Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Atmospheric Deposition of Mercury and Methylmercury to Landscapes and Waterbodies of the Athabasca Oil Sands Region  

Science Journals Connector (OSTI)

Mercury (Hg) is of particular interest as methylmercury (MeHg), a neurotoxin which bioaccumulates through foodwebs, can reach levels in fish and wildlife that may pose health risks to human consumers. ... Relationships between Hg and numerous parameters, including natural environmental factors such as snowpack characteristics and wind, as well as other chemicals, were examined to identify potential factors driving the spatial patterns in Hg deposition to the oil sands region. ... Predominant winds in the Alberta oil sands region are generally from the east, southwest, and northwest (Table S5, Figure S8). ...

Jane L. Kirk; Derek C. G. Muir; Amber Gleason; Xiaowa Wang; Greg Lawson; Richard A. Frank; Igor Lehnherr; Fred Wrona

2014-05-29T23:59:59.000Z

2

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National Centre...

3

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

SciTech Connect (OSTI)

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program to develop new applications for UCG technology in utilizing coal resources that are unattractive for mining. Results from the survey indicate tar sand deposits, heavy oil fields, or light oil fields are probably or possibly located within 5 miles of suitable coal in 17 states (Table 1). Especially promising areas are in the Uinta Basin of Utah; the North Slope of Alaska; the San Miguel deposit in southwest Texas; the Illinois-Eastern Interior Basin area of western Kentucky, southwestern Indiana and Illinois; the tri-state area of Missouri, Kansas and Oklahoma; and the northern Appalachian Basin in eastern Ohio and northwestern Pennsylvania. The deposits in these areas warrant further evaluation. 30 refs., 4 figs., 1 tab.

Trudell, L.G.

1986-06-01T23:59:59.000Z

4

Policy Analysis of the Canadian Oil Sands Experience  

SciTech Connect (OSTI)

For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

None, None

2013-09-01T23:59:59.000Z

5

Oil Sands Feedstocks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sands Feedstocks Oil Sands Feedstocks Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and...

6

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...only when reservoir condi-tions...geological at-rocks, cap rocks, oil migration...subsurface reservoir and supplying...reservoir quality of the sands. Porosity. High-grade...reservoir sandstones (5 to 20...the oil. Permeability. The permeability...

Grant D. Mossop

1980-01-11T23:59:59.000Z

7

The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource  

E-Print Network [OSTI]

sand production is from unconsolidated units, but the St.and Midwestern U.S. , unconsolidated sand deposits aresand is produced from unconsolidated deposits or hard,

Shaffer, Nelson R.

2006-01-01T23:59:59.000Z

8

The extraction of bitumen from western oil sands: Volume 2. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

9

The extraction of bitumen from western oil sands: Volume 1. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

10

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Broader source: Energy.gov [DOE]

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

11

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

12

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...geological at-rocks, cap rocks, oil migration...subsurface reservoir and supplying...the sands. Porosity. High-grade...the oil. Permeability. The permeability...Ath-abasca reservoir is the distribution...ofpri-mary porosity and permeability in the McMurray...

Grant D. Mossop

1980-01-11T23:59:59.000Z

13

Response of Oil Sands Derived Fuels in Diesel HCCI Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency &...

14

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...flow only when reservoir condi-tions...geological at-rocks, cap rocks, oil migration...the subsurface reservoir and supplying...ex-cellent reservoir quality of the sands. Porosity. High-grade...petroleum reservoir sandstones (5 to 20 0036-8075...

Grant D. Mossop

1980-01-11T23:59:59.000Z

15

Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of  

E-Print Network [OSTI]

-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from dans les strates du Crétacé inférieur du centre-ouest de la Saskatchewan. Le gisement de pétrole lourd of the Winter Pool, west-central Saskatchewan DUSTIN B. BAUER University of Calgary Department of Geoscience

16

The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992  

SciTech Connect (OSTI)

The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1992-08-01T23:59:59.000Z

17

The mobility of petroleum hydrocarbons in Athabasca oil sands tailings.  

E-Print Network [OSTI]

??Several oil sands tailings from Suncor Energy Inc. were analysed with respect to the mobility and solubility of the petroleum hydrocarbon (PHC) contaminants. At sites (more)

Brickner, Heather

2014-01-01T23:59:59.000Z

18

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Bruce G. Bunting senior staff scientist Fuels, Engines, and Emissions Research Center 2007 DOE DEER Conference...

19

Burning Behaviour of Heavy Gas Oil from the Canadian Oil Sands.  

E-Print Network [OSTI]

??This work presents the first systematic investigation and characterisation of the burning behaviour of untreated heavy gas oil from the Canadian oil sands, an intermediate (more)

Mulherin, Patrick

2014-01-01T23:59:59.000Z

20

Unconsolidated oil sands: Vertical Single Well SAGD optimization.  

E-Print Network [OSTI]

??Several recovery processes have been proposed for heavy oil and oil sands de-pending on the reservoir and fluid properties, among which steam-assisted gravity drainage (SAGD) (more)

Jamali, Ali

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microstructural characterization of a Canadian oil sand  

E-Print Network [OSTI]

The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

Dinh, Hong Doan; Nauroy, Jean-Franois; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

2013-01-01T23:59:59.000Z

22

Aging effects on oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from the destruction of oil wells and the formation of oil lakes in Kuwait at the end of the Gulf Wa/r. A laboratory testing program was carried out to determine the geotechnical properties of this material and the effect of aging on their properties. Tests included direct shear, triaxial, and consolidation tests on clean and contaminated sand at the same relative density. The influence of aging was examined by testing uncontaminated sand after aging for one, three, and six months in natural environmental conditions. The results indicated increased strength and stiffness due to aging and a reduction of the oil content due to evaporation of volatile compounds. The factors that influence the depth of oil penetration in compacted sand columns were also examined including the type of oil, relative density, and the amount of fines.

Al-Sanad, H.A.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1997-03-01T23:59:59.000Z

23

The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource  

E-Print Network [OSTI]

rich Sand Deposits as a Renewable Resource Nelson R. Shaffercan even be considered a renewable resource. The reader willbuild our society, and its renewable nature. We are not the

Shaffer, Nelson R.

2006-01-01T23:59:59.000Z

24

Geotechnical properties of oil-contaminated Kuwaiti sand  

SciTech Connect (OSTI)

Large quantities of oil-contaminated sands resulted from exploded oil wells, burning oil fires, the destruction of oil storage tanks, and the formation of oil lakes in Kuwait at the end of the Gulf War. An extensive laboratory testing program was carried out to determine the geotechnical characteristics of this material. Testing included basic properties, compaction and permeability tests, and triaxial and consolidation tests on clean and contaminated sand at the same relative density. Contaminated specimens were prepared by mixing the sand with oil in the amount of 6% by weight or less to match field conditions. The influence of the type of oil, and relative density was also investigated by direct shear tests. The results indicated a small reduction in strength and permeability and an increase in compressibility due to contamination. The preferred method of disposal of this material is to use it as a stabilizing material for other projects such as road construction.

Al-Sanad, H.A.; Eid, W.K.; Ismael, N.F. [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering] [Kuwait Univ., Safat (Kuwait). Dept. of Civil Engineering

1995-05-01T23:59:59.000Z

25

Oil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...ERCB) (2009) Alberta's energy reserves 2008 and supply/demand outlook...Oil Sands coke and coke ash . Fuel 58 : 589 594 . 17 Jang H Etsell...decay constant indicating the rate that deposition per unit...in aqueous samples from the Florida Everglades. Fresenius J Anal...

Erin N. Kelly; David W. Schindler; Peter V. Hodson; Jeffrey W. Short; Roseanna Radmanovich; Charlene C. Nielsen

2010-01-01T23:59:59.000Z

26

Trace Fossils from the Athabasca Oil Sands, Alberta, Canada  

Science Journals Connector (OSTI)

...surface as an oil sands reservoir, which facilitates...the base (2). Porosity in the cleaner sands...and so on), the porosity or permeability patterns in the reservoir can be viewed as...University ofPittsburgh rock magne-tism laboratory...

S. GEORGE PEMBERTON; PETER D. FLACH; GRANT D. MOSSOP

1982-08-27T23:59:59.000Z

27

Hydrotreating the native bitumen from the Whiterocks tar sand deposit  

SciTech Connect (OSTI)

The bitumen from the Whiterocks oil sand deposit in the Uinta Basin of eastern Utah was hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The process variables investigated included reactor pressure (11.2--16.7 MPa); reactor temperature (641--712 K) and liquid hourly space velocity (0.19--0.77 h{sup {minus}1}). The hydrogen/oil ratio, 890 m{sup 3} m{sup {minus}3} was fixed in all experiments. A sulphided Ni-Mo on alumina hydrodenitrogenation catalyst was used in these studies. The deactivation of the catalyst, 0.2 {degree}C/day, was monitored by thedecline in the API gravity of the total liquid product with time on-stream at a standard set of conditions. The effect of temperature, WHSV, and pressure on denitrogenation, desulphurization, and metals removalwere studied and apparent kinetic parameters determined. The effect of process variables on residue conversion and Conradson carbon residue reduction were also investigated.

Longstaff, D.C.; Deo, M.D.; Hanson, F.V.

1993-03-01T23:59:59.000Z

28

THERMAL PROCESSING OF OIL SHALE/SANDS  

E-Print Network [OSTI]

)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools

Michal Hradisky; Philip J. Smith; Doe Award; No. De-fe

2009-01-01T23:59:59.000Z

29

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels 2003 DEER Conference Presentation:...

30

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network [OSTI]

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

31

Integration of reclamation and tailings management in oil sands surface mine planning  

Science Journals Connector (OSTI)

The processing of oil sands generates large volumes of slurry, known as tailings, that is impounded in tailings ponds. Oil sands operators are committed to develop reclamation plans to ensure that the mine site is restored to a natural or economically ... Keywords: Integer programming, Mine planning, Oil sands, Open-pit mining, Reclamation planning, Strategic planning, Tailings management

Mohammad Mahdi Badiozamani; Hooman Askari-Nasab

2014-01-01T23:59:59.000Z

32

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network [OSTI]

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

33

File:OilSands.pdf | Open Energy Information  

Open Energy Info (EERE)

OilSands.pdf OilSands.pdf Jump to: navigation, search File File history File usage File:OilSands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.69 MB, MIME type: application/pdf, 85 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:24, 14 February 2012 Thumbnail for version as of 14:24, 14 February 2012 1,275 × 1,650, 85 pages (1.69 MB) Graham7781 (Talk | contribs)

34

Paraffin deposition in offshore oil production.  

E-Print Network [OSTI]

??The extreme environmental conditions typically encountered in offshore oil operations lead to a number of problems. Cool deep sea temperatures promote particle formation and deposition (more)

Elphingstone, Gerald Mason

2012-01-01T23:59:59.000Z

35

Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's  

E-Print Network [OSTI]

) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

Watson, Andrew

36

Evaluation of metals release from oil sands coke : an ecotoxicological assessment of risk and hazard to aquatic invertebrates.  

E-Print Network [OSTI]

??The oil sands operations in northeast Alberta, Canada, employ unconventional processes to produce synthetic crude oil (SCO). Because the extracted bitumen, the form of oil (more)

PUTTASWAMY, NAVEEN V

2011-01-01T23:59:59.000Z

37

Petroleum hydrocarbon content, leaching and degradation from surficial bitumens in the Athabasca oil sands region.  

E-Print Network [OSTI]

??Mine reclamation has become a topic of considerable research in the Athabasca Oil Sands Region of Northeastern Alberta, Canada. In this area some of the (more)

Fleming, Matthew

2013-01-01T23:59:59.000Z

38

Development Of Reclamation Substrates For Alberta Oil Sands Using Mature Fine Tailings And Coke.  

E-Print Network [OSTI]

??Mature fine tailings and coke are waste products of the oil sands industry with potential for reclamation. A greenhouse study assessed whether substrates of various (more)

Luna-Wolter, Gabriela L.

2012-01-01T23:59:59.000Z

39

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process localiser la chambre à vapeur. INTRODUCTION [1] Huge quantities of heavy oils (heavy oil, extra heavy oil. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10

Paris-Sud XI, Université de

40

Modeling the Energy Demands and Greenhouse Gas Emissions of the Canadian Oil Sands Industry  

Science Journals Connector (OSTI)

In this study, the energy requirements associated with producing synthetic crude oil (SCO) and bitumen from oil sands are modeled and quantified, on the basis of current commercially used production schemes. The production schemes were (a) mined bitumen, ...

Guillermo Ordorica-Garcia; Eric Croiset; Peter Douglas; Ali Elkamel; Murlidhar Gupta

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Evaluation of Engineered Geothermal Systems as a Heat Source for Oil Sands Production in Northern Alberta  

Science Journals Connector (OSTI)

The project costs presented in the following section are intended ... give a basic understanding of the economics of geothermal heat as an energy source for oil sands extraction. Long et...2005) reported that oil...

V. Pathak; T. Babadagli; J. A. Majorowicz; M. J. Unsworth

2014-06-01T23:59:59.000Z

42

Solvent extraction of oil shale or tar sands  

SciTech Connect (OSTI)

Oil shales or tar sands are extracted under non-thermally destructive conditions with a solvent liquid containing a compound having the general formula: R(N)-M(=O)(-R1)-N(-R2)-R3 where M is a carbon, sulfur or phosphorus atom, R/sup 2/ and R/sup 3/ are each a hydrogen atom or a lowe alkyl group, R and R/sup 1/ are each a lower alkyl group, another -N(-R2)-R3 group, a monocyclic arom group, or R/sup 1/ can be another -N(-R3)-M(=O)(-R1)-R(N) group or R/sup 1/ and R/sup 2/ together can represent the atoms necessary to close a heterocyclic ring, and n=1 where M=phosphorus and is otherwise 0, to substantially remove the non-fixed carbon content of the oil shale or tar sands, leaving a solid residue of fixed carbon, ash minerals, and non-extractable matter.

Stiller, A.H.; Hammack, R.W.; Sears, J.T.

1983-08-02T23:59:59.000Z

43

Effects of wastewater from an oil-sand-refining operation on survival, hematology, gill histology,  

E-Print Network [OSTI]

Effects of wastewater from an oil-sand-refining operation on survival, hematology, gill histology the effects of various types of wastewater produced in oil-sand-refining on the survival, hematology, gill. In con- trast, all fish did not survive a 28-day period in any of the wastewaters tested and, in some

Farrell, Anthony P.

44

A case study of multipole acoustic logging in heavy oil sand reservoirs  

Science Journals Connector (OSTI)

The multipole acoustic logging tool (MPAL) was tested in the heavy oil sand reservoirs of Canada. Compared with near shales the P-wave slowness of heavy oil sands does not change obviously with the value of about 125?s/ft; the dipole shear slowness decreases significantly to 275?s/ft. The heavy oil sands have a Vp/Vs value of less than 2.4. The slowness and amplitude of dipole shear wave are good lithology discriminators that have great differences between heavy oil sands and shales. The heavy oil sand reservoirs are anisotropic. The crossover phenomenon in the fast and slow dipole shear wave dispersion curves indicates that the anisotropy is induced by unbalanced horizontal stress in the region.

Xiaohua Che

2014-01-01T23:59:59.000Z

45

Alberta bound : the interface between Alberta's environmental policies and the environmental management of three Albertan oil sands companies  

E-Print Network [OSTI]

The Athabasca Oil Sands, located in northeastern Alberta, Canada, were for many years anomalous. Two oil sands operators developed their extraction techniques for 30 years, refining their technology before production became ...

Lemphers, Nathan C

2009-01-01T23:59:59.000Z

46

Frequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea-sured and modeled data  

E-Print Network [OSTI]

Frequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea) properties of heavy-oil sands over a range of frequencies (2 - 2000Hz) covering the seismic bandwidth and at ultrasonic frequencies (0.8MHz). The measurements were carried on heavy-oil sand sample from Asphalt Ridge

47

The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991  

SciTech Connect (OSTI)

Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1992-04-01T23:59:59.000Z

48

Shapes and surface textures of quartz sand grains from glacial deposits: effects of source and transport  

E-Print Network [OSTI]

for the degree MASTER OF SCIENCE December 1987 Major Subject: Geology SHAPES AND SURFACE TERTURES OF QUARTZ SAND GRAINS FROM GLACIAL DEPOSITS: EFFECTS OF SOURCE AND TRANSPORT A Thesis by CHRISTINE RITTER Approved as to style and content by; James zzullo... (Chairman of Committee) Thomas T. Tieh (Member) Louis E. Garrison (Member) Gail M. Ashley (Member) ohn H. Spa (He d of Department) December 1987 ABSTRACT Shapes and Surface Textures of Quartz Sand Grains From Glacial Deposits: Effects of Source...

Ritter, Christine

2012-06-07T23:59:59.000Z

49

Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas  

E-Print Network [OSTI]

INVESTIGATION OF THE THERNAL CONDUCTIVITY OF UNCONSOLIDATED SAND PACKS CONTAINING OIL, WATER, AND GAS A Thesis David E. Gore Submitted to the Graduate School of the Agricultural and Nechanical College oi' Texas in Partial fulfillment.... EXPERIMENTAL EQUIPMENT AND PROCEDURE All tests were performed on unconsolidated sand packs containing either one, two, or three saturating fluids, Phys- ical properties of the sand and saturating fluids are shown in Tables I and II in the Appendix...

Gore, David Eugene

2012-06-07T23:59:59.000Z

50

Technologies, markets and challenges for development of the Canadian Oil Sands industry  

E-Print Network [OSTI]

This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

Lacombe, Romain H.

2007-01-01T23:59:59.000Z

51

Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...  

Broader source: Energy.gov (indexed) [DOE]

Canada Ottawa, Ontario, Canada Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands Derived Fuels W. Stuart Neill 9 th DEER Conference, Newport, Rhode Island August...

52

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

53

ON OIL SHALE MINING IN THE ESTONIA DEPOSIT  

E-Print Network [OSTI]

age) cut the Estonian oil shale-kukersite deposits. Two younger groups of structures are typical fault

K. Sokman; V. Kattai; R. Vaher; Y. J. Systra

54

Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development  

SciTech Connect (OSTI)

Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nations future.

Ruple, John; Keiter, Robert

2010-12-31T23:59:59.000Z

55

No Oil: The coming Utopia/Dystopia and Communal Possibilities  

E-Print Network [OSTI]

supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

Miller, Timothy

2006-03-01T23:59:59.000Z

56

Integration of nuclear power with oil sands extraction projects in Canada  

E-Print Network [OSTI]

One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

Finan, Ashley (Ashley E.)

2007-01-01T23:59:59.000Z

57

Numerical Modeling of Hydraulic Fracturing in Oil Sands  

E-Print Network [OSTI]

Hydraulic fracturing is a widely used and e cient technique for enhancing oil ... for analyzing hydraulic fracturing in rocks, are in general not satisfactory for oil...

2008-11-16T23:59:59.000Z

58

Sand pack residual oil saturations as affected by extraction with various solvents  

E-Print Network [OSTI]

invalidate the conclusions of Jennings, as his natural cores were obtained using oQ-base muds, Data presented by Shneerson an4 VasOieva sho? that reservoir 7 mineral surfaces made preferentially oil-wst with crude oils could not be altered in wettability..., and air pressure was main tained on the supply reservoirs for a minimum time. Tbe fluids used to saturate the sand packs were tap water, kerosene, Sradford crude and topped East Texas crude oil, Organic solvents used to extract the sand packs were...

Murray, Clarence

1958-01-01T23:59:59.000Z

59

Definition: Tar Sands | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Tar Sands Jump to: navigation, search Dictionary.png Tar Sands A resource, found in particular abundance in Canada, where viscous petroleum is mixed in with a layer of sand, clay, and water. The form of petroleum is often referred to as "bitumen". The resource has only recently been considered part of the world's oil reserves View on Wikipedia Wikipedia Definition Oil sands, tar sands or, more technically, bituminous sands, are a type of unconventional petroleum deposit. The oil sands are loose sand or partially consolidated sandstone containing naturally occurring mixtures of sand, clay, and water, saturated with a dense and extremely viscous form of petroleum technically referred to as bitumen (or colloquially tar due to

60

1 Pore Scale Analysis of Oil Shale/Sands Pyrolysis  

E-Print Network [OSTI]

quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing

unknown authors

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Shale Oil and Gas, Frac Sand, and Watershed  

E-Print Network [OSTI]

;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

Minnesota, University of

62

Are World Oil's Prospects Not Declining All That Fast?  

Science Journals Connector (OSTI)

...oil sands of Alberta, wringing oil from beneath North Dakota by fracking, drilling down to the superdeep deposits beneath the...inaccessible oil deposits like the Canadian oil sands and North Dakota tight oil, a lower decline rate makes for abundant...

Richard A. Kerr

2012-08-10T23:59:59.000Z

63

Calculating Deposit Formation in the Pipelining of Waxy Crude Oils  

Science Journals Connector (OSTI)

Wax deposition from a waxy crude oil is modelled in turbulent flow in a pipeline. Molecular diffusion in a thin boundary layer...

S. Correra; A. Fasano; L. Fusi; D. Merino-Garcia

2007-04-01T23:59:59.000Z

64

Biodiesel production from used cooking oil and sea sand as heterogeneous catalyst  

Science Journals Connector (OSTI)

Abstract The aim of this study was to analyze the catalytic performance of sea sand as a nonconventional catalyst in the transesterification reaction of used cooking oil and refined oil with methanol. The sea sand was utilized as a source of calcium oxide. The main characteristic of this sea sand is the high content of CaCO3 which was transformed into CaO by calcination. The catalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption/desorption (BET) and by Hammett method (basicity determination). The produced biodiesel has 95.4% (polar+non polar methyl esters), 96.6% and 97.5% methyl esters content when employing used cooking oil, safflower oil and soybean oil, respectively. The obtained biodiesel at these conditions (atmospheric pressure, reaction temperature of 60C, 12:1M ratio of methanol:oil and catalyst amount of 7.5%) met key parameters (viscosity: 4.25.0mm2/s and acid value: 0.050.011mg KOH/g) of the European norm EN-14214 (viscosity: 3.55.0mm2/g and acid value: max. 0.50mg KOH/g).

Gabriel Galvn Mucio; Rubi Romero; Armando Ramrez; Sandra Luz Martnez; Ramiro Baeza-Jimnez; Reyna Natividad

2014-01-01T23:59:59.000Z

65

Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications  

Science Journals Connector (OSTI)

Life Cycle Greenhouse Gas Emissions of Current Oil Sands Technologies: Surface Mining and In Situ Applications ... efficiency - gas turbine ?GT ... The studied uncertainties include, (1) uncertainty in emissions factors for petroleum substitutes, (2) uncertainties resulting from poor knowledge of the amt. of remaining conventional petroleum, and (3) uncertainties about the amt. of prodn. of petroleum substitutes from natural gas and coal feedstocks. ...

Joule A. Bergerson; Oyeshola Kofoworola; Alex D. Charpentier; Sylvia Sleep; Heather L. MacLean

2012-06-05T23:59:59.000Z

66

Reply to Hrudey: Tracking the extent of oil sands airborne pollution  

Science Journals Connector (OSTI)

...and major open-pit mining areas show variable...laboratory performance standards in terms of blanks...of deuterated internal standards. Thus, we are confident...Oil Sands Monitoring Plan and will soon have...downstream impacts. Reviews of previous monitoring...

Joshua Kurek; Jane L. Kirk; Derek C. G. Muir; Xiaowa Wang; Marlene S. Evans; John P. Smol

2013-01-01T23:59:59.000Z

67

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect (OSTI)

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

68

Diamonds in the rough: identification of individual napthenic acids in oil sands process water  

SciTech Connect (OSTI)

Expansion of the oil sands industry of Canada has seen a concomitant increase in the amount of process water produced and stored in large lagoons known as tailings ponds. Concerns have been raised, particularly about the toxic complex mixtures of water-soluble naphthenic acids (NA) in the process water. To date, no individual NA have been identified, despite numerous attempts, and while the toxicity of broad classes of acids is of interest, toxicity is often structure-specific, so identification of individual acids may also be very important. The chromatographic resolution and mass spectral identification of some individual NA from oil sands process water is described. The authors concluded that the presence of tricyclic diamondoid acids, never before even considered as NA, suggests an unprecedented degree of biodegradation of some of the oil in the oil sands. The identifications reported should now be followed by quantitative studies, and these used to direct toxicity assays of relevant NA and the method used to identify further NA to establish which, or whether all NA, are toxic. The two-dimensional comprehensive gas chromatography-mass spectrometry method described may also be important for helping to better focus reclamation/remediation strategies for NA as well as in facilitating the identification of the sources of NA in contaminated surface waters (auth)

Rowland, Steven J.; Scarlett, Alan G.; Jones, David; West, Charles E. (Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth (United Kingdom)); Frank, Richard A. (Aquatic Ecosystems Protection Research Division-Water Science and Technology Directorate, Environment Canada, Burlington, Ontario (Canada)

2011-03-10T23:59:59.000Z

69

Microbial Communities in Oil Shales, Biodegraded and Heavy Oil Reservoirs, and Bitumen Deposits  

Science Journals Connector (OSTI)

Subsurface hydrocarbon and oil shale deposits, once thought sterile, are being re-evaluated as habitats for ancient and contemporary microbial activity. Although oil shales have not been rigorously examined mi...

J. Foght

2010-01-01T23:59:59.000Z

70

Pore Scale Analysis of Oil Shale/Sands Pyrolysis  

SciTech Connect (OSTI)

There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (?m) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

Lin, Chen-Luh; Miller, Jan

2011-03-01T23:59:59.000Z

71

Application of a Solar UV/Chlorine Advanced Oxidation Process to Oil Sands Process-Affected Water Remediation  

Science Journals Connector (OSTI)

Application of a Solar UV/Chlorine Advanced Oxidation Process to Oil Sands Process-Affected Water Remediation ... Department of Civil and Environmental Engineering, University of Alberta, 9105 116th Street, Edmonton, Alberta, Canada T6G 2W2 ...

Zengquan Shu; Chao Li; Miodrag Belosevic; James R. Bolton; Mohamed Gamal El-Din

2014-07-22T23:59:59.000Z

72

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect (OSTI)

Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

Castle, James W.; Molz, Fred J.

2003-02-07T23:59:59.000Z

73

Integration of reclamation and tailings management in oil sands surface mine planning  

Science Journals Connector (OSTI)

Abstract The processing of oil sands generates large volumes of slurry, known as tailings, that is impounded in tailings ponds. Oil sands operators are committed to develop reclamation plans to ensure that the mine site is restored to a natural or economically usable landscape. Since most of the material that is needed for capping of the tailings pond is produced in mining operation, it is reasonable to include material requirement for reclamation as part of mine planning. In this paper, an integrated long-term mine planning model is proposed that includes tailings capacity and reclamation material requirements. A mixed integer linear programming (MILP) model is developed to test the performance of the proposed model. The MILP model is coded in Matlab. It is verified by carrying out a case study on an actual oil sands dataset, and has resulted in an integer solution within a 2% gap to the optimality. The resulted production schedule meets the capacity constraint of the tailings facility and guarantees the production of the required reclamation material.

Mohammad Mahdi Badiozamani; Hooman Askari-Nasab

2014-01-01T23:59:59.000Z

74

Carbon sequestration in depleted oil shale deposits  

SciTech Connect (OSTI)

A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

Burnham, Alan K; Carroll, Susan A

2014-12-02T23:59:59.000Z

75

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

76

Unconventional Hydrocarbons: Oil Shales, Heavy Oil, Tar Sands, Shale Gas and Gas Hydrates  

Science Journals Connector (OSTI)

For many decades conventional oil which could be produced at low cost was present in abundance. A low oil price gave no incentive to look for other types of resources. It is now clear, however, that we are gra...

Knut Bjrlykke

2010-01-01T23:59:59.000Z

77

Heavy oil fraction removal from sand using hydrotropes containing oil-in-water microemulsions  

Science Journals Connector (OSTI)

Oil-in-water microemulsions were prepared with a nonionic surfactant and different cosurfactants using as the oil phase a hydrocarbon mixture of linear, cyclic and aromatic hydrocarbons. This organic mixture e...

M. C. K. Oliveira; E. F. Lucas; G. Gonzlez; J. F. Oliveira

2004-01-01T23:59:59.000Z

78

Tertiary development of heavy oil sands through thermal stimulation in the Wilmington Oil Field, California: A geological perspective  

SciTech Connect (OSTI)

In 1995, a DOE cost share project was initiated to extend thermal recovery in the Tar Zone, Fault Block 11 of the West Wilmington Oil Field, California. The project involved the collection of old oil well data and the construction of a modern digital data base in order to develop a deterministic geological model. The plan was to rigorously define the geology such that horizontal wells could be accurately placed within the sands containing heavy oil to facilitate gravity drainage. A detailed deterministic geological model was constructed using a state of the art 3D mapping and modeling package. Beginning in July, 1995, five observation wells were drilled. Data inconsistencies were revealed when core hole OB2-003 was drilled. It was discovered that the data used to make the maps was corrupted; as a result, the predicted coring point was missed by more than 20'. Significant modifications to the data base were required due to inaccurate subsidence corrections in the original data set. Horizontal wells were then laid out based on the revised data and the geological model was completely reconstructed. Detailed cross sections extracted from the model were use for geosteering. These cross sections proved to be highly accurate and five more wells are now planned for the target sands. This detailed deterministic model will be further refined and combined with our geostatistical mode for geological control in an advanced reservoir simulator. If successful, the thermal stimulation project will be expanded to other fault blocks.

