Sample records for oil sands deposits

  1. Investigation of tar sand and heavy oil deposits of Wyoming for underground coal gasification applications

    SciTech Connect (OSTI)

    Trudell, L.G.

    1985-02-01T23:59:59.000Z

    A literature review was conducted to identify and evaluate tar sand and heavy oil deposits of Wyoming which are potentially suitable for in situ processing with process heat or combustible gas from underground coal gasification (UCG). The investigation was undertaken as part of a project to develop novel concepts for expanding the role of UCG in maximizing energy recovery from coal deposits. Preliminary evaluations indicate six surface deposits and three shallow heavy oil fields are within 5 miles of coal deposits, the maximum distance judged to be feasible for UCG applications. A tar sand or heavy oil deposit in the northeast Washakie Basin is less than 250 feet above a zone of four coal seams suitable for UCG, and another deposit near Riverton appears to be interbedded with coal. Three shallow light oil fields found to be within 5 miles of coal may be amenable to application of UCG technology for enhanced oil recovery. Sufficient data are not available for estimating the size of Wyoming's tar sand and heavy oil resource which is suitable for UCG development. Additional investigations are recommended to more fully characterize promising deposits and to assess the potential resource for UCG applications. 54 refs., 10 figs., 2 tabs.

  2. Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from the AptianAlbian Dina and Cummings members of

    E-Print Network [OSTI]

    ABSTRACT Major heavy oil deposits are present in Lower Cretaceous strata of west-central Saskatchewan. The Winter Heavy Oil Pool (approximately 566 044 mmbl) consists of bitumen-rich sands from-level rise (Cummings Member). Exploitable heavy oil reservoirs are contained within these incised valley

  3. Canadian Oil Sands: Canada An Emerging Energy

    E-Print Network [OSTI]

    Boisvert, Jeff

    (collectively "statements") with respect to: expectations regarding crude oil production, global energy demand1 Canadian Oil Sands: Canada ­ An Emerging Energy Superpower 0 University of Alberta February 8 Oil Sands Limited ("Canadian Oil Sands"), Syncrude Canada Ltd. ("Syncrude") and the oil sands industry

  4. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    SciTech Connect (OSTI)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13T23:59:59.000Z

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  5. Policy Analysis of the Canadian Oil Sands Experience

    SciTech Connect (OSTI)

    None, None

    2013-09-01T23:59:59.000Z

    For those who support U.S. oil sands development, the Canadian oil sands industry is often identified as a model the U.S. might emulate, yielding financial and energy security benefits. For opponents of domestic oil sands development, the Canadian oil sands experience illustrates the risks that opponents of development believe should deter domestic policymakers from incenting U.S. oil sands development. This report does not seek to evaluate the particular underpinnings of either side of this policy argument, but rather attempts to delve into the question of whether the Canadian experience has relevance as a foundational model for U.S. oil sands development. More specifically, this report seeks to assess whether and how the Canadian oil sands experience might be predictive or instructive in the context of fashioning a framework for a U.S. oil sands industry. In evaluating the implications of these underpinnings for a prospective U.S. oil sands industry, this report concentrates on prospective development of the oil sands deposits found in Utah.

  6. Environmental, health, safety, and socioeconomic concerns associated with oil recovery from US tar-sand deposits: state-of-knowledge

    SciTech Connect (OSTI)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1982-01-08T23:59:59.000Z

    Tar-sand petroleum-extraction procedures undergoing field testing for possible commercial application in the US include both surface (above-ground) and in situ (underground) procedures. The surface tar-sand systems currently being field tested in the US are thermal decomposition processes (retorting), and suspension methods (solvent extraction). Underground bitumen extraction procedures that are also being field tested domestically are in situ combustion and steam-injection. Environmental, health, safety, and socioeconomic concerns associated with construction and operation of 20,000-bbl/d commercial tar-sand surface and in situ facilities have been estimated and are summarized in this report. The principal regulations that commercial tar-sand facilities will need to address are also discussed, and environmental control technologies are summarized and wherever possible, projected costs of emission controls are stated. Finally, the likelihood-of-occurrence of potential environmental, health, and safety problems that have been determined are reviewed, and from this information inference is made as to the environmental acceptability of technologically feasible 20,000-bbl/d commercial tar-sand oil-extraction procedures.

  7. Air quality over the Canadian oil sands: A first assessment using satellite observations

    E-Print Network [OSTI]

    Boersma, Folkert

    to as "oil sands" (or "tar sands")­ are located in the Canadian province of Alberta (see Figure 1a). The oil development and operations [e.g., Kelly et al., 2010], including air quality and acid deposition. Combustion

  8. Canadian Oil Sands: Canada's Energy Advantage

    E-Print Network [OSTI]

    Boisvert, Jeff

    crude oil production, global energy demand, the estimated reserves and resources at Syncrude, views that the world will need oil for decades to come, the expectations regarding oil sands productive capacityCanadian Oil Sands: Canada's Energy Advantage 0 #12;Forward looking information 1 In the interest

  9. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Oil sands comprise 30% of the world’s oil reserves andthe crude oil reserves in Canada’s oil sands deposits are30% of total world oil reserves (Alboudwarej et al. , 2006)

  10. The extraction of bitumen from western oil sands: Volume 1. Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26T23:59:59.000Z

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

  11. The extraction of bitumen from western oil sands: Volume 2. Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1997-11-26T23:59:59.000Z

    The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

  12. Oil shale, tar sands, and related materials

    SciTech Connect (OSTI)

    Stauffer, H.C.

    1981-01-01T23:59:59.000Z

    This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

  13. The extraction of bitumen from western oil sands. Quarterly report, April--June 1993

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-07-01T23:59:59.000Z

    Accomplishments are briefly described for the following tasks: environmental impact statement; coupled fluidized bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost examination study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; determine thickener requirements; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  14. EMPLOYMENT FACTS: THE KEYSTONE XL PIPELINE Under the forest in northern Alberta, Canada lie the world's largest deposits of so-called "tar sands,"

    E-Print Network [OSTI]

    Danforth, Bryan Nicholas

    holding ponds of toxic sludge. Production of this oil is increasing and a growing amount of it is already the world's largest deposits of so-called "tar sands," sand mixed with thick, tar-like oil. To produce one barrel of heavy crude oil from tar sands requires strip mining the forest, extracting four tons of earth

  15. The extraction of bitumen from western oil sands. Annual report, July 1991--July 1992

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-08-01T23:59:59.000Z

    The University of Utah tar sand research and development program is concerned with research and development on Utah is extensive oil sands deposits. The program has been intended to develop a scientific and technological base required for eventual commercial recovery of the heavy oils from oil sands and processing these oils to produce synthetic crude oil and other products such as asphalt. The overall program is based on mining the oil sand, processing the mined sand to recover the heavy oils and upgrading them to products. Multiple deposits are being investigated since it is believed that a large scale (approximately 20,000 bbl/day) plant would require the use of resources from more than one deposit. The tasks or projects in the program are organized according to the following classification: Recovery technologies which includes thermal recovery methods, water extraction methods, and solvent extraction methods; upgrading and processing technologies which covers hydrotreating, hydrocracking, and hydropyrolysis; solvent extraction; production of specialty products; and environmental aspects of the production and processing technologies. These tasks are covered in this report.

  16. In situ recovery of oil from Utah tar sand: a summary of tar sand research at the Laramie Energy Technology Center

    SciTech Connect (OSTI)

    Marchant, L.C.; Westhoff, J.D.

    1985-10-01T23:59:59.000Z

    This report describes work done by the United States Department of Energy's Laramie Energy Technology Center from 1971 through 1982 to develop technology for future recovery of oil from US tar sands. Work was concentrated on major US tar sand deposits that are found in Utah. Major objectives of the program were as follows: determine the feasibility of in situ recovery methods applied to tar sand deposits; and establish a system for classifying tar sand deposits relative to those characteristics that would affect the design and operation of various in situ recovery processes. Contents of this report include: (1) characterization of Utah tar sand; (2) laboratory extraction studies relative to Utah tar sand in situ methods; (3) geological site evaluation; (4) environmental assessments and water availability; (5) reverse combustion field experiment, TS-1C; (6) a reverse combustion followed by forward combustion field experiment, TS-2C; (7) tar sand permeability enhancement studies; (8) two-well steam injection experiment; (9) in situ steam-flood experiment, TS-1S; (10) design of a tar sand field experiment for air-stream co-injection, TS-4; (11) wastewater treatment and oil analyses; (12) economic evaluation of an in situ tar sand recovery process; and (13) appendix I (extraction studies involving Utah tar sands, surface methods). 70 figs., 68 tabs.

  17. The extraction of bitumen from western oil sands. Quarterly report, July--September, 1993

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1993-11-01T23:59:59.000Z

    This report cites task number followed by a brief statement of each task and the action taken this quarter. The tasks are: NEPA environmental information statement; coupled fluidized-bed bitumen recovery and coked sand combustion; water-based recovery of bitumen; rotary kiln process for recovery of bitumen and combustion of coke sand; recovery of bitumen from oil sands using fluidized bed reactors and combustion of spent sands in transport reactors; recovery of bitumen from oil sand and upgrading of bitumen by solvent extraction; catalytic and thermal upgrading of bitumens and bitumen-derived liquids; evaluation of Utah`s major oil sand deposits for the production of asphalt, high energy jet fuels, and other specialty products; development of mathematical models for bitumen recovery and processing; completion of the cost estimation study of the pilot plant restoration; development studies of equipment for three-product gravity separation of bitumen and sand; development studies of disposal of sand by conveying or pumping of high solids concentration sand-water slurries; and environmental studies of the North Salt Lake pilot plant rehabilitation and eventual operation and those environmental problems associated with eventual commercial products.

  18. Recovery of bitumen from oil sand by steam with chemicals

    SciTech Connect (OSTI)

    Yamazaki, T.

    1988-01-01T23:59:59.000Z

    Recently, oil sand bitumen has become the center of attention as a possible oil energy substitute for the future. Until now, the development of oil sand has been performed by surface miing and conventional steam injection, these methods are limited in respect to resource recovery. A more effective method needs to be developed utilizing in situ recovery. In this study, a new attempt is made for the purpose of enhancing the recovery of bitumen from oil sand by adopting the method of injecting high pressure steam and chemicals such as solvents, surfactants, and others.

  19. Microstructural characterization of a Canadian oil sand

    E-Print Network [OSTI]

    Dinh, Hong Doan; Nauroy, Jean-François; Tang, Anh-Minh; Souhail, Youssef; 10.1139/T2012-072

    2013-01-01T23:59:59.000Z

    The microstructure of oil sand samples extracted at a depth of 75 m from the estuarine Middle McMurray formation (Alberta, Canada) has been investigated by using high resolution 3D X-Ray microtomography ($\\mu$CT) and Cryo Scanning Electron Microscopy (CryoSEM). $\\mu$CT images evidenced some dense areas composed of highly angular grains surrounded by fluids that are separated by larger pores full of gas. 3D Image analysis provided in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations, showing that they are representative of intact states. $\\mu$CT hence provided some information on the morphology of the cracks and disturbance created by gas expansion. The CryoSEM technique, in which the sample is freeze fractured within the SEM chamber prior to observation, provided pictures in which the (frozen) bitumen clearly appears between the sand grains. No evidence of the existence of a thin connate water layer between grains and the bitumen, frequently mentioned in th...

  20. Response of Oil Sands Derived Fuels in Diesel HCCI Operation

    Broader source: Energy.gov (indexed) [DOE]

    UT-Battelle for the Department of Energy 2007 DOE DEER Conference Oil sands fuels and refinery intermediates * Provided by Shell Canada (now Royal Dutch Shell) * 17 fuels and...

  1. Hydrotreating the native bitumen from the Whiterocks tar sand deposit

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.

    1993-03-01T23:59:59.000Z

    The bitumen from the Whiterocks oil sand deposit in the Uinta Basin of eastern Utah was hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The process variables investigated included reactor pressure (11.2--16.7 MPa); reactor temperature (641--712 K) and liquid hourly space velocity (0.19--0.77 h{sup {minus}1}). The hydrogen/oil ratio, 890 m{sup 3} m{sup {minus}3} was fixed in all experiments. A sulphided Ni-Mo on alumina hydrodenitrogenation catalyst was used in these studies. The deactivation of the catalyst, 0.2 {degree}C/day, was monitored by thedecline in the API gravity of the total liquid product with time on-stream at a standard set of conditions. The effect of temperature, WHSV, and pressure on denitrogenation, desulphurization, and metals removalwere studied and apparent kinetic parameters determined. The effect of process variables on residue conversion and Conradson carbon residue reduction were also investigated.

  2. Hydrotreating the native bitumen from the Whiterocks tar sand deposit

    SciTech Connect (OSTI)

    Longstaff, D.C.; Deo, M.D.; Hanson, F.V.

    1993-01-01T23:59:59.000Z

    The bitumen from the Whiterocks oil sand deposit in the Uinta Basin of eastern Utah was hydrotreated in a fixed-bed reactor to determine the extent of upgrading as a function of process operating variables. The process variables investigated included reactor pressure (11.2--16.7 MPa); reactor temperature (641--712 K) and liquid hourly space velocity (0.19--0.77 h[sup [minus]1]). The hydrogen/oil ratio, 890 m[sup 3] m[sup [minus]3] was fixed in all experiments. A sulphided Ni-Mo on alumina hydrodenitrogenation catalyst was used in these studies. The deactivation of the catalyst, 0.2 [degree]C/day, was monitored by thedecline in the API gravity of the total liquid product with time on-stream at a standard set of conditions. The effect of temperature, WHSV, and pressure on denitrogenation, desulphurization, and metals removalwere studied and apparent kinetic parameters determined. The effect of process variables on residue conversion and Conradson carbon residue reduction were also investigated.

  3. Uncovering the Microbial Diversity of the Alberta Oil Sands through Metagenomics: A Stepping Stone for Enhanced Oil Recovery and

    E-Print Network [OSTI]

    Voordouw, Gerrit

    the genomes of the subsurface Heavy Oil and Tar Sands (HOTS) reservoirs; the oil sand mine tailings ponds1 Uncovering the Microbial Diversity of the Alberta Oil Sands through Metagenomics: A Stepping Stone for Enhanced Oil Recovery and Environmental Solutions Writing Team: Julia Foght1 , Robert Holt2

  4. Heat transfer and oil displacement models for tar sands reservoirs

    SciTech Connect (OSTI)

    Ward, C.E.; Ward, G.D.

    1984-09-01T23:59:59.000Z

    A convective heat transfer model and one dimensional displacement model applicable to tar sands and heavy oils for use with a microcomputer are presented. The convective heat transfer model describes the temperature profiles in a thermal operation. The displacement model offers insight into the effect of process variables on the steam/oil or air/oil ratio of thermal operations. A method is presented for predicting the fuel burn in a fireflood.

  5. CO2 Mitigation Costs for Canada and the Alberta Oil Sands Justin David Anderson

    E-Print Network [OSTI]

    climate change and climate change regulation are heterogeneous. Canada, and her oil sands industry-Kyoto targets put forward by the opposition are predicted by the model. Oil sands upgrading/refining experiencesCO2 Mitigation Costs for Canada and the Alberta Oil Sands By Justin David Anderson Bachelor

  6. Oil Sands Feedstocks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of OrderSUBCOMMITTEEEnergy0Department ofSands

  7. Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction

    E-Print Network [OSTI]

    Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction A.E. FINAN, K. MIU, A.C. KADAK Massachusetts Institute of Technology Department of Nuclear Science the technical aspects and the economics of utilizing nuclear reactors to provide the energy needed

  8. Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's

    E-Print Network [OSTI]

    Watson, Andrew

    ) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

  9. Hot alkaline treatment to stimulate and consolidate the heavy oil Bachaquero-01 sand

    E-Print Network [OSTI]

    Valera Villarroel, Cesar Amabilis

    2005-02-17T23:59:59.000Z

    An experimental study was conducted to verify experimentally whether sand consolidation by high-temperature alkaline treatment was possible in the heavy oil Bachaquero-01 reservoir. The experiments were conducted using sand samples from a core taken...

  10. Recovery of heavy crude oil or tar sand oil or bitumen from underground formations

    SciTech Connect (OSTI)

    McKay, A.S.

    1989-07-11T23:59:59.000Z

    This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

  11. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Sands Derived Fuels 2003 DEER Conference Presentation: National Research Council Canada, Ottawa, Ontario, Canada 2003deerneill.pdf More Documents & Publications Development...

  12. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process localiser la chambre à vapeur. INTRODUCTION [1] Huge quantities of heavy oils (heavy oil, extra heavy oil. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10

  13. Hydroconversion of heavy oils. [Residue of tar sand bitumen distillation

    SciTech Connect (OSTI)

    Garg, D.

    1986-08-19T23:59:59.000Z

    A method is described for hydroconversion of feedstocks consisting essentially of at least one heavy hydrocarbon oil selected from the group consisting of residue of petroleum oil distillation and the residue of tar sand bitumen distillation to enhance the recovery of 350/sup 0/-650/sup 0/F boiling product fraction. The method comprises treating such feed stock with hydrogen at superatmospheric pressure and in the presence of finely divided active hydrogenation catalyst in consecutive reaction stages. An initial reaction stage is carried out at a temperature in the range of 780/sup 0/-825/sup 0/F, and a subsequent reaction stage is directly carried out after the initial reaction stage at a higher temperature in the range of 800/sup 0/F-860/sup 0/F, the temperature of the subsequent reaction stage being at least 20/sup 0/F higher than that of the initial reaction stage.

  14. Liquid phase oxidation kinetics of oil sands bitumen: Models for in situ combustion numerical simulators

    SciTech Connect (OSTI)

    Adegbesan, K.O.; Donnelly, J.K.; Moore, R.G.; Bennion, D.W.

    1986-08-01T23:59:59.000Z

    Multiresponse kinetic models are established for the low-temperature oxidation (LTO) reaction of Athabasca oil sands bitumen. The models provide adequate description of the overall rate of oxygen consumption and of the reactions of the liquid phase bitumen components. The LTO models are suitable for use in the in situ combustion numerical simulators of oil sands.

  15. Sand pack residual oil saturations as affected by extraction with various solvents

    E-Print Network [OSTI]

    Murray, Clarence

    1958-01-01T23:59:59.000Z

    of Water Flood Extraction Test (Sand Packs J, K, L, and N) 8. Results of Water Flood Extraction Test (Sand Pack M) TABLES I. Behavior of Oils Mixed with Various Solvents 18 II. Sand and Sand Pack Properties III. Fluid Properties IV. Results of Water... solvents which do not alter the rock-fluM properties. The present work was performed on sand, packs composed of pure ~ Oica sand to provide wetting properties simflar to natural cores and to provide packs with reproducible characteristics. Fluids studied...

  16. The extraction of bitumen from western oil sands. Final report, July 1989--September 1993

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1994-03-01T23:59:59.000Z

    Research and development of surface extraction and upgrading processes of western tar sands are described. Research areas included modified hot water, fluidized bed, and rotary kiln pyrolysis of tar sands for extraction of bitumen. Bitumen upgrading included solvent extraction of bitumen, and catalytic hydrotreating of bitumen. Characterization of Utah tar sand deposits is also included.

  17. Alberta bound : the interface between Alberta's environmental policies and the environmental management of three Albertan oil sands companies

    E-Print Network [OSTI]

    Lemphers, Nathan C

    2009-01-01T23:59:59.000Z

    The Athabasca Oil Sands, located in northeastern Alberta, Canada, were for many years anomalous. Two oil sands operators developed their extraction techniques for 30 years, refining their technology before production became ...

  18. The extraction of bitumen from western tar sands. Annual report, July 1990--July 1991

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1992-04-01T23:59:59.000Z

    Contents of this report include the following: executive summary; characterization of the native bitumen from the Whiterocks oil sand deposit; influence of carboxylic acid content on bitumen viscosity; water based oil sand separation technology; extraction of bitumen from western oil sands by an energy-efficient thermal method; large- diameter fluidized bed reactor studies; rotary kiln pyrolysis of oil sand; catalytic upgrading of bitumen and bitumen derived liquids; ebullieted bed hydrotreating and hydrocracking; super critical fluid extraction; bitumen upgrading; 232 references; Appendix A--Whiterocks tar sand deposit bibliography; Appendix B--Asphalt Ridge tar sand deposit bibliography; and Appendix C--University of Utah tar sands bibliography.

  19. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  20. Pour-point depression of crude oils by addition of tar sand bitumen

    SciTech Connect (OSTI)

    Soderberg, D.J.

    1988-03-01T23:59:59.000Z

    A process is described for reducing the pour point of a crude oil which comprises adding a pour-point depressant selected from the group consisting of a raw tar sands bitumen and hydrotreated tar sands bitumen to form a blend possessing a relatively lower pour point.

  1. Technologies, markets and challenges for development of the Canadian Oil Sands industry

    E-Print Network [OSTI]

    Lacombe, Romain H.

    2007-01-01T23:59:59.000Z

    This paper provides an overview of the current status of development of the Canadian oil sands industry, and considers possible paths of further development. We outline the key technology alternatives, critical resource ...

  2. No Oil: The coming Utopia/Dystopia and Communal Possibilities

    E-Print Network [OSTI]

    Miller, Timothy

    2006-03-01T23:59:59.000Z

    supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

  3. Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.

    SciTech Connect (OSTI)

    Murphey, P. C.; Daitch, D.; Environmental Science Division

    2009-02-11T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

  4. alberta oil sands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of maintenance example of strain softening material in the context of an underfoot environment for large mobile mining Joseph, Tim Grain 40 The effect of sand grain size...

  5. alberta oil sand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of maintenance example of strain softening material in the context of an underfoot environment for large mobile mining Joseph, Tim Grain 40 The effect of sand grain size...

  6. Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Ruple, John; Keiter, Robert

    2010-12-31T23:59:59.000Z

    Oil shale and oil sands resources located within the intermountain west represent a vast, and as of yet, commercially untapped source of energy. Development will require water, and demand for scarce water resources stands at the front of a long list of barriers to commercialization. Water requirements and the consequences of commercial development will depend on the number, size, and location of facilities, as well as the technologies employed to develop these unconventional fuels. While the details remain unclear, the implication is not – unconventional fuel development will increase demand for water in an arid region where demand for water often exceeds supply. Water demands in excess of supplies have long been the norm in the west, and for more than a century water has been apportioned on a first-come, first-served basis. Unconventional fuel developers who have not already secured water rights stand at the back of a long line and will need to obtain water from willing water purveyors. However, uncertainty regarding the nature and extent of some senior water claims combine with indeterminate interstate river management to cast a cloud over water resource allocation and management. Quantitative and qualitative water requirements associated with Endangered Species protection also stand as barriers to significant water development, and complex water quality regulations will apply to unconventional fuel development. Legal and political decisions can give shape to an indeterminate landscape. Settlement of Northern Ute reserved rights claims would help clarify the worth of existing water rights and viability of alternative sources of supply. Interstate apportionment of the White River would go a long way towards resolving water availability in downstream Utah. And energy policy clarification will help determine the role oil shale and oil sands will play in our nation’s future.

  7. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect (OSTI)

    Penner, S.S.

    1982-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  8. Integration of nuclear power with oil sands extraction projects in Canada

    E-Print Network [OSTI]

    Finan, Ashley (Ashley E.)

    2007-01-01T23:59:59.000Z

    One of the largest oil reserves in the world is not in the Middle East or in Alaska, but in Canada. This fuel exists in the form of bitumen in Alberta's oil sands. While it takes a tremendous amount of energy to recover ...

  9. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect (OSTI)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27T23:59:59.000Z

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  10. Thermally Induced Wettability Change During SAGD for Oil Sand Extraction

    E-Print Network [OSTI]

    Unal, Yasin

    2014-08-20T23:59:59.000Z

    and field pilot efforts are in progress to enhance oil recovery by using less energy and water for steam generation. These efforts are simplified with the contribution of numerical simulations to optimize the oil recovery of SAGD projects. Several critical...

  11. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1983-03-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  12. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    over Alberta oil sands mining operations Soc. , 81(7), 1537–over Alberta oil sands mining operations: 76 speciated C 2 –over Alberta oil sands mining operations Burstyn, I. ,

  13. Shale Oil and Gas, Frac Sand, and Watershed

    E-Print Network [OSTI]

    Minnesota, University of

    ;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

  14. Oil shale, tar sands, and underground coal gasification. Quarterly progress report, July-September, 1983

    SciTech Connect (OSTI)

    Not Available

    1983-10-28T23:59:59.000Z

    Technical progress made for the second quarter, July 1, 1983 through September 30, 1983 are described for three areas, oil shale, tar sand and underground gasification of coal. The oil shale program is divided into the following tasks: chemistry and physics; retort bed analysis; novel processing methods; and environmental impact mitigation. The tar sand investigation covers: recovery processes; preparation; novel processing methods; and environmental impact mitigation. Underground coal gasification covers: recovery processes; field project evaluation; novel processing methods; and environmental impact mitigation. An executive summary is provided for the three programs. 19 figures, 23 tables.

  15. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  16. Oil shale, tar sands, and underground coal gasification. Quarterly progress report, April-June 1984

    SciTech Connect (OSTI)

    Not Available

    1984-08-15T23:59:59.000Z

    Highlights of progress achieved during the quarter ending June 30, 1984 are summarized. This research involves three resource areas: oil shale, tar sands, and underground gasification of coal. Separate abstracts have been prepared for each section for inclusion in the Energy Database. (DMC)

  17. Naturally Saline Boreal Communities as Models for Reclamation of Saline Oil Sand Tailings

    E-Print Network [OSTI]

    Macdonald, Ellen

    mining. Key words: boreal forest, community ecology, oil sands, ordination, reclamation, salinity mining have saline soils; yet, they are required to have similar biodiversity and productivity mining, with anti- cipated rates of disturbance of 2,000 ha/yr (CONRAD 1999). Saline tailings are left

  18. Microstructural characterization of a Canadian oil sand D.H., Delage2

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    in dense areas porosity values compatible with in-situ log data and macroscopic laboratory determinations reservoirs in Western Canada and Eastern Venezuela basins. The laboratory characterisation of oil sands at depths ranging from 0 to 700 m (Butler 1997). This formation is underlain by shales and limestones

  19. Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi

    E-Print Network [OSTI]

    Cook, Billy Charles

    1968-01-01T23:59:59.000Z

    resi- due deposits are found around a number of these domes, indicating that at one time there were accumulations of oil. The cause of the volatile material escaping and leaving these "fossil oil fields" has not been definitely established... showing the location of Mallalieu field and other nearby oil fields . 14 Structure ma. p of Mallalieu field Mallalieu field electric log correlation secrion. Legend for grain size and lithology logs. 40 49 Quartz grain size, electric log...

