Sample records for oil resource assessment

  1. Assessment of Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Gong, Xinglai

    2013-07-30T23:59:59.000Z

    , and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

  2. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources 

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02T23:59:59.000Z

    was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford... and Agua Nueva shales combined resources were estimated to be 27-87 TCF (P90-P10) (PEMEX 2011). An assessment of the Eagle Ford shale oil and gas resources in the US is being done by the Crisman Institute for Petroleum Research at Texas A&M University...

  3. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  4. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  5. U.S. Geological Survery Oil and Gas Resource Assessment of the Russian Arctic

    SciTech Connect (OSTI)

    Donald Gautier; Timothy Klett

    2008-12-31T23:59:59.000Z

    The U.S. Geological Survey (USGS) recently completed a study of undiscovered petroleum resources in the Russian Arctic as a part of its Circum-Arctic Resource Appraisal (CARA), which comprised three broad areas of work: geological mapping, basin analysis, and quantitative assessment. The CARA was a probabilistic, geologically based study that used existing USGS methodology, modified somewhat for the circumstances of the Arctic. New map compilation was used to identify assessment units. The CARA relied heavily on geological analysis and analog modeling, with numerical input consisting of lognormal distributions of sizes and numbers of undiscovered accumulations. Probabilistic results for individual assessment units were statistically aggregated, taking geological dependencies into account. The U.S. Department of Energy (DOE) funds were used to support the purchase of crucial seismic data collected in the Barents Sea, East Siberian Sea, and Chukchi Sea for use by USGS in its assessment of the Russian Arctic. DOE funds were also used to purchase a commercial study, which interpreted seismic data from the northern Kara Sea, and for geographic information system (GIS) support of USGS mapping of geological features, province boundaries, total petroleum systems, and assessment units used in the USGS assessment.

  6. Statistical issues in the assessment of undiscovered oil and gas resources

    E-Print Network [OSTI]

    Kaufman, Gordon M.

    1992-01-01T23:59:59.000Z

    Prior to his untimely death, my friend Dave Wood gave me wise counsel about how best to organize a paper describing uses of statistics in oil and gas exploration. A preliminary reconnaissance of the literature alerted me ...

  7. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  8. CHAPTER 4: THE DEEPWATER HORIZON OIL SPILL NATURAL RESOURCE INJURY ASSESSMENT.................1 4.1 The Injury Assessment Process: Assessing Injuries in a Complex, Interconnected Ecosystem ....1

    E-Print Network [OSTI]

    .1 The Injury Assessment Process: Assessing Injuries in a Complex, Interconnected Ecosystem ....1 4.2 Injuries the public with an overview of the potential impacts to resources in the Gulf of Mexico ecosystem caused

  9. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    and development program. Title VIII concerns the amendments to the Trans Alaska Pipeline System Act. Title I deals with probably the most important part of OPA-90 ? liability and compensation. Claim procedures, federal authority, financial responsibility... minimum. LITERATURE REVIEW From the time that oil was discovered, drilled and transported, oil spills have been occurring. As long as crude oils and petroleum products are transported across the seas by ships or pipelines, there is the risk of spillage...

  10. Solar radiation resource assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

  11. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11T23:59:59.000Z

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology section of future revisions of the ''Yucca Mountain Site Description'' (CRWMS M&O 2000c).

  12. Assessment of the Mexican Eagle Ford Shale Oil and Gas Resources

    E-Print Network [OSTI]

    Morales Velasco, Carlos Armando

    2013-08-02T23:59:59.000Z

    and for their commitment to our education. I would also like to thank Dr. Yuefeng Sun for being part of my committee and Dr. Juan Carlos Laya for serving as a substitute in my thesis defense. My special thanks to Petr?leos Mexicanos for providing me information... was not quantified. In November 2011, Petr?leos Mexicanos (PEMEX) estimated prospective gas resources in the different plays. For the Upper Cretaceous (which includes the Eagle Ford shale) the estimates were 54-106-171 TCF (P90-P50-P10). For the Eagle Ford...

  13. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    Near Shore Submerged Oil Assessment September 2010 In the context of the BP Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments from very different physical and chemical processes. In this spill, the oil was released more than 5

  14. Writing Assessment: Additional Resources

    E-Print Network [OSTI]

    Schweik, Charles M.

    29 Appendix A Writing Assessment: Additional Resources #12;30 Where can I find out more into the assessment process. On-campus resources give you with a "real person" to contact should you have questions Resources for Higher Education Outcomes Assessment http://www2.acs.ncsu.edu/UPA/survey/resource.htm Ohio

  15. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01T23:59:59.000Z

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  16. Cursed Resources? Political Conditions and Oil Market Volatility*

    E-Print Network [OSTI]

    Edwards, Paul N.

    that there is a pronounced negative relationship between a country's political openness and the short-run volatility in oil shifts in oil demand or supply affect prices (see, for example, Hamilton (2009a) for a recent assessmentCursed Resources? Political Conditions and Oil Market Volatility* Gilbert E. Metcalf Tufts

  17. Geological play analysis of the Pacific Federal Offshore Region - A status report on the National Assessment of undiscovered oil and gas resources

    SciTech Connect (OSTI)

    Dunkel, C.A. (Minerals Management Service, Camarillo, CA (United States))

    1994-04-01T23:59:59.000Z

    Geological and geophysical data from the federal offshore areas seaward of California, Oregon, and Washington (Pacific Outer Continental Shelf or OCS) are being used to identify petroleum plays for the Department of the Interior's National Assessment of Undiscovered Oil and Gas Resources project. Analysis of these data by a team of Minerals Management Service geo-scientists have led to the definition, delineation, and qualitative characterization of plays in six Pacific OCS assessment provinces: Pacific Northwest, Central California, Santa-Barbara-Ventura Basin, Los Angeles Basin, inner borderland, and other borderland. Plays are defined on the bases of reservoir rock stratigraphy, trap style, and hydrocarbon type. Each play is classified as established, frontier, or conceptual according to its discovery status and data availability. Preliminary analysis of the plays are complete and have been compiled in map and text formats by province. Plays are being further analyzed to characterize their quantitative attributatives such as numbers and sizes of undiscovered fields and geologic risk. Statistical evaluation to develop volumetric estimates of undiscovered oil and gas resources will be completed in late 1994. A discovery process modeling technique will be used to evaluate established plays in the Santa Maria and Santa Barbara-Ventura basins. Subjective modeling, based on estimated field-size distributions, will be applied to frontier and conceptual plays. Formal reports of the assessment results will be presented in 1995.

  18. Regulation of Oil and Gas Resources (Florida)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to conserve and control the natural resources of oil and gas, and their products; to prevent waste of oil and gas; to provide for the protection and adjustment...

  19. Colorado Statewide Forest Resource Assessment

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment A Foundation for Strategic Discussion and Private Forestry Redesign Initiative 2 National Guidance for Statewide Forest Resource Assessments 4 The Colorado Statewide Resource Assessment and all appendices are available online on the Colorado State Forest

  20. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  1. National Geothermal Resource Assessment and Classification |...

    Office of Environmental Management (EM)

    Resource Assessment and Classification National Geothermal Resource Assessment and Classification National Geothermal Resource Assessment and Classification presentation at the...

  2. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    Assessment of U.S. Oil and Gas Resources (on CD-ROM) (limited conventional oil and gas resources (Boswell, 2007).for conventional oil and gas resources (Collett, 2004)

  3. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal, E-mail: jortman@ukm.my; Jafari, Yaghoob, E-mail: yaghoob.jafari@gmail.com [Universiti Kebangsaan Malaysia, Faculty of Economics and Management (Malaysia)

    2012-12-15T23:59:59.000Z

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  4. U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS, AND NGL

    E-Print Network [OSTI]

    Laughlin, Robert B.

    AM-i Chapter AM U.S. GEOLOGICAL SURVEY ASSESSMENT MODEL FOR UNDISCOVERED CONVENTIONAL OIL, GAS Survey (USGS) periodically conducts assessments of the oil, gas, and natural-gas liquids (NGL) resources by the USGS in1998 for undiscovered oil, gas, and NGL resources that reside in conventional accumulations

  5. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    energy in Vietnam: Resource assessment, development statusWind Resource Assessment in Europe Using Emergy Subodhspeed). Keywords: Wind resource assessment; Emergy Analysis;

  7. Red Leaf Resources and the Commercialization of Oil Shale

    E-Print Network [OSTI]

    Utah, University of

    Red Leaf Resources and the Commercialization of Oil Shale #12;About Red Leaf Resources 2006 Company commercial development field activities #12;Highlights Proven, Revolutionary Oil Shale Extraction Process Technology Significant Owned Oil Shale Resource #12;· The executive management team of Red Leaf Resources

  8. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  9. IXTOC OIL SPILL ASSESSMENT FINAL REPORT

    E-Print Network [OSTI]

    Mathis, Wayne N.

    IXTOC OIL SPILL ASSESSMENT FINAL REPORT EXECUTIVE SUMMARY Prepared for : Bureau of Land Management in input of tar/oil to the Texas Gulf Coast (Geyer ;, 1981) have less of an obvious ecological impact, if any . The Brittany coast of France has been affected for several years by the acute oil input from

  10. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  11. Griffiss AFB integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk's primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  12. Lignocellulosic feedstock resource assessment

    SciTech Connect (OSTI)

    Rooney, T.

    1998-09-01T23:59:59.000Z

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  13. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  14. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential

    E-Print Network [OSTI]

    Moridis, George J.

    2008-01-01T23:59:59.000Z

    Assessment of U.S. Oil and Gas Resources (on CD-ROM) (Petroleum Geology, Atlas of Oil and Gas Fields, Structuraland logging conventional oil and gas wells. The ability to

  15. Survey of Biomass Resource Assessments and Assessment Capabilities

    E-Print Network [OSTI]

    Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Energy ...................................................................................................................................4 Biomass Resource Assessment Products and Assessment Methodologies, Department of Industry, Tourism and Resources, Australia Ms. Siti Hafsah, Office of the Minister of Energy

  16. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    heavy oil and tar sand, coal liquids, gas-to-liquids (GTL), hydrogen, gas hydrates, and renewable energy resources, as well as oil shale, which is the focus of this re- port....

  17. Assessment of industry needs for oil shale research and development

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01T23:59:59.000Z

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry's view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  18. NREL: International Activities - Biomass Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Assessment Map showing annual productivity of marginal lands in APEC economies. Biomass resource assessments quantify the existing or potential biomass material in...

  19. Sandia National Laboratories: tidal energy resource assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resource assessment Tidal Energy Resource Assessment in the East River Tidal Strait, New York On April 1, 2014, in Energy, News, News & Events, Partnership, Renewable Energy, Water...

  20. NREL's FY09 CSP Resource Assessment Plans: Solar Resource Assessment Workshop

    SciTech Connect (OSTI)

    Renne, D.

    2008-10-29T23:59:59.000Z

    Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: NREL's FY09 CSP Resource Assessment Plans

  1. Visual Impact Assessment in British Oil and Gas Developments1 Dennis F. Gillespie

    E-Print Network [OSTI]

    Standiford, Richard B.

    Visual Impact Assessment in British Oil and Gas Developments1 2/ Dennis F. Gillespie 3/ Brian D Unit, Department of Geography, University of Aberdeen, Scotland. Abstract: Development of oil and gas these effects into account. Since 1970, the offshore discovery and development of oil and gas resources

  2. Colorado Statewide Forest Resource Assessment and Strategy

    E-Print Network [OSTI]

    Colorado Statewide Forest Resource Assessment and Strategy www.csfs.colostate.edu Colorado Forest resource assessments had to be completed by June 2010 ­ required to receive S&PF funds in the future (2008;Resource Assessment and Strategy Partners Resource Assessment and Strategy Partners Colorado Division

  3. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01T23:59:59.000Z

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  4. Hawaii geothermal resource assessment: 1982

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.; Kavahikaua, J.P.; Lienert, B.R.; Mattice, M.

    1982-10-01T23:59:59.000Z

    The Geothermal Resource Assessment Program of the Hawaii Institute of Geophysics has conducted a series of geochemical and geophysical surveys throughout the State of Hawaii since February 1978. The results compiled during this study have been used to prepare a map of potential geothermal resource areas throughout the state. Approximately thirteen separate locations on three islands have been studied in detail. Of these, four areas are known to have direct evidence of a geothermal anomaly (Kilauea East Rift Zone, Kilauea Southwest Rift Zone, Kawaihae, and Olowalu-Ukumehame) and three others are strongly suspected of having at least a low-temperature resource (Hualalai west flank, Haleakala Southwest Rift, and Lualualei Valley). In the remainder of the areas surveyed, the data obtained either were contradictory or gave no evidence of a geothermal resource.

  5. Survey of Biomass Resource Assessments and Assessment Capabilities...

    Open Energy Info (EERE)

    Assessment Capabilities in APEC Economies Jump to: navigation, search Logo: Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies Name Survey of...

  6. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    Wind energy assessment and wind farm simulation in Triunfo- Pernambuco, Brazil,wind resources for electrical energy production. Wind resources as- sessment of Brazil

  7. Probabilistic Wind Resource Assessment and Power Predictions

    E-Print Network [OSTI]

    Firestone, Jeremy

    Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on · Power forecast: o Increase wind energy penetra

  8. Articles about Resource Assessment and Characterization

    Broader source: Energy.gov [DOE]

    Stories about resource assessment and characterization featured by the U.S. Department of Energy (DOE) Wind Program.

  9. Assessing Energy Resources Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on assessing energy resources.

  10. Bitumen and heavy-oil resources of the United States

    SciTech Connect (OSTI)

    Crysdale, B.L.; Schenk, C.J.

    1987-05-01T23:59:59.000Z

    Bitumen and heavy-oil deposits represent a significant hydrocarbon resource in the US. Bitumen deposits (10/sup 0/ API) are located in sandstone reservoirs at or near the surface along the margins of sedimentary basins. Heavy oils (10/sup 0/-20/sup 0/ API) are found predominantly in geologically young (Tertiary age and younger) shallow sandstone reservoirs and along the margins of sedimentary basins. Bitumen and heavy oil have high viscosities (10,000 cp for bitumen, 100-10,000 cp for heavy oil) and cannot be recovered by conventional recovery methods. Bitumen deposits have been evaluated in 17 states. The total bitumen resource for the conterminous US is estimated to be 57 billion bbl. Utah contains the largest resource, estimated to be 29 billion bbl, followed by California with 9 billion bbl, Alabama with 6 billion, Texas with 5 billion, and Kentucky with 3 billion. Heavy-oil deposits have been evaluated in 16 states, but most heavy oil is in California, Texas, and Arkansas. Total heavy oil in place for the conterminous US is estimated to be approximately 45 billion bbl; greater than 80% of this amount is in California. The giant Kuparuk deposit on the North Slope of Alaska contains a heavy oil-bitumen resource estimated as high as 40 billion bbl.

  11. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07T23:59:59.000Z

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  12. Fort Drum integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  13. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

    SciTech Connect (OSTI)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  14. Fort Drum integrated resource assessment

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.; Dagle, J.E.; Di Massa, F.V.; Elliott, D.B.; Keller, J.M.; Richman, E.E.; Shankle, S.A.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program's (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric and fossil fuel cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at one of Niagara Mohawk's primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 2, the Baseline Detail.

  15. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect (OSTI)

    Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

    2007-01-01T23:59:59.000Z

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  16. Sandia National Laboratories: Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Solar Resource Assessment Comments are closed. Renewable Energy Wind Energy Wind Plant Optimization Test Site Operations & Maintenance Safety: Test Facilities Capital Equipment...

  17. Water resource opportunity assessment: Fort Dix

    SciTech Connect (OSTI)

    Sullivan, G.P.; Hostick, D.J.; Elliott, D.B.; Fitzpatrick, Q.K.; Dahowski, R.T.; Dison, D.R

    1996-12-01T23:59:59.000Z

    This report provides the results of the water resource opportunity assessments performed by Pacific Northwest National Laboratory at the Fort Dix facility located in Fort Dix, New Jersey.

  18. Kerogen extraction from subterranean oil shale resources

    SciTech Connect (OSTI)

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2009-03-10T23:59:59.000Z

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  19. Kerogen extraction from subterranean oil shale resources

    SciTech Connect (OSTI)

    Looney, Mark Dean (Houston, TX); Lestz, Robert Steven (Missouri City, TX); Hollis, Kirk (Los Alamos, NM); Taylor, Craig (Los Alamos, NM); Kinkead, Scott (Los Alamos, NM); Wigand, Marcus (Los Alamos, NM)

    2010-09-07T23:59:59.000Z

    The present invention is directed to methods for extracting a kerogen-based product from subsurface (oil) shale formations, wherein such methods rely on fracturing and/or rubblizing portions of said formations so as to enhance their fluid permeability, and wherein such methods further rely on chemically modifying the shale-bound kerogen so as to render it mobile. The present invention is also directed at systems for implementing at least some of the foregoing methods. Additionally, the present invention is also directed to methods of fracturing and/or rubblizing subsurface shale formations and to methods of chemically modifying kerogen in situ so as to render it mobile.

  20. Management of oil pollution of natural resources in Nigeria

    SciTech Connect (OSTI)

    Ikporukpo, C.O.

    1985-04-01T23:59:59.000Z

    Oil spillages are prominent features of petroleum exploitation in Nigeria. For instance, within the decade 1970-1980, the country experienced 18 major spills. Oil pollution adversely affects the water and soil resources of the petroleum-producing Niger Delta. There have been attempts to manage the increasing menace of oil spills, and two strategies may be identified. These are the legislative and the project implementation approaches. The first approach relies on preventative laws, while the second, more or less curative, depends on the implementation of projects for the monitoring, control, and clearance of spilled oil. There are various problems in the effective operation of both strategies, and the persistence of spills, many of them avoidable, tends to indicate lapses in the management attempts. 12 references, 4 tables.

  1. Resources recovery of oil sludge by pyrolysis: Kinetics study

    SciTech Connect (OSTI)

    Shie, J.L.; Chang, C.Y.; Lin, J.P.; Wu, C.H.; Lee, D.J.

    1999-07-01T23:59:59.000Z

    Oil sludge, if unused, is one of the major industrial wastes needed to be treated for the petroleum refinery plant or petrochemical industry. It contains a large amount of combustibles with high heating values. The treatment of waste oil sludge by burning has certain benefit; however, it cannot provide the useful resource efficiently. On the other hand, the conversion of oil sludge to lower molecule weight organic compounds by pyrolysis not only solves the disposal problem but also matches the appeal of resource utilization. The major sources of oil sludge include the oil storage tank sludge, the biological sludge, the dissolve air flotation (DAF) scum, the American Petroleum Institute (API) separator sludge and the chemical sludge. In this study, the oil sludge from the oil storage tank of a typical petroleum refinery plant located in the northern Taiwan is used as the raw material of pyrolysis. Its heating value of dry basis and low heating value of wet basis are about 10,681 k cal/kg and 5,870 k cal/kg, respectively. The removal of the moisture of oil sludge significantly increases its heating value. The pyrolysis of oil sludge is conducted by the use of nitrogen as the carrier gas in the temperature range of 380 {approximately} 1,073 K and at various constant heating rates of 5.2, 12.8 and 21.8 K/min. The pyrolytic reaction is significant in 450 {approximately} 800 K and complex. For the sake of simplicity and engineering use, a one-reaction kinetic model is proposed for the pyrolysis of oil sludge, and is found to satisfactorily fit the experimental data. The activation energy, reaction order and frequency factor of the corresponding pyrolysis reaction in nitrogen for oil sludge are 78.22 kJ/mol, 2.92 and 9.48 105 l/min, respectively. These results are very useful for the proper design of the pyrolysis system of the oil sludge under investigation.

  2. Groundwater Resources Program A New Tool to Assess Groundwater Resources

    E-Print Network [OSTI]

    Groundwater Resources Program A New Tool to Assess Groundwater Resources in the Mississippi CAROLINA GEORGIA LOUISIANA Mississippi River Groundwater flow Well a quifer Alluvial aquifer Middle alluvial aquifer is the primary source of groundwater for irriga- tion in the largely agricultural region

  3. Resource assessment/commercialization planning meeting

    SciTech Connect (OSTI)

    None

    1980-01-24T23:59:59.000Z

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  4. Taxation and the Extraction of Exhaustible Resources: Evidence From California Oil Production

    E-Print Network [OSTI]

    Rao, Nirupama S.

    Rapid increases in oil prices in 2008 led some to call for special taxes on the oil industry. Because oil is an exhaustible resource, however, the effects of excise taxes on production or on reported producer profits may ...

  5. An assessement of global energy resource economic potentials

    E-Print Network [OSTI]

    Mercure, Jean-Francois; Salas, Pablo

    2012-03-20T23:59:59.000Z

    - tributions. Thus, in the case of oil and gas, independent distri- butions of the hierarchical type were assigned to every resource subtype, such as conventional oil, oil sands, oil shales, etc. This resulted in composite cost-supply curves with complex struc...

  6. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolarSolar Resource

  7. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifNRELPowerNewsletter

  8. A comparison of undiscovered oil and gas resource estimates, Los Padres National Forest in the Ventura Basin Province, California

    SciTech Connect (OSTI)

    Bird, K.J.; Valin, Z.C. [Geological Survey, Menlo Park, CA (United States); Bain, D.M. [Consultant, Daily City, CA (United States); Hopps, T.E. [Consultant, Santa Paula, CA (United States); Friehauf, J.S.F. [Forest Service, San Francisco, CA (United States)

    1995-04-01T23:59:59.000Z

    Two recent assessments of the undiscovered oil and gas resources of Los Padres National Forest lands in the Ventura Basin Province using different methodologies and personnel show remarkable coincidence of estimated resources. The 1989 U.S. Geological Survey assessment was part of a National appraisal. In the Ventura Basin Province, two separate plays were assessed and a percentage of resources from these plays was allocated to Federal lands. By this allocation, the undiscovered oil and gas resources of this part of the Los Padres National Forest are estimated to range from <10-140 MMBO (means probability 60 MMBO, million barrels of oil) and 10-250 BCFG (mean probability 110 BCFG, billion cubic feet of gas). In 1993, the U.S. Forest Service completed an oil and gas assessment of the entire 1.8 million-acre Los Padres National Forest as part of a Reasonably Foreseeable Oil and Gas Development Scenario. In those areas of the forest considered to have high potential for the occurrence of oil and gas deposits, a deposit simulation model was used. This method is based on a fundamental reservoir engineering formula in the USGS computer program, FASPU (Fast Appraisal System for Petroleum-Universal). By this method, the undiscovered oil and gas resource of this part of the Los Padres National Forest are estimated to range from 0-182 MMBO (mean probability 56 MMBO) and 9-233 BCFG (mean probability 103 BCFG). An additional 6 MMBO (mean probability) is allocated to forest lands with medium potential within this province but not to any specific prospects. The remarkable coincidence of estimate resources resulting from such different assessment methods and personnel is noteworthy and appears to provide an increased measure of confidence in the estimates.