Clarke, D.D. (Department of Oil Properties, Long Beach, CA (United States)); Henry, M.J.; Strehle, R.W. (Dept. of Oil Properties, Long Beach, CA (United States))

1996-01-01T23:59:59.000Z

79

Tertiary development of heavy oil sands through thermal stimulation in the Wilmington Oil Field, California: A geological perspective  

SciTech Connect (OSTI)

In 1995, a DOE cost share project was initiated to extend thermal recovery in the Tar Zone, Fault Block 11 of the West Wilmington Oil Field, California. The project involved the collection of old oil well data and the construction of a modern digital data base in order to develop a deterministic geological model. The plan was to rigorously define the geology such that horizontal wells could be accurately placed within the sands containing heavy oil to facilitate gravity drainage. A detailed deterministic geological model was constructed using a state of the art 3D mapping and modeling package. Beginning in July, 1995, five observation wells were drilled. Data inconsistencies were revealed when core hole OB2-003 was drilled. It was discovered that the data used to make the maps was corrupted; as a result, the predicted coring point was missed by more than 20`. Significant modifications to the data base were required due to inaccurate subsidence corrections in the original data set. Horizontal wells were then laid out based on the revised data and the geological model was completely reconstructed. Detailed cross sections extracted from the model were use for geosteering. These cross sections proved to be highly accurate and five more wells are now planned for the target sands. This detailed deterministic model will be further refined and combined with our geostatistical mode for geological control in an advanced reservoir simulator. If successful, the thermal stimulation project will be expanded to other fault blocks.

Clarke, D.D. [Department of Oil Properties, Long Beach, CA (United States); Henry, M.J.; Strehle, R.W. [Dept. of Oil Properties, Long Beach, CA (United States)

1996-12-31T23:59:59.000Z

80

An Application of Sequence Stratigraphy in Modelling Oil Yield Distribution: The Stuart Oil Shale Deposit, Queensland, Australia.  

E-Print Network [OSTI]

??The Stuart Oil Shale Deposit is a major oil shale resource located near Gladstone on the central Queensland coast. It contains an estimated 3.0 billion (more)

Pope, Graham John

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS  

SciTech Connect (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Munroe, Norman

2009-01-30T23:59:59.000Z

82

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

tar sands/ extra-heavy oil and shale have zero Resource-D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Report

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

83

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

84

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect (OSTI)

This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

2003-02-07T23:59:59.000Z

85

Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi  

E-Print Network [OSTI]

day per well. The ultimate recoverable reserves are estimated to be 35, 000, 000 barrels (Mississippi Geological Society, 1957). As of December 31, 1966, the cumulative production for the field was 31, 600, 153 barrels of oil and 11, 047, 790, 000... from fine to medium grained. Some of the sandstones are carbonaceous and lignitic, and others contain limestone nodules and clay pellets. Rainwater (1962) suggests that the Dantzler is dominantly a continental deposit and changes southward...

Cook, Billy Charles

2012-06-07T23:59:59.000Z

86

Sovent Based Enhanced Oil Recovery for In-Situ Upgrading of Heavy Oil Sands  

SciTech Connect (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO{sub 2}. The model also incorporated the characteristic of a highly varying CO{sub 2} density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Norman Munroe

2009-01-30T23:59:59.000Z

87

Factors that affect the degradation of naphthenic acids in oil sands wastewater by indigenous microbial communities  

SciTech Connect (OSTI)

The acute toxicity of wastewater generated during the extraction of bitumen from oil sands is believed to be due to naphthenic acids (NAs). To determine the factors that affect the rate of degradation of representative NAs in microcosms containing wastewater and the acute toxicity of treated and untreated wastewater, the effects of temperature, dissolved oxygen concentration, and phosphate addition on the rate of {sup 14}CO{sub 2} release form two representative naphthenic acid substrates, (linear) U-{sup 14}C-palmitic acid (PA) and (bicyclic) decahydro-2-naphthoic acid-8-{sup 14}C (DHNA), were monitored. Tailings pond water (TPW) contained microorganisms well adapted to mineralizing both PA and DHNA:PA was degraded more quickly (10--15% in 4 weeks) compared to DHNA (2--4% in 8 weeks). On addition of phosphate, the rate of NA degradation increased up to twofold in the first 4 weeks, with a concurrent increase in the rate of oxygen consumption by oil sands TPW. The degradation rate then declined to levels equivalent to those measured in flasks without phosphate. The observed plateau was not due to phosphate limitation. Decreases in either the dissolved oxygen concentration or the temperature reduced the rate. Phosphate addition also significantly decreased the acute toxicity of TPW to fathead minnows. In contrast, Microtox{reg_sign} analyses showed no reduction in the toxicity of treated or untreated TPW after incubation for up to 8 weeks at 15 C.

Lai, J.W.S.; Pinto, L.J.; Kiehlmann, E.; Bendell-Young, L.I.; Moore, M.M. [Simon Fraser Univ., Burnaby, British Columbia (Canada)

1996-09-01T23:59:59.000Z

88

Perch population assessment in lakes reclaimed using oil-sands derived material  

SciTech Connect (OSTI)

The mining and extraction of petroleum products from oil-sands involves large areas of land and produces enormous volumes of tailings. One possible land reclamation option is to incorporate fine-tailings material into the bottoms of constructed lakes capped with natural surface water. The wet landscape method represents potential risk to aquatic biota-naphthenic acids and PAHs elute from pore water contained in the fine-tailings substrate. In spring 1995 yellow perch were stocked into a large-scale (5ha) experimental pond that consisted of fine-tailings capped with natural water as well as into two other reclaimed ponds that were constructed with oil-sands overburden material. Prior to stocking of perch, ponds had colonized with cyprinids, macrophytes and benthic invertebrates over a two year period. Perch were sampled in fall 1995 for age, condition factor, liver size, gonad size, fecundity, stomach contents, liver mixed-function oxygenase activity (MFO), bile PAH metabolites and plasma steroid hormones. When compared to the source lake, perch in the DP did not show reduced reproductive potential. Perch in all of the reclaimed ponds demonstrated exposure to organic compounds as indicated by marginally induced MFO activity and increased liver size. Exposure to naphthenates and PAHs in water as well as ecological environmental factors will be discussed.

Heuvel, M.R. van den; Dixon, D.G. [Univ. of Waterloo, Ontario (Canada); Power, M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Boerger, H.; MacKinnon, M.D.; Meer, T. van [Syncrude Canada, Fort McMurray, Alberta (Canada)

1995-12-31T23:59:59.000Z

89

Heavy Oil and Oil (Tar) Sands in North America: An Overview & Summary of Contributions  

Science Journals Connector (OSTI)

As conventional oil and gas reservoirs become depleted other unconventional energy sources have to be recovered and produced. Four of the major unconventional resources that are strategic for North American in...

Frances J. Hein

2006-06-01T23:59:59.000Z

90

Treating paraffin deposits in producing oil wells  

SciTech Connect (OSTI)

Paraffin deposition has been a problem for operators in many areas since the beginning of petroleum production from wells. An extensive literature search on paraffin problems and methods of control has been carried out, and contact was made with companies which provide chemicals to aid in the treatment of paraffin problems. A discussion of the nature of paraffins and the mechanisms of this deposition is presented. The methods of prevention and treatment of paraffin problems are summarized. Suggested procedures for handling paraffin problems are provided. Suggestions for areas of further research testing are given.

Noll, L.

1992-01-01T23:59:59.000Z

91

Development of a shallow heavy-oil deposit in Missouri  

SciTech Connect (OSTI)

Shallow deposits of heavy-oil in western Missouri have become more attractive to exploit recently. Aside from problems of producing the low-gravity, viscous oil, part of the difficulty in successfully developing these deposits has been the geologic nature of the reservoir sandstone. Recognition of the origin of the reservoir sandstone in Eastburn field as a series of point bars in an upper deltaic, fluvial distributary environment has affected the selection of drilling locations, drilling and coring procedures, estimation of reserves, and location of producing facilities. Recognition of the uneven distribution of permeability, the intergranular type of porosity, and the presence of potentially troublesome clays and iron-bearing minerals in this sandstone influenced the methods selected for evaluation, completion, and stimulation of producing wells. This teamwork approach between geologists and engineers is important in maximizing the chances for success of technically difficult enhanced oil recovery projects.

Ebanks, J.W.J.; Weber, J.F.

1982-09-27T23:59:59.000Z

92

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF  

E-Print Network [OSTI]

Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF-355. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR

Weston, Ken

93

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-Franois; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

94

Determining the ecological viability of constructed wetlands for the treatment of oil sands wastewater  

SciTech Connect (OSTI)

To determine the conditions for optimal degradation of naphthenic acids (C{sub n}H{sub 2n+z}O{sub 2}), the most toxic component of oil sands wastewater, the authors have monitored the mineralization of 2 representative naphthenic acids (NA), U-{sup 14}C-palmitic acid (linear, Z = 0) and 8-{sup 14}C-decahydro-2-naphthoic acid (bicyclic, Z = {minus}4) under varying conditions of temperature, phosphate and oxygen. The radiolabeled NA was added to biometer flasks containing wastewater {+-} amendments and evolved {sup 14}C-CO{sub 2} was trapped in a side arm and counted by LSC. The results indicate that low temperature (5 C) and anaerobiasis greatly inhibited NA degradation over the four week incubation period. Addition of phosphate (as buffered KP{sub i}) significantly increased {sup 14}C-CO{sub 2} production for both Z = 0 and Z = {minus}4 compounds; however, the subsequent high microbial growth rates also decreased PO{sub 2} which limited NA mineralization. Effluent toxicity was monitored at week 0 and week 4 using Microtox and fathead minnow tests. Although there was increased survival of fathead minnows in the phosphate-amended effluent, the IC{sub 20} values of the Microtox assay showed no improvement in either the phosphate-treated or untreated effluents. These results show that naphthenic acid analogues are readily degraded by indigenous microorganisms in oil sands wastewater and that phosphate addition accelerated the mineralization of these compounds if PO{sub 2} remained high.

Lai, J.; Kiehlmann, E.; Pinto, L.; Bendell-Young, L.; Moore, M. [Simon Fraser Univ., Burnaby, British Columbia (Canada); Nix, P. [EVS Environment Consultants, North Vancouver, British Columbia (Canada)

1995-12-31T23:59:59.000Z

95

Mathematical modeling of wax deposition in oil pipeline systems  

SciTech Connect (OSTI)

Deposition of wax on the wall of oil pipelines is often regarded as a problem since the tube diameter is reduced. Consequently, more power is needed to force the same amount of oil through the system. A mathematical model for quantitative prediction of wax deposition for each hydrocarbon component has been developed. Each component is characterized by weight fraction, heat of fusion, and melting point temperature. A model explains how a phase transition in the flow from liquid oil to waxy crystals may create a local density gradient and mass flux, which depends on the local temperature gradient. The model predicts that wax deposition can be considerably reduced even when the wall temperature is below the wax appearance point, provided the liquid/solid phase transition, expressed by the change in moles of liquid with temperature, is small at the wall temperature. Deposition as function of time has been obtained as a solution of differential equations derived from the principles of mass and energy conservation and the laws of diffusion.

Svendsen, J.A. (Hydro Research Centre, Porsgrunn (Norway). Dept. of Chemical Engineering)

1993-08-01T23:59:59.000Z

96

Tar Sands | Open Energy Information  

Open Energy Info (EERE)

Tar Sands Tar Sands Jump to: navigation, search More info on OpenEI Oil and Gas Gateway Federal Environmental Statues Federal Oil and Gas Statutes Oil and Gas Companies United States Oil and Gas Boards International Oil and Gas Boards Related Reports Keystone Pipeline System Canada's Oil Sands Royal Society of Canada: Environmental and Health Impacts of Canada's Oil Sands Industry Dictionary.png Tar Sands: A resource, found in particular abundance in Canada, where viscous petroleum is mixed in with a layer of sand, clay, and water. The form of petroleum is often referred to as "bitumen". The resource has only recently been considered part of the world's oil reserves Other definitions:Wikipedia Reegle Tarsands1.png About Tar Sands The Tar Sands, also referred to as Oil Sands, or Bitumen Sands, are a

97

Synthesis of aliphatic hydrocarbons from the gasification products of oil shale from the Leningrad and Kashpir deposits  

Science Journals Connector (OSTI)

The experimental results of the gasification of oil shale from the Leningrad and Kashpir deposits and...

T. A. Avakyan; Yu. A. Strizhakova; A. S. Malinovskii; A. L. Lapidus

2012-05-01T23:59:59.000Z

98

Assessment of fish health effects resulting from exposure to oil sands wastewater  

SciTech Connect (OSTI)

The objective of this study was to determine if oil sands wastewater had an effect on the general health and condition of hatchery raised rainbow trout (200 to 400 g). Effects were assessed based on a battery of physiological and biochemical indices and the physical condition of the fish. The trout were exposed to tailings water in the field and in a flow through system under laboratory conditions. The field tests were conducted in 1992 and 1993 in experimental ponds at Syncrude which contained fine tails covered with surface water, fine tails covered with tailings water, and a surface water control pond. The laboratory treatments included Mildred Lake tailings water, dyke drainage water, fractionated tailings pond water (acid fraction containing naphthenic acids), sodium naphthenate, recycle water from Suncor`s tailings pond, and a laboratory control. All body condition factors and blood parameters were normal in the field and laboratory exposed fish and there were no apparent differences between the fish exposed to the tailings water and controls.

Balch, G.C.; Goudey, J.S. [HydroQual Labs. Ltd., Calgary, Alberta (Canada); Birkholtz, D. [EnviroTest Labs. Ltd., Edmonton, Alberta (Canada); Van Meer, T.; MacKinnon, M. [Syncrude Canada Ltd., Fort McMurray, Alberta (Canada)

1995-12-31T23:59:59.000Z

99

Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke  

Science Journals Connector (OSTI)

Abstract The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25g/L ZVI to OSPW resulted in 58.4% removal of \\{NAs\\} in the presence of oxygen, the addition of 25g petroleum coke (PC) as an electron conductor enhanced the \\{NAs\\} removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the \\{NAs\\} removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.

Parastoo Pourrezaei; Alla Alpatova; Kambiz Khosravi; Przemys?aw Drzewicz; Yuan Chen; Pamela Chelme-Ayala; Mohamed Gamal El-Din

2014-01-01T23:59:59.000Z

100

Preparation and evaluation of hydrotreating catalysts based on activated carbon derived from oil sand petroleum coke  

Science Journals Connector (OSTI)

Novel NiMo/activated carbon (AC) hydrotreating catalysts were prepared and evaluated for upgrading heavy vacuum gas oil (HVGO). The AC supports were derived from Alberta oil sand petroleum coke, i.e. fluid coke and/or delayed coke, hereafter referred to as OSP coke, through a chemical process. The BET surface area was as high as 2194m2/g for the fluid coke derived AC and 2357m2/g for the delayed coke derived AC. Both \\{ACs\\} contained a large number of micropores with pore volume as high as 1.2cm3/g. Ni and Mo based active component precursors could be easily loaded on the activated carbon supports by chemical impregnation of nickel nitrate and ammonium molybdate followed by calcination in nitrogen at 773K without further modification or oxidation treatment to the activated carbons. Scanning electron microscopy (SEM) observation showed highly porous surface structure of the bare activated carbon supports and well dispersed metal (oxide) precursor nanoparticles of 3050nm loaded on the AC supports. For comparison, two reference catalysts were also prepared by the same procedure but using commercial activated carbon and porous alumina as supports. After catalyst activation by sulfiding, the hydrotreating performance of the prepared catalysts was evaluated in a magnetically stirred autoclave with a HVGO feedstock to examine their hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) activities. Two commercial hydrotreating catalysts were also tested and compared under similar conditions with the same feed. The results showed that the catalysts based on the activated carbon supports prepared from OSP coke had better hydrotreating performance than the other catalysts. Scanning transmission electron microscopy (STEM) characterization of the catalysts after activation showed that small particles of nanostructure (25nm in size) were evenly embedded in the carbon matrix except for some bigger particles that were located on the catalyst surface. Energy dispersive X-ray (EDX) spectroscopy revealed that these particles were composed of Ni, Mo and S elements. The dispersed nanoparticles formed the active sites and were responsible for the observed high HDS and HDN activity. Elemental analysis and surface characterization of the spent catalysts showed that the formation of coke precursors was favored on the alumina supported catalyst, which resulted in catalyst deactivation.

Yu Shi; Jinwen Chen; Jian Chen; Robb A. Macleod; Marek Malac

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

In situ method for recovering hydrocarbon from subterranean oil shale deposits  

SciTech Connect (OSTI)

This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

Friedman, R.H.

1987-11-03T23:59:59.000Z

102

Yellow perch embryo-larval survival and growth in surface waters associated with oil-sands mining  

SciTech Connect (OSTI)

As part of their land reclamation strategy, Syncrude Canada Ltd. is currently developing environmentally acceptable tailings disposal methods. Fine tailings, a suspension of clay and residual bitumen, is the waste product from oil sands extraction. Fine-tailings contain naphthenic acids, a group of saturated aliphatic and alicyclic carboxylic acids, which occur naturally in petroleum and are partly responsible for the toxicity of process water. The wet landscape method involves covering fine tails with a layer of water such that a self-sustaining ecosystem can be established. A 5 ha demonstration pond with a bottom of fine-tailings was constructed and stocked with yellow perch for experimental purposes. Two other reclaimed ponds formed with oil-sands overburden material were also stocked with perch. Adult perch sampled in the fall of 1995 from the experimental and reclaimed ponds exhibited a 2-fold induction of MFO activity compared to the source lake; indicating organic compound exposure. Perch from one of the reclaimed ponds showed significantly reduced circulating reproductive hormone levels, gonad size and smaller ovarian follicles. Reproductive parameters were not different between the source lake and the remaining ponds. Paired lab and field experiments were conducted to determine if contaminants present would be detrimental to egg viability and development of larvae either through direct exposure of spawned eggs or indirectly by effecting oogenesis. An early life stage toxicity test was also performed using commercially available naphthenic acid standard. Endpoints measured were percent fertilization, percent hatch, mortality, deformities, timing of developmental periods and larval growth.

Peters, L.E.; Heuvel, M.R. van den; Dixon, D.G. [Univ. of Waterloo, Ontario (Canada); Power, M. [Univ. of Manitoba, Winnipeg, Manitoba (Canada); Boerger, H.; MacKinnon, M.D.; Meer, T. Van [Syncrude Canada, Fort McMurray, Alberta (Canada)

1995-12-31T23:59:59.000Z

103

Influence of depositional sand quality and diagenesis on porosity and permeability: Examples from Brent Group reservoirs, northern North Sea  

SciTech Connect (OSTI)

Multivariate statistical analysis was applied to examine correlations between reservoir quality and petrology in two data sets from the Middle Jurassic Brent Group. One of the data sets is from relatively shallow depth and has been little affected by chemical diagenesis (Statfjord Nord and Ost Fields; 2.3--2.6 km below the sea floor), while the second data set is from a more deeply buried reservoir having an advanced degree of diagenesis (Huldra Field; 3.6--3.9 km). Much of the total variation in porosity and permeability within each data set (0.02 mD to > 7 D in both sets) can be accounted for by laboratory measurements of parameters mainly related to depositional sand quality, including shaliness (represented by bulk-rock alumina/silica ratio), early carbonate cement, feldspar content, and grain size. Despite major differences in the proportions of different sedimentary facies in the two data sets, they have similar ranges of depositional sand quality and therefore probably had similar reservoir quality early in their burial history. Deeper burial diagenesis at Huldra Field has shifted the average of both porosity and permeability to lower values and produced a bimodal permeability distribution, apparently reflecting preferential preservation of permeability in the cleaner sandstones. On the basis of these examples, the author outlines an approach for unmixing the diagenetic and lithologic components of variation in regional compilations of sandstone porosity-permeability data. The procedure and its consequences are illustrated using a regional compilation of core data from the Brent Group of the northern North Sea.

Ehrenberg, S.N. [Statoil, Harstad (Norway)

1997-01-01T23:59:59.000Z

104

Influence of depositional sand quality of porosity and permeability: Examples from Brent Group Reservoirs in the northern North Sea  

SciTech Connect (OSTI)

Multivariate statistical analysis was applied to examine correlation between reservoir quality and petrology in two data sets from the Middle Jurassic Brent Group. One of the data sets is from relatively shallow depth an has been little affected by chemical diagenesis (Staffjord Nord & Ost Fields 2.3-2.6 km below the sea floor), while the second data set is from a more deeply buried reservoir having an advanced degree of diagenesis (Huldra Field 3.6-3.9 km). Much of the total variation in porosity and permeability (0.02 mD to >7 D in both sets) can be accounted for by laboratory measurements of parameters mainly related to depositional sand quality, including {open_quotes}shaliness{close_quotes} (represented by bulk-rock alumina content), earl carbonate cement, feldspar content, and grain size. Despite major differences in the proportions of different sedimentary facies in the two data sets, they have similar ranges of depositional sand quality and therefore probably had similar reservoir quality early in their burial history. Deeper burial diagenesis at Huldra Field has shifted the average porosity and permeability lower and produced a bimodal permeability distribution, apparently reflecting preferential preservation of permeability in the cleaner sandstones. Based on these examples, a method is outlined for {open_quotes}unmixing{close_quotes} the diagenetic and lithologic components of variation in regional compilations of sandstone porosity-permeability data. The procedure and its consequences are illustrated using a regional compilation of core data from the Brent Group of northern North Sea.

Ehrenberg, S.N.; Bjorkum, P.A.; Naddeau, P.H. [Statoil, Stavanger (Norway)

1996-12-31T23:59:59.000Z

105

The effect of asphalt deposition on recovery of oil by a pentane slug  

E-Print Network [OSTI]

THE EFFECT OF ASPHALT DEPOSITION ON RECOVERY OF OIL BY A PENTANE SLUG NANIK S. BHAGIA THE EFFECT OF ASPHALT DEPOSITION ON RECOVERY OF OIL BY A PENTANE SLUG A Thesis By NANIK S. BHAGIA Submitted to the Graduate College of the Texas Ak...M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, I 965 Major Subject: Petroleum Engineering THE EFFECT OF ASPHALT DEPOSITION ON RECOVERY OF OIL BY A PENTANE SLUG A Thesis By NANIK S. BHAGIA Approved...

Bhagia, Nanik S

1965-01-01T23:59:59.000Z

106

Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...QA/QC, contamination by diesel fuel, PAC source identification...2009 ) Crude Oil Forecast, Markets and Pipeline Expansions...samples were contam-inated by diesel oil, as indicated by PAC distributions...from brief exposure to high diesel concentrations caused by...

Erin N. Kelly; Jeffrey W. Short; David W. Schindler; Peter V. Hodson; Mingsheng Ma; Alvin K. Kwan; Barbra L. Fortin

2009-01-01T23:59:59.000Z

107

High resolution sequence stratigraphic and reservoir characterization studies of D-07, D-08 and E-01 sands, Block 2 Meren field, offshore Niger Delta  

E-Print Network [OSTI]

in the Niger Delta. The upper Miocene D-07, D-08 and E-01 oil sands comprise a series of stacked hydrocarbon reservoirs in Block 2 of Meren field. These reservoir sandstones were deposited in offshore to upper shoreface environments. Seven depositional... (offshore marine facies). Lithofacies have distinct mean petrophysical properties, although there is overlap in the range of values. The highest quality reservoir deposits are cross-bedded sands that were deposited in high-energy upper shoreface...

Esan, Adegbenga Oluwafemi

2004-09-30T23:59:59.000Z

108

Inhibiting the deposition of tars, asphaltenes, and waxes in oil pipelines with chemical reagents  

Science Journals Connector (OSTI)

Measurements have been made on the rheological parameters of oils from the South Sukhokum and Meshalka deposits at 20-60C in the presence of surfactants, and optimal concentrations for the latter have been de...

R. N. Shiryaeva; F. Kh. Kudasheva

2009-05-01T23:59:59.000Z

109

Formation and Growth of Wax Deposit in the Pipelining of Crude Oils  

Science Journals Connector (OSTI)

This work presents a model for the turbulent flow of a waxy crude oil in a pipeline, in which deposition is taken into account ... of heavy molecular weight compounds, usually called waxes. When a sufficiently lo...

S. Correra; D. Merino-Garcia; A. Fasano

2008-01-01T23:59:59.000Z

110

The efficiency of using gas turbine technologies in developing small oil-and-gas-condensate deposits  

Science Journals Connector (OSTI)

The paper considers the technical and economic features of using stream-gas and gas-turbine power generators in developing small oil-and-gas-condensate deposits in Irkutsk oblast under conditions of carrying o...

A. M. Karasevich; A. V. Fedyaev; G. G. Lachkov; O. N. Fedyaeva

2012-02-01T23:59:59.000Z

111

Design of a novel drilled-and-grouted pile in sand for offshore oil&gas structures  

Science Journals Connector (OSTI)

Abstract New offshore oil and gas exploration has placed renewed emphasis on developing structures in relatively complex geological conditions. Due to the damaging nature of impact driving, traditional steel piles used to support jacket structures, are not ideally suited to specific soil types, such as carbonate sands. Drilled and grouted piles are commonly used to support structures in these soil conditions. This paper describes a novel drilled pile, which has been developed specifically to provide a cost effective installation process while maintaining the benefits of grouted piles. The installation process negates the need for temporary casing in weak soils and minimizes the number of offshore operations. In this paper, the installation methodology and post-installation performance of a large scale onshore field trial is described. The installation process was successfully demonstrated with a 1.9m diameter test pile installed in fine sand to 17.7m depth in under 3h. The performance of the pile, as measured in a tension static load test, was shown to compare favorably with existing pile design methods.

David Igoe; Giovanni Spagnoli; Paul Doherty; Leonhard Weixler

2014-01-01T23:59:59.000Z

112

Interactions between nitrifying bacteria and hydrocarbon-degrading bacteria during detoxification of oil sands process affected water  

SciTech Connect (OSTI)

Large quantities of process water are produced during the extraction of bitumen from oil sands by the Syncrude and Suncor operations in northern Alberta. Freshly produced tailings water is acutely toxic, but it has been shown to slowly detoxify over time. As detoxification proceeds, there is also a precipitous decrease in ammonia concentrations. The present study examines these two microbially-mediated processes in relation to levels of bacteria and toxicants in mixtures of fresh and aged (detoxified) tailings water. Detoxification of tailings water was greatly accelerated when equal volumes of fresh and detoxified (natural aging for one year) tailings water were mixed. Addition of phosphorus further stimulated detoxification, causing levels of ammonia and naphthenic acids (toxic organic acids leached during bitumen extraction) to decrease to those of detoxified water within two months. Such changes were not observed when phosphorus was not added, or when it was added to less diluted (10-.1 or 3-.1) fresh tailings water. Populations of nitrifying bacteria and naphthenic acid degraders increased markedly in the phosphorus-amended mixtures, but not in its absence. Addition of CS{sub 2} (a specific inhibitor of nitrification) to these mixtures prevented ammonia oxidation. Surprisingly, it also prevented the increase in naphthenic acid-degraders and retarded the loss of naphthenic acids. These results suggest the existence of interactions in fresh tailings water between nitrifying bacteria, naphthenic acid degraders and toxicants. The activity of naphthenic acid-degraders apparently remains low until ammonia is oxidized, whereas that of nitrifying bacteria remains low until concentrations of naphthenic acids or other toxicants decrease below some threshold level. Understanding these interactions may lead to more efficient and effective processes to detoxify oil sands process water.

Sobolewski, A. [Microbial Technologies, Vancouver, British Columbia (Canada); MacKinnon, M. [Syncrude Research, Edmonton, Alberta (Canada)

1995-12-31T23:59:59.000Z

113

Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...excessive water withdrawals, pipeline and road crossings that increase erosion and sedimentation...docu-mented. In June 1970, an oil pipeline leak to the Athabasca River...impacts and stated that the program design could not assess cumulative impacts...

Erin N. Kelly; Jeffrey W. Short; David W. Schindler; Peter V. Hodson; Mingsheng Ma; Alvin K. Kwan; Barbra L. Fortin

2009-01-01T23:59:59.000Z

114

Oil and Gas CDT Structural and depositional controls on shale gas resources in  

E-Print Network [OSTI]

Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK, #12;environmental geoscience for oil and gas) are all possibles. References & Further Reading https), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland

Henderson, Gideon

115

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition  

Science Journals Connector (OSTI)

Wettability of Petroleum Pipelines: Influence of Crude Oil and Pipeline Material in Relation to Hydrate Deposition ... In the present work, various solid surfaces and crude oils have been used to study the effect of material and crude oil composition on the wettability of pipeline-mimicking surfaces. ... A procedure for evaluation of the plugging potential and for identification and extn. of naturally hydrate inhibiting components in crude petroleums was presented. ...

Guro Aspenes; Sylvi Hiland; Anna E. Borgund; Tanja Barth

2009-11-16T23:59:59.000Z

116

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect (OSTI)

The first twelve months of the project focused on collecting data for characterization and modeling. In addition, data from Coalinga Field was analyzed to define the fractal structure present in the data set. The following sections of the report parallel the first four subtasks of the investigation were: (1) Collect and Load Property Data from Temblor Outcrops in California, (2) Collect and Load Property Data from Temblor Reservoir Sands, West Coalinga Field, California, (3) Collect and Load Property Data from Continuous Upper Cretaceous Outcrops in Utah, and (4) Define Fractal Structure in the Data Sets and Apply to Generating Property Representations.