  20. Analysis of techniques for predicting viscosity of heavy oil and tar sand bitumen

    SciTech Connect (OSTI)

    Khataniar, S.; Patil, S.L.; Kamath, V.A. [Univ. of Alaska, Fairbanks, AK (United States)

    1995-12-31T23:59:59.000Z

    Thermal recovery methods are generally employed for recovering heavy oil and tar sand bitumen. These methods rely on reduction of oil viscosity by application of heat as one of the primary mechanisms of oil recovery. Therefore, design and performance prediction of the thermal recovery methods require adequate prediction of oil viscosity as a function of temperature. In this paper, several commonly used temperature-viscosity correlations are analyzed to evaluate their ability to correctly predict heavy oil and bitumen viscosity as a function of temperature. The analysis showed that Ali and Standing`s correlations gave satisfactory results in most cases when properly applied. Guidelines are provided for their application. None of the correlations, however, performed satisfactorily with very heavy oils at low temperatures.

  1. Depositional environment of upper cretaceous Lewis sandstones, Sand Wash Basin, Colorado 

    E-Print Network [OSTI]

    Reinarts, Mary Susan

    1981-01-01T23:59:59.000Z

    areas, Moffat County, Colorado. Structure contours are top of Mesaverde. Contour interval is 1, 000 ft ( 305 m). Modified from Whi tley (1962) Generalized subsurface section of the Upper Cretaceous formations in the Sand Wash basin depicting gross... Correlation section parallel to depositional dip, North Craig field area, showing inclined time- stratigraphic units in the Lewis shale which con- tain thick sandstone intervals. Location of section shown in Fig. 23 Strike correlation section, North Craig...

  2. Frequency dependent elastic properties and attenuation in heavy-oil sands: comparison between mea-sured and modeled data

    E-Print Network [OSTI]

    ) properties of heavy-oil sands over a range of frequencies (2 - 2000Hz) covering the seismic bandwidth. The results show reason- ably good agreement between the measured data and modeled response especially at non larger than that of conventional light oil. Current methods of produc- tion from heavy-oil reservoirs

  3. Pore Scale Analysis of Oil Shale/Sands Pyrolysis

    SciTech Connect (OSTI)

    Lin, Chen-Luh; Miller, Jan

    2011-03-01T23:59:59.000Z

    There are important questions concerning the quality and volume of pore space that is created when oil shale is pyrolyzed for the purpose of producing shale oil. In this report, 1.9 cm diameter cores of Mahogany oil shale were pyrolyzed at different temperatures and heating rates. Detailed 3D imaging of core samples was done using multiscale X-ray computed tomography (CT) before and after pyrolysis to establish the pore structure. The pore structure of the unreacted material was not clear. Selected images of a core pyrolyzed at 400oC were obtained at voxel resolutions from 39 microns (?m) to 60 nanometers (nm). Some of the pore space created during pyrolysis was clearly visible at these resolutions and it was possible to distinguish between the reaction products and the host shale rock. The pore structure deduced from the images was used in Lattice Boltzmann simulations to calculate the permeability in the pore space. The permeabilities of the pyrolyzed samples of the silicate-rich zone were on the order of millidarcies, while the permeabilities of the kerogen-rich zone after pyrolysis were very anisotropic and about four orders of magnitude higher.

  4. Carbon sequestration in depleted oil shale deposits

    DOE Patents [OSTI]

    Burnham, Alan K; Carroll, Susan A

    2014-12-02T23:59:59.000Z

    A method and apparatus are described for sequestering carbon dioxide underground by mineralizing the carbon dioxide with coinjected fluids and minerals remaining from the extraction shale oil. In one embodiment, the oil shale of an illite-rich oil shale is heated to pyrolyze the shale underground, and carbon dioxide is provided to the remaining depleted oil shale while at an elevated temperature. Conditions are sufficient to mineralize the carbon dioxide.

  5. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.; Brame, Scott; Current, Caitlin J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  6. Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands

    SciTech Connect (OSTI)

    Castle, James W.; Molz, Fred J.

    2003-02-07T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

  7. The effect of sand grain size distribution on the minimum oil saturation necessary to support in-situ combustion

    E-Print Network [OSTI]

    Daniel, William Marvin

    1973-01-01T23:59:59.000Z

    THE EFFECT OF SAND GRAIN SIZE DISTRIBUTION ON THE MINIMUM OIL SATURATION NECESSARY TO SUPPORT IN-SITU COMBUSTION A Thesis by WILLIAM MARVIN DANIEL Submitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 1973 Major Subject: Petroleum. Engineering THE EFFECT OF SAND GRAIN SIZE DISTRIBUTION ON THE MINIMUM OIL SATURATION NECESSARY TO SUPPORT IN-SITU COMBUSTION A Thesis by WILLIAM MARVIN DANIEL Approved...

  8. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    fuel combustion, especially coal and residential oil, andthe oil sands (r 2 combustion tracersand combustion sources on ethene and other alkenes at the oil

  9. Process for converting heavy oil deposited on coal to distillable oil in a low severity process

    DOE Patents [OSTI]

    Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

    1994-01-01T23:59:59.000Z

    A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

  10. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  11. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30T23:59:59.000Z

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

  12. Temperature effects on oil-water relative permeabilities for unconsolidated sands

    SciTech Connect (OSTI)

    Sufi, A.H.

    1982-01-01T23:59:59.000Z

    This study presents an experimental investigation of temperature effects on relative permeabilities of oil-water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation (S/sub or/) and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in two parts. The first was to investigate changes in S/sub or/ with temperature where the cores were 100% saturated with oil at the start of the waterflood. Runs were terminated when the water-cut exceeded 99.8%. For these experiments, S/sub or/ decreased from 0.31 at 70/sup 0/F to 0.09 at 250/sup 0/F. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in S/sub or/ was observed with temperature; (0.11 at 70/sup 0/F and 0.085 at 186/sup 0/F). Temperature effects on irreducible water saturations were studied. A small increase in irreducibile water saturation was observed upon increasing the temperature. However, the same magnitude of change was observed by changing the flowrate. Upon increasing the oil flowrate, immediate water production was observed from the core indicating a change in the capillary end effect. By comparing the change in irreducible water saturation with rate and temperature, it was determined that the change was caused mainly by a change in the viscous force across the core. A study on viscous instabilities was also performed. This verified the existence of viscous fingers during waterflooding. It was also observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

  13. Libya, Algeria and Egypt: crude oil potential from known deposits

    SciTech Connect (OSTI)

    Dietzman, W.D.; Rafidi, N.R.; Ross, T.A.

    1982-04-01T23:59:59.000Z

    An analysis is presented of the discovered crude oil resources, reserves, and estimated annual production from known fields of the Republics of Libya, Algeria, and Egypt. Proved reserves are defined as the remaining producible oil as of a specified date under operating practice in effect at that time and include estimated recoverable oil in undrilled portions of a given structure or structures. Also included in the proved reserve category are the estimated indicated additional volumes of recoverable oil from the entire oil reservoir where fluid injection programs have been started in a portion, or portions, of the reservoir. The indicated additional reserves (probable reserves) reported herein are the volumes of crude oil that might be obtained with the installation of secondary recovery or pressure maintenance operations in reservoirs where none have been previously installed. The sum of cumulative production, proved reserves, and probable reserves is defined as the ultimate oil recovery from known deposits; and resources are defined as the original oil in place (OOIP). An assessment was made of the availability of crude oil under three assumed sustained production rates for each country; an assessment was also made of each country's capability of sustaining production at, or near, the 1980 rates assuming different limiting reserve to production ratios. Also included is an estimate of the potential maximum producing capability from known deposits that might be obtained from known accumulations under certain assumptions, using a simple time series approach. The theoretical maximum oil production capability from known fields at any time is the maximum deliverability rate assuming there are no equipment, investment, market, or political constraints.

  14. Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge

    SciTech Connect (OSTI)

    Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1990-01-01T23:59:59.000Z

    The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

  15. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  16. Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process

    E-Print Network [OSTI]

    Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

    2013-01-01T23:59:59.000Z

    In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

  17. Upgrading of middle distillate fractions of syncrudes from athabasca oil sands

    SciTech Connect (OSTI)

    Wilson, M.F.; Kriz, J.F.

    1983-03-01T23:59:59.000Z

    Middle distillate fractions of syncrudes from Athabasca Oil Sands were evaluated for suitability as feedstocks in the catalytic conversion to diesel fuel meeting cetane number specifications. Hydrogenation of aromatic components to napthenes under severe conditions (380 to 400/sup 0/C, 2500 psig) using sulfided CoO/MoO/sub 3/ and NiO/WO/sub 3/ over ..cap alpha.. . Al/sub 2/O/sub 3/ in a previously described catalyst testing system. Reaction products were analyzed for aromatic carbon content using C/sup 13/ NMR spectroscopy and pseudo first order rate constants and activation energies (15.0 and 14.2 kcal 1 g-mole, respectively) were determined by regression analysis. At optimum conditions 97% aromatic conversion was obtained with the Ni-W catalyst. Product diesel fuel cetane number (42) was within specifications. Co-Mo catalyst was significantly less active.

  18. Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi 

    E-Print Network [OSTI]

    Cook, Billy Charles

    1968-01-01T23:59:59.000Z

    with the lower Unit being subdivided into an upper "sand and shale section" a middle "marine section", and a lower "massive sand section". The Mississippi Geological Society (1957) subdivided the subsurface Tuscaloosa Group into the Upper, Marine, and Lower...) described the Lower Tuscaloosa Formation of southern Mississippi as a unit of "rapidly alternating sands and shales of shallow marine origin, overlying a nearly unbroken sand sec- tion of still shallower marine or continental origin". Braunstein ai. so...

  19. QUANTITATIVE METHODS FOR RESERVOIR CHARACTERIZATION AND IMPROVED RECOVERY: APPLICATION TO HEAVY OIL SANDS

    SciTech Connect (OSTI)

    James W. Castle; Fred J. Molz; Ronald W. Falta; Cynthia L. Dinwiddie; Scott E. Brame; Robert A. Bridges

    2002-10-30T23:59:59.000Z

    Improved prediction of interwell reservoir heterogeneity has the potential to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involves application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation, particularly in heavy oil sands. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field. Observations of lateral variability and vertical sequences observed in Temblor Formation outcrops has led to a better understanding of reservoir geology in West Coalinga Field. Based on the characteristics of stratigraphic bounding surfaces in the outcrops, these surfaces were identified in the subsurface using cores and logs. The bounding surfaces were mapped and then used as reference horizons in the reservoir modeling. Facies groups and facies tracts were recognized from outcrops and cores of the Temblor Formation and were applied to defining the stratigraphic framework and facies architecture for building 3D geological models. The following facies tracts were recognized: incised valley, estuarine, tide- to wave-dominated shoreline, diatomite, and subtidal. A new minipermeameter probe, which has important advantages over previous methods of measuring outcrop permeability, was developed during this project. The device, which measures permeability at the distal end of a small drillhole, avoids surface weathering effects and provides a superior seal compared with previous methods for measuring outcrop permeability. The new probe was used successfully for obtaining a high-quality permeability data set from an outcrop in southern Utah. Results obtained from analyzing the fractal structure of permeability data collected from the southern Utah outcrop and from core permeability data provided by Chevron from West Coalinga Field were used in distributing permeability values in 3D reservoir models. Spectral analyses and the Double Trace Moment method (Lavallee et al., 1991) were used to analyze the scaling and multifractality of permeability data from cores from West Coalinga Field. T2VOC, which is a numerical flow simulator capable of modeling multiphase, multi-component, nonisothermal flow, was used to model steam injection and oil production for a portion of section 36D in West Coalinga Field. The layer structure and permeability distributions of different models, including facies group, facies tract, and fractal permeability models, were incorporated into the numerical flow simulator. The injection and production histories of wells in the study area were modeled, including shutdowns and the occasional conversion of production wells to steam injection wells. The framework provided by facies groups provides a more realistic representation of the reservoir conditions than facies tracts, which is revealed by a comparison of the history-matching for the oil production. Permeability distributions obtained using the fractal results predict the high degree of heterogeneity within the reservoir sands of West Coalinga Field. The modeling results indicate that predictions of oil production are strongly influenced by the geologic framework and by the boundary conditions. The permeability data collected from the southern Utah outcrop, support a new concept for representing natural heterogeneity, which is called the fractal/facies concept. This hypothesis is one of the few potentially simplifying concepts to emerge from recent studies of geological heterogeneity. Further investigation of this concept should be done to more fully apply fractal analysis to reservoir modeling and simulation. Additional outcrop permeability data sets and further analysis of the data from distinct facies will be needed in order to fully develop

  20. ORGANIC GEOCHEMISTRY, DEPOSITIONAL ENVIRONMENT AND HYDROCARBON POTENTIAL OF THE TERTIARY OIL SHALE DEPOSITS IN NW ANATOLIA, TURKEY

    E-Print Network [OSTI]

    R. Kara Gülbay; S. Korkmaz

    In this study, organic geochemical characteristics and depositional environ-ment of the Tertiary-aged oil shale deposits in Northwest Anatolia have been examined. Oil shales in all the studied areas are typically characterized by high hydrogen index and low oxygen index values. Beypazar?

  1. Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF

    E-Print Network [OSTI]

    Weston, Ken

    Chemistry of Petroleum Crude Oil Deposits: Sodium Naphthenates 2009 NHMFL Science Highlight for NSF DMR-Award 0654118 Ion Cyclotron Resonance User Program Solid deposits and emulsions from crude oil can that contain carbons, hydrogens, and two oxygen atoms. #12;A major problem in oil production, both

  2. WAX DEPOSITION IN CRUDE OILS: A NEW APPROACH Antonio Fasano -Mario Primicerio

    E-Print Network [OSTI]

    Primicerio, Mario

    WAX DEPOSITION IN CRUDE OILS: A NEW APPROACH Antonio Fasano - Mario Primicerio abstract. The complex phenomenon of solid wax deposition in wax sat- urated crude oils subject to thermal gradients has. Introduction Crude oils are complex mixtures containing parans, aromatics, naph- tenics, resins, asphaltenes

  3. Turbine fuels from tar-sands bitumen and heavy oil. Part 2. Phase II. Laboratory sample production. Interim report, 1 October 1983-31 October 1985

    SciTech Connect (OSTI)

    Talbot, A.F.; Elanchenny, V.; Schwedock, J.P.; Swesey, J.R.

    1986-05-01T23:59:59.000Z

    The conversion of domestic tar-sands bitumens or heavy crude oils into aviation turbine fuels was studied in small scale equipment to demonstrate the process scheme consisting of hydrovisbreaking the bitumen or crude residuum follwed by catalytic hydrotreating or hydrocracking of the resultant naphtha or distillate fractions. Four different feedstocks were employed; two were bitumens (from Kentucky or Utah) and two were heavy crudes from California. Significant operating parameters were examined for each process step. Prototype naphtha and kerosene-type fuel samples compared well with JP-4 and JP-8 specifications, although fuels prepared from Utah bitumen (Sunnyside deposit) were deficient in freeze point. Initiation of Phase III, pilot-plant-scale evaluation of the process is recommended.

  4. Nigeria to step up tar sands activity

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    The Nigerian government has directed its Ministry of Mines, Power and Steel to assume responsibility for the exploration and exploitation of tar sands deposits in Bendel, Ondo and Oyo States. The directive resulted from a survey report by the University of Ife's geological consultancy unit on bituminous sand deposits in the area. The statement said the government was satisfied that there were large commercial quantities of the sands in the three states. The survey had reported that Nigeria could recover between 31 and 40 billion barrels of heavy crude from the tar sand deposits. Exploration for hydrocarbons is currently going on in Anambra and Lake Chad basins as well as the Benue Trough. Apart from the Nigerian National Petroleum Corporation, Shell Petroleum and Gulf Oil have begun exploration activities in the Ondo area. Meanwhile, Nigeria has had to import heavy crude from Venezuela, for processing at the Kaduna refinery.

  5. The effect of asphalt deposition on recovery of oil by a pentane slug

    E-Print Network [OSTI]

    Bhagia, Nanik S

    1965-01-01T23:59:59.000Z

    ":ty reduction increases, in general, with the increase in amount of, asphalt contained ir the oil. The increases in recovery at breakthrough due to asphalt deposition were noted for four asphaltic crude oils and were compared to those of asphalt-free refined... substantial range, the gain in recovery at breakthrough of asphaltic oils over refined oils of the same viscosity increases with increase in size of slug used. This is attributed to more favorable mobility ratios resulting from asphalt deposition during...

  6. In situ method for recovering hydrocarbon from subterranean oil shale deposits

    SciTech Connect (OSTI)

    Friedman, R.H.

    1987-11-03T23:59:59.000Z

    This patent describes in situ method for recovering hydrocarbons from subterranean oil shale deposits, the deposits comprising mineral rock and kerogen, comprising (a) penetrating the oil shale deposit with at least one well; (b) forming a zone of fractured and/or rubbilized oil shale material adjacent the well by hydraulic or explosive fracturing; (c) introducing a hydrogen donor solvent including tetralin into the portion of the oil shale formation treated in step (b) in a volume sufficient to fill substantially all of the void space created by the fracturing and rubbilizing treatment; (d) applying hydrogen to the tetralin and maintaining a predetermined pressure for a predetermined period of time sufficient to cause disintegration of the oil shale material; (e) thereafter introducing an oxidative environment into the portion of the oil shale deposit (f) producing the solvent in organic fragments to the surface of the earth, and (g) separating the organic fragments from the solvent.

  7. Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen

    SciTech Connect (OSTI)

    Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A.

    1988-06-01T23:59:59.000Z

    Today's commercially proved technology to recover oil from the Athabasca oil sands, as practiced by Suncor and Syncrude, involves two major operations, namely: separation of the bitumen from the sand and upgrading of the bitumen to refinery oil. Significant amounts of petroleum coke are produced during the bitumen upgrading process. Suncor burns the bulk of its petroleum coke in boilers to fulfill the energy requirements of the entire operation, still meeting government regulations restricting the amount of sulfur dioxide that can be released to the environment. In contrast, Syncrude is able to burn only 20% of its coke production because of high sulphur dioxide emissions from elsewhere in its operations. The boiler ash (Fly ash) which contains appreciable amounts of metals, such as vanadium, nickel, titianium, iron, aluminum and other elements, is collected in the boiler hoppers and cyclones of the petroleum coke fired steam generation plants. There has been relatively little effort made towards the understanding of the chemical or physical nature of these materials. Knowledge of the physico-chemical properties of these materials will be helpful in assessing their beneficiation and potential use as fuel or metallurigcal coke and the feasibility of extracting some metals, especially Ni and V. In this communication the authors report studies of acid demineralization as a means of reducing ash content of these materials for /sup 13/C NMR spectroscopic investigations.

  8. 5/20/09 9:14 AMPhysics in the oil sands of Alberta -Physics Today March 2009 Page 1 of 4http://ptonline.aip.org/journals/doc/PHTOAD-ft/vol_62/iss_3/31_1.shtml?type=PTFAVE

    E-Print Network [OSTI]

    Podgornik, Rudolf

    New Books New Products Letters Most popular articles Physics in the oil sands of Alberta March 2009 billion barrels. Over the past decade, production of crude oil from the oil sands has grown to well over 15/20/09 9:14 AMPhysics in the oil sands of Alberta - Physics Today March 2009 Page 1 of 4http

  9. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

  10. Shapes and surface textures of quartz sand grains from glacial deposits: effects of source and transport

    E-Print Network [OSTI]

    Ritter, Christine

    1987-01-01T23:59:59.000Z

    and to define the shapes and surface texture characteristics which distinguish them from quartz grains of non-glacial origin, 2) to determine the effects of source rock upon the shapes and surface textures of glacial quartz grains, 3) to determine..., and there are no differences in shapes and surface textures of glacial and proglacial quartz grains. The results show that the shapes and surface textures of glacial quartz sand grains largely reflect, and thus are controlled by, the lithology of the source rock from which...

  11. Depositional environment of upper cretaceous Lewis sandstones, Sand Wash Basin, Colorado

    E-Print Network [OSTI]

    Reinarts, Mary Susan

    1981-01-01T23:59:59.000Z

    of the three types of turbidite channels. After Berg (1978) 44 47 49 50 LIST OF FIGURES - Continued Figure Page lg Idealized depositional model for turbi dite constructional channels. After Berg (1978) 51 20 21 22 23 24 25 26 Regional... (1962) from turbidity current deposits . Bouma 's complete turbi di te is defined as follows: pelitic shale upper unit of parallel laminae D current ripple unit lower unit of parallel laminae 8 massive graded unit In terms of flow regime...

  12. A New Stochastic Modeling of 3-D Mud Drapes Inside Point Bar Sands in Meandering River Deposits

    SciTech Connect (OSTI)

    Yin, Yanshu, E-mail: yys6587@126.com [Yangtze University, School of Geosciences (China)] [Yangtze University, School of Geosciences (China)

    2013-12-15T23:59:59.000Z

    The environment of major sediments of eastern China oilfields is a meandering river where mud drapes inside point bar sand occur and are recognized as important factors for underground fluid flow and distribution of the remaining oil. The present detailed architectural analysis, and the related mud drapes' modeling inside a point bar, is practical work to enhance oil recovery. This paper illustrates a new stochastic modeling of mud drapes inside point bars. The method is a hierarchical strategy and composed of three nested steps. Firstly, the model of meandering channel bodies is established using the Fluvsim method. Each channel centerline obtained from the Fluvsim is preserved for the next simulation. Secondly, the curvature ratios of each meandering river at various positions are calculated to determine the occurrence of each point bar. The abandoned channel is used to characterize the geometry of each defined point bar. Finally, mud drapes inside each point bar are predicted through random sampling of various parameters, such as number, horizontal intervals, dip angle, and extended distance of mud drapes. A dataset, collected from a reservoir in the Shengli oilfield of China, was used to illustrate the mud drapes' building procedure proposed in this paper. The results show that the inner architectural elements of the meandering river are depicted fairly well in the model. More importantly, the high prediction precision from the cross validation of five drilled wells shows the practical value and significance of the proposed method.

  13. Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

  14. Oil and Gas CDT Structural and depositional controls on shale gas resources in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

  15. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 3, Second Wilhelm Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-ACO1-85FE60600 with the United States Department of Energy. This study Appendix III, the second Wilhelm Sand and it's sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can not additionally serve as a take off point for exploitation engineers to develop specific programs towards these ends. 15 figs., 9 tabs.

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study: Appendix 6, First Calitroleum Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-ACO1-85FE60600 with the United States Department of Energy. This study, Appendix VI, addresses the first Calitroleum Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers todevelop specific programs towards these ends. 12 figs., 9 tabs.

  17. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study: Appendix 7, Second Calitroleum Sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 under Contract No. DE-AC0185FE60600 with the United States Department of Energy. This study, Appendix VII, the second Calitroleum Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the U.S. Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verfication. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing futuree recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs towards these ends. 13 figs., 9 tabs.

  18. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 4, Fourth Wilhelm sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.

  19. Demineralization of petroleum cokes and fly ash samples obtained from the upgrading of Athabasca oil sands bitumen

    SciTech Connect (OSTI)

    Majid, A.; Ratcliffe, C.I.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1989-01-01T23:59:59.000Z

    Ash reduction of the cokes and fly ash samples derived from the Athabasca oil sands bitumen was attempted by dissolving the mineral matter in acids. The samples used for this investigation included Syncrude fluid coking coke, Suncor delayed coking coke and the two fly ash samples obtained from the combustion of these cokes. All samples were analyzed for C,H,N,O, and S before and after acid demineralization and the analyses results compared. Further, the ash from the samples before and after acid demineralization was analyzed for silica, alumina, iron titanium, nickel and vanadium to assess the acid leaching of these elements. CP/MAS, /sup 13/C NMR spectroscopic study of the demineralized coke and fly ash samples was also attempted.

  20. Modelling the costs of non-conventional oil: A case study of Canadian bitumen

    E-Print Network [OSTI]

    Méjean, A; Hope, Chris

    in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

  1. Investigation of the thermal conductivity of unconsolidated sand packs containing oil, water, and gas

    E-Print Network [OSTI]

    Gore, David Eugene

    1958-01-01T23:59:59.000Z

    of the requirements for the degree of EASTER OF SCIENCE August, lBSS Najor Subject: Petroleum Engineering INVESTIGATION OF THE THERNAI CONDUCTIVITY OF UNCONSOI IDATED SAND PACKS CONTAINING OII, WATER, AND GAS A Thesis By David E, Gore APProved as to style... expressed in degrees Fahrenheit, and, at 0 oF, , the abscissa would become ini'inite. This restriction does not limit the application of the data to petroleum reservoirs as the tem- perature normally encountered is in excess of 100 oF. The reservoir...

  2. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

  3. Oil shales and tar sands: a bibliography. Supplement 2, Parts 1 and 2

    SciTech Connect (OSTI)

    Grissom, M.C. (ed.)

    1984-07-01T23:59:59.000Z

    This bibliography includes 4715 citations arranged in the broad subject categories: reserves and exploration; site geology and hydrology; drilling, fracturing, and mining; oil production, recovery, and refining; properties and composition; direct uses and by-products; health and safety; marketing and economics; waste research and management; environmental aspects; regulations; and general. There are corporate, author, subject, contract number, and report number indexes.

  4. Combustion turbine deposition observations from residual and simulated residual oil studies

    SciTech Connect (OSTI)

    Whitlow, G.A.; Cohn, A.; Lee, S.Y.; Mulik, P.R.; Sherlock, T.P.; Wenglarz, R.A.

    1983-01-01T23:59:59.000Z

    Burning residual oil in utility combustion turbines and the consequent deposition on blades and vanes may adversely affect reliability and operation. Corrosion and deposition data for combustion turbine materials have been obtained through dynamic testing in pressurized passages. The deposition produced by the 1900/sup 0/F (1038/sup 0/C) combustion gases from a simulated and a real residual oil on cooled Udimet 500 surfaces is described. Higher deposition rates for the doped fuel than for the real residual oil raised questions of whether true simulation with this approach can be achieved. Particles 4-8..mu.. m in diameter predominated in the gas stream, with some fraction in the 0.1-12 ..mu.. m range. Deposition rates seemed to be influenced by thermophoretic delivery of small molten particles, tentatively identified as magnesium pyro and metavanadates and free vanadium pentoxide, which may act to bond the larger solid particles arriving by inertial impaction to turbine surfaces. Estimated maintenance intervals for current utility turbines operating with washed and treated residual oil agreed well with field experience.

  5. Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California

    SciTech Connect (OSTI)

    FOSSUM,ARLO F.; FREDRICH,JOANNE T.