  9. Offshore wind resource assessment through satellite images

    E-Print Network [OSTI]

    1 Slide no. 4 Offshore wind resource assessment through satellite images Charlotte Bay Hasager images for offshore wind ressource assessment in lieu of in-situ mast observations #12;4 Slide no Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps in the North

  10. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01T23:59:59.000Z

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Assessment and Mapping of the Riverine Hydrokinetic Resource in the Continental United...

  12. Offshore Resource Assessment and Design Conditions Public Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    Resource Assessment and Design Conditions Public Meeting Summary Report Offshore Resource Assessment and Design Conditions Public Meeting Summary Report Report from DOE's June 2011...

  13. Special Resource Study/Environmental Assessment for Manhattan...

    Energy Savers [EERE]

    Special Resource StudyEnvironmental Assessment for Manhattan Project Sites, DOEEA-1868 (September 2010) Special Resource StudyEnvironmental Assessment for Manhattan Project...

  14. Groundwater Resources Assessment under the Pressures of Humanity...

    Open Energy Info (EERE)

    and Cultural Organization Sector: Climate, Water Topics: Co-benefits assessment, Resource assessment Resource Type: Publications Website: unesdoc.unesco.orgimages0015...

  15. OTEC resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc Cases TOREMUserORSSABOTEC

  16. Ocean current resource assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecemberProgramsFleetWestOcean »Ocean current

  17. PRIVACY IMPACT ASSESSMENT: Human Resources Personal Information

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse(Expired) | Department ofINCREASES1PRESENTATION:

  18. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01T23:59:59.000Z

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  19. Assessment of industry needs for oil shale research and development. Final report

    SciTech Connect (OSTI)

    Hackworth, J.H.

    1987-05-01T23:59:59.000Z

    Thirty-one industry people were contacted to provide input on oil shale in three subject areas. The first area of discussion dealt with industry`s view of the shape of the future oil shale industry; the technology, the costs, the participants, the resources used, etc. It assessed the types and scale of the technologies that will form the industry, and how the US resource will be used. The second subject examined oil shale R&D needs and priorities and potential new areas of research. The third area of discussion sought industry comments on what they felt should be the role of the DOE (and in a larger sense the US government) in fostering activities that will lead to a future commercial US oil shale shale industry.

  20. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  1. Solar and Wind Energy Resource Assessment Programme's Renewable...

    Open Energy Info (EERE)

    Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource...

  2. Assessment of rural energy resources; Methodological guidelines

    SciTech Connect (OSTI)

    Rijal, K.; Bansal, N.K.; Grover, P.D. (Centre for Energy Studies, Indian Inst. of Technology, Hauz Khas, New Delhi 11016 (IN))

    1990-01-01T23:59:59.000Z

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity.

  3. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlan FY14-FY18StrategicLizIII Oil

  4. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197 This workDayton: ENERGY8DecommissioningFuelDeepwater Oil

  5. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01T23:59:59.000Z

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  6. Geothermal resources assessment in Hawaii. Final report

    SciTech Connect (OSTI)

    Thomas, D.M.

    1984-02-21T23:59:59.000Z

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  7. Restoration of Endangered White Abalone, Haliotis sorenseni: Resource Assessment, Genetics, Disease and Culture of Captive Abalone

    E-Print Network [OSTI]

    Burton, Ronald S.; McCormick, Thomas B.; Moore, James D.; Friedman, Carolyn S.

    2008-01-01T23:59:59.000Z

    Haliotis sorenseni: Resource Assessment, Genetics, Disease,Haliotis sorenseni: Resource Assessment, Genetics, Disease,Haliotis sorenseni: Resource Assessment, Genetics, Disease,

  8. Colorado's hydrothermal resource base: an assessment

    SciTech Connect (OSTI)

    Pearl, R.H.

    1981-01-01T23:59:59.000Z

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  9. Assessment of Biomass Resources in Liberia

    SciTech Connect (OSTI)

    Milbrandt, A.

    2009-04-01T23:59:59.000Z

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  10. Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)

    Broader source: Energy.gov [DOE]

    This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

  11. Primary oil-shale resources of the Green River Formation in the eastern Uinta Basin, Utah

    SciTech Connect (OSTI)

    Trudell, L.G.; Smith, J.W.; Beard, T.N.; Mason, G.M.

    1983-04-01T23:59:59.000Z

    Resources of potential oil in place in the Green River Formation are measured and estimated for the primary oil-shale resource area east of the Green River in Utah's Uinta Basin. The area evaluated (Ts 7-14 S, Rs 19-25 E) includes most of, and certainly the best of Utah's oil-shale resource. For resource evaluation the principal oil-shale section is divided into ten stratigraphic units which are equivalent to units previously evaluated in the Piceance Creek Basin of Colorado. Detailed evaluation of individual oil-shale units sampled by cores, plus estimates by extrapolation into uncored areas indicate a total resource of 214 billion barrels of shale oil in place in the eastern Uinta Basin.

  12. ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES

    E-Print Network [OSTI]

    Gross, George

    ASSESSMENT OF VARIABLE EFFECTS OF SYSTEMS WITH DEMAND RESPONSE RESOURCES BY ANUPAMA SUNIL KOWLI B of consumers - called demand response resources (DRRs) - whose role has become increasingly important

  13. U.S. Hydropower Resource Assessment - California

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  14. US hydropower resource assessment for Iowa

    SciTech Connect (OSTI)

    Francfort, J.E.

    1995-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

  15. US hydropower resource assessment for Utah

    SciTech Connect (OSTI)

    Francfort, J.E.

    1993-12-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

  16. U.S. Hydropower Resource Assessment - Georgia

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

  17. US hydropower resource assessment for Wisconsin

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1996-05-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

  18. NANA Wind Resource Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-09-23T23:59:59.000Z

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  19. AWEA Wind Resource & Project Energy Assessment Seminar 2014 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AWEA Wind Resource & Project Energy Assessment Seminar 2014 AWEA Wind Resource & Project Energy Assessment Seminar 2014 December 2, 2014 8:00AM EST to December 3, 2014 5:00PM EST...

  20. Groundwater Resources Assessment under the Pressures of Humanity

    E-Print Network [OSTI]

    1 GRAPHIC GRAPHIC Groundwater Resources Assessment under the Pressures of Humanity and Climate Changes Aframeworkdocument GRAPHICSeriesN°2 .................. #12;2 Groundwater Resources Assessment groundwater management considering projected climate change and linked human effects. GRAPHIC provides

  1. Externality Regulation in Oil and Gas Encyclopedia of Energy, Natural Resource, and

    E-Print Network [OSTI]

    Garousi, Vahid

    Externality Regulation in Oil and Gas Chapter 56 Encyclopedia of Energy, Natural Resource that requires a pipeline to transport pro- duction from all producers at non-discriminatory rates. Compulsory resource, congestion exter- nality, minimum oil/gas ratio, monopsony power, pipeline transportation, no

  2. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Martin, Viktoria; Lacarriere, Bruno; Corre, Olivier Le

    2015-01-01T23:59:59.000Z

    In context of increasing use of renewable sources, it is of importance to correctly evaluate the actual sustainability of their implementation. Emergy analysis is one of the possible methods useful for such an assessment. This work aims to demonstrate how the emergy approach can be used to assess the sustainability of wind energy resource in Europe. The Emergy Index of Sustainability (EIS) and the Emergy Yield Ratio (EYR) are used to analyze 90 stations of European regions for three types of wind turbines. To do so, the simplified Chou wind turbine model is used for different set of parameters as: nominal power and size of the wind turbines, and cut-in and cut-out wind speeds. Based on the calculation of the emergy indices, a mapping is proposed to identify the most appropriate locations for an implementation of wind turbines in European regions. The influence of the wind turbine type on the sustainability is also analyzed, in link with the local wind resource. Thus, it is concluded that the emergy sustainabi...

  3. MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU Departmental Assessment Plan 2007-2009 Department: Land Resources and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources and Environmental Sciences Department The Department of Land Resources and Environmental Sciences (LRES) will undertake a continuing assessment

  4. Graduate Assessment Strategies 1. Sample assessment plans are online at http://inside.mines.edu/Assessment-Resources. The

    E-Print Network [OSTI]

    Graduate Assessment Strategies Resources: 1. Sample assessment plans are online at http://inside.mines.edu/Assessment-Resources. The graduate level assessment plans from OSU may be particularly helpful: http://oregonstate.edu/admin/aa/apaa/assessment/graduate-assessment/graduate- assessment-plans 2. A list of best practices is online at http://inside.mines.edu/UserFiles/File/Assessment

  5. Petroleum resources of Libya, Algeria, and Egypt. Foreign energy supply assessment series

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Part 1 of the report is a synopsis of each country's location, its exploration and development history, crude oil field production history, and markets. Part 2 discusses the production and reserve characteristics of the oil fields and status of the known crude oil resources. Part 3 provides an assessment of the ultimately recoverable crude oil and the possible future rate of availability of the crude oil. Part 4 discusses the status of the known and undiscovered natural gas resources, production, and markets. Part 5 is an overview of the petroleum geology of the three countries and the physical characteristics of their crude oils. Appendix A presents an annual resume of historical production by field and by basin for Libya; Appendix B shows the historical production by field and by basin for Algeria; Appendix C shows the historical production by field and by basin for Egypt; Appendix D provides production tables for each country. Data presented in Appendixes A through D are derived mostly from the April 1982 publication, Libya, Algeria and Egypt-Crude Oil Potential From Known Deposits DOE/EIA-0338, by William D. Dietzman, Naim R. Rafidi, and Thomas A. Ross. Appendix E is a geologic timetable.

  6. Volume 9: A Review of Socioeconomic Impacts of Oil Shale Development WESTERN OIL SHALE DEVELOPMENT: A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Rotariu,, G. J.

    1982-02-01T23:59:59.000Z

    The development of an oil shale industry in northwestern Colorado and northeastern Utah has been forecast at various times since early this century, but the comparatively easy accessibility of other oil sources has forestalled development. Decreasing fuel supplies, increasing energy costs, and the threat of a crippling oil embargo finally may launch a commercial oil shale industry in this region. Concern for the possible impacts on the human environment has been fostered by experiences of rapid population growth in other western towns that have hosted energy resource development. A large number of studies have attempted to evaluate social and economic impacts of energy development and to determine important factors that affect the severity of these impacts. These studies have suggested that successful management of rapid population growth depends on adequate front-end capital for public facilities, availability of housing, attention to human service needs, long-range land use and fiscal planning. This study examines variables that affect the socioeconomic impacts of oil shale development. The study region is composed of four Colorado counties: Mesa, Moffat, Garfield and Rio Blanco. Most of the estimated population of 111 000 resides in a handful of urban areas that are separated by large distances and rugged terrain. We have projected the six largest cities and towns and one planned company town (Battlement Mesa) to be the probable centers for potential population impacts caused by development of an oil shale industry. Local planners expect Battlement Mesa to lessen impacts on small existing communities and indeed may be necessary to prevent severe regional socioeconomic impacts. Section II describes the study region and focuses on the economic trends and present conditions in the area. The population impacts analyzed in this study are contingent on a scenario of oil shale development from 1980-90 provided by the Department of Energy and discussed in Sec. III. We recognize that the rate of development, the magnitude of development, and the technology mix that will actually take place remain uncertain. Although we emphasize that other energy and mineral resources besides oil shale may be developed, the conclusions reached in this study reflect only those impacts that would be felt from the oil shale scenario. Socioeconomic impacts in the region reflect the uneven growth rate implied by the scenario and will be affected by the timing of industry developments, the length and magnitude of the construction phase of development, and the shift in employment profiles predicted in the scenario. The facilities in the southern portion of the oil shale region, those along the Colorado River and Parachute Creek, show a peak in the construction work force in the mid-1980s, whereas those f acil it i es in the Piceance Creek Bas into the north show a construction peak in the late 1980s. Together, the facilities will require a large construction work force throughout the decade, with a total of 4800 construction workers required in 1985. Construction at the northern sites and second phase construction in the south will require 6000 workers in 1988. By 1990, the operation work force will increase to 7950. Two important characteristics of oil shale development emerge from the work force estimates: (1) peak-year construction work forces will be 90-120% the size of the permanent operating work force; and (2) the yearly changes in total work force requirements will be large, as much as 900 in one year at one facility. To estimate population impacts on individual communities, we devised a population distribution method that is described in Sec. IV. Variables associated with the projection of population impacts are discussed and methodologies of previous assessments are compared. Scenario-induced population impacts estimated by the Los Alamos method are compared to projections of a model employed by the Colorado West Area Council of Governments. Oil shale development in the early decade, as defined by the scenario, will produce growth primarily

  7. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    in Load Forecasts to Support WGA and Resource Assessmentin Load Forecasts to Support WGA and Resource AssessmentMingst, 2006, “Resource Assessment in the West: Review of

  8. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    energy sources like hydrogen fuels and fusion technologies. Fossil fuels - coal, oil, and natural gas - currently provide more than 85% of all the energy consumed in the United...

  9. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Industry Associations American Petroleum Institute The oil and natural gas industry provides the fuel for American life, warming our homes, powering our businesses and giving us...

  10. Fort Stewart integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

    1993-08-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Stewart, a US Army Forces Command facility located near Savannah, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) tasked Pacific Northwest Laboratory (PNL) to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. PNL, in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), has designed a model program applicable to the federal sector for this purpose. The model program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Stewart. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Fort Stewart by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

  11. BSBA IN MANAGEMENT -HUMAN RESOURCE MANAGEMENT SPECIALIZATION ASSESSMENT PLAN

    E-Print Network [OSTI]

    Gallo, Linda C.

    BSBA IN MANAGEMENT - HUMAN RESOURCE MANAGEMENT SPECIALIZATION ASSESSMENT PLAN (REV. 7 in Human Resource Management (HRM), the goal is to provide a foundation of all areas of human resources countries. · Content Delivered in: MGT 350, MGT 405, & MGT 357. · Assessment Method: Culminating exam

  12. DC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY

    E-Print Network [OSTI]

    District of Columbia, University of the

    DRILLING AND FIELD OPERATIONS REPORT FOR THE GROUP A WELLS D.C. WATER RESOURCES RESEARCH CENTER University No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL DRILLING AND FIELDDC WRRC Report No. 126 GROUND WATER RESOURCE ASSESSMENT STUDY FOR THE DISTRICT OF COLUMBIA WELL

  13. MSU Departmental Assessment Plan Department: Land Resources and Environmental Sciences

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    MSU Departmental Assessment Plan 2009-2010 Department: Land Resources and Environmental Sciences: Ecology and Environmental Sciences (cross-college) #12;Student Outcomes Assessment Plan Land Resources Department Head: Tracy M. Sterling Assessment Coordinator: Cathy Zabinski Degrees/Majors/Options Offered

  14. The extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through beached

    E-Print Network [OSTI]

    Jones, Ian L.

    on their feathers is heavy fuel oil mixed with lubricants, the mixture found in bilges of large vessels. BeachedThe extent of chronic marine oil pollution in southeastern Newfoundland waters assessed through America. Oiled seabirds have washed up on beaches in Newfoundland for many decades. Most oil

  15. Climate VISION: Resources and Links - Plant Assessments

    Office of Scientific and Technical Information (OSTI)

    of industrial manufacturing, are successful and commercially proven. Energy Productivity and Waste Assessments (Industrial Assessment Centers) If you run a small- to...

  16. Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Carolina

    E-Print Network [OSTI]

    Mallin, Michael

    Assessment of Water Resources and Watershed Conditions in Moores Creek National Battlefield, North Assessment of Park Water Resources.......................................................................25 resources........................................................................15 Biological resources

  17. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  18. Essays in oil, conflict, and the development of resource-rich countries

    E-Print Network [OSTI]

    Peck, Jennifer Randolph

    2013-01-01T23:59:59.000Z

    This thesis examines three topics in the political economy of global oil markets and the development of resource-rich countries. The first chapter examines the effect of Saudi Arabia's crude pricing policies on the political ...

  19. Wind Resource and Feasibility Assessment Report for the Lummi Reservation

    SciTech Connect (OSTI)

    DNV Renewables (USA) Inc.; J.C. Brennan & Associates, Inc.; Hamer Environmental L.P.

    2012-08-31T23:59:59.000Z

    This report summarizes the wind resource on the Lummi Indian Reservation (Washington State) and presents the methodology, assumptions, and final results of the wind energy development feasibility assessment, which included an assessment of biological impacts and noise impacts.

  20. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  1. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    totaling more than 25 million for 41 projects focused on integration, transmission, and resource assessment and characterization. This report highlights each of these R&D...

  2. Wind Integration, Transmission, and Resource Assessment and Characterization Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Program’s Wind Integration, Transmission, and Resource Assessment and Characterization Projects from FY 2006 to FY 2014.

  3. Feasibility Assessment of the Water Energy Resources of the United...

    Energy Savers [EERE]

    Feasibility Assessment of the Water Energy Resources of the United States for New Low Power and Small Hydro Classes of Hydroelectric Plants: Main Report and Appendix A Feasibility...

  4. SUGGESTIONS AND RESOURCES FOR ASSESSING STUDENT OUTCOMES AT UIUC

    E-Print Network [OSTI]

    Liberzon, Daniel

    SUGGESTIONS AND RESOURCES FOR ASSESSING STUDENT OUTCOMES AT UIUC November 2007 Student Outcomes Assessment Technical Assistance Center for Teaching Excellence For help with your unit assessment plans contact: John Ory CTE 249 Armory 3-3370 Portions of this document were adapted from the "Assessment

  5. Development of an improved methodology to assess potential unconventional gas resources in North America

    E-Print Network [OSTI]

    Salazar Vanegas, Jesus

    2007-09-17T23:59:59.000Z

    ) According to Haskett, resources recoverable from reservoirs of difficult nature have come to be called “unconventional resources.” These include fractured reservoirs, tight gas, gas/oil shale, oil sands and CBM. There are many definitions but most...

  6. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Plant Assessments DOE Plant-Wide Assessments Plant-wide assessments are one way to work with the DOE Industrial Technologies Programmost companies realize a minimum of 1 million...

  7. South Dakota Wind Resource Assessment Network (WRAN)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    WRAN is a network of instrument stations sited throughout South Dakota. As of 2010, there are eleven stations, and some have been collecting data since 2001. The purpose of the WRAN:

    There are several reasons why the WRAN was built. One of the most obvious is that it will allow verification of the existing resource assessments of our state. South Dakota has tremendous potential as an exporter of wind-generated electricity. There has recently been a great deal of publicity over a Pacific Northwest National Laboratories study conducted in the early 1990s that ranked the contiguous 48 states in terms of their potential to produce windpower. (Click here for the results of this study as given by the American Wind Energy Association.) South Dakota ranked fourth in that study. Also, more recently, detailed maps of the wind resource in South Dakota were produced by the National Renewable Energy Laboratory (NREL). Unfortunately, both of these studies had to rely heavily on computer-generated models and very sparse measured data, because very little appropriate measured data exists. The WRAN will provide valuable data that we anticipate will validate the NREL maps, and perhaps suggest minor adjustments.

    There are many other benefits the WRAN will provide. The data it will measure will be at heights above ground that are more appropriate for predicting the performance of large modern wind turbines, as opposed to data collected at National Weather Service stations whose anemometers are usually only about 9 m (30 feet) above ground. Also, we will collect some different types of data than most wind measurement networks, which will allow a series of important studies of the potential impact and value of South Dakota's windpower. In addition, all of the WRAN data will be made available to the public via this WWWeb site. This will hopefully enable extensive informed discussion among all South Dakotans on such important topics as rural economic development and transmission system expansion. [Copied from http://sdwind.com/about/

  8. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of wind turbine assessment based on energy, exergy, LCA andLCA and emergy) in the case of sustainability assessment of windLCA does. In emergy analysis, direct and indirect inputs of wind

  9. Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994

    SciTech Connect (OSTI)

    McDonald, W.J.

    1993-06-03T23:59:59.000Z

    Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

  10. An assessement of global energy resource economic potentials

    E-Print Network [OSTI]

    Mercure, J F

    2012-01-01T23:59:59.000Z

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary mate...

  11. Assessment of Research Needs for Oil Recovery from Heavy-Oil Sources and Tar Sands (FERWG-IIIA)

    SciTech Connect (OSTI)

    Penner, S.S.

    1982-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of J.W. Mares (Assistant Secretary for Fossil Energy) and A.W. Trivelpiece (Director, Office of Energy Research), has reviewed and evaluated the U.S. programs on oil recovery from heavy oil sources and tar sands. These studies were performed in order to provide an independent assessment of research areas that affect the prospects for oil recovery from these sources. This report summarizes the findings and research recommendations of FERWG.

  12. Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01T23:59:59.000Z

    Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  13. Horizontal oil well applications and oil recovery assessment. Technical progress report, January--March 1994

    SciTech Connect (OSTI)

    McDonald, W.J.

    1994-06-01T23:59:59.000Z

    The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through five tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves. Accomplishments for this quarter are presented.

  14. The Global Forest Resource Assessment FRA2010 and

    E-Print Network [OSTI]

    The Global Forest Resource Assessment FRA2010 and Remote Sensing Survey work by FAO and partners Mette L. Wilkie Adam Gerrand www.fao.org/forestry/fra2010 #12;Outline of the global Forest Resource Assessment (FRA) process and 2005 results The new FRA Remote Sensing Survey (RSS) Potential opportunities

  15. Wind resource assessment with a mesoscale non-hydrostatic model

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

  16. NREL Solar Radiation Resource Assessment Project: Status and outlook

    SciTech Connect (OSTI)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01T23:59:59.000Z

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy's Resource Assessment Program.

  17. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center 58 Wind: Development Potential ­ Geyserville · Potential to collocate wind Renewable Energy Center Assessment of Co-located Renewable Generation Potential #12;California Renewable (Task 2, L.A. Basin) and regions (Task 5) with co-located resources · Assess resource potential

  18. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  19. National Geothermal Resource Assessment and Classification |...

    Broader source: Energy.gov (indexed) [DOE]

    This work will enable lower riskcost deployment of conventional and EGS geothermal power. USGS is also supporting GTP input to DOE National Energy Modeling by providing resource...

