659 Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B4.6, Additions or modifications to electric power transmission facilities Location: Ross Complex, Township 2 North, Range 1 East, Section 14 of Clark County, Washington Proposed by: Bonneville Power Administration (BPA) Description of the Proposed Action: BPA proposes to install four new horizontal, double walled, 20,000 gallon insulating oil storage tanks at BPA's Ross Complex. In addition, BPA would install a railcar oil pumping and transfer system as well as a truck oil transfer pad. Both the

369

Septic Tanks (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

A license from the Department of Environmental Quality is required for cleaning or pumping of septic tanks or holding tanks and disposing of sewage or septage. The rules for the license are...

370

Rehabilitating A Thermal Storage System Through Commissioning  

E-Print Network (OSTI)

supplementary chiller (50 tons) was needed due to an under- sized storage tank and an under-sized chller. In 1995, the authors were asked to investigate the problems and provide possible solutions. The thermal storage system was subsequently rehabilitated... draws water from the bottom of the tank and sends the return water to the top of the tank. Valve V4 isolates the chiller from the building and the tank. In the charging mode (Figure 2b), valves V3 and V4 are open while valve V1 is 06 wcad closed...

Liu, M.; Veteto, B.; Claridge, D. E.

1998-01-01T23:59:59.000Z

371

Tank 241-TX-105 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, WHC 222-S Laboratory, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-TX-105.

Carpenter, B.C.

1995-01-01T23:59:59.000Z

372

Tank 241-T-111 tank characterization plan  

SciTech Connect

This document is a plan which serves as the contractual agreement between the Characterization Program, Sampling Operations, Oak Ridge National Laboratory, and PNL tank vapor program. The scope of this plan is to provide guidance for the sampling and analysis of vapor samples from tank 241-T-111.

Homi, C.S.

1995-01-10T23:59:59.000Z

373

Feed tank transfer requirements  

SciTech Connect

This document presents a definition of tank turnover; DOE responsibilities; TWRS DST permitting requirements; TWRS Authorization Basis (AB) requirements; TWRS AP Tank Farm operational requirements; unreviewed safety question (USQ) requirements; records and reporting requirements, and documentation which will require revision in support of transferring a DST in AP Tank Farm to a privatization contractor for use during Phase 1B.

Freeman-Pollard, J.R.

1998-09-16T23:59:59.000Z

374

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; Jos Manuel Mart韓ez-Duart

2013-01-01T23:59:59.000Z

375

E-Print Network 3.0 - abandons gas storage Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage L... - Million tonnes of oil equivalent 12;Hughes: Alton Underground Natural Gas Storage Facility 2 storage... : Is there a sufficient supply of ... Source: Hughes,...

376

Ferrocyanide tank waste stability. Supplement 2  

SciTech Connect

Ferrocyanide wastes were generated at the Hanford Site during the mid to late 1950s as a result of efforts to create more tank space for the storage of high-level nuclear waste. The ferrocyanide process was developed to remove {sup 137}CS from existing waste and newly generated waste that resulted from the recovery of valuable uranium in Hanford Site waste tanks. During the course of research associated with the ferrocyanide process, it was recognized that ferrocyanide materials, when mixed with sodium nitrate and/or sodium nitrite, were capable of violent exothermic reaction. This chemical reactivity became an issue in the 1980s, when safety issues associated with the storage of ferrocyanide wastes in Hanford Site tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety issues associated with these wastes, as well as current research and waste management programs. Testing to provide information on the nature of possible tank reactions is ongoing. This document supplements the information presented in Summary of Single-Shell Tank Waste Stability, WHC-EP-0347, March 1991 (Borsheim and Kirch 1991), which evaluated several issues. This supplement only considers information particular to ferrocyanide wastes.

Fowler, K.D.

1993-01-01T23:59:59.000Z

377

Investigations in cool thermal storage: storage process optimization and glycol sensible storage enhancement  

E-Print Network (OSTI)

device in order to meet the utility's mandate. The first part of this study looks at the effects of adding propylene glycol to a static-water ice thermal storage tank, in the pursuit of increasing storage capacity. The effects of glycol addition...

Abraham, Michaela Marie

1993-01-01T23:59:59.000Z

378

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

and/or changes in the safety culture in the oil and gasand/or changes in safety culture in the oil and gasand/or changes in safety culture in the oil and gas

Jordan, Preston D.

2008-01-01T23:59:59.000Z

379

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

E-Print Network (OSTI)

2007), Oil and gas well drilling and servicing etool.from minor oil spills limited to a drilling pad to saltingdrilling nonthermal nonthermal reworking plugging & abandoning thermal thermal a) oil

Jordan, Preston D.

2008-01-01T23:59:59.000Z

380

Underground Storage Tanks: New Fuels and Compatibility  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

high octane fuels being considered as possible path forward Storing high octane ethanol blended fuels will require careful consideration of material compatibility issues...

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Workers Complete Retrieval of 11th Single-Shell Tank at EM's Hanford Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workers Complete Retrieval of 11th Single-Shell Tank at EM's Workers Complete Retrieval of 11th Single-Shell Tank at EM's Hanford Site Workers Complete Retrieval of 11th Single-Shell Tank at EM's Hanford Site November 26, 2013 - 12:00pm Addthis A composite image comprised of dozens of photos taken inside C-110 provides a rare panoramic view of the tank interior. Portions of the tank floor and the FoldTrack waste-retrieval system are clearly visible. A composite image comprised of dozens of photos taken inside C-110 provides a rare panoramic view of the tank interior. Portions of the tank floor and the FoldTrack waste-retrieval system are clearly visible. Operators use multiple technologies to remove waste from underground storage tank RICHLAND, Wash. - EM's Office of River Protection and its tank farm contractor, Washington River Protection Solutions (WRPS), recently

382

Design demonstrations for category B tank systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This document presents design demonstrations conducted of liquid low-level waste (LLLW) storage tank systems located at the Oak Ridge National Laboratory (ORNL). Demonstration of the design of these tank systems has been stipulated by the Federal Facility Agreement (FFA) between the US Environmental Protection Agency (EPA)-Region IV; the Tennessee Department of Environment and Conservation (TDEC); and the DOE. The FFA establishes four categories of tanks. These are: Category A -- New or replacement tank systems with secondary containment; Category B -- Existing tank systems with secondary containment; Category C -- Existing tank systems without secondary containment; Category D -- Existing tank systems without secondary containment that are removed from service. This document provides a design demonstration of the secondary containment and ancillary equipment of 11 tank systems listed in the FFA as Category B. The design demonstration for each tank is presented.

Not Available

1994-11-01T23:59:59.000Z

383

RECENT PROGRESS IN DOE WASTE TANK CLOSURE  

SciTech Connect

The USDOE complex currently has over 330 underground storage tanks that have been used to process and store radioactive waste generated from the production of weapons materials. These tanks contain over 380 million liters of high-level and low-level radioactive waste. The waste consists of radioactively contaminated sludge, supernate, salt cake or calcine. Most of the waste exists at four USDOE locations, the Hanford Site, the Savannah River Site, the Idaho Nuclear Technology and Engineering Center and the West Valley Demonstration Project. A summary of the DOE tank closure activities was first issued in 2001. Since then, regulatory changes have taken place that affect some of the sites and considerable progress has been made in closing tanks. This paper presents an overview of the current regulatory changes and drivers and a summary of the progress in tank closures at the various sites over the intervening six years. A number of areas are addressed including closure strategies, characterization of bulk waste and residual heel material, waste removal technologies for bulk waste, heel residuals and annuli, tank fill materials, closure system modeling and performance assessment programs, lessons learned, and external reviews.