Castle, James W.; Molz, Fred J.

2001-11-29T23:59:59.000Z

117

Model calculates was deposition for North Sea oils  

SciTech Connect (OSTI)

A model for calculation of wax formation and deposition in pipelines and process equipment has been developed along with a new method for wax-equilibrium calculations using input from TBP distillation cuts. Selected results from the wax formation and deposition model have been compared with laboratory data from wax equilibrium and deposition experiments, and there have been some field applications of the model.

Majeed, A.; Bringedal, B.; Overa, S. (Norsk Hydro, Stabekk (NO))

1990-06-18T23:59:59.000Z

118

Prediction for wax deposition in oil pipelines validated by field pigging  

Science Journals Connector (OSTI)

Abstract The deposition of wax in oil pipelines presents a costly production and transportation problem. The deposited wax is removed periodically by pigging operation in field. In this study, in order to understand this problem and address it, a series of wax deposition experiments involved the sloughing effect was performed in the laboratory flow loop, and a model was established to predict the wax deposition distribution along the pipeline. These results were used to implement a pigging program. In addition, a practical experimental method by testing the viscosity of deposit-in-oil slurry ahead of the pig was specially designed to measure the volume of deposit during pigging in actual field. The model predictions agreed with the field measured results excellently with a relative error being ?10.9%. Of more importance, some pigging issues are discussed in combination with the data from the laboratory simulations and field pigging operation.

Wenda Wang; Qiyu Huang

2014-01-01T23:59:59.000Z

119

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

120

Modeling of wax deposition in a crude oil carrying pipeline.  

E-Print Network [OSTI]

??The oil modeled in this thesis has a large amount of paraffin and must be transported from where it is extracted to a refinery over (more)

Montalvo, Preston

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, July--September 1992  

SciTech Connect (OSTI)

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO{sub 2} HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-12-31T23:59:59.000Z

122

Oil shales and tar sands: a bibliography. Supplement 2, Parts 1 and 2  

SciTech Connect (OSTI)

This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.

Grissom, M.C. (ed.)

1984-07-01T23:59:59.000Z

123

Evaluation of Wax Deposition and its Control during Production of Alaska North Slope Oils  

Office of Scientific and Technical Information (OSTI)

Oil & Natural Gas Technology Oil & Natural Gas Technology DOE Award No.: DE-FC26-01NT41248 Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils Petroleum Development Laboratory Institute of Northern Engineering University of Alaska Fairbanks P.O. Box 755880 Fairbanks, Alaska 99775-5880 Prepared for: United States Department of Energy National Energy Technology Laboratory December 2008 Office of Fossil Energy Evaluation of Wax Deposition and Its Control During Production of Alaskan North Slope Oils Final Report Reporting Period: October 1, 2005-September 30, 2008 Principal Investigator: Tao Zhu University of Alaska Fairbanks P.O. Box 755880 Fairbanks, AK 99775-5880 fftz@uaf.edu, 907-474-5141 External Principal Investigator: Jack A. Walker

124

Stratigraphy, coal occurrence, and depositional history of the Paleocene Fort Union Formation, Sand Wash basin, northwestern Colorado  

SciTech Connect (OSTI)

The Fort Union Formation in the Sand Wash basin is divided into the massive Cretaceous and Tertiary (K/T) sandstone unit, lower coal-bearing unit, gray-green mudstone unit, basin sandy unit, and upper shaly unit. Lithofacies and coal-occurrence maps of the stratigraphic units indicate that sandstone bodies and coal beds occur along south-north oriented, intermontane fluvial systems. Net-sandstone-thickness trends of the massive K/T sandstone unit reveal laterally extensive channel-fill sandstones formed in north-flowing fluvial systems. The massive K/T sandstone unit's dominant source was in the Sawatch Range. Sandstones within the lower coal-bearing unit consist of similar north-flowing fluvial systems, but they are laterally discontinuous and have several tectonically active source areas, including the Uinta and Sierra Madre-Park uplifts, and Sawatch Range. Coal-occurrence maps of the lower coal-bearing unit indicate that maximum coal-bed thicknesses are greatest along the south-north-oriented fluvial axes. Coal beds thin and split to the east and west, confirming a direct relation between the position of thick, fluvial-sandstone bodies, which form a stable platform for peat accumulation, and the location of the thick coal beds. Above the lower coal-bearing unit, the gray-green mudstone unit forms north-trending belts centered R91W and R100W. The gray-green mudstone thins to the north and into the basin center and probably is lacustrine in origin, reflecting tectonic quiescence and cessation of coarse clastic sedimentation. The basin sandy unit is best developed in the central parts of the basin, where its fluvial depositional axis is oriented south-north. The upper shaly unit directly overlies the basin sandy unit and includes a thin Cherokee coal zone. The upper shaly unit has variable thicknesses due to erosion at the base of the Wasatch Formation and lateral facies changes.

Tyler, R. (Univ. of Texas, Austin, TX (United States))

1993-08-01T23:59:59.000Z

125

Oil shale fueled FBC power plant Ash deposits and fouling problems  

Science Journals Connector (OSTI)

A 41MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local oil shale, which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. The joint experiments at the plant and at the laboratories of the Geological Survey showed:(A) The rate of deposition depends mainly on the lime concentration in the fly ash. (B) The lime concentration in the fly ash is a function of the clays concentration in the oil shale. (C) The increase and hardening of the deposit with time is due to solidgas reactions within the deposit. At first recarbonation occurs, reaction between CaO in the deposit and CO2 (produced by the combustion) in the flue gas to form CaCO3 (bonded deposits), and then sulfatization; the reactions of the sulfatization are: (1) SO2 in the flue gas with CaO and CaCO3 in the deposit, leading to the formation of anhydrite CaSO4; and (2) SO2 in the flue gas with the amorphous silicates in the deposit forming hydroxylellestadite Ca10(SiO4)3(SO4)3(OH)2. These minerals are the hard deposits. The conclusions following these findings for the combustion of oil shales with a significant Ca-carbonate content are:(A) The FBC is the preferred mode of combustion. (B) The rate of deposition in the boiler depends mainly on the lime (free CaO) concentration in the Fly \\{ASh\\} (FAS). (C) The ratio Ca-carbonates to silicates (Al, Fe, etc.), in the oil shale feed, determines the concentration of lime in the FAS. (D) The rate of deposition in the boiler depends also on the geometry of the boiler and on the particles aerodynamic conditions in it. Following these conclusions, the plant was able to reduce the shutdowns to twice a year. Furthermore, based on the understanding of the deposit formation mechanism, it will be possible to minimize shutdowns, for deposit cleaning, to only once a year in future similar oil shale fuelled power plants.

O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster

2007-01-01T23:59:59.000Z

126

Prediction of Shale Plugs between Wells in Heavy Oil Sands using Seismic Attributes  

SciTech Connect (OSTI)

A fundamental geologic problem in the Steam-Assisted Gravity Drainage (SAGD) heavy oil developments in the McMurray Formation of Northern Alberta is to determine the location of shales in the reservoirs that may interfere with the steaming or recovery process. Petrophysical analysis shows that a key acoustic indicator of the presence of shale is bulk density. In theory, density can be derived from seismic data using Amplitude Versus Offset (AVO) analysis of conventional or multicomponent seismic data, but this is not widely accepted in practice. However, with billions of dollars slated for SAGD developments in the upcoming years, this technology warrants further investigation. In addition, many attributes can be investigated using modern tools like neural networks; so, the density extracted from seismic using AVO can be compared and combined with more conventional attributes in solving this problem. Density AVO attributes are extracted and correlated with 'density synthetics' created from the logs just as the seismic stack correlates to conventional synthetics. However, multiattribute tests show that more than density is required to best predict the volume proportion of shale (Vsh). Vsh estimates are generated by passing seismic attributes derived from conventional PP, and multicomponent PS seismic, AVO and inversion from an arbitrary line following the pilot SAGD wells through a neural network. This estimate shows good correlation to shale proportions estimated from core. The results have encouraged the application of the method to the entire 3D.

Gray, F. David [Veritas DGC, Inc., 2200 (Canada); Anderson, Paul F. [Apache Canada Ltd. (Canada); Gunderson, Jay A. [Veritas DGC, Inc., 2200 (Canada)

2006-06-15T23:59:59.000Z

127

History of development and depositional environment and upper Cherokee Prue Sand, Custer and Roger Mills counties, Oklahoma  

SciTech Connect (OSTI)

In western Oklahoma the uppermost sand member of the Cherokee Group, the True sand, was first drilled and found productive in two discoveries, completed in 1980, in west-central Custer County and in central Roger Mills County, Oklahoma. For 1 1/2 to 2 years these two discoveries, some 18 mi (29 km) apart, were thought to be stratigraphic equivalents of two separate sand bodies occurring parallel to the classic northwest-southeast-trending systems of the Anadarko basin. At present, some 40 productive wells will ultimately produce more than 100 bcf of gas and 3 million bbl of condensate from an average depth of 11,500 ft (3500 m). Sand porosities range from 3 to 18% with most producing wells having porosities in the 12 to 15% range. Because Prue sand is slightly overpressured (a pressure gradient of .53 psi/foot), the reserves are generally better than normal-pressured wells at this depth. The sand body is over 40 mi (64 km) in length, 1 to 1.5 mi (1.6 to 2.4 km) wide, and 60 ft (18 m) thick. Study of the core shows the interval to grade from a medium to fine-grained sand, highly laminated and cross-bedded with black shale, to a slightly coarser grained nonstructured interval and back into a highly laminated cross-bedded sandy black shale interval. The interval is topped by a 10 ft (3 m) thick black shale layer that is a predominant bed throughout the whole area. These conclusions have implications that may assist in the exploration of other Pennsylvanian sands in this area.

Baumann, D.K.; Peterson, M.L.; Hunter, L.W.

1983-03-01T23:59:59.000Z

128

Society of Petroleum Engineers Oil Deposits in Diatomites: A New Challenge for Subterranean Mechanics  

E-Print Network [OSTI]

Society of Petroleum Engineers SPE 75230 Oil Deposits in Diatomites: A New Challenge and D. B. Silin4 Copyright 2002, Society of Petroleum Engineers, Inc. This paper was prepared not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author

Patzek, Tadeusz W.

129

OIL SHALE  

E-Print Network [OSTI]

Seyitmer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kk; G. Guner; S. Bagci?

130

Crosswell seismic waveguide phenomenology of reservoir sands & shales at offsets >600 m, Liaohe Oil Field, NE China  

Science Journals Connector (OSTI)

......employed to lower the cost of hydrocarbon production monitoring (de Waal...2001. Development Production (Special Section...continuity logging for oil and gas field applications...from the Antrim Shale gas play, Michigan Basin......

P. C. Leary; W. Ayres; W. J. Yang; X. F. Chang

2005-10-01T23:59:59.000Z

131

Evaluating officially reported polycyclic aromatic hydrocarbon emissions in the Athabasca oil sands region with a multimedia fate model  

Science Journals Connector (OSTI)

...14 9 3-5-13 Wind speed [m/s...region average wind speed Particle...particle deposition velocity to snow [m...Assumed/Default Mass fraction of OC...0.1 Assumed Mass transfer coeff...particle deposition velocity to soil [m...forest 0.5 Google maps Fraction of forest...

Abha Parajulee; Frank Wania

2014-01-01T23:59:59.000Z

132

Development of CFD-Based Simulation Tools for In-Situ Thermal Processing of Oil Shale/Sands  

SciTech Connect (OSTI)

In our research, we are taking the novel approach of developing and applying high performance computing, computational fluid dynamics (CFD)-based simulation tools to a modified in-situ process for production of oil from oil shale. The simulation tools being developed capture the relevant physical processes and data from a large-scale system. The modified in-situ application is a pilot-scale heat transfer process inside Red Leaf Resources?? EcoShale capsule. We demonstrate the need to understand fluid flow behavior in the convective channels of the rubblized shale bed as convective heating greatly decreases the time required to heat the oil shale to the production temperature when compared with conductive heating alone. We have developed and implemented a geometry creation strategy for a representative section of the EcoShale capsule, developed a meshing approach to deal with the complicated geometry and produce a well-behaved mesh, analyzed the effects of boundary conditions on the simulation results, and devised a new operator splitting solution algorithm that reduces computational costs by taking advantage of the differing convective and conductive time scales occurring in the simulation. These simulation tools can be applied to a wide range of processes involving convective fluid flow heating in rubblized beds.

None

2012-04-30T23:59:59.000Z

133

A new thermodynamic model to predict wax deposition from crude oils  

E-Print Network [OSTI]

Hydrocarbons 5 Comparison of Experimental and Predicted Onset Temperatures using this Model at 1 Atm. 30 31 37 6 Component Data for Oil Mixture l. 7 Characterization for Oil Mixture l. 8 Characterization for Oil Mixture 2. 9 Characterization for Oil... for Flash Calculations . . 34 4 Variation of Onset Temperature with Pressure for Oil Mixture l. . . 5 Variation of Onset Temperature with Pressure for Oil Mixture 2 . . 51 52 6 Wax Precipitation Curves for Oil Mixture 1 at 1 Atm. . . 7 Wax...

Loganathan, Narayanan

1993-01-01T23:59:59.000Z

134

Frisco City sand: New Jurassic reservoir in southwest Alabama  

SciTech Connect (OSTI)

The first commercial production of hydrocarbons from the Jurassic Haynesville Formation in southwestern Alabama was from the Frisco City field. The field currently produces 57.8{degree} API gravity oil on 160-ac well spacing from a depth of approximately 12,000 ft. Perforations are in the Frisco City sand interval, in the lower part of the Haynesville Formation. Average porosity is 15% and average permeability is 45 md. Currently, the field has two producing wells with cumulative production of over 138,876 bbl of oil and 213,144 mcf of gas. The hydrocarbon trap in the Frisco City field is a combination structural-stratigraphic trap. The Frisco City sand reservoir is located on a faulted anticline. The stratigraphic trap is produced by a permeability barrier near the crest of the structure and termination against a basement high. The lower part of the Haynesville Formation in this area is comprised of (in ascending order) the Buckner Anhydrite Member, the Frisco City sand, and interbedded shale and anhydrite. Sandstones of the Frisco City sand interval were deposited in a shallow marine setting and have a sheetlike morphology. The sandstones are poorly to moderately sorted, angular to rounded arkose, and contain angular to rounded pebbles. The sandstones are interbedded with thin, sandy, mudstones that contribute, along with patchy carbonate and anhydrite cement, to considerable reservoir heterogeneity. Porosity is predominantly primary intergranular with a small amount of framework grain dissolution and decementation.

Mann, S.D.; Mink, R.M.; Bearden, B.L. (Geological Survey of Alabama, Tuscaloosa (USA)); Schneeflock, R.D. Jr. (Paramount Petroleum Co., Inc., Jackson, MS (USA))

1989-09-01T23:59:59.000Z

135

E-Print Network 3.0 - aeolian sands underlain Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deposition of reworked flood sand. Thompson and Potochnik (2000) concluded that sediment... of aeolian sand since the clo- sure of Glen Canyon Dam in 1963. Multiple sets of...

136

SLOW SAND FILTRATIONSLOW SAND FILTRATION  

E-Print Network [OSTI]

Control valve Effluent flow control structure #12;Characteristic Features of aCharacteristic Features effective size(dSmall effective size(d1010)) and largeand large uniformity coefficient (duniformity coefficient (d6060/d/d1010) of sand) of sand No filter media fluidizationNo filter media fluidization Relative

137

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

138

MATURE FINE TAILINGS (MFTs): A STUDY OF COMPRESSIVE STRENGTH AND RHEOLOGICAL PROPERTIES OF ATHABASCA OIL SANDS PETROLEUM MINING WASTE APPLIED IN CONCRETE MIXTURES.  

E-Print Network [OSTI]

?? This study investigates the compressive properties of concrete incorporating Mature Fine Tailings (MFTs) waste stream from a tar sands mining operation. The objectives of (more)

Leav, Jean S.

2013-01-01T23:59:59.000Z

139

Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands  

Science Journals Connector (OSTI)

Abstract This paper examines the techno-economic viability of hydrogen production from underground coal gasification (UCG) in Western Canada, for the servicing of the oil sands bitumen upgrading industry. Hydrogen production for bitumen upgrading is predominantly achieved via steam methane reforming (SMR); which involves significant greenhouse gas (GHG) emissions along with considerable feedstock (natural gas) cost volatility. UCG is a formidable candidate for cost-competitive environmentally sustainable hydrogen production; given its negligible feedstock cost, the enormity of deep coal reserves in Western Canada and the favourable CO2 sequestration characteristics of potential UCG sites in the Western Canadian sedimentary basin (WCSB). Techno-economic models were developed for UCG and SMR with and without CCS, to estimate the cost of hydrogen production including delivery to a bitumen upgrader. In this paper, at base case conditions, a 5% internal rate of return (IRR) differential between UCG and SMR was considered so as to account for the increased investment risk associated with UCG. The cost of UCG hydrogen production without CCS is estimated to be $1.78/kg of H2. With CCS, this increases to range of $2.11$2.70/kg of H2, depending on the distance of the site for CO2 sequestration from the UCG plant. The SMR hydrogen production cost without CCS is estimated to be $1.73/kg of H2. In similar fashion to UCG, this rises to a range of $2.14 to $2.41/kg of H2 with the consideration of CCS. Lastly, for hydrogen production without CCS, UCG has a superior cost competitiveness in comparison to SMR for an IRR differential less than 4.6%. This competitive threshold rises to 5.4% for hydrogen production with CCS.

Babatunde Olateju; Amit Kumar

2013-01-01T23:59:59.000Z

140

Experimental Study of Single-Phase and Two-Phase Water-in-Crude-Oil Dispersed Flow Wax Deposition in a Mini Pilot-Scale Flow Loop  

Science Journals Connector (OSTI)

Experimental Study of Single-Phase and Two-Phase Water-in-Crude-Oil Dispersed Flow Wax Deposition in a Mini Pilot-Scale Flow Loop ... The axial length was discretized into 174 grid points (173 discretized sections). ...

Ekarit Panacharoensawad; Cem Sarica

2013-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Effect of flow and physical parameters on the wax deposition of Middle East crude oil under subsea condition: heat transfer viewpoint  

Science Journals Connector (OSTI)

Change in pressure, temperature, flow rate and concentration of oil causes precipitation and deposition of wax particles in the pipelines which has become a major problem for ... reserves increases. Change in tem...

Reza Gooya; Mehdy Gooya; Bahram Dabir

2013-08-01T23:59:59.000Z

142

Division of Oil, Gas, and Mining Permitting  

E-Print Network [OSTI]

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

143

Optimising the Use of Spent Oil Shale.  

E-Print Network [OSTI]

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

144

Comparisons of hydrocarbon and nitrogen distributions in geologically diverse tar sand bitumen  

SciTech Connect (OSTI)

The characteristics of bitumens from different tar sand deposits are generally significantly different and affect the utilization of the resource. The chemical and physical properties of bitumen are a result of maturation reactions on the varied organic sediments. For example, saturated hydrocarbon distributions have been related to the geochemical history of organic matter. Very paraffinic or sometimes paraffinic-naphthenic distributions in organic matter are derived from a nonmarine depositional environment. More aromatic and paraffinic-naphthenic hydrocarbon distributions are derived from organic matter deposited in a marine environment. The characteristics of the bitumen also influence the potential for recovery and subsequent processing of the material. For example, saturated hydrocarbons contribute to the high pour points of recovered oils. The origin and composition of an oil influence its viscosity, API gravity, and coke formation during processing, particularly under low-temperature oxidation conditions. The objective of this work is to determine the chemical and physical properties of several samples of bitumen from geologically diverse tar sand deposits. The compound-type distributions and LTD properties of these bitumens are discussed relative to the depositional environment and processing potential of the organic matter.

Holmes, S.A.

1988-06-01T23:59:59.000Z

145

Sandy Depositional Systems  

Science Journals Connector (OSTI)

Why is the study of sandy depositional systems central to the understanding of sand and sandstone? From earliest times geologists have wanted to know where and under what conditions a sandstone was depositedt...

F. J. Pettijohn; Paul Edwin Potter; Raymond Siever

1987-01-01T23:59:59.000Z

146

Composition and properties of oil shale from the Turovskoe deposit in Belarus  

Science Journals Connector (OSTI)

The performance characteristics and chemical composition of a technological sample taken by the Belarussian prospecting expedition in the west of the Turovskoe deposit in 2007 were determined.

I. I. Lishtvan; P. L. Falyushin; V. M. Kraiko; E. V. Anufrieva

2009-04-01T23:59:59.000Z

147

Heterogeneity and Depositional Variability of Reef Sand Aprons: Integrated Field and Modeling of the Dynamics of Holocene Aranuka Atoll, Republic of Kiribati, Equatorial Pacific  

E-Print Network [OSTI]

and Environment, 2007). These factors include bottom shear stress, wind shear stress, wave radiation stress, flooding and drying, barometric pressure gradient, momentum dispersion, evaporation, and sources and sinks (DHI Water and Environment, 2007). Three..., and which include a range of grain sizes, from coral-algal boulders and rubble to sand. Bathymetrically above and platformward of the spur and groove system, a pavement of encrusting coralline red algae forms the reef crest (James, 1983; comparable...

Wasserman, Hannah

2013-08-31T23:59:59.000Z

148

Modeling and simulation of oil transport and transformation for studying piston deposits  

E-Print Network [OSTI]

The formation of carbonaceous engine deposits is a long standing and well documented phenomenon limiting the lifetime of diesel engines. Carbon remnants coat the surfaces of the combustion chamber, piston, and valves. As ...

Grimley, Thomas Patrick

2009-01-01T23:59:59.000Z

149

EMPLOYMENT FACTS: THE KEYSTONE XL PIPELINE Under the forest in northern Alberta, Canada lie the world's largest deposits of so-called "tar sands,"  

E-Print Network [OSTI]

EMPLOYMENT FACTS: THE KEYSTONE XL PIPELINE Under the forest in northern Alberta, Canada lie being shipped to the US. The Keystone XL will be a 36-inch crude oil pipeline stretching nearly 2 PIPELINE TransCanada Corporation "Keystone has many benefits, including 20,000 high paying jobs

Danforth, Bryan Nicholas

150

Asphaltene and other heavy-organic particle deposition during transfer and production operations  

SciTech Connect (OSTI)

The production and transportation of petroleum fluids could be severely affected by deposition of suspended particles (i.e. asphaltene, paraffin/wax, sand, and/or diamondoid) in the production wells and/or transfer pipelines. In many instances the amount of precipitation is rather large causing complete plugging of these conduits. Therefore, it is important to understand the behavior of suspended particles during flow conditions. In this paper we present an overview of the heavy organic deposition problem, its causes, effects and preventive techniques. We also present an analysis of the diffusional effects on the rate of solid particle deposition during turbulent flow conditions (crude oil production generally falls within this regime). We utilize the turbulent boundary layer theory and the concepts of mass transfer to explain the particle deposition rates on the walls of the flowing conduits. The developed model accounts for the Brownian and eddy diffusivities as well as for inertial effects and other forces acting acting upon the particles. The analysis presented in this paper shows that rates of particle deposition (asphaltene, paraffin/wax, sand, and/or diamondoid) on the walls of the flowing channel, due solely to diffusional effects, are negligible. It is also shown that deposition rates decrease with with increasing particle size. However, when the deposition process is momentum controlled (large particles) higher deposition rates are predicted. It is shown a decrease in deposition rates with increasing crude oil kinematic viscosity. An increase in deposition rates with increasing production rates is also observed.

Escobedo, J.; Mansoori, G.A. [Univ. of Illinois, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

151

Uinta Basin Oil and Gas Development Air Quality Constraints  

E-Print Network [OSTI]

Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

Utah, University of

152

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

153

Development of a reservoir simulator for thermal recovery of heavy oils/tar sands in the presence of gas hydrates: Annual report  

SciTech Connect (OSTI)

This report provides the summary of work performed under the US Department of Energy, Grant numberDE-FG21-86LC11075, during the past year. The report contains detailed equations, numerical solution approach for the three models, namely: fundamental hydrate dissociation model, model for layered hydrate-oil configuration, and model for distributed hydrate-oil configuration. The results of the fundamental hydrate dissociation model are provided and discussed. The other two models have been formulated and computer coded. The results of these two models will be provided in the final report.

Kamath, V.A.; Godbole, S.P.

1987-09-01T23:59:59.000Z

154

enhanced_oil_recovery | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that have unconventional characteristics (such as oil in fractured shales, kerogen in oil shale, or bitumen in tar sands) constitute an enormous potential domestic supply of...

155

BIODEGRADATION OF HIGH CONCENTRATIONS OF CRUDE OIL IN MICROCOSMS.  

E-Print Network [OSTI]

??Oil biodegradation at high concentrations was studied in microcosms. The experimental approach involved mixing clean sand with artificially weathered Alaska North Slope crude oil at (more)

XU, YINGYING

2002-01-01T23:59:59.000Z

156

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

157

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

158

Red Fork sandstone of Oklahoma: depositional history and reservoir distribution  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of progradation across eastern Kansas and most of Oklahoma. The Red Fork is one of several transgressive-regressive sequences (cyclothems) developed within the Desmoinesian Cherokee Group. Sea level changes, together with varying subsidence, were dominant factors controlling the general stratigraphic (correlative) characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the more active part of the basin during lower sea level stands and valley-fill deposition in the more stable areas during sea level rises. A map of Red Fork sand trends reveals an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northernmost part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope basinal-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock and log data. Logs need to be calibrated to cores in order to estimate depositional environments accurately and to make a reasonable assessment of diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, and a significant amount of oil is in channel sandstones with trends at high angles to the structural grain. In some areas, secondary clay, in particular chloritic clay, has resulted in microporosity, high water saturation, and correspondingly low resistivities in oil reserves.

Shelton, J.W.; Fritz, R.D.; Johnson, C.

1989-03-01T23:59:59.000Z

159

ORGANIC GEOCHEMICAL CHARACTERIZATION AND MINERALOGIC PROPERTIES OF MENGEN OIL SHALE (LUTETIAN  

E-Print Network [OSTI]

, lignite, and oil shale sequences. Oil shale deposit has been accumulated in shallow restricted back

unknown authors

160

The effect of temperature on a variable permeability, two-stage sand consolidation technique  

E-Print Network [OSTI]

. W. : "Consolidation of Silty Sands with an Epoxy Resin Overf lush Process, " Journal of Petroleum Technology (September 1970) 1103-1108. 36 8. Brooks, F. A. , Jr. : "Consolidation of Dirty Sands by Phenol- Formaldehyde Plastic, " Journal... Chairman of Advisory Committee: Dr. S. W. Poston The production of sand from oil and gas wells producing from uncon- solidatedd formations has been a major problem in the petroleum industry for many years . One popular method of sand control...

Barger, Blane Rene

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SAND2012-4433  

Office of Scientific and Technical Information (OSTI)

SANDIA REPORT SAND2012-4433 Unlimited Release May 2012 Graphene Resonators - Analysis and Film Transfer Maria E. Suggs Prepared by Sandia National Laboratories Albuquerque, New...

162

Secure Fuels from Domestic Resources The Continuing Evolution of Americas Oil Shale and Tar  

E-Print Network [OSTI]

domestic oil shale and tar sands industries since the first release and to include profiles of additional

Sands Industries

163

Turbine cooling waxy oil  

SciTech Connect (OSTI)

A process for pipelining a waxy oil to essentially eliminate deposition of wax on the pipeline wall is described comprising: providing a pressurized mixture of the waxy oil and a gas; effecting a sudden pressure drop of the mixture of the oil and the gas through an expansion turbine, thereby expanding the gas and quickly cooling the oil to below its cloud point in the substantial absence of wax deposition and forming a slurry of wax particles and oil; and pipelining the slurry.

Geer, J.S.

1987-10-27T23:59:59.000Z

164

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents [OSTI]

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

165

USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES  

E-Print Network [OSTI]

Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

Girvin, D.G.

2011-01-01T23:59:59.000Z

166

INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES  

E-Print Network [OSTI]

Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

Fox, J.P.

2011-01-01T23:59:59.000Z

167

Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits  

E-Print Network [OSTI]

Hydrate deposits that are desirable gas production targets almost invariably involve coarse, unlithified, unconsolidated media (such as sands

Kim, J.

2014-01-01T23:59:59.000Z

168

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents [OSTI]

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

Westhoff, J.D.; Harak, A.E.

1988-05-04T23:59:59.000Z

169

Method and apparatus for hydrocarbon recovery from tar sands  

DOE Patents [OSTI]

A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

1989-01-01T23:59:59.000Z

170

Stratigraphy of Upper Miocene Potter sands, Midway-Sunset field, Kern County, California  

SciTech Connect (OSTI)

Upper Miocene Potter sands in the northern part of the Midway-Sunset field were analyzed extensively using detailed electric-log correlations. Structural and stratigraphic cross sections and subsurface mapping demonstrate variations across four general areas in T31S, R22E, referred to as west (parts of Secs. 16, 17, 21), north (parts of Secs. 15, 16), east (part of sec. 14), and south (within Sec. 27). Potter sands deposited in the west area represent the oldest strata of the Potter sequence because they unconformably overlie older silts, diatomaceous shales, and isolated sand channels believed to be part of the Antelope Shale Member. These sands are interpreted to represent massive debris flow/grain flows deposited in a proximal channel-trough system that carried sediments from west to east, toward the low point of the Midway syncline. In the north area, Potter sands change abruptly from massive sands in the eastern part of Sec. 16 to thinner sand channels with more correlative and continuous silt interbeds in Sec. 15. The massive sands are stratigraphically equivalent, if not slightly younger than, sands in the west. However, at the base, these sands depositionally onlap onto the southwest flank of the globe anticline. The Potter sand channel packages thin in Sec. 15, which represents lateral facies changes within the system as the sand to silt ratios become lower and the silts become more continuous. Potter sands in the east area are the uppermost and youngest strata encountered in the study area. Although massive sand channel packages are common, they show better lateral continuity and exhibit lower sand to silt ratios than the north sequences. In the south area, Potter sands are interbedded with continuous silt units that can be mapped over much of the section.