  20. Fort Drum integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Brodrick, J.R.; Daellenbach, K.K.; Di Massa, F.V.; Keller, J.M.; Richman, E.E.; Sullivan, G.P.; Wahlstrom, R.R.

    1992-12-01T23:59:59.000Z

    The US Army Forces Command (FORSCOM) has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Drum. This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company. It will identify and evaluate all electric and fossil fuel cost-effective energy projects; develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, the FORSCOM Fort Drum facility located near Watertown, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. It records energy-use intensities for the facilities at Fort Drum by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, central systems, and applicable losses.

  1. Griffiss AFB integrated resource assessment. Volume 2, Electric baseline detail

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Keller, J.M.

    1993-02-01T23:59:59.000Z

    The US Air Force Air Combat Command has tasked the Pacific Northwest Laboratory (PNL) as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program`s (FEMP) mission to identify, evaluate, and assist in acquiring all cost-effective energy projects at Griffiss Air Force Base (AFB). This is a model program PNL is designing for federal customers served by the Niagara Mohawk Power Company (Niagara Mohawk). It will (1) identify and evaluate all electric cost-effective energy projects; (2) develop a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) secure 100% of the financing required to implement electric energy efficiency projects from Niagara Mohawk and have Niagara Mohawk procure the necessary contractors to perform detailed audits and install the technologies. This report documents the assessment of baseline energy use at one of Niagara Mohawk`s primary federal facilities, Griffiss AFB, an Air Combat Command facility located near Rome, New York. It is a companion report to Volume 1, the Executive Summary, and Volume 3, the Electric Resource Assessment. The analysis examines the characteristics of electric, gas, oil, propane, coal, and purchased thermal capacity use for fiscal year (FY) 1990. The results include energy-use intensities for the facilities at Griffiss AFB by building type and electric energy end use. A complete electric energy consumption reconciliation is presented that accounts for the distribution of all major electric energy uses and losses among buildings, utilities, and central systems.

  2. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTest andWorkingData

  3. Efficiency Assessment of Parallel Workloads on Virtualized Resources Javier Delgado,

    E-Print Network [OSTI]

    Sadjadi, S. Masoud

    Efficiency Assessment of Parallel Workloads on Virtualized Resources Javier Delgado, S. Masoud,ygliu,bobroff,sseelam}@us.ibm.com Abstract--In cloud computing, virtual containers on phys- ical resources are provisioned to requesting users. Resource providers may pack as many containers as possible onto each of their physical machines

  4. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop different renewable resources are co-located. How best to take advantage of this opportunity? PURPOSE resource base and geographic characteristics, a two-part analysis was conducted. #12;California Renewable

  5. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    technology analysis Noon Lunch 1:15 California off-shore wind technology assessment 1:45 Technical assessmentRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  6. Assessment of Biomass Resources in Afghanistan

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R.

    2011-01-01T23:59:59.000Z

    Afghanistan is facing many challenges on its path of reconstruction and development. Among all its pressing needs, the country would benefit from the development and implementation of an energy strategy. In addition to conventional energy sources, the Afghan government is considering alternative options such as energy derived from renewable resources (wind, solar, biomass, geothermal). Biomass energy is derived from a variety of sources -- plant-based material and residues -- and can be used in various conversion processes to yield power, heat, steam, and fuel. This study provides policymakers and industry developers with information on the biomass resource potential in Afghanistan for power/heat generation and transportation fuels production. To achieve this goal, the study estimates the current biomass resources and evaluates the potential resources that could be used for energy purposes.

  7. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    upgrades, and savings and effectiveness of energy efficiency measures. DOE Processing Heating Assessment and Survey Tool Qualification (PHAST) PHAST assists users to survey...

  8. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  9. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei (Wendy) [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30T23:59:59.000Z

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.

  10. Adequate description of heavy oil viscosities and a method to assess optimal steam cyclic periods for thermal reservoir simulation 

    E-Print Network [OSTI]

    Mago, Alonso Luis

    2006-08-16T23:59:59.000Z

    A global steady increase of energy consumption coupled with the decline of conventional oil resources points to a more aggressive exploitation of heavy oil. Heavy oil is a major source of energy in this century with a ...

  11. Hydropower Resource Assessment of Brazilian Streams

    SciTech Connect (OSTI)

    Douglas G. Hall

    2011-09-01T23:59:59.000Z

    The Idaho National Laboratory (INL) in collaboration with the U.S. Geological Survey (USGS) with the assistance of the Empresa de Pesquisa Energetica (EPE) and the Agencia Nacional de Energia Electrica (ANEEL) has performed a comprehensive assessment of the hydropower potential of all Brazilian natural streams. The methodology by which the assessment was performed is described. The results of the assessment are presented including an estimate of the hydropower potential for all of Brazil, and the spatial distribution of hydropower potential thus providing results on a state by state basis. The assessment results have been incorporated into a geographic information system (GIS) application for the Internet called the Virtual Hydropower Prospector do Brasil. VHP do Brasil displays potential hydropower sites on a map of Brazil in the context of topography and hydrography, existing power and transportation infrastructure, populated places and political boundaries, and land use. The features of the application, which includes tools for finding and selecting potential hydropower sites and other features and displaying their attributes, is fully described.

  12. The Physical Activity Resource Assessment (PARA) instrument: Evaluating features, amenities and incivilities of physical activity resources in urban neighborhoods

    E-Print Network [OSTI]

    Lee, Rebecca E.; Booth, Katie M.; Reese-Smith, Jacqueline Y.; Regan, Gail; Howard, Hugh H.

    2005-09-14T23:59:59.000Z

    of a variety of PA resources. Method: The one-page Physical Activity Resource Assessment (PARA) instrument was developed to assess all publicly available PA resources in thirteen urban lower income, high ethnic minority concentration neighborhoods...

  13. Climate VISION: Private Sector Initiatives: Oil and Gas: Resources...

    Office of Scientific and Technical Information (OSTI)

    Software Tools DOE BestPractices Software Tools DOE BestPractices offers a range of software tools and databases that help manufacturers assess their plant's steam, compressed air,...

  14. Quantifying the Uncertainty in Estimates of World Conventional Oil Resources

    E-Print Network [OSTI]

    Tien, Chih-Ming

    2010-07-14T23:59:59.000Z

    judgments have been used to provide useful information in forecasting, decision-making, and assessing risks, and its application 15 15 fields are quite diverse, including aerospace, medicine, the nuclear industry, veterinary science, agriculture...

  15. Natural Resource Damage Assessment Cooperation and Integration

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-06-19T23:59:59.000Z

    The Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 U.S.C. 9601, et seq., Executive Order 12580, and CERCLA's implementing regulations in the National Contingency Plan (NCP), 40 CFR Part 300, give the DOE three roles at DOE facilities undergoing environmental cleanup: lead response agency, natural resource trustee, and the party responsible for releases and threatened releases of hazardous substances. Does not cancel other directives.

  16. NREL: Resource Assessment and Forecasting - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTest

  17. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTestResearch

  18. Oil and gas resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan)

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This analysis is part of the Energy Information Administration`s (EIA`s) Foreign Energy Supply Assessment Program (FESAP). This one for the Fergana Basin is an EIA first for republics of the former Soviet Union (FSU). This was a trial study of data availability and methodology, resulting in a reservoir-level assessment of ultimate recovery for both oil and gas. Ultimate recovery, as used here, is the sum of cumulative production and remaining Proved plus Probable reserves as of the end of 1987. Reasonable results were obtained when aggregating reservoir-level values to the basin level, and in determining general but important distributions of across-basin reservoir and fluid parameters. Currently, this report represents the most comprehensive assessment publicly available for oil and gas in the Fergana Basin. This full report provides additional descriptions, discussions and analysis illustrations that are beneficial to those considering oil and gas investments in the Fergana Basin. 57 refs., 22 figs., 6 tabs.

  19. Assessment and Mapping of the Riverine Hydrokinetic Resource...

    Open Energy Info (EERE)

    and Mapping of the Riverine Hydrokinetic Resource in the Continental United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment and Mapping...

  20. Assessment of Moderate- and High-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    Moderate- and High-Temperature Geothermal Resources of the United States Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Assessment of Moderate- and...

  1. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30T23:59:59.000Z

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  2. Survey of Biomass Resource Assessments and Assessment Capabilities in APEC Economies

    SciTech Connect (OSTI)

    Milbrandt, A.; Overend, R. P

    2008-11-01T23:59:59.000Z

    This survey of biomass resource assessments and assessment capabilities in Asia-Pacific Economic Cooperation (APEC) economies considered various sources: academic and government publications, media reports, and personal communication with contacts in member economies.

  3. Wave Energy Resource Assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell DirectorThe Water Power Program,1Technology |Wave

  4. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit |Infrastructure JohnEnergyThin FilmWorking

  5. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota Prius being drivenandWebmasterWind

  6. National Geothermal Resource Assessment and Classification

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley Geothermal Data System

  7. Marine and Hydrokinetic Resource Assessment and Characterization |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHomeJC3 BulletinProject »EnergyDepartment of

  8. Wind Integration, Transmission, and Resource Assessment and

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam E.Much

  9. Global Forest Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG Contracting Jump to:Echo,GEF Jump to: navigation, search Name:Forest

  10. Tidal Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department ThirdCosts | Department ofTidal Energy

  11. NREL: Resource Assessment and Forecasting - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTest andWorking

  12. NREL: Resource Assessment and Forecasting - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTestResearch Staff

  13. Wave Energy Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02ReportWaste-to-Energy andAprilWater andWatershedWaveWave

  14. Solar and Wind Energy Resource Assessment (SWERA)

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolar Energy sroWiki Page Solar and Wind Energy

  15. Articles about Resource Assessment and Characterization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems | DepartmentArticle186 Articles

  16. Wind Resource Assessment Overview | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia JumpMaps.jpg The first

  17. Wind Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapers Home Kyoung's pictureWind Power Energia JumpMaps.jpg The

  18. Solar Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2 SolarSolarEnergySolarSB

  19. Australia - Energy Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtria Power Corporation LtdATI Jump to:Australian

  20. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01T23:59:59.000Z

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  1. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

  2. Wind Power Resource Assessment in Ohio and Puerto Rico

    E-Print Network [OSTI]

    Womeldorf, Carole

    Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

  3. Wind power resource assessment in complex urban environments

    E-Print Network [OSTI]

    in Computational Fluid Dynamics (CFD) methods holds potential for the advancement of wind energy resource buildings. CFD simulations have been used to evaluate the wind energy potential on the campus. 2 Objectives The aim of this study is to assess wind energy resource on the MIT campus for potential

  4. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    / RECs #12;CGECTask 7. Biomass Gasification Technology Assessment · Task is still in progress · UpdateRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;Biomass/MSW Gap

  5. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center California Off-shore Wind Technology Assessment #12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS Public Workshop at the California Energy Commission (CEC) September 3, 2014 California Renewable Energy Center #12;California

  6. Farm Assessment for Water Resource Protection Field Assessment

    E-Print Network [OSTI]

    Holland, Jeffrey

    : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Action plan to improve field management practices . . . . . . . . . . . . . . . . . . . . . . . 21 as areas adjacent to your fields that may be vulnerable to contamination from agricultural activities connect you with a variety of resources and actions that are based on good science and field tested best

  7. Horizontal oil well applications and oil recovery assessment. Technical progress report, July--September 1993

    SciTech Connect (OSTI)

    McDonald, W.J.

    1993-12-01T23:59:59.000Z

    The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through five tasks designed to evaluate the technical and economic success of horizontal drilling, ascertain its limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and determine the impact of horizontal wells on present and future domestic oil recovery and reserves. A spreadsheet data file was constructed from well data describing 3885 domestic horizontal wells, the total as of the summer of 1993. Most domestic effort in horizontal drilling has been focused on fractured carbonate formations. Three principal formations are the focus of this activity: The Austin Chalk in Texas, the Bakken Shale in North Dakota, and the Niobrara in Colorado and Wyoming. Results from this formation type are well known and a large volume of published results is available. Given the scope of the present study, it was decided to limit the analyses to formations other than these three fractured carbonates. Based on domestic well data, 431 horizontal wells have been completed in other formations. These wells were highlighted for detailed study.

  8. Solar Resource and Meteorological Assessment Project (SOLRMAP)

    SciTech Connect (OSTI)

    Wilcox, S.

    2008-10-29T23:59:59.000Z

    The purpose of this collaborative project between NREL and industry is: (1) provide high quality solar measurements in support of deploying Concentrating Solar Thermal projects; and (2) provide NREL with research-quality data sets for refining solar models and developing solar forecasting capabilities. The benefits of this project are: (1) lends NREL credibility to data sets used for economic analyses and commercial justification; (2) helps minimize costly mistakes in estimating capacity and economic return on investment; (3) helps maximize the development of projects for which adequate solar resources exist; (4) provides data to NREL for research to improve/validate models and explore RA innovations; and (5) helps maintain collaborative channels between NREL and industry.

  9. Assessment of Offshore Wind Energy Resources for the United States

    SciTech Connect (OSTI)

    Schwartz, M.; Heimiller, D.; Haymes, S.; Musial, W.

    2010-06-01T23:59:59.000Z

    This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The development of this assessment has evolved over multiple stages as new regional meso-scale assessments became available, new validation data was obtained, and better modeling capabilities were implemented. It is expected that further updates to the current assessment will be made in future reports.

  10. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air, Wellbore

  11. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air,

  12. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s oPrecipitationWeatherTacklingAboutNRAP: Air, Subsurface

  13. Patrick Air Force Base integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sandusky, W.F.; Parker, S.A.; King, D.A.; Wahlstrom, R.R.; Elliott, D.B.; Shankle, S.A.

    1993-12-01T23:59:59.000Z

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL) in support of the US Department of Energy Federal Energy Management Program to identify, evaluate, and assist in acquiring all cost effective energy projects at Patrick Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Patrick AFB which is located south of Cocoa Beach, Florida. It is a companion report to Volume 1, Executive Summary, and Volume.2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance, and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost analysis indicating the net present value and value index of each ERO.

  14. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01T23:59:59.000Z

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  15. Oil and Gas CDT Structural and depositional controls on shale gas resources in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

  16. Quantitative Assessment of Distributed Energy Resource Benefits

    SciTech Connect (OSTI)

    Hadley, S.W.

    2003-05-22T23:59:59.000Z

    Distributed energy resources (DER) offer many benefits, some of which are readily quantified. Other benefits, however, are less easily quantifiable because they may require site-specific information about the DER project or analysis of the electrical system to which the DER is connected. The purpose of this study is to provide analytical insight into several of the more difficult calculations, using the PJM power pool as an example. This power pool contains most of Pennsylvania, New Jersey, Maryland, and Delaware. The techniques used here could be applied elsewhere, and the insights from this work may encourage various stakeholders to more actively pursue DER markets or to reduce obstacles that prevent the full realization of its benefits. This report describes methodologies used to quantify each of the benefits listed in Table ES-1. These methodologies include bulk power pool analyses, regional and national marginal cost evaluations, as well as a more traditional cost-benefit approach for DER owners. The methodologies cannot however determine which stakeholder will receive the benefits; that must be determined by regulators and legislators, and can vary from one location to another.

  17. Integrated assessment of dispersed energy resources deployment

    SciTech Connect (OSTI)

    Marnay, Chris; Blanco, Raquel; Hamachi, Kristina S.; Kawaan, Cornelia P.; Osborn, Julie G.; Rubio, F. Javier

    2000-06-01T23:59:59.000Z

    The goal of this work is to create an integrated framework for forecasting the adoption of distributed energy resources (DER), both by electricity customers and by the various institutions within the industry itself, and for evaluating the effect of this adoption on the power system, particularly on the overall reliability and quality of electrical service to the end user. This effort and follow on contributions are intended to anticipate and explore possible patterns of DER deployment, thereby guiding technical work on microgrids towards the key technical problems. An early example of this process addressed is the question of possible DER adopting customer disconnection. A deployment scenario in which many customers disconnect from their distribution company (disco) entirely leads to a quite different set of technical problems than a scenario in which customers self generate a significant share or all of their on-site electricity requirements and additionally buy and sell energy and ancillary services (AS) locally and/or into wider markets. The exploratory work in this study suggests that the economics under which customers disconnect entirely are unlikely.

  18. California Division of Oil, Gas, and Geothermal Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin Charts Jump28Transportation

  19. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlan FY14-FY18StrategicLizI

  20. Projects Selected to Boost Unconventional Oil and Gas Resources |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy

  1. Projects Selected to Boost Unconventional Oil and Gas Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ ReportEnergy National SolarPublications »with theDepartment of

  2. Deepwater Oil & Gas Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1 DEPARTMENTSeptember 27,SeptemberEnergy 4, 2007:JulyofThe

  3. Technically Recoverable Shale Oil and Shale Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructureProposedPAGESafety Tag:8,, 20153 To.T. J.

  4. Survey of Biomass Resource Assessments and Assessment Capabilities in APEC

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co Ltd Place:Mclaren, 2010) || OpenVirginia:

  5. Cape Canaveral Air Force Station integrated resource assessment. Volume 3, Resource assessment

    SciTech Connect (OSTI)

    Sandusky, W.F.; Eichman, C.J.; King, D.A.; McMordie, K.L.; Parker, S.A.; Shankle, S.A.; Wahlstrom, R.R.

    1994-03-01T23:59:59.000Z

    The U.S. Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL) in support of the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Cape Canaveral Air Force Station (AFS). Projects considered can be either in the form of energy management or energy conservation. The overall efforts of this task are based on a model program PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Cape Canaveral AFS, which is located approximately 10 miles north of Cocoa Beach, Florida. It is a companion report to Volume 1: Executive Summary and Volume 2: Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance (O&M), and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. Descriptions of the evaluation methodologies and technical and cost assumptions are also provided for each ERO. Summary tables present the cost- effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis, indicating the net present value (NPV) and savings-to-investment ratio (SIR) of each ERO.

  6. Cape Canaveral Air Force Station integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Wahlstrom, R.R.; McMordie, K.L.; Parker, S.A.; King, D.A.; Sandusky, W.F.

    1993-12-01T23:59:59.000Z

    The US Air Force (USAF) has tasked the Pacific Northwest Laboratory (PNL), in support of the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to assess energy use at Cape Canaveral Air Force Station (AFS). The information obtained from this assessment will be used in identifying energy resource opportunities to reduce overall energy consumption by the station. The primary focus of this report is to assess the current baseline energy consumption at Cape Canaveral AFS. It is A companion report to Volume 1, the Executive Summary, and Volume 3, the Resource Assessment. This assessment requires that information be obtained and characterized for buildings, utilities, energy sources, energy uses, and load profiles to be used to improve the current energy system on the station. The characteristics of electricity, diesel fuel, No. 2 fuel oil, and motor vehicle gasoline (MOGAS) are analyzed for on-base facilities. The assessment examines basic regional information used to determine energy-use intensity (EUI) values for Cape Canaveral AFS facilities by building, fuel type, and energy end use. It also provides a summary of electricity consumption from Florida Power and Light Company (FPL) metered data for 1985--1991. Load profile information obtained from FPL data is presented for the North, South, and Titan Substations for the four seasons of the year, including weekdays and weekends.

  7. Solar Resource Assessment: Databases, Measurements, Models, and Information Sources (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01T23:59:59.000Z

    Fact sheet for Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008: ?Solar Resource Assessment Databases, Measurements, Models, and Information Sources

  8. Employee Self Assessment TTU Human Resources Employee Self Assessment (08/15/2013) Page 1 of 2

    E-Print Network [OSTI]

    Rock, Chris

    Employee Self Assessment TTU Human Resources Employee Self Assessment (08/15/2013) Page 1 of 2? #12;Employee Name R # TTU Human Resources Page 2 of 2Employee Self Assessment (08/15/2013) 7. What can

  9. Offshore Resource Assessment and Design Conditions Public Meeting Summary

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergy Office ofGeneral

  10. Non-Powered Dams Resource Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREofNewsletter NewsletterGeneral Counsel Steven

  11. Offshore Resource Assessment and Design Conditions Public Meeting Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National,2008aims toOfficial Use OnlyReport

  12. Offshore Resource Assessment and Design Conditions Public Meeting Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014 National,2008aims toOfficial Use

  13. Risk assessment activities at NIOSH: Information resources and needs

    SciTech Connect (OSTI)

    Stayner, L.T.; Meinhardt, T.; Hardin, B. [National Institute for Occupational Safety and Health, Cincinnati, OH (United States)

    1990-12-31T23:59:59.000Z

    Under the Occupational Safety and Health, and Mine Safety and Health Acts, the National Institute for Occupational Safety and Health (NIOSH) is charged with development of recommended occupational safety and health standards, and with conducting research to support the development of these standards. Thus, NIOSH has been actively involved in the analysis of risk associated with occupational exposures, and in the development of research information that is critical for the risk assessment process. NIOSH research programs and other information resources relevant to the risk assessment process are described in this paper. Future needs for information resources are also discussed.

  14. An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

  15. An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

  16. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

  17. Evaluation of water resources for enhanced oil recovery operations, Cement Field, Caddo and Grady Counties, Oklahoma

    SciTech Connect (OSTI)

    Preston, D.A.; Harrison, W.E.; Luza, K.V.; Prater, L.; Reddy, R.J.

    1982-02-01T23:59:59.000Z

    This report is based on the results of an investigation of the water resources local to the Cement Oil Field in Caddo and Grady Counties, southwestern, Oklahoma. The intent of the report is to present at least a semi-quantitative estimate of the volume, deliverability, and chemistry of the water potentially available for enhanced oil recovery in one or more Oklahoma oil fields. Subsequent to a review of several oil fields, the Cement Field was chosen for study because of its large size (25,000 acres), its extensive subsurface control (over 1850 wells), and its long history of production (since 1952) from several producing formations, some of which are already undergoing extensive waterflood operations. A preliminary review of the available data for this study suggested a threefold categorization of water resources, since the data for each category are distinctly different in nature, and, to some extent, different in source. The three categories are: surface water, ground water, and subsurface water. Flow, volume, and chemical analyses of each source are estimated.