    2000-04-01T23:59:59.000Z

    This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

  6. Society of Petroleum Engineers Oil Deposits in Diatomites: A New Challenge for Subterranean Mechanics

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Society of Petroleum Engineers SPE 75230 Oil Deposits in Diatomites: A New Challenge and D. B. Silin4 Copyright 2002, Society of Petroleum Engineers, Inc. This paper was prepared not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author

  7. Influence of anticlinal growth on upper Miocene turbidite deposits, Elk Hills field, Kern County, California

    SciTech Connect (OSTI)

    Reid, S.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1991-02-01T23:59:59.000Z

    Growth of subsea anticlines during deposition of the upper Miocene 24Z and 26R sandstones at Elk Hills caused the development of several sinuous, lenticular sand bodies. later structural growth enhanced the trap characteristics of these sandstones. Both sandstones are in the uppermost portion of the Elk Hills Shale Member of the Monterey Formation and contain channel-fill and overbank deposits of sand-rich turbidite systems. At the onset of turbidite deposition, low relief subsea anticlines separated broad basins which progressively deepened to the northeast. Channel-fill deposits of coarse-grained sand generally followed the axes of these northwest-southeast-trending basins. At several sites, channel-fill deposits also spilled north across anticlinal axes into the next lower basins. Wide bands of overbank sand and mud were deposited at sand body edges on the flat basin floors. Midway through turbidite deposition, a period of anticlinal growth substantially raised subsea relief. Channel-fill deposits continued in narrower basins but passed north into deeper basin only around well-defined sites at the anticlines' downplunge termini. Narrow basin shapes and higher anticline relief prevented significant overbank deposition. With Pliocene to Holocene uplift of the late Miocene structural trends, stratigraphic mounding of the north-directed channel-fill deposits helped create structural domes at 24Z, 2B and Northwest Stevens pools. In sand bodies lacking significant overbank deposits prevented oil entrapment in sand bodies deposited at times of low anticlinal relief.

  8. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31T23:59:59.000Z

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.

  9. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  10. Effect of asphaltene deposition on the internal corrosion in the oil and gas industry

    SciTech Connect (OSTI)

    Palacios T, C.A. [CORPOVEN S.A., Puerto La Cruz (Venezuela). Gerencia de Ingenieria de Petroleo; Morales, J.L.; Viloria, A. [INTEVEP, S.A., Los Teques (Venezuela). Gerencia de Tecnologia de Materiales

    1997-08-01T23:59:59.000Z

    Crude oil from Norte de Monagas field, in Venezuela, contains large amounts of asphaltenes. Some of them are very unstable with a tendency to precipitate. Because liquid is carried over from the separation process in the flow stations, asphaltenes are also present in the gas gathering and transmission lines, precipitating on the inner wall of pipelines. The gas gathering and transmission lines contain gas with high partial pressures of CO{sub 2}, some H{sub 2}S and are water saturated; therefore, inhibitors are used to control internal corrosion. There is uncertainty on how inhibitors perform in the presence of asphaltene deposition. The purpose of this paper is to describe the causes that enhance asphaltene deposition in gas pipelines and present some results from an ongoing research project carried out by the Venezuelan Oil Companies.

  11. Oil Sands Feedstocks

    Broader source: Energy.gov (indexed) [DOE]

    for the Clean Fuels Market to Utilize Alberta Bitumen % Upgrading Upstream Upgrading Refinery Upgrading T r a n s p o r t a t i o n Synthetic Crude T Wise Purvin & Gertz June 2005...

  12. Alvenus oil spill debris disposal and the potential of land treatment

    E-Print Network [OSTI]

    Clark, Kenneth Gregory

    1988-01-01T23:59:59.000Z

    . The spill generated 50, 717 cubic meters of oil-contaminated sand which was deposited on Galveston Island at four separate locations -- Airport Site A, Airport Site B, County Site and Seawall Site. The sites received 1, 250 m l 5, 700 m ; 8, 640 m... ; and 50, 717 m of oil- 3. 3, 3 contaminated sand, respectively. The debris at these sites remained sparsely vegetated during a two-year observation period. Oil-contaminated sand at the Seawall Site was placed just behind the dune line at the west end...

  13. Norphlet Formation (Upper Jurassic) sand erg: depositional model for northeastern De Soto salt basin, eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Kemmer, D.A.; Reagan, R.L.

    1987-05-01T23:59:59.000Z

    Available well control, seismic reflection geometries, and seismic modeling suggest the interpretation of a Norphlet Formation (Upper Jurassic) sand erg in the northeastern De Soto salt basin. Ranging in thickness from less than 100 ft to nearly 1000 ft, the Norphlet erg encompasses an area of approximately 700 mi/sup 2/. Separated from the major gas accumulation in the Norphlet in the Mobile Bay area by the offshore extension of the Pensacola arch, the Norphlet erg appears to be oriented transverse to the axis of the De Soto salt basin. Seismic signatures for the Smackover carbonate, Norphlet sand, and Louann Salt intervals are investigated using synthetic seismograms generated from six wells in the eastern Gulf of Mexico. General characteristics about the reflection coefficients from the major units in the interval are noted. The reflection coefficient information and synthetic seismograms are used to interpret seismic data on a regional basis. Two-dimensional, vertical-incidence, ray-trace modeling of the seismic data is done to aid the interpretation on a detailed basis. Interpreted Norphlet sandstone thicknesses and Louann Salt structures are combined to support the Norphlet Formation sand erg hypothesis.

  14. Tar sand

    SciTech Connect (OSTI)

    McLendon, T.R.; Bartke, T.C.

    1990-01-01T23:59:59.000Z

    Research on tar sand is briefly discussed. The research program supported by the US Department of Energy (DOE) includes a variety of surface extraction schemes. The University of Utah has process development units (PDU) employing fluidized bed, hot, water-assisted, and fluidized-bed/heat-pipe, coupled combustor technology. Considerable process variable test data have been gathered on these systems: (1) a rotary kiln unit has been built recently; (2) solvent extraction processing is being examined; and (3) an advanced hydrogenation upgrading scheme (hydropyrolysis) has been developed. The University of Arkansas, in collaboration with Diversified Petroleum, Inc., has been working on a fatty acid, solvent extraction process. Oleic acid is the solvent/surfactant. Solvent is recovered by adjusting processing fluid concentrations to separate without expensive operations. Western Research Institute has a PDU-scale scheme called the Recycle Oil Pyrolysis and Extraction (ROPE) process, which combines solvent (hot recycle bitumen) and pyrolytic extraction. 14 refs., 19 figs.

  15. Immobilization of vanadia deposited on catalytic materials during carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Beck, H.W.; Carruthers, J.D.; Cornelius, E.B.; Hettinger, Jr., W.P.; Kovach, S.M.; Palmer, J.L.; Zandona, O.J.

    1988-06-14T23:59:59.000Z

    This patent describes a process for the cracking of a hydrocarbon oil feed having a significant content of at least 0.1 ppm vanadium to lighter oil products. The process consists of contacting the feed under conversion conditions in a conversion zone with a catalyst containing a precipitated metal additive to immobilize vanadium compounds by forming compounds therewith that have melting points above temperatures found in regenerating a coked catalyst; and having catalytic cracking characteristics, coke and vanadium being deposited on the catalyst by the contact; regenerating the coked catalyst in the presence of an oxygen containing gas at a temperature sufficient to remove at least some of the coke, and, recycling the regenerated catalyst to the conversion zone for contact with fresh feed; the metal additive being present on the catalyst in an amount sufficient to immobilize at least a portion of the vanadium compound in the presence of the oxygen containing gas at the catalyst regeneration temperature; wherein the metal additive to immobilize vanadium compounds deposited on the catalyst is selected from the group consisting of Sr, Sc, Y, Nb, and Ta elements, and an element in the actinide series, or a combination of two or more of the elements.

  16. An evaluation of the potential end uses of a Utah tar sand bitumen. [Tar sand distillate

    SciTech Connect (OSTI)

    Thomas, K.P.; Harnsberger, P.M.; Guffey, F.D.

    1986-09-01T23:59:59.000Z

    To date the commercial application of tar sand deposits in the United States has been limited to their use as paving materials for county roads, parking lots, and driveways because the material, as obtained from the quarries, does not meet federal highway specifications. The bitumen in these deposits has also been the subject of upgrading and refining studies to produce transportation fuels, but the results have not been encouraging from an economic standpoint. The conversion of tar sand bitumen to transportation fuels cannot compete with crude oil refining. The purposes of this study were two-fold. The first was to produce vacuum distillation residues and determine if their properties met ASTM asphalt specifications. The second was to determine if the distillates could serve as potential feedstocks for the production of aviation turbine fuels. The bitumen used for this study was the oil produced during an in situ steamflood project at the Northwest Asphalt Ridge (Utah) tar sand deposit. Two distillation residues were produced, one at +316/sup 0/C and one at +399/sup 0/C. However, only the lower boiling residue met ASTM specifications, in this case as an AC-30 asphalt. The original oil sample met specifications as an AC-5 asphalt. These residue samples showed some unique properties in the area of aging; however, these properties need to be investigated further to determine the implications. It was also suggested that the low aging indexes and high flow properties of the asphalts may be beneficial for pavements that require good low-temperature performance. Two distillate samples were produced, one at IBP-316/sup 0/C and one at IBP-399/sup 0/C. The chemical and physical properties of these samples were determined, and it was concluded that both samples appear to be potential feedstocks for the production of aviation turbine fuels. However, hydrogenation studies need to be conducted and the properties of the finished fuels determined to verify the prediction. 14 refs., 12 tabs.

  17. Aviation turbine fuels from tar-sands bitumen and heavy oils. Part 3. Laboratory sample production. Interim technical report, 1 July 1983-30 September 1986

    SciTech Connect (OSTI)

    Moore, H.F.; Johnson, C.A.; Benslay, R.M.; Sutton, W.A.

    1987-12-01T23:59:59.000Z

    The purpose of this research and development project is to provide sample quantities of aviation turbine fuel derived from tar sands and heavy oil feedstocks for testing and evaluation in programs sponsored by the Air Force Wright Aeronautical Laboratories (AFWAL). Samples of specification JP-4 Mil-T-5624L, JP-8 Mil-T-83133A, and variable quality JP-4 samples were produced via pilot plant operations. Data generated from Phases I, II, and III, were used to 1) optimize the processing scheme, 2) generate process material and energy balances for a commercial-sized plant, and 3) provide a detailed final flow diagram of the processing scheme. A final economic analysis was performed based on all contract data available.

  18. Hydrocarbon biomarkers, thermal maturity, and depositional setting of tasmanite oil shales from Tasmania, Australia

    SciTech Connect (OSTI)

    Revill, A.T.; Volkman, J.K.; O'Leary, T. (CSIRO Division of Oceanography, Tasmania (Australia)); Summons, R.E.; Boreham, C.J. (Australian Geological Survey Organisation, Canberra (Australia)); Banks, M.R.; Denwer, K. (Univ. of Tasmania (Australia))

    1994-09-01T23:59:59.000Z

    This study represents the first geological and organic geochemical investigation of samples of tasmanite oil shale representing different thermal maturities from three separate locations in Tasmania, Australia. The most abundant aliphatic hydrocarbon in the immature oil shale from Latrobe is a C[sub 19] tricyclic alkane, whereas in the more mature samples from Oonah and Douglas River low molecular weight n-alkanes dominate the extractable hydrocarbon distribution. The aromatic hydrocarbons are predominantly derivatives of tricyclic compounds, with 1,2,8-trimethylphenanthrene increasing in relative abundance with increasing maturity. Geological and geochemical evidence suggests that the sediments were deposited in a marine environment of high latitude with associated cold waters and seasonal sea-ice. It is proposed that the organism contributing the bulk of the kerogen, Tasmanites, occupied an environmental niche similar to that of modern sea-ice diatoms and that bloom conditions coupled with physical isolation from atmospheric CO[sub 2] led to the distinctive [open quotes]isotopically heavy[close quotes] [delta][sup 13]C values for the kerogen. [delta][sup 13]C data from modern sea-ice diatoms supports this hypothesis. Isotopic analysis of n-alkanes in the bitumen suggests a multiple source from bacteria and algae. On the other hand, the n-alkanes generated from closed-system pyrolysis of the kerogen are mainly derived from the preserved Tasmanites biopolymer algaenan. The tricyclic compounds (mean -8[per thousand]) both in the bitumen and pyrolysate, have a common precursor. They are consistently enriched in [sup 13]C compared with the kerogen and probably have a different source from the n-alkanes. The identification of a location where the maturity of the tasmanite oil shale approaches the [open quotes]oil window[close quotes] raises the possibility that it may be a viable petroleum source rock.

  19. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    EOR continues to unlock oil resources. Oil & Gas Journal, [of conventional oil resource availability. Estimates ofthe tar sands and heavy oil resource in Figure 10. Note that

  20. Economic incentives for hazardous-waste management: Deposit-refunded systems and used lubricating oil

    SciTech Connect (OSTI)

    Belzer, R.B.

    1989-01-01T23:59:59.000Z

    Economic incentives have been widely advocated for controlling environmental externalities. There has been increasing interest in devising such incentives to reduce the generation of hazardous waste. It is demonstrated that since firms comply with existing disposal rules, there is no efficiency basis for additional incentives. In contrast, incentives may be appropriate for firms that do not comply with existing rules. A range of regulatory instruments is compared, including taxes on inputs and waste generation, and subsidies for safe disposal and waste minimization. Each instrument has undesirable properties. Waste-end taxes encourage illegal disposal; safe-disposal subsides stimulate waste generation; and waste-minimization subsidies cannot be effectively targeted. The economic incentive instrument proposed is a combination of input taxes and safe-disposal subsidies, sometime manifest in the deposit-refund system. This instrument is efficiency-enhancing under plausible real-world conditions. The theoretical results are applied to the case of used lubricating oil, a large-volume waste stream that has vexed regulators for many years. An empirical model is developed that enables the simulation of prices, quantities, and net social benefits resulting from the establishment of a tax-subsidy or deposit-refund system. This model accounts for variations in: price-responsiveness; residual external damage from disposal; ex ante rates of regulatory compliance; and the level of transactions costs implied by the program. The instrument offers positive net social benefits, but only under a narrow range of conditions. The model is modified to apply to a generic hazardous waste problem that emphasizes illegal dumping. The existence of positive net social benefits depends on differences in risk across disposal options, the ex ante level of regulatory compliance, and the magnitude of unit transactions costs.

  1. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01T23:59:59.000Z

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  2. SAND REPORT SAND2002-xxxx

    E-Print Network [OSTI]

    Istrail, Sorin

    SAND REPORT SAND2002-xxxx Unlimited Release August 2002 Discrete Optimization Models for Protein by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  3. Determination of toxic elements in the ecological evaluation of metalliferous deposits of heavy oil and natural bitumens

    SciTech Connect (OSTI)

    Goldberg, I.S.

    1995-12-31T23:59:59.000Z

    Elements such as vanadium, nickel, zinc, arsenic, selenium, and mercury are present in highly toxic compounds in many workable deposits of heavy oil and natural bitumens. Refining this raw material and, especially, using the heavy residues as furnace fuel and as binding material for road paving, can lead to contamination of the environment unless measures are taken to remove the metals. Various investigations of the rare and disseminated elements in heavy oil and natural bitumens have encompassed a broad range of problems: (1) In refining, assessing the role of rare elements in technological processes in order to choose the optimal schemes for refining and improving the quality of petroleum products. (2) In protecting the environment and, in particular, identifying toxic compounds in fuel oils which, when burned at power stations, emit a substantial number of harmful substances into the atmosphere. (3) In determining commercial by-products, such as vanadium and nickel, in the petroleum and bitumen raw material.

  4. Land Use Greenhouse Gas Emissions from Conventional Oil

    E-Print Network [OSTI]

    Turetsky, Merritt

    emissions of California crude and in situ oil sands production (crude refineryLand Use Greenhouse Gas Emissions from Conventional Oil Production and Oil Sands S O N I A Y E H and Alberta as examples for conventional oil production as well as oil sands production in Alberta

  5. Division of Oil, Gas, and Mining Permitting

    E-Print Network [OSTI]

    Utah, University of

    " or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

  6. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  7. Comparisons of hydrocarbon and nitrogen distributions in geologically diverse tar sand bitumen

    SciTech Connect (OSTI)

    Holmes, S.A.

    1988-06-01T23:59:59.000Z

    The characteristics of bitumens from different tar sand deposits are generally significantly different and affect the utilization of the resource. The chemical and physical properties of bitumen are a result of maturation reactions on the varied organic sediments. For example, saturated hydrocarbon distributions have been related to the geochemical history of organic matter. Very paraffinic or sometimes paraffinic-naphthenic distributions in organic matter are derived from a nonmarine depositional environment. More aromatic and paraffinic-naphthenic hydrocarbon distributions are derived from organic matter deposited in a marine environment. The characteristics of the bitumen also influence the potential for recovery and subsequent processing of the material. For example, saturated hydrocarbons contribute to the high pour points of recovered oils. The origin and composition of an oil influence its viscosity, API gravity, and coke formation during processing, particularly under low-temperature oxidation conditions. The objective of this work is to determine the chemical and physical properties of several samples of bitumen from geologically diverse tar sand deposits. The compound-type distributions and LTD properties of these bitumens are discussed relative to the depositional environment and processing potential of the organic matter.

  8. An approach for simulation of paraffin deposition in pipelines as a function of flow characteristics with a reference to Teesside oil pipeline

    SciTech Connect (OSTI)

    Hamouda, A.A.; Davidsen, S.

    1995-11-01T23:59:59.000Z

    Paraffin deposition is experienced in pipelines during transportation of oil when the oil temperature is cooled below its paraffin deposition temperature. The formed paraffin crystals in the bulk flow are believed to be transported by molecular, brownian diffusion and shear dispersion. Gravity settling mechanism in previous work in the authors` laboratory has been shown to contribute to the total paraffin deposition, however, to a lesser extent than the above mentioned mechanisms. The work done here demonstrates that the paraffin deposition by molecular diffusion mechanism is a dominant one. This is in agreement with other previous studies done on the paraffin deposition. In this study, however, experimental design was made to quantify this statement. The paraffin concentration gradient (dc/dr) is the driving force of the molecular diffusion mechanism (where r is the pipeline radius). In pipelines the cooling rate is one of many factors that affect the paraffin deposition profile. Equipment was designed to simulate the flow characteristics at pipeline pressure. A three dimensional model was developed for paraffin deposition rates at various flow regimes. The developed experimental approach and the designed equipment for simulating the pipeline conditions are presented in this paper.

  9. Uinta Basin Oil and Gas Development Air Quality Constraints

    E-Print Network [OSTI]

    Utah, University of

    Production EASTERN UTAH BLM Proposed Leasing for Oil Shale and Tar Sands Development "Indian Country" ­ Regulatory Authority Controlled by the Tribes and EPA Oil Shale Leasing Tar Sands Leasing "Indian Country

  10. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  11. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  12. Aviation turbine fuels from tar sands bitumen and heavy oils. Part 2. Laboratory sample production. Technical report, 1 April 1984-31 May 1985

    SciTech Connect (OSTI)

    Moore, H.F.; Johnson, C.A.; Fabry, D.A.; Chaffin, M.H.; Sutton, W.A.

    1987-07-01T23:59:59.000Z

    Phase II work performed on small bench-scale laboratory units was to validate the process variables identified in Phase I. As a part of this effort, samples (quantity 500 ML to 1000 ML) of JP4, JP8, were produced and submitted to AFWAL for their evaluation. Detailed characterizations of the tar sand feedstocks and product samples were performed. From the data generated in Phase II, specific goals and tests were outlined for Phase III of the program.

  13. Correlation of dynamic relative permeability frontal advance concepts and laboratory data for a system of water displacing oil from a multifluid saturated sand

    E-Print Network [OSTI]

    Mills, George Ernest

    1959-01-01T23:59:59.000Z

    THE CALCULATED VALUES HOWEVERS AT THE Hl GH GAS SATURAT ION RANGE & AS SEEN IN FIGURE 8& THE USE OF TH I S ASSUMPTION TO CALCULATE BREAKTHROUGH TIME DID NOT YIELD RESULTS AS WELL AS THE ASSUMPTION THAT THE GAS PRESENT AFFECTS NE I THER OIL OR WATER... AS WELL AS METHOD 2 WHERE IT WAS AS- SUMED THAT THE GAS PRESENT HAD NO AFFECT ON E I THER OIL OR WATER RELATIVE PERMEAB IL I T I ES, F I GORE 9 I S A TYP I CAL CURVE SHOW I NG THE VAR I AT I ON I N PRODUCING WATER ? OIL RATIO WITH CUMULATIVE RECOVERY...

  14. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

  15. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

  16. Evaluation of Wax Deposition and its Control during Production of Alaska North Slope Oils

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-l 1, 13Evacuation248 Evaluation of Wax Deposition and

  17. RAILROAD STRATEGY FOR CRUDE OIL TRANSPORT: Considering Public Policy and Pipeline Competition

    E-Print Network [OSTI]

    Entekhabi, Dara

    of crude oil transportation by rail from the Alberta oil sands has been slower than the growth, stakeholders, and objectives for the bitumen transport system from the Alberta oil sands, and reviews: Existing railroad network: Some products shipped: Fig. 1: Predicted oil sands production growth

  18. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S. [Dept. of Energy, Tupman, CA (United States); Shiflett, D.W. [Intera Petroleum Technology, Inc., Bakersfield, CA (United States); Deutsch, H.A. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States)] [and others

    1996-12-31T23:59:59.000Z

    The {open_quotes}A{close_quotes} sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the {open_quotes}N Point{close_quotes} stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  19. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S. (Dept. of Energy, Tupman, CA (United States)); Shiflett, D.W. (Intera Petroleum Technology, Inc., Bakersfield, CA (United States)); Deutsch, H.A. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)) (and others)

    1996-01-01T23:59:59.000Z

    The [open quotes]A[close quotes] sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the [open quotes]N Point[close quotes] stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  20. The extraction of bitumen from western tar sands

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01T23:59:59.000Z

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  1. The extraction of bitumen from western tar sands. Annual report

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Deo, M.D.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1990-07-01T23:59:59.000Z

    Topics discussed include: characterization of bitumen impregnated sandstone, water based tar sand separation technology, electrophoretic characterization of bitumen and fine mineral particles, bitumen and tar sand slurry viscosity, the hot water digestion-flotation process, electric field use on breaking water-in-oil emulsions, upgrading of bitumens and bitumen-derived liquids, solvent extraction.

  2. Reservoir characterization of the upper Merecure and lower Oficina Formations sands in the Leona Este Field, Eastern Venezuela Basin 

    E-Print Network [OSTI]

    Flores Millan, Maria Carolina

    2001-01-01T23:59:59.000Z

    The "S5", "T" and "U1" sands, traditionally described as part of the lower section of the "Oficina" Formation, and the "U2" sand, as part of the upper interval of the "Merecure" Formation, contain the largest oil remaining ...

  3. Miocene sand distribution of the South Marsh Island and the Vermillion area, offshore Louisiana, Gulf of Mexico

    E-Print Network [OSTI]

    Kim, Jingoo

    1997-01-01T23:59:59.000Z

    This study investigates the Miocene sand distribution of offihore central Louisiana, Gulf of Mexico. Investigating the distribution of this sand, which plays an important role as a reservoir for oil and gas, contributes to petroleum exploration...

  4. SAND REPORT SAND2005-7937

    E-Print Network [OSTI]

    systems, but remain unlikely given the difficulty in operating large infrastructures even with modern Supervisory Control And Data Acquisition (SCADA) systems. The solution is management by distributed softwareSAND REPORT SAND2005-7937 Unlimited Release Printed January 2006 Agent-Based Control of Distributed

  5. SAND REPORT SAND2001-3515

    E-Print Network [OSTI]

    Hart, William E.

    SAND REPORT SAND2001-3515 Unlimited Release Printed April 2002 DAKOTA, A Multilevel Parallel Object by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  6. SAND REPORT SAND2001-3796

    E-Print Network [OSTI]

    Hart, William E.

    SAND REPORT SAND2001-3796 Unlimited Release Printed April 2002 DAKOTA, A Multilevel Parallel Object by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  7. SAND REPORT SAND2004-2871

    E-Print Network [OSTI]

    Bochev, Pavel

    SAND REPORT SAND2004-2871 Unlimited Release August 19, 2004 A Mathematical Framework for Multiscale Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  8. SAND REPORT SAND2003-0112

    E-Print Network [OSTI]

    Fuerschbach, Phillip

    SAND REPORT SAND2003-0112 Unlimited Release Printed January 2003 Cold War Context Statement Sandia of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  9. SAND REPORT SAND2003-3410

    E-Print Network [OSTI]

    Ho, Cliff

    SAND REPORT SAND2003-3410 Unlimited Release Printed September 2003 Chemiresistor Microsensors for In-Situ Monitoring of Volatile Organic Compounds: Final LDRD Report Clifford K. Ho, Lucas K. Mc Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination

  10. SAND REPORT SAND2001-3514

    E-Print Network [OSTI]

    Hart, William E.

    SAND REPORT SAND2001-3514 Unlimited Release Printed April 2002 DAKOTA, A Multilevel Parallel Object by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  11. SAND REPORT SAND2003-2927

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SAND REPORT SAND2003-2927 Unlimited Release Printed August 2003 An Overview of Trilinos Michael Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  12. SAND REPORT SAND2004-1777

    E-Print Network [OSTI]

    Walker, Homer F.

    SAND REPORT SAND2004-1777 Unlimited Release Printed May 2004 Globalization techniques for Newton by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  13. SAND REPORT SAND2003-0799

    E-Print Network [OSTI]

    Ho, Cliff

    SAND REPORT SAND2003-0799 Unlimited Release Printed March 2003 Field Demonstrations Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. #12;2 Issued by Sandia National Laboratories, operated for the United States Department of Energy

  14. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31T23:59:59.000Z

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

  15. The potential use of tar sand bitumen as paving asphalt

    SciTech Connect (OSTI)

    Petersen, J.C.

    1988-01-01T23:59:59.000Z

    In this paper several research reports describing the preparation of potential paving asphalts from tar sand bitumen are reviewed and the results of the studies compared. The tar sand asphalts described in the studies were prepared from 1) hot water-recovered bitumen from deposits near San Luis Obispo, California (Edna deposits), and deposits near Vernal and Sunnyside, Utah; and 2) bitumen recovered from the Northwest Asphalt Ridge deposits near Vernal, Utah, by both in situ steamflood and in situ combustion recovery processes. Important properties of the tar sand asphalts compare favorably with those of specification petroleum asphalts. Laboratory data suggest that some tar sand asphalts may have superior aging characteristics and produce more water-resistant paving mixtures than typical petroleum asphalts.

  16. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01T23:59:59.000Z

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  17. Process for removing heavy metal compounds from heavy crude oil

    DOE Patents [OSTI]

    Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

    1991-01-01T23:59:59.000Z

    A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

  18. INTERCOMPARISON STUDY OF ELEMENTAL ABUNDANCES IN RAW AND SPENT OIL SHALES

    E-Print Network [OSTI]

    Fox, J.P.

    2011-01-01T23:59:59.000Z

    Minor Elements ~n Oil Shale and Oil-Shale Products. LERC RI-Analytical Chemistry of Oil Shale and Tar Sands. Advan. inH. Meglen. The Analysis of Oil-Shale Materials for Element

  19. USE OF ZEEMAN ATOMIC ABSORPTION SPECTROSCOPY FOR THE MEASUREMENT OF MERCURY IN OIL SHALE GASES

    E-Print Network [OSTI]

    Girvin, D.G.