Balch, D.C.; Martin, T.K.

1986-04-01T23:59:59.000Z

171

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and EnvironmentResponsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

172

Solid particle deposition during turbulent flow production operations  

SciTech Connect (OSTI)

The production and transportation of petroleum fluids could be severely affected by deposition of suspended particles (i.e., asphaltene, paraffin/wax, sand, and/or diamondoid) in the production wells and/or transfer pipelines. In many instances the amount of precipitation is rather large causing complete plugging of these conduits. Therefore, it is important to understand the behavior of suspended particles during flow conditions. In this paper the authors present an analysis of the diffusional effects on the rate of solid particle deposition during turbulent flow conditions (crude oil production generally falls within this regime). The turbulent boundary layer theory and the concepts of mass transfer have been utilized to calculate the particle deposition rates on the walls of the flowing conduit. The developed model accounts for the eddy and Brownian diffusivities as well as for inertial effects. The analysis presented in this paper shows that rates of solid-particle deposition (during crude oil production) on the walls of the flowing channel due solely to diffusional effects are small. It is also shown that deposition rates decrease with increasing particle size. However, when the process is momentum controlled (large particle sizes) higher deposition rates are expected.

Escobedo, J.; Mansoori, G.A. [Univ. of Illinois, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

173

Depositional environments and facies analysis of the Cherokee Group in west-central Kansas  

SciTech Connect (OSTI)

The Cherokee Group of early Desmoinesian Pennsylvanian age in west-central Kansas is comprised of a mixed siliciclastic and carbonate sequence. It was deposited in environments that are transitional from continental to marginal marine as the Hugoton Sea transgressed the Mississippian unconformity on to the Central Kansas uplift. Sandstones of the Cherokee Group are important oil reservoirs in west-central Kansas, but they are highly variable and difficult to predict. Core studies and subsurface analysis reveal two persistent and widespread limestone beds that form useful stratigraphic markers within the Cherokee. They provide a framework for facies analysis and regional mapping that may be useful as a predictive tool for oil exploration. Six basic lithofacies are interpreted from lithologies and sedimentary structures observed in cores obtained from four wells in eastern Ness County: (1) basal Pennsylvanian conglomerate, (2) fluvial sands, (3) fine-grained tidal flat deposits, (4) shallow-marine limestones, (5) shoreline sands and tidal channel sands, and (6) braided stream, sandy conglomerates. These facies are correlative with components of an ideal Kansas cyclothem. Two transgressive-regressive cycles are identified and maximum transgression is correlated with two widespread limestone beds. Following burial of the Mississippian karstic surface, deposition of peritidal sediments occurred on a uniform shallow shelf, punctuated by periods of subaerial exposure and weathering. Clastics derived from the eroding Central Kansas uplift were probably supplied to the coastal plain by braided streams and reworked by coastal processes.

Cuzella, J.J.; Gough, C.P. (NCRA, Denver, CO (United States)); Howard, S.C.

1991-03-01T23:59:59.000Z

174

Thermodynamic calculation of the equilibrium composition of the gasification products of oil shale from the Kendyrlyk deposit  

Science Journals Connector (OSTI)

Based on the thermodynamic calculations of the equilibrium composition of the gasification products of shale from the Kendyrlyk deposit (Republic of Kazakhstan) (air blast coefficient ? = 0.3; pressure, 0.1 MP...

A. M. Gyulmaliev; A. S. Maloletnev; Zh. K. Kairbekov

2014-03-01T23:59:59.000Z

175

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we added numerical solution along streamline subroutines to our streamline compositional simulator. The WAG injection algorithms are being developed. We studied the wettability of the reservoir oil and formulated a four-phase relative permeability model based on two-phase relative permeabilities. The effect of new relative permeability formulations on a five-spot pattern WAG recovery was evaluated. Effect of horizontal wells on pattern sweep has been initiated. A model quarter five-spot experiment is being designed. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, evaluation of complex well-architecture and design of model quarter five-spot experiment.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

176

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

177

Chapter 1 - Refining Heavy Oil and Extra-heavy Oil  

Science Journals Connector (OSTI)

The definitions of heavy oil, extra-heavy oil, and tar sand bitumen are inadequate insofar as the definitions rely upon a single physical property to define a complex feedstock. This chapter presents viable options to the antiquated definitions of the heavy feedstocks (heavy oil, extra-heavy oil, and tar sand bitumen) as well as an introduction to the various aspects of heavy feedstock refining in order for the reader to place each feedstock in the correct context of properties, behavior, and refining needs.

James G. Speight

2013-01-01T23:59:59.000Z

178

Play analysis and stratigraphic position of Uinta Basin tertiary - age oil and gas fields  

SciTech Connect (OSTI)

Tertiary-age sediments in the Uinta basin produce hydrocarbons from five types of plays. These play types were determined by hydrocarbon type, formation, depositional environment, rock type, porosity, permeability, source, and per-well recovery. Each well was reviewed to determine the stratigraphic position and producing characteristics of each producing interval. The five types of plays are as follows: (1) naturally fractured oil reservoirs, (2) low-permeability oil reservoirs, (3) high-permeability of oil reservoirs, (4) low-permeability gas reservoirs, and (5) tight gas sands. Several fields produce from multiple plays, which made it necessary to segregate the hydrocarbon production into several plays. The stratigraphic position of the main producing intervals is shown on a basin-wide cross section, which is color-coded by play type. This 61-well cross section has several wells from each significant Tertiary oil and gas field in the Uinta basin.

Williams, R.A. (Pennzoil Exploration and Production Co., Houston, TX (United States))

1993-08-01T23:59:59.000Z

179

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

180

Sand Simulation Abhinav Golas  

E-Print Network [OSTI]

(Wikipedia) Size variation from 1m to icebergs Food grains, sand, coal etc. Powders ­ can be suspended in gas May 6, 2009 5 #12;What are Granular materials? Can exist similar to various forms of matter Gas/Liquid ­ powders can be carried by velocity fields Sandstorms Liquid/Solid ­ similar to liquids embedded

Lin, Ming C.

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geological characterization and statistical comparison of outcrop and subsurface facies: Shannon shelf sand ridges: Topical report  

SciTech Connect (OSTI)

The primary objective of this research is to develop a methodology for constructing accurate quantitative models of reservoir heterogeneities. The resulting models are expected to improve predictions of flow patterns, spatial distribution of residual oil after secondary and tertiary recovery operations, and ultimate oil recovery. The purpose of this study is to provide preliminary evaluation of the usefulness of outcrop information in characterizing analogous reservoirs and to develop research techniques necessary for model development. The Shannon Sandstone, a shelf sand ridge deposit in the Powder River Basin, Wyoming, was studied. Sedimentologic and petrophysical features of an outcrop exposure of the High-Energy Ridge-Margin facies (HERM) within the Shannon were compared with those from a Shannon sandstone reservoir in Teapot Dome field. Comparisons of outcrop and subsurface permeability and porosity histograms, cumulative distribution functions, correlation lengths and natural logarithm of permeability versus porosity plots indicate a strong similarity between Shannon outcrop and Teapot Dome HERM facies petrophysical properties. Permeability classes found in outcrop samples can be related to crossbedded zones and shaley, rippled, and bioturbated zones. Similar permeability classes related to similar sedimentologic features were found in Teapot Dome field. The similarities of outcrop and Teapot Dome petrophysical properties, which are from the same geologic facies but from different depositional episodes, suggest that rocks deposited under similar depositional processes within a given deposystem have similar reservoir properties. The results of the study indicate that the use of quantitative outcrop information in characterizing reservoirs may provide a significant improvement in reservoir characterization. 17 refs., 5 tabs.

Jackson, S.; Szpakiewicz, M.; Tomutsa, L.

1987-09-01T23:59:59.000Z

182

enhanced_oil_current_proj | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Illinois State Geological Survey DE-FE0001243 Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources University of Utah DE-FC26-09NT0005670 Fabry-Perot MEMS...

183

Aeolian depositional landforms of the south eastern Mojave Desert, California  

E-Print Network [OSTI]

Remote sensing and photo interpretation techniques are used to describe and map aeolian deposits found along two sediment transport corridors in the south eastern Mojave Desert. The first pathway and associated sand deposits extend eastward from...

Alvis, William Thomas

2000-01-01T23:59:59.000Z

184

Coupled flow and geomechanical analysis for gas production in the Prudhoe Bay Unit L-106 well Unit C gas hydrate deposit in Alaska  

E-Print Network [OSTI]

Hydrate deposits that are desirable gas production targets almost invari- ably involve coarse, unlithified, unconsolidated media (such as sands

Kim, J.

2014-01-01T23:59:59.000Z

185

OPEC Prices Make Heavy Oil Look Profitable  

Science Journals Connector (OSTI)

...barrels of heavy oil, a lighter...defined as any oil heavier than...flows into production lines at a profitable rate. Oil from the sands...strip-mine operations linked by...upgrading" equipment, in the industry...Ath-abaska field. Construction...summer. Its cost was $2...894 nerve gas ("Weteye...

ELIOT MARSHALL

1979-06-22T23:59:59.000Z

186

Computational study of wax deposition in pipeline  

Science Journals Connector (OSTI)

Wax deposition in subsea pipelines is one of the flow assurance problems for oil and gas production. In contrast to many studies about single phase wax deposition gas-oil wax deposition studies are very limited. The wax deposition mechanism and model prediction are restricted by many factors such as hydrodynamic and thermal when multiphase flow is involved. Wax deposition modeling becomes complicated under multiphase flowing conditions. wax deposition is depended by the flow pattern. The stratified flow is one of the most common flow patterns in the actual subsea gas-oil flowing conditions. In this work numerical methods are used to study wax deposition in oil-gas stratified flow through a pipe. Based on the flow analysis about stratified flow the non-isothermal heat and mass transfer is calculated. The temperature profile of the oil and the concentration profile of wax in oil are obtained. The change of the oil-gas interface i.e. the liquid holdup throughout the pipe must be taken into the heat and mass balance. The valid wax deposition surface must be taken into the wax deposition modeling by establishing function of the liquid holdup and the wetted area by oil. The molecular diffusion is as the deposition mechanism. The increase of the wax fraction in the deposit as a function of time depends on the mass flux from the oil deposit interface into the gel and the growth of the deposit thickness depends on the difference between the mass flux from the bulk oil to the oil deposit interface and the mass flux from the interface into the deposit. In addition the growth of the wax deposit as a function of time along with the effect oil flow rate gas flow rate and the inlet temperature are discussed. The presence of gas significantly reduces the severity of wax deposition by altering the heat and mass transfer characteristics.

2013-01-01T23:59:59.000Z

187

Analysis of reverse combustion in tar sands: a one-dimensional model  

SciTech Connect (OSTI)

This paper describes a one-dimensional numerical model which simulates oil recovery from tar sands by reverse combustion. The method of lines is used to solve the nonlinear differential equations describing the flow. The effects of volumetric air flux on the peak temperature, flame velocity, and oil recovery efficiency are reported. The results are compared to the results of relevant experimental studies.

Amr, A.

1980-08-01T23:59:59.000Z

188

Sand Hills EA  

Broader source: Energy.gov (indexed) [DOE]

- - Office Name and State goes here Environmental Assessment Sand Hills Wind Energy Facility Albany County, Wyoming May 2011 High Desert District Rawlins Field Office The BLM's multiple-use mission is to sustain the health and productivity of the public lands for the use and enjoyment of present and future generations. The Bureau accomplishes this by managing such activities as outdoor recreation, livestock grazing, mineral development, and energy production, and by conserving natural, historical, cultural, and other resources on public lands. BLM/WY/PL-11/035+1430 WY-030-EA09-314 Contents Chapter Page Acronyms and Abbreviations .................................................................................................. ix

189

A new method to optimize the fracture geometry of a frac-packed well in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil. Owing to weakly consolidated formation, sand production is an important problem encountered during oil p...

XiaoBing Bian; ShiCheng Zhang; JingChen Zhang

2012-06-01T23:59:59.000Z

190

Albeni Falls-Sand Creek  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Albeni-Falls-Sand-Creek- Sign In About | Careers | Contact | Investors | bpa.gov Search Doing Business Expand Doing Business Customer Involvement Expand Customer Involvement...

191

WASTEWATER TREATMENT OVER SAND COLUMNS  

E-Print Network [OSTI]

93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France, a greater depth for desinfection purposes. KEYWORDS Wastewater treatment, Infiltration-percolation. Sand

Paris-Sud XI, Université de

192

Investigation of sands subjected to dynamic loading  

E-Print Network [OSTI]

ON OTHER SANDS 24 Victoria Sand Arkansas Sand 24 24 CORRELATION, CONCLUSIONS, AND RECOMMENDATIONS Correlation of Laboratory and Field Data Discussion of the Rheological Model Empirical Modification Recommendations REFERENCES APPENDIX - DATA... Table Page Results of Test Series on Ottawa Sand 23 II Results of Test Series on Victoria Sand 26 III Results of Test Series on Arkansas Sand 27 Results of All Test Series Using the Empirical Equation to Calculate J 34 NOTATION A viscous...

Reeves, Gary Neil

1967-01-01T23:59:59.000Z

193

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS  

SciTech Connect (OSTI)

The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

Dr. Jorge Gabitto; Maria Barrufet

2003-05-01T23:59:59.000Z

194

Electrostatic cleaning system for removal of sand from solar panels  

Science Journals Connector (OSTI)

Abstract An improved cleaning system has been developed that uses electrostatic force to remove sand from the surface of solar panels. A single-phase high voltage is applied to parallel wire electrodes embedded in the cover glass plate of a solar panel. It has been demonstrated that more than 90% of the adhering sand is repelled from the surface of the slightly inclined panel after the cleaning operation. The performance of the system was further improved by improving the electrode configuration and introducing natural wind on the surface of the panel, even when the deposition of sand on the panel is extremely high. The power consumption of this system is virtually zero. This technology is expected to increase the effective efficiency of mega solar power plants constructed in deserts at low latitudes.

Hiroyuki Kawamoto; Takuya Shibata

2015-01-01T23:59:59.000Z

195

Case Study 1 Detection of Oil Slicks using MODIS and SAR  

E-Print Network [OSTI]

transportation, accidents on oil platforms, atmospheric deposition, and seepage from natural seeps. Timely

Meyers, Steven D.

196

Acoustic sand detector for fluid flowstreams  

DOE Patents [OSTI]

The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

1993-01-01T23:59:59.000Z

197

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

198

Miocene sand distribution of the South Marsh Island and the Vermillion area, offshore Louisiana, Gulf of Mexico  

E-Print Network [OSTI]

, helps in understanding the Miocene depositional settings, and promotes the knowledge of geology. The Miocene structural features in this area are east-west trending normal faults and salt diapir. Analysis of isopach and sand thickness maps indicates...

Kim, Jingoo

2012-06-07T23:59:59.000Z

199

Direct numerical simulations of aeolian sand ripples  

E-Print Network [OSTI]

Aeolian sand beds exhibit regular patterns of ripples resulting from the interaction between topography and sediment transport. Their characteristics have been so far related to reptation transport caused by the impacts on the ground of grains entrained by the wind into saltation. By means of direct numerical simulations of grains interacting with a wind flow, we show that the instability turns out to be driven by resonant grain trajectories, whose length is close to a ripple wavelength and whose splash leads to a mass displacement towards the ripple crests. The pattern selection results from a compromise between this destabilizing mechanism and a diffusive downslope transport which stabilizes small wavelengths. The initial wavelength is set by the ratio of the sediment flux and the erosion/deposition rate, a ratio which increases linearly with the wind velocity. We show that this scaling law, in agreement with experiments, originates from an interfacial layer separating the saltation zone from the static sand bed, where momentum transfers are dominated by mid-air collisions. Finally, we provide quantitative support for the use the propagation of these ripples as a proxy for remote measurements of sediment transport.

Orencio Duran; Philippe Claudin; Bruno Andreotti

2014-11-07T23:59:59.000Z

200

Laboratory study to determine physical characteristics of heavy oil after CO/sub 2/ saturation. Final report  

SciTech Connect (OSTI)

As part of an on-going research program for enhanced oil recovery, the Bartlesville (Oklahoma) Energy Technology Center (BETC), US Department of Energy is performing research and development of recovery techniques for heavy oils. These techniques are being studied and developed to ultimately aid production from shallow, low productivity, heavy oil sand deposits in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. Four heavy oil samples ranging, from 10/sup 0/ to 20/sup 0/ API gravity, were tested to determine their physical characteristics before and after CO/sub 2/ saturation. The experimentation was conducted using a modified PVT apparatus designed and constructed at BETC. Viscosity, density, solubility, and swelling factor were determined at temperatures of 75/sup 0/, 140/sup 0/, and 200/sup 0/F and at 11 pressures ranging from 200 to 5000 psi at each temperature. The physical property changes of heavy oils due to CO/sub 2/ saturation appear to be crude-oil dependent. Future studies should include more types of crude oils and probably higher temperatures. 14 references, 31 figures, 19 tables.

Miller, J.S.; Jones, R.A.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

202

Asphalt deposition in miscible floods  

E-Print Network [OSTI]

. ACKNOWLEDGMENTS. . 22 23 8. REFERENCES. 24 9. APPENDIX. 26 LIST OF TABLES Table Page I II IV Properties of the Crude Oils Studied Average Core Properties for Different Tests Average Perrneabilities of Different Sections of Core Before and After... Displacement with Liquefied Petroleum Gas Percent Reduction in Permeability in Different Sections of Core Due to Asphalt Deposition Average Recoveries of Four Crude Oils and Increase in Swept Area due to Plugging by Asphalt Deposition 27 29 ABSTRACT...

Hasan, Syed Mir Ahmed

2012-06-07T23:59:59.000Z

203

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

204

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil  

Science Journals Connector (OSTI)

Separation and Characterization of Olefin/Paraffin in Coal Tar and Petroleum Coker Oil ... This technique has been applied to shale oils, tar sands, and petroleum in both the mid-distillate (400-680F) and gas oil boiling ranges (680-1000F). ... enables anal. of petroleum high ends, i.e., heavy oils, residua and asphaltenes. ...

Hongxing Ni; Chang Samuel Hsu; Chao Ma; Quan Shi; Chunming Xu

2013-04-26T23:59:59.000Z

205

Swartz: Oil on the coasts? 'We will never, ever get By SALLY SWARTZ  

E-Print Network [OSTI]

Swartz: Oil on the coasts? 'We will never, ever get it off.' By SALLY SWARTZ Posted: 7:58 p the Deepwater Horizon oil spill for a long time, a geologist who worked for the oil industry told Martin County great, Mr. Egan said. "But scratch the surface of the sand, and you hit tar. Oil got into the food chain

Belogay, Eugene A.

206

Effect of wettability on light oil steamflooding  

SciTech Connect (OSTI)

This report summarizes NIPER's research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

207

Effect of wettability on light oil steamflooding  

SciTech Connect (OSTI)

This report summarizes NIPER`s research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

Olsen, D.K.

1991-12-01T23:59:59.000Z

208

Soap and sand: construction tools for nanotechnology  

Science Journals Connector (OSTI)

...and sand: construction tools for nanotechnology Karen J. Edler Department of Chemistry...UK ( k.edler@bath.ac.uk ) Nanotechnology is the science of making and using...and sand: construction tools for nanotechnology. | Nanotechnology is the science...

2004-01-01T23:59:59.000Z

209

Onsite Wastewater Treatment Systems: Sand Filters  

E-Print Network [OSTI]

Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

Lesikar, Bruce J.

2008-10-23T23:59:59.000Z

210

Modelling of Paraffin Wax in Oil Pipelines.  

E-Print Network [OSTI]

?? As warm oil or condensate from the reservoir flow through a pipeline on the cold sea bottom, wax often precipitate and deposit on the (more)

Siljuberg, Morten Kristoffer

2012-01-01T23:59:59.000Z

211

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network [OSTI]

sand, the gas permeability of the sand with hydrate, and thefor gas and water through methane hydrate-bearing sand. X-hydrate dissociation and making a single-phase (gas or water) permeability measurement of the sand

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

212

Treating tar sands formations with karsted zones  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

2010-03-09T23:59:59.000Z

213

The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource  

E-Print Network [OSTI]

Metallurgical: Silicon carbide Flux for metal smeltingagent for various metals. Silicon carbide, an important

Shaffer, Nelson R.

2006-01-01T23:59:59.000Z

214

The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource  

E-Print Network [OSTI]

Sludge filtering Hydraulic fracturing 16 to 100 3/32 to 3Petroleum industry: Hydraulic fracturing Well packing and

Shaffer, Nelson R.

2006-01-01T23:59:59.000Z

215

Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico  

SciTech Connect (OSTI)

Deep-marine bottom-current reworked sands (sandy contourites) have been recognized in hydrocarbon-bearing sands of the Gulf of Mexico. A distinctive attribute of these sands is their traction bed forms, which occur in discrete units. Common sedimentary features of traction currents include cross-bedding, current ripples, horizontal lamination, sharp upper contacts, and inverse size grading. These sands also exhibit internal erosional surfaces and mud offshoots, indicating oscillating current energy conditions. THe Pliocene-Pleistocene sequence cored in the Ewing Bank Block 826 field in the Gulf of Mexico provides an example of sand distribution and reservoir quality of deep-marine bottom-current reworked sands. Presumably, the Loop Current, a strong wind-driven surface current in the Gulf of Mexico, impinged on the sea bottom, as it does today, and resulted in bottom-current reworked sands. A depositional model based on the integration of well (core and log) and three-dimensional seismic data suggests that the reworked sediment package may be thick and continuous, but individual sand layers within the package may be thin and discontinuous. This unconventional model, which depicts the distribution of bottom-current reworked sands in interchannel slope areas as a distinctly different facies from channel-levee facies, has the potential for general application to other slope plays outside the study area. In the Ewing Bank Block 826 field, the type I (L-1) reservoir with 80% sand exhibits higher permeability values (100-1800 md) than the type 2 (N-1) reservoir with 26% sand (50-800 md). The increased permeability in the type I sand has been attributed to high sand content, vigorous reworking, and microfractures. The clean, porous, and well-sorted type 1 sands with good communication between sand layers have produced at higher rates and recovery efficiencies than the type 2 sands with numerous interbedded mud layers. 50 refs., 22 figs., 1 tab.

Shanmugam, G. (Mobil Research and Development Corp., Dallas, TX (United States)); Spalding, T.D.; Rofheart, D.H. (Mobil New Business Development, Dallas, TX (United States))

1993-07-01T23:59:59.000Z

216

Testing sand used in hydraulic fracturing operations  

SciTech Connect (OSTI)

Recommended practices for testing sand used in hydraulic fracturing operations are outlined as developed by the Task Group on Evaluation of Hydraulic Fracturing Sand under the API Subcommittee on Evaluation of Well Completion Materials. The tests recommended were developed to improve the quality of frac sand delivered to the well site, and are for use in evaluating certain physical properties of sand used in hydraulic fracturing operations. The tests suggested enable users to compare physical characteristics of various sands and to select materials most useful for such applications. Parameters to be tested include turbidity, clay and soft particle content, crush resistance, and mineralogic analysis.

Not Available

1983-03-01T23:59:59.000Z

217

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect (OSTI)

Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

2005-12-01T23:59:59.000Z

218

TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS  

SciTech Connect (OSTI)

As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multiphase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines. The following deliverables are scheduled during the first three projects of the program: (1) Single-Phase Studies, with three different black oils, which will yield an enhanced computer code for predicting paraffin deposition in deepwater and surface pipelines. (2) Two-Phase Studies, with a focus on heat transfer and paraffin deposition at various pipe inclinations, which will be used to enhance the paraffin deposition code for gas-liquid flow in pipes. (3) Deposition Physics and Water Impact Studies, which will address the aging process, improve our ability to characterize paraffin deposits and enhance our understanding of the role water plays in paraffin deposition in deepwater pipelines. As in the previous two studies, knowledge gained in this suite of studies will be integrated into a state-of-the-art three-phase paraffin deposition computer program.

Michael Volk; Cem Sarica

2003-10-01T23:59:59.000Z

219

E-Print Network 3.0 - andalusian olive oils Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Survey Summary: equivalent, and (3) dark olive, sparsely fossiliferous, low-grade oil shale that fractures semi... -5294 Geology and Resources of Some World Oil-Shale Deposits...

220

Physical properties of wax deposits on the walls of crude pipelines  

Science Journals Connector (OSTI)

Wax deposits on the wall of a crude oil pipeline are a solid wax network of fine crystals, filled with oil ... this paper, a series of experiments on wax deposition in a laboratory flow loop were ... rate, temper...

Qiyu Huang; Jifeng Wang; Jinjun Zhang

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

L. Greene, Janet L. Hopson, and Jia Li L. Greene, Janet L. Hopson, and Jia Li A risk analysis is presented of the peaking of world conventional oil pro- duction and the likely transition to unconventional oil resources such as oil sands, heavy oil, and shale oil. Estimates of world oil resources by the U.S. Geological Survey (USGS) and C. J. Campbell provide alternative views of ultimate world oil resources. A global energy scenario created by the International Institute of Applied Systems Analysis and the World Energy Council provides the context for the risk analysis. A model of oil resource depletion and expansion for 12 world regions is combined with a market equilibrium model of conventional and unconventional oil sup- ply and demand. The model does not use Hubbert curves. Key variables

222

Characterization and origins of high-amplitude reflection packets, HARPs, along the Gulf of Mexico depositional profile  

E-Print Network [OSTI]

High amplitude reflection packets (HARPs) refer to sheet-like sand deposits, showing high-amplitude seismic-reflection character, which are thought to be associated with constructional channel systems. Based on observations of Quaternary deposits...

Rains, David Brian

2012-06-07T23:59:59.000Z

223

American Heavy Oil, Oil Sands, and Oil Shale Resources In Response To  

E-Print Network [OSTI]

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United Stated Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Unites States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United

Prepared For; Christopher Kessler; Dr. Raymond Levey; Dr. Kyeon

224

Characterization of the 3-D Properties of the Fine-Grained Turbidite 8 Sand Reservoir, Green Canyon 18, Gulf of Mexico  

E-Print Network [OSTI]

-grained turbidity currents is composed of alternating sand and shale layers, whose extension is assumed to be large. They correspond to levee and overbank deposits that are usually associated to channel systems. The high porosity values, coming from unconsolidated...

Plantevin, Matthieu Francois

2004-09-30T23:59:59.000Z

225

5/20/09 9:14 AMPhysics in the oil sands of Alberta -Physics Today March 2009 Page 1 of 4http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_62/iss_3/31_1.shtml?type=PTFAVE  

E-Print Network [OSTI]

March 2009, page 31 The recent spike in the price of oil to over US$140 per barrel focused worldwide barrels of crude oil over an area of more than 140000 square kilometers, but that oil, called bitumen billion to 315 billion barrels. In comparison, the crude-oil reserves in Saudi Arabia are estimated at 264

Podgornik, Rudolf

226

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a  

E-Print Network [OSTI]

Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

Weston, Ken

227

Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair  

E-Print Network [OSTI]

Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

Rahnema, Hamid

2012-11-21T23:59:59.000Z

228

Effects of Microwave Radiation on Oil Recovery  

Science Journals Connector (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil?in?water and oil?water?solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers water can be discharged and oil is collected. High?frequency microwave recycling process can recover oil and gases from oil shale residual oil drill cuttings tar sands oil contaminated dredge/sediments tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly fuel?generating recycler to reduce waste cut emissions and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

2011-01-01T23:59:59.000Z

229

Depositional framework and reservoir distribution of Red Fork sandstone in Oklahoma  

SciTech Connect (OSTI)

The Middle Pennsylvanian Red Fork sandstone formed as a result of southward progradation across most of Oklahoma. The Red Fork is one of several cyclothemic (transgressive-regressive) sequences developed within the Desmoinesian Cherokee Group. Sea level changes and stability of the depositional area were dominant factors in determining the general stratigraphic characteristics of the Red Fork interval. Progradation was episodic, with sand deposition in the distal, more subsident part of the basin during lower sea level stands, and valley-fill deposition in the more stable areas during sea level rises. Red Fork sandstone trends depict an alluvial-deltaic complex covering most of Oklahoma. The Red Fork consists primarily of alluvial-valley and plain (fluvial) bodies in the northern part of northeastern Oklahoma, alluvial-deltaic bodies in most of the remaining parts of the shelf area, and off-shelf submarine-fan and slope/basin-floor complexes within the deeper part of the Anadarko basin. Determination of reservoir trend and genesis requires integration of rock data and log data, with logs calibrated to cores for estimating depositional environments and assessing diagenetic overprints. Much of the oil and gas has been trapped in stratigraphic traps, some of which represent channelized sandstones with trends at high angles to the structural grain. Secondary chlorite, in particular, is associated locally with development of productive reservoirs showing microporosity, high water saturation, and correspondingly low resistivities.