  18. Research needs to maximize economic producibility of the domestic oil resource

    SciTech Connect (OSTI)

    Tham, M.K.; Burchfield, T.; Chung, Ting-Horng; Lorenz, P.; Bryant, R.; Sarathi, P.; Chang, Ming Ming; Jackson, S.; Tomutsa, L. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Dauben, D.L. (K and A Energy Consultants, Inc., Tulsa, OK (United States))

    1991-10-01T23:59:59.000Z

    NIPER was contracted by the US Department of Energy Bartlesville (Okla.) Project Office (DOE/BPO) to identify research needs to increase production of the domestic oil resource, and K A Energy Consultants, Inc. was subcontracted to review EOR field projects. This report summarizes the findings of that investigation. Professional society and trade journals, DOE reports, dissertations, and patent literature were reviewed to determine the state-of-the-art of enhanced oil recovery (EOR) and drilling technologies and the constraints to wider application of these technologies. The impacts of EOR on the environment and the constraints to the application of EOR due to environmental regulations were also reviewed. A review of well documented EOR field projects showed that in addition to the technical constraints, management factors also contributed to the lower-than-predicted oil recovery in some of the projects reviewed. DOE-sponsored projects were reviewed, and the achievements by these projects and the constraints which these projects were designed to overcome were also identified. Methods of technology transfer utilized by the DOE were reviewed, and several recommendations for future technology transfer were made. Finally, several research areas were identified and recommended to maximize economic producibility of the domestic oil resource. 14 figs., 41 tabs.

  19. Information resource use and need in risk assessment

    SciTech Connect (OSTI)

    Turturro, A. [National Center for Toxicological Research, Jefferson, AR (United States)

    1990-12-31T23:59:59.000Z

    The manner in which the Food and Drug Administration (FDA) uses information resources comprises an interesting illustration of federal agency information use. A description of the context in which risk assessment occurs within the FDA is followed by a discussion of information access and use, as well as a practical example.

  20. COLORADO STATEWIDE FOREST RESOURCE ASSESSMENTCOLORADO STATEWIDE FOREST RESOURCE ASSESSMENTCOLORADO STATEWIDE FOREST RESOURCE ASSESSMENTCOLORADO STATEWIDE FOREST RESOURCE ASSESSMENT CFRI Conference onCFRI Conference onCFRI Conference onCFRI Conference on W

    E-Print Network [OSTI]

    STATEWIDE FOREST RESOURCE ASSESSMENTCOLORADO STATEWIDE FOREST RESOURCE ASSESSMENT CFRI Conference on.outcomes on the ground.outcomes on the ground. o Foundation = Statewide Forest Resource AssessmentsFoundation = Statewide Forest Resource AssessmentsFoundation = Statewide Forest Resource AssessmentsFoundation = Statewide

  1. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01T23:59:59.000Z

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  2. An evaluation of known remaining oil resources in the state of Kansas: Project on advanced oil recovery and the states. Volume 4

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Kansas. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Kansas oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the state of Kansas and the nation as a whole.

  3. An evaluation of known remaining oil resources in the state of Oklahoma: Project on advanced oil recovery and the states. Volume 7

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of Oklahoma. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. Several major technical insights for state and Federal policymakers and regulators can be reached from this analysis. Overall, well abandonments and more stringent environmental regulations could limit economic access to Oklahoma`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, Oklahoma oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit both the state of Oklahoma and the nation as a whole.

  4. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of die IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. Overall, well abandonments and more stringent environmental regulations could limit economic access to the nation`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technoloy, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could leave even greater benefits to the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, domestic oil production could be maximized. The resulting increase and improvement in production rates, employment, operator profits, state and Federal tax revenues, energy security will benefit the nation as a whole.

  5. Resource Assessment Edited by J.R. Hatch and R.H. Affolter

    E-Print Network [OSTI]

    Chapter D Resource Assessment Edited by J.R. Hatch and R.H. Affolter Chapter D of Resource.S. Geological Survey National Coal Resource Assessment Click here to return to Disc 1 Volume Table of Contents........................................................................................ 3 Previous Resource Assessments of Illinois Basin Coals, by J.R. Hatch and R.H. Affolter

  6. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  7. Low-temperature resource assessment program. Final report

    SciTech Connect (OSTI)

    Lienau, P.J. [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center] [Oregon Inst. of Tech., Klamath Falls, OR (United States). Geo-Heat Center; Ross, H. [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.] [Utah Univ., Salt Lake City, UT (United States). Earth Sciences and Resources Inst.

    1996-02-01T23:59:59.000Z

    The US Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation`s low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20{degrees}C to 150{degrees}C has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50{degrees}C located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy cost evaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  8. Resource Assessment and Land Use Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof Enhanced Dr. Julia PhillipsResource Assessment and

  9. ORISE: Resources for environmental assessments and health physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOENurseResources Environmental assessments and health

  10. Results of the Weeks Island Strategic Petroleum Reserve Oil Leak Risk Assessment Study

    SciTech Connect (OSTI)

    Molecke, M.A.; Hinkebein, T.E.; Bauer, S.J.; Linn, J.K.

    1999-01-01T23:59:59.000Z

    This study evaluated multiple, long-term environmental oil-contamination risk scenarios that could result from the potential leakage of UP to 1.5 million barrels of crude oil entombed in the Weeks Island SPR mine following site decommissioning and abandonment, and up to 100 years thereafter. This risk assessment also provides continuity with similar risk evaluations performed earlier and documented in the 1995 DOE Environmental Assessment for Decommissioning the Strategic Petroleum Reserve Weeks Island Facility (EA). This current study was requested by the DOE to help them determine if their previous Finding of No Significant Impact (FONSI), in the EA, is still valid or needs to be rescinded. Based on the calculated environmental risk results (in terms of clean-up and remediation expenses) presented in this risk assessment, including the calculated average likelihoods of oil release and potential oil-leakage volumes, none of the evaluated risk events would appear to satisfy the definition of significant environmental impact in National Environmental Policy Act (NEPA) terminology. The DOE may combine these current results with their earlier evaluations and interpretations in the 1995 EA in order to assess whether the existing FONSI is still accurate, acceptable, and valid. However, from a risk evaluation standpoint, the assessment of impacts appears to be the same whether only 10,000 to 30,000 barrels of crude oil (as considered in the 1995 EA), or up to 1.5 million barrels of oil (as considered herein) are abandoned in the Weeks Island SPR facility.

  11. Drawbacks of the use of fidelity to assess quantum resources

    E-Print Network [OSTI]

    Matteo Bina; Antonio Mandarino; Stefano Olivares; Matteo G. A. Paris

    2014-01-06T23:59:59.000Z

    Fidelity is a figure of merit widely employed in quantum technology in order to quantify similarity between quantum states and, in turn, to assess quantum resources or reconstruction techniques. Fidelities higher than, say, 0.9 or 0.99, are usually considered as a piece of evidence to say that two states are very close in the Hilbert space. On the other hand, on the basis of several examples for qubits and continuous variable systems, we show that such high fidelities may be achieved by pairs of states with considerably different physical properties, including separable and entangled states or classical and nonclassical ones. We conclude that fidelity as a tool to assess quantum resources should be employed with caution, possibly combined with additional constraints restricting the pool of achievable states, or only as a mere summary of a full tomographic reconstruction.

  12. Wind Resource Assessment Report: Mille Lacs Indian Reservation, Minnesota

    SciTech Connect (OSTI)

    Jimenez, A. C.

    2013-12-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy on potentially contaminated land and mine sites. EPA collaborated with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the Mille Lacs Band of Chippewa Indians to evaluate the wind resource and examine the feasibility of a wind project at a contaminated site located on the Mille Lacs Indian Reservation in Minnesota. The wind monitoring effort involved the installation of a 60-m met tower and the collection of 18 months of wind data at multiple heights above the ground. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and an assessment of the economic feasibility of a potential wind project sited this site.

  13. Climate Change Policy and Canada's Oil Sand Resources: An Update and Appraisal of Canada's

    E-Print Network [OSTI]

    Watson, Andrew

    ) and there are minor deposits of oil shale on the eastern edge of the Western Canada Sedimentary Basin. Alberta's oil

  14. Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources

    SciTech Connect (OSTI)

    Donaldson, T.L.; Culberson, O.L.

    1983-06-01T23:59:59.000Z

    This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

  15. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  16. Executive summary. Western oil shale developmet: a technology assessment

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    The objectives are to review shale oil technologies as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  17. Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)

    SciTech Connect (OSTI)

    Penner, S.S.

    1981-03-01T23:59:59.000Z

    The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

  18. Meeting report:Iraq oil ministry needs assessment workshop.3-5 Septemner 2006

    SciTech Connect (OSTI)

    Littlefield, Adriane C.; Pregenzer, Arian Leigh

    2006-11-01T23:59:59.000Z

    Representatives from the U.S. Department of Energy, the National Nuclear Security Administration, and Sandia National Laboratories met with mid-level representatives from Iraq's oil and gas companies and with former employees and senior managers of Iraq's Ministry of Oil September 3-5 in Amman, Jordan. The goals of the workshop were to assess the needs of the Iraqi Oil Ministry and industry, to provide information about capabilities at DOE and the national laboratories relevant to Iraq, and to develop ideas for potential projects.

  19. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. (Univ. of South Carolina, Columbia, SC (United States). Earth Sciences and Resources Inst.); Berg, R.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-03-01T23:59:59.000Z

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  20. Fort Stewart integrated resource assessment. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Larson, L.L.; Keller, J.M.

    1993-10-01T23:59:59.000Z

    The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the US Army US Forces Command (FORSCOM) Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 2, Baseline Detail, and Volume 3, Resource Assessment.

  1. Comparative assessment of the trace-element composition of coals, crude oils, and oil shales

    SciTech Connect (OSTI)

    M.Y. Shpirt; S.A. Punanova [Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-10-15T23:59:59.000Z

    A comparative analysis of the amounts of 42 trace elements in coals, crude oils, and oil and black shales was performed. The degree of concentration of trace elements by caustobioliths and their ashes relative to their abundance in argillaceous rocks and the Earth's crust was calculated. Typomorphic trace elements were distinguished, of which many turned out to be common for the different kinds of caustobioliths in question. The trace elements were classified according to their concentration factors in different caustobioliths. The ash of crude oils is enriched in trace elements (Cs, V, Mo, Cu, Ag, Au, Zn, Hg, Se, Cr, Co, Ni, U) to the greatest extent (concentration factor above 3.5) and that of oil shales is enriched to the least extent (Re, Cs, Hg, Se). The ratios between typomorphic trace elements in general strongly differ from those in the Earth's crust and argillaceous rocks and are not identical in different caustobioliths. Quantitative parameters that make it possible to calculate a change in these ratios on passing from one caustobiolith type to another were proposed and the relative trace-element affinity of different caustobioliths was estimated.

  2. U.S. hydropower resource assessment for Alabama

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Alabama.

  3. Reconnaissance geothermal resource assessment of 40 sites in California

    SciTech Connect (OSTI)

    Leivas, E.; Martin, R.C.; Higgins, C.T.; Bezore, S.P.

    1981-01-01T23:59:59.000Z

    Results are set forth for a continuing reconnaissance-level assessment of promising geothermal sites scattered through California. The studies involve acquisition of new data based upon field observations, compilation of data from published and unpublished sources, and evaluation of the data to identify areas suitable for more intensive area-specific studies. Forty sites were chosen for reporting on the basis of their relative potential for development as a significant resource. The name and location of each site is given, and after a brief synopsis, the geothermal features, chemistry, geology, and history of the site are reported. Three sites are recommended for more detailed study on the basis of potential for use by a large number of consumers, large volume of water, and the likelihood that the resource underlies a large area. (LEW)

  4. U.S. hydropower resource assessment for Maine

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01T23:59:59.000Z

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Maine.

  5. U.S. hydropower resource assessment for Idaho

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Idaho.

  6. U.S. hydropower resource assessment for Maryland

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-11-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Maryland.

  7. U.S. hydropower resource assessment for New York

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-08-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of New York.

  8. U.S. hydropower resource assessment for Ohio

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1997-12-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Ohio.

  9. U.S. hydropower resource assessment for Michigan

    SciTech Connect (OSTI)

    Conner, A.M.; Francfort, J.E.

    1998-02-01T23:59:59.000Z

    The US Department of Energy is developing an estimate of the undeveloped hydropower potential in the US. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering and Environmental Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Michigan.

  10. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  11. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01T23:59:59.000Z

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  12. Horizontal oil well applications and oil recovery assessment. Volume 1: Success of horizontal well technology, Final report

    SciTech Connect (OSTI)

    Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

    1995-03-01T23:59:59.000Z

    Horizontal technology has been applied in over 110 formations in the USA. Volume I of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA. and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA. and 88 in Canada. Operators responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

  13. assessment center technical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjusted with unknown authors 2012-01-01 308 Exxon Valdez Oil Spill Statemederal Natural Resource Damage Assessment Final Report Fish Histopathology Damage Assessment after the...

  14. Strategic Planning -College -Agricultural Sciences & Natural Resources Unit Assessment Report -Four Column

    E-Print Network [OSTI]

    Zhang, Yuanlin

    Strategic Planning - College - Agricultural Sciences & Natural Resources Unit Assessment Report - Four Column Texas Tech University Priorities Means of Assessment & Criteria / Tasks Results Action & Natural Resources - 2013 Priority 1_Increase Enrollment and Promote Student Success (CASNR - Outcome 1

  15. Maintaining the uranium resources data system and assessing the 1989 US uranium potential resources

    SciTech Connect (OSTI)

    McCammon, R.B. (Geological Survey, Reston, VA (USA)); Finch, W.I.; Grundy, W.D.; Pierson, C.T. (Geological Survey, Denver, CO (USA))

    1990-12-31T23:59:59.000Z

    Under the Memorandum of Understanding (MOU) between the EIA, US Department of Energy, and the US Geological Survey (USGS), US Department of the Interior, the USGS develops estimates of uranium endowment for selected geological environments in the United States. New estimates of endowment are used to update the Uranium Resources Assessment Data (URAD) System which, beginning in 1990, is maintained for EIA by the USGS. For 1989, estimates of US undiscovered resources were generated using revised economic index values (current to December 1989) in the URAD system's cost model. The increase in the estimates for the Estimated Additional Resources (EAR) and Speculative Resources (SR) classes resulted primarily from increases in the estimates of uranium endowment for the solution-collapse, breccia-pipe uranium deposit environment in the Colorado Plateau resource region. The mean values for $30-, $50-, and $100-per-pound U{sub 3}O{sub 8} forward-cost categories of EAR increased by about 8, 48, and 32 percent, respectively, as compared to 1988. Estimates of the 1989 undiscovered resources in the SR class also increased in all three forward-cost categories by 10, 5, and 9 percent, respectively. The original cost equations in the URAD System were designed to cover drilling costs related to extensive flat-lying tabular ore bodies. The equations do not adequately treat drilling costs for the smaller areas of vertical breccia pipe uranium deposits in the Colorado Plateau resource region. The development of appropriate cost equations for describing the economics of mining this type of deposit represents a major new task. 12 refs., 4 figs., 5 tabs.

  16. Privatising national oil companies: Assessing the impact on firm performance

    E-Print Network [OSTI]

    Wolf, C; Pollitt, Michael G.

    government having to cede majority control. Key words Privatisation, ownership, corporate performance, anticipation, oil and gas industry JEL Classifications: C23, G32, L33, L71, M20, Q40 2 I. Introduction The impact of ownership... privatisation date, accrue over time, and level off after the initial ownership change rather than accelerate. Details of residual government ownership, control transfer, and size and timing of follow-on offerings provide limited incremental explanatory power...

  17. Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

  18. NREL Solar Radiation Resource Assessment Project: Status and outlook

    SciTech Connect (OSTI)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01T23:59:59.000Z

    This report summarizes the activities and accomplishments of NREL's Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU's), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL's Solar Radiation Research Laboratory. 17 refs.

  19. A Baseline Assessment of the Ecological Resources of Jobos Bay, Puerto Rico

    E-Print Network [OSTI]

    A Baseline Assessment of the Ecological Resources of Jobos Bay, Puerto Rico July 2011 Editors David. A Baseline Assessment of the Ecological Resources of Jobos Bay, Puerto Rico. NOAA Technical Memorandum NOS of the Ecological Resources of Jobos Bay, Puerto Rico Prepared by the Coastal and Oceanographic Assessment, Status

  20. An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). TORIS is a tested and verified system maintained and operated by the Department of Energy`s Bartlesville Project Office. The TORTS system was used to evaluate over 2,300 major reservoirs in a consistent manner and on an individual basis, the results of which have been aggregated to arrive at the national total.

  1. VULNERABILITY ASSESSMENT OF WATER RESOURCES SYSTEMS IN THE EASTERN NILE BASIN

    E-Print Network [OSTI]

    Richner, Heinz

    VULNERABILITY ASSESSMENT OF WATER RESOURCES SYSTEMS IN THE EASTERN NILE BASIN TO ENVIRONMENTAL Resources VULNERABILITY ASSESSMENT OF WATER RESOURCES SYSTEMS IN THE EASTERN NILE BASIN TO ENVIRONMENTAL Resources Institute of African Research and Studies, Cairo University For the Degree of MASTER OF SCIENCE

  2. Global Mineral Resource Assessment Potash--A Global Overview of Evaporite-Related Potash

    E-Print Network [OSTI]

    Fleskes, Joe

    Global Mineral Resource Assessment Potash--A Global Overview of Evaporite-Related Potash Resources intentionally left blank. #12;Global Mineral Resource Assessment Michael L. Zientek, Jane M. Hammarstrom, and Kathleen M. Johnson, editors Potash--A Global Overview of Evaporite-Related Potash Resources, Including

  3. Western oil shale development: a technology assessment. Volume 8. Health effects of oil shale development

    SciTech Connect (OSTI)

    Rotariu, G.J.

    1982-02-01T23:59:59.000Z

    Information on the potential health effects of a developing oil shale industry can be derived from two major sources: (1) the historical experience in foreign countries that have had major industries; and (2) the health effects research that has been conducted in the US in recent years. The information presented here is divided into two major sections: one dealing with the experience in foreign countries and the second dealing with the more recent work associated with current oil shale development in the US. As a result of the study, several observations can be made: (1) most of the current and historical data from foreign countries relate to occupational hazards rather than to impacts on regional populations; (2) neither the historical evidence from other countries nor the results of current research have shown pulmonary neoplasia to be a major concern, however, certain types of exposure, particularly such mixed source exposures as dust/diesel or dust/organic-vapor have not been adequately studied and the lung cancer question is not closed; (3) the industry should be alert to the incidence of skin disease in the industrial setting, however, automated techniques, modern industrial hygiene practices and realistic personal hygiene should greatly reduce the hazards associated with skin contact; and (4) the entire question of regional water contamination and any resultant health hazard has not been adequately addressed. The industrial practice of hydrotreating the crude shale oil will diminish the carcinogenic hazard of the product, however, the quantitative reduction of biological activity is dependent on the degree of hydrotreatment. Both Soviet and American experimentalists have demonstrated a correlation betweed carcinogenicity/toxicity and retorting temperature; the higher temperatures producing the more carcinogenic or toxic products.

  4. Bayesian Networks and Geographical Information Systems for Environmental Risk Assessment for Oil and Gas Site Development

    E-Print Network [OSTI]

    Varela Gonzalez, Patricia Ysolda

    2013-04-03T23:59:59.000Z

    of the Environmental Sensibility of Oil and Gas (O&G) developments for a given study area. A Risk index associated with the development of O&G operation activities based on the spatial environmental sensibility was also mapped. To facilitate the Risk assessment...

  5. A Probabilistic Water Resources Assessment of the Paradise Creek Watershed Presented in Partial Fulfillment of the Requirements for the

    E-Print Network [OSTI]

    Fiedler, Fritz R.

    A Probabilistic Water Resources Assessment of the Paradise Creek Watershed A Thesis Presented Probabilistic Water Resources Assessment of the Paradise Creek Watershed," has been reviewed in final form ____________________________________Date____________ Margrit von Braun #12;iii iii A Probabilistic Water Resources Assessment

  6. Assessment of treated vs untreated oil spills. Final report

    SciTech Connect (OSTI)

    Wilson, M.P.

    1981-02-01T23:59:59.000Z

    The results of a series of studies conducted to determine the practicability and feasibility of using dispersants to mitigate the impact of an oil spill on the environment are described. The method of approach is holistic in that it combines the physical, chemical, microbial and macro-fauna response to a spill treated with dispersants and compares this with spills that are left untreated. The program integrates mathematical, laboratory, meso-scale (three 20 foot high by three feet in diameter tanks, in-situ experiments and analyses to determine if the use of dispersants is an effective oil spill control agent. In summary, it appears viable to use dispersants as determined on a case by case basis. The case for using dispersants has to be based on whether or not their use will mitigate the environmental impact of the spill. In the case of an open ocean spill that is being driven into a rich inter-tidal community, the use of dispersants could greatly reduce the environmental impact. Even in the highly productive George's Bank area at the height of the cod spawning season, the impact of the use of dispersants is well within the limits of natural variability when the threshold toxicity level is assumed to be as low as 100 ppB, a level which is often found in the open ocean. Thus, it appears that dispersants can and should be used when it is evident that their use will mitigate the impacts of the spill. Their use in areas where there is poor circulation and therefore little possibility of rapid dilution is more questionable and should be a subject of future studies.

  7. Vandenberg Air Force Base integrated resource assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Halverson, M.A.; Richman, E.E.; Dagle, J.E.; Hickman, B.J.; Daellenbach, K.K.; Sullivan, G.P.

    1993-06-01T23:59:59.000Z

    The US Air Force Space Command has tasked the Pacific Northwest Laboratory, as the lead laboratory supporting the US Department of Energy Federal Energy Management Program, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is a model program PNL is designing for federal customers served by the Pacific Gas and Electric Company (PG and E). The primary goal of the VAFB project is to identify all electric energy efficiency opportunities, and to negotiate with PG and E to acquire those resources through a customized demand-side management program for its federal clients. That customized program should have three major characteristics: (1) 100% up-front financing; (2) substantial utility cost-sharing; and (3) utility implementation through energy service companies under contract to the utility. A similar arrangement will be pursued with Southern California Gas for non-electric resource opportunities if that is deemed desirable by the site and if the gas utility seems open to such an approach. This report documents the assessment of baseline energy use at VAFB located near Lompoc, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Resource Assessment. This analysis examines the characteristics of electric, natural gas, fuel oil, and propane use for fiscal year 1991. It records energy-use intensities for the facilities at VAFB by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A more complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, and applicable losses.

  8. Fort Irwin Integrated Resource Assessment. Volume 2, Baseline detail

    SciTech Connect (OSTI)

    Richman, E.E.; Keller, J.M.; Dittmer, A.L.; Hadley, D.L.

    1994-01-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Fort Irwin, a US Army Forces Command facility near Barstow, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Irwin. This is part of a model program that PNL has designed to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Fort Irwin. This analysis examines the characteristics of electric, propane gas, and vehicle fuel use for a typical operating year. It records energy-use intensities for the facilities at Fort Irwin by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A complete energy consumption reconciliation is presented that accounts for all energy use among buildings, utilities, and applicable losses.