Langton, C

2008-02-01T23:59:59.000Z

384

The Safe Storage Study for Autocatalytic Reactive Chemicals  

E-Print Network (OSTI)

In the U.S. Chemical Safety and Hazard Investigation Board (CSB) report, Improving Reactive Hazard Management, there are 37 out of 167 accidents, which occurred in a storage tank or a storage area. This fact demonstrates that thermal runaway...

Liu, Lijun

2010-10-12T23:59:59.000Z

385

High-Pressure Tube Trailers and Tanks  

NLE Websites -- All DOE Office Websites (Extended Search)

Berry Berry Salvador M. Aceves Lawrence Livermore National Laboratory (925) 422-0864 saceves@LLNL.GOV DOE Delivery Tech Team Presentation Chicago, Illinois February 8, 2005 Inexpensive delivery of compressed hydrogen with ambient temperature or cryogenic compatible vessels * Pressure vessel research at LLNL Conformable (continuous fiber and replicants) Cryo-compressed * Overview of delivery options * The thermodynamics of compressed and cryo-compressed hydrogen storage * Proposed analysis activities * Conclusions Outline We are investigating two techniques for reduced bending stress: continuous fiber vessels and vessels made of replicants Conformable tanks require internal stiffeners (ribs) to efficiently support the pressure and minimize bending stresses Spherical and cylindrical tanks

386

Potential for criticality in Hanford tanks resulting from retrieval of tank waste  

SciTech Connect

This report assesses the potential during retrieval operations for segregation and concentration of fissile material to result in a criticality. The sluicing retrieval of C-106 sludge to AY-102 and the operation of mixer pumps in SY-102 are examined in some detail. These two tanks (C-106, SY-102) were selected because of the near term plans for retrieval of these tanks and their high plutonium inventories relative to other tanks. Although all underground storage tanks are subcritical by a wide margin if assumed to be uniform in composition, the possibility retrieval operations could preferentially segregate the plutonium and locally concentrate it sufficiently to result in criticality was a concern. This report examines the potential for this segregation to occur.

Whyatt, G.A.; Sterne, R.J.; Mattigod, S.V. [and others

1996-09-01T23:59:59.000Z

387

Vapor characterization of Tank 241-C-103  

SciTech Connect

The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

1994-06-01T23:59:59.000Z

388

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253掳C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

389

Office of Oil, Gas, and Coal Supply Statistics  

Gasoline and Diesel Fuel Update (EIA)

countries that were previously imported, offloaded into above-ground LNG storage tanks, and then subsequently reloaded onto tankers for delivery to other countries. Prices...

390

Oil and Gas Lease Equipment and Operating Costs 1994 Through...  

Gasoline and Diesel Fuel Update (EIA)

10 producing wells, 11 injection wells and 1 water supply well. Costs for water storage tanks, injection plant, filtering systems, injection lines and drilling water supply wells...

391

SINGLE-SHELL TANKS LEAK INTEGRITY ELEMENTS/SX FARM LEAK CAUSES AND LOCATIONS - 12127  

SciTech Connect

Washington River Protection Solutions, LLC (WRPS) developed an enhanced single-shell tank (SST) integrity project in 2009. An expert panel on SST integrity was created to provide recommendations supporting the development of the project. One primary recommendation was to expand the leak assessment reports (substitute report or LD-1) to include leak causes and locations. The recommendation has been included in the M-045-9IF Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) as one of four targets relating to SST leak integrity. The 241-SX Farm (SX Farm) tanks with leak losses were addressed on an individual tank basis as part of LD-1. Currently, 8 out of 23 SSTs that have been reported to having a liner leak are located in SX Farm. This percentage was the highest compared to other tank farms which is why SX Farm was analyzed first. The SX Farm is comprised of fifteen SSTs built 1953-1954. The tanks are arranged in rows of three tanks each, forming a cascade. Each of the SX Farm tanks has a nominal I-million-gal storage capacity. Of the fifteen tanks in SX Farm, an assessment reported leak losses for the following tanks: 241-SX-107, 241-SX-108, 241-SX-109, 241-SX-111, 241-SX-112, 241-SX-113, 241-SX-114 and 241-SX-115. The method used to identify leak location consisted of reviewing in-tank and ex-tank leak detection information. This provided the basic data identifying where and when the first leaks were detected. In-tank leak detection consisted of liquid level measurement that can be augmented with photographs which can provide an indication of the vertical leak location on the sidewall. Ex-tank leak detection for the leaking tanks consisted of soil radiation data from laterals and drywells near the tank. The in-tank and ex-tank leak detection can provide an indication of the possible leak location radially around and under the tank. Potential leak causes were determined using in-tank and ex-tank information that is not directly related to leak detection. In-tank parameters can include temperature of the supernatant and sludge, types of waste, and chemical determination by either transfer or sample analysis. Ex-tank information can be assembled from many sources including design media, construction conditions, technical specifications, and other sources. Five conditions may have contributed to SX Farm tank liner failure including: tank design, thermal shock, chemistry-corrosion, liner behavior (bulging), and construction temperature. Tank design did not apparently change from tank to tank for the SX Farm tanks; however, there could be many unknown variables present in the quality of materials and quality of construction. Several significant SX Farm tank design changes occurred from previous successful tank farm designs. Tank construction occurred in winter under cold conditions which could have affected the ductile to brittle transition temperature of the tanks. The SX Farm tanks received high temperature boiling waste from REDOX which challenged the tank design with rapid heat up and high temperatures. All eight of the leaking SX Farm tanks had relatively high rate of temperature rise. Supernatant removal with subsequent nitrate leaching was conducted in all but three of the eight leaking tanks prior to leaks being detected. It is possible that no one characteristic of the SX Farm tanks could in isolation from the others have resulted in failure. However, the application of so many stressors - heat up rate, high temperature, loss of corrosion protection, and tank design - working jointly or serially resulted in their failure. Thermal shock coupled with the tank design, construction conditions, and nitrate leaching seem to be the overriding factors that can lead to tank liner failure. The distinction between leaking and sound SX Farm tanks seems to center on the waste types, thermal conditions, and nitrate leaching.

VENETZ TJ; WASHENFELDER D; JOHNSON J; GIRARDOT C

2012-01-25T23:59:59.000Z

392

A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank Farm Operations  

E-Print Network (OSTI)

1 A Mixed-Integer Linear Programming Model for Optimizing the Scheduling and Assignment of Tank) formulation for the Tank Farm Operation Problem (TFOP), which involves simultaneous scheduling of continuous multi-product processing lines and the assignment of dedicated storage tanks to finished products

Grossmann, Ignacio E.

393

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

394

The effect of dilution on the gas retention behavior of Tank 241-SY- 103 waste  

SciTech Connect

Twenty-five of the 177 underground waste storage tanks on the Hanford Site have been placed on the Flammable Gas watch list. These 25 tanks, containing high-level waste generated during plutonium and uranium processing, have been identified as potentially capable of accumulating flammable gases above the lower flammability limit (Babad et al. 1991). In the case of Tanks 241-SY-101 and 241-SY-103, it has been proposed that diluting the tank waste may mitigate this hazard (Hudson et al. 1995; Stewart et al. 1994). The effect of dilution on the ability of waste from Tank 241-SY-103 to accumulate gas was studied at Pacific Northwest National Laboratory. A similar study has been completed for waste from Tank 241-SY-101 (Bredt et al. 1995). Because of the additional waste-storage volume available in Tank 241-SY-103 and because the waste is assumed to be similar to that currently in Tank 241-SY-101, Tank 241-SY-103 became the target for a demonstration of passive mitigation through in-tank dilution. In 1994, plans for the in-tank dilution demonstration were deferred pending a decision on whether to pursue dilution as a mitigation strategy. However, because Tank 241-SY-103 is an early retrieval target, determination of how waste properties vary with dilution will still be required.

Bredt, P.R.; Tingey, S.M.