Shelton, J.W.; Fritz, R.D.; Johnson, C. (Masera Corp., Tulsa, OK (USA))

1989-08-01T23:59:59.000Z

230

Liquefaction characteristics of a fine sand  

E-Print Network [OSTI]

LIQUEFACTION CHARACTERISTICS OF A FINE SAND A Thesis by DONALD TIMOTHY BRANDON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1974 Major Subject...: Civil Engineering LIQUEFACTION CHARACTERISTICS OF A FINE SAND A Thesis by DONALD TIMOTHY BRANDON Approved as to style and content by: airman o Commi ee) ead of Depar ent) (Member) ( ber) ABSTRACT LIQUEFACTION CEARACTERISTICS OF A FINE SAND...

Brandon, Donald Timothy

2012-06-07T23:59:59.000Z

231

CO? mitigation costs for Canada and the Alberta Oil Sands  

E-Print Network [OSTI]

The threat of climate change proposes difficult problems for regulators and decision-makers in terms of uncertainties, varying exposures to risks and different attitudes towards risk among nations. Impact and cost assessments ...

Anderson, Justin David

2008-01-01T23:59:59.000Z

232

Microwave heating for adsorbents regeneration and oil sands coke activation.  

E-Print Network [OSTI]

??Microwave heating has unique advantages compared to convection-radiation heating methods including fast heating rate and selective heating of objects. This thesis studied two applications of (more)

Chen, Heng

2010-01-01T23:59:59.000Z

233

Land and Water Impacts of Oil Sands Production in Alberta  

Science Journals Connector (OSTI)

In situ development has a different footprint, mostly defined by linear features that extend across the lease area (networks of seismic lines, access roads, pipelines and well sites). ... (33) Withdrawals during this time may affect a larger portion of fish habitat and decrease the amount of dissolved oxygen available to fish in the winter. ... Linear features can become access points for recreation, hunting, and fishing. ...

Sarah M. Jordaan

2012-02-24T23:59:59.000Z

234

Depositional systems and petroleum potential, Mesaverde Formation southeastern Wind River basin, Wyoming  

SciTech Connect (OSTI)

Depositional environments and systems of the Wind River basin Mesaverde Formation were interpreted from an analysis of outcrops along the Casper arch and Rattlesnake Hills anticline and cores and wireline logs from the adjacent subsurface. The Fales Sandstone and Parkman Sandstone/unnamed middle member are deposits of eastward progradational, wave-dominated strand-plain and deltaic complexes. Basal portions of the Fales Sandstone and the Parkman Sandstone are composed of a thickening- and coarsening-upward sandstone sequence whose facies represent storm-dominated inner-shelf and wave-dominated shore-zone environments. Facies sequences in the upper Fales Sandstone interval and the unnamed middle member are interpreted as deposits of lower coastal plain (marshes, bay fills, distributary channels, and crevasse splays) and upper coastal plain (alluvial channels, crevasse splays and fine-grained flood basin) sequences. The Teapot Sandstone is interpreted as an alluvial deposit. Analysis of facies sequences in the Teapot suggests a change in fluvial style, from braided-belt deposits along the southwest flank to meander-belt deposits along the northeast flank of the basin. These fluvial systems fed the Teapot deltas to the east. Stratigraphic plays for oil and gas include alluvial valley fills and point-bar deposits in the Teapot Sandstone, storm-dominated shelf sands in the upper Cody Shale and the Fales and Parkman Sandstones, and a transgressive barrier-bar sequence in the upper Fales Sandstone. Laterally continuous shore-zone sandstones may form combination traps where pinch-outs occur on structure.

Hippe, D.J.; Needham, D.W.; Ethridge, F.G.

1986-08-01T23:59:59.000Z

235

Australian developments in oil shale processing  

SciTech Connect (OSTI)

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

236

Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract hydrocarbons for energy needs. The apparatus provides more efficient...

237

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

gas such as tight gas, shale gas, or coal bed methane gas tolocation. Development of shale oil and gas, tar sands, coalGas hydrates will undoubtedly also be present in shales,

Moridis, G.J.

2011-01-01T23:59:59.000Z

238

Study of Paraffin Wax Deposition in Seasonally Pigged Pipelines  

Science Journals Connector (OSTI)

Waxy crude oil pipelines are pigged periodically to scrape the adhered wax deposit from the pipe wall and remove it from the pipeline. If wax deposition on the pipe wall is not ... severe and there is not much ch...

Wang Wenda; Huang Qiyu; Huang Jun; Pang Quan

2014-03-01T23:59:59.000Z

239

Alluvial-fan deposits of Eldorado and Piute Valleys Alluvial-fan deposits are mapped as allostratigraphic units  

E-Print Network [OSTI]

that may be subject to intermittent flooding from active channels. Young alluvial-fan depositsMFan-piedmont and interfluvial wash terrace remnants; pebble-cobble to boulder gravel; small pebble sand where dominated by grus-cobble to boulder gravel. Deposits are poorly sorted; generally matrix supported; poorly to moderately stratified

Tingley, Joseph V.

240

TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS  

SciTech Connect (OSTI)

As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

Cem Sarica; Michael Volk

2004-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

E-Print Network 3.0 - abandoned in-situ oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

...33 10. In-situ shale-oil resources of some world oil-shale deposits... in 33 countries are estimated at 409 billion tons of in-situ shale oil,...

242

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

SciTech Connect (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

243

The Effect of Magnetic Radiation on Pipeline Transportation of Crude Oil  

Science Journals Connector (OSTI)

The deposition of paraffin wax during the pipeline transportation impedes the flow of crude oil and eventually blocks the pipelines. The hot oiling method is extensively used to control the wax deposition in the oil industry. Consequently, a huge amount ... Keywords: magnetic treatment, magnetic paraffin control technology, magnetic viscosity reducing, pipeline transportation, oil gathering

Zhang Weiwei; Zhang Guangyu; Dong Huijuan

2010-12-01T23:59:59.000Z

244

Hydraulic conductivity of shaly sands  

SciTech Connect (OSTI)

The effects of clays on the hydraulic conductivity of a sandstone are analyzed by considering a simple clay coating structure for the sand grains. In the model, silicate insulating nuclei are uniformly surrounded by charged clay particles. The total charge on the clays is compensated by a counterion density Q{sub v}. Assuming a capillary flow regime inside this granular model a Kozeny-Carman type equation has been derived, expressing its intrinsic permeability k in terms of a porosity-tortuosity factor {phi}{sup (m{minus}0.5)} and of the parameter Q{sub v}. The power-law derived expression shows that k decreases with the amount of clay, not only because a high Q{sub v} implies a narrowing of the pore channels, but also because it modifies the hydraulic tortuosity of the medium. This new equation has been statistically tested with extensive petrophysical laboratory data for different types of shaly sandstones.

Lima, O.A.L. de [PPPG/Federal Univ. of Bahia, Salvador Bahia (Brazil)

1994-12-31T23:59:59.000Z

245

Faculty of MANAGEMENT Alberta Oil & Gas Company1  

E-Print Network [OSTI]

Faculty of MANAGEMENT Alberta Oil & Gas Company1 Daphne Jackson, operations manager for Alberta Oil "unitize") which will then be operated by a single organization, maximizing oil production while reducing expense and environmental impacts. Oilfield exploration and development An underground deposit of oil

Nakayama, Marvin K.

246

Correlation of selected rock and fluid properties with residual oil saturation obtained by laboratory waterfloods  

E-Print Network [OSTI]

Saturation Conditions for Cores. 15 Fluid Properties at 76 F 0 19 Core Oil Saturations After Cumulative Hater In]ection. 26 Fluid and Hock Properties of Unconsolidated Cores. 28 7. Equation !models for Independent Variables. 8. Equations From Model E-1... for Unconsolidated Ottawa Sands 35 Equations From Kodel E-2 for Unconsolidated Ottawa Sands 56 10. Comparison of Best Ecuations for Ottawa Sand and. Combined Data. . . . . . . . . . . . . . . 37 11. Experimental Data From Other Investigators 12. Equations From...

Edgington, Jason Monroe

2012-06-07T23:59:59.000Z

247

A reservoir management study of a mature oil field  

E-Print Network [OSTI]

to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments...

Peruzzi, Tave

2012-06-07T23:59:59.000Z

248

Peak Oil  

Science Journals Connector (OSTI)

Wissenschaftliche Voraussagen deuten auf Peak Oil, das Maximum globaler Erdlfrderung, in unserer ... der demokratischen Systeme fhren. Psychoanalytische Betrachtung darf Peak Oil fr die Zivilisation als e...

Dr. Manuel Haus; Dr. med. Christoph Biermann

2013-03-01T23:59:59.000Z

249

Search for Oil and Gas Pools Beneath the North Sea  

Science Journals Connector (OSTI)

... OFFSHORE drilling for ... drilling for oil within continental shelf deposits has for some years past been established procedure in determining seaward ...

H. B. MILNER

1964-02-15T23:59:59.000Z

250

Canadian operators boost heavy oil production  

SciTech Connect (OSTI)

Recent technological advances in slurry pipelining, horizontal wells, and thermal recovery techniques have made recovery of Canadian heavy oil resources more economical. In addition, reduced government royalties have made investment in these difficult reservoirs more attractive. As a result, activity has increased in heavy-oil fields in Alberta and Saskatchewan. This paper review the various oil sand recovery projects under development in the area and the current government policies which are helping to develop them. The paper also provides brief descriptions of the equipment and technologies that have allowed a reduced cost in the development. Items discussed include surface mining techniques, horizontal drilling, reservoir engineering techniques, separation processes, and thermal recovery.

Perdue, J.M.

1996-05-01T23:59:59.000Z

251

Architecture of gas-hydrate-bearing sands from Walker Ridge 313, Green Canyon 955, and Alaminos Canyon 21: Northern deepwater Gulf of Mexico  

Science Journals Connector (OSTI)

Logging-while-drilling data acquired during the 2009 Gulf of Mexico (GoM) Gas Hydrate Joint Industry Project Leg II program combined with features observed in seismic data allow assessment of the depositional environment, geometry, and internal architecture of gas-hydrate-bearing sand reservoirs from three sites in the northern Gulf of Mexico (GoM): Walker Ridge 313, Alaminos Canyon 21, and Green Canyon 955. The site descriptions assist in the understanding of the geological development of gas-hydrate-bearing sands and in the assessment of their energy production potential. Three sand-rich units are described from the Walker Ridge site, including multiple ponded sand-bodies representing turbidite channel and associated levee and terminal lobe environments within the Terrebonne basin on the lower slope of the GoM. Older units display fewer but greater-reservoir-quality channel and proximal levee facies as compared to thinner, more continuous, and unconfined sheet-like sands that characterize the younger units, suggesting a decrease in depositional gradient with time in the basin. The three wells in the Green Canyon 955 site penetrated proximal levee sands within a previously recognized Late Pleistocene basin floor turbidite-channel-levee complex. Reservoirs encountered in GC955 exhibit thin-bedded internal structure and complex fault compartmentalization. Two wells drilled in the Alaminos Canyon 21 site tested a large, shallow, sand unit within the Diana mini-basin that exhibits steep lateral margins, non-sinuous elongate form, and flat base with hummocky upper surface. These features suggest deposition as a mass-transport deposit consisting of remobilized sand-rich turbidites or as a large basin-floor fan that was potentially eroded and buried by later-stage, mud-prone, mass-transport deposits.

Ray Boswell; Matthew Frye; Dianna Shelander; William Shedd; Daniel R. McConnell; Ann Cook

2012-01-01T23:59:59.000Z

252

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California's heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, (National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States))

1996-01-01T23:59:59.000Z

253

Impact and future of heavy oil produciton  

SciTech Connect (OSTI)

Heavy oil resources are becoming increaingly important in meeting world oil demand. Heavy oil accounts for 10% of the worlds current oil production and is anticipated to grow significantly. Recent narrowing of the price margins between light and heavy oil and the development of regional heavy oil markets (production, refining and marketing) have prompted renewed investment in heavy oil. Production of well known heavy oil resources of Canada, Venezuela, United States, and elsewhere throughout the world will be expanded on a project-by-project basis. Custom refineries designed to process these heavy crudes are being expanded. Refined products from these crudes will be cleaner than ever before because of the huge investment. However, heavy oil still remains at a competitive disadvantage due to higher production, transportation and refining have to compete with other investment opportunities available in the industry. Expansion of the U.S. heavy oil industry is no exception. Relaxation of export restrictions on Alaskan North Slope crude has prompted renewed development of California`s heavy oil resources. The location, resource volume, and oil properties of the more than 80-billion barrel U.S. heavy oil resource are well known. Our recent studies summarize the constraints on production, define the anticipated impact (volume, location and time frame) of development of U.S. heavy oil resources, and examines the $7-billion investment in refining units (bottoms conversion capacity) required to accommodate increased U.S. heavy oil production. Expansion of Canadian and Venezuelan heavy oil and tar sands production are anticipated to dramatically impact the U.S. petroleum market while displacing some imported Mideast crude.

Olsen, D.K, [National Inst. for Petroleum and Energy Research/BDM-Oklahoma Inc., Bartlesville, OK (United States)

1996-12-31T23:59:59.000Z

254

Gas hydrate formation in fine sand  

Science Journals Connector (OSTI)

Gas hydrate formation from two types of dissolved gas (methane and mixed gas) was studied under varying thermodynamic conditions in ... Sea. The testing media consisted of silica sand particles with diameters of ...

XiaoYa Zang; DeQing Liang; NengYou Wu

2013-04-01T23:59:59.000Z

255

Sediment flux and the Anthropocene  

Science Journals Connector (OSTI)

...Ohio, Mississippi and Missouri, are still adjusting to...involves the Athabaska oil sand deposits in northern...for surface mining. The oil sands are typically 40-60m...consequence of subsurface oil, gas or groundwater mining...

2011-01-01T23:59:59.000Z

256

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

257

SOLVING THE SHUGART QUEEN SAND PENASCO UNIT DECLINING PRODUCTION PROBLEM  

SciTech Connect (OSTI)

The Penasco Shugart Queen Sand Unit located in sections 8, 9, 16 & 17, T18S, 31E Eddy County New Mexico is operated by MNA Enterprises Ltd. Co. Hobbs, NM. The first well in the Unit was drilled in 1939 and since that time the Unit produced 535,000 bbl of oil on primary recovery and 375,000 bbl of oil during secondary recovery operations that commenced in 1973. The Unit secondary to primary ratio is 0.7, but other Queen waterfloods in the area had considerably larger S/P ratios. On June 25 1999 MNA was awarded a grant under the Department of Energy's ''Technology Development with Independents'' program. The grant was used to fund a reservoir study to determine if additional waterflood reserves could be developed. A total of 14 well bores that penetrate the Queen at 3150 ft are within the Unit boundaries. Eleven of these wells produced oil during the past 60 years. Production records were pieced together from various sources including the very early state production records. One very early well had a resistivity log, but nine of the wells had no logs, and four wells had gamma ray-neutron count-rate perforating logs. Fortunately, recent offset deep drilling in the area provided a source of modern logs through the Queen. The logs from these wells were used to analyze the four old gamma ray-neutron logs within the Unit. Additionally the offset well log database was sufficient to construct maps through the unit based on geostatistical interpolation methods. The maps were used to define the input parameters required to simulate the primary and secondary producing history. The history-matched simulator was then used to evaluate four production scenarios. The best scenario produces 51,000 bbl of additional oil over a 10-year period. If the injection rate is held to 300 BWPD the oil rate declines to a constant 15 BOPD after the first year. The projections are reasonable when viewed in the context of the historical performance ({approx}30 BOPD with a {approx}600 BWPD injection rate during 1980-1990). If an additional source of water is developed, increasing the injection rate to 600 BWPD will double the oil-producing rate. During the log evaluation work the presence of a possibly productive Penrose reservoir about 200 ft below the Queen was investigated. The Penrose zone exists throughout the Unit, but appears to be less permeable than the Queen. The maps suggest that either well 16D or 16C are suitable candidates for testing the Penrose zone.

Lowell Deckert

2000-08-25T23:59:59.000Z

258

Variation in grain shape and surface textures of fine guartz sands in the South Texas Eolian Sand Sheet  

E-Print Network [OSTI]

VARIATION IN GRAIN SHAPE AND SURFACE TEXTURES OF FINE QUARTZ SANDS IN THE SOUTH TEXAS EOLIAN SAND SHEET A Thesis by DONALD RALPH SIMS JR. Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... Texas Eolian Sand Sheet (August, 1984) Donald Ralph Sims, Jr. , B. S. , Stockton State College Chairman of Advisory Committee: Dr. James N. Mazzullo Fourier grain shape analysis was conducted on fine sands of the South Texas Eolian Sand Sheet (STESS...

Sims, Donald Ralph

2012-06-07T23:59:59.000Z

259

Reservoir description of a sand-rich submarine fan complex for a steamflood project: upper Miocene Potter sandstone, North Midway Sunset field, California  

SciTech Connect (OSTI)

Nearly 650 m of cores from the upper Miocene Potter sandstone in Mobil's Alberta/Shale property, North Midway Sunset field, California, were examined to determine depositional facies, sand-body geometry, and reservoir quality for a proposed steamflood project. The Potter represents a sand-rich submarine fan complex with braided-channel, meandering-channel, levee, and crevasse-splay facies. The braided-channel facies (gravel and coarse sand) is thick (up to 100 m), sheetlike (> 500 m wide), and highly permeable (10,000 + md). The meandering-channel facies (coarse to medium sand) is up to 20 m thick, over 400 m long, lenticular in geometry, and exhibits an upward decrease in permeability (e.g., 9000 to 500 md) related to grain size that fines upward. The levee facies (in bioturbated sand) is up to 21 m thick, shows variable geometry, and is generally low in permeability (100-1500 md). The crevasse splay (medium sand) is up to 12 m thick, sheetlike (> 300 m wide), and shows moderately high permeability (2000-8000 md). The braided-channel facies was a product of density-modified grain flows, and the remaining three facies were deposited by turbidity currents. Steam flooding of the Potter reservoir should perform extremely well because the entire reservoir is composed of relatively clean sand and the reservoir lacks both horizontal and vertical permeability barriers.

Shanmugam, G.; Clayton, C.A.

1989-03-01T23:59:59.000Z

260

Steam Gasification of Bio-Oil and Bio-Oil/Char Slurry in a Fluidized Bed Reactor  

Science Journals Connector (OSTI)

In the present study, the steam gasification of bio-oil/char slurry was investigated using a lab-scale fluidized bed reactor filled with either Ni-based naphtha steam reforming catalyst or silica sand. ... LOI: Loss on ignition after a 30 min fusion at 1000 C. ... Table 5. Product Gas Composition (in Mol %) and Heating Value from Steam Gasification of the Bio-Oil and the Slurry with the Catalyst and the Sand at T ? 800C, H2O/C ? 5.5, and GC1HSV ? 340 h?1; Wet with Nitrogen and Dry Nitrogen Free Basisa ...

Masakazu Sakaguchi; A. Paul Watkinson; Naoko Ellis

2010-08-23T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Interior acts on oil shale  

Science Journals Connector (OSTI)

Interior acts on oil shale ... The Interior Department has taken the first step to open up the vast oil-shale deposits on public lands. ... According to Secretary of the Interior Stewart L. Udall, the new program is designed to encourage competition in developing oil-shale resources, prevent speculation and windfall profits, promote mining operation and production practices that are consistent with good conservation management, encourage the fullest use of the resources, and provide reasonable revenues to the states and to the Federal Government. ...

1967-02-06T23:59:59.000Z

262

Peak Oil  

Science Journals Connector (OSTI)

At the start of the new millennium, the expression Peak Oil was unknown. Nevertheless, a discussion about when the worlds rate of oil production would reach its maximum had already ... . King Hubbert presented...

Kjell Aleklett

2012-01-01T23:59:59.000Z

263

Peak Oil  

Science Journals Connector (OSTI)

Between 2000 and 2010, world oil prices advanced from approximately $25 per barrel to more than $100 per barrel. The price appreciation of oil over the decade was around ten times the rate of inflation.

Robert Rapier

2012-01-01T23:59:59.000Z

264

Western oil shale conversion using the ROPE copyright process  

SciTech Connect (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

265

Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil  

SciTech Connect (OSTI)

This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

1989-12-12T23:59:59.000Z

266

Oil shale retorting with steam and produced gas  

SciTech Connect (OSTI)

This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

Merrill, L.S. Jr.; Wheaton, L.D.

1991-08-20T23:59:59.000Z

267

Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River  

E-Print Network [OSTI]

Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

Gani, M. Royhan

268

Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development  

SciTech Connect (OSTI)

Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies ?? it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains ?? and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream is diverted for aquifer recharge or other uses. To better understand the rapidly evolving field of conjunctive use, this Topical Report begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. We contrast Utah??s approach with efforts undertaken in neighboring states and by the federal government. We then relate conjunctive use to the unconventional fuel industry and discuss how conjunctive use can help address pressing challenges. While conjunctive management cannot create water where none exists, it does hold promise to manage existing resources in a more efficient manner. Moreover, conjunctive management reflects an important trend in western water law that could provide benefit to those contemplating activities that require large-scale water development.

Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt

2012-04-15T23:59:59.000Z

269

Assessment of sand drift potential along the Nile Valley and Delta using climatic and satellite data  

Science Journals Connector (OSTI)

Abstract Sand encroachment is a significant environmental hazard prevailing across the western fringes of the Nile Valley and Delta due to the occurrence of many dune fields in the adjacent Western Desert. Climatic data acquired from five meteorological stations were used to assess drifting sand and dune activity along this heavily populated and cultivated region. Dune forms and rates of dune advance were extracted from remotely sensed images. Results showed that wind environment and topography are the significant factors for the distribution of aeolian deposits. Wind energy and sand drift are maximum in the Middle Egypt and minimum west of the Nile Delta. Transverse (barchan) dunes are the dominant throughout the study area. Nevertheless, longitudinal (linear) dunes are observed west of the Nile Delta. The southern one-third of the study area is bordered by an elevated plateau from the west that hinders significant dune clusters from reaching the Nile Valley. Development projects in the contiguous fringes west of the Nile Valley would respond negatively to sand encroachment.

Mohamed E. Hereher

2014-01-01T23:59:59.000Z

270

Cleaning the Valhall offshore oil pipeline  

SciTech Connect (OSTI)

Severe wax deposits built up in the 20-in. (500-mm) Valhall subsea crude oil pipeline over a period of years. The successful program to remove these deposits gradually but completely with a series of foam and mechanical pigs is described, including details on equipment and procedures. The unique risks and difficulties associated with solids removal in offshore pipelines are discussed.

Marshall, G.R. (Amoco Norway Oil Co. (NO))

1990-08-01T23:59:59.000Z

271

Reservoir characterization of thinly laminated heterolithic facies within shallow-marine sand bodies  

SciTech Connect (OSTI)

Shallow marine sandstones typically form high quality reservoirs but they can contain a significant proportion of extremely heterogeneous facies. Particularly significant are heterolithic (mixed interlaminated sand-mud) deposits which are common in estuarine/incised valley-fill reservoirs and other tidally-influenced depositional environments. The complex mm/cm-scale interfingering of sands and clays in these reservoirs is below the resolution of most logging tools, which poses major problems for the petrophysical evaluation, quantitative reservoir modelling and reservoir performance prediction. This study outlines an integrated geological/petrophysical framework for the reservoir characterization of heterolithic facies from the Jurassic of the North Sea Basin which utilizes well logs, cores, minipermeameter and analog outcrop data. The calibration of wireline logs (GR, LDT/CNL, EPT and dipmeter) with cores helps in establishing the relationship between the architecture of sand-shale laminations and their wireline log response/electrofacies. The routine sampling procedure for porosity/permeability measurement from cores will not accurately determine the average reservoir properties for these heterolithic intervals. The selection of measurement points is of vital importance for determining average reservoir properties. The minipermeameter measurements are especially useful for these thin bedded reservoirs and serve as a useful guide for reservoir zonation and evaluation of petrophysical properties from wireline logs. The incorporation of analog outcrop data helps further in establishing vertical and lateral communication relationships at field scale.

Gupta, R.; Johnson, H. [Imperial College, London (United Kingdom); Myking, B.

1996-08-01T23:59:59.000Z

272

Computational and Rheological Study of Wax Deposition and Gelation in Subsea Pipelines.  

E-Print Network [OSTI]

??Highly waxy crude oils can cause significant problems such as blockage of a pipeline because of the precipitation and deposition of select wax components during (more)

Lee, Hyun Su

2008-01-01T23:59:59.000Z

273

Sand Bluff Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Sand Bluff Wind Farm Sand Bluff Wind Farm Jump to: navigation, search Name Sand Bluff Wind Farm Facility Sand Bluff Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner E.On Climate & Renewables Developer E.On Climate & Renewables Energy Purchaser Direct Energy Location Near Big Spring TX Coordinates 32.201622°, -101.404799° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.201622,"lon":-101.404799,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

274

SANDIA REPORT SAND2011-3622  

E-Print Network [OSTI]

SANDIA REPORT SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

275

Solvent extraction of southern US tar sands  

SciTech Connect (OSTI)

The socioeconomic aspects of the tar sands recovery were investigated by Diversified Petroleum Recovery, Inc. Mineral Resources Institute at the University of Alabama conducted characterization and beneficiation studies on Alabama tar sands. Two sources in the state were identified, namely, Black Wax Hill and Spring Creek. Samples were obtained, beneficiated, then shared with the University of Arkansas. The University of Arkansas conducted research in three areas, namely, solvation and characterization of the tar sands phase equilibria as well as the design and operation of a bench-scale batch model. In the solvation studies, the results indicate that grinding the tar sands too fine results in downstream processing problems. Also, preliminary indications are that the beneficiation step may not be necessary in the solvation of the bitumen. The phase equilibria of the heptane/brine/isopropyl alcohol/XTOL{trademark} system is very complex. The salt concentration of the brine is significant in the partitioning of the isopropanol and heptane. Equilibrium data for some of the various combinations of chemical constituents have been obtained. Also included are appendices: statistical data on highways; petrography; Dean-Starke technique; FTIR and NMR spectra; FORTRAN computer program for GC; simulation of flash behavior for IPA/brine/fatty acid/N-C{sub 7} mixture; and previous progress reports. 32 figs., 28 tabs.

Not Available

1989-05-01T23:59:59.000Z

276

SAND-JENSEN, KAJ, AND MORTEN FOLDAGER PEDERSEN ...  

Science Journals Connector (OSTI)

Photosynthesis by symbiotic algae in the freshwater sponge,. Spongilla lacustris. Kaj Sand- Jensen and Marten Foldager Pedersen. Freshwater Biological...

1999-12-20T23:59:59.000Z

277

A comparison of the performance of waterfloods using similar refined and crude oils  

E-Print Network [OSTI]

of Brine-Oil Interfacial Tension with Saturation Pressure at 100 F. . . . . . 20 Effect of Reservo ir Pressure on Reservoir Gas Saturation . 21 Effect of Initial Gas Saturation on Residual Oil Satu rat iona afte r Ea ch P roduction Phase 22 Effect... of Initial Gas Saturation on Percent Recovery after Ea. ch Production Phase 25 Effect of Initial Gas Saturation on Residual Oil Saturations at Stock Tank Conditions after Each Production Phase . TABLES 1. Sand Grain Analysis 34 Effect of Saturation...

Walton, Daylon Lynn

2012-06-07T23:59:59.000Z

278

LLNL oil shale project review: METC third annual oil shale contractors meeting  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

Cena, R.J.; Coburn, T.T.; Taylor, R.W.

1988-01-01T23:59:59.000Z

279

Asphaltene Deposition in Carbonate Rocks: Experimental Investigation and Numerical Simulation  

Science Journals Connector (OSTI)

Asphaltene Deposition in Carbonate Rocks: Experimental Investigation and Numerical Simulation ... Interfacial tension (IFT) as one of the main properties for efficient CO2 flooding planning in oil reservoirs depends strongly on pressure, temperature, and composition of the reservoir fluids. ...

Shahin Kord; Rohaldin Miri; Shahab Ayatollahi; Mehdi Escrochi

2012-06-20T23:59:59.000Z

280

Hygienic rating of hydrocarbons in bottom deposits of water ecosystems  

Science Journals Connector (OSTI)

The authors of this article draw the readers attention to the topical problem of the contamination of bottom deposits of water ecosystems by hydrocarbons, such as oil and gas condensate,...