  9. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10T23:59:59.000Z

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  10. Robins Air Force Base Integrated Resource Assessment. Volume 2, Baseline Detail

    SciTech Connect (OSTI)

    Keller, J.M.; Sullivan, G.P.; Wahlstrom, R.R.; Larson, L.L.

    1993-08-01T23:59:59.000Z

    This report documents the assessment of baseline energy use at Robins Air Force Base (AFB), a US Air Force Materiel Command facility located near Macon, Georgia. This is a companion report to Volume 1, Executive Summary, and Volume 3, Integrated Resource Assessment. The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins AFB. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This program (1) identifies and evaluates all cost-effective energy projects; (2) develops a schedule at each installation for project acquisition considering project type, size, timing, and capital requirements, as well as energy and dollar savings; and (3) targets 100% of the financing required to implement energy efficiency projects. PNL applied this model program to Robins AFB. The analysis examines the characteristics of electric, natural gas, oil, propane, and wood chip use for fiscal year 1991. The results include energy-use intensities for the facilities at Robins AFB by building type, fuel type, and energy end use. A complete energy consumption reconciliation is presented that accounts for the distribution of all major energy uses and losses among buildings, utilities, and central systems.

  11. Wind Resource Assessment Using SODAR at Cluttered Sites William LW Henson MSc*

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Resource Assessment Using SODAR at Cluttered Sites William LW Henson MSc* Anthony L Rogers Ph. The RERL's use of SODAR in wind resource assessment is due to the often-stated advantages that SODAR and representative wind resource data. One such challenging environment can be called a cluttered site

  12. Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment

    E-Print Network [OSTI]

    Hung, I-Kuai

    for Resource Assessment May 15-17, 2007 * Terre Haute, Indiana USING REMOTELY SENSED DATA TO QUANTIFY for Resource Assessment May 15-17, 2007 * Terre Haute, Indiana Figure 1. Scar of oilfield brine contaminated to the successful modeling of numerous natural resource and cultural processes (Jensen, 2005). Because oilfield

  13. Western oil shale development: a technology assessment. Volume 1. Main report

    SciTech Connect (OSTI)

    Not Available

    1981-11-01T23:59:59.000Z

    The general goal of this study is to present the prospects of shale oil within the context of (1) environmental constraints, (2) available natural and economic resources, and (3) the characteristics of existing and emerging technology. The objectives are: to review shale oil technologies objectively as a means of supplying domestically produced fuels within environmental, social, economic, and legal/institutional constraints; using available data, analyses, and experienced judgment, to examine the major points of uncertainty regarding potential impacts of oil shale development; to resolve issues where data and analyses are compelling or where conclusions can be reached on judgmental grounds; to specify issues which cannot be resolved on the bases of the data, analyses, and experienced judgment currently available; and when appropriate and feasible, to suggest ways for the removal of existing uncertainties that stand in the way of resolving outstanding issues.

  14. Assessment of Offshore Wind Energy Resources for the United States...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Energy Resources for the United States This report summarizes the offshore wind resource potential for the contiguous United States and Hawaii as of May 2009. The...

  15. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    EOR continues to unlock oil resources. Oil & Gas Journal, [of conventional oil resource availability. Estimates ofthe tar sands and heavy oil resource in Figure 10. Note that

  16. An evaluation of known remaining oil resources in the United States: Appendix. Volume 10

    SciTech Connect (OSTI)

    NONE

    1993-11-01T23:59:59.000Z

    Volume ten contains the following appendices: overview of improved oil recovery methods which covers enhanced oil recovery methods and advanced secondary recovery methods; the benefits of improved oil recovery, selected data for the analyzed states; and list of TORIS fields and reservoirs.

  17. Distillate Fuel Oil Assessment for Winter 1995-1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : b ra&le.com 1U.S.

  18. Technology assessment: environmental, health, and safety impacts associated with oil recovery from US tar-sand deposits

    SciTech Connect (OSTI)

    Daniels, J.I.; Anspaugh, L.R.; Ricker, Y.E.

    1981-10-13T23:59:59.000Z

    The tar-sand resources of the US have the potential to yield as much as 36 billion barrels (bbls) of oil. The tar-sand petroleum-extraction technologies now being considered for commercialization in the United States include both surface (above ground) systems and in situ (underground) procedures. The surface systems currently receiving the most attention include: (1) thermal decomposition processes (retorting); (2) suspension methods (solvent extraction); and (3) washing techniques (water separation). Underground bitumen extraction techniques now being field tested are: (1) in situ combustion; and (2) in situ steam-injection procedures. At this time, any commercial tar-sand facility in the US will have to comply with at least 7 major federal regulations in addition to state regulations; building, electrical, and fire codes; and petroleum-industry construction standards. Pollution-control methods needed by tar-sand technologies to comply with regulatory standards and to protect air, land, and water quality will probably be similar to those already proposed for commercial oil-shale systems. The costs of these systems could range from about $1.20 to $2.45 per barrel of oil produced. Estimates of potential pollution-emisson levels affecting land, air, and water were calculated from available data related to current surface and in situ tar-sand field experiments in the US. These data were then extrapolated to determine pollutant levels expected from conceptual commercial surface and in situ facilities producing 20,000 bbl/d. The likelihood-of-occurrence of these impacts was then assessed. Experience from other industries, including information concerning health and ecosystem damage from air pollutants, measurements of ground-water transport of organic pollutants, and the effectiveness of environmental-control technologies was used to make this assessment.

  19. State Geothermal Resource Assessment and Data Collection Efforts

    Broader source: Energy.gov [DOE]

    HawaiiNational Geothermal Data System Aids in Discovering Hawaii's Geothermal Resource (November 20, 2012)

  20. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  1. Identification of a reversible quantum gate: assessing the resources

    E-Print Network [OSTI]

    Giulio Chiribella; Giacomo Mauro D'Ariano; Martin Roetteler

    2014-09-12T23:59:59.000Z

    We assess the resources needed to identify a reversible quantum gate among a finite set of alternatives, including in our analysis both deterministic and probabilistic strategies. Among the probabilistic strategies we consider unambiguous gate discrimination, where errors are not tolerated but inconclusive outcomes are allowed, and we prove that parallel strategies are sufficient to unambiguously identify the unknown gate with minimum number of queries. This result is used to provide upper and lower bounds on the query complexity and on the minimum ancilla dimension. In addition, we introduce the notion of generalized t-designs, which includes unitary t-designs and group representations as special cases. For gates forming a generalized t-design we give an explicit expression for the maximum probability of correct gate identification and we prove that there is no gap between the performances of deterministic strategies an those of probabilistic strategies. Hence, evaluating of the query complexity of perfect deterministic discrimination is reduced to the easier problem of evaluating the query complexity of unambiguous discrimination. Finally, we consider discrimination strategies where the use of ancillas is forbidden, providing upper bounds on the number of additional queries needed to make up for the lack of entanglement with the ancillas.

  2. Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology

    SciTech Connect (OSTI)

    Dahowski, Robert T.; Bachu, Stefan

    2007-03-05T23:59:59.000Z

    Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

  3. RESOURCE ASSESSMENT OF THE IN-PLACE AND POTENTIALLY RECOVERABLE DEEP NATURAL GAS RESOURCE OF THE ONSHORE INTERIOR SALT BASINS, NORTH CENTRAL AND NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-04-16T23:59:59.000Z

    The University of Alabama and Louisiana State University have undertaken a cooperative 3-year, advanced subsurface methodology resource assessment project, involving petroleum system identification, characterization and modeling, to facilitate exploration for a potential major source of natural gas that is deeply buried (below 15,000 feet) in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas. The project is designed to assist in the formulation of advanced exploration strategies for funding and maximizing the recovery from deep natural gas domestic resources at reduced costs and risks and with minimum impact. The results of the project should serve to enhance exploration efforts by domestic companies in their search for new petroleum resources, especially those deeply buried (below 15,000 feet) natural gas resources, and should support the domestic industry's endeavor to provide an increase in reliable and affordable supplies of fossil fuels. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification. The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The project objectives will be achieved through a 3-year effort. First, emphasis is on petroleum system identification and characterization in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Sub-basin and the Conecuh Sub-basin of Louisiana, Mississippi, Alabama and Florida panhandle. This task includes identification of the petroleum systems in these basins and the characterization of the overburden, source, reservoir and seal rocks of the petroleum systems and of the associated petroleum traps. Second, emphasis is on petroleum system modeling. This task includes the assessment of the timing of deep (>15,000 ft) gas generation, expulsion, migration, entrapment and alteration (thermal cracking of oil to gas). Third, emphasis is on resource assessment. This task includes the volumetric calculation of the total in-place hydrocarbon resource generated, the determination of the volume of the generated hydrocarbon resource that is classified as deep (>15,000 ft) gas, the estimation of the volume of deep gas that was expelled, migrated and entrapped, and the calculation of the potential volume of gas in deeply buried (>15,000 ft) reservoirs resulting from the process of thermal cracking of liquid hydrocarbons and their transformation to gas in the reservoir. Fourth, emphasis is on identifying those areas in the onshore interior salt basins with high potential to recover commercial quantities of the deep gas resource.

  4. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Residue (Lignocellulosic) 5.4 MBDT a - 272 h 32.7 Animal Manure 3.4 MBDT a 11.8 a 102i 12.3 Fats, Oils-affected areas, dry farmed regions, other);(ii) biopower from manure-based AD systems and groundwater protection ­ Gasification ­ Pyrolysis · Bioconversion ­ Anaer

  5. Climate Change Assessment for Urban Water Resource Availability

    E-Print Network [OSTI]

    Martinez, Ramiro

    2011-08-08T23:59:59.000Z

    change will influence in the availability of local water resource systems. Water resources are especially vulnerable to dramatic changes in temperature and precipitation, and significant impacts may be experienced by both human and ecosystems...

  6. A New Global Unconventional Natural Gas Resource Assessment

    E-Print Network [OSTI]

    Dong, Zhenzhen

    2012-10-19T23:59:59.000Z

    . Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

  7. A New Global Unconventional Natural Gas Resource Assessment 

    E-Print Network [OSTI]

    Dong, Zhenzhen

    2012-10-19T23:59:59.000Z

    . Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

  8. Assessment of oil-shale technology in Brazil. Final technical report, October 27, 1980-July 27, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-07-27T23:59:59.000Z

    The development of an oil shale industry in the United States will require the solution of a variety of technical, economic, environmental, and health and safety problems. This assessment investigates whether US oil shale developers might benefit from the experience gained by the Brazilians in the operation of their Usina Prototipo do Irati oil shale demonstration plant at Sao Mateus do Sul, and from the data generated from their oil shale research and development programs. A chapter providing background information on Brazil and the Brazilian oil shale deposits is followed by an examination of the potential recovery processes applicable to Brazilian oil shale. The evolution of the Brazilian retorting system is reviewed and compared with the mining and retorting proposed for US shales. Factors impacting on the economics of shale oil production in Brazil are reviewed and compared to economic analyses of oil shale production in the US. Chapters examining the consequences of shale development in terms of impact on the physical environment and the oil shale worker complete the report. Throughout the report, where data permits, similarities and differences are drawn between the oil shale programs underway in Brazil and the US. In addition, research areas in which technology or information transfer could benefit either or both countries' oil shale programs are identified.

  9. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01T23:59:59.000Z

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  10. Fort Drum integrated resource assessment. Volume 1, Executive summary

    SciTech Connect (OSTI)

    Dixon, D.R.; Armstrong, P.R.; Daellenbach, K.K.

    1993-09-01T23:59:59.000Z

    Some of the most difficult problems that a federal site has in reducing its energy consumption in a cost-effective manner revolve around understanding where the energy is being used, and what technologies could be employed to decrease the energy use. Many large federal sites have one or two meters to track electric energy use for several thousand buildings and numerous industrial processes. Even where meters are available on individual buildings or family housing units, the meters are not consistently read. When the federal energy manager has been able to identify high energy users, he or she may not have the background, training, or resources to determine the most cost-effective options for reducing this energy use. This can lead to selection of suboptimal projects that prevent the site from achieving the full life-cycle cost savings. The US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), has developed a model program that provides a systematic approach to evaluating energy opportunities that (1) identifies the building groups and end uses that use the most energy (not just have the greatest energy-use intensity), and (2) evaluates the numerous options for retrofit or installation of new technology that will result in the selection of the most cost-effective technologies. In essence, this model program provides the federal energy manager with a roadmap to significantly reduce energy use in a planned, rational, cost-effective fashion that is not biased by the constraints of the typical funding sources available to federal sites. The results from this assessment process can easily be turned into a five- to ten-year energy management plan that identifies where to start and how to proceed in order to reach the mandated energy consumption targets.

  11. Wind Integration, Transmission, and Resource Assessment andCharacteri...

    Office of Environmental Management (EM)

    Assessment and Characterization Projects More Documents & Publications Environmental Wind Projects Testing, Manufacturing, and Component Development Projects Offshore Wind Projects...

  12. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    Renewable Energy Center Technical Assessment of Small Hydro Power Technologies #12;California Renewable Energy Center Technical Assessment of In-conduit Small Hydro Power Technologies The goal of this study is to investigate and assess available small hydro power generation technologies and associated operating

  13. Y. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis," 16th International Conference on Information Quality, Nov. 18-20, 2011, Adelaide, Australia

    E-Print Network [OSTI]

    Berleant, Daniel

    Y. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis a framework for assessing the information quality of world oil reserves data. The framework is applied of oil reserve data. Keywords: Data Quality, Information Quality, Information Quality Framework

  14. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05T23:59:59.000Z

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  15. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    SciTech Connect (OSTI)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01T23:59:59.000Z

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  16. Wind power resource assessment in complex urban environments: MIT campus case-study using CFD Analysis

    E-Print Network [OSTI]

    Wind power resource assessment in complex urban environments: MIT campus case-study using CFD of Technology, 2Meteodyn Objectives Conclusions References [1] TopoWind software, User Manual [2] Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Wind Monitoring Program, AWS Scientific, Inc

  17. Assessing the wind field over the continental shelf as a resource for electric power

    E-Print Network [OSTI]

    Firestone, Jeremy

    Assessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind power

  18. NREL Solar Radiation Resource Assessment Project: Status and outlook. Annual progress report, FY 1992

    SciTech Connect (OSTI)

    Renne, D.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.; Riordan, C.; Hammond, E.; Ismailidis, T.

    1993-06-01T23:59:59.000Z

    This annual report summaries the activities and accomplishments of the Solar Radiation Resource Assessment Project during fiscal year 1992 (1 October to 30 September 1992). Managed by the Analytic Studies Division of the National Renewable Energy Laboratory, this project is the major activity of the US Department of Energy`s Resource Assessment Program.

  19. Solar and Wind Resource Assessments for Afghanistan and Pakistan

    SciTech Connect (OSTI)

    Renne, D. S.; Kelly, M.; Elliott, D.; George, R.; Scott, G.; Haymes, S.; Heimiller, D.; Milbrandt, A.; Cowlin, S.; Gilman, P.; Perez, R.

    2007-01-01T23:59:59.000Z

    The U.S. National Renewable Energy Laboratory (NREL) has recently completed the production of high-resolution wind and solar energy resource maps and related data products for Afghanistan and Pakistan. The resource data have been incorporated into a geospatial toolkit (GsT), which allows the user to manipulate the resource information along with country-specific geospatial information such as highway networks, power facilities, transmission corridors, protected land areas, etc. The toolkit allows users to then transfer resource data for specific locations into NREL's micropower optimization model known as HOMER.

  20. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-09-30T23:59:59.000Z

    The objectives of the study were: (1) to perform resource assessment of the thermogenic gas resources in deeply buried (>15,000 ft) natural gas reservoirs of the onshore interior salt basins of the north central and northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling; and (2) to use the petroleum system based resource assessment to estimate the volume of the deep thermogenic gas resource that is available for potential recovery and to identify those areas in the interior salt basins with high potential for this thermogenic gas resource. Petroleum source rock analysis and petroleum system characterization and modeling, including thermal maturation and hydrocarbon expulsion modeling, have shown that the Upper Jurassic Smackover Formation served as the regional petroleum source rock in the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin. Thus, the estimates of the total hydrocarbons, oil, and gas generated and expelled are based on the assumption that the Smackover Formation is the main petroleum source rock in these basins and subbasins. The estimate of the total hydrocarbons generated for the North Louisiana Salt Basin in this study using a petroleum system approach compares favorably with the total volume of hydrocarbons generated published by Zimmermann (1999). In this study, the estimate is 2,870 billion barrels of total hydrocarbons generated using the method of Schmoker (1994), and the estimate is 2,640 billion barrels of total hydrocarbons generated using the Platte River software application. The estimate of Zimmermann (1999) is 2,000 to 2,500 billion barrels of total hydrocarbons generated. The estimate of gas generated for this basin is 6,400 TCF using the Platte River software application, and 12,800 TCF using the method of Schmoker (1994). Barnaby (2006) estimated that the total gas volume generated for this basin ranges from 4,000 to 8,000 TCF. Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Lewan (2002) concluded that much of the thermogenic gas produced in this basin is the result of cracking of oil to gas in deeply buried reservoirs. The efficiency of expulsion, migration and trapping has been estimated to range from 0.5 to 10 percent for certain basins (Schmoker, 1994: Zimmerman, 1999). The estimate of the total hydrocarbons generated for the Mississippi Interior Salt Basin is 910 billion barrels using the method of Schmoker (1994), and the estimate of the total hydrocarbons generated is 1,540 billion barrels using the Platte River software application. The estimate of gas generated for this basin is 3,130 TCF using the Platte River software application, and 4,050 TCF using the method of Schmoker (1994). Seventy-five percent of the gas is estimated to be from late cracking of oil in the source rock. Claypool and Mancini (1989) report that the conversion of oil to gas in reservoirs is a significant source of thermogenic gas in this basin. The Manila and Conecuh Subbasins are oil-prone. Although these subbasins are thermally mature for oil generation and expulsion, they are not thermally mature for secondary, non-associated gas generation and expulsion. The gas produced from the highly productive gas condensate fields (Big Escambia Creek and Flomaton fields) in these subbasins has been interpreted to be, in part, a product of the cracking of oil to gas and thermochemical reduction of evaporite sulfate in the reservoirs (Claypool and Mancini, 1989). The areas in the North Louisiana and Mississippi Interior Salt Basins with high potential for deeply buried gas reservoirs (>15,000 ft) have been identified. In the North Louisiana Salt Basin, these potential reservoirs include Upper Jurassic and Lower Cretaceous facies, especially the Smackover, Cotton Valley, Hosston, and Sligo units. The estimate of the secondary, non-associated gas generated from cracking of oil in the source rock from depths below 12,000 feet in this basin is 4,800 TCF. Assuming an expul

  1. assess groundwater resources: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  2. assessment resource evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  3. World Shale Gas Resources: An Initial Assessment of 14 Regions

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    resources is also reflected in EIA's Annual Energy Outlook 2011 (AEO2011) energy projections www.eia.gov U.S. Department of Energy Washington, DC 20585 #12;The information presented by Advanced Resources International (ARI) for the U.S. Energy Information Administration (EIA

  4. Resource Limits and Conversion Efficiency with Implications for Climate Change

    E-Print Network [OSTI]

    Croft, Gregory Donald

    2009-01-01T23:59:59.000Z

    and the Future of Oil Resources, Cambridge Energy ResearchOil Fields and World Oil Resources, Rand Corporation, Reportestimates of their oil resources. Chapters 2 and 4 will

  5. Solar Radiation Resource Assessment Project. Program overview of fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The mission of the Solar Radiation Resource Assessment Project is to provide essential information about the solar radiation resource to users and planners of solar technologies so that they can make informed and timely decisions concerning applications of those technologies. The project team accomplishes this by producing and disseminating relevant and reliable information about solar radiation. Topics include: Variability of solar radiation, measurements of solar radiation, spectral distribution of solar radiation, and assessment of the solar resource. FY 1993 accomplishments are detailed.

  6. Resource Assessment Overview and MIT Full Breeze Case Study

    E-Print Network [OSTI]

    treat uncertainty explicitly by generating distributions versus point estimates #12;Assessment;Full Breeze Project Overview · Student-run project to assess the installation of a small wind turbine Tower 1 out performs Met Tower 2 under most prevailing wind directions · Winds often come from 270

  7. ENVIRONMENTAL IMPACT ASSESSMENT Environmental and Resource Studies ERST 311H Winter 2009

    E-Print Network [OSTI]

    Fox, Michael

    ENVIRONMENTAL IMPACT ASSESSMENT Environmental and Resource Studies ERST 311H ­ Winter 2009 TRENT is by email. Course Summary Description Environmental Impact Assessment (EIA) is a process by which is a process by which a balance among these three primary environmental aspects is assessed and the optimal

  8. LHCb Computing Resources: 2014 re-assessment and 2015 request

    E-Print Network [OSTI]

    Cattaneo, Marco

    2013-01-01T23:59:59.000Z

    This document presents the computing resource estimates from LHCb. It should be considered an update of the document LHCb-PUB-2013-002 submitted to the C-RSG in March 2013.

  9. ORISE Resources: Community Assessment Tool for the CDC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Activity (HPA). The CAT is a tool that communities can use to assess their total health care readiness for a disaster-not just hospitals, but the entire health care...

  10. Geothermal Resources Exploration And Assessment Around The Cove...

    Open Energy Info (EERE)

    Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to...

  11. U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources...

    Gasoline and Diesel Fuel Update (EIA)

    most shale gas and shale oil wells are only a few years old, their long-term productivity is untested. Consequently, the long-term production profiles of shale wells and...

  12. DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources

    Broader source: Energy.gov [DOE]

    A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West.

  13. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    SciTech Connect (OSTI)

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01T23:59:59.000Z

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  14. assessing tubal damage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University, Deborah French, Applied Sciences Associates, Bruce Wright 5 Natural Resource Damage Assessment for the Deepwater BP Oil Spill Environmental Sciences and...

  15. The 1980-1982 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

    1983-08-01T23:59:59.000Z

    Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

  16. AWEA Wind Resource & Project Energy Assessment | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA Newsletters 20103-03 AUDIT REPORT: OAS-L-03-03 DecemberWind Resource

  17. Solar and Wind Energy Resource Assessment Programme's Renewable Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassourceResource Explorer |

  18. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,Resource | Open

  19. Assessment of Exploitable Geothermal Resources Using Magmatic Heat Transfer

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,Resource | OpenMethod, Maule

  20. Assessment of Geothermal Resources of the United States - 1978 | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,Resource | OpenMethod,

  1. Assessment of Inferred Geothermal Resource: Longavi Project, Chile | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,Asotin County,Resource | OpenMethod,Energy

  2. National Assessment Of Us Geothermal Resources- A Perspective | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: Energy ResourcesOceanNanostellarNatchitoches Parish,Group

  3. Assessment of Biomass Resources from Marginal Lands in APEC Countries |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftwareAsian AgeEnergyResource:

  4. Characterization of oil and gas waste disposal practices and assessment of treatment costs. Final report

    SciTech Connect (OSTI)

    Bedient, P.B.