    2011-01-01T23:59:59.000Z

    Minor Elements in Oil Shale and Oil-Shale Products. LERC RIChemistry of Tar Sands and Oil Shale, ACS, New Orleans.Constituent Analysis of Oil Shale and Solvent-Refined Coal

  20. Turbine fuels from tar-sands bitumen and heavy oil. Volume 2. Phase 3. Process design specifications for a turbine-fuel refinery charging San Ardo heavy crude oil. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Swesey, J.R.; Magill, L.G.

    1987-09-01T23:59:59.000Z

    An engineering design was developed for a 50,000-BPSD grass-roots refinery to produce aviation turbine fuel grades JP-4 and JP-8 from San Ardo heavy crude oil. The design was based on the pilot-plant studies described in Phase III - Volume I of this report. The detailed plant design described in this report was used to determine estimated production costs.

  1. Geological evaluation of San Diego Norte Pilot Project, Zuata area, Orinoco Oil Belt, Venezuela

    SciTech Connect (OSTI)

    De Rojas, I.

    1987-10-01T23:59:59.000Z

    The San Diego Norte Pilot Project consists of twelve inclined wells (7 producing wells 300 m (984 ft) apart, plus 5 observation wells) drilled from a cluster, to study the production and compaction behavior under steam soak (huff and puff) of the Tertiary heavy crude oil reservoirs of the Zuata area. This area is located within the Orinoco Heavy Oil belt of Venezuela. A geological model was needed as a base for the reservoir studies and to understand the geological setting. This model was constructed from extensive log information, seismic lines, well samples, and cores. The reservoir sands are friable with an average porosity of 34% and permeabilities ranging from 1 to 7 ..mu..m/sup 2/ (1 to 7 darcys). The sands were deposited in meander belts that stacked up forming multistory bodies. Point bars and channel fills account for 80-90% of the total sand. These sands are internally heterogeneous, sinuous and elongated, and larger than the 1 km/sup 2/ area covered by the project. The topmost two productive sands, which together average 22 m (72 ft), show the best porosities and permeabilities and are isolated by thick clays that make them suitable for selective steam injection. In the project, the oil has a density of about 1.0 g/cm/sup 3/ (10/sup 0/ API) and fills all the sands down to the oil-water contact. The depth of this contact is controlled by regional faults. Based on core compressibility tests, compaction is expected to be the principal production mechanism that could increase the expected primary recovery of 4 to 12% by huff and puff steam injection, leading to a possible recovery of 0.64 x 10/sup 6/ m/sup 3/ (4 million bbl) in six years with four cycles of steam injection. 16 figures, 2 tables.

  2. SAND78-1563

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to current standards. SAND78-1563 VIND CHARACTERISTICS FOR FIELD TESTING OF WIND ENERGY CONVERSION SYSTEMS Robert E. Akins Environmental Research Division Sandia...

  3. SAND90-7111

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Gregorek Department of Aeronautical and Astronautical Engineering The Ohio State University Columbus, OH 43220 SNLA LIBRARY II lllll 1 III SAND90-7111 Printed April 1991...

  4. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  5. Determining sand-body geometries for waterflood reservoirs: Examples from Oklahoma

    SciTech Connect (OSTI)

    Kreisa, R.D.; Pinero, E. (Mobil Research and Development Corp., Dallas, TX (USA))

    1987-02-01T23:59:59.000Z

    Waterflood projects require an accurate knowledge of reservoir geometry and well-to-well continuity. However, sandstones with thin, multiple-pay zones can be extremely difficult to correlate with confidence. Two case studies of Pennsylvanian sandstones in Oklahoma illustrate how a model for the depositional history of such reservoirs can be an effective tool for determining reservoir continuity. In contrast, correlation criteria such as similar wireline log signatures and relative sand-body thicknesses are not reliable in many situations. In Southwest Logan field (Beaver County), 5 to 15-ft thick reservoir sands formed as shallow marine sand ridges. Their dimensions were approximated from height-to-width ratios of modern sand ridges. Then the reservoir sands were mapped using wireline logs and core data. Individual reservoir sands were approximately 1-2 km wide and stacked en echelon vertically. Thus, a line-drive waterflood pattern oriented parallel to the axes of the ridges is recommended. Tatums field (Carter County) consists of 5 to 50-ft thick sandstones deposited in various deltaic environments. Distributary channel sands have good continuity downdip, but are narrow and lenticular across depositional strike. Crevasse splay and other bay-fill sands were deposited marginal to the channels and are extremely discontinuous. This depositional model can be used to improve flood patterns for these sands, leading to improved sweep efficiency. In both examples, for effective mapping, the depositional facies models have been used to register reservoir quality and wireline log signatures.

  6. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    West, C. : Highlighting heavy oil, Oilfield Rev. , 34–53,and enhancement of Mo-heavy oil interaction, Fuel, 83,sticky extra-heavy crude oil that is “unconventional”,

  7. Aspects of tar sands development in Nigeria

    SciTech Connect (OSTI)

    Adewusi, V.A. (Dept. of Chemical Engineering, Obafemi Awolowo Univ., Ile-Ife (NG))

    1992-07-01T23:59:59.000Z

    Development of Nigerian massive reserves of crude bitumen and associated heavy oil is imminent in view of the impacts that the huge importation of these materials and their products have on the nation's economy, coupled with the depleting reserves of Nigeria and highlights the appropriate production technology options and their environmental implications. The utilization potentials of these resources are also enumerated, as well as the government's role in achieving accelerated, long-term tar sands development in the country.

  8. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  9. System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves

    DOE Patents [OSTI]

    Towler, Brian F. (Laramie, WY)

    2007-09-04T23:59:59.000Z

    A method for mitigating the deposition of wax on production tubing walls. The method comprises positioning at least one ultrasonic frequency generating device adjacent the production tubing walls and producing at least one ultrasonic frequency thereby disintegrating the wax and inhibiting the wax from attaching to the production tubing walls. A system for mitigating the deposition of wax on production tubing walls is also provided.

  10. Method and apparatus for hydrocarbon recovery from tar sands

    DOE Patents [OSTI]

    Westhoff, J.D.; Harak, A.E.

    1988-05-04T23:59:59.000Z

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000/degree/F in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs. 1 fig., 1 tab.

  11. Method and apparatus for hydrocarbon recovery from tar sands

    DOE Patents [OSTI]

    Westhoff, James D. (Laramie, WY); Harak, Arnold E. (Laramie, WY)

    1989-01-01T23:59:59.000Z

    A method and apparatus for utilizing tar sands having a broad range of bitumen content is disclosed. More particularly, tar sands are pyrolyzed in a cyclone retort with high temperature gases recycled from the cyclone retort to produce oil and hydrocarbon products. The spent tar sands are then burned at 2000.degree. F. in a burner to remove residual char and produce a solid waste that is easily disposable. The process and apparatus have the advantages of being able to utilize tar sands having a broad range of bitumen content and the advantage of producing product gases that are free from combustion gases and thereby have a higher heating value. Another important advantage is rapid pyrolysis of the tar sands in the cyclone so as to effectively utilize smaller sized reactor vessels for reducing capitol and operating costs.

  12. 1 What is Oil ? General information

    E-Print Network [OSTI]

    Kammen, Daniel M.

    such as shale oil or synthetic crude oil from tar sands (see Table 4.1). A whole range of petroleum products69 1 What is Oil ? General information Petroleum is a complex mixture of liquid hydrocarbons in sedimentary rock. Coming from the Latin petra, meaning rock, and oleum, meaning oil, the word "petroleum

  13. Petrographic, stratigraphic, and structural study of the Smackover gray sand (Jurassic) in north Louisiana

    SciTech Connect (OSTI)

    Miciotto, S.A.

    1980-01-01T23:59:59.000Z

    The gas-producing gray sand, a dark gray to black, very fine-grained sand, occurs as 3 sand tongues in the lower member of the Smackover Formation in the subsurface of Bossier, Webster, Claiborne, and Lincoln parishes, Louisiana. A Flaser-bedded silty shale facies indicates deposition on a mid-tidal flat environment. Smackover deposition during the Jurassic in the study area was located on the gently dipping slope between a broad coastal shelf to the north and a basin to the south. The gray sand was deposited over the Norphlet formation and Louann salt before flowage and swelling of the Louann salt began. Uplift and swelling of the Louann salt later in the Jurassic created growing anticlines; sediment slumped off the structural highs of the growing salt anticlines into basinal muds and silts. The Smackover gray sand continues to challenge exploration geologists because of the lateral pinch out of its sand tongues. 11 references.

  14. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  15. Heats of dissolution of tar sand bitumen in various solvents

    SciTech Connect (OSTI)

    Ensley, E.K.; Scott, M.

    1988-05-01T23:59:59.000Z

    The dissolution of tar sand bitumen from a tar sand matrix was examined using three solvents: (1) dichloromethane, a polar-polarizable solvent; (2) toluene, a nonpolar-polarizable solvent; and (3) hexane, a nonpolar-nonpolarizable solvent. The dichloromethane had the highest dissolution energy, followed by toluene, with hexane having the lowest dissolution energy. These data were combined with heat of dissolution of recovered bitumen and heat of wetting of spent sand to calculate the bonding energy between bitumen and the mineral matrix. The interfacial bonding energy between tar sand bitumen and the mineral matrix was found to be in the region of 0 to 0.09 cal/g of bitumen, which is very small. This conclusion may find application in recovery of energy or bitumen from bitumen-wet tar sand deposits. 9 refs., 2 tabs.

  16. SAND20096226 Unlimited Release

    E-Print Network [OSTI]

    Plimpton, Steve

    SAND2009­6226 Unlimited Release Printed October 2009 Crossing the Mesoscale No-Man's Land via method and its variants are powerful tools for modeling materials at the mesoscale, meaning at length

  17. Improved oil recovery using horizontal wells at Elk Hills, California

    SciTech Connect (OSTI)

    Gangle, F.J.; Schultz, K.L.; McJannet, G.S.; Ezekwe, N.

    1995-03-01T23:59:59.000Z

    Eight horizontal wells have been drilled and completed in a steeply dipping Stevens sand reservoir in the Elk Hills field, Kern County, California. The subject reservoir, called the Stevens 26R, is a turbidite channel sand deposit one mile wide, three miles long, and one mile deep. Formation beds have a gross thickness up to 1,500 feet and dips as high as 60 degrees on the flanks. The original oil column of 1,810 feet has been pulled down to 200 feet by continual production since 1976. The reservoir management operating strategy has been full pressure maintenance by crestal gas injection since 1976. The steep dip of the formation makes gravity drainage the dominant drive mechanism. Additionally, improved recovery is coming from cycling dry gas through the large secondary gas cap region. The prudent placement of the horizontal wells above the oil/water contact promises to improve oil recovery and extend the operating life of the reservoir. Field results are given to compare the performance of the horizontal wells with the conventional wells. The horizontal wells produce at higher rates, lower draw downs, and lower gas/oil ratio which will extend the life of the project and result in higher recovery.

  18. Process for upgrading tar sand bitumen

    SciTech Connect (OSTI)

    Bartholic, D.B.; Reagan, W.J.

    1989-04-04T23:59:59.000Z

    A process is described for upgrading a charge of a tar sand bitumen concentrate containing mineral matter including fine particles which comprises contacting the charge in a riser in the presence of a low boiling organic solvent diluent with finely divided attrition-resistant particles of a hot fluidizable substantially catalytically inert solid which is substantially chemically inert to a solution of mineral acid. The contact of the charge with the particles is at high temperature and short contact time to vaporize the high hydrogen containing components of the bitumen, the period of time being less than that which induces substantial thermal cracking of the charge, at the end of the time separating the vaporizing product from the fluidizable particles. The fluidizable particles now bear a deposit of both combustible solid, adherent particles of fine particles of mineral matter and metals. The particles of inert solid are passed with deposit of combustibles and fine particles of mineral matter to a regenerator to oxidize the combustible portion of the deposits, removing at least a portion of deposit of mineral matter and metals by removing the inert solid from the regenerator and contacting removed inert solid with a hot mineral acid, and recirculating fluidizable solid depleted at least in part of deposited mineral matter to contact with incoming charge of tar sand bitumen concentrate and diluent.

  19. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  20. Oils and source rocks from the Anadarko Basin: Final report, March 1, 1985-March 15, 1995

    SciTech Connect (OSTI)

    Philp, R. P. [School of Geology and Geophysics, Univ. of Oklahoma, Norman, OK (United States)

    1996-11-01T23:59:59.000Z

    The research project investigated various geochemical aspects of oils, suspected source rocks, and tar sands collected from the Anadarko Basin, Oklahoma. The information has been used, in general, to investigate possible sources for the oils in the basin, to study mechanisms of oil generation and migration, and characterization of depositional environments. The major thrust of the recent work involved characterization of potential source formations in the Basin in addition to the Woodford shale. The formations evaluated included the Morrow, Springer, Viola, Arbuckle, Oil Creek, and Sylvan shales. A good distribution of these samples was obtained from throughout the basin and were evaluated in terms of source potential and thermal maturity based on geochemical characteristics. The data were incorporated into a basin modelling program aimed at predicting the quantities of oil that could, potentially, have been generated from each formation. The study of crude oils was extended from our earlier work to cover a much wider area of the basin to determine the distribution of genetically-related oils, and whether or not they were derived from single or multiple sources, as well as attempting to correlate them with their suspected source formations. Recent studies in our laboratory also demonstrated the presence of high molecular weight components(C{sub 4}-C{sub 80}) in oils and waxes from drill pipes of various wells in the region. Results from such a study will have possible ramifications for enhanced oil recovery and reservoir engineering studies.

  1. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  2. CONTRACTOR REPORT SAND927005

    E-Print Network [OSTI]

    CONTRACTOR REPORT SAND92­7005 Unlimited Release UC­261 Fatigue of Fiberglass Wind Turbine Blade WIND TURBINE BLADE MATERIALS J.F. Mandell, R.M. Reed, D.D. Samborsky Montana State University Bozeman in wind turbine blades has been explored. Coupon testing was carried out under constant amplitude tensile

  3. SAND932591 Unlimited Release

    E-Print Network [OSTI]

    McCurley, Kevin

    SAND93­2591 Unlimited Release First Printed October 1992 Revised October 29, 1993 Revised June 22. This new algorithm is called SHA­1. In this report we describe a portable and efficient implementation information used in their construction. \\Lambda This work was performed under U.S. Department of Energy

  4. ERCB updates estimated reserves of crude bitumen and synthetic crude oil

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    The Alberta Energy Resources Conservation Board prepares yearly updates of Alberta reserves of crude bitumen and synthetic crude oil. The latest figures are as of the end of 1985. Alberta's crude bitumen reserves are contained in designated deposits with the oil sand areas of Athabasca, Cold Lake, and Peace River. The total initial volume of crude bitumen in-place for the designated deposits at December 31, 1985 was estimated as 266.4 billion cubic meters. Within the potentially mineable areas, the initial mineable volume in-place of crude bitumen was established to be 11.9 billion cubic meters. After allowing for surface facilities (plant sites, tailings ponds, discard dumps), environmental protection corridors along major rivers, isolated mineable areas, and assuming a combined mining/extraction recovery factor of 0.78, the resulting initial established mineable reserve of crude bitumen is estimated to be 5.2 billion cubic meters. Data are presented in three tables.

  5. Shale oil demetallization process

    SciTech Connect (OSTI)

    Silverman, M. A.

    1985-08-13T23:59:59.000Z

    Trace metals, particularly As, Fe and Ni, are removed from hydrocarbonaceous oils, particularly shale oil by contacting the shale oil with quadrolobe alumina with or without a processing gas such as hydrogen or nitrogen at 500/sup 0/ F. to 800/sup 0/ F. at 250 to 750 psig and LHSV of 0.4 to 3.0 to deposit a portion of said trace metal onto said alumina and recover an oil product having substantially reduced amounts of trace metal.

  6. Lithology and cyclicity in the deposition of the Middle Ordovician McKee Sand member of the Tulip Creek Formation (Simpson Group) in the Tobosa Basin of Southeast New Mexico and West Texas

    E-Print Network [OSTI]

    Bosco, Michael John

    1999-01-01T23:59:59.000Z

    The lower Paleozoic rocks deposited on the inner craton of North America are characterized by thick sections of carbonate rocks separated by thin units of sandstones and shales. The origins of these sandstones are poorly understood...

  7. SANDIA REPORT SAND95-8223 q UC-404

    E-Print Network [OSTI]

    by coupling the OPT++ optimization library to the TAC02D finite element heat transfer code. The optimizationSANDIA REPORT SAND95-8223 q UC-404 Unlimited Release Printed April 1995 , . Optimal Heat Transfer UC-404 Optimal Heat Transfer Design of Chemical Vapor Deposition Reactors Christopher D. Moen

  8. Case study of a multiple sand waterflood, Hewitt Unit, OK

    SciTech Connect (OSTI)

    Ruble, D.B.

    1982-03-01T23:59:59.000Z

    Twenty-two sands in the Hewitt field have been flooded simultaneously by Exxon Co. U.S.A.'s Hewitt Unit, and a case history of the operations is detailed. A multiple sand waterflood project requires special optimization methods to improve oil recovery. Injection and production surveillance programs and optimization methods used are highlighted. These include injection wellbore design, injection distribution, production stimulation, polymer augmented injection, and infill drilling. Successful application of these techniques has increased ultimate recovery from this waterflood operation. 3 refs.

  9. Compressive behavior of fine sand.

    SciTech Connect (OSTI)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01T23:59:59.000Z

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  10. Reservoir characterization of the upper Merecure and lower Oficina Formations sands in the Leona Este Field, Eastern Venezuela Basin

    E-Print Network [OSTI]

    Flores Millan, Maria Carolina

    2001-01-01T23:59:59.000Z

    The "S5", "T" and "U1" sands, traditionally described as part of the lower section of the "Oficina" Formation, and the "U2" sand, as part of the upper interval of the "Merecure" Formation, contain the largest oil remaining reserves of the Leona Este...

  11. SAND88-1807

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember11-3779SAND88-1807 * UC-261 Unlimited

  12. SAND92-1381

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember11-3779SAND88-1807 * UC-261 Unlimited2-1

  13. SAND94-1057

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember11-3779SAND88-1807 * UC-261 Unlimited2-1c.1

  14. SAND94-3039

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonantNovember11-3779SAND88-1807 * UC-261

  15. Production of bitumen-derived hydrocarbon liquids from Utah's tar sands: Final report

    SciTech Connect (OSTI)

    Oblad, A.G.; Hanson, F.V.

    1988-07-01T23:59:59.000Z

    In previous work done on Utah's tar sands, it had been shown that the fluidized-bed pyrolysis of the sands to produce a bitumen-derived hydrocarbon liquid was feasible. The research and development work conducted in the small-scale equipment utilized as feed a number of samples from the various tar sand deposits of Utah elsewhere. The results from these studies in yields and quality of products and the operating experience gained strongly suggested that larger scale operation was in order to advance this technology. Accordingly, funding was obtained from the State of Utah through Mineral Leasing Funds administered by the College of Mines and Earth Sciences of the University of Utah to design and build a 4-1/2 inch diameter fluidized-bed pilot plant reactor with the necessary feeding and recovery equipment. This report covers the calibration and testing studies carried out on this equipment. The tests conducted with the Circle Cliffs tar sand ore gave good results. The equipment was found to operate as expected with this lean tar sand (less than 5% bitumen saturation). The hydrocarbon liquid yield with the Circle Cliffs tar sand was found to be greater in the pilot plant than it was in the small unit at comparable conditions. Following this work, the program called for an extensive run to be carried out on tar sands obtained from a large representative tar sand deposit to produce barrel quantities of liquid product. 10 refs., 45 figs., 11 tabs.

  16. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  17. An Investigation for Disposal of Drill Cuttings into Unconsolidated Sandstones and Clayey Sands

    SciTech Connect (OSTI)

    Mese, Ali; Dvorkin, Jack; Shillinglaw, John

    2000-09-11T23:59:59.000Z

    This project include experimental data and a set of models for relating elastic moduli/porosity/texture and static-to-dynamic moduli to strength and failure relationships for unconsolidated sands and clayey sands. The results of the project should provide the industry with a basis for wider use of oil base drilling fluids in water sensitive formations by implementing drill cutting injection into existing wells at abandoned formations and controlling fracture geometry to prevent ground water contamination.

  18. Relationships of seismic amplitudes and gas content of the Miocene Amos Sand, Mobile Bay area, offshore Alabama

    SciTech Connect (OSTI)

    Reif, L.T. (Mobil Oil Company, New Orleans, LA (United States)); Kinsland, G.L. (Univ. of Southwestern Louisiana, Lafayette, LA (United States))

    1993-09-01T23:59:59.000Z

    Mobil Oil Company has collected three-dimensional (3-D) seismic data over Mary Ann field in the Mobile Bay area, Alabama. Although the survey was designed and collected so as to image the deeper Norphlet Sands, amplitude anomalies in the image of the shallow Miocene Amos Sand are evident. Relationships are developed between the seismic amplitudes and net feet of gas in the Amos Sand at the few existing wells. These relationships are used to predict net feet of gas everywhere in the area of the seismic survey. The result is a contoured map of net feet of gas in the Miocene Amos Sand in Mary Ann field.

  19. Method of separating oil or bitumen from surfaces covered with same

    SciTech Connect (OSTI)

    Keane, J.

    1987-11-03T23:59:59.000Z

    A method of separating oil or bitumen from tar or oil sand without a surfactant is described which comprises the steps of: (a) grinding the sand in the presence of a predetermined amount of a halohydrocarbon solvent to reduce lumps of the sand to a finely divided sand grains and dissolve the oil or bitumen covering the sand grains to form a solution containing a predetermined concentration of the oil or bitumen; (b) after step (a), mixing the finely divided sand grains and the oil or bitumen solution formed in step (a) with water, (c) adding additional halohydrocarbon solvent to the water-wet sand produced in step (b) in an amount sufficient to substantially reduce the strength and thickness of the membrane-like material; and (d) mixing additional water with the mixture produced in step (c) under conditions of agitation of the sand grains sufficient to remove entrapped oil or bitumen solution from the water sand, thereby obtaining free-flowing, water-wet sand particles.

  20. Quantifying the benefits of hybrid vehicles

    E-Print Network [OSTI]

    Turrentine, Tom; Delucchi, Mark; Heffner, Reid R.; Kurani, Kenneth S; Sun, Yongling

    2006-01-01T23:59:59.000Z

    in deep-sea deposits, heavy oils, and tar sands. Ominously,Includes crude oil, light products, and heavy products.

  1. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01T23:59:59.000Z

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  2. Holocene stratigraphy of the Alabama inner continental shelf: Influence of shelf sand ridges on determining lithofacies architecture

    SciTech Connect (OSTI)

    Davies, D.J.; Parker, S.J. (Geological Survey of Alabama, Tuscaloosa, AL (United States). Energy and Coastal Geology Div.)

    1993-03-01T23:59:59.000Z

    Surface and subsurface distribution of lithofacies from Holocene sediments of the AL inner continental shelf was determined from a series of 59 vibracores and associated surface sediment grab sediments. Five Holocene lithofacies composed of 12 discrete microfacies were delineated based on grain size, color, sedimentary structures, shell content, and fabric of samples. These lithofacies include: (1) Graded Shelly Sand Lithofacies; (2) Clean Sand Lithofacies; (3) Dirty Sand Lithofacies; (4) Biogenic Sediment Lithofacies; and (5) Muddy Sediment Lithofacies. These represent four major depositional environments: The Shelf Sand Sheet Environment (lithofacies 1 and 2); the Sand Ridge Environment (lithofacies 1, 2, and 3); the Bay/Lagoon Environment (lithofacies 3, 4 and 5); and the Muddy Shelf Environment (lithofacies 5). East of the Main Pass of Mobile Bay, the seafloor is composed of a clean Shelf Sand Sheet with oblique shelf sand ridges; Clean Sand and Graded Shelly Sand are the dominant surface sediment types. Coarse shell beds that grade up to quartz sand units (total thickness 0.1 to 3+m) interpreted as tempestites comprise most of the upper portion of the ridges. West of the Pass, the muddier lithofacies (3 and 5) dominate surface samples. Microfacies at depth represent the early Holocene transgressive systems tract; these include the Muddy Shelf Depositional Environment and the filled estuaries and bays of the flooded Pleistocene fluvial valleys represented by the Bay/Lagoon Depositional Environment. The AL inner shelf provides an excellent model of the variability of sedimentation mode in time and space during deposition of a transgressive systems tract. Development of the palimpsest sand sheet/ridge complex progressed on the eastern shelf due to shut off of sediment influx, westward longshore currents, and episodic incidence of major hurricanes. On the western shelf a patchy distribution of muddier sediments developed from input of floodwaters from Mobile Bay.

  3. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

  4. Moving Canadian Oil to Markets: The Economic Dimensions

    E-Print Network [OSTI]

    Calgary, University of

    Handbook 0 10000 20000 30000 40000 50000 60000 Crude Oil and Condensate Oil Sands Natural Gas NGLs Sulphur Natural Gas Conventional Crude Oil Coal Bitumen Billionof2002$ PV of energy natural resouces in 2011 of the economy and prosperity · But this requires additional transportation infrastructure to access higher value

  5. Study of Reservoir Heterogencities and Structural Features Affecting Production in the Shallow Oil Zone, Eastern Elk Hills Area, California

    SciTech Connect (OSTI)

    Janice Gillespie

    2004-11-01T23:59:59.000Z

    Late Neogene (Plio-Pleistocene) shallow marine strata of the western Bakersfield Arch and Elk Hills produce hydrocarbons from several different reservoirs. This project focuses on the shallow marine deposits of the Gusher and Calitroleum reservoirs in the Lower Shallow Oil Zone (LSOZ). In the eastern part of the study area on the Bakersfield Arch at North and South Coles Levee field and in two wells in easternmost Elk Hills, the LSOZ reservoirs produce dry (predominantly methane) gas. In structurally higher locations in western Elk Hills, the LSOZ produces oil and associated gas. Gas analyses show that gas from the eastern LSOZ is bacterial and formed in place in the reservoirs, whereas gas associated with oil in the western part of the study area is thermogenic and migrated into the sands from deeper in the basin. Regional mapping shows that the gas-bearing LSOZ sands in the Coles Levee and easternmost Elk Hills area are sourced from the Sierra Nevada to the east whereas the oil-bearing sands in western Elk Hills appear to be sourced from the west. The eastern Elk Hills area occupied the basin depocenter, farthest from either source area. As a result, it collected mainly low-permeability offshore shale deposits. This sand-poor depocenter provides an effective barrier to the updip migration of gases from east to west. The role of small, listric normal faults as migration barriers is more ambiguous. Because our gas analyses show that the gas in the eastern LSOZ reservoirs is bacterial, it likely formed in-place near the reservoirs and did not have to migrate far. Therefore, the gas could have been generated after faulting and accumulated within the fault blocks as localized pools. However, bacterial gas is present in both the eastern AND western parts of Elk Hills in the Dry Gas Zone (DGZ) near the top of the stratigraphic section even though the measured fault displacement is greatest in this zone. Bacterial gas is not present in the west in the deeper LSOZ which has less measured fault displacement. The main difference between the DGZ and the LSOZ appears to be the presence of a sandpoor area in the LSOZ in eastern Elk Hills. The lack of permeable migration pathways in this area would not allow eastern bacterial gas to migrate farther updip into western Elk Hills. A similar sand-poor area does not appear to exist in the DGZ but future research may be necessary to verify this.