Rauf Valievich Galiulin

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

I SAND95-2448C  

Office of Scientific and Technical Information (OSTI)

SAND95-2448C SAND95-2448C eddfigt6qI7-*+ To be presented at the 32"d AIANASMEISAEIASEE Joint Propulsion Conference, Lake Buena Vista, FL, July 1-3, 1996 A SURVEY OF COMBUSTIBLE METALS, THERMITES, AND INTERMETALLICS FOR PYROTECHNIC APPLICATIONS* S. H. Fischer and M. C. Grubelich Sandia National Laboratories Albuquerque, NM 87185-1453 ABSTRACT Thermite mixtures, intermetallic reactants, and metal fuels have long been used in pyrotechnic applications. Advantage of these systems typically include high energy density, impact insensitivity, high combustion temperature, and a wide range of gas production. They generally exhibit high temperature stability, and possess insensitive ignition properties. In this paper, we review the applications, benefits, and characteristics

282

SAND76-0260 Unlimited Release  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SAND76-0260 SAND76-0260 Unlimited Release Printed July 1976 . POWER SUPPLIES FOR SPACE SYSTEMS QUALITY ASSURANCE BY SANDIA LABORATORIES Robert L. Hannigan Robert R. Harnar Electronic and Electrical Devices Division 951 2 Sandia Laboratories Albuquerque, NM 87115 AB STRAC T This report summarizes the Sandia Laboratories participation in Quality Assurance programs for Radioisotopic Thermoelectric Generators which have been used i n space systems over the past 10 years. Basic elements of this QA program a r e briefly de- scribed and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems f o r which Sandia has had the QA responsibility a r e presented, including SNAP 1 9 (Nimbus, Pioneer, Viking), SNAP 27 (Apollo),

283

Three dimensional fabric evolution of sheared sand  

SciTech Connect (OSTI)

Granular particles undergo translation and rolling when they are sheared. This paper presents a three-dimensional (3D) experimental assessment of fabric evolution of sheared sand at the particle level. F-75 Ottawa sand specimen was tested under an axisymmetric triaxial loading condition. It measured 9.5 mm in diameter and 20 mm in height. The quantitative evaluation was conducted by analyzing 3D high-resolution x-ray synchrotron micro-tomography images of the specimen at eight axial strain levels. The analyses included visualization of particle translation and rotation, and quantification of fabric orientation as shearing continued. Representative individual particles were successfully tracked and visualized to assess the mode of interaction between them. This paper discusses fabric evolution and compares the evolution of particles within and outside the shear band as shearing continues. Changes in particle orientation distributions are presented using fabric histograms and fabric tensor.

Hasan, Alsidqi; Alshibli, Khalid (UWA)

2012-10-24T23:59:59.000Z

284

Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela  

SciTech Connect (OSTI)

Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

Kaufman, R.L.; Noguera, V.H.; Bantz, D.M. [Chevron Overseas Petroleum, San Ramon, CA (United States); Rodriguez, R. [Maraven, S.A., Caracas (Venezuela)

1996-08-01T23:59:59.000Z

285

Oil recovery by carbon dioxide injection into consolidated and unconsolidated sandstone  

E-Print Network [OSTI]

dioxide dis- Oiateme t s, that it e tr tts tighter hye ot hoes from the crude oil and this light liquid forms a bank ahead of the free carbon diox1de pushing the . oi-l-, For this reason, a portion of the oil produced was observed to be light oil.... The purpose of this research was to study experimentally the miscibility of carbon dioxide and Nillican crude oil in a consolidated sandstone core and an unconsolidated sand pack. A 15-ft. -long consolidated core was made by joining three indivi- dual 5-ft...

Lin, Fwu-Jin Frank

1975-01-01T23:59:59.000Z

286

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

287

Macrodispersion in sand-shale sequences  

SciTech Connect (OSTI)

Macrodispersion in sand-shale sequences is investigated by a series of numerical tracer tests. Hydraulic conductivity is modeled as a binary, spatially correlated random function. Realizations of the random conductivity field are simulated on a nodal grid discretizing the heterogeneous formation. Corresponding realizations of the random velocity field are obtained by solving the equation for saturated steady state flow. Particle tracking, with flux-weighted tracer injection and detection, is used to generate experimental residence time distributions (RTDs). Moments of the RTD are used to characterize longitudinal tracer spreading. Results show that macrodispersive transport in sand-shale sequences cannot be represented by a Fickian model. RTDs display a bimodal structural caused by the fast arrival of particles traveling along preferential sandstone and shale. The relative importance of channeling and tortuous flow transport mechanisms is determined by sand-shale conductivity contrast, shale volume fraction, and conductivity spatial correlation structure. Channeling is promoted by high conductivity contrasts, low shale fractions, and flow parallel to bedding in anisotropic media. Low contrasts, high shale fractions, and flow perpendicular to bedding act to break up channels and to enhance tracer spreading.

Desbarats, A.J. (Geological Survey of Canada, Ottawa, Ontario (Canada))

1990-01-01T23:59:59.000Z

288

The effect of low-temperature oxidation on the fuel and produced oil during in situ combustion  

SciTech Connect (OSTI)

Combustion tube experiments using 10.2{degrees} API crude oil were performed, in which a different sample matrix was used in each run. Three matrix types were tested: sand, sand and clay, and sand and sand fines. As a result of the low fuel concentration, low-temperature oxidation (LTO) was observed in the run where the matrix consisted of sand only. High-temperature oxidation (HTO) was observed in runs where either clay or sand fines were part of the matrix. Ignition was not obtained in the LTO run, which had a reaction front temperature of only 350{degrees}C (662{degrees}F), compared to a combustion front temperature of 500{degrees}C (932{degrees}F) for the HTO runs. From elemental analysis, the fuel during the LTO run was determined to be an oxygenated hydrocarbon with an atomic oxygen-carbon ratio of 0.3.

Mamora, D.D. [Texas A& M Univ., College Station, TX (United States); Brigham, W.E. [Stanford Univ., CA (United States)

1995-02-01T23:59:59.000Z

289

Heavy oil production from Alaska  

SciTech Connect (OSTI)

North Slope of Alaska has an estimated 40 billion barrels of heavy oil and bitumen in the shallow formations of West Sak and Ugnu. Recovering this resource economically is a technical challenge for two reasons: (1) the geophysical environment is unique, and (2) the expected recovery is a low percentage of the oil in place. The optimum advanced recovery process is still undetermined. Thermal methods would be applicable if the risks of thawing the permafrost can be minimized and the enormous heat losses reduced. Use of enriched natural gas is a probable recovery process for West Sak. Nearby Prudhoe Bay field is using its huge natural gas resources for pressure maintenance and enriched gas improved oil recovery (IOR). Use of carbon dioxide is unlikely because of dynamic miscibility problems. Major concerns for any IOR include close well spacing and its impact on the environment, asphaltene precipitation, sand production, and fines migration, in addition to other more common production problems. Studies have indicated that recovering West Sak and Lower Ugnu heavy oil is technically feasible, but its development has not been economically viable so far. Remoteness from markets and harsh Arctic climate increase production costs relative to California heavy oil or Central/South American heavy crude delivered to the U.S. Gulf Coast. A positive change in any of the key economic factors could provide the impetus for future development. Cooperation between the federal government, state of Alaska, and industry on taxation, leasing, and permitting, and an aggressive support for development of technology to improve economics is needed for these heavy oil resources to be developed.

Mahmood, S.M.; Olsen, D.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Thomas, C.P. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1995-12-31T23:59:59.000Z

290

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

291

Deposition Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulsed Plasma Processing Pulsed Plasma Processing NEW: Downloadable: Invited Talk "Pulsed Metal Plasmas," presented at the 2006 AVS Meeting, San Francisco, California, November 15, 2006. (PDF, file size 8 MB). Plasma Sources for Window Coatings Deposition processes for low-emittance and solar control coatings can be improved through the use of advanced plasma technology developed at LBNL. A new type of constricted glow-discharge plasma source was selected for the 1997 R&D 100 Award. Invented by LBNL researchers Andre Anders, Mike Rubin, and Mike Dickinson, the source was designed to be compatible with industrial vacuum deposition equipment and practice. Construction is simple, rugged and inexpensive. It can operate indefinitely over a wide range of chamber pressure without any consumable parts such as filaments or grids. Several different gases including Argon, Oxygen and Nitrogen have been tested successfully.

292

Stratigraphy and depositional environments of Fox Hills Formation in Williston basin  

SciTech Connect (OSTI)

The Fox Hills Formation (Maestrichtian), representing part of a regressive wedge deposited during the withdrawal of the sea from the Western Interior at the close of the Cretaceous, consists of marginal marine strata transitional between the offshore deposits of the underlying Pierre Shale and the terrestrial deltaic and coastal deposits of the overlying Hell Creek Formation. An investigation of outcrops of the Fox Hills Formation along the western and southern flanks of the Williston basin and study of over 300 oil and gas well logs from the central part of the basin indicate that the formation can be divided both stratigraphically and areally. Stratigraphically, the Fox Hills can be divided into lower and upper sequences; the lower includes the Trail City and Timber Lake Members, and the upper sequence includes the Colgate Member in the west and the Iron Lightning and Linton Members in the east. Areally, the formation can be divided into a northeastern and western part, where the strata are 30-45 m thick and are dominated by the lower sequence, and into a southeastern area where both the lower and upper sequences are well developed in a section 80-130 m thick. Typically, the lower Fox Hills consists of upward-coarsening shoreface or delta-front sequences containing hummocky bedding and a limited suite of trace fossils, most notably Ophiomorpha. In the southeast, however, these strata are dominated by bar complexes, oriented northeast-southwest, composed of cross-bedded medium to very fine-grained sand with abundant trace and body fossils. The upper Fox Hills represents a variety of shoreface, deltaic, and channel environments. The strata of the Fox Hills Formation exhibit facies similar to those reported for Upper Cretaceous gas reservoirs in the northern Great Plains.

Daly, D.J.

1988-07-01T23:59:59.000Z

293

Pulsed Laser Deposition | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulsed Laser Deposition Pulsed Laser Deposition EMSL's pulsed laser deposition (PLD) system is designed for epitaxial growth of oxide, ceramic, or synthetic mineral thin films and...

294

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

295

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

296

Methods for predicting wax precipitation and deposition  

SciTech Connect (OSTI)

Removal of wax from wells and flowlines can account for significant additional operating costs. To evaluate these potential costs, the operating conditions that allow waxes to precipitate in the wellbore must be identified, and deposition rates must be estimated to determine the costs associated with removal of wax deposits. Presented in this paper are laboratory and analytic methods that can be used to estimate both the critical operating conditions and the deposition rates. The laboratory tests and analysis presented may be used to characterize any type of oil.

Weingarten, J.S.; Euchner, J.A.

1988-02-01T23:59:59.000Z

297

Nanoparticle technology for heavy oil in-situ upgrading and recovery enhancement: Opportunities and challenges  

Science Journals Connector (OSTI)

Abstract With more than 170 billion barrels of estimated oil sands reserves in Canada, Canada has the third largest oil reserves in the world. However, more than 80% of oil sands reserves are located deep underground and could not be accessed by surface mining. Nonetheless, a number of in-situ recovery methods have been developed to extract heavy oil and bitumen from deep reservoirs. Once produced, bitumen is transferred to upgraders converting low quality oil to synthetic crude oil. However, in the present context, heavy oil and bitumen exploitation process is not just high-energy and water intensive, but also it has significant environmental footprints as it produces significant amount of gaseous emissions and wastewater. In addition, the level of contaminants in bitumen requires special equipment, and has also environmental repercussions. Recently, nanotechnology has emerged as an alternative technology for in-situ heavy oil upgrading and recovery enhancement. Nanoparticle catalysts (nanocatalysts) are one of the important examples on nanotechnology applications. Nanocatalysts portray unique catalytic and sorption properties due to their exceptionally high surface area-to-volume ratio and active surface sites. In-situ catalytic conversion or upgrading of heavy oil with the aid of multi-metallic nanocatalysts is a promising cost effective and environmentally friendly technology for production of high quality oils that meet pipeline and refinery specifications. Further, nanoparticles could be employed as inhibitors for preventing or delaying asphaltene precipitation and subsequently enhance oil recovery. Nevertheless, as with any new technologies, there are a number of challenges facing the employment of nanoparticles for in-situ catalytic upgrading and recovery enhancement. The main goal of this article is to provide an overview of nanoparticle technology usage for enhancing the in-situ catalytic upgrading and recovery processes of crude oil. Furthermore, the article sheds lights on the advantages of employment of nanoparticles in heavy oil industry and addresses some of the limitations and challenges facing this new technology.

Rohallah Hashemi; Nashaat N. Nassar; Pedro Pereira Almao

2014-01-01T23:59:59.000Z

298

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

299

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program |  

Broader source: Energy.gov (indexed) [DOE]

Sand Mountain Electric Cooperative - Residential Heat Pump Loan Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program Sand Mountain Electric Cooperative - Residential Heat Pump Loan Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Program Info State Alabama Program Type Utility Loan Program Rebate Amount 7% interest rate 5 or 10 year pay schedule maximum of $12,000 Provider Sand Mountain Electric Cooperative The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least one year, have the home electric bill and deeds in the same name, and pass a credit check. Heat pumps must be installed by a [http://www.smec.coop/heatpumpcontractors.htm

300

Sphere impact and penetration into wet sand  

Science Journals Connector (OSTI)

We present experimental results for the penetration of a solid sphere when released onto wet sand. We show, by measuring the final penetration depth, that the cohesion induced by the water can result in either a deeper or shallower penetration for a given release height compared to dry granular material. Thus the presence of water can either lubricate or stiffen the granular material. By assuming the shear rate is proportional to the impact velocity and using the depth-averaged stopping force in calculating the shear stress, we derive effective viscosities for the wet granular materials.

J. O. Marston; I. U. Vakarelski; S. T. Thoroddsen

2012-08-07T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Heating tar sands formations while controlling pressure  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

2010-01-12T23:59:59.000Z

302

Heating tar sands formations to visbreaking temperatures  

DOE Patents [OSTI]

Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

2009-12-22T23:59:59.000Z

303

OIL IMPORTS: For and Against  

Science Journals Connector (OSTI)

OIL IMPORTS: For and Against ... The eightAshland Oil, Atlantic Richfield, Cities Service, Marathon Oil, Mobil Oil, Standard Oil (Ind.), ...

1969-07-28T23:59:59.000Z

304

Looking for Answers Around Grains of Sand | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Sand Experiments reveal unexpected precipitation behavior, insights for cleanup and carbon sequestration Tiny cul-de-sacs and passages in the soil, that affect water flow and...

305

Induction log analysis of thinly laminated sand/shale formation  

SciTech Connect (OSTI)

The author examines induction log responses to a thinly laminated sand/shale sequence in a deviated borehole for arbitrary deviation (or dip) angle and sand/shale composition. He found that the induction log responses in a thinly laminated sand/shale sequence are the same as they would be if the tool is placed in a homogeneous but anisotropic formation with the horizontal and vertical conductivities given respectively by the parallel and the series conductivities of the sequence. Conversely, a thinly laminated sand/shale sequence can be identified as an anisotropic formation by induction logs. He discusses three methods to identify an anisotropic formation using induction-type logs alone.

Hagiwara, T. [Shell Development Co., Houston, TX (United States)

1995-06-01T23:59:59.000Z

306

SANDIA REPORT SAND96-8243 UC-1409 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

copy: A01 . DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. SAND96-8243...

307

Soil stabilization using oil-shale solid waste  

SciTech Connect (OSTI)

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

308

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

309

SANDIA REPORT SAND93-1076  

Office of Scientific and Technical Information (OSTI)

SANDIA SANDIA REPORT SAND93-1076 * u_qo UnlimitedRelease 1 Pdnted November 1993 :ii l Standard Testing Procedures for Optical Fiber and Unshielded Twisted Pair at Sandia National Laboratories R. L. Adams Pe,_e,d by Sand!a Nm#ocml L.abomlodN Albuquerque, NewMexlooI71U and Uvermore,California$M860 for the UnitedStatesDepartment ofEnergy underContract DE.ACOI-MALIIf_D SF2900Q(8-81 } _IITRIEIUTION OF THiS DGCU,VltZNT 18 UNLIMITED k Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE. This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their c_ntractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability

310

TESTING OF TMR SAND MANTIS FINAL REPORT  

SciTech Connect (OSTI)

Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conducted to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.

Krementz, D; William Daugherty, W

2007-06-12T23:59:59.000Z

311

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

312

Asphaltene Precipitation in Crude Oils: Theory and Experiments  

E-Print Network [OSTI]

was performed using the statistical association fluid theory for potentials of variable range (SAFT-VR) equation, SAFT-VR EOS Introduction The formation and deposition of asphaltene-rich, solidlike material during oil

Wu, Jianzhong

313

Expectations for Oil Shale Production (released in AEO2009)  

Reports and Publications (EIA)

Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

2009-01-01T23:59:59.000Z

314

Wax deposition scale-up modeling for waxy crude production lines  

SciTech Connect (OSTI)

A wax deposition scale-up model has been developed to scale-up laboratory wax deposition results for waxy crude production lines. The wax deposition model allows users to predict wax deposition profile along a cold pipeline and predict potential wax problems and pigging frequency. Consideration of the flow turbulence effect significantly increases prediction accuracy. Accurate wax deposition prediction should save capital and operation investments for waxy crude production systems. Many wax deposition models only apply a molecular diffusion mechanism in modeling and neglect shear effect. However, the flow turbulence effect has significant impact on wax deposition and can not be neglected in wax deposition modeling. Wax deposition scale-up parameters including shear rate, shear stress, and Reynolds number have been studied. None of these parameters can be used as a scaler. Critical wax tension concept has been proposed as a scaler. A technique to scale up shear effect and then wax deposition is described. For a given oil and oil temperature, the laboratory wax deposition data can be scaled up by heat flux and flow velocity. The scale-up techniques could be applied to multiphase flow conditions. Examples are presented in this paper to describe profiles of wax deposition and effective inside diameter along North Sea and West Africa subsea pipelines. The difference of wax deposition profiles from stock tank oil and live oil is also presented.

Hsu, J.J.C.; Brubaker, J.P.

1995-12-01T23:59:59.000Z

315

In situ retorting or oil shale  

SciTech Connect (OSTI)

An improved method of in situ retorting of oil shale wherein a cavern of crushed shale is created within an oil shale deposit, preferably by igniting a powerful explosion within the oil shale deposit, thereby creating a localized area or cavern of rubblized oil shale. Combustion gases are injected into the bottom of this cavern and particulate material, preferably a cracking catalyst, is deposited into a void at the top of the cavern and allowed to trickle down and fill the voids in the rubblized cavern. The oil shale is ignited at the bottom of the cavern and a combustion zone proceeds upwardly while the particulate material is caused by gas flow to percolate downwardly. A fluidized bed of particulate material is thereby formed at the combustion zone providing a controlled, evelny advancing combustion zone. This, in turn, efficiently retorts oil shale, provides increased recovery of hydrocarbon while ismultaneously producing a catalytically cracked volatile, high octane gasoline exiting from the top of the retort.

Hettinger, W.P. Jr.

1984-09-11T23:59:59.000Z

316

An experimental design approach for investigating the effects of operating factors on the wax deposition in pipelines  

Science Journals Connector (OSTI)

An experimental study is conducted to determine the wax deposition potential of three waxy crude oils during laminar flow in a pipeline system. The Taguchi experimental design approach is used to evaluate the influence of important operating factors such as inlet crude oil temperature, temperature difference between the oil and the pipe wall (?T), the flow rate of crude oil, wax content and time on wax deposition phenomena. It is found that the parameter ?T and flow rate have maximum and minimum percentage of contribution on the amount of deposited wax, respectively. The results demonstrate that a waxy crude oil with higher wax content could lead the more deposited solid wax in transportation lines. The differential scanning calorimetry (DSC) analysis showed that wax appearance temperature (WAT) and solid content of the deposit were increased as deposition time increased.

Reza Valinejad; Ali R. Solaimany Nazar

2013-01-01T23:59:59.000Z

317

Beginning of an oil shale industry in Australia  

SciTech Connect (OSTI)

This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

1989-01-01T23:59:59.000Z

318

SAND AND GRAVEL MINING IN COLORADO RIPARIAN HABITATS  

E-Print Network [OSTI]

mines, but Western Colorado sand and gravel mining is also discussed. The similarities and differencesSAND AND GRAVEL MINING IN COLORADO RIPARIAN HABITATS Ma rk A. He i fner Supervising Mined Land Reclamation Specialist Colorado Division of Mined Land Reclamation 723 Centennial Building 1313 Sherman

319

BENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS  

E-Print Network [OSTI]

and state environmental agencies began to pay increasing attention to industrial pollution, safety and wasteBENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS By Tarun R. Naik Director - 6696 Fax: (414) 229 - 6958 #12;-2- Beneficial Utilization of Used Foundry Sands as Construction

Wisconsin-Milwaukee, University of

320

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

University of Minnesota UMore Park Sand and Gravel Resources  

E-Print Network [OSTI]

University of Minnesota UMore Park Sand and Gravel Resources Final Environmental Impact Statement Executive Summary The University of Minnesota has prepared a Final Environmental Impact Statement (EIS;University of Minnesota - UMore Park Sand and Gravel Resources Project Final EIS ­ October, 2010 Page i

Netoff, Theoden

322

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

323

Heat and mass transport in non-isothermal partially saturated oil-wax Antonio Fasano1  

E-Print Network [OSTI]

Mario Primicerio1 Abstract Deposition of wax at the wall of pipelines during the flow of mineral oilsHeat and mass transport in non-isothermal partially saturated oil-wax solutions Antonio Fasano1 of the main mechanisms at the origin of wax deposition, i.e. diffusion in non-isothermal solutions. We

Primicerio, Mario

324

of oil yields from enhanced oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

325

Methane Hydrate Formation and Dissociation in a Partially Saturated Core-Scale Sand Sample  

E-Print Network [OSTI]

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

326

Methane Hydrate Formation and Dissocation in a Partially Saturated Sand--Measurements and Observations  

E-Print Network [OSTI]

gas system and the sand/hydrate/water/gas systems, as wellproperties of the sand/water/gas system, hydrate formation,saturated sand/water/gas (s/w/g) system, hydrate formation,

2005-01-01T23:59:59.000Z

327

Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico  

E-Print Network [OSTI]

Documented Example of Gas Hydrate Saturated Sand in the Gulfthat observed for gas hydrate-bearing sand sediments in thethan those for the gas hydrate-bearing sand formations in

Boswell, R.D.

2010-01-01T23:59:59.000Z

328

Surface Properties of Basic Components Extracted from Petroleum Crude Oil  

Science Journals Connector (OSTI)

Surface Properties of Basic Components Extracted from Petroleum Crude Oil ... Ratios in oils are inherited from source rock kerogens with minor change, are conserved during catagenesis and biodegrdn., are robust correlation parameters, and facilitate the classification of petroleums in terms of the depositional facies and lithol. of the source rock. ...

Andreas L. Nenningsland; Se?bastien Simon; Johan Sjo?blom

2010-11-10T23:59:59.000Z

329

Extraction of Basic Components from Petroleum Crude Oil  

Science Journals Connector (OSTI)

Extraction of Basic Components from Petroleum Crude Oil ... Ratios in oils are inherited from source rock kerogens with minor change, are conserved during catagenesis and biodegrdn., are robust correlation parameters, and facilitate the classification of petroleums in terms of the depositional facies and lithol. of the source rock. ...

Se?bastien Simon; Andreas L. Nenningsland; Emily Herschbach; Johan Sjo?blom

2009-12-01T23:59:59.000Z

330

Wax Segregation in Oils: A Multiscale Mario Primicerio  

E-Print Network [OSTI]

Wax Segregation in Oils: A Multiscale Problem. Mario Primicerio Department of Mathematics "Ulisse in the pipeline. The experimental evidence is that when these oils are pumped in pipelines crossing zones at relatively low temperature (as e.g. in the submarine pipelines) a deposit is formed at the walls that grows

Primicerio, Mario

331

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

332

Sand Mountain Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Mountain Electric Coop Mountain Electric Coop Jump to: navigation, search Name Sand Mountain Electric Coop Place Alabama Utility Id 16629 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Drainage Pumping Station LS - Outdoor Lighting Service Lighting RS - Residential Service Residential Schedule GSA - General Power Service - Part 1 Commercial Schedule GSA - General Power Service - Part 2 Commercial Schedule GSA - General Power Service - Part 3 Commercial Schedule GSB Commercial Schedule GSD Commercial

333

Direct Production of Silicones From Sand  

SciTech Connect (OSTI)

Silicon, in the form of silica and silicates, is the second most abundant element in the earth's crust. However the synthesis of silicones (scheme 1) and almost all organosilicon chemistry is only accessible through elemental silicon. Silicon dioxide (sand or quartz) is converted to chemical-grade elemental silicon in an energy intensive reduction process, a result of the exceptional thermodynamic stability of silica. Then, the silicon is reacted with methyl chloride to give a mixture of methylchlorosilanes catalyzed by cooper containing a variety of tract metals such as tin, zinc etc. The so-called direct process was first discovered at GE in 1940. The methylchlorosilanes are distilled to purify and separate the major reaction components, the most important of which is dimethyldichlorosilane. Polymerization of dimethyldichlorosilane by controlled hydrolysis results in the formation of silicone polymers. Worldwide, the silicones industry produces about 1.3 billion pounds of the basic silicon polymer, polydimethylsiloxane.

Larry N. Lewis; F.J. Schattenmann: J.P. Lemmon

2001-09-30T23:59:59.000Z

334

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpyporosity approach  

E-Print Network [OSTI]

Mathematical formulation and numerical modeling of wax deposition in pipelines from enthalpy and in the North Sea, the deposition of wax crystals in oil and gas pipelines becomes a major concern operational complexities. To pre- vent blockage of pipelines, wax deposits should be removed periodically

Firoozabadi, Abbas

335

Liability issues surrounding oil drilling mud sumps  

SciTech Connect (OSTI)

This presentation examines liability issues surrounding oil drilling mud sumps and discusses them in relation to two recent cases that arose in Ventura County, California. Following a brief history of regulatory interest in oil drilling mud and its common hazardous substances, various cause of action arising from oil drilling mud deposits are enumerated, followed by defenses to these causes of action. Section 8002 (m) of the Resource Conservation and Recovery Act is mentioned, as are constituents of oil and gas waste not inherent in petroleum and therefore not exempt from regulation under the petroleum exclusion in the Comprehensive Environmental Response, Compensation and Recovery Act. Key legal words such as hazardous substance, release, public and private nuisance, trespass, responsible parties, joint and several liability, negligence, and strict liability are explained. The effects on liability of knowledge of the deposits, duty to restore land to its original condition, consent to the deposit of oil drilling mud, and noncompliance and compliance with permit conditions are analyzed. The state-of-the-art defense and research to establish this defense are mentioned. The newly created cause of action for fear of increased risk of cancer is discussed. Issues on transfer of property where oil drilling mud has been deposited are explored, such as knowledge of prior owners being imputed to later owners, claims of fraudulent concealment, and as is' clauses. The effects on the oil and gas industry of the California Court of Appeals for the Second District rulings in Dolan v. Humacid-MacLeod and Stevens v. McQueen are speculated.

Dillon, J.J.

1994-04-01T23:59:59.000Z

336

E-Print Network 3.0 - amaro mineral sand Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the origin... Abstract Sorption of phosphorus (P) to the bed sand medium is a major removal mechanism for P in subsurface... flow constructed wetlands. Selecting a sand...

337

Shallow oil production using horizontal wells with enhanced oil recovery techniques  

SciTech Connect (OSTI)

Millions of barrels of oil exist in the Bartlesville formation throughout Oklahoma, Kansas, and Missouri. In an attempt to demonstrate that these shallow heavy oil deposits can be recovered, a field project was undertaken to determine the effectiveness of enhanced oil recovery techniques (EOR) employing horizontal wells. Process screening results suggested that thermal EOR processes were best suited for the recovery of this heavy oil. Screening criteria suggested that in situ combustion was a viable technique for the production of these reserves. Laboratory combustion tube tests confirmed that sufficient amounts of fuel could be deposited. The results of the in situ combustion field pilot were disappointing. A total overall recovery efficiency of only 16.0 percent was achieved. Results suggest that the combustion front might have moved past the horizontal well, however elevated temperatures or crude upgrading were not observed. Factors contributing to the lack of production are also discussed.

Satchwell, R.M.; Johnson, L.A. Jr. [Western Research Institute, Laramie, WY (United States); Trent, R. [Univ. of Alaska, Fairbanks, AK (United States)

1995-02-01T23:59:59.000Z

338

Studies of wax deposition in the Trans Alaska pipeline  

SciTech Connect (OSTI)

The crude oil being pumped into the Trans Alaska pipeline experiences considerable cooling during its 800-mile (1,287 km) journey from Prudhoe Bay to Valdez. The conditions during the initial flow period were favorable especially for the deposition of the waxy constituents of the crude on the pipeline wall. As time passed and the crude oil flow rate increased, segments of the pipeline warmed up to temperatures greater than that at which wax deposition occurs. This study investigated mechanisms of wax deposition and determined the expected nature and thickness of deposits in the pipeline as a function of time and distance. Results indicate that deposition during start-up is a consequence of 3 separate mechanisms which transport both dissolved and precipitated waxy residue laterally. 31 references.

Burger, E.D.; Perkins, T.K.; Striegler, J.H.

1980-03-01T23:59:59.000Z

339

Residual oil saturation determination. Wilmington micellar-polymer project. Final report  

SciTech Connect (OSTI)

The City of Long Beach, California conducted a program to obtain residual oil saturation (ROS) data in the HX/sub a/ Sand, Fault Block VB, Wilmington Field. This program utilized many complementary techniques for determining the ROS in a watered-out unconsolidated sand, typical of many reservoirs in the California Coastal Province. This program was to be performed in two stages. The first, Phase 1, was intended to determine the ROS in an area which had been flooded out during the course of a peripheral waterflood and to make a comparative analysis of current methods for determination of in-situ oil in place. The second stage, Phase 2 of the ROS program, was intended to measure the ROS after tertiary recovery by a micellar-polymer flood; however, the second phase was not carried out for lack of funds. This report describes the diagnostic tools and techniques which have been used to establish ROS. It then presents a comparative analysis of the results obtained using the different techniques. Inasmuch as the determination of in-situ oil saturation is directly dependent upon the in-situ value for porosity, it is required that the pore volume as a fraction of the reservoir rock be determined before the residual oil equation can be solved. Because of this, much of the study necessarily was concerned with measurement of porosity of the unconsolidated sand. The method finally used to obtain a very good core recovery in this highly unconsolidated sand is described. Present oil saturation and oil content of the HX/sub a/ sand in the Pilot is now believed to be better defined. This conclusion is supported by results obtained for electrical log analysis, analysis of full sized native state cores run under stress conditions, plug core analysis under stressed conditions and a Single-Well Tracer Survey. 15 references, 18 figures, 16 tables.