    1995-01-16T23:59:59.000Z

    This study examines wastes associated with the onshore exploration and production of crude oil and natural gas in the US. The objective of this study was to update and enhance the current state of knowledge with regard to oil and gas waste quantities, the potential environmental impact of these wastes, potential methods of treatment, and the costs associated with meeting various degrees of treatment. To meet this objective, the study consisted of three tasks: (1) the development of a production Environmental Database (PED) for the purpose of assessing current oil and gas waste volumes by state and for investigating the potential environmental impacts associated with current waste disposal practices on a local scale; (2) the evaluation of available and developing technologies for treating produced water waste streams and the identification of unit process configurations; and (3) the evaluation of the costs associated with various degrees of treatment achievable by different treatment configurations. The evaluation of feasible technologies for the treatment of produced water waste streams was handled in the context of comparing the level of treatment achievable with the associated cost of treatment. Treatment processes were evaluated for the removal of four categories of produced water contaminants: particulate material, volatile organic compounds, adsorbable organic compounds, and dissolved inorganic species. Results showed dissolved inorganic species to be the most costly to remove. The potential cost of treating all 18.3 billion barrels of produced water generated in a year amounts to some 15 billion dollars annually.

  5. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30T23:59:59.000Z

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  6. Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

  7. 1979-1980 Geothermal Resource Assessment Program in Washington

    SciTech Connect (OSTI)

    Korosec, M.A.; Schuster, J.E.

    1980-01-01T23:59:59.000Z

    Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

  8. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    /Y) ­ Electric capacity and energy generation potential (MW, TWh/y) ­ Statewide biogas potential · Resource,000 Total Forestry Urban Agriculture (MW) Technical Electrical Capacity (MWe) #12;Feedstock Biomethane methane) Statewide Biogas Potential #12;PJ (LHV basis)§ Agricultural Residue (Lignocellulosic) 5.4 MBDT

  9. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-01-01T23:59:59.000Z

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

  10. RESEARCH RESULTS FORUM FOR RENEWABLE ENERGY TECHNOLOGY AND RESOURCE ASSESSMENTS

    E-Print Network [OSTI]

    California at Davis, University of

    of state's electric vehicle and ZNE goals on the design and management of electric infrastructure mitigation. 3. On-site storage systems. 4. More accurate power output forecasting models. 5. Improved short renewable microgrids can be optimally integrated into utility infrastructure · Assessment of the impacts

  11. NPDES permit compliance and enforcement: A resource guide for oil and gas operators

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    During the fall of 1996, the Interstate Oil and Gas Compact Commission sponsored sessions for government and industry representatives to discuss concerns about the National Pollution Discharge Elimination System (NPDES) program under the Clean Water Act. In January 1997, the NPDES Education/Communication/Training Workgroup (ECT Workgroup) was established with co-leaders from the Environmental Protection Agency (EPA) and industry. The ECT Workgroup`s purpose was to develop ideas that would improve communication between NPDES regulators and the oil and gas industry regarding NPDES compliance issues. The Workgroup focused on several areas, including permit compliance monitoring and reporting, enforcement activity and options, and treatment technology. The ECT Workgroup also discussed the need for materials and information to help NPDES regulatory agency personnel understand more about oil and gas industry exploration and extraction operations and treatment processes. This report represents a compendium of the ECT Workgroup`s efforts.

  12. Atlas of Northern Gulf of Mexico Gas and Oil Reservoirs: Procedures and examples of resource distribution

    SciTech Connect (OSTI)

    Seni, S.J.; Finley, R.J.

    1995-06-01T23:59:59.000Z

    The objective of the program is to produce a reservoir atlas series of the Gulf of Mexico that (1) classifies and groups offshore oil and gas reservoirs into a series of geologically defined reservoir plays, (2) compiles comprehensive reservoir play information that includes descriptive and quantitative summaries of play characteristics, cumulative production, reserves, original oil and gas in place, and various other engineering and geologic data, (3) provides detailed summaries of representative type reservoirs for each play, and (4) organizes computerized tables of reservoir engineering data into a geographic information system (GIS). The primary product of the program will be an oil and gas atlas series of the offshore Northern Gulf of Mexico and a computerized geographical information system of geologic and engineering data linked to reservoir location.

  13. Preliminary direct heat geothermal resource assessment of the Tennessee Valley region

    SciTech Connect (OSTI)

    Staub, W.P.

    1980-01-01T23:59:59.000Z

    A preliminary appraisal of the direct heat geothermal energy resources of the Tennessee Valley region has been completed. This region includes Kentucky, Tennessee and parts of adjacent states. Intermediate and deep aquifers were selected for study. Basement and Top-of-Knox structure and temperature maps were compiled from oil and gas well data on file at various state geological survey offices. Results of this study indicate that the New Madrid seismic zone is the only area within the region that possesses potential for direct heat utilization. In other areas geothermal energy is either too deep for economical extraction or it will not be able to compete with other local energy resources. The only anomalously high temperature well outside the New Madrid seismic zone was located in the Rome Trough and near the central part of the eastern Kentucky coal basin. Geothermal energy in that region would face strong competition from coal, oil and natural gas.

  14. Nevada low-temperaure geothermal resource assessment: 1994. Final report

    SciTech Connect (OSTI)

    Garside, L.J.

    1994-12-31T23:59:59.000Z

    Data compilation for the low-temperature program is being done by State Teams in two western states. Final products of the study include: a geothermal database, in hardcopy and as digital data (diskette) listing information on all known low- and moderate- temperature springs and wells in Nevada; a 1:1,000,000-scale map displaying these geothermal localities, and a bibliography of references on Nevada geothermal resources.

  15. Articles about Resource Assessment and Characterization | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVMAgriculturalAn1(BENEFIT)GridOffshore

  16. Assessment of Offshore Wind Energy Resources for the United States |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartmentWind Siting Articles about Wind SitingBStatesDepartment

  17. Integrated modelling and assessment of regional groundwater resources in Germany and Benin, West Africa

    E-Print Network [OSTI]

    Cirpka, Olaf Arie

    1 Integrated modelling and assessment of regional groundwater resources in Germany and Benin, West.J.S. SONNEVELD [1] Institute of Hydraulic Engineering, Universitaet Stuttgart, Germany (Roland Conservation University of Bonn, Germany [3] Institute of Landscape Planning and Ecology, University

  18. Can predators assess the quality of their prey's resource? Amanda C. Williams*, Samuel M. Flaxman 1

    E-Print Network [OSTI]

    Flaxman, Samuel M.

    Can predators assess the quality of their prey's resource? Amanda C. Williams*, Samuel M. Flaxman 1 by individual organisms affects patterns and processes at many levels of biological organization (e.g. Johnson

  19. Responses of juvenile sea bass, Dicentrarchus labrax, exposed to acute concentrations of crude oil, as assessed by molecular and physiological biomarkers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Responses of juvenile sea bass, Dicentrarchus labrax, exposed to acute concentrations of crude oil In the present study, juvenile sea bass were exposed for 48 and 96 h to an Arabian light crude oil to assess i) the short term effects of crude oil exposure by the measurement of several molecular biomarkers

  20. Energy Efficiency in Western Utility Resource Plans: Impacts onRegional Resources Assessment and Support for WGA Policies

    SciTech Connect (OSTI)

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-08-01T23:59:59.000Z

    In the aftermath of the consumer price shocks and short-term power shortages of the 2000-01 electricity crisis, policymakers and regulators in Western states are placing increased emphasis on integrated resource planning (IRP), resource adequacy and assessment and a diversified portfolio of resources to meet the needs of electricity consumers. In some states, this has led to a resurgence in state and utility commitments to energy efficiency. Increasing interest in acquiring energy efficiency as a power-system resource is also driven by the desire to dampen high growth rates in electricity demand in some Western states, rapid increases in natural gas prices, concerns about the environmental impacts of electricity generation (e.g. water consumption by power plants, air quality), and the potential of energy efficiency to provide utility bill savings for households and businesses (WGA CDEAC 2006). Recognizing the cost-competitiveness and environmental benefits of energy efficiency, the Western Governor's Association (WGA) has set a high priority for energy efficiency, establishing a goal of reducing projected electricity demand by 20% across the West by 2020 in a policy resolution on Clean and Diversified Energy for the West (WGA 2004). Nationally, the need for improved tracking of demand-side resources in load forecasting is formalized in the North American Electric Reliability Council (NERC)'s recently adopted reliability standards, which utilities and regional reliability organizations will need to comply with (NERC 2005a and 2005b). In this study, we examine the treatment of energy efficiency in recent resource plans issued by fourteen investor-owned utilities (IOUs) in the Western United States and Canada. The goals of this study are to: (1) summarize energy-efficiency resources as represented in a large sample of recent resource plans prepared by Western utilities and identify key issues; (2) evaluate the extent to which the information provided in current resource plans can be used to support region-wide resource assessment and tracking of state/utility progress in meeting the WGA's energy-efficiency goals (WGA 2004); and (3) offer recommendations on information and documentation of energy-efficiency resources that should be included in future resource plans to facilitate comparative review and regional coordination. The scope of this report covers projected electric end-use efficiency investments reported in all Western utility resource plans that were publicly available as of February 2006. While a few utilities included additional demand-side resources, such as demand response, in their plans, we do not report that information. However, many of the issues and recommendations in reference to energy efficiency in this report are relevant to other demand-side resources as well. This report is organized as follows. Section 2 outlines the data sources and approach used in this study and conceptualizes methods and metrics for tracking energy-efficiency resources over time. Section 3 presents results from the review of the utility resource plans. Important issues encountered in reviewing the resource plans are discussed in section 4. Finally, section 5 concludes with recommendations for improving the tracking and reporting of energy efficiency in forthcoming resource plans.

  1. Geothermal Resources Exploration And Assessment Around The Cove

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd to libraryOpenCXTechnologies

  2. Assessing integrated resource plans prepared by electric utilities

    SciTech Connect (OSTI)

    Hirst, E.; Schweitzer, M. (Oak Ridge National Lab., TN (USA)); Yourstone, E. (Yourstone (Evelin), Albuquerque, NM (USA)); Eto, J. (Lawrence Berkeley Lab., CA (USA))

    1990-02-01T23:59:59.000Z

    This report discusses guidelines for long-term resource plans, based on the written reports only. The word plan refers to both the program worked out beforehand to accomplish a goal and the report that describes the plan. The particular meaning should be clear from the context. The purpose of these guidelines is to assist PUC staff who review utility plans and utility staff who prepare such plans. These guidelines were developed at Oak Ridge National Laboratory with contributions from Lawrence Berkeley Laboratory. 45 refs.

  3. Special Resource Study/Environmental Assessment for Manhattan Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900 Special Report: IG-0900 December 6, 2013Sites,

  4. 3D Mt Resistivity Imaging For Geothermal Resource Assessment And

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind6:00-06:00 U.S. National Software

  5. Ethiopia-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGerman Aerospace Center (DLR) Sector Energy Focus Area

  6. China-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPower International New Energy Holding

  7. In-stream hydrokinetic resource assessment | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:DepartmentDepartment of EnergyEnergy JohnExcel Version

  8. Second Assessment, Minnesota: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformationScotts Corners, New York:You mustSebec,Secaucus,

  9. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingapore Jump to:Voltaic Malaysia Sdn Bhd JumpSolar

  10. A Resource Handbook on DOE Transportation Risk Assessment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThis guideQuarterly Update onReport

  11. Assessment and Mapping of the Riverine Hydrokinetic Resource in the

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0 ARRA NewslettersPartnership of theArctic Energy Summit26

  12. Needs Assessment - Resource Program - Fact Sheet - March 2009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011 at 2:00Department ofofBonneville Power

  13. West African Clean Energy Gateway-Resource Assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation,Goff, 2002)Wellington

  14. National Geothermal Resource Assessment and Classification | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley Geothermal Data SystemEnergy

  15. ECOWAS … GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of98-F, Western Systems Power PoolOctober 17,

  16. ORISE Resources: Community Assessment Tool for the CDC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S. OR I GI N A L SHow toORISE

  17. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project *1980-1981 U.S. OR I GI N

  18. Hydrogen Demand and Resource Assessment Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel JumpCounty, Texas: EnergyHy9 CorporationHydraA) Jump to:

  19. Hydropower Resource Assessment and Characterization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyGlossary ofHome Energy Score HomeSustainable» Hydropower

  20. Wind Resource Assessment and Characterization | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergyWilliam0, 2015A crucial

  1. Assessment of Offshore Wind Energy Resources for the United States

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: EnergyWyandanch,EagaAbout PrintableEducation PrintableWind2

  2. Outstanding Issues For New Geothermal Resource Assessments | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, New York: EnergyOuachita Electric CoopInformation

  3. Liberia-NREL Biomass Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf Kilauea Volcano,Lakefront Tow(Redirected fromLiberia-NREL Biomass

  4. Solar and Wind Energy Resource Assessment (SWERA) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |RippeyInformationSodaAtlassource

  5. Geothermal Resources Assessment In Hawaii | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005)Energy Information )EtInformation

  6. Groundwater Resources Assessment under the Pressures of Humanity and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open Energy Information 2000)2004) |1978) | OpenRulesClimate

  7. NREL-Wind Resource Assessment Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) |Renewable Energy |I

  8. National Geothermal Resource Assessment and Classification | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015of 2005 attheMohammed Khan -Department of Energy 8, 2011,IndustryIn

  9. NREL-Biomass Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalView the

  10. NREL-Biomass Resource Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoonNASA/Ames GlobalView thePresentation) Jump to:

  11. Nepal-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen EnergyNelsoniX Ltd Jump to: navigation,SNV-Climate andDLR

  12. Assessing Energy Resources Webinar Presentation Slides | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr. EdwardArticleof

  13. NREL: Resource Assessment and Forecasting - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of6Data The followingTestResearchWorking

  14. ECOWAS - GBEP REGIONAL BIOMASS RESOURCE ASSESSMENT WORKSHOP | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol. 73, No.Plant for5:Grid - June 6,ofJanuaryof

  15. The United Nations' Approach To Geothermal Resource Assessment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:TheUS

  16. Jordan-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New Energy Co LtdJinzhouJoeSolar, Wind Topics

  17. Mexico-NREL Wind Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu an GroupInformationMexico CentralEnergyMexico) JumpNREL

  18. Assessment of Offshore Wind Energy Resources for the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and

  19. Colorado's Hydrothermal Resource Base - An Assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformation Base - An

  20. Colorado's hydrothermal resource base---an assessment | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CERCollierInformationInformation Base -

  1. Wind Resource Assessment Handbook: Fundamentals for Conducting a Successful Monitoring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind IndustryWindWindWind W

  2. Bangladesh-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003Vermont: Energyclock time hourly

  3. Tunisia-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin Baxin HydropowerTrinity Thermal SystemsInformationBank, Asianen/

  4. Property:NumberOfResourceAssessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation, search

  5. Property:NumberOfResourceAssessmentsEnergy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to: navigation,

  6. Property:NumberOfResourceAssessmentsLand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County,NumberOfNonCorporateOrganizations Jump to:

  7. Geothermal Energy Resource Assessment of Parts of Alaska | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) |Information 6thGeothermalInformation Journal

  8. Ghana-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration < Geothermal JumpGermany: Energy

  9. Algeria-DLR Resource Assessments | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCaliforniaWeifangwikiAgouraAlbatech srl JumpSolar, Wind Topics

  10. Gas Well Drilling and Water Resources Regulated by the Pennsylvania Oil and

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    used in drilling and fracking · Recent increase in permit fee to fund new DEP enforcement · Permit fluids ­ return fluids from fracking ­ mixture of water, sand and chemicals Production fluids ­ fluids, manganese, barium, arsenic, etc.) Surfactants/detergents Total suspended solids Oil/Grease Fracking

  11. FLEXIBILITY IN WATER RESOURCES MANAGEMENT: REVIEW OF CONCEPTS AND DEVELOPMENT OF ASSESSMENT MEASURES FOR FLOOD MANAGEMENT SYSTEMS1

    E-Print Network [OSTI]

    Tullos, Desiree

    FLEXIBILITY IN WATER RESOURCES MANAGEMENT: REVIEW OF CONCEPTS AND DEVELOPMENT OF ASSESSMENT variability/change; risk assessment; flood management; water resources flexibility.) DiFrancesco, Kara N of Assessment Measures for Flood Management Systems. Journal of the American Water Resources Association (JAWRA

  12. On The Portents of Peak Oil (And Other Indicators of Resource Scarcity)

    E-Print Network [OSTI]

    Smith, James L.

    Although economists have studied various indicators of resource scarcity (e.g., unit cost, resource rent, and market price), the phenomenon of “peaking” has largely been ignored due to its connection to non-economic theories ...

  13. Mineral resource assessment: Compliance between Emergy1 and Exergy respecting Odum's hierarchy concept2

    E-Print Network [OSTI]

    Boyer, Edmond

    Mineral resource assessment: Compliance between Emergy1 and Exergy respecting Odum's hierarchy mineral resources, taking into account their abundance, their8 chemical and physical properties of mineral, dispersed in the Earth's10 crust, is a co-product of the latter. The specic emergies of dispersed

  14. SATELLITE-BASED SOLAR RESOURCE ASSESSMENT: SOCIAL, ECONOMIC AND CULTURAL CHALLENGES AND BARRIERS,

    E-Print Network [OSTI]

    Perez, Richard R.

    SATELLITE-BASED SOLAR RESOURCE ASSESSMENT: --- SOCIAL, ECONOMIC AND CULTURAL CHALLENGES solar resource information opens door to a solid analysis capability which often opens door to new solutions, better planning, better targeted R&D, and faster, more intelligent, development of solar energy

  15. Constraints to leasing and development of federal resources: OCS oil and gas and geothermal. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Chapter I identifies possible technological, economic, and environmental constraints to geothermal resource development. Chapter II discusses constraints relative to outer continental shelf and geothermal resources. General leasing information for each resource is detailed. Chapter III summarizes the major studies relating to development constraints. 37 refs. (PSB)

  16. Information resources used in health risk assessment by the New Jersey Department of Environmental Protection

    SciTech Connect (OSTI)

    Post, G.B.; Baratta, M.; Wolfson, S.; McGeorge, L. [New Jersey Department of Environmental Protection, Trenton (United States)

    1990-12-31T23:59:59.000Z

    The New Jersey Department of Environmental Protection`s responsibilities related to health-based risk assessment are described, including its research projects and its development of health based compound specific standards and guidance levels. The resources used by the agency to support health risk assessment work are outlined.

  17. Resources, Conservation and Recycling 51 (2007) 294313 Environmental impact assessment of different

    E-Print Network [OSTI]

    Pike, Ralph W.

    2007-01-01T23:59:59.000Z

    Resources, Conservation and Recycling 51 (2007) 294­313 Environmental impact assessment environmental impacts. Therefore, it is vital to evaluate the environmental impacts of the symbiosis in order is proposed. In this paper, an LCA-type environmental impact assessment of different design schemes

  18. CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS

    E-Print Network [OSTI]

    Persoff, P.

    2011-01-01T23:59:59.000Z

    and Utilization of Oil Shale Resources, Tillinn, Estonia (and Utilization of Oil Shale Resources, Tallinn, Estonia (Colorado's Primary Oil-Shale Resource for Vertical Modified

  19. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    SciTech Connect (OSTI)

    Schroeder, Jenna N.

    2014-06-10T23:59:59.000Z

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  20. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  1. Integrated Synthesis of the Permian Basin: Data and Models for Recovering Existing and Undiscovered Oil Resources from the Largest Oil-Bearing Basin in the U.S.

    SciTech Connect (OSTI)

    John Jackson; Katherine Jackson

    2008-09-30T23:59:59.000Z

    Large volumes of oil and gas remain in the mature basins of North America. This is nowhere more true than in the Permian Basin of Texas and New Mexico. A critical barrier to recovery of this vast remaining resource, however, is information. Access to accurate geological data and analyses of the controls of hydrocarbon distribution is the key to the knowledge base as well as the incentives needed by oil and gas companies. The goals of this project were to collect, analyze, synthesize, and deliver to industry and the public fundamental information and data on the geology of oil and gas systems in the Permian Basin. This was accomplished in two ways. First we gathered all available data, organized it, and placed it on the web for ready access. Data include core analysis data, lists of pertinent published reports, lists of available cores, type logs, and selected PowerPoint presentations. We also created interpretive data such as type logs, geological cross sections, and geological maps and placed them in a geospatially-registered framework in ARC/GIS. Second, we created new written syntheses of selected reservoir plays in the Permian basin. Although only 8 plays were targeted for detailed analysis in the project proposal to DOE, 14 were completed. These include Ellenburger, Simpson, Montoya, Fusselman, Wristen, Thirtyone, Mississippian, Morrow, Atoka, Strawn, Canyon/Cisco, Wolfcamp, Artesia Group, and Delaware Mountain Group. These fully illustrated reports include critical summaries of published literature integrated with new unpublished research conducted during the project. As such these reports provide the most up-to-date analysis of the geological controls on reservoir development available. All reports are available for download on the project website and are also included in this final report. As stated in our proposal, technology transfer is perhaps the most important component of the project. In addition to providing direct access to data and reports through the web, we published 29 papers dealing with aspects of Permian Basin and Fort Worth Basin Paleozoic geology, and gave 35 oral and poster presentations at professional society meetings, and 116 oral and poster presentations at 10 project workshops, field trips, and short courses. These events were attended by hundreds of scientists and engineers representing dozens of oil and gas companies. This project and the data and interpretations that have resulted from it will serve industry, academic, and public needs for decades to come. It will be especially valuable to oil and gas companies in helping to better identify opportunities for development and exploration and reducing risk. The website will be continually added to and updated as additional data and information become available making it a long term source of key information for all interested in better understanding the Permian Basin.

  2. A Resource Assessment Of Geothermal Energy Resources For Converting Deep Gas Wells In Carbonate Strata Into Geothermal Extraction Wells: A Permian Basin Evaluation

    SciTech Connect (OSTI)

    Erdlac, Richard J., Jr.