1996-01-01T23:59:59.000Z

395

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

396

Tank Waste Committee Page 1  

NLE Websites -- All DOE Office Websites (Extended Search)

Tank Waste Committee Page 2 Final Meeting Summary January 8, 2014 and integrity of the tanks with a focus on tank AY-102. In his presentation, Glyn noted the following points: *...

397

Water contamination and colloidal stability of motor oils  

Science Journals Connector (OSTI)

Water contamination of motor oils during storage and use in low- ... of additives worsens the performance properties of the motor oils.

S. V. Korneev; V. M. Dudkin; A. V. Kolunin

2006-07-01T23:59:59.000Z

398

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

399

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage  

E-Print Network (OSTI)

. Hydrogen Storage #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 200 #12 square inch (psi) 7.5 wt % and 8.5 wt% Type IV composite hydrogen storage tanks of specified sizes for DOE Future Truck and Nevada hydrogen bus programs 路 Demonstrate 10,000 psi storage tanks Approach

400

Status Report on Phase Identification in Hanford Tank Sludges  

SciTech Connect

The U.S. Department of Energy plans to vitrify Hanford's underground storage tank wastes. The vitrified wastes will be divided into low-activity and high-level fractions. There is an effort to reduce the quantity of high-activity wastes by removing nonradioactive components because of the high costs involved in treating high-level waste. Pretreatment options, such as caustic leaching, to selectively remove nonradioactive components are being investigated. The effectiveness of these proposed processes for removing nonradioactive components depends on the chemical phases in the tank sludges. This review summarizes the chemical phases identified to date in Hanford tank sludges.

Rapko, Brian M.; Lumetta, Gregg J.

2000-12-18T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Heat exchanger and water tank arrangement for passive cooling system  

DOE Patents (OSTI)

A water storage tank in the coolant water loop of a nuclear reactor contains a tubular heat exchanger. The heat exchanger has tube sheets mounted to the tank connections so that the tube sheets and tubes may be readily inspected and repaired. Preferably, the tubes extend from the tube sheets on a square pitch and then on a rectangular pitch there between. Also, the heat exchanger is supported by a frame so that the tank wall is not required to support all of its weight. 6 figures.

Gillett, J.E.; Johnson, F.T.; Orr, R.S.; Schulz, T.L.

1993-11-30T23:59:59.000Z

402

Analysis of tank damage during the 1994 Northridge earthquake  

SciTech Connect

The damage sustained by cylindrical liquid storage tanks during the 1994 Northridge earthquake is summarized. It included elephant foot buckling, anchor failure and roof-shell connection separation. A few of the important lessons learned, in particular, as related to the accuracy of code computations in predicting the actual behavior of these structures are outlined. A detailed case study is presented to illustrate the application of current seismic design standards to a damaged unanchored tank and to demonstrate the use of a state-of-the-art finite element analysis in assessing the seismic safety of the same tank.

Haroun, M.A.; Bhatia, H. [Univ. of California, Irvine, CA (United States). Dept. of Civil and Environmental Engineering

1995-12-31T23:59:59.000Z

403

DEGRADATION EVALUATION OF HEAVY WATER DRUMS AND TANKS  

SciTech Connect

Heavy water with varying chemistries is currently being stored in over 6700 drums in L- and K-areas and in seven tanks in L-, K-, and C-areas. A detailed evaluation of the potential degradation of the drums and tanks, specific to their design and service conditions, has been performed to support the demonstration of their integrity throughout the desired storage period. The 55-gallon drums are of several designs with Type 304 stainless steel as the material of construction. The tanks have capacities ranging from 8000 to 45600 gallons and are made of Type 304 stainless steel. The drums and tanks were designed and fabricated to national regulations, codes and standards per procurement specifications for the Savannah River Site. The drums have had approximately 25 leakage failures over their 50+ years of use with the last drum failure occurring in 2003. The tanks have experienced no leaks to date. The failures in the drums have occurred principally near the bottom weld, which attaches the bottom to the drum sidewall. Failures have occurred by pitting, crevice and stress corrosion cracking and are attributable, in part, to the presence of chloride ions in the heavy water. Probable degradation mechanisms for the continued storage of heavy water were evaluated that could lead to future failures in the drum or tanks. This evaluation will be used to support establishment of an inspection plan which will include susceptible locations, methods, and frequencies for the drums and tanks to avoid future leakage failures.

Mickalonis, J.; Vormelker, P.

2009-07-31T23:59:59.000Z

404

China and Peak Oil  

Science Journals Connector (OSTI)

In the mid-1950s there was a severe oil shortage in China. Fighter jets and tanks stood still and the buses on Beijing抯 streets were fueled from large bags of gas on their roofs. Several drilling teams travel...

Kjell Aleklett

2012-01-01T23:59:59.000Z

405

Tank Waste Committee Page 1  

NLE Websites -- All DOE Office Websites (Extended Search)

... 2 Review of Responses to HAB Advice 271 Leaking Tanks and HAB Advice 273 Openness and Transparency Related to Tank Waste Treatment...

406

Reverberant Tank | Open Energy Information  

Open Energy Info (EERE)

Reverberant Tank Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleReverberantTank&oldid596388" Category: Hydrodynamic Testing Facility Type...

407

Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).  

SciTech Connect

A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

2005-01-01T23:59:59.000Z

408

Chemical Storage and Pumping of Solar Energy  

Science Journals Connector (OSTI)

Chemical heat storage is familiar to us, in the form of carbon compounds, which are the basis of our present energy economy (wood - coal - natural gas - oil).

A. Vialaron

1981-01-01T23:59:59.000Z

409

Hanford Tank Waste Information Enclosure 1 Hanford Tank Waste Information  

E-Print Network (OSTI)

Hanford Tank Waste Information Enclosure 1 1 Hanford Tank Waste Information 1.0 Summary This information demonstrates the wastes in the twelve Hanford Site tanks meet the definition of transuranic (TRU. The wastes in these twelve (12) tanks are not high-level waste (HLW), and contain more than 100 nanocuries

410

Program plan for the resolution of tank vapor issues  

SciTech Connect

Since 1987, workers at the Hanford Site waste tank farms in Richland, Washington, have reported strong odors emanating from the large, underground high-level radioactive waste storage tanks. Some of these workers have complained of symptoms (e.g., headaches, nausea) related to the odors. In 1992, the U.S. Department of Energy, which manages the Hanford Site, and Westinghouse Hanford Company determined that the vapor emissions coming from the tanks had not been adequately characterized and represented a potential health risk to workers in the immediate vicinity of the tanks. At that time, workers in certain areas of the tank farms were required to use full-face, supplied-breathing-air masks to reduce their exposure to the fugitive emissions. While use of supplied breathing air reduced the health risks associated with the fugitive emissions, it introduced other health and safety risks (e.g., reduced field of vision, air-line tripping hazards, and heat stress). In 1992, an aggressive program was established to assure proper worker protection while reducing the use of supplied breathing air. This program focuses on characterization of vapors inside the tanks and industrial hygiene monitoring in the tank farms. If chemical filtration systems for mitigation of fugitive emissions are deemed necessary, the program will also oversee their design and installation. This document presents the plans for and approach to resolving the Hanford Site high-level waste tank vapor concerns. It is sponsored by the Department of Energy Office of Environmental Restoration and Waste Management.

Osborne, J.W.; Huckaby, J.L.