  6. A Comparison of the Properties of Diluted Bitumen Crudes with other Oils A Comparison of the Properties of Diluted Bitumen

    E-Print Network [OSTI]

    New Hampshire, University of

    A Comparison of the Properties of Diluted Bitumen Crudes with other Oils A Comparison of the Properties of Diluted Bitumen Crudes with other Oils POLARIS Applied Sciences, Inc. (2013) Abstract Diluted bitumen (dilbit) crude oil represents a range of oils produced from bitumen extracted from oil sands

  7. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01T23:59:59.000Z

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  8. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05T23:59:59.000Z

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  9. Modeling the dynamics and depositional patterns of sandy rivers

    E-Print Network [OSTI]

    Jerolmack, Douglas J

    2006-01-01T23:59:59.000Z

    This thesis seeks to advance our understanding of the dynamic nature, spatial organization and depositional record of topography in sand-bedded rivers. I examine patterns and processes over a wide range of scales, on Earth ...

  10. acid deposition assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 92 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  11. aortic calcific deposits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 144 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  12. algal wrack deposits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 107 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  13. assisted deposition ibad: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 200 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  14. athabasca deposit: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 32 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  15. altered pyroclastic deposits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 91 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  16. atmosfaerisk deposition driftsrapport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 22 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  17. acidic deposition state: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 122 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  18. Swartz: Oil on the coasts? 'We will never, ever get By SALLY SWARTZ

    E-Print Network [OSTI]

    Belogay, Eugene A.

    Swartz: Oil on the coasts? 'We will never, ever get it off.' By SALLY SWARTZ Posted: 7:58 p the Deepwater Horizon oil spill for a long time, a geologist who worked for the oil industry told Martin County great, Mr. Egan said. "But scratch the surface of the sand, and you hit tar. Oil got into the food chain

  19. Turbine fuels from tar sands bitumen and heavy oil. Volume 1. Phase 3. Pilot plant testing, final design, and economics. Final report, 1 June 1985-31 March 1987

    SciTech Connect (OSTI)

    Talbot, A.F.; Carson, T.C.; Magill, L.G.; Swesey, J.R.

    1987-08-01T23:59:59.000Z

    Pilot-plant-scale demonstration of an upgrading/refining scheme to convert bitumen or heavy crude oil into high yields of specification-quality aviation turbine fuel was performed. An atmospheric residue from San Ardo (California) crude was converted under hydrovisbreaking conditions to synthetic crude for further refining. Naphtha cuts from the straight run and synthetic crude were combined, catalytically hydrotreated, then hydrocracked. Products from these operations were combined to produce two prototype specification fuels (JP-4 and JP-8) as well as two heavier, variable-quality fuels. An engineering design (Volume II) was developed for a 50,000 BPSD grass-roots refinery, from the pilot-plant operations. Capital investment and operating costs were estimated, and fuel manufacturing costs projected. Conclusions and recommendations for further work are included.

  20. Effect of wettability on light oil steamflooding

    SciTech Connect (OSTI)

    Olsen, D.K.

    1991-12-01T23:59:59.000Z

    This report summarizes NIPER`s research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

  1. Effect of wettability on light oil steamflooding

    SciTech Connect (OSTI)

    Olsen, D.K.

    1991-12-01T23:59:59.000Z

    This report summarizes NIPER's research on four interrelated topics for Light Oil Steamflooding. Four interrelated topics are described: The methodology for measuring capillary pressure and wettability at elevated temperature, the use of silylating agents to convert water-wet Berea sandstones or unconsolidated quartz sands to oil-wetted surfaces, the evaluation of the thermal hydrolytic stability of these oil-wet surfaces for possible use in laboratory studies using steam and hot water to recover oil, and the effect of porous media of different wettabilities on oil recovery where the porous media is first waterflooded and then steamflooded.

  2. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F. (U.S. Geological Survey (US))

    1987-01-01T23:59:59.000Z

    This book discusses heavy oil and tar sand reserves which are enormous. Focus in on regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery.

  3. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  4. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01T23:59:59.000Z

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  5. Polymer treatments for D Sand water injection wells: Sooner D Sand Unit Weld County, Colorado. Final report, April 1997

    SciTech Connect (OSTI)

    Cannon, T.J.

    1998-10-01T23:59:59.000Z

    Polymer-gel treatments in injection wells were evaluated for improving sweep efficiency in the D Sandstone reservoir at the Sooner Unit, Weld County, Colorado. Polymer treatments of injection wells at the Sooner Unit were expected to improve ultimate recovery by 1.0 percent of original-oil-in-place of 70,000 bbl of oil. The Sooner D Sand Unit was a demonstration project under the US Department of Energy Class I Oil Program from which extensive reservoir data and characterization were obtained. Thus, successful application of polymer-gel treatments at the Sooner Unit would be a good case-history example for other operators of waterfloods in Cretaceous sandstone reservoirs in the Denver Basin.

  6. Wax Deposition and Aging in Flowlines from Irreversible Thermodynamics

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    , 2007. ReVised Manuscript ReceiVed April 4, 2008 The development of waxy crude oil and some gas of the wax deposit. However, most of these models assume that the wax-oil (gel) deposit has a constant wax and the composition of the gel layer as a function of position and time. The wax-oil gel region is considered

  7. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    SciTech Connect (OSTI)

    Michael Volk; Cem Sarica

    2003-10-01T23:59:59.000Z

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multiphase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines. The following deliverables are scheduled during the first three projects of the program: (1) Single-Phase Studies, with three different black oils, which will yield an enhanced computer code for predicting paraffin deposition in deepwater and surface pipelines. (2) Two-Phase Studies, with a focus on heat transfer and paraffin deposition at various pipe inclinations, which will be used to enhance the paraffin deposition code for gas-liquid flow in pipes. (3) Deposition Physics and Water Impact Studies, which will address the aging process, improve our ability to characterize paraffin deposits and enhance our understanding of the role water plays in paraffin deposition in deepwater pipelines. As in the previous two studies, knowledge gained in this suite of studies will be integrated into a state-of-the-art three-phase paraffin deposition computer program.

  8. Norway, Canada, the United States, and the Tar Sands James Hansen

    E-Print Network [OSTI]

    Hansen, James E.

    Norway, Canada, the United States, and the Tar Sands 9 May 2013 James Hansen Today 36 Norwegian development, given the fact that Norway saves much of its oil earnings for future generations and given the fact that Norway is not likely among the nations that will suffer most from climate change. I wonder

  9. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  10. Onsite Wastewater Treatment Systems: Sand Filters 

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  11. Compression and Creep of Venice Lagoon Sands

    E-Print Network [OSTI]

    Sanzeni, Alex

    A laboratory test program was conducted to evaluate the one-dimensional (1D) compression and creep properties of intact sand (and silty-sand) samples from a deep borehole at the Malamocco Inlet to the Venice Lagoon. The ...

  12. Onsite Wastewater Treatment Systems: Sand Filters

    E-Print Network [OSTI]

    Lesikar, Bruce J.

    2008-10-23T23:59:59.000Z

    Sand filters are beds of granular material, or sand, drained from underneath so that pretreated wastewater can be treated, collected and distributed to a land application system. This publication explains the treatment, design, operation...

  13. WASTEWATER TREATMENT OVER SAND COLUMNS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the biological mechanisms responsible for wastewater treatment. The first part of the study, conducted on site93/0096 WASTEWATER TREATMENT OVER SAND COLUMNS TREATMENT YIELDS, LOCALISATION OF THE BIOMASS Domestic wastewater treatment by infiltration-percolation is a process that becomming common in France

  14. Treating tar sands formations with karsted zones

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX)

    2010-03-09T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. The tar sands formation may have one or more karsted zones. Methods may include providing heat from one or more heaters to one or more karsted zones of the tar sands formation to mobilize fluids in the formation. At least some of the mobilized fluids may be produced from the formation.

  15. Characterization of the 3-D Properties of the Fine-Grained Turbidite 8 Sand Reservoir, Green Canyon 18, Gulf of Mexico

    E-Print Network [OSTI]

    Plantevin, Matthieu Francois

    2004-09-30T23:59:59.000Z

    -grained turbidity currents is composed of alternating sand and shale layers, whose extension is assumed to be large. They correspond to levee and overbank deposits that are usually associated to channel systems. The high porosity values, coming from unconsolidated...

  16. The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource

    E-Print Network [OSTI]

    Shaffer, Nelson R.

    2006-01-01T23:59:59.000Z

    the slurry is pumped to a cyclone separator. Movement of theare generally clays. Cyclone separators are used if clays

  17. The Time of Sands: Quartz-rich Sand Deposits as a Renewable Resource

    E-Print Network [OSTI]

    Shaffer, Nelson R.

    2006-01-01T23:59:59.000Z

    CO: Society for Mining, Metallurgy, and Exploration, Inc.CO: Society for Mining, Metallurgy, and Exploration, Inc.CO: Society for Mining, Metallurgy, and Exploration, Inc.

  18. Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a

    E-Print Network [OSTI]

    Weston, Ken

    Of the estimated 5 million barrels of crude oil released into the Gulf of Mexico from the Deepwater Horizon oil spill, a fraction washed ashore onto sandy beaches from Louisiana to the Florida panhandle. Researchers at the MagLab compare the detailed molecular analysis of hydrocarbons in oiled sands from

  19. Combustion Assisted Gravity Drainage (CAGD): An In-Situ Combustion Method to Recover Heavy Oil and Bitumen from Geologic Formations using a Horizontal Injector/Producer Pair

    E-Print Network [OSTI]

    Rahnema, Hamid

    2012-11-21T23:59:59.000Z

    Combustion assisted gravity drainage (CAGD) is an integrated horizontal well air injection process for recovery and upgrading of heavy oil and bitumen from tar sands. Short-distance air injection and direct mobilized oil production are the main...

  20. Australian developments in oil shale processing

    SciTech Connect (OSTI)

    Baker, G.L.

    1981-01-01T23:59:59.000Z

    This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

  1. Wellbore Heat Transfer Model for Wax Deposition in Permafrost Region

    E-Print Network [OSTI]

    Cui, Xiaoting

    2012-05-31T23:59:59.000Z

    Producing waxy oil in arctic area may cause wax deposited on the well wall. Since wax deposition is strongly thermal related, accurate heat transfer model is necessary in predicting and preventing wax depostion. A mathematical model was derived...

  2. Exploration for heavy crude oil and natural bitumen

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    Heavy oil and tar sand reserves are enormous, and this 700-page volume breaks the topic down into six emphasis areas of: regional resources worldwide; characterization, maturation, and degradation; geological environments and migration; exploration methods; exploration histories; and recovery. An appendix presents a guidebook to Santa Maria, Cuyama, Taft-McKettrick, and Edna oil districts, Coast Ranges, California.

  3. FY 80 heavy oil program. Second quarterly report, April 1980

    SciTech Connect (OSTI)

    Wayland, J.R.; Fox, R.L.

    1980-06-01T23:59:59.000Z

    The research and development efforts in support of the heavy oil program reservoir access and alternate extraction activities that were initiated last quarter have been continued and expanded. The development of a short course on the utilization of specialized drilling technology to heavy oil sands has been investigated. The steam quality sampler is undergoing laboratory testing. A special report on possible application of sand control methods to heavy oil steam injection tests has been prepared. The first stage of the analysis of R.F. and microwave heating has been completed. The results of a series of laboratory experiments on in situ hydrogenation are presented.

  4. TULSA UNIVERSITY PARAFFIN DEPOSITION PROJECTS

    SciTech Connect (OSTI)

    Cem Sarica; Michael Volk

    2004-06-01T23:59:59.000Z

    As oil and gas production moves to deeper and colder water, subsea multiphase production systems become critical for economic feasibility. It will also become increasingly imperative to adequately identify the conditions for paraffin precipitation and predict paraffin deposition rates to optimize the design and operation of these multi-phase production systems. Although several oil companies have paraffin deposition predictive capabilities for single-phase oil flow, these predictive capabilities are not suitable for the multiphase flow conditions encountered in most flowlines and wellbores. For deepwater applications in the Gulf of Mexico, it is likely that multiphase production streams consisting of crude oil, produced water and gas will be transported in a single multiphase pipeline to minimize capital cost and complexity at the mudline. Existing single-phase (crude oil) paraffin deposition predictive tools are clearly inadequate to accurately design these pipelines, because they do not account for the second and third phases, namely, produced water and gas. The objective of this program is to utilize the current test facilities at The University of Tulsa, as well as member company expertise, to accomplish the following: enhance our understanding of paraffin deposition in single and two-phase (gas-oil) flows; conduct focused experiments to better understand various aspects of deposition physics; and, utilize knowledge gained from experimental modeling studies to enhance the computer programs developed in the previous JIP for predicting paraffin deposition in single and two-phase flow environments. These refined computer models will then be tested against field data from member company pipelines.

  5. North Sabine Lake field: complex deposition and reservoir morphology of lower Hackberry (Oligocene), southwest Louisiana

    SciTech Connect (OSTI)

    Eubanks, L.G.

    1987-10-01T23:59:59.000Z

    Gas and condensate production at the North Sabine Lake field is from sands of the Hackberry wedge of the Oligocene Frio Formation. These lower Hackberry sands were deposited in a preexisting submarine canyon. Multiple sand bodies are present, and five patterns of sand deposition are recognized from SP logs: (1) incised channel fill, (2) braided fan channel, (3) intermediate suprafan, (4) proximal suprafan, and (5) overbank. Although three faults surround the field, the primary trapping mechanism is stratigraphic. The development and production history of the field indicate that many small sand lenses have coalesced to form a single large reservoir; however, differences in permeability have caused variations in water influx and in the levels of gas-water contacts. Sand lenses that are not connected to the larger reservoir are of limited size and have produced small amounts of hydrocarbon. Development of the field has been complicated by casing damage probably caused by reservoir compaction. 11 figures, 2 tables.

  6. Process for upgrading tar sand bitumen

    SciTech Connect (OSTI)

    Bartholic, D.B.; Reagan, W.J.

    1989-02-14T23:59:59.000Z

    A process is described for upgrading a charge of a tar sand bitumen concentrate containing metal impurities, colloidal calcium-containing clay and water. It consists of contacting the charge in a riser contacting zone in the presence of a low boiling organic solvent with hot fluidizable attrition-resistant substantially catalytically-inert microspheres, which are 20 to 150 microns in diameter and are composed of previously calcined kaolin clay. The contact takes place at high temperature and short contact time, which permits vaporization of the high hydrogen containing components of the bitumen. The period of time is less than that which induces substantial thermal cracking of the charge. At the end of the time the vaporized produce is separated from the microspheres of calcined kaolin clay, the microspheres of calcined kaolin clay now bearing a deposit of combustible solid, metal impurities and adherent particles of colloidal calcium-containing clay originally contained in the bitumen concentrate, immediately reducing the temperature of the vaporized product to minimize thermal cracking and recovering the product for further refining to produce one or more premium products.

  7. High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale

    SciTech Connect (OSTI)

    Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

    2006-07-01T23:59:59.000Z

    The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

  8. A reservoir management study of a mature oil field

    E-Print Network [OSTI]

    Peruzzi, Tave

    1995-01-01T23:59:59.000Z

    to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments...

  9. athabasca oil sand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petrographic, lithogeochemical and short-wavelength-infrared (more) Stewart, Paul C. 2015-01-01 58 Graphite-bearing and graphite-depleted basement rocks in the Dufferin...

  10. athabasca oil sands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petrographic, lithogeochemical and short-wavelength-infrared (more) Stewart, Paul C. 2015-01-01 58 Graphite-bearing and graphite-depleted basement rocks in the Dufferin...

  11. CO? mitigation costs for Canada and the Alberta Oil Sands

    E-Print Network [OSTI]

    Anderson, Justin David

    2008-01-01T23:59:59.000Z

    The threat of climate change proposes difficult problems for regulators and decision-makers in terms of uncertainties, varying exposures to risks and different attitudes towards risk among nations. Impact and cost assessments ...

  12. Numerical Modeling of Hydraulic Fracturing in Oil Sands

    E-Print Network [OSTI]

    2008-11-16T23:59:59.000Z

    A thermal hydro-mechanical fracture nite element model is developed, which is able to ..... c) Fluid velocity: Darcy's law, in general index form, is given by: vi = Kij.

  13. Process for increasing the bitumen content of oil sands froth

    SciTech Connect (OSTI)

    Tipman, R.N.; Rajan, V.S.V.; Wallace, D.

    1993-06-29T23:59:59.000Z

    A process is described for the removal of solids and water from a feed bituminous froth containing bitumen, solids and water in a gravity settling vessel have an existing bituminous froth layer floating on a quiescent body of water defining a bitumen-water interface therebetween comprising the steps of heating the feed bituminous froth to a temperature in the range of 85 to 100 C, feeding the heated froth into the body of water at a level below the bitumen-water interface whereby water and solids contained in the feed froth separate from the froth and the bitumen rises to accumulate in the existing bituminous froth layer, discharging solids-containing under flow from the vessel, monitoring the level of the bitumen-water interface and controlling the discharge of solids-containing under flow responsive to the monitoring of the bitumen-water interface at a rate such that the said interface is maintained at an effective level above the level at which the feed bituminous froth is fed into the body of water, and recovering a bitumen-enriched layer as an overflow.

  14. File:OilSands.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park at Methil Jump to:Methane.pdf Jump

  15. Carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Myers, G.D.

    1987-11-24T23:59:59.000Z

    This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

  16. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2004-12-01T23:59:59.000Z

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. Coreflood, quarter 5-spot study, compositional simulation, wettability, relative permeability study and streamline-based simulation were conducted in this project. 1D compositional simulation results agree reasonably well with those of the slim tube experiments. Injection of CO{sub 2}-NGL is preferable over that of PBG-NGL. MME is sensitive to pressure (in the range of 1300-1800 psi) for the injection of PBG-NGL, but not for CO{sub 2}-NGL. Three hydrocarbon phases form in this pressure range. As the mean thickness of the adsorbed organic layer on minerals increases, the oil-water contact angle increases. The adsorbed organic films left behind after extraction of oil by common aromatic solvents used in core studies, such as toluene and decalin, are thinner than those left behind by non-aromatic solvents, such as cyclohexane. The force of adhesion for minerals aged with just the asphaltene fraction is similar to that of the whole oil implying that asphaltenes are responsible for the mixed-wettability in this reservoir. A new relative permeability model for a four-phase, mixed-wet system has been proposed. A streamline module is developed which can be incorporated in an existing finite-difference based compositional simulator to model water flood, gas flood and WAG flood. Horizontal wells increase well deliverability over vertical wells, but sweep efficiency can decrease. The well performance depends on the well length, position, heterogeneity, and viscosity ratio. The productivity increase due to electromagnetic heating is a function of power intensity, flow rate, and frequency etc. The productivity of a well can be doubled by electromagnetic heating. A high-pressure quarter 5-spot model has been constructed to evaluate the sweep efficiency of miscible WAG floods. WAG displacement reduces bypassing compared to gas floods and improves oil recovery in cores. As the WAG ratio decreased and slug size increased, oil recovery increased. Oil was recovered faster with increased slug size and decreased WAG ratio in the simulations for field cases studied.

  17. Sesame fertilization on lakeland sand

    E-Print Network [OSTI]

    Huerta, Ramon Moreno

    1961-01-01T23:59:59.000Z

    Ma/or Sub]ect: Agronomy SESAME FERTILIZATION ON LAKELAND SAND A Thesis RAMON HUERTA M. Approved as to style and content hy: Chairssn of Conunittee Head of partment January 1961 ACKNOWLEDGEMENTS The author wishes to express his sincere... difference was approached in the third. 8 Ye s 1. 856 + 0, 0509 X 16 POUEDS GF SULFUR PER ACRE Figure 4. Effect of sulfur on yield of sesame seed, winter of 1958-59. The data result1ng fram the sulfur effect during the winter of 1958-59 crop...

  18. SAND 2004-0281P

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High EnergyNationalSpring 2014 NationalFallSAND

  19. technology offer SandTES -High Temperature Sand Thermal Energy Storage

    E-Print Network [OSTI]

    Szmolyan, Peter

    technology offer SandTES - High Temperature Sand Thermal Energy Storage key words: High Temperature Energy Storage | Fluidized Bed | Sand | The invention consists of a fluidized bed with internal heat together with Dr. Eisl of ENRAG GmbH. Background Thermal energy storage (TES) systems are essential

  20. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. (BHP Petroleum, Melbourne, Victoria (Australia))

    1989-09-01T23:59:59.000Z

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  1. Influence of Mississippian Karst Topography on Deposition of the Cherokee Group: Ness County, Kansas

    E-Print Network [OSTI]

    Ramaker, Benjamin J.

    2009-06-12T23:59:59.000Z

    are confined to lowstand and transgressive systems tracts. Sand development is strongly influenced by Mississippian paleotopography. Thick sandstone successions were deposited in groundwater-sapped Mississippian valleys and along the paleoshoreline. Two...

  2. acid-mediated callose deposition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 39 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  3. alumbrera copper-gold deposit: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 32 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  4. au-cu skarn deposits: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    440-200 mesh sand enclosed in pipe 2... Hasan, Syed Mir Ahmed 1964-01-01 45 A Radon Progeny Deposition Model Nuclear Experiment (arXiv) Summary: The next generation...

  5. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect (OSTI)

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31T23:59:59.000Z

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  6. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  7. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    SciTech Connect (OSTI)

    Skinner, Q.

    1980-03-01T23:59:59.000Z

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  8. Video Matching Peter Sand and Seth Teller

    E-Print Network [OSTI]

    Ouhyoung, Ming

    Video Matching Peter Sand and Seth Teller MIT Computer Science and Artificial Intelligence robotic motion control systems that would normally be used to ensure registra- tion of multiple video due to moving people, changes in lighting, and/or different exposure settings. e-mail: {sand

  9. SANDIA REPORT SAND2006-7744

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-7744 Unlimited Release Printed December 2006 Supersedes SAND2006-2161 Dated of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  10. SANDIA REPORT SAND2000-2094

    E-Print Network [OSTI]

    SANDIA REPORT SAND2000-2094 Unlimited Release Printed August 2000 Application of the Smart, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; distribution is unlimited. #12;August 2000 i SAND2000-2094 Unlimited Release Printed August 2000 Application

  11. SANDIA REPORT SAND99-2758

    E-Print Network [OSTI]

    SANDIA REPORT SAND99-2758 Unlimited Release Printed November 1999 Modeling Decomposition Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. #12;Inside front cover (disclaimer goes here) 2 #12;SAND99-2758 Unlimited Release Printed

  12. SANDIA REPORT SAND2012-1000

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    SANDIA REPORT SAND2012-1000 Unlimited Release Printed September 2012 Project Report: A Survey for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account · · UNITED STATES OF AM ERICA 2 #12;SAND2012-1000 Unlimited Release Printed September 2012 Project Report

  13. SANDIA REPORT SAND2014-17401

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-17401 Unlimited Release Printed September 2014 Wave Energy Converter (WEC States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2014-17401 Unlimited Release Printed September 2014 Wave Energy Converter

  14. SANDIA REPORT SAND2014-2864

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-2864 Unlimited Release Printed March 2014 User Guidelines and Best Practices to apply Dakota to a simulation problem. This SAND report consti Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  15. Definition of heavy oil and natural bitumen

    SciTech Connect (OSTI)

    Meyer, R.F.

    1988-08-01T23:59:59.000Z

    Definition and categorization of heavy oils and natural bitumens are generally based on physical or chemical attributes or on methods of extraction. Ultimately, the hydrocarbon's chemical composition will govern both its physical state and the extraction technique applicable. These oils and bitumens closely resemble the residuum from wholecrude distillation to about 1,000/degree/F; if the residuum constitutes at least 15% of the crude, it is considered to be heavy. In this material is concentrated most of the trace elements, such as sulfur, oxygen, and nitrogen, and metals, such as nickel and vanadium. A widely used definition separates heavy oil from natural bitumen by viscosity, crude oil being less, and bitumen more viscous than 10,000 cp. Heavy crude then falls in the range 10/degree/-20/degree/ API inclusive and extra-heavy oil less than 10/degree/ API. Most natural bitumen is natural asphalt (tar sands, oil sands) and has been defined as rock containing hydrocarbons more viscous than 10,000 cp or else hydrocarbons that may be extracted from mined or quarried rock. Other natural bitumens are solids, such as gilsonite, grahamite, and ozokerite, which are distinguished by streak, fusibility, and solubility. The upper limit for heavy oil may also be set at 18/degree/ API, the approximate limit for recovery by waterflood.

  16. Shock response of dry sand.

    SciTech Connect (OSTI)

    Reinhart, William Dodd; Thornhill, Tom Finley, III (,; ); Chhabildas, Lalit C.. (..); Vogler, Tracy John; Brown, Justin L.

    2007-08-01T23:59:59.000Z

    The dynamic compaction of sand was investigated experimentally and computationally to stresses of 1.8 GPa. Experiments have been performed in the powder's partial compaction regime at impact velocities of approximately 0.25, 0.5, and 0.75 km/s. The experiments utilized multiple velocity interferometry probes on the rear surface of a stepped target for an accurate measurement of shock velocity, and an impedance matching technique was used to deduce the shock Hugoniot state. Wave profiles were further examined for estimates of reshock states. Experimental results were used to fit parameters to the P-Lambda model for porous materials. For simple 1-D simulations, the P-Lambda model seems to capture some of the physics behind the compaction process very well, typically predicting the Hugoniot state to within 3%.

  17. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01T23:59:59.000Z

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  18. Potential turbine fuels from western Kentucky tar sand bitumen

    SciTech Connect (OSTI)

    Moore, H.F.; Johnson, C.A.; Sutton, W.A.; Benslay, R.M. (Ashland Petroleum Co., KY (USA))

    1987-04-01T23:59:59.000Z

    The declining quality of petroleum is a particular problem for aviation turbine fuels. Since these fuels are required to meet stringent corrosion, thermal stability and purity specification, very little in the way of contaminants or heteroatoms can be tolerated. However, heavier and more sour crude supplied result in lower straight-run turbine fuel yields, higher sulfur contents, and higher aromatic contents. While all turbine fuels were originally prepared from high quality stocks by distillation, many commercial and military fuels now require hydrotreatment to meet specifications. The work described in this program extrapolates these present trends to very heavy feedstocks. Tar sands bitumen and heavy crude oils are low API gravity, high viscosity hydrocarbonaceous materials commonly exhibiting high levels of heteroatomic species, high metals content and high levels of asphaltenes, plus water and solids not readily separated by conventional technology without dilution. Tar sands bitumen is highly cyclic with many polycyclic rings and naphthenic constituents. Sulfur is primarily in thiophenic structures, with nitrogen included in the ring structure. Asphaltenes are in high proportion, with a large amount of sulfur, nitrogen and metallic inclusions. Each of these characteristics represent specific concerns to refiners.