    2006-10-12T23:59:59.000Z

    Previously conducted preliminary investigations within the deep Delaware and Val Verde sub-basins of the Permian Basin complex documented bottom hole temperatures from oil and gas wells that reach the 120-180C temperature range, and occasionally beyond. With large abundances of subsurface brine water, and known porosity and permeability, the deep carbonate strata of the region possess a good potential for future geothermal power development. This work was designed as a 3-year project to investigate a new, undeveloped geographic region for establishing geothermal energy production focused on electric power generation. Identifying optimum geologic and geographic sites for converting depleted deep gas wells and fields within a carbonate environment into geothermal energy extraction wells was part of the project goals. The importance of this work was to affect the three factors limiting the expansion of geothermal development: distribution, field size and accompanying resource availability, and cost. Historically, power production from geothermal energy has been relegated to shallow heat plumes near active volcanic or geyser activity, or in areas where volcanic rocks still retain heat from their formation. Thus geothermal development is spatially variable and site specific. Additionally, existing geothermal fields are only a few 10’s of square km in size, controlled by the extent of the heat plume and the availability of water for heat movement. This plume radiates heat both vertically as well as laterally into the enclosing country rock. Heat withdrawal at too rapid a rate eventually results in a decrease in electrical power generation as the thermal energy is “mined”. The depletion rate of subsurface heat directly controls the lifetime of geothermal energy production. Finally, the cost of developing deep (greater than 4 km) reservoirs of geothermal energy is perceived as being too costly to justify corporate investment. Thus further development opportunities for geothermal resources have been hindered. To increase the effective regional implementation of geothermal resources as an energy source for power production requires meeting several objectives. These include: 1) Expand (oil and gas as well as geothermal) industry awareness of an untapped source of geothermal energy within deep permeable strata of sedimentary basins; 2) Identify and target specific geographic areas within sedimentary basins where deeper heat sources can be developed; 3) Increase future geothermal field size from 10 km2 to many 100’s km2 or greater; and 4) Increase the productive depth range for economic geothermal energy extraction below the current 4 km limit by converting deep depleted and abandoned gas wells and fields into geothermal energy extraction wells. The first year of the proposed 3-year resource assessment covered an eight county region within the Delaware and Val Verde Basins of West Texas. This project has developed databases in Excel spreadsheet form that list over 8,000 temperature-depth recordings. These recordings come from header information listed on electric well logs recordings from various shallow to deep wells that were drilled for oil and gas exploration and production. The temperature-depth data is uncorrected and thus provides the lower temperature that is be expected to be encountered within the formation associated with the temperature-depth recording. Numerous graphs were developed from the data, all of which suggest that a log-normal solution for the thermal gradient is more descriptive of the data than a linear solution. A discussion of these plots and equations are presented within the narrative. Data was acquired that enable the determination of brine salinity versus brine density with the Permian Basin. A discussion on possible limestone and dolostone thermal conductivity parameters is presented with the purpose of assisting in determining heat flow and reservoir heat content for energy extraction. Subsurface maps of temperature either at a constant depth or within a target geothermal reservoir are discusse

  3. Geothermal-resource assessment of the Steamboat-Routt Hot Springs area, Colorado. Resources Series 22

    SciTech Connect (OSTI)

    Pearl, R.H.; Zacharakis, T.G.; Ringrose, C.D.

    1983-01-01T23:59:59.000Z

    An assessment of the Steamboat Springs region in northwest Colorado was initiated and carried out in 1980 and 1981. The goal of this program was to delineate the geological features controlling the occurrence of the thermal waters (temperatures in excess of 68/sup 0/F (20/sup 0/C)) in this area at Steamboat Springs and 8 miles (12.8 km) north at Routt Hot Springs. Thermal waters from Heart Spring, the only developed thermal water source in the study area, are used in the municipal swimming pool in Steamboat Springs. The assessment program was a fully integrated program consisting of: dipole-dipole, Audio-magnetotelluric, telluric, self potential and gravity geophysical surveys, soil mercury and soil helium geochemical surveys; shallow temperature measurements; and prepartion of geological maps. The investigation showed that all the thermal springs appear to be fault controlled. Based on the chemical composition of the thermal waters it appears that Heart Spring in Steamboat Springs is hydrologically related to the Routt Hot Springs. This relationship was further confirmed when it was reported that thermal waters were encountered during the construction of the new high school in Strawberry Park on the north side of Steamboat Springs. In addition, residents stated that Strawberry Park appears to be warmer than the surrounding country side. Geological mapping has determined that a major fault extends from the Routt Hot Springs area into Strawberry Park.

  4. Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region

    SciTech Connect (OSTI)

    Renne, D. S.; Pilasky, S.

    1998-02-01T23:59:59.000Z

    The availability of information and data on the renewable energy resources (solar, wind, biomass, geothermal, and hydro) for renewable energy technologies is a critical element in the successful implementation of these technologies. This paper presents a comprehensive summary of published information on these resources for each of 1 8 Asia-Pacific Economic Cooperation (APEC) economies. In the introductory sections, a discussion of the quality and completeness of this information is presented, along with recommendations on steps that need to be taken to facilitate the further development and deployment of renewable energy technologies throughout the APEC region. These sections are then followed by economy-specific reviews, and a complete bibliography and summary description for each citation. The major results of this survey are that a basis for understanding renewable energy resources is currently available for essentially all the economies, although there is a significant need to apply improved and updated resource assessment techniques in most. For example, most wind resource assessments rely on data collected at national weather stations, which often results in underestimates of the true potential wind resource within an economy. As a second example, solar resource assessments in most economies rely on an analysis of very simple sunshine record data, which results in large uncertainties in accurately quantifying the resource. National surveys of biomass, geothermal, and hydro resources are often lacking; in most cases, resources for these technologies were discussed for site-specific studies only. Thus, the major recommendations in this paper are to: ( 1 ) upgrade current or install new wind and solar measurement systems at key 'benchmark' locations to provide accurate, representative information on these resources; (2) apply advanced wind and solar resource assessment tools that rely on data quality assessment procedures, the use of satellite data, and models, and that can reliably interpolate the data collected at the benchmark sites; (3) conduct national surveys of biomass, geothermal, and hydro resources uniformly and consistently; and ( 4) establish a centralized data center that provides ready access to the most up-to-date and validated renewable resource data in all APEC economies.

  5. Assessing the potential and limitations of heavy oil upgrading by electron beam irradiation

    E-Print Network [OSTI]

    Zhussupov, Daniyar

    2007-04-25T23:59:59.000Z

    Radiation technology can economically overcome principal problems of heavy oil processing arising from heavy oil�s unfavorable physical and chemical properties. This technology promises to increase considerably yields of valuable...

  6. Air quality over the Canadian oil sands: A first assessment using satellite observations

    E-Print Network [OSTI]

    Boersma, Folkert

    to as "oil sands" (or "tar sands")­ are located in the Canadian province of Alberta (see Figure 1a). The oil development and operations [e.g., Kelly et al., 2010], including air quality and acid deposition. Combustion

  7. Mapping and Assessment of the United States Ocean Wave Energy Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturing Innovationof

  8. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  9. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  10. Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast

    E-Print Network [OSTI]

    Firestone, Jeremy

    Calculating the offshore wind power resource: Robust assessment methods applied to the U 2011 Available online xxx Keywords: Wind power Offshore wind power Resource assessment Marine spatial, annual energy output is calculated for a representative offshore wind turbine. The average power resource

  11. LHCb Computing Resources: 2011 re-assessment, 2012 request and 2013 forecast

    E-Print Network [OSTI]

    Graciani, R

    2011-01-01T23:59:59.000Z

    This note covers the following aspects: re-assessment of computing resource usage estimates for 2011 data taking period, request of computing resource needs for 2012 data taking period and a first forecast of the 2013 needs, when no data taking is foreseen. Estimates are based on 2010 experienced and last updates from LHC schedule, as well as on a new implementation of the computing model simulation tool. Differences in the model and deviations in the estimates from previous presented results are stressed.

  12. LHCb Computing Resources: 2012 re-assessment, 2013 request and 2014 forecast

    E-Print Network [OSTI]

    Graciani Diaz, Ricardo

    2012-01-01T23:59:59.000Z

    This note covers the following aspects: re-assessment of computing resource usage estimates for 2012 data-taking period, request of computing resource needs for 2013, and a first forecast of the 2014 needs, when restart of data-taking is foreseen. Estimates are based on 2011 experience, as well as on the results of a simulation of the computing model described in the document. Differences in the model and deviations in the estimates from previous presented results are stressed.

  13. Energy technology scenarios for use in water resources assessments under Section 13a of the Federal Nonnuclear Energy Research and Development Act

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This document presents two estimates of future growth of emerging energy technology in the years 1985, 1990, and 2000 to be used as a basis for conducting Water Resources Council assessments as required by the Nonnuclear Energy Research and Development Act of 1974. The two scenarios are called the high world oil price (HWOP) and low world oil price (LWOP) cases. A national-level summary of the ASA tabulations is shown in Appendix A; the scenarios are presented at the ASA level of detail in Appendix B. The two scenarios were generally derived from assumptions of the Second National Energy Plant (NEP II), including estimates of high and low world oil price cases, growth rate of GNP, and related economic parameters. The overall national energy growth inherent in these assumptions was expressed as a detailed projection of various energy fuel cycles through use of the Fossil-2 model and regionalized through use of the Strategic Environmental Assessment System (SEAS). These scenarios are for the use of regional analysts in examining the availability of water for and the potential impacts of future growth of emerging energy technology in selected river basins of the Nation, as required by Section 13(a).

  14. Western oil-shale development: a technology assessment. Volume 4. Solid waste from mining and surface retorts

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The overall objectives of this study were to: review and evaluate published information on the disposal, composition, and leachability of solid wastes produced by aboveground shale oil extraction processes; examine the relationship of development to surface and groundwater quality in the Piceance Creek basin of northwestern Colorado; and identify key areas of research necessary to quantitative assessment of impact. Information is presented under the following section headings: proposed surface retorting developments; surface retorting processes; environmental concerns; chemical/mineralogical composition of raw and retorted oil shale; disposal procedures; water quality; and research needs.

  15. Natural resource booms and Third World development: Assessing the subsectoral impacts of the Nigerian petroleum boom on agricultural export performance

    SciTech Connect (OSTI)

    Banks, S.M.

    1991-01-01T23:59:59.000Z

    Linear and quadratic expansion model formulations are developed to assess the relative complexity of booming-non-booming sector interactions. Specific attention is given to the extent to which the growth rates of Nigerian agricultural exports have changed over time as: (a) the volume of oil exports, and (b) the growth rate of oil exports are allowed to vary over a set of hypothetical values which reflect Nigerian oil-boom realities. Four important conclusions emerge: (a) the quadratic expansion model most accurately captures Nigerian oil-agricultural exports are most clearly influenced by the oil boom; (c) the growth rate of capital-intensive agricultural exports are initially stimulated, and later stagnated by the oil boom, while the growth rate of subsidized labor intensive agricultural exports are first stagnated and then stimulated by the oil boom; and (d) the expansion method provides a useful alternative means of exploring theoretical and applied issues related to the Dutch Disease paradigm. the implications of the findings for agricultural and petroleum policy in Nigeria are assessed, and a research agenda for further booming-non-booming sector investigations is proposed.

  16. WRITTEN STATEMENT OF DEPUTY CHIEF OF THE ASSESSMENT AND RESTORATION DIVISION

    E-Print Network [OSTI]

    damages resulting from the Deepwater Horizon BP oil spill. My name is Tony Penn, and I am the Deputy Chief in environmental restoration following an oil spill. The Deepwater Horizon BP oil spill, the largest accidental oil HEARING ON ASSESSING NATURAL RESOURCE DAMAGES RESULTING FROM THE BP DEEPWATER HORIZON DISASTER BEFORE

  17. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  18. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  19. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  20. Wind Atlas for Egypt A national database for wind resource assessment and

    E-Print Network [OSTI]

    Wind Atlas for Egypt A national database for wind resource assessment and wind power planning Niels G. Mortensen Wind Energy Department Risø National Laboratory MENAREC 3, Cairo, Egypt 12 June 2006 #12;Acknowledgements The "Wind Atlas for Egypt" is the result of a comprehensive team effort! · New

  1. Use of information resources by the state of Tennessee in risk assessment applications

    SciTech Connect (OSTI)

    Bashor, B.S. [Tennessee Department of Health and Environment, Nashville (United States)

    1990-12-31T23:59:59.000Z

    The major resources used by the Bureau of Environment, and Environmental Epidemiology (EEP) for risk assessment are: the Integrated Risk Information System (IRIS), Health and Environmental Effects Summary Table (HEAST), Agency for Toxic Substances and disease Registry (ATSDR) Toxicological Profiles, databases at the National Library of Medicine (NLM), World Health Organization (WHO) ENvironmental Criteria, and documents that the Environmental Protection Agency (EPA) has published on Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) risk assessment activities. The Risk Assessment Review has been helpful in providing information about availability of new documents or information. No systematic method has been made available to us to locate information resources. IRIS User`s Support has been helpful in making appropriate and timely referrals. Most other EPA resources were located by serendipity and persistence. The CERCLA methodology for risk assessments is being used in environmental programs, and at present, one person is responsible for all risk assessment activities in the department, but plans are underway to train one or two people from each program area. 2 figs.

  2. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    of achieving 20% of energy resources with energy efficiencyEnergy Efficiency Resources2-3. Accounting for Energy Efficiency Resources in Load

  3. Environmental assessment for presidential permit applications for Baja California Power Inc and Sempra Energy Resources PP-234 and PP-235

    Broader source: Energy.gov [DOE]

    Environmental assessment for presidential permit applications for Baja California Power Inc and Sempra Energy Resources. December 2001 PP-234 and PP-235

  4. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    SciTech Connect (OSTI)

    Stoffel, T.; Andreas, A.

    2010-04-26T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  5. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-07-14T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  6. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2009-07-22T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  7. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-07-13T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  8. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-11-03T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  9. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-03-16T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  10. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2010-11-10T23:59:59.000Z

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  11. Geothermal resource assessment of the Yucca Mountain Area, Nye County, Nevada. Final report

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.; Trexler, D. [Nevada Univ., Las Vegas, NV (United States). Harry Reid Center for Environmental Studies, Division of Earth Sciences; Shevenell, L., Garside, L. [Nevada Univ., Reno, NV (United States). Mackay School of Mines, Nevada Bureau of Mines and Geology

    1995-12-01T23:59:59.000Z

    An assessment of the geothermal resources within a fifty-mile radius of the Yucca Mountain Project area was conducted to determine the potential for commercial development. The assessment includes collection, evaluation, and quantification of existing geological, geochemical, hydrological, and geophysical data within the Yucca Mountain area as they pertain to geothermal phenomena. Selected geologic, geochemical, and geophysical data were reduced to a set of common-scale digital maps using Geographic Information Systems (GIS) for systematic analysis and evaluation. Available data from the Yucca Mountain area were compared to similar data from developed and undeveloped geothermal areas in other parts of the Great Basin to assess the resource potential for future geothermal development at Yucca Mountain. This information will be used in the Yucca Mountain Site Characterization Project to determine the potential suitability of the site as a permanent underground repository for high-level nuclear waste.

  12. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Kalaeloa Oahu, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Milford, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); La Ola Lanai, Hawaii (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  15. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Cedar City, Utah (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  16. Solar Resource & Meteorological Assessment Project (SOLRMAP): Rotating Shadowband Radiometer (RSR); Los Angeles, California (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stoffel, T.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  17. Solar Resource & Meteorological Assessment Project (SOLRMAP): Sun Spot Two; Swink, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  18. Solar Resource & Meteorological Assessment Project (SOLRMAP): Observed Atmospheric and Solar Information System (OASIS); Tucson, Arizona (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    The U.S. Department of Energy's National Renewable Energy Laboratory collaborates with the solar industry to establish high quality solar and meteorological measurements. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  19. Natural resource management activities at the Savannah River Site. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    This environmental assessment (EA) reviews the environmental consequences of ongoing natural resource management activities on the Savannah River Site (SRS). Appendix A contains the Natural Resources Management Plant (NRMP). While several SRS organizations have primary responsibilities for different elements of the plan, the United States Department of Agriculture (USDA), Forest Service, Savannah River Forest Station (SRFS) is responsible for most elements. Of the river scenarios defined in 1985, the High-Intensity Management alternative established the upper bound of environmental consequences; it represents a more intense level of resource management than that being performed under current resource management activities. This alternative established compliance mechanisms for several natural resource-related requirements and maximum practical timber harvesting. Similarly, the Low-Intensity Management alternative established the lower bound of environmental consequences and represents a less intense level of resource management than that being performed under current resource management activities. This alternative also established compliance mechanisms, but defined a passively managed natural area. The Proposed Action of this EA describes the current level of multiple-natural resource management. This EA reviews the proposed action, and the high and low intensity alternative scenarios.

  20. Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries |Attacks | Department ofValue Study

  1. GEOTHERMAL A N D HEAVY-OIL RESOURCES I N TEXAS TOPICAL REPORT

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451DOE/SC0002390dV DOE/m/10412 - 6 GEOTHERMAL

  2. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of Energy Advisory Board FollowSection 3161L-1

  3. Research Portfolio Accomplishment Report Unconventional Oil & Gas Resources: Produced Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public Reading Room Electronic Public

  4. Vehicle Technologies Office Merit Review 2015: Assessing the Outlook of US Oil Dependence Using Oil Security Metrics Model (OSMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about assessing the...

  5. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field 

    E-Print Network [OSTI]

    Chavez Ballesteros, Luis Eladio

    2005-02-17T23:59:59.000Z

    Quantifying infill potential in marginal oil fields often involves several challenges. These include highly heterogeneous reservoir quality both horizontally and vertically, incomplete reservoir databases, considerably ...

  6. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    SciTech Connect (OSTI)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31T23:59:59.000Z

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

  7. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  8. Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment

    SciTech Connect (OSTI)

    Usibelli, A.; Deibler, P.; Sathaye, J.

    1980-12-01T23:59:59.000Z

    Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

  9. Microsoft PowerPoint - Biomass Resource Assessments and What do you need to know [Compatibility Mode]

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312),Microgrid WorkshopApproved forResource Assessments What

  10. A REVIEW OF PREVIOUS USGS WORLD ENERGY ASSESSMENTS1

    E-Print Network [OSTI]

    Laughlin, Robert B.

    oil and natural gas. Click here or on this symbol in the toolbar to return. U.S. GEOLOGICAL SURVEY) for conventional oil plus natural gas. Click here or on this symbol in the toolbar to return. U.S. GEOLOGICAL (USGS) periodically conducts geology-based assessments of the oil and gas resources of the world

  11. Water Resources Center Annual Technical Report

    E-Print Network [OSTI]

    research effort is resource development. As market prices for natural resources (gold, oil, lumber, other

  12. Western oil shale development: a technology assessment. Volume 7: an ecosystem simulation of perturbations applied to shale oil development

    SciTech Connect (OSTI)

    Not Available

    1982-05-01T23:59:59.000Z

    Progress is outlined on activities leading toward evaluation of ecological and agricultural impacts of shale oil development in the Piceance Creek Basin region of northwestern Colorado. After preliminary review of the problem, it was decided to use a model-based calculation approach in the evaluation. The general rationale and objectives of this approach are discussed. Previous studies were examined to characterize climate, soils, vegetation, animals, and ecosystem response units. System function was methodically defined by developing a master list of variables and flows, structuring a generalized system flow diagram, constructing a flow-effects matrix, and conceptualizing interactive spatial units through spatial matrices. The process of developing individual mathematical functions representing the flow of matter and energy through the various system variables in different submodels is discussed. The system model diagram identified 10 subsystems which separately account for flow of soil temperatures, soil water, herbaceous plant biomass, shrubby plant biomass, tree cover, litter biomass, shrub numbers, animal biomass, animal numbers, and land area. Among these coupled subsystems there are 45 unique kinds of state variables and 150 intra-subsystem flows. The model is generalizeable and canonical so that it can be expanded, if required, by disaggregating some of the system state variables and allowing for multiple ecological response units. It integrates information on climate, surface water, ecology, land reclamation, air quality, and solid waste as it is being developed by several other task groups.

  13. Crude Existence: The Politics of Oil in Northern Angola

    E-Print Network [OSTI]

    Reed, Kristin

    2009-01-01T23:59:59.000Z

    aimed at securing oil resources in the Gulf of Guinea (of (as yet unproven) oil resources in Angola (EIA 2008; Lylemost valuable natural resource: oil. But oil extraction—both

  14. Research and information needs for management of oil shale development

    SciTech Connect (OSTI)

    Not Available

    1983-05-01T23:59:59.000Z

    This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

  15. Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report

    SciTech Connect (OSTI)

    Taylor, A

    1980-02-29T23:59:59.000Z

    This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

  16. A limited assessment and characterization of the solar radiation energy resources in the Caribbean region

    SciTech Connect (OSTI)

    Hulstrom, R.L.

    1988-02-01T23:59:59.000Z

    The objective of our work was to produce a preliminary assessment and characterization of the Caribbean region (Barbados, Dominican Republic, Guatemala, Jamaica, and Panama) solar radiation energy resources. Such information will be used to estimate the performance of, and identify the most promising applications of, solar heat technologies in the Caribbean region. We expect the solar radiation resources in the Caribbean region to be very location specific. Sunny areas will have an annual direct-beam resource of about 3,000 kWhm/sup /minus 2// and a global solar radiation resource of about 2,500 kWhm/sup /minus 2//. Cloud-covered areas will have annual solar radiation resources of about 1,500 kWhm/sup /minus 2/ for both the direct-beam and the global solar radiation. Monthly levels of solar radiaion will vary markedly, ranging from an average of 9 to 3 kWhm/sup /minus 2//day/sup /minus 1// for the direct-beam and from an average of 7 to 4 kWhm/sup /minus 2//day/sup /minus 1// for the global solar radiation. The Caribbean region is comparable to the Great Plains region of the US, in terms of annual solar radiation resources; however, thorough ''prospecting'' is required to avoid areas having very low amounts of solar radiation.

  17. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

    1993-06-01T23:59:59.000Z

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  18. Hawaii energy strategy project 3: Renewable energy resource assessment and development program

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    RLA Consulting (RLA) has been retained by the State of Hawaii Department of Business, Economic Development and Tourism (DBEDT) to conduct a Renewable Energy Resource Assessment and Development Program. This three-phase program is part of the Hawaii Energy Strategy (HES), which is a multi-faceted program intended to produce an integrated energy strategy for the State of Hawaii. The purpose of Phase 1 of the project, Development of a Renewable Energy Resource Assessment Plan, is to better define the most promising potential renewable energy projects and to establish the most suitable locations for project development in the state. In order to accomplish this goal, RLA has identified constraints and requirements for renewable energy projects from six different renewable energy resources: wind, solar, biomass, hydro, wave, and ocean thermal. These criteria were applied to areas with sufficient resource for commercial development and the results of Phase 1 are lists of projects with the most promising development potential for each of the technologies under consideration. Consideration of geothermal energy was added to this investigation under a separate contract with DBEDT. In addition to the project lists, a monitoring plan was developed with recommended locations and a data collection methodology for obtaining additional wind and solar data. This report summarizes the results of Phase 1. 11 figs., 22 tabs.