1994-05-01T23:59:59.000Z

411

Waste Acceptance for Vitrified Sludge from Oak Ridge Tank Farms  

SciTech Connect

The Tanks Focus Area of the DOE`s Office of Science and Technology (EM-50) has funded the Savannah River Technology Center (SRTC) to develop formulations which can incorporate sludges from Oak Ridge Tank Farms into immobilized glass waste forms. The four tank farms included in this study are: Melton Valley Storage Tanks (MVST), Bethel Valley Evaporation Service Tanks (BVEST), Gunite and Associated Tanks (GAAT), and Old Hydrofracture Tanks (OHF).The vitrified waste forms must be sent for disposal either at the Waste Isolation Pilot Plant (WIPP) or the Nevada Test Site (NTS). Waste loading in the glass is the major factor in determining where the waste will be sent and whether the waste will be remote-handled (RH) or contact-handled (CH). In addition, the waste loading significantly impacts the costs of vitrification operations and transportation to and disposal within the repository.This paper focuses on disposal options for the vitrified Oak Ridge Tank sludge waste as determined by the WIPP (1) and NTS (2) Waste Acceptance Criteria (WAC). The concentrations for both Transuranic (TRU) and beta/gamma radionuclides in the glass waste form will be presented a a function of sludge waste loading. These radionuclide concentrations determine whether the waste forms will be TRU (and therefore disposed of at WIPP) and whether the waste forms will be RH or CH.

Harbour, J.R. [Westinghouse Savannah River Company, AIKEN, SC (United States); Andrews, M.K.

1998-03-01T23:59:59.000Z

412

Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Tank Waste Treatment and Immobilization Plant - - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report This is a comprehensive review ofthe Hanford WTP estimate at completion - assessing the project scope, contract requirements, management execution plant, schedule, cost estimates, and risks. Hanford ETR - Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - Estimate at Completion (Cost) Report More Documents & Publications TBH-0042 - In the Matter of Curtis Hall

413

Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ETR Tank Waste Treatment and Immobilization Plant - Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Full Document and Summary Versions are available for download Hanford ETR Tank Waste Treatment and Immobilization Plant - Hanford Tank Waste Treatment and Immobilization Plant Technical Review - External Flowsheet Review Team (Technical) Report Summary - Flowsheet for the Hanford Waste Treatment Plant More Documents & Publications Waste Treatment and Immobilation Plant HLW Waste Vitrification Facility

414

The integrated tank waste management plan at Oak Ridge National Laboratory  

SciTech Connect

DOE`s Environmental Management Program at Oak Ridge has developed an integrated tank waste management plan that combines the accelerated deployment of innovative technologies with an aggressive waste transfer schedule. Oak Ridge is cleaning out waste from aging underground storage tanks in preparation of waste processing, packaging and final safe disposal. During remediation this plan will reduce the risk of environmental, worker, and civilian exposure, save millions of dollars, and cut years off of tank remediation schedules at Oak Ridge.

Billingsley, K. [STEP, Inc., Oak Ridge, TN (United States); Mims, C. [Dept. of Energy, Oak Ridge, TN (United States). Oak Ridge Operations Office; Robinson, S. [Oak Ridge National Lab., TN (United States)

1998-06-01T23:59:59.000Z

415

R&D of Large Stationary Hydrogen/CNG/HCNG Storage Vessels | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen Fuel and Pressure Vessel Forum Bonfire Tests of High Pressure Hydrogen Storage Tanks Status and Progress in Research, Development and Demonstration of Hydrogen-Compressed...

416

Tank 241-B-103 headspace gas and vapor characterization: Results for homogeneity samples collected on October 16, 1996. Tank vapor characterization project  

SciTech Connect

This report presents the results of analyses of samples taken from the headspace of waste storage tank 241-B-103 (Tank B-103) at the Hanford Site in Washington State. Samples were collected to determine the homogeneity of selected inorganic and organic headspace constituents. Two risers (Riser 2 and Riser 7) were sampled at three different elevations (Bottom, Middle, and Top) within the tank. Tank headspace samples were collected by SGN Eurisys Service Corporation (SESC) and were analyzed by Pacific Northwest National Laboratory (PNNL) to determine headspace concentrations of selected non-radioactive analytes. Analyses were performed by the Vapor Analytical Laboratory (VAL) at PNNL.

Olsen, K.B.; Pool, K.H.; Evans, J.C. [and others

1997-06-01T23:59:59.000Z

417

E-Print Network 3.0 - actual acidic tank Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Attachment A PPOP 08.10 Summary: < Refrigerant Storage Tanks Ventilated vaults: < Acid Vaults (May or may not require a permit depending... Boilers...

418

Retrieval of Ninth Single-Shell Tank Complete | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete Retrieval of Ninth Single-Shell Tank Complete September 6, 2012 - 12:00pm Addthis Media Contacts Lori Gamache, ORP 509-372-9130 Rob Roxburgh, WRPS 509-376-5188 Richland - Washington River Protection Solutions (WRPS) has completed the retrieval of radioactive and chemical waste from single-shell tank (SST) C-104, an underground storage tank that once held 259,000 gallons of waste left over from nuclear weapons production at Hanford. WRPS is the tank operations contractor for the U.S. Department of Energy (DOE) Office of River Protection (ORP). Tank C-104 is a 530,000-gallon-capacity SST that once contained the second-highest waste volume of the 16 SSTs in Hanford's C Farm, including a significant amount of plutonium and uranium.

419

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory DOE Clears Way for Closure of Emptied Waste Tanks at Idaho National Laboratory November 20, 2006 - 9:25am Addthis Secretary Bodman Signs Idaho Waste Determination After Consultation with NRC WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman yesterday signed a waste determination for the Idaho Tank Farm Facility clearing the way for the Department of Energy (DOE) to safely and permanently close the 15 waste storage tanks at the Idaho National Laboratory near Arco, Idaho. DOE will begin grouting the first 11 cleaned and emptied tanks at Idaho Nuclear Technology and Engineering Center (INTEC) and plans to complete all 15 tanks by December 2012. Assistant Secretary of Energy for Environmental Management James Rispoli

420

Houdini: Reconfigurable in-tank robot  

SciTech Connect

RedZone Robotics, Inc. and Carnegie Mellon University (CMU) are developing a tethered mobile robot, Houdini, to work inside waste storage tanks in support of the Department of Energy`s Environmental Restoration and Waste Management (EM) Program. This project is funded by the DOE`s Environmental Management Office of Technology Development through the Morgantown Energy Technology Center (METC). Our goal is to develop technology that is useful for in-tank operations throughout the DOE`s EM program. The first application of the Houdini system is to support the waste retrieval action planned for the final remediation of the Fernald site`s waste silos. RedZone and CMU have discussed potential applications for the system with personnel from several other DOE sites, and have found that the system would be widely useful in the DOE complex for tasks both inside and outside of waste storage tanks. We are tailoring the first implementation of the Houdini system to the specific needs of the Fernald silo remediation. The Fernald application-specific design constraints are primarily interface issues and should not interfere with the utility of the system at other sites. In addition, DOE personnel at the Oak Ridge National Laboratories (ORNL) have expressed a strong interest in the Houdini system. They have a target application scheduled for mid-1996. This program represents a unique opportunity to develop a new technology that has immediate application in two CERCLA cleanup actions; the proposed applications at Fernald and ORNL support Federal Facility compliance agreements.

White, D.W.; Slifko, A.D.; Thompson, B.R.; Fisher, C.G.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Biodiesel Storage Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Storage Biodiesel Storage Regulations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Storage Regulations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Storage Regulations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Google Bookmark Alternative Fuels Data Center: Biodiesel Storage Regulations on Delicious Rank Alternative Fuels Data Center: Biodiesel Storage Regulations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Storage Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Storage Regulations Underground storage tank regulations apply to all biodiesel blends with the exception of 100% biodiesel (B100). An owner changing the use of an

422

Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project  

SciTech Connect

This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was {open_quotes}Vapor Sampling and Analysis Plan{close_quotes}, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace.