Staub, H.L.

1983-10-01T23:59:59.000Z

340

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The microstructure of the North American oil market  

Science Journals Connector (OSTI)

Abstract Recent developments in production of oil and natural gas from the tight sand and shale rock formations (primarily hydraulic fracturing and horizontal drilling) have a profound impact on the North American energy markets. The paper reviews recent crude oil production trends and their impact on the price relationships across different geographical locations in the US and Canada. Price disparity between different market hubs is attributed to the collision between growing volumetric flows of crude oil (as well as changing quality mix of produced crudes) and rigidity of the existing midstream and refining infrastructure. We continue with a discussion of how the North American oil industry adjusts to new disruptive technologies in exploration and production of hydrocarbons.

Vincent Kaminski

2014-01-01T23:59:59.000Z

342

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

343

The following letter was sent on 7 June 2006 to Mr. Laurent Le Pierrs of the Chronicle-Herald in response to his article "Can Canada Wing its way to energy superpowerdom?",  

E-Print Network [OSTI]

'm aware of in the whole of Europe going on, on how to better extract oil from the oil sands or on gas hydrates." This is an absurd statement ­ there isn't any work taking place on how to extract oil from the tar sands in Europe for the simple reason that there aren't any commercially viable tar sands deposits

Hughes, Larry

344

Review of flow rate estimates of the Deepwater Horizon oil spill  

Science Journals Connector (OSTI)

...with some of the gas reacting rapidly...to form methane hydrate. Response workers...at which oil and gas can be produced from the sands penetrated by BP's...added to a fluid/gas Jet features: turbulent...vortices, and hydrate crystals Size of...

Marcia K. McNutt; Rich Camilli; Timothy J. Crone; George D. Guthrie; Paul A. Hsieh; Thomas B. Ryerson; Omer Savas; Frank Shaffer

2012-01-01T23:59:59.000Z

345

MarcoIslandFlorida.com Gulf oil spill news: BP successfully cuts pipe  

E-Print Network [OSTI]

the oil. They were slowed by thunderstorms and wind before the weather cleared in the afternoon and white- sand beaches that are a haven for wildlife and a major tourist destination dubbed the Redneck director for Escambia County, which includes Pensacola. The effect on wildlife has grown, too. The U

Belogay, Eugene A.

346

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of US Navy jet fuel (JP-5) has been related to the amounts of large n-alkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how the n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30, and 32 ppM in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-01-01T23:59:59.000Z

347

Pyrolysis of shale oil vacuum distillate fractions  

SciTech Connect (OSTI)

The freezing point of U.S. Navy jet fuel (JP-5) has been related to the amounts of large nalkanes present in the fuel. This behavior applies to jet fuels derived from alternate fossil fuel resources, such as shale oil, coal, and tar sands, as well as those derived from petroleum. In general, jet fuels from shale oil have the highest and those from coal the lowest n-alkane content. The origin of these n-alkanes in the amounts observed, especially in shale-derived fuels, is not readily explained on the basis of literature information. Studies of the processes, particularly the ones involving thermal stress, used to produce these fuels are needed to define how th n-alkanes form from larger molecules. The information developed will significantly contribute to the selection of processes and refining techniques for future fuel production from shale oil. Carbon-13 nmr studies indicate that oil shale rock contains many long unbranched straight chain hydrocarbon groups. The shale oil derived from the rock also gives indication of considerable straight chain material with large peaks at 14, 23, 30 and 32 ppm in the C-13 nmr spectrum. Previous pyrolysis studies stressed fractions of shale crude oil residua, measured the yields of JP-5, and determined the content of potential n-alkanes in the JP-5 distillation range (4). In this work, a shale crude oil vacuum distillate (Paraho) was separated into three chemical fractions. The fractions were then subjected to nmr analysis to estimate the potential for n-alkane production and to pyrolysis studies to determine an experimental n-alkane yield.

Hazlett, R.N.; Beal, E.

1983-02-01T23:59:59.000Z

348

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Sand Dunes Hot Spring Aquaculture Low Temperature Geothermal Facility Facility Sand Dunes Hot Spring Sector Geothermal energy Type Aquaculture Location Hooper, Colorado Coordinates 37.7427775°, -105.8752987° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

349

RFC Sand Creek Development LLC | Open Energy Information  

Open Energy Info (EERE)

RFC Sand Creek Development LLC RFC Sand Creek Development LLC Jump to: navigation, search Name RFC Sand Creek Development LLC Place Aurora, Colorado Zip 80014 Product Subsidiary of Republic Financial Corporation set up to invest in Sand Creek Energy LLC, a planned gas to liquid facility. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

A Typology of Foredune Textures: Sand Patches and Climate Controls  

E-Print Network [OSTI]

Foredunes are formed and developed in association with vegetation. A bare sand area has been viewed as a measure of dune mobility or activity and researched in association with climate controls: particularly wind power, annual mean precipitation...

Ryu, Wansang

2012-12-10T23:59:59.000Z

351

Experiments on Hydrocarbon Gas Hydrates in Unconsolidated Sand  

Science Journals Connector (OSTI)

Experiments were carried out to observe the formation and decomposition of hydrocarbon gas hydrates in an unconsolidated sand pack 4.4 cm in diameter and ... 43 bars and 5 to 10C; gas used was 90% methane and 10...

P. E. Baker

1974-01-01T23:59:59.000Z

352

Western tight gas sands advanced logging workshop proceedings  

SciTech Connect (OSTI)

An advanced logging research program is one major aspect of the Western Tight Sands Program. Purpose of this workshop is to help BETC define critical logging needs for tight gas sands and to allow free interchange of ideas on all aspects of the current logging research program. Sixteen papers and abstracts are included together with discussions. Separate abstracts have been prepared for the 12 papers. (DLC)

Jennings, J B; Carroll, Jr, H B [eds.

1982-04-01T23:59:59.000Z

353

The effect of temperature on relative permeability of unconsolidated sand  

E-Print Network [OSTI]

THE EFFECT OF TEMPERATURE ON RELATIVE PERMEABILITY OF UNCONSOLIDATED SAND A Thesis By SIMON YSRAEL Submitted to the Graduate College of the Texas A%M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE.... Summary of Water Flood at 150 F VII. Summary of Water Flood at 293 F 48 49 50 ABSTRACT The purpose of this work was to investigate the effect of temperature on relative permeability of unconsolidated sand. The present work was performed...

Ysrael, Simon

2012-06-07T23:59:59.000Z

354

Creating and maintaining a gas cap in tar sands formations  

DOE Patents [OSTI]

Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

2010-03-16T23:59:59.000Z

355

Donoghue et al.1 MODEL FOR IDENTIFYING AND CHARACTERIZING OFFSHORE SAND  

E-Print Network [OSTI]

Donoghue et al.1 MODEL FOR IDENTIFYING AND CHARACTERIZING OFFSHORE SAND SOURCES USING of offshore sand bodies. Such sand bodies might be suitable as borrow sand for renourishment projects, an interpretation of the regional patterns in offshore sediment characteristics, and a knowledge of the regional sea

Donoghue, Joseph

356

Phase behavior of methane hydrate in silica sand  

Science Journals Connector (OSTI)

Abstract Two kinds of silica sand powder with different particle size were used to investigate the phase behavior of methane hydrate bearing sediment. In coarse-grained silica sand, the measured temperature and pressure range was (281.1 to 284.2)K and (5.9 to 7.8)MPa, respectively. In fine-grained silica sand, the measured temperature and pressure range was (281.5 to 289.5)K and (7.3 to 16.0)MPa, respectively. The results show that the effect of coarse-grained silica sand on methane hydrate phase equilibrium can be ignored; however, the effect of fine-grained silica sand on methane hydrate phase equilibrium is significant, which is attributed to the depression of water activity caused by the hydrophilicity and negatively charged characteristic of silica particle as well as the pore capillary pressure. Besides, the analysis of experimental results using the GibbsThomson equation shows that methane hydrate phase equilibrium is related to the pore size distribution of silica sand. Consequently, for the correct application of phase equilibrium data of hydrate bearing sediment, the geological condition and engineering requirement should be taken into consideration in gas production, resource evaluation, etc.

Shi-Cai Sun; Chang-Ling Liu; Yu-Guang Ye; Yu-Feng Liu

2014-01-01T23:59:59.000Z

357

Remote control of off-shore oil field production equipment  

E-Print Network [OSTI]

REMOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Sissom 1949 Approve as to style and on n by Cha1rman of omm1ttee REMOTE CONTROL OF OFFSHORE OIL FIELD PRODUCTION EQUIPMENT A Thesis Alton W. Oissom 1949 REMOTE...-Carrier Channel 26 PZNOTE CONTROL OF OFF-SHORE OIL FIELD PRODUCTION K, 'UIPMENT I GENERAL IiPOPPUi TION Since the beginning of the exploitation of the under-sea oil deposits in the Gulf' of qexico, most, of the territory off the shores of Texas and Louisiana...

Sissom, Alton Wayne

2012-06-07T23:59:59.000Z

358

Remediation of Trichloroethylene-Contaminated Soils by STAR Technology using Vegetable Oil Smoldering  

Science Journals Connector (OSTI)

Abstract Self-sustaining Treatment for Active Remediation (STAR) is an innovative soil remediation approach based on smoldering combustion that has been demonstrated to effectively destroy complex hydrocarbon nonaqueous phase liquids (NAPLs) with minimal energy input. This is the first study to explore the smoldering remediation of sand contaminated by a volatile NAPL (Trichloroethylene, TCE) and the first to consider utilizing vegetable oil as supplemental fuel for STAR. Thirty laboratory-scale experiments were conducted to evaluate the relationship between key outcomes (TCE destruction, rate of remediation) to initial conditions (vegetable oil type, oil:TCE mass ratio, neat versus emulsified oils). Several vegetable oils and emulsified vegetable oil formulations were shown to support remediation of TCE via self-sustaining smoldering. A minimum concentration of 14,000mg/kg canola oil was found to treat sand exhibiting up to 80,000mg/kg TCE. On average, 75% of the TCE mass was removed due to volatilization. This proof-of-concept study suggests that injection and smoldering of vegetable oil may provide a new alternative for driving volatile contaminants to traditional vapour extraction systems without supplying substantial external energy.

Madiha Salman; Jason I. Gerhard; David W. Major; Paolo Pironi; Rory Hadden

2014-01-01T23:59:59.000Z

359

NETL: Oil & Natural Gas Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 Chemical Methods for Ugnu Viscous Oils Last Reviewed 6/27/2012 DE-NT0006556 Goal The objective of this project is to develop improved chemical oil recovery options for the Ugnu reservoir overlying the Milne Point unit in North Slope, Alaska. Performers University of Texas, Austin, TX 78712-1160 Background The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in the Ugnu, West Sak, and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir overlying Milne Point varies from 200 cP to 10,000 cP and the depth is about 3500 ft. The same reservoir extends to the west overlying the Kuparuk River Unit and on to the Beaufort Sea. The depth of the reservoir decreases and the viscosity

360

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

SciTech Connect (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Depositional environment of upper cretaceous Lewis sandstones, Sand Wash Basin, Colorado  

E-Print Network [OSTI]

environments. Lewis sandstones are fine grained (0. 13 to 0. 15 mm) at both North Craig and L1ttle Buck Mountain field areas. Average sandstone composi- tion is 41% monocrystalline quartz, 15%%u feldspar, ZDX rock fragments, 8'A other m1nerals, and 16K... succeeded by r1ppled C sandstone and black E shale. Note flame structure of E shale in overlying sandstone; 3486. 5 ft. B. Finely r1ppled C sandstone; 3495. 0 ft. C, Shale with thin ripple lenses and laminae of f1ne sandstone; 3514. 0 ft. D. Massive A...

Reinarts, Mary Susan

2012-06-07T23:59:59.000Z

362

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

363

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

364

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

365

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

366

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

367

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. OPECs Optimal Crude Oil Price, Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

368

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, Chinas demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

369

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand, Energy Journal 23(1),2006. Chinas Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

370

DOE/EA-1584: Final Environmental Assessment for Sand Point Wind Installation Project, Sand Point, Alaska (September 2009)  

Broader source: Energy.gov (indexed) [DOE]

Sand Point Wind Installation Project Sand Point, Alaska DOE/EA -1584 U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401-3305 September 2009 TABLE OF CONTENTS Page 1.0 INTRODUCTION .............................................................................................................. 1 1.1 NATIONAL ENVIRONMENTAL POLICY ACT AND RELATED PROCEDURES....................................................................................................... 1 1.2 BACKGROUND .................................................................................................... 1 1.3 PURPOSE AND NEED.......................................................................................... 2 1.4 PUBLIC SCOPING AND CONSULTATION.......................................................

371

Marine gas hydrates in thin sand layers that soak up microbial methane  

Science Journals Connector (OSTI)

At Site U1325 (IODP Exp. 311, Cascadia margin), gas hydrates occupy 2060% of pore space in thin sand layers (hydrate. This is a common occurrence in gas hydrate-bearing marine sequences, and it has been related to the inhibition of hydrate formation in the small pores of fine-grained sediments. This paper applies a mass balance model to gas hydrate formation in a stack of alternating fine- and coarse-grained sediment layers. The only source of methane considered is in situ microbial conversion of a small amount of organic carbon (gas hydrates in the fine-grained layers. Methane generated in these layers is transported by diffusion into the coarse-grained layers where it forms concentrated gas hydrate deposits. The vertical distribution and amount of gas hydrate observed at Site U1325 can be explained by in situ microbial methane generation, and a deep methane source is not necessary.

Alberto Malinverno

2010-01-01T23:59:59.000Z

372

Microbial enhanced oil recovery and wettability research program  

SciTech Connect (OSTI)

This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

Thomas, C.P.; Bala, G.A.; Duvall, M.L.

1991-07-01T23:59:59.000Z

373

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007. comparison, Mexico used 6.6 Chinese oil consumption17. Oil production from the North Sea, Mexicos Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

374

Desulfurization of heavy oil  

Science Journals Connector (OSTI)

Strategies for heavy oil desulfurization were evaluated by reviewing desulfurization literature and critically assessing the viability of the various methods for heavy oil. The desulfurization methods includin...

Rashad Javadli; Arno de Klerk

2012-03-01T23:59:59.000Z

375

China's Global Oil Strategy  

E-Print Network [OSTI]

Chinas domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, Chinas demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

376

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

377

China's Global Oil Strategy  

E-Print Network [OSTI]

Analysts agree that the Persian Gulf region will continue tos oil imports. 17 The Persian Gulf region is particularlyaccess to oil from the Persian Gulf because of conflict

Thomas, Bryan G

2009-01-01T23:59:59.000Z

378

oil1990.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

379

Crude Oil Domestic Production  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net...

380

Effect of operating conditions on wax deposition in a laboratory flow loop characterized with DSC technique  

Science Journals Connector (OSTI)

Crude oil is a mixture of a diverse group of paraffins, aromatics, naphthenes, resins, asphaltenes, etc. Among these groups of hydrocarbons, heavy paraffinic hydrocarbons (waxes) can cause wax deposition on the pipeline

Wenda Wang; Qiyu Huang; Changhui Wang; Si Li

2014-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Applicability of Total Acid Number Analysis to Heavy Oils and Bitumens  

Science Journals Connector (OSTI)

The standard method employed for TAN, ASTM D664, was not even developed for crude oils, let alone heavy oil and bitumens. ... Funding from the following CCQTA TAN II project members is acknowledged:? Alberta Research Council, Inc., BP, Baker Petrolite, ConocoPhillips Canada, Enbridge Pipelines, Inc., ENCANA Corp., GE Betz, Husky Energy, Japan Canada Oil Sands Ltd., Marathon Petroleum Co., Maxxam Analytics, Inc., Nalco Canada, Inc., National Centre for Upgrading Technology, Petro-Canada, Shell Pipelines US, Suncor Energy, Inc., Terasen Pipelines, and Total E&P Canada Ltd. ...

Bryan Fuhr; Branko Banjac; Tim Blackmore; Parviz Rahimi

2007-04-17T23:59:59.000Z

382

An assessment of the potential for coal/residual oil coprocessing  

SciTech Connect (OSTI)

Among the promising new techniques to produce liquid hydrocarbon fuels from coal is coal/petroleum coprocessing based upon the use of heavy oil, tar sand bitumen and petroleum residua as ''solvents'' for the conversion of coal. Coprocessing is the simultaneous hydrogenation of coal and heavy oil fractions in specially designed reactors with coal contents by weight ranging from as low as 1% to potentially as high as 50-60% depending upon the technology employed. The results of a study on the potential for coal/residual oil coprocessing in the United States are addressed in this paper.

Huber, D.A.; Lee, Q.; Thomas, R.L.; Frye, K.; Rudins, G.

1986-09-01T23:59:59.000Z

383

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

384

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

385

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

386

Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production  

SciTech Connect (OSTI)

Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

2005-10-01T23:59:59.000Z

387

The Experimental Study on the Wax-Deposit Law in High-Pour-Point Crude Oi1 Transportation  

Science Journals Connector (OSTI)

High pour point properties of crude oil are generally due to the high wax content, so the study of the laws and the characteristics of wax deposition are significant for taking steps to save energy and transport safely. For the wax deposition of high ... Keywords: pipeline transportation, high-pour-point waxy crude, wax deposition law, DSC, experimental study

Wang Zhihua; Si Minglin; Wang Jinxiu; Li Jungang

2009-10-01T23:59:59.000Z

388

Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report  

SciTech Connect (OSTI)

Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

Adams, S.S.; Smith, R.B.

1981-01-01T23:59:59.000Z

389

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

390

Oil spill still motivates Santa Barbara to be green | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green Oil spill still motivates Santa Barbara to be green May 14, 2010 - 11:58am Addthis The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan The massive offshore oil spill in Santa Barbara in 1969 galvanized the environmental movement, locally and perhaps nationally. | Photo courtesy Bob Duncan Joshua DeLung Many residents of Santa Barbara County in California still remember the 1969 oil spill there, when an oil drill six miles off the county's coast blew out, spilling an estimated 8,000 to 10,000 barrels of crude oil. The resulting oil slick covered 800 square miles of ocean, killing thousands of birds and marine animals and depositing tar on beaches throughout the

391

Ships After Oil  

Science Journals Connector (OSTI)

Ships After Oil ... Special self-propelled tenders planned for offshore drilling operations in Gulf ...

1956-07-02T23:59:59.000Z

392

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

393

FE Oil and Natural Gas News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 23, 2010 June 23, 2010 Successful Oil and Gas Technology Transfer Program Extended to 2015 The Stripper Well Consortium - a program that has successfully provided and transferred technological advances to small, independent oil and gas operators over the past nine years - has been extended to 2015 by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense energy resource, occurs at high saturations within reservoir-quality sands in the Gulf of Mexico, according to reports released by the Office of Fossil Energy's National Energy Technology Laboratory. March 1, 2010 Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage

394

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

395

Oil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

396

Depositional environment and reservoir morphology of Spraberry sandstones, Parks field, Midland County, Texas  

E-Print Network [OSTI]

of equivalent age on the shelf and shelf-margin are largely carbonates. Estimates of oil in place in the Spraberry sandstone range from 8 to 12 billion barrels. However, because of the low permeability and formation pressure associated with the formation..., only 5 percent of this oil has been produced to date. Stratigraphic and structural traps in Spraberry sandstones have been producing oil and gas since the late 1940's. Early field development was without regard to the depositional environment...

Yale, Mark William

2012-06-07T23:59:59.000Z

397

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network [OSTI]

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

398

Investigation of guided waves propagation in pipe buried in sand  

SciTech Connect (OSTI)

The inspection of pipelines by guided wave testing is a well-established method for the detection of corrosion defects in pipelines, and is currently used routinely in a variety of industries, e.g. petrochemical and energy. When the method is applied to pipes buried in soil, test ranges tend to be significantly compromised because of attenuation of the waves caused by energy radiating into the soil. Moreover, the variability of soil conditions dictates different attenuation characteristics, which in-turn results in different, unpredictable, test ranges. We investigate experimentally the propagation and attenuation characteristics of guided waves in pipes buried in fine sand using a well characterized full scale experimental apparatus. The apparatus consists of an 8 inch-diameter, 5.6-meters long steel pipe embedded over 3 meters of its length in a rectangular container filled with fine sand, and an air-bladder for the application of overburden pressure. Longitudinal and torsional guided waves are excited in the pipe and recorded using a transducer ring (Guided Ultrasonics Ltd). Acoustic properties of the sand are measured independently in-situ and used to make model predictions of wave behavior in the buried pipe. We present the methodology and the systematic measurements of the guided waves under a range of conditions, including loose and compacted sand. It is found that the application of overburden pressure modifies the compaction of the sand and increases the attenuation, and that the measurement of the acoustic properties of sand allows model prediction of the attenuation of guided waves in buried pipes with a high level of confidence.

Leinov, Eli; Cawley, Peter; Lowe, Michael J.S. [NDE Group, Department of Mechanical Engineering, Imperial College London, London SW7 2AZ (United Kingdom)

2014-02-18T23:59:59.000Z

399

Chapter 7 - General Regularities in Oil and Gas Distribution  

Science Journals Connector (OSTI)

Publisher Summary The chapter provides a detailed geological description of the South Caspian Sea area, focusing on the major characteristics and patterns found in the distribution of oil and gas producing areas of the region. The chapter has divided the South Caspian Sea into three major areas: the Azerbaijan portion, the Turkmenistan portion, and the areas adjacent to the South Caspian basin. The chapter analyzes these areas, focusing on various topics related to the geological aspect of oil and gas production such as issues relating to depositional environments, oil and gas traps, lithology and properties of reservoir rocks, composition and properties of argillaceous rocks, effects of pressure and temperature, effects of abnormally high formation pressures, distribution of oil reserves, oil composition and its properties, properties of natural gas, the formation waters related properties, oil and gas migration and accumulation, and the potential of very deep oil and gas bearing deposits. The chapter also highlights the areas worthy of future exploration to find oil and gas reserves.

Leonid A. Buryakovsky; George V. Chilingar; Fred Aminzadeh

2001-01-01T23:59:59.000Z

400

Completion methods in thick, multilayered tight gas sands  

E-Print Network [OSTI]

sands have been proposed in the petroleum literature. Kuuskraa, V.A. and Haas, M.R. proposed that tight gas is merely an arbitrary delineation of a natural geologic continuity in the permeability of a reservoir rock. The dominant characteristic...-situ permeability as low as 0.001 mD6. 10 Misra, R. proposed that tight gas sands are reservoirs that have low permeability (< 0.1 mD) and which cannot be produced at economic flow rates or do not produce economic volumes without the assistance from...

Ogueri, Obinna Stavely

2008-10-10T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Completion methods in thick, multilayered tight gas sands  

E-Print Network [OSTI]

sands have been proposed in the petroleum literature. Kuuskraa, V.A. and Haas, M.R. proposed that ?tight gas is merely an arbitrary delineation of a natural geologic continuity in the permeability of a reservoir rock. The dominant characteristic...-situ permeability as low as 0.001 mD?6. 10 Misra, R. proposed that ?tight gas sands are reservoirs that have low permeability (< 0.1 mD) and which cannot be produced at economic flow rates or do not produce economic volumes without the assistance from...

Ogueri, Obinna Stavely

2009-05-15T23:59:59.000Z

402

The weathering of oil after the Deepwater?Horizon oil spill: insights from the chemical composition of the oil from the sea surface, salt marshes and sediments  

Science Journals Connector (OSTI)

The oil released during the Deepwater Horizon (DWH) oil spill may have both short-?and long-time impacts on the northern Gulf of Mexico ecosystems. An understanding of how the composition and concentration of the oil are altered by weathering, including chemical, physical and biological processes, is needed to evaluate the oil toxicity and impact on the ecosystem in the northern Gulf of Mexico. This study examined petroleum hydrocarbons in oil mousse collected from the sea surface and salt marshes, and in oil deposited in sediments adjacent to the wellhead after the DWH oil spill. Oil mousses were collected at two stations (OSS and CT, located 130 and 85?km away from the wellhead, respectively) in May 2010, and two sediment samples from stations SG and SC, within 6 km of the wellhead, in May 2011. We also collected oil mousse from salt marshes at Marsh Point (MP), Mississippi, 186?km away from the wellhead in July 2010. In these samples, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, BTEX (collective name of benzene, toluene, ethylbenzene and p-, m-, and o-xylenes), C3-benzenes and trace metals were measured to examine how the oil was altered chemically. The chemical analysis indicates that the oil mousses underwent different degrees of weathering with the pattern of OSS?DWH oil spill, as supported by the presence of short-chained n-alkanes (C10?C 15), BTEX and C 3-benzenes. The weathering of oil in sediment may result from biological degradation and dissolution, evidenced by the preferential loss of mid-chained n-alkanes C16?C 27, lower ratios of n-C 17/Pr and n-C 18/Ph , and preferential loss of PAHs relative to alkylated PAHs.

Zhanfei Liu; Jiqing Liu; Qingzhi Zhu; Wei Wu

2012-01-01T23:59:59.000Z

403

Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996  

SciTech Connect (OSTI)

This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

1997-08-01T23:59:59.000Z

404

Microsoft Word - EXT-11-23239_IntegofOilSands&HTGR_Final_102511...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of bitumen. 2. Reduce bitumen viscosity and control solids and water using a minimal upgrading approach. Significant research is underway on simple, small-scale processes. 7...

405

Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...upgraded by using heat, pressure...polycyclic aromatic hydrocarbons+ dibenzothiophene...volatile and combustion-derived PAC [i...volatilized by heat or particulates produced by combustion. The dominance...perdeuterated hydrocarbon surrogate standards...and stored in heat-sealed Ziploc...

Erin N. Kelly; Jeffrey W. Short; David W. Schindler; Peter V. Hodson; Mingsheng Ma; Alvin K. Kwan; Barbra L. Fortin

2009-01-01T23:59:59.000Z

406

Co-gasification of Biomass with Coal and Oil Sand Coke in a Drop Tube Furnace  

Science Journals Connector (OSTI)

From this work, a synergistic effect was observed for blends of coal with petcoke and an increase in the production of H2 and CO was obtained. ... Finally, blending biomass with coal?petcoke blends did not produce any significant change in H2 production, although slight variations were observed in the production of CO and CO2. ... In addn., co-gasification tests of binary blends of a bituminous coal with different types of biomass (up to 10%) and petroleum coke (up to 60%), as well as ternary blends of coal-petcoke-biomass (45-45-10%) were conducted to study the effect of blending on gas prodn. ...

Chen Gao; Farshid Vejahati; Hasan Katalambula; Rajender Gupta

2009-10-13T23:59:59.000Z

407

RESPONSES OF BENTHIC MICROORGANISMS (THECAMOEBIANS) TO OIL SANDS PROCESS-AFFECTED MATERIALS; PROVIDING  

E-Print Network [OSTI]

are available to determine the rates of remediation in produced ecosystems. A micropaleoecological environmental of using it as a predictor of the path of remediation that will produce sustainable ecosystems and properties relative to natural non- OSPM impacted waters. In general, freshly produced OSPW will stress biota

Patterson, Timothy

408

Oil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries  

Science Journals Connector (OSTI)

...and viscous hydrocarbon, that is recovered...upgraded by using heat, pressure...12). RAMP data are not publicly...polycyclic aromatic hydrocarbons+ dibenzothiophene...volatile and combustion-derived PAC...and geologic data, and calculate...perdeuterated hydrocarbon surrogate standards...and stored in heat-sealed Ziploc...

Erin N. Kelly; Jeffrey W. Short; David W. Schindler; Peter V. Hodson; Mingsheng Ma; Alvin K. Kwan; Barbra L. Fortin

2009-01-01T23:59:59.000Z

409

Co-gasification of biomass with coal and oil sands coke in a drop tube furnace.  

E-Print Network [OSTI]

??Chars were obtained from individual fuels and blends with different blend ratios of coal, coke and biomass in Drop Tube Furnace at different temperatures. Based (more)

Gao, Chen

2010-01-01T23:59:59.000Z

410

The displacement of oil from unconsolidated sands by high temperature fluid injection  

E-Print Network [OSTI]

and Langenheim solution for constant heat injection rate in a radial system During the injection of bot fluid in o the reservoir through the wellbore, thexe is transfer of heat between fluids and the earth due to difference between fluid and 8 geothermal...

Hossain, A. K. M. Sakhawat

2012-06-07T23:59:59.000Z

411

Hot alkaline treatment to stimulate and consolidate the heavy oil Bachaquero-01 sand  

E-Print Network [OSTI]

from well LL-231 from Bachaquero-01 reservoir. The sample was placed in a vertical 18 in. long aluminum cylindrical cell with an ID of 1.5 in. The top half of the cell was thermally insulated and the bottom half was cooled. The alkaline treatment (pH 11...