  19. Characterization of various bitumen samples from tar sands

    SciTech Connect (OSTI)

    Majid, A.; Bornais, J.; Hutchison, R.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

    1989-01-01T23:59:59.000Z

    The authors have investigated twenty three bitumen samples obtained using different separation methods such as: ultracentrifugation, Dean-Stark extraction, solvent extraction employing vigorous agitation, hot water separation and the Solvent Extraction Spherical Agglomeration technique. These samples were extracted from oil sand feedstocks of different grades, Suncor sludge pond tailings and mineral agglomerates obtained form the Solvent Extraction Spherical Agglomeration process. All of the bitumen samples were examined on a comparative basis using various analytical techniques. These included: fractionation into asphaltenes and maltenes: elemental analyses; molecular weight determination using vapour pressure osmometry and gel permeation chromatography, infrared, proton and /sup 13/C nuclear magnetic resonance spectroscopy. Proton /sup 13/C n.m.r. spectroscopic data were used to determine the distribution of various types of hydrogens and carbons in the samples. These data were also used to derive various molecular parameters in order to investigate average molecular structures of different bitumen samples and some of their asphaltene fractions.

  20. Characterization of various bitumen samples from tar sands

    SciTech Connect (OSTI)

    Majid, A.; Bornais, J.; Hutchison, R.A.

    1988-06-01T23:59:59.000Z

    Bitumen is a complex mixture of a large of number of organic molecules. The composition of bitumen and the nature of their various individual components has been the subject of considerable research during the past two decades. Various modes of extraction of bitumen from oil sands such as heat, extreme mechanical force, chemical agents and solvents could significantly affect some properties of bitumen. Variations in the composition of the oil sands feed stock could also affect the properties of the extracted bitumen. However, the most commonly used analytical techniques such as elemental analyses, density and viscosity cannot detect small compositional differences in the various samples of bitumen. With developments in instrumentation and techniques the structural characterization of complex petroleum fractions employing high resolution proton and 13/sub C/ nuclear magnetic resonance (NMR) spectroscopy is becoming more popular. The parameters describe structural features, such as the fraction of carbon that is aromatic, the number and length of alkyl substituents in an average molecule, the percentage of aromatic carbons that are substituted and the number of aromatic rings per molecule. Given sufficient data these parameters can provide useful characterization of a hydrocarbon mixture. In the authors' laboratories, the authors have collected a number of bitumen samples obtained from different feedstocks employing a variety of extraction techniques. It was of interest to investigate any differences between these samples from different sources. This paper reports a detailed investigation of average structural parameters by the combined use of elemental analyses, molecular weight determinations and proton and 13/sub C/NMR spectroscopy. A total of twenty three butimen samples have been studied.

  1. SAND2005-5940 Unlimited Release

    E-Print Network [OSTI]

    Regueiro, Richard A.

    and performance, tunneling construction, oil and natural gas production, and depleted reservoirs used

  2. A finite element analysis of pneumatic-tire/sand interactions

    E-Print Network [OSTI]

    Grujicic, Mica

    A finite element analysis of pneumatic-tire/sand interactions during off-road vehicle travel M pneumatic tire and sand during off-road vehicle travel. Keywords Finite element analysis, Road vehicles and for other tire/sand combinations. Since the finite element analysis of the tire/sand interaction enables

  3. New method for sand control and well stimulation in unconsolidated dirty sands

    SciTech Connect (OSTI)

    Aslesen, K.S.; Short, C.J.; Terwilliger, P.L.

    1981-01-01T23:59:59.000Z

    A new technique, the Solder Glass sand consolidation well completion method, has been developed which allows unlimited drawdown and improves productivity in wells completed in unconsolidated formations containing shales and clays. This technique eliminates the problems of sand production and fines migration by artificially consolidating a volume of reservoir sand near the wellbore. The consolidation is resistant to high temperature, chemical attack, and degradation resulting from high velocity fluid flow. Additionally, porosity and permeability in the consolidated volume of reservoir sand are improved as a result of irreversible dehydration of clays. 12 refs.

  4. Treating tar sands formations with dolomite

    DOE Patents [OSTI]

    Vinegar, Harold J.; Karanikas, John Michael

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. The tar sands formation may include dolomite and hydrocarbons. Methods may include providing heat at less than the decomposition temperature of dolomite from one or more heaters to at least a portion of the formation. At least some of the hydrocarbon fluids are mobilized in the formation. At least some of the hydrocarbon fluids may be produced from the formation.

  5. Conductivity heating a subterranean oil shale to create permeability and subsequently produce oil

    SciTech Connect (OSTI)

    Van Meurs, P.; DeRouffignac, E.P.; Vinegar, H.J.; Lucid, M.F.

    1989-12-12T23:59:59.000Z

    This patent describes an improvement in a process in which oil is produced from a subterranean oil shale deposit by extending at least one each of heat-injecting and fluid-producing wells into the deposit, establishing a heat-conductive fluid-impermeable barrier between the interior of each heat-injecting well and the adjacent deposit, and then heating the interior of each heat-injecting well at a temperature sufficient to conductively heat oil shale kerogen and cause pyrolysis products to form fractures within the oil shale deposit through which the pyrolysis products are displaced into at least one production well. The improvement is for enhancing the uniformity of the heat fronts moving through the oil shale deposit. Also described is a process for exploiting a target oil shale interval, by progressively expanding a heated treatment zone band from about a geometric center of the target oil shale interval outward, such that the formation or extension of vertical fractures from the heated treatment zone band to the periphery of the target oil shale interval is minimized.

  6. Lake Level Controlled Sedimentological I Heterogenity of Oil Shale, Upper Green River

    E-Print Network [OSTI]

    Gani, M. Royhan

    Chapter 3 Lake Level Controlled Sedimentological 1:'_i 'I I Heterogenity of Oil Shale, Upper Green email: mgani@uno.edu t",. The Green River Formation comprises the world's largest deposit of oil-shale characterization of these lacustrine oil-shale deposits in the subsurface is lacking. This study analyzed ~300 m

  7. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  8. Paraffin deposition in offshore oil production

    E-Print Network [OSTI]

    Elphingstone, Gerald Mason

    1995-01-01T23:59:59.000Z

    *, the dimensionless time-averaged temperature in the pipe wal l , is de fined as rr,w np V* = ^ ? ? (111.30) Jo ? -Lb The j u m p energy balance is applied at r* = 1/Rg to find the remaining bound ary condition: a t r * = -sr kS^nr = kW~^r (IIL31) B*8 dr* dr... Appendix A.2 . ) : dT" d * 2 * ? ? _ H* z dz* L 1 d NPrRxr*~d? 1 + Npr ^ ^ ^ (111.18) wi th in i t i a l and boundary conditions at z* = 0 at r* = 0 at r* = 1 at r * = 1 T* = 1 dr dr* ? m dB*8 _ NL ~dF ~~Nr Ste ks dT k dr" dT dr* (111...

  9. Paraffin deposition in offshore oil production 

    E-Print Network [OSTI]

    Elphingstone, Gerald Mason

    1995-01-01T23:59:59.000Z

    Appendix A.2 . ) : dT" d * 2 * ? ? _ H* z dz* L 1 d NPrRxr*~d? 1 + Npr ^ ^ ^ (111.18) wi th in i t i a l and boundary conditions at z* = 0 at r* = 0 at r* = 1 at r * = 1 T* = 1 dr dr* ? m dB*8 _ NL ~dF ~~Nr Ste ks dT k dr" dT dr* (111....19) where NpT is the Prandt l number, Nste is the Stefan number, and ks is the thermal conductivity of the paraffinic solid. T h e dimensionless variables and groups are defined as v NPr = - a = T a T-Tb Tn ~ Th pc NSte = T -Tb Tn ? Th c(T0 - Tb...

  10. Oil shale retorting with steam and produced gas

    SciTech Connect (OSTI)

    Merrill, L.S. Jr.; Wheaton, L.D.

    1991-08-20T23:59:59.000Z

    This patent describes a process for retorting oil shale in a vertical retort. It comprises introducing particles of oil shale into the retort, the particles of oil shale having a minimum size such that the particles are retained on a screen having openings 1/4 inch in size; contacting the particles of oil shale with hot gas to heat the particles of oil shale to a state of pyrolysis, thereby producing retort off-gas; removing the off-gas from the retort; cooling the off-gas; removing oil from the cooled off-gas; separating recycle gas from the off-gas, the recycle gas comprising steam and produced gas, the steam being present in amount, by volume, of at least 50% of the recycle gas so as to increase the yield of sand oil; and heating the recycle gas to form the hot gas.

  11. doi: 10.3176/oil.2008.2.04 © 2008 Estonian Academy Publishers APPLICATION OF EOR TECHNIQUES FOR OIL SHALE

    E-Print Network [OSTI]

    Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

    In this study, 1-D combustion tube experiments were performed with samples from the Turkish Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are suitable for oil production by in-situ combustion techniques. The calculated production values are 4

  12. Catalyst poisoning during tar-sands bitumen upgrading

    SciTech Connect (OSTI)

    Carruthers, J.D.; Brinen, J.S.; Komar, D.A.; Greenhouse, S. [CYTEC Industries, Stamford, CT (United States)

    1994-12-31T23:59:59.000Z

    A number of hydrotreating catalysts are used in commercial heavy oil upgrading facilities. One of these, a CoO/MoO{sub 3}/Al{sub 2}O{sub 3} catalyst has been evaluated in a pilot plant CSTR for Tar-Sands Bitumen upgrading. Following its use in a test of 200 hours duration, the catalyst was removed, de-oiled, regenerated by air-calcination to remove the coke, and then re-tested. Samples of the coked, fresh and regenerated catalyst were each examined using surface analytical techniques. ESCA and SIMS analysis of the coked and regenerated catalyst samples show, as expected, significant contamination of the catalyst with Ni and V. In addition, the SIMS analysis clearly reveals that the edges of the catalyst pellets are rich in Ca, Mg and Fe while the Ni, V and coke are evenly distributed. Regeneration of the catalyst by calcination removes the carbonaceous material but appears not to change the distribution of the metal contaminants. Retesting of the regenerated catalyst shows a performance similar to that of the fresh catalyst. These data serve to support the view that catalyst deactivation during early use is not due to the skin of Ca and Mg on the pellets but rather via the poisoning of active sites by carbonaceous species.

  13. Contrasting processes of deposition for the Eagleford "B" sandstone, Bryan, IDS, and Kurten fields, Brazos County, Texas 

    E-Print Network [OSTI]

    Golding, Robert Martin

    1990-01-01T23:59:59.000Z

    sectional view of Eagleford sand- ridge depositional model showing vertical and lateral facies relationships. Modified from Phillips (1987) and Gaynor and Swift (1988) 83 25 Plan view of Eagleford sand-ridge depo- sitional model showing lateral facies... distribution and rotation of shelf current flow across the ridge. From Phillips (1987) 84 26 Depositional model proposed by Turner and Conger (1981) for Kurten field sandstones. Figure shows prograding Harris Delta, river mouth by-passing, shelf turbidity...

  14. A study of miscible displacement of oil by means of micellar solution injection

    E-Print Network [OSTI]

    Sharifi-Monfared, Fereidoon

    1971-01-01T23:59:59.000Z

    were used to displace oil from porous media in both secondary and tertiary mis~ible 1'looding processes. The models were saturated with low or high viscosity oil and connate water for the experimental work, Six representative runs will be di s c us... was to study the effective- ness of micellar solutions in recovery of oil from porous media. The models used were: (a) linear sandstone cores, (b) a linear model packed with various sands, and (c) a five spot model packed with sand. Models saturated...

  15. Bitumen-bearing deposits of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1988-01-01T23:59:59.000Z

    Descriptions, resources, and petrophysical properties of bitumen-bearing rocks, or tar sands, in the United States are summarized by state and their locations indicated on the accompanying maps. One hundred ninety-eight identified deposits in 17 states yield a total bitumen resource estimated to be 57 billion barrels.

  16. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Li, Jia [University of Tennessee, Knoxville (UTK)

    2005-01-01T23:59:59.000Z

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  17. North Blowhorn Creek oil field - a stratigraphic trap in Black Warrior basin of Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.; Reeves, P.R.

    1984-04-01T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama contains shallow oil and gas prospects. To date more than 1000 wells have been drilled in the region and more than 90 petroleum fields and pools have been discovered. Mississippian sandstone reservoirs are the most productive horizons for hydrocarbons in the basin, and the Carter sandstone is the most prolific. Identification of stratigraphic traps will enhance petroleum exploration by delineating sand body geometry. Definition reservoir thickness and extent is critical for identifying successful prospects. The North Blowhorn Creek field in Lamar County, Alabama, which produces from the Carter sandstone, is a prime example of a stratigraphic trap. As of March 1983, this field has produced a total of 657,678 bbl of oil and 972,3 mmcf of gas. The Carter sandstone there was deposited as part of a delta which prograded from northwest to southeast across the Black Warrior basin of Alabama. Primary and secondary porosity in the Carter sandstone ranges from 10 to 16% with an average of 13.5%. Permeability ranges from approximately .01-29 md with an average of 10 md. The Parkwood shales interbedded with the Carter sandstone are probably the primary petroleum source beds of the Mississippian hydrocarbons.

  18. Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development

    SciTech Connect (OSTI)

    Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt

    2012-04-15T23:59:59.000Z

    Unconventional fuel development will require scarce water resources. In an environment characterized by scarcity, and where most water resources are fully allocated, prospective development will require minimizing water use and seeking to use water resources in the most efficient manner. Conjunctive use of surface and groundwater provides just such an opportunity. Conjunctive use includes two main practices: First, integrating surface water diversions and groundwater withdrawals to maximize efficiency and minimize impacts on other resource users and ecological processes. Second, conjunctive use includes capturing surplus or unused surface water and injecting or infiltrating that water into groundwater aquifers in order to increase recharge rates. Conjunctive management holds promise as a means of addressing some of the West's most intractable problems. Conjunctive management can firm up water supplies by more effectively capturing spring runoff and surplus water, and by integrating its use with groundwater withdrawals; surface and groundwater use can be further integrated with managed aquifer recharge projects. Such integration can maximize water storage and availability, while simultaneously minimizing evaporative loss, reservoir sedimentation, and surface use impacts. Any of these impacts, if left unresolved, could derail commercial-scale unconventional fuel development. Unconventional fuel developers could therefore benefit from incorporating conjunctive use into their development plans. Despite its advantages, conjunctive use is not a panacea. Conjunctive use means using resources in harmony to maximize and stabilize long-term supplies â?? it does not mean maximizing the use of two separate but interrelated resources for unsustainable short-term gains â?? and it cannot resolve all problems or provide water where no unappropriated water exists. Moreover, conjunctive use may pose risks to ecological values forgone when water that would otherwise remain in a stream is diverted for aquifer recharge or other uses. To better understand the rapidly evolving field of conjunctive use, this Topical Report begins with a discussion of Utah water law, with an emphasis on conjunctive use issues. We contrast Utahâ??s approach with efforts undertaken in neighboring states and by the federal government. We then relate conjunctive use to the unconventional fuel industry and discuss how conjunctive use can help address pressing challenges. While conjunctive management cannot create water where none exists, it does hold promise to manage existing resources in a more efficient manner. Moreover, conjunctive management reflects an important trend in western water law that could provide benefit to those contemplating activities that require large-scale water development.

  19. Analytical mesoscale modeling of aeolian sand transport

    E-Print Network [OSTI]

    Marc Lämmel; Anne Meiwald; Klaus Kroy

    2014-05-03T23:59:59.000Z

    We analyze the mesoscale structure of aeolian sand transport, based on a recently developed two-species continuum model. The calculated sand flux and important average characteristics of the grain trajectories are found to be in remarkable agreement with field and wind-tunnel data. We conclude that the essential mesoscale physics is insensitive to unresolved details on smaller scales and well captured by the coarse-grained analytical model, thus providing a sound basis for precise and numerically efficient mesoscale modeling of aeolian structure formation.

  20. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2012-06-05T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons including mobilized hydrocarbons are produced from the portion.

  1. Skin friction for steel piles in sand

    E-Print Network [OSTI]

    Sulaiman, Ibrahim Hikmat

    1967-01-01T23:59:59.000Z

    MOVEMENT 4) For dry pile tests at initial void ratio of 0. 63, the assumption of a Coulomb type failure applies and the envelope is shown in Figure 23. The skin friction computed is the total friction caused by applied load. and. the static load caused... Sand 43 22. Skin Friction-Chamber Pressure Ratio Versus Pile Movement for Dense Dry Sand 44 23 ~ 24. Mohr Envelope for Skin Friction Measured. and Assumed. Pile Deformation 49 25 ~ Computed and Actual Load-Movement Curves for Test Pile 1 26...

  2. Creating fluid injectivity in tar sands formations

    DOE Patents [OSTI]

    Stegemeier, George Leo; Beer, Gary Lee; Zhang, Etuan

    2010-06-08T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods for treating a tar sands may include heating a portion of a hydrocarbon layer in the formation from one or more heaters located in the portion. The heat may be controlled to increase the permeability of at least part of the portion to create an injection zone in the portion with an average permeability sufficient to allow injection of a fluid through the injection zone. A drive fluid and/or an oxidizing fluid may be provided into the injection zone. At least some hydrocarbons are produced from the portion.

  3. Displacement of oil from reservoir rock using high molecular weight polymer solutions

    E-Print Network [OSTI]

    Barzi, Houshang

    1972-01-01T23:59:59.000Z

    underground reservoirs by the injection of water containing chemicals to increase its viscosity. Some laboratory research and field trials have been conducted to evaluate the effectiveness of viscous water in dis- placing oil from reservoir rock.... ia. Twenty-eight experiments were conducted. In twenty-two experiments oil was displaced from un- consolidated sand packs using polymers with viscosity that ranged from 160 cp to 3 cp. In five experiments crude oil was displaced. from...

  4. The investigation of the effects of wettability on residual oil after water flooding

    E-Print Network [OSTI]

    Burja, Edward Oscar

    1953-01-01T23:59:59.000Z

    Flooding, " Producers Monthly, (1951), 15-16, 15. 6. Schilthuis, Ralph J. : "Connate Water in Oil and Gas Sands, " Trans. AIME. , (1938), 127, 199-214. 7. Bartell, F. E. : "Function of Water in the Production of Oil from Reservoirs?" Report, API...: PETROLEUM ENGINEERING 1953 TABLE OF CONTENTS Page 1. Summary . 2. Introduction 3. Review of Literature . 4. Description of Materials 16 Cores 16 Oil, Gas and Brine 18 Surface Active Chemicals 19 Crystals 22 5. Description of Procedure...

  5. assisted deposition method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thickness channel currents,3 as well as manipulate and coalesce drops of water-in-oil emulsions.4 Many Rowat, Amy C. 339 Atomic layer deposition of lanthanum aluminum oxide...

  6. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14T23:59:59.000Z

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  7. LLNL oil shale project review: METC third annual oil shale contractors meeting

    SciTech Connect (OSTI)

    Cena, R.J.; Coburn, T.T.; Taylor, R.W.

    1988-01-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory combines laboratory and pilot-scale experimental measurements with mathematical modeling of fundamental chemistry and physics to provide a technical base for evaluating oil shale retorting alternatives. Presented herein are results of four research areas of interest in oil shale process development: Recent Progress in Solid-Recycle Retorting and Related Laboratory and Modeling Studies; Water Generation During Pyrolysis of Oil Shale; Improved Analytical Methods and Measurements of Rapid Pyrolysis Kinetics for Western and Eastern Oil Shale; and Rate of Cracking or Degradation of Oil Vapor In Contact with Oxidized Shale. We describe operating results of a 1 tonne-per-day, continuous-loop, solid-recycle, retort processing both Western And Eastern oil shale. Sulfur chemistry, solid mixing limits, shale cooling tests and catalyst addition are all discussed. Using a triple-quadrupole mass spectrometer, we measure individual species evolution with greater sensitivity and selectivity. Herein we discuss our measurements of water evolution during ramped heating of Western and Eastern oil shale. Using improved analytical techniques, we determine isothermal pyrolysis kinetics for Western and Eastern oil shale, during rapid heating, which are faster than previously thought. Finally, we discuss the rate of cracking of oil vapor in contact with oxidized shale, qualitatively using a sand fluidized bed and quantitatively using a vapor cracking apparatus. 3 refs., 4 figs., 1 tab.

  8. Sand Mountain Electric Cooperative- Residential Heat Pump Loan Program

    Broader source: Energy.gov [DOE]

    The Sand Mountain Electric Cooperative offers a heat pump loan program to eligible residential members. To qualify, members must have had power with Sand Mountain Electric Cooperative for at least...

  9. athabasca tar sands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tar sands resources are estimated at 60 to 80 unknown authors 2 Request received (from Norway, regarding e-mail titled "Grandparents Oppose Tar Sands"): Thanks. I have seen them in...

  10. Figure 1. Typical Slow Sand Filter Schematic Supernatant Water

    E-Print Network [OSTI]

    Figure 1. Typical Slow Sand Filter Schematic Headspace Supernatant Water Schmutzdecke Raw water Supernatant drain Filter drain & backfill Sand media Support gravel Drain tile Adjustable weir Overflow weir Vent Control valve Treated Water Effluent flow control structure Overflow Assessing Temperature

  11. Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands

    E-Print Network [OSTI]

    Wildenschild, Dorthe

    Laboratory investigations of effective flow behavior in unsaturated heterogeneous sands D, Lyngby Abstract. Two-dimensional unsaturated flow and transport through heterogeneous sand was investigated under controlled laboratory conditions. The unsaturated hydraulic conductivity of five homogeneous

  12. University of Minnesota UMore Park Sand and Gravel Resources

    E-Print Network [OSTI]

    Netoff, Theoden

    for the extraction or mining of sand, gravel, stone, or other nonmetallic minerals, other than peat, which

  13. Wind-Blown Sand: Threshold of Motion

    E-Print Network [OSTI]

    Swann, Christy Michelle

    2014-11-12T23:59:59.000Z

    ....................................................................................... 43 13 Bedload trap designed for this study .................................................................................. 45 14 Schematic of internal adjustable chimney adjusted to the height of the surface... predicting the threshold for wind-blown sand in natural environments are rooted in the original wind tunnel work of Bagnold (1936). He introduced an empirically-calibrated model of the threshold using shear velocity, 𝑢?: a height independent variable...

  14. CONTRACTOR REPORT SAND97-3002

    E-Print Network [OSTI]

    presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdownsCONTRACTOR REPORT SAND97-3002 Unlimited Distribution UC-1210 DOE/MSU COMPOSITE MATERIAL FATIGUE

  15. SANDIA REPORT SAND2003-8550

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2003-8550 Unlimited Release Printed October 2003 Stationarity Results Company, for the United States Department of Energy's National Nuclear Security Administration under by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation

  16. SANDIA REPORT SAND2007-0905

    E-Print Network [OSTI]

    Bochev, Pavel

    SANDIA REPORT SAND2007-0905 Unlimited Release Printed February, 2007 Blended Atomistic Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04

  17. SANDIA REPORT SAND2014-17474

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-17474 Unlimited Release Printed September 2014 Investigation of Wave Energy for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved

  18. SANDIA REPORT SAND2006-5315

    E-Print Network [OSTI]

    Lewis, Robert Michael

    SANDIA REPORT SAND2006-5315 Unlimited Release Printed August 2006 A generating set direct search, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  19. SANDIA REPORT SAND2007-6422

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2007-6422 Printed October 2007 Resolving the Sign Ambiguity in the Singular Value States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work Martin Company, for the United States Department of Energy's National Nuclear Security Administration

  20. SANDIA REPORT SAND2007-3257

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2007-3257 Unlimited Release Printed May 2007 Nonlinearly-Constrained Optimization for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  1. SANDIA REPORT SAND2006-5315

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-5315 ct search ian algorithm for combination of nstraints . M. Lewis, and V,for the United States Departmentof Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL;Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia

  2. SANDIA REPORT SAND2009-0857

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2009-0857 Unlimited Release Printed February 2009 An Optimization Approach for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  3. SANDIA REPORT SAND2011-3119

    E-Print Network [OSTI]

    SANDIA REPORT SAND2011-3119 Unlimited Release Printed May 2011 Proton Exchange Membrane Fuel Cells Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  4. SANDIA REPORT SAND2009-6670

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2009-6670 Unlimited Release Printed October 2009 Generalized Bad of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  5. SANDIA REPORT SAND2013-0501

    E-Print Network [OSTI]

    SANDIA REPORT SAND2013-0501 Unlimited Release Printed February 2013 Vessel Cold-Ironing Using of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National

  6. SANDIA REPORT SAND2007-2706

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2007-2706 Unlimited Release Printed May 2007 Cross-Language Information Retrieval States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

  7. SANDIA REPORT SAND2005-6864

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2005-6864 Unlimited Release Printed November 2005 Robust Large-scale Parallel for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  8. SANDIA REPORT SAND2007-6702

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2007-6702 Unlimited Release Printed November 2007 Tensor Decompositions Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  9. SANDIA REPORT SAND2008-6553

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2008-6553 Unlimited Release Printed October 2008 Asynchronous parallel hybrid States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

  10. SANDIA REPORT SAND2006-4466

    E-Print Network [OSTI]

    Howle, Victoria E.

    SANDIA REPORT SAND2006-4466 Unlimited Release Printed July 2006 The Effect of Boundary Conditions Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04

  11. SANDIA REPORT SAND2014-16840

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-16840 Unlimited Release Printed August 2014 Investigation of Wave Energy for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved

  12. SANDIA REPORT SAND2004-8055

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2004-8055 Unlimited Release Printed February 2004 Revisiting Asynchronous of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  13. SANDIA REPORT SAND2006-7592

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-7592 2006 Efficient MATLAB computations with sparse and factored tensorsWaUonunder A #12;Issued by Sandia National Laboratories, operated for the United StatesDepartment of Energy by Sandia Corporation. NOTICE:This report was prepared as an accountof work sponsoredby an agency

  14. SANDIA REPORT SAND2006-2161

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-2161 Unlimited Release Printed June 2006 Temporal Analysis of Social for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  15. SANDIA REPORT SAND2006-4055

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-4055 Unlimited Release Printed October 2006 DAKOTA, A Multilevel Parallel Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04

  16. SANDIA REPORT SAND2004-3487

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2004-3487 Unlimited Release Printed July 2004 A Preliminary Report Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL

  17. SANDIA REPORT SAND2011-1877

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2011-1877 Unlimited Release Printed March 2011 Making Tensor Factorizations Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  18. SANDIA REPORT SAND99-2953

    E-Print Network [OSTI]

    SANDIA REPORT SAND99-2953 Unlimited Release Printed November 1999 a Shaped-Charge Parallel by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract laboratories #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  19. SANDIA REPORT SAND2008-5844

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2008-5844 Unlimited Release Printed September 2008 Concurrent Optimization for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  20. SANDIA REPORT SAND2009-4494

    E-Print Network [OSTI]

    SANDIA REPORT SAND2009-4494 Unlimited Release Printed July 2009 Algebraic Connectivity and Graph of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  1. SANDIA REPORT SAND2004-6391

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2004-6391 Unlimited Release Printed December 2004 APPSPACK 4.0: Asynchronous for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  2. SANDIA REPORT SAND2011-4130

    E-Print Network [OSTI]

    SANDIA REPORT SAND2011-4130 Unlimited Release DAKOTA JAGUAR 2.1 User's Manual Brian M. Adams Ethan, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved

  3. SANDIA REPORT SAND2013-2789

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    SANDIA REPORT SAND2013-2789 Printed April 2013 New Wholesale Power Market Design Using Linked of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored Forward Markets A Study for the DOE Energy Storage Systems Program Leigh S. Tesfatsion, C´esar A. Silva

  4. SANDIA REPORT SAND2014-17460

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-17460 Unlimited Release Printed September 2014 Wave Energy Converter Effects for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public

  5. SANDIA REPORT SAND2004-6574

    E-Print Network [OSTI]

    Wilcox, Lucas C.