McVeety, B.D.; Thomas, B.L.; Evans, J.C. [and others

1996-05-01T23:59:59.000Z

423

Continuous Commissioning(SM) of a Thermal Storage System  

E-Print Network (OSTI)

shows that commissioning of the thermal storage system is not limited to the storage tank itself, but is closely related to successful commissioning of building air handling units (AHUs) and chilled water loops. The full benefit of a thermal storage... than a dozen major buildings. The storage system was installed after a campus-wide energy efficiency retrofit. It is designed to store 42?F chilled water with a return water temperature of 56?F. Total storage capacity is 7000 ton-hours. The tank...

Turner, W. D.; Liu, M.

2001-01-01T23:59:59.000Z

424

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Spring 2009 Number 58 Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal Energy Policy Act (EPACT) dictated that states make several chang- es to their UST programs. The changes required by EPACT have deadlines rang- ing from 2008 to August 2009. Delaware could not make all the required changes by January 11, 2008 because the United States Environmental Protection Agency

425

Criticality safety of an annular tank for fissile solution  

SciTech Connect

Experiments performed to determine the criticality safety of annular tanks for storing fissile solutions are described. Six annular tanks were built in four nesting sizes to obtain experimental criticality data which could be used to validate computer codes employed in the design of such a safe storage system for an industrial plant. Each tank had an annular solution region thickness of 38 mm. The height of this region was 2.13 m, held 0.3 m off the floor by a stainless steel skirting. Walls were 6.4 mm-thick type 304L stainless steel. The uranyl nitrate solution contained 357 g U/l and had a density of 1.5 kg/m/sup 3/. The uranium was enriched to 93.2% /sup 235/U with other isotopes: 5.4% /sup 238/U, 1.0% /sup 234/U, and 0.4% /sup 236/U. The solution contained 0.5 molar nitric acid and a total impurity content of less than 1500 ppM. Important neutron absorbers, boron and cadmium, averaged 10 ppM and 30 ppM, respectively. Boron-loaded concrete and boron-loaded plaster were selected for the neutron moderator/absorber interior to the annular tank. Three configurations of tanks and reflector were taken to criticality and are reported. The critical uranium solution height in all tanks containing solution as a function of boron content in earthen interior material, tank array configuration, and other variables. (LCL)

Rothe, R.E.

1981-01-01T23:59:59.000Z

426

Project Profile: Sensible Heat, Direct, Dual-Media Thermal Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE))

Acciona Solar, under the Thermal Storage FOA, plans to develop a prototype thermal energy storage (TES) module with high efficiency. This project is looking at a packed or structured bed TES tank with molten salt flowing through it.

427

Conservation of Oil and Gas (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation prohibits the production, storage, or transportation of oil or gas in a manner, in an amount, or under conditions that constitute waste. Actions which may lead to the waste of oil...

428

Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001  

SciTech Connect

During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

2002-03-01T23:59:59.000Z

429

Structural Dimensions, Fabrication, Materials, and Operational History for Types I and II Waste Tanks  

SciTech Connect

Radioactive waste is confined in 48 underground storage tanks at the Savannah River Site. The waste will eventually be processed and transferred to other site facilities for stabilization. Based on waste removal and processing schedules, many of the tanks, including those with flaws and/or defects, will be required to be in service for another 15 to 20 years. Until the waste is removed from storage, transferred, and processed, the materials and structures of the tanks must maintain a confinement function by providing a leak-tight barrier to the environment and by maintaining acceptable structural stability during design basis event which include loading from both normal service and abnormal conditions.

Wiersma, B.J.

2000-08-16T23:59:59.000Z

430

THE RETRIEVAL KNOWLEDGE CENTER EVALUATION OF LOW TANK LEVEL MIXING TECHNOLOGIES FOR DOE HIGH LEVEL WASTE TANK RETRIEVAL 10516  

SciTech Connect

The Department of Energy (DOE) Complex has over two-hundred underground storage tanks containing over 80-million gallons of legacy waste from the production of nuclear weapons. The majority of the waste is located at four major sites across the nation and is planned for treatment over a period of almost forty years. The DOE Office of Technology Innovation & Development within the Office of Environmental Management (DOE-EM) sponsors technology research and development programs to support processing advancements and technology maturation designed to improve the costs and schedule for disposal of the waste and closure of the tanks. Within the waste processing focus area are numerous technical initiatives which included the development of a suite of waste removal technologies to address the need for proven equipment and techniques to remove high level radioactive wastes from the waste tanks that are now over fifty years old. In an effort to enhance the efficiency of waste retrieval operations, the DOE-EM Office of Technology Innovation & Development funded an effort to improve communications and information sharing between the DOE's major waste tank locations as it relates to retrieval. The task, dubbed the Retrieval Knowledge Center (RKC) was co-lead by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) with core team members representing the Oak Ridge and Idaho sites, as well as, site contractors responsible for waste tank operations. One of the greatest challenges to the processing and closure of many of the tanks is complete removal of all tank contents. Sizeable challenges exist for retrieving waste from High Level Waste (HLW) tanks; with complications that are not normally found with tank retrieval in commercial applications. Technologies currently in use for waste retrieval are generally adequate for bulk removal; however, removal of tank heels, the materials settled in the bottom of the tank, using the same technology have proven to be difficult. Through the RKC, DOE-EM funded an evaluation of adaptable commercial technologies that could assist with the removal of the tank heels. This paper will discuss the efforts and results of developing the RKC to improve communications and discussion of tank waste retrieval through a series of meetings designed to identify technical gaps in retrieval technologies at the DOE Hanford and Savannah River Sites. This paper will also describe the results of an evaluation of commercially available technologies for low level mixing as they might apply to HLW tank heel retrievals.

Fellinger, A.

2009-12-08T23:59:59.000Z

431

Tank Waste Strategy Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tank Waste Subcommittee www.em.doe.gov safety performance cleanup closure E M Environmental Management 1 Tank Waste Subcommittee Ken Picha Office of Environmental Management December 5, 2011 Background Tank Waste Subcommittee (TWS)originally chartered, in response to Secretary's request to perform a technical review of Waste Treatment and Immobilization Plant (WTP) in May 2010. Three tasks: o Verification of closure of WTP External Flowsheet Review Team (EFRT) issues. o WTP Technical Design Review o WTP potential improvements Report completed and briefed to DOE in September 2010 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 Report completed and briefed to DOE in September 2010 Follow-on scope for TWS identified immediately after briefing to DOE and

432

HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

Jolly, R; Bruce Martin, B

2008-01-15T23:59:59.000Z

433

High-Pressure Hydrogen Tanks  

Energy.gov (U.S. Department of Energy (DOE))

Presentation on High-Pressure Hydrogen Tanks for the DOE Hydrogen Delivery High-Pressure Tanks and Analysis Project Review Meeting held February 8-9, 2005 at Argonne National Laboratory

434

Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrieval of Tenth Single-shell Tank Complete at Hanford's Office Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River Protection Retrieval of Tenth Single-shell Tank Complete at Hanford's Office of River Protection December 27, 2012 - 12:00pm Addthis EM芒聙聶s Office of River Protection has successfully removed waste from a tenth storage tank at the Hanford site. Located in C Farm, C-109 is one of 16 underground tanks ranging in capacity from 55,000 to 530,000 gallons. EM's Office of River Protection has successfully removed waste from a tenth storage tank at the Hanford site. Located in C Farm, C-109 is one of 16 underground tanks ranging in capacity from 55,000 to 530,000 gallons. Standing near a pipe providing access to the tank below, workers initiate a water soak aimed at loosening hard-to-remove-waste from the bottom of the underground tank known as C-109.

435

Tank Waste Committee Page 1  

NLE Websites -- All DOE Office Websites (Extended Search)

... 1 Single Shell Tank WMA-C Resource Conservation and Recovery ActComprehensive Environmental Response, Compensation and Liability Act...