Valera Villarroel, Cesar Amabilis

2005-02-17T23:59:59.000Z

412

Isolation and Characterization of Methanothermobacter crinale sp. nov., a Novel Hydrogenotrophic Methanogen from the Shengli Oil Field  

Science Journals Connector (OSTI)

...17393T) was isolated from oil sands in the Haoxian central facility...sediments that contain methane hydrates, and description of Methanoculleus...in a high temperature natural gas field in Japan. Extremophiles...G. E . 1983. Interpreting gas kinetics of batch cultures...

Lei Cheng; Lirong Dai; Xia Li; Hui Zhang; Yahai Lu

2011-06-24T23:59:59.000Z

413

Horizontal low-void retorting of eastern and western oil shale  

SciTech Connect (OSTI)

Horizontal in situ retorting processes have been developed to recover oil from thin, shallow oil shale deposits. To date the most successful field tests have been conducted in Green River oil shale located in Utah. Consideration is being given to applying this technology to the New Albany oil shales in Indiana. Western Research Institute (WRI) conducted two horizontal in situ oil shale experiments using eastern oil shale and the results are compared with results obtained from a similar experiment using Green River oil shale. The objectives of the three experiments were to simulate the horizontal retorting process and determine oil yield, retorting zone profiles and product characteristics using alternative operating conditions for eastern and western oil shales. The tests proved that horizontal retorting could be simulated in the laboratory. However, air bypass problems occurred in the experiments, which probably reduced oil recovery compared with recovery from field tests. During the eastern oil shale tests plugging was encountered in the gas recovery system because of the production of a solid material containing sulfur compounds. This plugging could be a potential problem for future laboratory and field experimentation. The oil produced from eastern oil shale has different properties from western shale oil. The oil is highly aromatic and when hydrogenated may yield a prototype high density jet fuel. 10 refs., 8 figs., 11 tabs.

Fahy, L.J.

1986-02-01T23:59:59.000Z

414

NETL: Oil & Natural Gas Technologies Reference Shelf - Presentation on  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Comparing the Depositional Characteristics of the Oil-Shale-Rich Mahogany and R-6 Zones of the Uinta and Piceance Creek Basins Authors: Danielle Lehle and Michael D. Vanden Berg, Utah Geological Survey. Venue: Economic Geology of the Rocky Mountain Region session, May 11, 2009, Geological Society of America-Rocky Mountain Section annual meeting, Orem, Utah, May 11-13, 2009. http://www.geosociety.org/sectdiv/rockymtn/09mtg/index.htm [external site] Abstract: The upper Green River formation’s oil shale deposits located within the Uinta Basin of Utah and the Piceance Creek Basin of Colorado contain remarkably similar stratigraphic sequences despite being separated by the Douglas Creek arch. Individual horizons, as well as individual beds, can be traced for hundreds of miles within and between the two basins. However, changes in the topography-controlled runoff patterns between the basins, as well as changes in localized climate conditions throughout upper Green River time, created significant differences between basin-specific deposits. These variations affected the richness and thickness of each oil shale zone, resulting in basin-specific preferred extraction techniques (i.e., in-situ in Colorado and mining/retort in Utah). Colorado’s oil-shale resource was mapped and quantified by the USGS in the late 1970s, whereas this study is the first attempt at quantifying Utah’s overall resource by specific oil shale horizon. This presentation focuses on the Mahogany zone (MZ) and the stratigraphically lower R-6 zone; subsequent work will define other important horizons.

415

NETL: Oil & Natural Gas Projects: Next Generation Surfactants for Improved  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of the 401 billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant EOR has seen an increase in activity in recent years due to increased energy demand and higher oil prices. In

416

Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties  

SciTech Connect (OSTI)

Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

Turner, J.P.

1991-01-01T23:59:59.000Z

417

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

418

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

419

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network [OSTI]

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

420

Economics of Peak Oil  

Science Journals Connector (OSTI)

Abstract Peak oil refers to the future decline in world production of crude oil and the accompanying potentially calamitous effects. The peak oil literature typically rejects economic analysis. This article argues that economic analysis is indeed appropriate for analyzing oil scarcity because standard economic models can replicate the observed peaks in oil production. Moreover, the emphasis on peak oil is misplaced as peaking is not a good indicator of scarcity, peak oil techniques are overly simplistic, the catastrophes predicted by the peak oil literature are unlikely, and the literature does not contribute to correcting identified market failures. Efficiency of oil markets could be improved by instead focusing on remedying market failures such as excessive private discount rates, environmental externalities, market power, insufficient innovation incentives, incomplete futures markets, and insecure property rights.

S.P. Holland

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations  

E-Print Network [OSTI]

voxel contained sand, gas, hydrate (under proper conditions)of Gas Hydrate Formation in a Bed of Silica Sand Particles.Gas Hydrate Formation in a Variable Volume Bed of Silica Sand

Rees, E.V.L.

2012-01-01T23:59:59.000Z

422

X-ray computed-tomography observations of water flow through anisotropic methane hydrate-bearing sand  

E-Print Network [OSTI]

conductivity of gas hydrate-bearing sand. J. Geophys. Res.the water and gas flow through hydrate-bearing sands.The gas from hydrate dissociation in the fine sand appears

Seol, Yongkoo

2010-01-01T23:59:59.000Z

423

Depositional environment and reservoir morphology of the Upper Wilcox sandstones, Katy gas field, Waller County, Texas  

E-Print Network [OSTI]

" Wilcox oil and gas fields Page Structure map on the top of the Wilcox Group, Katy gas field, Wailer County, Texas. Contour interval is 100 feet. Nap shows location of wells in the field which penetrate the'IJpper Wilcox" section. Cores are from... Sedimentary structures of the Upper Wilcox sandstones in Humble W-35, Katy gas field, Mailer County, Texas 18 Shale character, deformational features, and sedimentary structures of the Upper Wilcox sand- stones in Humble W-35, Katy gas field, Mailer...

DePaul, Gilbert John

2012-06-07T23:59:59.000Z

424

Approaches and Perspectives About Biodiesel and Oil Production Using Algae in Mexico  

Science Journals Connector (OSTI)

Oil extraction in Mxico started during the Aztec kingdom with the exploitation of the ground deposits better known as chapopoteras. It has several uses such as for religious ceremonies, cleaning teeth, and ...

Rafael Riosmena Rodriguez; Bertha Olivia Arredondo-Vega

2012-01-01T23:59:59.000Z

425

A conversion coating on carbon steel with good anti-wax performance in crude oil  

Science Journals Connector (OSTI)

Abstract Wax deposition on pipeline from crude oil is a prevalent problem that petroleum industry has always been suffered. In this paper, a conversion coating on carbon steel with good anti-wax performance was constructed to solve this problem through a simple coating and heat treatment process. The conversion coating is composed of pyrophosphate with a flower-like microstructure. After wax deposition test, the conversion coating has low wax deposition weight which is 2.9mg/cm2 and high wax deposition reduction rate (80% in average). The conversion coating has a special wettability which is superoleophobic with low oil-adhesion in water (oil contact angle is 162 and rolling angle is 7) and hydrophilic in oil. The anti-wax mechanism is discussed and it may be attributed to the polar hydrophilic component and micro-structure of the conversion coating.

Zhiwei Wang; Liqun Zhu; Huicong Liu; Weiping Li

2013-01-01T23:59:59.000Z

426

Flow behaviour of water-in-oil emulsions stabilized by wax crystals.  

E-Print Network [OSTI]

??The large temperature gradients experienced by crude oil emulsions in pipelines found in colder environments can lead to the precipitation, deposition and build-up of wax-like (more)

Aafaqi, Roomana

2009-01-01T23:59:59.000Z

427

The use of oil shale ash in the production of biodiesel from waste vegetable oil  

Science Journals Connector (OSTI)

Oil shale ash obtained from combustion of local oil shale deposits was used in this study as a heterogeneous catalyst to produce biodiesel from waste vegetable oil (WVO). Two alcohols with high and low boiling points ethanol and ethylene glycol were used for oil shale catalytic esterification of the WVO. Results show that the esterification of wastes of oil utilizing wastes of oil shale combustion can be used to produce biodiesel. Additionally it was found that in order to make the oil shale ash an effective catalyst for transesterification high reaction temperature is required. Therefore the results have indicated that high biodiesel yield is obtained when using ethylene glycol at high temperature while the yield is low when solid catalytic reaction is performed using ethanol at low temperature. The maximum obtained yield was 75?wt. % utilizing ethylene glycol at 150?C whereas this yield decreased to 69.9?wt. % as the operating temperature was reduced to 100?C. On the other hand when using ethanol the yield of biodiesel was relatively low (11?wt. % at 60?C and 9?wt. % at 80?C).

A. Al-Otoom; M. Allawzi; A. Ajlouni; F. Abu-Alrub; M. Kandah

2012-01-01T23:59:59.000Z

428

The development of a wax layer on the interior wall of a circular pipe transporting heated oil  

Science Journals Connector (OSTI)

......of oil in long subsea pipelines is a common occurrence...formation of a paraffinic wax deposit on the inside...Striegler, Studies of wax deposition in the trans Alaska pipeline, Journal of Petroleum...review of the modeling of wax deposition mechanisms......

D. J. Needham; B. T. Johansson; T. Reeve

2014-02-01T23:59:59.000Z

429

CHAPTER 45 - STIMULATING RECOVERY FROM HEAVY OIL RESOURCES--MID-CONTINENT AREA  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses stimulating recovery from heavy oil resources, mid-continent area. In western Missouri, eastern Kansas, and northeastern Oklahoma, heavy-oil deposits occur over an area of roughly 8,000 mi2 and extend for about 250 mi along the Kansas-Missouri border reaching a width of about 80 miles. Heavy-oil deposits are found throughout the region, although lighter oil deposits do occur. Oil saturation and viscosity vary from one reservoir to another and from one depth to another in the same well. The formations of prime interest are the Wayside, Bartlesville, and the Burgess. A research project at the Bartlesville Energy Research Center of ERDA combines modern chemical explosive fracturing techniques with heat and solvent treatment to extract the crude oil. It is found that of primary concern are the heavy-oil reservoirs, which contain low gravity crude oil that cannot be produced by conventional means and reservoirs that have no reservoir energy and consequently have produced no oil. The oil neither flows into the wellbore at an economic rate nor can it simply be pushed to the production well by the injection of water, as in waterflooding.

Larman J. Heath

1977-01-01T23:59:59.000Z

430

Effects of sand burial depth on seed germination and seedling emergence of Cirsium pitcheri  

Science Journals Connector (OSTI)

A greenhouse study was conducted to determine the effects of sand burial on seed germination and seedling emergence of Cirsium pitcheri, a threatened species along Lake Huron sand dunes. In October 1996, seeds...

Hua Chen; M.A. Maun

1999-01-01T23:59:59.000Z

431

Compaction and swelling characteristics of sand-bentonite and pumice-bentonite mixtures  

Science Journals Connector (OSTI)

...of sand-bentonite mixture backfill. Applied Clay Science , 26...of sand-bentonite mixture backfill before and after swelling deformation...Co. Pusch R. (2001) The Buffer and Backfill Handbook, Part 2: Materials and Techniques...

Z. Gkalp; M. Ba?aran; O. Uzun

432

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

433

Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins  

SciTech Connect (OSTI)

This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

1992-07-01T23:59:59.000Z

434

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford  

E-Print Network [OSTI]

Nitrate-Cancrinite Precipitation on Quartz Sand in Simulated Hanford Tank Solutions B A R R Y R . B minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began's (DOE) Hanford Site in southeast Washington since the late 1950s (1). To predict the fate

Illinois at Chicago, University of

435

Water distribution measurement in sand using sound vibration and SLDV  

E-Print Network [OSTI]

Water distribution measurement in sand using sound vibration and SLDV T. Sugimotoa , Y. Nakagawaa vibrator is used as a sound source. SLDV measures the vibration of ground surface. The propagation velocity between vibrator and measuring point is used to estimate the water distribution. Also, the soil

Boyer, Edmond

436

Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on  

E-Print Network [OSTI]

to determine how trees affect the behavior of these nutrients in soil water, both during growth and afterTree Harvest in an Experimental Sand Ecosystem: Plant Effects on Nutrient Dynamics and Solute Sciences/US Department of Agriculture, Washington State University, Pullman, Washington 99164, USA; 4 USDA

Vermont, University of

437

University of Minnesota UMore Park Sand and Gravel Resources  

E-Print Network [OSTI]

aggregate mines adjacent to and near the UMore Mining Area. An Environmental Impact Statement (EIS;UMore Park Sand and Gravel Resources Project ­ Final Scoping Decision Document University of Minnesota and Gravel Resources Project ­ Final Scoping Decision Document University of Minnesota, May 2009 Page 2

Netoff, Theoden

438

University of Minnesota UMore Park Sand and Gravel Resources  

E-Print Network [OSTI]

University of Minnesota UMore Park Sand and Gravel Resources Final Environmental Impact Statement has prepared a Final Environmental Impact Statement (EIS) for the establishment of new aggregate mines and Gravel Resources Project Final EIS ­ October, 2010 Page i Executive Summary The University of Minnesota

Netoff, Theoden

439

PUBLIC OPEN HOUSE Sand and Gravel Resources at UMore Park  

E-Print Network [OSTI]

PUBLIC OPEN HOUSE Sand and Gravel Resources at UMore Park Environmental Impact Statement (EIS Impact Statement (EIS)? A legal, full disclosure document that identifies the anticipated environmental) Process Thursday, November 6, 2008 Rosemount Community Center Rosemount, MN #12;What is an Environmental

Netoff, Theoden

440

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

442

direct_deposit_111609  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROTECT YOUR BANKING INFORMATION: PROTECT YOUR BANKING INFORMATION: DO NOT complete this form until you are ready to submit it to the Payroll Department. DIRECT DEPOSIT REQUEST Directions: 1. Provide required information neatly, legibly; 2. If Checking Account Direct Deposit, include a voided check. a. DO NOT submit a deposit slip! 3. If Savings Account Direct Deposit, include a copy of savings card. 4. Sign this form; 5. Inter-office mail it to Craft Payroll at "P238." DIRECT DEPOSITION AUTHORIZATION I hereby authorize Los Alamos National Laboratory, hereinafter called The Laboratory, to initiate credit entries and, if necessary, debit entries and adjustments for any credit entries in error to my account listed on this form. If deposit is for:

443

Feasibility of heavy oil recovery in the U.S. midcontinent (Kansas, Missouri, Oklahoma)  

SciTech Connect (OSTI)

The Midcontinent of the United States (Kansas, Missouri, Oklahoma) has three heavy oil resource areas: the carbonates of central and western Kansas, the Pennsylvanian Age consolidated sandstone reservoirs of the Tristate Heavy Oil Belt (southeastern Kansas, western Missouri, and northeast Oklahoma), and the unconsolidated or easily friable sand- stone reservoirs of south-central Oklahoma. The heavy oil resource volume of the carbonates is unknown and relatively untested because of the difficulty in producing viscous oil from low-permeability carbonates. Since the 1960s, the Tristate Heavy Oil Belt has been the site of numerous pilots and operations that tested many different techniques for oil production. The region was a proving ground for many thermal enhanced oil recovery projects (steam, cyclic steam, in situ combustion, hot solvent injection, etc.). Most of the projects produced more oil than primary production, but the geology of the formations limited significant economic oil production. The best opportunity for significant, economic heavy oil production is from the steeply dipping, unconsolidated or easily friable sandstone reservoirs of south-central Oklahoma. Several of these reservoirs are thicker, more continuous, have high permeability and can be exploited by using gravity drainage and steam to reduce oil viscosity. The Midcontinent is not anticipated to become a significant heavy oil producer even if oil prices were significantly higher than $151 barrel because of the nature of the resource and the limited refining capability in the area. Local refineries were designed to process light sweet crude and have little heavy ends processing capability to accommodate additional heavy oil.

Olsen, D.K.; Johnson, W.I. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

1995-12-31T23:59:59.000Z

444

Investigation of in-situ low-temperature oxidation as a viable sand consolidation technique  

E-Print Network [OSTI]

development phase of a major project to develop a novel sand control technique that could overcome the technical and economic limitations associated with existing methods of sand control. The novel technique, the various process-controlling parameters were optimized to yield consolidated sand with the highest possible

Abu-Khamsin, Sidqi

445

Analytical models of the effective permeability of sand-shale reservoirs  

Science Journals Connector (OSTI)

......overall properties of anisotropic composites, J...permeability of sand-shale reservoirs J. F...of statistically anisotropic materials in terms...the case of sand-shale reservoirs, it...both isotropic and anisotropic grain structures...permeability of sand-shale reservoirs with......

J. F. McCarthy

1991-05-01T23:59:59.000Z

446

Adapted by Joshua Johnson November 12, 2013 Sand Tank (1st  

E-Print Network [OSTI]

Adapted by Joshua Johnson November 12, 2013 Sand Tank (1st Grade) Lesson Plan Science Standards: Sand Tank provided by the CSM Integrated Groundwater Modeling Center Food coloring Aquifer activity and/or the Sand Tank Curriculum Guide. Lecture: 1. So you live in a city, where do you get your clean

447

ARTICLE IN PRESS Oxalate, calcium and ash intake and excretion balances in fat sand rats  

E-Print Network [OSTI]

chelates Ca2+ , reducing Ca2+ availability in food and plasma (Concon, 1988). However, fat sand rats canARTICLE IN PRESS Oxalate, calcium and ash intake and excretion balances in fat sand rats (Psammomys Fat sand rats Psammomys obesus feed exclusively on plants of the family Chenopodiaceae, which contain

Vatnick, Itzick

448

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

449

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

450

SANDIA REPORT SAND96-1198 UC-403 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

can also move due to surface tension gradients caused by a temperature gradient (Smith, 1943) and due to pressure gradients similar to oil ganglia movement in porous media...

451

Spores from Devonian Deposits  

Science Journals Connector (OSTI)

... IN a well-illustrated paper on "Spores from Devonian Deposits, Mimerdalen, Spitsbergen" (Norsk. Polarinstitutt Skrifter, No. 132, 1964), Jorunn Os Vigran deals with the dispersed ...

1965-06-05T23:59:59.000Z

452

EMSL - ion deposition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

deposition en Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol. http:www.emsl.pnl.govemslwebpublicationsphysical-properties-ambient-and-labora...

453

EMSL - Deposition and Microfabrication  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ion beam for nanolithography and deposition and manipulation of structures at the nano scale* Microfabrication suite for designing and etching complex patterns into varied...

454

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

455

Utilization of Estonian oil shale at power plants  

SciTech Connect (OSTI)

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

456

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

457

China's Global Oil Strategy  

E-Print Network [OSTI]

21, 2008. Ying, Wang. China, Venezuela firms to co-developApril 21, China and Venezuela sign oil agreements. Chinaaccessed April 21, Venezuela and China sign oil deal. BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

458

Using Oils As Pesticides  

E-Print Network [OSTI]

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

459

Residential heating oil price  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

460

Residential heating oil price  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

462

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

463

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

464

Oil and democracy in Argentina, 1916-1930  

SciTech Connect (OSTI)

Argentine society in the 1920s experience strong political, cultural, and economic divisions between the littoral regional surrounding Buenos Aires and the interior provinces to the west and north. Economic recession through World War 1 sparked efforts to wean the economy from total dependence upon agricultural production and export, and petroleum deposits in the south and northwest corners of Argentina offered a wider economic base. Regional conflict quickly arose concerning oil production and control over oil revenues. By mounting a popular anti-imperialist campaign against Standard Oil of New Jersey, the primary interior oil producer, dominant political forces in Buenos Aires worked to nationalize all oil deposits to the detriment of interior provincial interests. To maintain the kinds of political control necessary to fend off this threat, interior conservatives reverted to electoral fraud and violence, especially in the major oil-producing province of Salta. This thesis reconstructs and analyzes the process by which political division on the oil issue hardened and gave way to a conservative reaction leading to an authoritarian regime.

Biddle, N.L.

1991-01-01T23:59:59.000Z

465

Effect of oil pollution on fresh groundwater in Kuwait  

SciTech Connect (OSTI)

Massive oil fires in Kuwait were the aftermath of the Gulf War. This resulted in the pollution of air, water, and soil, the magnitude of which is unparalleled in the history of mankind. Oil fires damaged several oil well heads, resulting in the flow of oil, forming large oil lakes. Products of combustion from oil well fires deposited over large areas. Infiltrating rainwater, leaching out contaminants from oil lakes and products of combustion at ground surface, can reach the water table and contaminate the groundwater. Field investigations, supported by laboratory studies and mathematical models, show that infiltration of oil from oil lakes will be limited to a depth of about 2 m from ground surface. Preliminary mathematical models showed that contaminated rainwater can infiltrate and reach the water table within a period of three to four days, particularly at the Raudhatain and Umm Al-Aish regions. These are the only regions in Kuwait where fresh groundwater exists. After reaching the water table, the lateral movement of contaminants is expected to be very slow under prevailing hydraulic gradients. Groundwater monitoring at the above regions during 1992 showed minor levels of vanadium, nickel, and total hydrocarbons at certain wells. Since average annual rainfall in the region is only 120 mm/yr, groundwater contamination due to the infiltration of contaminated rainwater is expected to be a long-term one. 13 refs., 15 figs., 2 tabs.

Al-Sulaimi, J.; Viswanathan, M.N.; Szekely, F. [Kuwait Institute for Scientific Research, Safat (Kuwait)

1993-11-01T23:59:59.000Z

466

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900 to 1100 F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

467

Central Pacific Minerals and Southern Pacific Petroleum detail oil shale activities  

SciTech Connect (OSTI)

These two affiliated companies have their major assets in Queensland. Brief summaries are given of the activities of the Rundle, Condor, and Yaamba oil shale projects and brief descriptions are given of the resources found in the Stuart, Nagoorin, Nagoorin South, Lowmead, and Duaringa oil shale deposits of Queensland. The companies also have, or are planning, oil shale projects in the US, Luxembourg, France, and the Federal Republic of Germany, and these are briefly described.

Not Available

1986-09-01T23:59:59.000Z

468

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

469

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

470

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

471

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

472

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

473

Slump and debris-flow dominated upper slope facies in the Cretaceous of the Norwegian and northern North Seas (61-67{degrees}N): Implications for sand distribution  

SciTech Connect (OSTI)

A regional sedimentological study of Cretaceous sequences in the Mid-Norway region (Norwegian Sea) and in the Agat region (Agat field area, northern North Sea) reveals that these sequences were predominantly deposited in an upper continental slope environment by slumps and debris flows. Examination of nearly 500 m of core from 14 wells shows eight distinct lithofacies: facies 1 (contorted conglomerate and pebbly sandstone) represents deposits of sandy slumps and debris flows, possibly in a channel setting; facies 2 (contorted sandstone) is the most widespread and is the product of sandy slumps and debris flows; facies 3 (contorted mudstone) indicates deposition from muddy slumps and debris flow; facies 4 (rippled sandstone) suggests bottom-current reworking; facies 5 (graded sandstone) represents turbidity-current deposits and is very rare; facies 6 (laminated mudstone) is a product of pelagic or hemipelagic deposition; facies 7 (cross-bedded sandstone) is indicative of tidal processes, and facies 8 (laminated sandstone) represents delta-front and shelf deposits. These facies and their association suggest a shelf-edge delta to upper slope environment of deposition. Existing core data document deltaic facies only in the Mid-Norway region. The proposed shelf-edge delta and upper slope model has important implications for sand distribution. (1) This model provides and alternative to the conventional submarine-fan model previously applied to these sequences. (2) Although slump and debris-flow emplaced sands are usually discontinuous and unpredictable, highly amalgamated slump and debris-flow sands may develop thick reservoirs. (3) By using the Eocene Frigg Formation as an analog, it is predicted that externally mounded seismic facies in the study area may be composed of sandy slumps and debris flows.

Shanmugam, G. [Mobil Research and Development Corp., Dallas, TX (United States); Lehtonen, L.R. [Mobil Exploration and Producing U.S.Inc., New Orleans, LA (United States); Straume, T.; Syvertsen, S.E.; Hodgkinson, R.J.; Skibeli, M. [Mobil Exploration Norway Inc., Stavanger (Norway)

1994-06-01T23:59:59.000Z

474

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

475

Soil damping constants related to common soil properties in sands and clays  

E-Print Network [OSTI]

for the Granular Materials Tested 83 V ITA 88 Vii LIST OP TABLES Table. Results of Tests on Ottawa Sand Page 22 Result. s of Tests on Arkansas Sand 23 Results of Tests on Victoria Sand 24 VI VII Error Resulting from Approximations Study of Void Ratio... Sand Nohr's Circle Diagram for Victoria Sand 65 82 N0TATION The following symbols are used in this study: CE 35 EA 62 EA 60 EA 55 EA 50 fps a viscous damping constant, Eall pit sandy clay at an approximate moisture content of 35 percent...

Gibson, Gary Clive

1968-01-01T23:59:59.000Z

476

Conversion characteristics of 10 selected oil shales  

SciTech Connect (OSTI)

The conversion behavior of 10 oil shale from seven foreign and three domestic deposits has been studied by combining solid- and liquid-state nuclear magnetic resonance (NMR) measurements with material balance Fischer assay conversion data. The extent of aromatization of aliphatic carbons was determined. Between zero and 42% of the raw shale aliphatic carbon formed aromatic carbon during Fischer assay. For three of the shales, there was more aromatic carbon in the residue after Fisher assay than in the raw shale. Between 10 and 20% of the raw shale aliphatic carbons ended up as aliphatic carbons on the spent shale. Good correlations were found between the raw shale aliphatic carbon and carbon in the oil and between the raw shale aromatic carbon and aromatic carbon on the spent shale. Simulated distillations and molecular weight determinations were performed on the shale oils. Greater than 50% of the oil consisted of the atmospheric and vacuum gas oil boiling fractions. 14 refs., 15 figs., 1 tab.

Miknis, F.P.

1989-08-01T23:59:59.000Z

477

Solution deposition assembly  

DOE Patents [OSTI]

Methods and devices are provided for improved deposition systems. In one embodiment of the present invention, a deposition system is provided for use with a solution and a substrate. The system comprises of a solution deposition apparatus; at least one heating chamber, at least one assembly for holding a solution over the substrate; and a substrate curling apparatus for curling at least one edge of the substrate to define a zone capable of containing a volume of the solution over the substrate. In another embodiment of the present invention, a deposition system for use with a substrate, the system comprising a solution deposition apparatus; at heating chamber; and at least assembly for holding solution over the substrate to allow for a depth of at least about 0.5 microns to 10 mm.

Roussillon, Yann; Scholz, Jeremy H; Shelton, Addison; Green, Geoff T; Utthachoo, Piyaphant

2014-01-21T23:59:59.000Z

478

Oil & Natural Gas Technology DOE Award No.: DE-FE0001243 Topical Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FE0001243 FE0001243 Topical Report DEVELOPMENT OF CFD-BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380 Salt Lake City, Utah 84112 Prepared for: United States Department of Energy National Energy Technology Laboratory February 2012 Office of Fossil Energy TOPICAL REPORT: DEVELOPMENT OF CFD_BASED SIMULATION TOOLS FOR IN SITU THERMAL PROCESSING OF OIL SHALE/SANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 Report Issued: February 2012 Submitted by: University of Utah Institute for Clean and Secure Energy 155 South 1452 East, Room 380

479

Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale of Messel, Germany: Implications for their taphonomy  

E-Print Network [OSTI]

Isotope compositions (C, O, Sr, Nd) of vertebrate fossils from the Middle Eocene oil shale isotopes Diagenesis Enamel Messel Propalaeotherium The Middle Eocene oil shale deposits of Messel (~0.706) due to diagenetic Sr uptake from the lake water/oil shale. Enamel 18 Op values (~18 ± 0

Schöne, Bernd R.

480

Effects of land use on surfaceatmosphere exchanges of trace gases and energy in Borneo: comparing fluxes over oil palm plantations and a rainforest  

Science Journals Connector (OSTI)

...24 July 2008 [26]. Over the oil palm canopy, measurements of...the range 4-20 ppbv. At the oil palm site, the very calm nights...the air and lack of wind. The peak deposition values correspond...28]. Fluxes of O3 over the oil palm canopy are generally smaller...

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil sands deposits" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

482

SAND97-8490 UC-404 Unlimited Release  

Office of Scientific and Technical Information (OSTI)

SAND97-8490 UC-404 SAND97-8490 UC-404 Unlimited Release Printed March 1997 J Mechanical Properties and Energy Absorption Characteristics of a Polyurethane Foam S. H. Goods, C. L. Neuschwanger, C. Henderson, D. M. Skala DISCLAIMER This report was prepared as a n account of work sponsored by a n agenq of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warrantyy express or impIied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- ratus, product, or process disdased, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necrsariiy constitute or

483

Tight sands gain as U.S. gas source  

SciTech Connect (OSTI)

This report, the last of a four part series assessing unconventional gas development in the US, examines the state of the tight gas sands industry following the 1992 expiration of the qualification period for the Sec. 29 Nonconventional Fuels Tax Credit. Because tight gas sands were the most mature of the unconventional gas sources and received only a modest tax credit, one would not expect much change when the tax credit qualification period ended, and post-1992 drilling and production data confirm this. What the overall statistics do not show, and thus the main substance of this article, is how rediscovered tight gas plays and the evolution in tight gas exploration and extraction technology have shifted the outlook for tight gas drilling and its economics from a low productivity, marginally economic resource to a low cost source of gas supply.

Kuuskraa, V.A.; Hoak, T.E.; Kuuskraa, J.A. [Advanced Resources International Inc., Arlington, VA (United States); Hansen, J. [Gas Research Inst., Chicago, IL (United States)