    SANDIA REPORT SAND2004-6574 Unlimited Release Printed January 4, 2005 Sensitivity Technologies Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04

  6. SANDIA REPORT SAND 2011-3446

    E-Print Network [OSTI]

    SANDIA REPORT SAND 2011- 3446 Unlimited Release Printed October 2011 Phoenix: Complex Adaptive for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved for public

  7. SANDIA REPORT SAND2003-8516

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2003-8516 Unlimited Release Printed September 2003 Optimizing and Empirical Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL

  8. SANDIA REPORT SAND2004-4596

    E-Print Network [OSTI]

    Ho, Cliff

    SANDIA REPORT SAND2004-4596 Unlimited Release Printed September 2004 Sensors for Environmental Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL

  9. SANDIA REPORT SAND2006-6286

    E-Print Network [OSTI]

    SANDIA REPORT SAND2006-6286 Unlimited Release Printed October 2006 Solution-Verified Reliability, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  10. SANDIA REPORT SAND2006-4621

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-4621 Unlimited Release Printed August 2006 Asynchronous parallel generating Company, for the United States Department of Energy's National Nuclear Security Administration under by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation

  11. SANDIA REPORT SAND2005-0336

    E-Print Network [OSTI]

    Ho, Cliff

    SANDIA REPORT SAND2005-0336 Unlimited Release Printed Month/Year FY04 Field Evaluations of an In Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL

  12. SANDIA REPORT SAND2001-0643

    E-Print Network [OSTI]

    Ho, Cliff

    SANDIA REPORT SAND2001-0643 Unlimited Release Printed March 2001 Review of Chemical Sensors for In of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further

  13. SANDIA REPORT SAND98-2668

    E-Print Network [OSTI]

    SANDIA REPORT SAND98-2668 Unlimited Release Reprinted December 1998 G. Richard Eisler, Paul S 94550 for the United States Department of Energy under Contract DE-AC04-94AL85000 Approved for public for the United States Department of Energy by Sandia Cor- poration, a Lockheed Martin Company. NOTICE

  14. SANDIA REPORT SAND2009-5805

    E-Print Network [OSTI]

    SANDIA REPORT SAND2009-5805 Unlimited Release Printed September 2009 Efficient Algorithms for Mixed of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  15. SANDIA REPORT SAND2010-1422

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2010-1422 Unlimited Release Printed March 2010 Poblano v1.0: A Matlab Toolbox States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

  16. SAND93-2591 Unlimited Release

    E-Print Network [OSTI]

    McCurley, Kevin

    was performed under U.S. Department of Energy contract number DE-AC04-76DP00789. This report has been revisedSAND93-2591 Unlimited Release First Printed October 1992 Revised October 29, 1993 Revised June 22. In this report we describe a portable and efficient implementation of SHA-1 in the C language. Performance

  17. SANDIA REPORT SAND2007-1423

    E-Print Network [OSTI]

    Shashkov, Mikhail

    SANDIA REPORT SAND2007-1423 Unlimited Release Printed March 2007 A Multi-Scale Q1/P0 Approach for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000. Approved

  18. SANDIA REPORT SAND2006-2079

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-2079 Unclassified Unlimited Release Printed April 2006 Multilinear algebra for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  19. SANDIA REPORT SAND2014-16610

    E-Print Network [OSTI]

    Lehoucq, Rich

    SANDIA REPORT SAND2014-16610 Unlimited Release Printed August 2014 Installing the Anasazi Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE

  20. SANDIA REPORT SAND2013-0339

    E-Print Network [OSTI]

    SANDIA REPORT SAND2013-0339 Unlimited Release Printed February 28, 2013 Proceedings States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy

  1. SANDIA REPORT SAND2006-2161

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-2161 Unlimited Release Printed April 2006 Temporal Analysis of Social for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  2. SANDIA REPORT SAND2004-5187

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2004-5187 Unlimited Release Printed October 2004 MATLAB Tensor Classes for Fast of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  3. SANDIA REPORT SAND2006-6135

    E-Print Network [OSTI]

    SANDIA REPORT SAND2006-6135 Unlimited Release Printed November 2006 Extension /ith Corre Hypercube National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither

  4. SANDIA REPORT SAND2006-7592

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-7592 Unlimited Release Printed December 2006 Efficient MATLAB computations of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  5. SANDIA REPORT SAND2014-17400

    E-Print Network [OSTI]

    SANDIA REPORT SAND2014-17400 Unlimited Release Printed September 2014 Investigation of Wave Energy Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL

  6. SANDIA REPORT SAND99-1941

    E-Print Network [OSTI]

    Fuerschbach, Phillip

    SANDIA REPORT SAND99-1941 Unlimited Release 828, ,-.-,,LS :xico 87185 and Livermore, California for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release: further

  7. SANDIA REPORT SAND2008-6109

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2008-6109 Unlimited Release Printed September 2008 Proceedings of the 2008 Sandia for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94-AL85000. Approved

  8. SANDIA REPORT SAND2005-4548

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2005-4548 Unlimited Release Printed July 2005 Higher-Order Web Link Analysis States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

  9. SANDIA REPORT SAND2007-2761

    E-Print Network [OSTI]

    Howle, Victoria E.

    SANDIA REPORT SAND2007-2761 Unlimited Release Printed May 2007 A Taxonomy and Comparison of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National

  10. SANDIA REPORT SAND2006-2081

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2006-2081 Unclassified Unlimited Release Printed April 2006 Multilinear operators Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security. #12;Issued by Sandia National Laboratories, operated for the United States Department of Energy

  11. SANDIA REPORT SAND2009-6764

    E-Print Network [OSTI]

    Kolda, Tamara G.

    SANDIA REPORT SAND2009-6764 Unlimited Release Printed October 2009 Scalable Tensor Factorizations States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy

  12. DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE

    E-Print Network [OSTI]

    Byrne, Byron

    DRIVEN PIPE PILES IN DENSE SAND BYRON BYRNE GEOMECHANICS GROUP THE UNIVERSITY OF WESTERN AUSTRALIA #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia #12;Driven Pipe Piles in Dense Sand Byron Byrne Geomechanics Group The University of Western Australia

  13. Well completion process for formations with unconsolidated sands

    DOE Patents [OSTI]

    Davies, David K. (Kingwood, TX); Mondragon, III, Julius J. (Redondo Beach, CA); Hara, Philip Scott (Monterey Park, CA)

    2003-04-29T23:59:59.000Z

    A method for consolidating sand around a well, involving injecting hot water or steam through well casing perforations in to create a cement-like area around the perforation of sufficient rigidity to prevent sand from flowing into and obstructing the well. The cement area has several wormholes that provide fluid passageways between the well and the formation, while still inhibiting sand inflow.

  14. Western gas sands project. Status report, 1 July-31 July, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The progress of the government-sponsored projects, directed towards increasing gas production from the low permeability gas sands of the western United States, is summarized. A subcontract was approved between Gas Research Institute and M.D. Wood, Inc. to obtain information on hydraulic fracture length. A meeting was held with Superior Oil Company during July to discuss possible sites for the multi-well experiment. Bartlesville Energy Technology Center continued work toward the assessment of fracture fluid effects on post fracture test times. A full report of the Seismic Formation Mapping Program will be issued by Sandia after review and editing have been completed.

  15. Tidal inlet processes and deposits along a low energy coastline: easter Barataria Bight, Louisiana

    SciTech Connect (OSTI)

    Moslow, T.F.; Levin, D.R.

    1985-01-01T23:59:59.000Z

    Historical, seismic and vibracore data were used to determine the geologic framework of sand deposits along the predominantly muddy coastline of eastern Barataria Bight, Louisiana. Three inlet types with distinct sand body geometries and morphologies were identified and are found 1) at flanking barrier island systems spread laterally across the front of interdistributary bays; 2) in old distributary channels; 3) at overwash breaches; or 4) combination of these. Barataria Bight, a sheltered barrier island shoreline embayment with limited sand supply, minimal tidal range (36 cm) and low wave energies (30 cm) can be used to show examples of each inlet type. Barataria Pass and Quatre Bayou Pass are inlets located in old distributary channels. However, Barataria Pass has also been affected by construction between barrier islands. Pass Ronquille is located where the coastline has transgressed a low area in the delta plain. This breach is situated in a hydraulically efficient avenue between the Gulf and Bay Long behind it. Pass Abel is a combination of a low-profile barrier breach and the reoccupation of an old distributary channel. Shelf and shoreline sands are reworked from abandoned deltaic distributaries and headlands. Inner shelf sands are concentrated in thick (10 m) shore-normal relict distributary channels with fine grained cross-bedded and ripple laminated sand overlain by burrowed shelf muds. Shoreface sand deposits occur as 2-3 m thick, fine-grained, coarsening upward and burrowed ebb-tidal delta sequences and shore-parallel relict tidal inlet channels filled through lateral accretion.

  16. Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst

    E-Print Network [OSTI]

    Santos, Bjorn Sanchez

    2013-05-01T23:59:59.000Z

    Page A.1 Fluidization experiments on -30 +40 US Mesh size refractory sand at actual operating temperatures ........................................................ 124 B.1 Schematic diagram of the fluidized bed reactor... .................................................................................... 99 25 Some of the properties of the high-boiling fraction (HBF) of the crude bio-oil and upgraded HBF?s subjected to different treatments ........ 101 A.1 Observed minimum fluidization of refractory sand in fluidized-bed reactor...

  17. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  18. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  19. The spontaneous ignition potential of a super-light crude oil S.A. Abu-Khamsin*, A. Iddris1

    E-Print Network [OSTI]

    Abu-Khamsin, Sidqi

    including 1748C initial temperature, 7340 kPa reactor pressure, 40% oxygen in the oxidant gas and 26 h, oxidant gas ¯ux, oxygen concentration in the oxidant gas, initial oil and water saturations and reactor pressure were varied to determine the set of conditions that would cause the sand±oil mixture to ignite

  20. Bitumen and heavy-oil resources of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1987-05-01T23:59:59.000Z

    Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

  1. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J.

    1988-06-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulfur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader, now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional products, also based on hydrogenation, will use ebullated bed catalyst systems: the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  2. Bitumen and heavy oil upgrading in Canada

    SciTech Connect (OSTI)

    Chrones, J. (Chrones Engineering Consultants Inc., 111 Lord Seaton Road, Willowdale, Ontario (CA)); Germain, R.R. (Alberta Oil Sands Technology and Research Authority, Edmonton, AB (Canada))

    1989-01-01T23:59:59.000Z

    A review is presented of the heavy oil upgrading industry in Canada. Up to now it has been based on the processing of bitumen extracted from oil sands mining operations at two sites, to produce a residue-free, low sulphur, synthetic crude. Carbon rejection has been the prime process technology with delayed coking being used by Suncor and FLUID COKING at Syncrude. Alternative processes for recovering greater amounts of synthetic crude are examined. These include a variety of hydrogen addition processes and combinations which produce pipelineable materials requiring further processing in downstream refineries with expanded capabilities. The Newgrade Energy Inc. upgrader now under construction in Regina, will use fixed-bed, catalytic, atmospheric-residue, hydrogen processing. Two additional projects, also based on hydrogenation, will use ebullated bed catalyst systems; the expansion of Syncrude, now underway, is using the LC Fining Process whereas the announced Husky Bi-Provincial upgrader is based on H-Oil.

  3. A full field model study of the East Velma West Block Sims Sand Unit reservoir

    SciTech Connect (OSTI)

    Bolling, J.D.

    1985-08-01T23:59:59.000Z

    A full-field numerical model of the East Velma West Block Sims Sand Unit (EVWBSSU) reservoir was developed. From the history-matched model, field performance predictions were made for continued waterflood and various operating scenarios under the present CO/sub 2/ injection scheme. Results include the effect of CO/sub 2/ pipeline supply rate, allocation of CO/sub 2/ and water to injection wells, and uncertain parameters on reservoir performance. From these projections it was concluded that the amount of injected CO/sub 2/ required to produce an incremental barrel of oil over waterflood was not strongly dependent on CO/sub 2/ pipeline supply rate or allocation of injected fluids to injection wells. This conclusion seems reasonable mechanistically because the miscible displacement was dominated by gravity, the areal variation in predicted updip oil saturation was not great, and the continuous injection coupled with high permeability updip caused uniform distribution of CO/sub 2/.

  4. Characterization of Nickel and Vanadium compounds in tar sand bitumen by petroporphyrin quantitation and size exclusion chromatography coupled with element specific detection

    SciTech Connect (OSTI)

    Reynolds, J.G.; Jones, E.L.; Bennett, J.A.; Biggs, W.R.

    1988-06-01T23:59:59.000Z

    Tar sands represent a tremendous untapped resource for transportation fuels. In the United States alone, over 60 billion barrels of bitumen are estimated to be in place. In order to use this bitumen, it must be somehow separated from the sand. The resulting bitumen is of low quality, and generally will require at least some refining. Typical refinery upgrading methods include fluid catalytic cracking, thermal visbreaking, and residuum hydroconversion. Most of these methods utilize metals-sensitive catalyst. The metals bound in the bitumen are deleterious to catalytic processing, causing rapid deactivation through poisoning and pore mouth plugging. Like heavy crude oil residua, tar sand bitumens have high concentrations of Ni and V. The types of complexes of Ni and V have been studied for heavy crude oils, and can be placed in two broad categories: the metallopetroporphyrins and the metallononporphyrins. The metallopetroporphyrins have been studied extensively. For understanding the behavior of the metals in processing, size exclusion chromatography coupled with element specific detection by inductively coupled plasma atomic emission spectroscopy (SEC-HPLC-ICP) has been applied to several heavy crude oils, residua, and processed products along with separated fractions of feeds and products. These results have shown general important size-behavior features of the metallopetroporphyrins and metallo-nonporphyrins associated with individual feed characteristics. Because of the importance of the metals in a downstream process methods, the authors have applied several of the metallopetroporphyrin and metallo-nonporphyrin examination technique to extracted bitumen from selected tar sands.

  5. Stratified chaos in a sand pile formation

    E-Print Network [OSTI]

    Ate Poortinga; Jan G. Wesseling; Coen J. Ritsema

    2014-03-04T23:59:59.000Z

    Sand pile formation is often used to describe stratified chaos in dynamic systems due to self-emergent and scale invariant behaviour. Cellular automata (Bak-Tang-Wiesenfeld model) are often used to describe chaotic behaviour, as simulating physical interactions between individual particles is computationally demanding. In this study, we use a state-of-the-art parallel implementation of the discrete element method on the graphical processing unit to simulate sand pile formation. Interactions between individual grains were simulated using a contact model in an Euler integration scheme. Results show non-linear self-emergent behaviour which is in good agreement with experimental results, theoretical work and self organized criticality (SOC) approaches. Moreover, it was found that the fully deterministic model, where the position and forces on every individual particle can be determined every iteration has a brown noise signal in the x and y direction, where the signal is the z direction is closer to a white noise spectrum.

  6. Guide to preparing SAND reports. Revised

    SciTech Connect (OSTI)

    Locke, T.K. [ed.

    1996-04-01T23:59:59.000Z

    This guide contains basic information needed to produce a SAND report. Its guidelines reflect DOE regulation and Sandia policy. The guide includes basic writing instructions in an annotated sample report; guidance for organization, format, and layout of reports produced by line organizations; and information about conference papers, journal articles, and brochures. The appendixes contain sections on Sandia`s preferred usage, equations, references, copyrights and permissions, and publishing terms.

  7. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  8. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  9. Water quality for secondary and tertiary oil recovery

    SciTech Connect (OSTI)

    Michnick, M.J.

    1983-01-01T23:59:59.000Z

    A key element in many secondary and tertiary oil recovery processes is the injection of water into an oil-bearing formation. Water is the fluid which displaces the oil in the pore space of the rock. A successful waterflood requires more than the availability of water and the pumps and piping to inject the water into the formation. It requires an understanding of how water enters the oil bearing formation and what happens once the injected water comes into contact with the rock or sand, the oil, and the water already in the reservoir. Problems in injectivity will arise unless care and constant monitoring are exercised in the water system for a flood operation. This study examines water availability and quality in relation to waterflooding.

  10. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01T23:59:59.000Z

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  11. Help for declining natural gas production seen in the unconventional sources of natural gas. [Eastern shales, tight sands, coal beds, geopressured zones

    SciTech Connect (OSTI)

    Staats, E.B.

    1980-01-10T23:59:59.000Z

    Oil imports could be reduced and domestic gas production increased if additional gas production is obtained from four unconventional resources-eastern Devonian shales, tight sands, coal beds, and geopressured zones. Gas produced from these resources can help maintain overall production levels as supplies from conventional gas sources gradually decline. The eastern shales and western sands are the chief potential contributors in the near term. Further demonstrations of coal bed methane's recovery feasibility could improve the prospects for its production while future geopressured methane production remains speculative at this time.

  12. Depositional environment of Canyon (Cisco) sandstones, North Jameson field Mitchell County, Texas

    E-Print Network [OSTI]

    Dally, David Jesse

    1983-01-01T23:59:59.000Z

    deposits are dominated by "CE" and "CDE" bedsets that form sequences 0. 1 to 5. 0 ft (0. 0$ to 1. 5 m) thick. Together, these three kinds of deposits form an interbedded sand and shale wedge approximately 150 ft (46 m) thick, thinning basinward. iv... Basins. The sand. stones are part of the Cisco Group and form thin, narrow, dip-trending petroleum reservoirs. These reservoirs form stratigraphic traps in and around older carbonate reefs. Jameson (North) Strawn field is a typical basinal sandstone...

  13. Global Sea Level Stabilization-Sand Dune Fixation: A Solar-powered Sahara Seawater Textile Pipeline

    E-Print Network [OSTI]

    Viorel Badescu; Richard B. Cathcart; Alexander A. Bolonkin

    2007-07-21T23:59:59.000Z

    Could anthropogenic saturation with pumped seawater of the porous ground of active sand dune fields in major deserts (e.g., the westernmost Sahara) cause a beneficial reduction of global sea level? Seawater extraction from the ocean, and its deposition on deserted sand dune fields in Mauritania and elsewhere via a Solar-powered Seawater Textile Pipeline (SSTP) can thwart the postulated future global sea level. Thus, Macro-engineering offers an additional cure for anticipated coastal change, driven by global sea level rise, that could supplement, or substitute for (1) stabilizing the shoreline with costly defensive public works (armoring macroprojects) and (2) permanent retreat from the existing shoreline (real and capital property abandonment). We propose Macro-engineering use tactical technologies that sculpt and vegetate barren near-coast sand dune fields with seawater, seawater that would otherwise, as commonly postulated, enlarge Earth seascape area! Our Macro-engineering speculation blends eremology with hydrogeology and some hydromancy. We estimate its cost at 1 billion dollars - about 0.01 per sent of the USA 2007 Gross Domestic Product.

  14. Solubility of carbon dioxide in tar sand bitumen; Experimental determination and modeling

    SciTech Connect (OSTI)

    Deo, M.D.; Wang, C.J.; Hanson, F.V. (Dept. of Fuels Engineering, Univ. of Utah, Salt Lake City, UT (US))

    1991-03-01T23:59:59.000Z

    This paper reports on an understanding of the solubility of carbon dioxide (CO{sub 2}) in tar sand bitumen that is essential for the development of in situ processes in the recovery of bitumen from tar and deposits. The solubility of CO{sub 2} in the Tar Sand Triangle (Utah), the PR Spring Rainbow I (Utah), and the Athabasca (Canada) tar sand bitumens was determined with the use of a high-pressure microbalance at temperatures of 358.2 and 393.2 K and pressures up to 6.2 MPa. As expected, the solubilities increased with pressure at a given temperature and decreased with increases in temperature. The Peng--Robinson and the Schmidt--Wenzel equations of state were used to match the experimentally observed solubilities. Correlations for the interaction parameters between CO{sub 2} and the bitumen were developed for both equations of state, wherein the interaction parameter could be obtained by using specific gravity and the UOP {ital K} factor for the bitumen. The correlations were developed with the optimum interaction parameters obtained for each of the samples at each temperature.

  15. Beginning of an oil shale industry in Australia

    SciTech Connect (OSTI)

    Wright, B. (Southern Pacific Petroleum NL, 143 Macquarie Street, Sydney (AU))

    1989-01-01T23:59:59.000Z

    This paper discusses how preparations are being made for the construction and operation of a semi commercial plant to process Australian oil shale. This plant is primarily designed to demonstrate the technical feasibility of processing these shales at low cost. Nevertheless it is expected to generate modest profits even at this demonstration level. This will be the first step in a three staged development of one of the major Australian oil shale deposits which may ultimately provide nearly 10% of Australia's anticipated oil requirements by the end of the century. In turn this development should provide the basis for a full scale oil shale industry in Australia based upon the advantageously disposed oil shale deposits there. New sources of oil are becoming critical since Australian production is declining rapidly while consumption is accelerating.

  16. The potential use of tar sand bitumen as paving asphalt

    SciTech Connect (OSTI)

    Petersen, J.C.

    1987-01-01T23:59:59.000Z

    The properties of several tar sand asphalts prepared in past studies by several different investigators were compared with each other and with the properties of petroleum asphalts. These results were reviewed and discussed with regard to the potential use of tar sand bitumen in pavement applications. The data show that tar sand bitumen has good potential for use in highway pavements that meet today's performance specifications. No deficiencies in the tar sand asphalts were found that would be expected to seriously affect performance. On the other hand, the data indicate that some tar sand asphalts may have superior aging characteristics, being relatively resistant to oxidative age hardening compared with typical petroleum asphalts. Asphalt-aggregate mixtures prepared using two tar sand asphalts also showed acceptable strength properties and excellent resistance to moisture-induced damage.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  18. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  19. auriferous alluvial sands: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATES OF AMERICA 12; SAND2002-xxxx Unlimited Release Printed August 2002 by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under...

  20. The new small-angle diffractometer SAND at IPNS

    SciTech Connect (OSTI)

    Crawford, R.K.; Thiyagarajan, P.; Epperson, J.E.; Trouw, F.; Kleb, R.; Wozniak, D.; Leach, D.

    1995-12-31T23:59:59.000Z

    A new small-angle neutron diffractometer SAND is undergoing commissioning at IPNS pulsed source. This paper provides details of the design and expected performance of this instrument.

  1. SANDIA REPORT SAND2014-3416 Unlimited Release

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SAND2014-3416 Unlimited Release Printed April 2014 Safety, Codes and Standards for Hydrogen Installations: Hydrogen Fueling System Footprint Metric Development A.P. Harris,...

  2. Heating tar sands formations while controlling pressure

    DOE Patents [OSTI]

    Stegemeier, George Leo (Houston, TX) [Houston, TX; Beer, Gary Lee (Houston, TX) [Houston, TX; Zhang, Etuan (Houston, TX) [Houston, TX

    2010-01-12T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. A pressure in the majority of the section may be maintained below a fracture pressure of the formation. The pressure in the majority of the section may be reduced to a selected pressure after the average temperature reaches a temperature that is above 240.degree. C. and is at or below pyrolysis temperatures of hydrocarbons in the section. At least some hydrocarbon fluids may be produced from the formation.

  3. Heating tar sands formations to visbreaking temperatures

    DOE Patents [OSTI]

    Karanikas, John Michael (Houston, TX); Colmenares, Tulio Rafael (Houston, TX); Zhang, Etuan (Houston, TX); Marino, Marian (Houston, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Ryan, Robert Charles (Houston, TX); Beer, Gary Lee (Houston, TX); Dombrowski, Robert James (Houston, TX); Jaiswal, Namit (Houston, TX)

    2009-12-22T23:59:59.000Z

    Methods for treating a tar sands formation are described herein. Methods may include heating at least a section of a hydrocarbon layer in the formation from a plurality of heaters located in the formation. The heat may be controlled so that at least a majority of the section reaches an average temperature of between 200.degree. C. and 240.degree. C., which results in visbreaking of at least some hydrocarbons in the section. At least some visbroken hydrocarbon fluids may be produced from the formation.

  4. Investigation of sands subjected to dynamic loading 

    E-Print Network [OSTI]

    Reeves, Gary Neil

    1967-01-01T23:59:59.000Z

    INVESTIGATION OF SP&NDS SUBJECTED TO DTNAMIC LOADING A Tucsis By Gary N. Reeves Submitted to the Grad ate Coll Ee of the T xas AGM University in partial fulfillment of the requirements for the deEree of MASTER OF SCIPNCE AuBust 19G7 Major... Subject: Civil EnEineering LABORATORY INVESTIGATION OF SANDS SUBJECTED TO DYNAMIC LOADING A Thesis by Gary N. Reeves Approved as to style and content by: Chairman of Committee Head of Department Membe Me er August 1967 ACIINOWLEDGR&J. 'NTS I...

  5. Sand Mountain Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistma AG Jump to:EnergysourceRamon, California:Sand Mountain

  6. Sand Bluff Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to:WY)Project JumpSanMiguel, California:Sand

  7. Variation in grain shape and surface textures of fine guartz sands in the South Texas Eolian Sand Sheet

    E-Print Network [OSTI]

    Sims, Donald Ralph

    1984-01-01T23:59:59.000Z

    action on sand grains. Samples were taken from 4 transects subnormal to the prevailing wind direction at approximately 20 mile intervals. Two quartz-grain shape types were recognized in the fine sand fraction: one consisted of predominately angular... and 45 miles southward from Baffin Bay to Port Mansfield (Figure 1). The major factors affecting the formation and accumulation of the South Texas Eolian Sand Sheet are a prevailing wind from the east-southeast, a semi-arid climate and a source...