436

CURRICULUM VITAE David W. Tank  

E-Print Network (OSTI)

CURRICULUM VITAE David W. Tank Personal Birthdate: June 3, 1953 Citizenship : U.S. Address: Dept Physical Society Biophysical Society #12;Research Publications 1. Tank, D.W., Wu, E.-S., and Webb, W, 207-212 (1982). 2. Webb, W.W., Barak, L.S., Tank, D.W. and Wu, E.-S., Molecular mobility on the cell

Tank, David

437

Tank Farm surveillance and waste status summary report for March 1993  

SciTech Connect

This report is the official inventory for radioactive waste stored in underground tanks in the 200 Areas at the Hanford Site. Data that depict the status of stored radioactive waste and tank vessel integrity are Contained within the report. This report provides data on each of the existing 177 large underground waste storage tanks and 49 smaller catch tanks and special surveillance facilities, and supplemental information regarding flank surveillance anomalies and ongoing investigations. This report is intended to meet the requirement of US Department of Energy-Richland Operations Office order 5820.2A, Chapter I, Section 3.e. (3) (DOE-RL, 1990, Radioactive Waste Management, US Department of Energy-Richland Operation Office, Richland, Washington) requiring the reporting of waste inventories and space utilization for Hanford Tank Farm Tanks.

Hanlon, B.M.

1993-05-01T23:59:59.000Z

438

Appendix C: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

439

Estimating Costs and Efficiency of Storage, Demand, and Heat...  

Energy Savers (EERE)

the stored water compared to the heat content of the water (water heaters with storage tanks) Cycling losses - the loss of heat as the water circulates through a water heater...

440

Thermal Energy Storage/Heat Recovery and Energy Conservation in Food Processing  

E-Print Network (OSTI)

discharges can be made more economically attrac tank holding several thousand gallons of water tive by incorporating thermal energy storage in a maintained at 128-130?F. This scald tank is con heat recovery system. Thermal energy storage can stantly... the ultimate energy end use. of wasting this hot water to the plant drain, a heat A project conducted by the Georgia Tech exchanger was installed at the Gold Kist plant to Engineering Experiment Station to demonstrate preheat scald tank makeup water...

Combes, R. S.; Boykin, W. B.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

442

A summary of available information on ferrocyanide tank wastes  

SciTech Connect

Ferrocyanide wastes were generated at the Hanford site during the mid to late 1950s to make more tank space available for the storage of high level nuclear waste. The ferrocyanide process was developed as a method of removing {sup 137}Cs from existing waste solutions and from process solutions that resulted from the recovery of valuable uranium in waste tanks. During the coarse of the research associated with the ferrocyanide process, it was discovered that ferrocyanide materials when mixed with NaNO{sub 3} and/or NaNO{sub 2} exploded. This chemical reactivity became an issue in the 1980s when the safety associated with the storage of ferrocyanide wastes in Hanford tanks became prominent. These safety issues heightened in the late 1980s and led to the current scrutiny of the safety associated with these wastes and the current research and waste management programs. Over the past three years, numerous explosive test have been carried out using milligram quantities of cyanide compounds. These tests provide information on the nature of possible tank reactions. On heating a mixture of ferrocyanide and nitrate or nitrite, an explosive reaction normally begins at about 240{degrees}C, but may occur well below 200{degrees}C in the presence of catalysts or organic compounds that may act as initiators. The energy released is highly dependent on the course of the reaction. Three attempts to model hot spots in local areas of the tanks indicate a very low probability of having a hot spot large enough and hot enough to be of concern. The main purpose of this document is to inform the members of the Tank Waste Science Panel of the background and issues associated with the ferrocyanide wastes. Hopefully, this document fulfills similar needs outside of the framework of the Tank Waste Science Panel. 50 refs., 9 figs., 7 tabs.

Burger, L.L.; Strachan, D.M. (Pacific Northwest Lab., Richland, WA (United States)); Reynolds, D.A. (Westinghouse Hanford Co., Richland, WA (United States)); Schulz, W.W. (Schulz (W.W.), Wilmington, DE (United States))

1991-10-01T23:59:59.000Z

443

Characterization of Samples from Old Solvent Tanks S1 through S22  

SciTech Connect

The Old Radioactive Waste Burial Ground (ORWBG, 643-E) contains 22 old solvent tanks (S1 - S22) which were used to receive and store spent PUREX solvent from F- and H-Canyons. The tanks are cylindrical, carbon-steel, single-wall vessels buried at varying depths. A detailed description of the tanks and their history can be found in Reference 1. A Sampling and Analysis Plan for the characterization of the material contained in the old solvent tanks was developed by the Analytical Development Section (ADS) in October of 19972. The Sampling and Analysis Plan identified several potential disposal facilities for the organic and aqueous phases present in the old solvent tanks which included the Solvent Storage Tank Facility (SSTF), the Mixed Waste Storage Facilities (MWSF), Transuranic (TRU) Pad, and/or the Consolidated Incineration Facility (CIF). In addition, the 241-F/H Tank Farms, TRU Pads, and/or the MWSF were identified as potential disposal facilities for the sludge phases present in the tanks. The purpose of this sampling and characterization was to obtain sufficient data on the material present in the old solvent tanks so that a viable path forward could be established for the closure of the tanks. Therefore, the parameters chosen for the characterization of the various materials present in the tanks were based upon the Waste Acceptance Criteria (WAC) of the SSTF3, TRU Pads4, MWSF5, CIF6, and/or 241-F/H Tank Farms7. Several of the WAC's have been revised, canceled, or replaced by new procedures since October of 1997 and hence where required, the results of this characterization program were compared against the latest revision of the appropriate WAC.

Leyba, J.D.

1999-03-25T23:59:59.000Z

444

Tank farm nuclear criticality review  

SciTech Connect

The technical basis for the nuclear criticality safety of stored wastes at the Hanford Site Tank Farm Complex was reviewed by a team of senior technical personnel whose expertise covered all appropriate aspects of fissile materials chemistry and physics. The team concluded that the detailed and documented nucleonics-related studies underlying the waste tanks criticality safety basis were sound. The team concluded that, under current plutonium inventories and operating conditions, a nuclear criticality accident is incredible in any of the Hanford single-shell tanks (SST), double-shell tanks (DST), or double-contained receiver tanks (DCRTS) on the Hanford Site.

Bratzel, D.R., Westinghouse Hanford

1996-09-11T23:59:59.000Z

445

E-Print Network 3.0 - arctic crude oil Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage, Conversion and Utilization 98 Time-varying Predictability in Crude Oil Markets: The Case of GCC Countries Summary: Time-varying Predictability in Crude Oil...

446

Hanford Double-Shell Tank Extent-of-Condition Review - 15498  

SciTech Connect

During routine visual inspections of Hanford double-shell waste tank 241-AY-102 (AY-102), anomalies were identified on the annulus floor which resulted in further evaluations. Following a formal leak assessment in October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of AY-102 was leaking. A formal leak assessment, documented in RPP-ASMT-53793, Tank 241-AY-102 Leak Assessment Report, identified first-of-a-kind construction difficulties and trial-and-error repairs as major contributing factors to tank failure.1 To determine if improvements in double-shell tank (DST) construction occurred after construction of tank AY-102, a detailed review and evaluation of historical construction records was performed for Hanford抯 remaining twenty-seven DSTs. Review involved research of 241 boxes of historical project documentation to better understand the condition of the Hanford DST farms, noting similarities in construction difficulties/issues to tank AY-102. Information gathered provides valuable insight regarding construction difficulties, future tank operations decisions, and guidance of the current tank inspection program. Should new waste storage tanks be constructed in the future, these reviews also provide valuable lessons-learned.

Johnson, J. M.; Baide, D. D.; Barnes, T. J.; Boomer, K. D.; Gunter, J. R.; Venetz, T. J.

2014-11-19T23:59:59.000Z

447

Headspace vapor characterization of Hanford Waste Tank 241-U-112: Results from samples collected on 7/09/96  

SciTech Connect

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-U-112 at the Hanford Site in Washington State. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained by Westinghouse Hanford Company.

Evans, J.C.; Pool, K.H.; Thomas, B.L.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

448

Recent developments in hydrogen storage applications based on metal hydrides  

Science Journals Connector (OSTI)

Metal hydrides have been commercialized for battery applications for more than 8 years. In case of storage applications, metal hydrides were extensively evaluated in combination with combustion engines. The relatively low gravimetric energy density of hydride tanks based on low temperature metal hydrides prevented the commercial use of that technology. Recently, lasting progress in the PEM fuel cell technology offers chances for metal hydride storage systems mainly for low power applications, but also for niche markets. The paper describes promising projects on metal hydride storage technology and gives an outlook about improvements of both the metal hydride alloy performance and the performance of metal hydride storage tanks.

V. G黷her; A. Otto

1999-01-01T23:59:59.000Z

449

Fuel cell systems for first lunar outpost -- Reactant storage options  

SciTech Connect

A Lunar Surface Power Working Group was formed to review candidate systems for providing power to the First Lunar Outpost habitat. The working group met for five days in the fall of 1992 and concluded that the most attractive candidate included a photovoltaic unit, a fuel cell, a regenerator to recycle the reactants, and storage of oxygen and hydrogen gases. Most of the volume (97%) and weight (64%) are taken up by the reactants and their storage tanks. The large volume is difficult to accommodate, and therefore, the working group explored ways of reducing the volume. An alternative approach to providing separate high pressure storage tanks is to use two of the descent stage propellant storage tanks, which would have to be wrapped with graphite fibers to increase their pressure capability. This saves 90% of the volume required for storage of fuel cell reactants. Another approach is to use the descent storage propellant tanks for storage of the fuel cell reactants as cryogenic liquids, but this requires a gas liquefaction system, increases the solar array by 40%, and increases the heat rejection rate by 170% compared with storage of reactants as high pressure gases. For a high power system (>20 kW) the larger energy storage requirement would probably favor the cryogenic storage option.

Nelson, P.A. [Argonne National Lab., IL (United States). Chemical Technology Div.

1995-06-01T23:59:59.000Z

450

Tank characterization data report: Tank 241-C-112  

SciTech Connect

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. It is probable that tank 241-C-112 exceeds the 1,000 g-mol inventory criteria established for the Ferrocyanide USQ; however, extensive energetic analysis of the waste has determined a maximum exothermic value of -9 cal/g dry waste. This value is substantially below any levels of concern (-75 cal/g). In addition, an investigation of potential mechanisms to generate concentration levels of radionuclides high enough to be of concern was performed. No credible mechanism was postulated that could initiate the formation of such concentration levels in the tank. Tank 241-C-112 waste is a complex material made up primarily of water and inert salts. The insoluble solids are a mixture of phosphates, sulfates, and hydroxides in combination with aluminum, calcium, iron, nickel, and uranium. Disodium nickel ferrocyanide and sodium cesium nickel ferrocyanide probably exist in the tank; however, there appears to have been significant degradation of this material since the waste was initially settled in the tank.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-04-01T23:59:59.000Z

451

Safety analysis of exothermic reaction hazards associated with the organic liquid layer in tank 241-C-103  

SciTech Connect

Safety hazards associated with the interim storage of a potentially flammable organic liquid in waste Tank C-103 are identified and evaluated. The technical basis for closing the unreviewed safety question (USQ) associated with the floating liquid organic layer in this tank is presented.

Postma, A.K.; Bechtold, D.B.; Borsheim, G.L.; Grisby, J.M.; Guthrie, R.L.; Kummerer, M.; Turner, D.A. [Westinghouse Hanford Co., Richland, WA (United States); Plys, M.G. [Fauske and Associates, Inc., Burr Ridge, IL (United States)

1994-03-01T23:59:59.000Z

452

Reservoir oil bubblepoint pressures revisited; solution gasoil ratios and surface gas specific gravities  

E-Print Network (OSTI)

Reservoir oil bubblepoint pressures revisited; solution gas颅oil ratios and surface gas specific, for bubblepoint pressure and other fluid properties, require use of stock-tank gas rate and specific gravity in estimating stock-tank vent gas rate and quality for compliance purposes. D 2002 Elsevier Science B.V. All

Valk贸, Peter

453

Organic Tanks Safety Program: Waste aging studies  

SciTech Connect

The underground storage tanks at the Hanford Complex contain wastes generated from many years of plutonium production and recovery processes, and mixed wastes from radiological degradation processes. The chemical changes of the organic materials used in the extraction processes have a direct on several specific safety issues, including potential energy releases from these tanks. This report details the first year`s findings of a study charged with determining how thermal and radiological processes may change the composition of organic compounds disposed to the tank. Their approach relies on literature precedent, experiments with simulated waste, and studies of model reactions. During the past year, efforts have focused on the global reaction kinetics of a simulated waste exposed to {gamma} radiation, the reactions of organic radicals with nitrite ion, and the decomposition reactions of nitro compounds. In experiments with an organic tank non-radioactive simulant, the authors found that gas production is predominantly radiolytically induced. Concurrent with gas generation they observe the disappearance of EDTA, TBP, DBP and hexone. In the absence of radiolysis, the TBP readily saponifies in the basic medium, but decomposition of the other compounds required radiolysis. Key organic intermediates in the model are C-N bonded compounds such as oximes. As discussed in the report, oximes and nitro compounds decompose in strong base to yield aldehydes, ketones and carboxylic acids (from nitriles). Certain aldehydes can react in the absence of radiolysis to form H{sub 2}. Thus, if the pathways are correct, then organic compounds reacting via these pathways are oxidizing to lower energy content. 75 refs.

Camaioni, D.M.; Samuels, W.D.; Lenihan, B.D.; Clauss, S.A.; Wahl, K.L.; Campbell, J.A.

1994-11-01T23:59:59.000Z

454

Tank Vapor Characterization Project: Headspace vapor characterization of Hanford waste tank 241-S-101: Results from samples collected on 06/06/96  

SciTech Connect

This report describes the analytical results of vapor samples taken from the headspace of the waste storage tank 241-S-101. The results described in this report were obtained to characterize the vapors present in the tank headspace and to support safety evaluations and tank farm operations. The results include air concentrations of selected inorganic and organic analytes and grouped compounds from samples obtained. Analyte concentrations were based on analytical results and sample volumes provided by WHC. A summary of the inorganic analytes, permanent gases, and total non-methane organic compounds is listed.

Thomas, B.L.; Evans, J.C.; Pool, K.H.; Olsen, K.B.; Fruchter, J.S.; Silvers, K.L.

1997-01-01T23:59:59.000Z

455

NETL: NATCARB - CO2 Storage Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

456

Site status monitoring report for underground storage tanks 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility, Buildings 9720-15 and 9754-1, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee, Facility ID No. 0-010117  

SciTech Connect

The purpose of this document is to provide hydrogeologic, geochemical, and vapor monitoring data required for site status monitoring of underground storage tanks (UST) 1219-U, 1222-U, 2082-U, and 2068-U at the Rust Garage Facility. Comprehensive monitoring was conducted at the site in May 1994 as part of a Monitoring Only program approved by Tennessee Department of Environment and Conservation (TDEC) based on review and approval of Site Ranking. In September 1994, the first semiannual site status monitoring was conducted. This document presents the results of the second semiannual site status monitoring, which was conducted in February 1995. Site status monitoring and preparation of this report have been conducted in accordance with the requirements of the TDEC Rule 1200-1-15, the TDEC UST Reference Handbook, Second Edition, and direction from TDEC. This document is organized into three sections. Section 1 presents introductory information relative to the site including regulatory initiative and a site description. Section 2 includes the results of sampling of monitoring wells GW-508, GW-631, GW-632, and GW-634. Section 3 presents data from vapor monitoring conducted in subsurface utilities present at the site.