  8. TESTING OF TMR SAND MANTIS FINAL REPORT

    SciTech Connect (OSTI)

    Krementz, D; William Daugherty, W

    2007-06-12T23:59:59.000Z

    Screening tests of Sand Mantis candidate materials selected for erosion resistance have been completed. The results of this testing identified that over a relatively short period of operation (<1 hour), measurable erosion will occur in each of the candidate zoom tube materials given equal operating exposure. Additionally, this testing has shown that erosion of the rubber discharge hose directly downstream of the vehicle could be expected to limit the service life of the discharge hose. On the basis of these test results, SRNL recommends the following; {lg_bullet} redesign of critical system components (e.g., zoom tube, discharge hose) should be conducted to improve system characteristics relative to erosion and capitalize on the results of this testing, {lg_bullet} continued efforts to deploy the Sand Mantis should include testing to better define and optimize operating parameters, and gain an understanding of system dynamics, {lg_bullet} discontinue wear testing with the selected materials pending redesign of critical system components (1st recommendation) and inclusion of other candidate materials. The final selection of additional candidate materials should be made following design changes, but might include a Stellite alloy or zirconia.

  9. Solvent extraction of bitumen from tar sands

    SciTech Connect (OSTI)

    Hoon, A.Y.; Thomas, S. [Univ. of West Indies, St. Augustine (Trinidad and Tobago)

    1995-12-31T23:59:59.000Z

    This paper reports on the measurement of mass transfer rates for the extraction of bitumen from tar sands using organic solvents. The experiment was carried out in an agitated vessel using a six-blade turbine mixer on a laboratory scale. To facilitate the determination of absolute mass transfer coefficients, tar sands were specially prepared in the form of spherical particles so that mass transfer area can be computed. The variables investigated in the study included: (1) solvent type (kerosene, toluene, benzene), (2) stirrer speed, 25 rpm to 1000 rpm, and (3) particle diameter, 0.4 cm to 1.2 cm. The results indicated that solvency power varied markedly with the various solvents used and that high aromatic content promoted rapid dissolution when compared with paraffinic solvents. The mass transfer rates increased with increasing stirrer speed in accordance with the relationship: k {alpha} N{sup 0.56} where k is the mass transfer coefficient and N the stirrer speed. Increasing particle diameter also resulted in decreased mass transfer rates. The results were satisfactorily correlated in terms of a Frossling type equation, Sh {alpha} Re{sub p}{sup a}Sc{sup b}.

  10. Heavy Oil Program. Quarterly progress report No. 1, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Wayland, J. R.; Bartel, L. C.; Johnson, D. R.; Fox, R. L.

    1980-12-01T23:59:59.000Z

    Research and development efforts in support of the DOE Heavy Oil RD and D Program in reservoir access were initiated. Preliminary activities in the survey of sand control, drilling, and fracturing techniques in heavy oil formations are described. The continued development of a high temperature packer for use in steam injection applications is presented. A new application of controlled source audio magnetotelluric survey to developing thermal fronts from in situ combustion and steam drive is described.

  11. Oil recovery by carbon dioxide injection into consolidated and unconsolidated sandstone 

    E-Print Network [OSTI]

    Lin, Fwu-Jin Frank

    1975-01-01T23:59:59.000Z

    a displacement effic1ency approaching 100 percent. (3) Carbon Dioxide neither achieves direct miscible displacement at practical reservoir pressures, like LPG, nor depend upon the presence of light hydrocarbons in the reservoir oil. A f1eld... strong function of pore size dis- tribution, probably contributed a great effect on the oil displacement effic1enc1es between the consolidated sandstone core and the unconsolidated sand pack. 4. No significant over-riding effect of carbon dioxide...

  12. New applications for enzymes in oil and gas production

    SciTech Connect (OSTI)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01T23:59:59.000Z

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  13. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2006-04-02T23:59:59.000Z

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  14. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  15. Depositional environment of the Yates Formation in Kermit Field, Winkler County, Texas

    E-Print Network [OSTI]

    Gormican, Sheila Catherine

    1988-01-01T23:59:59.000Z

    % rock fragments, 5-. other (micas and opaques), and 22% matrix (dolomite in the carbonates and authigenic clays in the clastics). The sands were transported to the Central Basin Platform as eolian dunes from the Pedernal highlands of central New... ENVIRONMENT Introduction Depositional Model Interpretation of Environment of Deposition . 41 . 41 . . 48 IV RESERVOIR PROPERTIES 52 Introduction Secondary Rock Properties Waterflood History Hydrocarbon Source 52 52 58 58 V CONCLUSIONS 62 TABLE...

  16. Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands

    E-Print Network [OSTI]

    Mazzini, Adriano

    Abstract Fluid escape from reservoirs: implications from cold seeps, fractures and injected sands fluids escape from hydrocarbon reservoirs through permeable networks of fractures, injected sands. Within fractures and injected sands, oxidation of chained hydrocarbons supplies bicarbonate to the co

  17. Characterization of nickel and vanadium compounds in tar sand bitumen by UV-VIS spectroscopy and size exclusion chromatography coupled with element specific detection

    SciTech Connect (OSTI)

    Reynolds, J.G.; Jones, E.L.; Bennett, J.A. (Lawrence Livermore National Lab., CA (USA)); Biggs, W.R. (Chevron Research Co., Richmond, CA (USA))

    1989-01-01T23:59:59.000Z

    Previously, the authors examined the Ni and V in heavy crude oils, residua, and processed products by several metal speciation techniques to ascertain molecular structure and processing behavior. Two classes of metal compounds were found - metallopetroporphyrins and metallo-nonprophyrins - each having unique reactivity during processing. In efforts to better understand the binding of metals in the oil medium, they now examine NI and V in tar sand bitumens. The bitumen was solvent extracted from the sand matrix and was separated by column chromatography and the petroporphyrin content was quantitated by UV-vis spectroscopy. The petroporphyrin contents ranged from virtually none to over 36% of the total metals. Asphalt Ridge (Utah) has primarily Ni petroporphyrins; Big Clifty (Kentucky) and Athabasca (Canada) have primarily V petroporphyrins; Arroyo Grande and McKittrick (California) have roughly equal amounts of both types; and Sunnyside (Utah) has virtually none of either.

  18. Biocalcification of Sand through Ureolysis Chiung-Wen Chou1

    E-Print Network [OSTI]

    Aydilek, Ahmet

    . A laboratory study was conducted to evaluate the changes in geomechanical properties of sand attributable that the bacterial cells effectively improved the geomechanical properties of the sand. Growing cells improved and have a tremendous effect on the composition, properties, and geomechanical behavior of earth materials

  19. ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS

    E-Print Network [OSTI]

    Flury, Markus

    ALUMINOSILICATE-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS By JORGE ANTONIO JEREZ transport experiments; Dr. Barbara Williams and Jason Shira from University of Idaho for providing access-COATED SILICA SAND FOR REACTIVE TRANSPORT EXPERIMENTS Abstract by Jorge Antonio Jerez Briones, Ph.D. Washington

  20. BENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    and state environmental agencies began to pay increasing attention to industrial pollution, safety and wasteBENEFICIAL UTILIZATION OF USED FOUNDRY SANDS AS CONSTRUCTION MATERIALS By Tarun R. Naik Director - 6696 Fax: (414) 229 - 6958 #12;-2- Beneficial Utilization of Used Foundry Sands as Construction

  1. Mechanic Waves in Sand, 3d Simulations O Mouraillea,

    E-Print Network [OSTI]

    Luding, Stefan

    Mechanic Waves in Sand, 3d Simulations O Mouraillea, , W A Mulderb & S Ludinga a Particle propagation. The propagation of rotational energy in itself is studied as well. The control on the inter in granular materials. #12;Wave propagation, MD-Simulations 2 1. Introduction Sand, like other granular

  2. Multispecies Reactive Tracer Test in a Sand and

    E-Print Network [OSTI]

    Multispecies Reactive Tracer Test in a Sand and Gravel Aquifer, Cape Cod, Massachusetts United;Multispecies Reactive Tracer Test in a Sand and Gravel Aquifer, Cape Cod, Massachusetts Part 2 Transport- effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection

  3. SHORT COMMUNICATION First Collection Records of Phlebotomine Sand Flies (Diptera

    E-Print Network [OSTI]

    SHORT COMMUNICATION First Collection Records of Phlebotomine Sand Flies (Diptera: Psychodidae) From (2011); DOI: 10.1603/ME10170 ABSTRACT The phlebotomine sand ßies Lutzomyia (Psathyromyia) shannoni (Dyar species were collected from ultraviolet CO2-baited Centers for Disease Control light traps during a state

  4. Household scale slow sand filtration in the Dominican Republic

    E-Print Network [OSTI]

    Donison, Kori S. (Kori Shay), 1981-

    2004-01-01T23:59:59.000Z

    Slow sand filtration is a method of water treatment that has been used for hundreds of years. In the past two decades, there has been resurgence in interest in slow sand filtration, particularly as a low-cost, household-scale ...

  5. Completion methods in thick, multilayered tight gas sands

    E-Print Network [OSTI]

    Ogueri, Obinna Stavely

    2009-05-15T23:59:59.000Z

    Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs...

  6. Completion methods in thick, multilayered tight gas sands

    E-Print Network [OSTI]

    Ogueri, Obinna Stavely

    2008-10-10T23:59:59.000Z

    Tight gas sands, coal-bed methane, and gas shales are commonly called unconventional reservoirs. Tight gas sands (TGS) are often described as formations with an expected average permeability of 0.1mD or less. Gas production rates from TGS reservoirs...

  7. www.nasa.gov WHITE SANDS MISSILE RANGE ACCESS CAPABILITIES

    E-Print Network [OSTI]

    and missile launch, tracking, and recovery · Nuclear effects testing · High-speed sled track · Directed energy weapons testing · Climatic and dynamic environments testing · Atmospheric research · Electronicwww.nasa.gov WHITE SANDS MISSILE RANGE ACCESS CAPABILITIES SUMMARY White Sands Test Facility (WSTF

  8. Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

  9. Utilizing asphaltene pyrolysis to predict pyrolysis kinetics of heavy crude oil and extractable native bitumen

    SciTech Connect (OSTI)

    Reynolds, J.G.

    1992-01-07T23:59:59.000Z

    Selected heavy crude oils and extracted tar sand bitumens were separated into asphaltene and maltene fractions. The whole feeds and fractions were then examined by micropyrolysis at nominal constant heating rates from 1 to 50{degrees}C/min from temperatures of 250 to 650{degrees}C to establish evolution behavior, pyrolysate yields, and kinetics of evolution.

  10. The environment of deposition of the Dalton Coal (Upper Pennsylvanian), Palo Pinto Co., TX. 

    E-Print Network [OSTI]

    Lowenstein, Glenn Robert

    1986-01-01T23:59:59.000Z

    bioclastic sand that grades to the northwest into a thicker, wavy to evenly bedded micrite. Directly underlying the Dalton, in the northwest, is a wedge of shale that thickens northward separating the micrite from the overlying Dalton. The gray shales... the outcrop face and in cores. . . . Core DC-I Core DC-2 Core DC-3 24 48 49 50 Al kane distributions CI (left) to C35 (ri ght) for overbur den and underburden shales, coal, and oil samples. 57 10 Net sand stone thickness map for the Wol f Mountain...

  11. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28T23:59:59.000Z

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  12. Tax credit for tight-sands gas

    SciTech Connect (OSTI)

    Schugart, G.L.

    1985-06-01T23:59:59.000Z

    There is a $3 per barrel tax credit, which is tied to crude oil prices, in the Windfall Profits Tax (WPT) for producing fuels from certain unconventional sources. Concentrating on the tight gas formations section of qualifying fuels, the author examines the tax credit and certain factors natural gas producers may want to consider in deciding on whether to choose the tax credit or the incentive prices of the Natural Gas Policy Act. The decline in oil prices is significant enough to provide some producers an opportunity to take advantage of the tax credit. They should do some tax planning by calculating the estimated break-even point for NGPA incentive prices and the nonconventional gas production tax credit.

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    over time even if the oil market were perfectly competitive.a big role in world oil markets, that era is long past.and re?ning oil and delivering it to the market. We could

  14. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    appeared in the world oil market in the last fifteen years.have on the world oil markets and international relationsthe stability of the oil markets. 11 This literature,

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),the faster its growth in oil demand over the last half ofthe income elasticity of oil demand to fall signi?cantly.

  17. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  18. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  19. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  1. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  2. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  4. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  5. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    in U.S. real GDP and oil consumption, 1949-2006. slope =Historical Chinese oil consumption and projection of trend.1991-2006: Chinese oil consumption in millions of barrels

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  7. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S[sub O] relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. (System Technology Associates, Inc., Golden, CO (United States))

    1996-01-01T23:59:59.000Z

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1[1/2]-2[1/2] ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  8. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S{sub O} relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. [System Technology Associates, Inc., Golden, CO (United States)

    1996-12-31T23:59:59.000Z

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1{1/2}-2{1/2} ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  9. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01T23:59:59.000Z

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  10. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  11. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    historical data for claiming to be able to predict oil pricehistorical data. The second is to look at the predictions of economic theory as to how oil prices

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  13. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  14. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  15. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

  16. Geology and recognition criteria for sandstone uranium deposits in mixed fluvial-shallow marine sedimentary sequences, South Texas. Final report

    SciTech Connect (OSTI)

    Adams, S.S.; Smith, R.B.

    1981-01-01T23:59:59.000Z

    Uranium deposits in the South Texas Uranium Region are classical roll-type deposits that formed at the margin of tongues of altered sandstone by the encroachment of oxidizing, uraniferous solutions into reduced aquifers containing pyrite and, in a few cases, carbonaceous plant material. Many of the uranium deposits in South Texas are dissimilar from the roll fronts of the Wyoming basins. The host sands for many of the deposits contain essentially no carbonaceous plant material, only abundant disseminated pyrite. Many of the deposits do not occur at the margin of altered (ferric oxide-bearing) sandstone tongues but rather occur entirely within reduced, pyurite-bearing sandstone. The abundance of pyrite within the sands probably reflects the introduction of H/sub 2/S up along faults from hydrocarbon accumulations at depth. Such introductions before ore formation prepared the sands for roll-front development, whereas post-ore introductions produced re-reduction of portions of the altered tongue, leaving the deposit suspended in reduced sandstone. Evidence from three deposits suggests that ore formation was not accompanied by the introduction of significant amounts of H/sub 2/S.

  17. aeolian sand transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus...

  18. aeolian sands underlain: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus...

  19. asian sand dust: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus...

  20. Mineral Dissolution and Secondary Precipitation on Quartz Sand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sand in Simulated Hanford Tank Solutions Affecting Subsurface Porosity."Journal of Hydrology 472-473:159-168. doi:10.1016j.jhydrol.2012.09.021 Authors: G Wang W Um...

  1. Kellogg and Russ Forest projects. 2002 Project sand highlights

    E-Print Network [OSTI]

    Kellogg and Russ Forest projects. 2002 Project sand highlights MacCready Reserve a new property of insects Galeerucella calmariensis,and G.pusilla to control purple loosestrife on May 13. #12;New Project

  2. Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on

    E-Print Network [OSTI]

    Vermont, University of

    Tree Harvest in an Experimental Sand Ecosystem: Plant Effects on Nutrient Dynamics and Solute control during this interval. During the 1st year after harvest, K concentrations tripled in shallow soil

  3. Study of properties of sand asphalt using a torsional rheometer 

    E-Print Network [OSTI]

    Kasula, Lavan Kumar Reddy

    2004-11-15T23:59:59.000Z

    The modeling of Sand Asphalt and experiments to measure their rheological properties are of vital concern to many industrial processes especially highway and roadway pavement construction industry. A variety of hot mix ...

  4. Bathymetric evolution of sand bed forms under partially standing waves

    E-Print Network [OSTI]

    Landry, Blake Jude

    2004-01-01T23:59:59.000Z

    Experiments were conducted in a large wave flume where the interaction between water waves and a movable sand bed were investigated. Monochromatic and poly- chromatic waves of specified amplitudes and period were generated ...

  5. RESEARCH ARTICLE Drag reduction using superhydrophobic sanded Teflon surfaces

    E-Print Network [OSTI]

    Rothstein, Jonathan

    RESEARCH ARTICLE Drag reduction using superhydrophobic sanded Teflon surfaces Dong Song · Robert J- phobic surfaces with random surface microstructure. These superhydrophobic surfaces were fabricated was found to produce the largest pressure drop reduction. 1 Introduction Superhydrophobic surfaces can

  6. Acoustic detection of Immiscible Liquids in Sand

    SciTech Connect (OSTI)

    Geller, Jil T.; Kowalsky, Michael B.; Seifert, Patricia K.; Nihei, Kurt T.

    1999-03-01T23:59:59.000Z

    Laboratory cross-well P-wave transmission at 90 kHz was measured in a 61 cm diameter by 76 cm tall water-saturated sand pack, before and after introducing a non-aqueous phase organic liquid (NAPL) (n-dodecane). In one experiment NAPL was introduced to form a lens trapped by a low permeability layer; a second experiment considered NAPL residual trapped behind the front of flowing NAPL. The NAPL caused significant changes in the travel time and amplitude of first arrivals, as well as the generation of diffracted waves arriving after the direct wave. The spatial variations in NAPL saturation obtained from excavation at the end of the experiment correlated well with the observed variations in the P-wave amplitudes and travel times. NAPL residual saturation changes from NAPL flow channels of 3 to 4% were detectable and the 40 to 80% NAPL saturation in the NAPL lens was clearly visible at acoustic frequencies. The results of these experiments demonstrate that small NAPL saturations may be more easily detected with amplitude rather than travel time data, but that the relationships between the amplitude changes and NAPL saturation maybe more complex than those for velocity.

  7. Creating and maintaining a gas cap in tar sands formations

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Karanikas, John Michael (Houston, TX); Dinkoruk, Deniz Sumnu (Houston, TX); Wellington, Scott Lee (Bellaire, TX)

    2010-03-16T23:59:59.000Z

    Methods for treating a tar sands formation are disclosed herein. Methods for treating a tar sands formation may include providing heat to at least part of a hydrocarbon layer in the formation from one or more heaters located in the formation. Pressure may be allowed to increase in an upper portion of the formation to provide a gas cap in the upper portion. At least some hydrocarbons are produced from a lower portion of the formation.

  8. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  9. Particle deposition in ventilation ducts

    E-Print Network [OSTI]

    Sippola, Mark R.

    2002-01-01T23:59:59.000Z

    and An Evaluation of Thermophoretic Deposition Rates C.1of estimated thermophoretic deposition velocities, v th+ ,of estimated thermophoretic deposition velocities, v th+ ,

  10. Petrological comparison of some tertiary and quaternary sands from Brazos and adjourning counties, Texas

    E-Print Network [OSTI]

    Elsik, William Clinton

    1960-01-01T23:59:59.000Z

    //ipyramids of quartz in the Catahoula sands differ- / / entiates them from P ~ternary sands. The Claiborne sands contain much , , ' / muscovite. Volcarj g glass is common in the Jackson sends. / Angular-s+' gular roundness ratios vary for both Tertiary... and / / / Quaternary sar g. Occasional angular-subangular ratio va1ues in excess / / of 2. 00 are saracteristic of the Quaternary sands. / / Glaua' gite is more common in Tertiary than in Quaternary sands. / / / Add' Lional petrological studies of the clay...

  11. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  12. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  13. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  15. Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-08-01T23:59:59.000Z

    This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  16. Potential for substitution of geothermal energy at domestic defense installations and White Sands Missile Range

    SciTech Connect (OSTI)

    Bakewell, C.A.; Renner, J.L.

    1982-01-01T23:59:59.000Z

    Geothermal resources that might provide substitute energy at any of 76 defense installations are identified and evaluated. The geologic characteristics and related economics of potential geothermal resources located at or near the 76 installations were estimated. The geologic assessment identified 18 installations with possible geothermal resources and 4 Atlantic Coastal Plain resource configurations that represented the alternatives available to East Coast bases. These 18 locations and 4 resource configurations, together with 2 possible resources at the White Sands Missile Range and a potential resource at Kings Bay, Georgia, were examined to determine the relative economics of substituting potential geothermal energy for part or all of the existing oil, gas, and electrical energy usage. Four of the military installations - Mountain Home, Norton, Hawthorne, and Sierra - appear to be co-located with possible geothermal resources which, if present, might provide substitute energy at or below current market prices for oil. Six additional locations - Ellsworth, Luke, Williams, Bliss, Fallon, and Twentynine Palms - could become economically attractive under certain conditions. No geothermal resource was found to be economically competitive with natural gas at current controlled prices. Generation of electric power at the locations studied is estimated to be uneconomic at present.

  17. Evaluation of electromagnetic stimulation of Texas heavy oil reservoirs

    E-Print Network [OSTI]

    Doublet, Louis Edward

    1988-01-01T23:59:59.000Z

    . By determining the ~ir and fluid properties that were most important, empirical estimation equations for both ~ and wellbore power were developed. A large number of producing scenarios were evaluated for the sensitivity study. All the cases were simulated... oil deposits of Texas was made in order to find candidates for the EMH process. 3. An empirical heated oil production rate estimation equation was used to evaluate economically viable reservoirs. A single well, single phase, two...

  18. Simple concept predicts viscosity of heavy oil and bitumen

    SciTech Connect (OSTI)

    Puttagunta, V.R.; Miadonye, A.; Singh, B. (Lakehead Univ., Thunder Bay, Ontario (Canada))

    1993-03-01T23:59:59.000Z

    For in situ recovery, a correlation has been developed for predicting the viscosity of bitumen and heavy oil. The correlation requires only a single viscosity measurement. The derived viscosities show an overall average absolute deviation of 4.4% from experimental data for 18 sets of Alberta heavy oil and bitumen containing 175 measurements. The paper describes the equations, their accuracy in determining viscosity, and an example from the Alberta deposits.

  19. Quaternary Science Reviews 20 (2001) 705}713 The timing of coversand deposition in northwest Norfolk, UK

    E-Print Network [OSTI]

    Clarke, Michèle

    are all well bleached, with consequent implications for existing thermoluminescence (TL) dates on UK. Infra-red stimulated luminescence (IRSL) dating of feldspars has been undertaken on "ve samples from to provide accurate dates for deposition of the sand sheets, challenging the assumption that coversands

  20. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01T23:59:59.000Z

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  1. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  2. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  3. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal drilling, as well as enhanced oil recovery...

  4. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal continuity, as well as enhanced oil recovery...

  5. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  6. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  7. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  8. The extraction of bitumen from western tar sands

    SciTech Connect (OSTI)

    Oblad, A.G.; Bunger, J.W.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

    1989-05-01T23:59:59.000Z

    This report represents the work done during the year of May 8, 1987 to June 9, 1988. This year was the first year of a five-year program. The overall objective of the latter is to advance the technologies for recovering bitumen from the tar sands by thermal and water assisted extraction means and upgrading of bitumen to synthetic crude, and conversion of bitumens to specialty products such as asphalt and resins to levels where realistic evaluations of technical and commercial potential can be made. Additionally, it is desired to have the data at a level which is adequate for design of pilot plants of appropriate size deemed necessary for commercial scale-up of the various processes being studied. The main areas for studies covered in this report are modelling and optimization of the hydropyrolysis process for upgrading bitumens, bitumen recovery by pyrolysis of the circle Cliffs tar sands in a fluid bed, pyrolysis of Whiterocks tar sand in a rotary kiln, modelling of the combustor in the coupled fluidized bed with interbed heat transfer using heat pipes, development of superior diluents for use in the water extraction of Utah's tar sands, and fractionation and characterization of the bitumens from Asphalt Ridge and Sunnyside tar sands. 169 refs., 60 figs., 31 tars.

  9. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08T23:59:59.000Z

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  11. Literature survey and documentation on organic solid deposition problem. Status report

    SciTech Connect (OSTI)

    Chung, Ting-Horng

    1993-12-01T23:59:59.000Z

    Organic solid deposition is often a major problem in petroleum production and processing. Recently, this problem has attracted more attention because operating costs have become more critical to the profit of oil production. Also, in miscible gas flooding, asphaltene deposition often occurs in the wellbore region after gas breakthrough and causes plugging. The organic deposition problem is particularly serious in offshore oil production. Cooling of crude oil when it flows through long-distance pipelines under sea water may cause organic deposition in the pipeline and result in plugging. NIPER`s Gas EOR Research Project has been devoted to the study of the organic solid deposition problem for three years. NIPER has received many requests for technical support. Recently, the DeepStar project committee on thermo-technology development and standardization has asked NIPER to provide them with NIPER`s expertise and experience. To assist the oil industry, NIPER is preparing a state-of-the-art review on the technical development for the organic deposition problem. In the first quarter, this project has completed a literature survey and documentation. total of 258 publications (114 for wax, 124 for asphaltene, and 20 for related subjects) were collected and categorized. This literature survey was focused on the two subjects: wax and asphaltene. The subjects of bitumen, asphalt, and heavy oil are not included. Also, the collected publications are mostly related to production problems.

  12. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  13. Utilization of Estonian oil shale at power plants

    SciTech Connect (OSTI)

    Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

    1996-12-31T23:59:59.000Z

    Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

  14. The displacement of oil from unconsolidated sands by high temperature fluid injection

    E-Print Network [OSTI]

    Hossain, A. K. M. Sakhawat

    1965-01-01T23:59:59.000Z

    Permeability Summary of Waterflood at 72 F ? Run No ~ 2 Summary of Waterflood at 150 F ? Run No. 3 Summary of Waterflood at 255 F Run No ~ Summary of Waterflood at 150 F - Run No ~ 6 o Page 46 VIII Summary of Waterflood at 200 F - Run No ~ 8 1X X XI... XII Sussnary of Waterflood at 150 F - Run No ~ 9 Summary of Waterflood at 72 F ~ Run No. 10 0 Summary of Waterflood at 235 F ? Run No ~ 12 Summary of Waterflood at 295 F - Run No 13 0 50 51 A BS TRA CT Considerable interest in the application...

  15. Microsoft Word - EXT-11-23239_IntegofOilSands&HTGR_Final_102511...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23 Figure 17. Effect of variations in key economic parameters on the price of heat. ... 23 Figure 18. Electricity price, ...

  16. Emissions from Heavy-Duty Diesel Engine with EGR using Oil Sands...

    Broader source: Energy.gov (indexed) [DOE]

    measuring cycloparaffins are not as well developed as those for aromatics Canadian refinery streams have been sampled and are currently being characterized in preparation for a...

  17. Ensemble-approaches for clustering health status of oil sand pumps F. Di Maio a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    expected to operate with high levels of reliability, availability, and safety although they run in adverse/3, 20133 Milano, Italy, enrico.zio@polimi.it b Smart Engineering Asset Management Laboratory (SEAM), MEEM year. Traditional maintenance strategies can be applied, but they provide insufficient warning

  18. Response of Oil Sands Derived Fuels in Diesel HCCI Operation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr. JuliaPOINTRespondof Energy

  19. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1

  20. BETO-Funded Study Finds Increased Carbon Intensity from Canadian Oil Sands

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'s ReplyApplication ofTribal Renewable EnergyFuell u e R iInvention Wins|