NONE

1995-03-01T23:59:59.000Z

457

STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225  

SciTech Connect

The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

Jolly, R

2009-01-06T23:59:59.000Z

458

Residential oil burners with low input and two stages firing  

SciTech Connect

The residential oil burner market is currently dominated by the pressure-atomized, retention head burner. At low firing rates pressure atomizing nozzles suffer rapid fouling of the small internal passages, leading to bad spray patterns and poor combustion performance. To overcome the low input limitations of conventional burners, a low pressure air-atomized burner has been developed watch can operate at fining rates as low as 0.25 gallons of oil per hour (10 kW). In addition, the burner can be operated in a high/low fining rate mode. Field tests with this burner have been conducted at a fixed input rate of 0.35 gph (14 kW) with a side-wall vented boiler/water storage tank combination. At the test home, instrumentation was installed to measure fuel and energy flows and record trends in system temperatures. Laboratory efficiency testing with water heaters and boilers has been completed using standard single purpose and combined appliance test procedures. The tests quantify benefits due to low firing rates and other burner features. A two stage oil burner gains a strong advantage in rated efficiency while maintaining capacity for high domestic hot water and space heating loads.

Butcher, T.; Krajewski, R.; Leigh, R. [and others

1997-12-31T23:59:59.000Z

459

Organic Tank Safety Project: development of a method to measure the equilibrium water content of Hanford organic tank wastes and demonstration of method on actual waste  

SciTech Connect

Some of Hanford`s underground waste storage tanks contain Organic- bearing high level wastes that are high priority safety issues because of potentially hazardous chemical reactions of organics with inorganic oxidants in these wastes such as nitrates and nitrites. To ensure continued safe storage of these wastes, Westinghouse Hanford Company has placed affected tanks on the Organic Watch List and manages them under special rules. Because water content has been identified as the most efficient agent for preventing a propagating reaction and is an integral part of the criteria developed to ensure continued safe storage of Hanford`s organic-bearing radioactive tank wastes, as part of the Organic Tank Safety Program the Pacific Northwest National Laboratory developed and demonstrated a simple and easily implemented procedure to determine the equilibrium water content of these potentially reactive wastes exposed to the range of water vapor pressures that might be experienced during the wastes` future storage. This work focused on the equilibrium water content and did not investigate the various factors such as @ ventilation, tank surface area, and waste porosity that control the rate that the waste would come into equilibrium, with either the average Hanford water partial pressure 5.5 torr or other possible water partial pressures.

Scheele, R.D.; Bredt, P.R.; Sell, R.L.

1996-09-01T23:59:59.000Z

460

Savannah River Site - Tank 48 Transmittal Letter of SRS Tank...  

Office of Environmental Management (EM)

carried forward by WSRC as leading candidates for Tank 48 applications, Fluidized Bed Steam Reforming and Wet-Air Oxidation (WAO), are technically sound, are likely to prove...

Note: This page contains sample records for the topic "oil storage tanks" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Tank characterization data report: Tank 241-C-112  

SciTech Connect

Tank 241-C-112 is a Hanford Site Ferrocyanide Watch List tank that was most recently sampled in March 1992. Analyses of materials obtained from tank 241-C-112 were conducted to support the resolution of the Ferrocyanide Unreviewed Safety Question (USQ) and to support Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-10-00. Analysis of core samples obtained from tank 241-C-112 strongly indicates that the fuel concentration in the tank waste will not support a propagating exothermic reaction. Analysis of the process history of the tank as well as studies of simulants provided valuable information about the physical and chemical condition of the waste. This information, in combination with the analysis of the tank waste, sup ports the conclusion that an exothermic reaction in tank 241-C-112 is not plausible. Therefore, the contents of tank 241-C-112 present no imminent threat to the workers at the Hanford Site, the public, or the environment from its forrocyanide inventory. Because an exothermic reaction is not credible, the consequences of this accident scenario, as promulgated by the General Accounting Office, are not applicable.

Simpson, B.C.; Borsheim, G.L.; Jensen, L.

1993-09-01T23:59:59.000Z

462

Carbon Utilization and Storage | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

to Assess Carbon Utilization and Storage Technologies PDF Improving Domestic Energy Security and Lowering CO2 Emissions with "Next Generation" CO2-Enhanced Oil Recovery...

463

Clean option: An alternative strategy for Hanford Tank Waste Remediation  

SciTech Connect

Plans for remediation of the Hanford underground storage tanks are currently undergoing reevaluation. As part of this process, many options are being considered for the Tank Waste Remediation System (MRS). The clean option'' described here proposes an aggressive waste processing strategy to achieve the three ma or objectives: Greatly reduce the volume of high-level waste (HLW) to lessen demands on geologic repository space; decrease by several orders of magnitude the amount of radioactivity and toxicity now in the waste tanks that will be left permanently onsite as low-level solid waste (LLW); and accomplish the first two objectives without significantly increasing the total amount of waste for disposal. The study discussed here focuses on process chemistry, as it provides the foundation for achieving the clean option objectives. Because demonstrated separation steps have been identified and connected in a way that meets these objectives, the study concludes that the process chemistry rests on a firm technical basis.

Straalsund, J.L.; Swanson, J.L.; Baker, E.G.; Jones, E.O.; Kuhn, W.L. (Pacific Northwest Lab., Richland, WA (United States)); Holmes, J.J. (Westinghouse Hanford Co., Richland, WA (United States))

1992-12-01T23:59:59.000Z

464

Organic tanks safety program FY96 waste aging studies  

SciTech Connect

Uranium and plutonium production at the Hanford Site produced large quantities of radioactive by-products and contaminated process chemicals, which are stored in underground tanks awaiting treatment and disposal. Having been made strongly alkaline and then subjected to successive water evaporation campaigns to increase storage capacity, the wastes now exist in the physical forms of salt cakes, metal oxide sludges, and partially saturated aqueous brine solutions. The tanks that contain organic process chemicals mixed with nitrate/nitrite salt wastes may be at risk for fuel- nitrate combustion accidents. The purpose of the Waste Aging Task is to elucidate how chemical and radiological processes will have aged or degraded the organic compounds stored in the tanks. Ultimately, the task seeks to develop quantitative measures of how aging changes the energetic properties of the wastes. This information will directly support efforts to evaluate the hazard as well as to develop potential control and mitigation strategies.

Camaioni, D.M.; Samuels, W.D.; Linehan, J.C.; Clauss, S.A.; Sharma, A.K.; Wahl, K.L.; Campbell, J.A.

1996-10-01T23:59:59.000Z

465

Design and installation manual for thermal energy storage  

SciTech Connect

The purpose of this manual is to provide information on the design and installation of thermal energy storage in active solar systems. It is intended for contractors, installers, solar system designers, engineers, architects, and manufacturers who intend to enter the solar energy business. The reader should have general knowledge of how solar heating and cooling systems operate and knowledge of construction methods and building codes. Knowledge of solar analysis methods such as f-Chart, SOLCOST, DOE-1, or TRNSYS would be helpful. The information contained in the manual includes sizing storage, choosing a location for the storage device, and insulation requirements. Both air-based and liquid-based systems are covered with topics on designing rock beds, tank types, pump and fan selection, installation, costs, and operation and maintenance. Topics relevant to latent heat storage include properties of phase-change materials, sizing the storage unit, insulating the storage unit, available systems, and cost. Topics relevant to heating domestic water include safety, single- and dual-