  19. Implementing Best Practices for Data Quality Assessment of the National Renewable Energy Laboratory's Solar Resource and Meteorological Assessment Project

    SciTech Connect (OSTI)

    Wilcox, S. M.; McCormack, P.

    2011-01-01T23:59:59.000Z

    Effective solar radiation measurements for research and economic analyses require a strict protocol for maintenance, calibration, and documentation to minimize station down-time and data corruption. The National Renewable Energy Laboratory's Concentrating Solar Power: Best Practices Handbook for the Collection and Use of Solar Resource Data (1) includes guidelines for operating a solar measure-ment station. This paper describes a suite of automated and semi-automated routines based on the best practices hand-book as developed for the National Renewable Energy La-boratory Solar Resource and Meteorological Assessment Project. These routines allow efficient inspection and data flagging to alert operators of conditions that require imme-diate attention. Although the handbook is targeted for con-centrating solar power applications, the quality-assessment procedures described are generic and should benefit many solar measurement applications. The routines use data in one-minute measurement resolution, as suggested by the handbook, but they could be modified for other time scales.

  20. Assessing the Value of Regulation Resources Based on Their Time Response Characteristics

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai; Ma, Jian; Nguyen, Tony B.

    2008-06-01T23:59:59.000Z

    Fast responsive regulation resources are potentially more valuable as a power system regulation resource (more efficient) because they allow applying controls at the exact moment and in the exact amount as needed. Faster control is desirable because it facilitates more reliable compliance with the NERC Control Performance Standards at relatively lesser regulation capacity procurements. The current California ISO practices and markets do not provide a differentiation among the regulation resources based on their speed of response (with the exception of some minimum ramping capabilities). Some demand response technologies, including some generation and energy storage resources, can provide quicker control actions. California ISO practices and markets could be updated to welcome more fast regulation resources into the California ISO service area. The project work reported in this work was pursuing the following objectives: • Develop methodology to assess the relative value of generation resources used for regulation and load following California ISO functions • This assessment should be done based on physical characteristics including the ability to quickly change their output following California ISO signals • Evaluate what power is worth on different time scales • Analyze the benefits of new regulation resources to provide effective compliance with the mandatory NERC Control Performance Standards • Evaluate impacts of the newly proposed BAAL and FRR standards on the potential value of fast regulation and distributed regulation resources • Develop a scope for the follow-up projects to pave a road for the new efficient types of balancing resources in California. The work included the following studies: • Analysis of California ISO regulating units characteristics • California ISO automatic generation system (AGC) analysis • California ISO regulation procurement and market analysis • Fast regulation efficiency analysis • Projection of the California ISO load following and regulation requirements into the future • Value of fast responsive resources depending on their ramping capability • Potential impacts of the balancing authority area control error limit (BAAL), which is a part of the newly proposed NERC standard “Balancing Resources and Demand” • Potential impacts of the Western Electricity Coordinating Council (WECC) frequency responsive reserve (FRR) standard • Recommendations for the next phase of the project. The following main conclusions and suggestions for the future have been made: • The analysis of regulation ramping requirements shows that the regulation system should be able to provide ramps of at least 40-60 MW per minute for a period up to 6 minutes. • Evaluate if changes are needed in the California ISO AGC system to effectively accommodate new types of fast regulation resources and minimize the California ISO regulation procurement. • California ISO may consider creating better market opportunities for and incentives for fast responsive resources. • An additional study of low probability high ramp events can be recommended to the California ISO. • The California ISO may be willing to consider establishing a more relaxed target CPS2 compliance level. • A BAAL-related study can be recommended for the California ISO as soon as more clarity is achieved concerning the actual enforcement of the BAAL standard and its numerical values for the California ISO. The study may involve an assessment of advantages of the distributed frequency-based control for the California ISO system. The market-related issues that arise in this connection can be also investigated. • A FRR-related study can be recommended for the California ISO as soon as more clarity is achieved concerning the actual enforcement of the FRR standard and its numerical values for the California ISO.

  1. The Value of Assessing Uncertainty in Oil and Gas Portfolio Optimization

    E-Print Network [OSTI]

    Hdadou, Houda

    2013-07-25T23:59:59.000Z

    It has been shown in the literature that the oil and gas industry deals with a substantial number of biases that impact project evaluation and portfolio performance. Previous studies concluded that properly estimating uncertainties...

  2. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field

    E-Print Network [OSTI]

    Chavez Ballesteros, Luis Eladio

    2005-02-17T23:59:59.000Z

    it is simulation based, it provides a platform for easy transition to more detailed analysis. Thus, the method can serve as a valuable reservoir management tool for operators of stripper oil fields....

  3. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2004-10-28T23:59:59.000Z

    The objectives of the study are: to perform resource assessment of the in-place deep (>15,000 ft) natural gas resource of the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas through petroleum system identification, characterization and modeling and to use the petroleum system based resource assessment to estimate the volume of the in-place deep gas resource that is potentially recoverable and to identify those areas in the interior salt basins with high potential to recover commercial quantities of the deep gas resource. The principal research effort for Year 1 of the project is data compilation and petroleum system identification. The research focus for the first nine (9) months of Year 1 is on data compilation and for the remainder of the year the emphasis is on petroleum system identification.

  4. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the InorganicResources Resources Policies,

  5. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of0 Resource ProgramResources

  6. Gathering Data to Assess Your Watershed

    E-Print Network [OSTI]

    Conservation Districts and USDA NRCS Agricultural Land Use Information Soil Surveys Erosion Control Information Water and Wastewater Planning and Assessments Population Projections Railroad Commission (RRC) Oil Agencies US Department of Agriculture (USDA) Agricultural Census Data USDA Natural Resources Conservation

  7. Access and use of information resources in assessing health risks from chemical exposure: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    Health risk assessment is based on access to comprehensive information about potentially hazardous agents in question. Relevant information is scattered throughout the literature, and often is not readily accessible. To be useful in assessment efforts, emerging scientific findings, risk assess parameters, and associated data must be compiled and evaluated systemically. The US Environmental Protection Agency (EPA) and Oak Ridge National Laboratory (ORNL) are among the federal agencies heavily involved in this effort. This symposium was a direct response by EPA and ORNL to the expressed needs of individuals involved in assessing risks from chemical exposure. In an effort to examine the state of the risk assessment process, the availability of toxicological information, and the future development and transfer of this information, the symposium provided an excellent cadre of speakers and participants from state and federal agencies, academia and research laboratories to address these topics. This stimulating and productive gathering discussed concerns associated with (1) environmental contamination by chemicals; (2) laws regulating chemicals; (3) information needs and resources; (4) applications; (5) challenges and priorities; and (6)future issues. Individual reports are processed separately for the data bases.

  8. Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry

    SciTech Connect (OSTI)

    Olsen, D.K.

    1993-07-01T23:59:59.000Z

    This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

  9. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

    2013-03-15T23:59:59.000Z

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  10. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14T23:59:59.000Z

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  11. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  12. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    SciTech Connect (OSTI)

    Wilcox, S.; Andreas, A.

    2011-02-11T23:59:59.000Z

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  13. Solar Technology Acceleration Center (SolarTAC): Solar Resource & Meteorological Assessment Project (SOLRMAP); Aurora, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilcox, S.; Andreas, A.

    Located in Colorado, near Denver International Airport, SolarTAC is a private, member-based, 74-acre outdoor facility where the solar industry tests, validates, and demonstrates advanced solar technologies. SolarTAC was launched in 2008 by a public-private consortium, including Midwest Research Institute (MRI). As a supporting member of SolarTAC, the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has established a high quality solar and meteorological measurement station at this location. This Solar Resource and Meteorological Assessment Project (SOLRMAP) provides high quality measurements to support deployment of power projects in the United States. The no-funds-exchanged collaboration brings NREL solar resource assessment expertise together with industry needs for measurements. The end result is high quality data sets to support the financing, design, and monitoring of large scale solar power projects for industry in addition to research-quality data for NREL model development. NREL provides consultation for instrumentation and station deployment, along with instrument calibrations, data acquisition, quality assessment, data distribution, and summary reports. Industry participants provide equipment, infrastructure, and station maintenance.

  14. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  15. Oil spill response resources 

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    be proven that there was gross negligence on their part while they were responding to the spill. Criminal penalties under OPA-90 for failure to notify, violation of vessel inspection, manning, and operation requirements have made OPA-90 a real powerful... of the ecosystem. The size of the ecosystem is an important consideration. It is not microscopic, but is large enough to include the major plant and animal communities (Harm 1991). Consideration of the overall, long-term impact of a particular spill must take...

  16. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01T23:59:59.000Z

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  17. Performance Evaluation of HYCOM-GOM for Hydrokinetic Resource Assessment in the Florida Strait

    SciTech Connect (OSTI)

    Neary, Vincent S [ORNL; Gunawan, Budi [ORNL; Ryou, Albert S [ORNL

    2012-06-01T23:59:59.000Z

    The U.S. Department of Energy (DoE) is assessing and mapping the potential off-shore ocean current hydrokinetic energy resources along the U.S. coastline, excluding tidal currents, to facilitate market penetration of water power technologies. This resource assessment includes information on the temporal and three-dimensional spatial distribution of the daily averaged power density, and the overall theoretical hydrokinetic energy production, based on modeled historical simulations spanning a 7-year period of record using HYCOM-GOM, an ocean current observation assimilation model that generates a spatially distributed three-dimensional representation of daily averaged horizontal current magnitude and direction time series from which power density time series and their statistics can be derived. This study ascertains the deviation of HYCOM-GOM outputs, including transport (flow) and power density, from outputs based on three independent observation sources to evaluate HYCOM-GOM performance. The three independent data sources include NOAA s submarine cable data of transport, ADCP data at a high power density location, and HF radar data in the high power density region of the Florida Strait. Comparisons with these three independent observation sets indicate discrepancies with HYCOM model outputs, but overall indicate that the HYCOM-GOM model can provide an adequate assessment of the ocean current hydrokinetic resource in high power density regions like the Florida Strait. Additional independent observational data, in particular stationary ADCP measurements, would be useful for expanding this model performance evaluation study. ADCP measurements are rare in ocean environments not influenced by tides, and limited to one location in the Florida Strait. HF radar data, although providing great spatial coverage, is limited to surface currents only.

  18. Assessing the Reliability and Quality of Online Uterine Fibroid Embolization Resources

    SciTech Connect (OSTI)

    Kaicker, Jatin; Wu Ke; Athreya, Sriharsha, E-mail: sathreya@stjoes.ca [Michael G. Degroote School of Medicine, Department of Medical Imaging (Canada)] [Michael G. Degroote School of Medicine, Department of Medical Imaging (Canada)

    2013-04-15T23:59:59.000Z

    This study was designed to examine the best internet resources about uterine fibroid embolization (UFE) pertinent to medical trainees, radiologists, gynecologists, family physicians, and patients. The terms 'uterine fibroid embolization,' 'uterine fibroid embolization,' and 'uterine artery embolization' were entered into Google, Yahoo, and Bing search engines; the top 20 hits were assessed. The hits were categorized as organizational or nonorganizational. Additionally, 23 radiological and obstetrical organizations were assessed. The DISCERN instrument and Journal of the American Medical Association (JAMA) benchmarks (authorship, attribution, currency, disclosure) were used to assess the information critically. The scope, strength, weaknesses, and unique features were highlighted for the top five organizational and nonorganizational websites. A total of 203 websites were reviewed; 23 were removed in accordance with the exclusion criteria and 146 were duplicate websites, for a total of 34 unique sites. It was found that 35 % (12/34 websites) were organizational (family medicine, radiology, obstetrics/gynecology) and 65 % (22/34 websites) were nonorganizational (teaching or patient resources). The overall mean DISCERN score was 49.6 (10.7). Two-tailed, unpaired t test demonstrated no statistically significant difference between organizational and nonorganizational websites (p = 0.101). JAMA benchmarks revealed 44 % (15/34 websites) with authorship, 71 % (24/34 websites) with attribution, 68 % (23/34 websites) with disclosure, and 47 % (16/34 websites) with currency. The overall quality of websites for UFE is moderate, with important but not serious shortcomings. The best websites provided relevant information about the procedure, benefits/risks, and were interactive. DISCERN scores were compromised by sites failing to provide resources for shared decision-making, additional support, and discussing consequence of no treatment. JAMA benchmarks revealed lack of authorship and currency.

  19. Information resources for assessing health effects from chemical exposure: Challenges, priorities, and future issues

    SciTech Connect (OSTI)

    Seigel, S. [National Library of Medicine, Bethesda, MD (United States)

    1990-12-31T23:59:59.000Z

    Issues related to developing information resources for assessing the health effects from chemical exposure include the question of how to address the individual political issues relevant to identifying and determining the timeliness, scientific credibility, and completeness of such kinds of information resources. One of the important ways for agencies to share information is through connection tables. This type of software is presently being used to build information products for some DHHS agencies. One of the challenges will be to convince vendors of data of the importance of trying to make data files available to communities that need them. In the future, information processing will be conducted with neural networks, object-oriented database management systems, and fuzzy-set technologies, and meta analysis techniques.

  20. How information resources are used by state agencies in risk assessment applications - Illinois

    SciTech Connect (OSTI)

    Olson, C.S.

    1990-12-31T23:59:59.000Z

    The Environmental Protection Agency of the State of Illinois (Illinois EPA) has programs in water, air, and land pollution and water supplies paralleling those of the US Environmental Protection Agency (EPA). The organization is part of a tripartite arrangement in which the Pollution Control Board is the judicial arm, the Department of Energy and Natural Resources is the research arm, and the Illinois EPA is the enforcement arm. Other state agencies are also concerned with various aspects of the environment and may do risk assessments for chemicals. Although there are various risk assessment activities, both formal and informal, in our agency and in others, this paper will discuss only recent initiatives in water quality criteria.

  1. Geothermal resource assessment for the state of Texas: status of progress, November 1980. Final report

    SciTech Connect (OSTI)

    Woodruff, C.M. Jr.; Caran, S.C.; Gever, C.; Henry, C.D.; Macpherson, G.L.; McBride, M.W.

    1982-03-01T23:59:59.000Z

    Data pertaining to wells and thermal aquifers and data interpretation methods are presented. Findings from a program of field measurements of water temperatures (mainly in South-Central Texas) and an assessment of hydrologic properties of three Cretaceous aquifers (in North-Central Texas) are included. Landsat lineaments and their pertinance to the localization of low-temperature geothermal resources are emphasized. Lineament data were compared to structural and stratigraphic features along the Balcones/Ouachita trend in Central Texas to test for correlations. (MHR)

  2. Economic assessment of heavy oil and bitumen projects with VEBA COMBI cracking

    SciTech Connect (OSTI)

    Schleiffer, A. [VEBA OEL Technologie and Automatisierung, Gelsenkirchen (Germany)

    1995-12-31T23:59:59.000Z

    As worldwide industrial production expands, total energy consumption will increase steadily in the near future. Although natural gas, often considered as a clean source for energy production, will profit most from this increase, crude oil remains the most important energy source. This paper describes the economics of petroleum and bitumen refining from an investment point of view.

  3. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-04-26T23:59:59.000Z

    The principal research effort for the first half of Year 3 of the project has been resource assessment. Emphasis has been on estimating the total volume of hydrocarbons generated and the potential amount of this resource that is classified as deep (>15,000 ft) gas in the North Louisiana Salt Basin, the Mississippi Interior Salt Basin, the Manila Subbasin and the Conecuh Subbasin. The amount of this resource that has been expelled, migrated and entrapped is also the focus of the first half of Year 3 of this study.

  4. NREL Solar Radiation Resource Assessment Project: Status and outlook. FY 1991 annual progress report

    SciTech Connect (OSTI)

    Renne, D.; Riordan, C.; Maxwell, E.; Stoffel, T.; Marion, B.; Rymes, M.; Wilcox, S.; Myers, D.

    1992-05-01T23:59:59.000Z

    This report summarizes the activities and accomplishments of NREL`s Solar Radiation Resource Assessment Project during fiscal year 1991. Currently, the primary focus of the SRRAP is to produce a 1961--1990 National Solar Radiation Data Base, providing hourly values of global horizontal, diffuse, and direct normal solar radiation at approximately 250 sites around the United States. Because these solar radiation quantities have been measured intermittently at only about 50 of these sites, models were developed and applied to the majority of the stations to provide estimates of these parameters. Although approximately 93% of the data base consists of modeled data this represents a significant improvement over the SOLMET/ERSATZ 1952--1975 data base. The magnitude and importance of this activity are such that the majority of SRRAP human and financial in many other activities, which are reported here. These include the continued maintenance of a solar radiation monitoring network in the southeast United States at six Historically Black Colleges and Universities (HBCU`s), the transfer of solar radiation resource assessment technology through a variety of activities, participation in international programs, and the maintenance and operation of NREL`s Solar Radiation Research Laboratory. 17 refs.

  5. Breckinridge Project, initial effort. Report VII, Volume III. Cultural resource assessment socioeconomic background data

    SciTech Connect (OSTI)

    Macfarlane, Heather; Janzen, Donald E.

    1980-11-26T23:59:59.000Z

    This report has been prepared in conjunction with an environmental baseline study for a commercial coal conversion facility being conducted by Ashland Synthetic Fuels, Inc. (ASFI) and Airco Energy Company (AECO). This report represents a cultural resource assessment for the proposed plant site and two potential solid waste disposal areas. This assessment presents data collected by Dames and Moore during a recent archaeological reconnaissance of the unsurveyed southeastern portion of the proposed plant site and two potential solid waste disposal areas. Also, results of two previous surveys on the northern and southwestern portion of the plant site for American Smelting and Refining Company (ASARCO) and Kentucky Utilities are included. The Dames and Moore survey of the southeastern portion of the plant site identified one archaeological site, three standing structures and one historic cemetery. In addition 47 archaeological sites and six standing structures are known from two previous surveys of the remainder of the plant site (Cowan 1975 and Turnbow et al 1980). Eleven of the previously recorded archaeological sites were recommended for further assessment to evaluate their potential for inclusion within the Holt Bottoms Archaeological District currently listed on the National Register of Historic Places. None of the archaeological sites or standing structures located within the plant site during the Dames and Moore survey were recommended for further assessment. A total of eight archaeological sites were located during the Dames and Moore survey of the two potential solid waste disposal areas. Of this total only two sites were recommended for further assessment. Also, one previously unknown historic cemetry was located in the southernmost potential waste disposal area.

  6. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesIn the Inorganic

  7. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    PNM PSCO PSE PUC SDG&E SCE WECC average megawatts Britishwith appropriate NERC and WECC committees and subcommitteesconsistent across NERC, WECC and state/regional assessments

  8. Hawaii demand-side management resource assessment. Final report: DSM opportunity report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. 10 figs., 55 tabs.

  9. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01T23:59:59.000Z

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  10. Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies

    E-Print Network [OSTI]

    Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

    2006-01-01T23:59:59.000Z

    Goal.6 Figure 2-2. Accounting for Energy Efficiency2-3. Accounting for Energy Efficiency Resources in LoadFigure 3-1. Plan Energy Efficiency Program Effects: Annual

  11. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    energy supply. Oil & Gas Journal. , 101(29):20, 2003. [40]unlock oil resources. Oil & Gas Journal, [31] NEB. Canada’s

  12. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    J. Regular conventional oil production to 2100 and resource10% of total US oil production in 2004, almost entirelysteam-induced heavy oil production in Cali- fornia [30].

  13. Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation

    E-Print Network [OSTI]

    Yang, Daegil

    2011-02-22T23:59:59.000Z

    -heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

  14. Regional Assessment and Resource Centre (RARC) and Mobile Assessment Team (MAT), Queen's University, Mackintosh-Corry Hall, Room B100, 68 University Ave., Kingston, ON K7L 3N6

    E-Print Network [OSTI]

    Ellis, Randy

    Regional Assessment and Resource Centre (RARC) and Mobile Assessment Team (MAT), Queen's University will receive an e-mail confirming the fee. #12;Regional Assessment and Resource Centre (RARC) and Mobile Fee Information Sheet and Financial Contract Fee Information: · Psychoeducational assessments

  15. Assessment of environmental problems associated with increased enhanced oil recovery in the United States: 1980-2000

    SciTech Connect (OSTI)

    Kaplan, E.; Garrell, M.; Royce, B.; Riedel, E.F.; Sathaye, J.

    1983-01-01T23:59:59.000Z

    Water requirements and uncontrolled air emissions from well vents and steam generators were estimated for each technology based upon available literature. Estimates of best air emission control technologies were made using data for EOR steam generators actually in use, as well as control technologies presently available but used by other industries. Amounts of solid wastes were calculated for each air emission control technology. Estimates were also made of the heavy metal content of these solid wastes. The study also included environmental residuals which may be expected should coal be used instead of lean crude to produce steam for thermal EOR. It was concluded that from an environmental prospective tertiary oil is preferable in many respects to shale oil, coal and synfuels. Alternative sources of oil such as syncrude, new exploration, and primary production could cause far more environmental damage than incremental EOR. Future EOR in specific regions may be constrained because of environmental issues: air emissions, solid waste disposal, water availability, and aquifer contaminators. Competition for water and the scarcity of surface water or groundwater which are low in total diminutive solids will impede some EOR projects. Risks of groundwater contamination should be minimized particularly because of requirements of the Environmental Protection Agency's new underground injection control program. A quantitative environmental assessment will require a complete and consistent data base for all fields for which EOR is planned out in which tertiary production is taking place. This is particularly true for EOR which will occur in Alaska or in offshore areas, where environments are fragile and where operating conditions are severe. 147 references, 29 figures, 46 tables.

  16. Assessment of U.S. Energy Wave Resources: Cooperative Research and Development Final Report, CRADA Number CRD-09-328

    SciTech Connect (OSTI)

    Scott, G.

    2012-06-01T23:59:59.000Z

    In terms of extractable wave energy resource for our preliminary assessment, the EPRI/National Renewable Energy Laboratory (NREL) assumed that 15% of the available resource could be extracted based on societal constraints of a 30% coverage of the coastline with a 50% efficient wave energy absorbing device. EPRI recognizes that much work needs to be done to better define the extractable resource and we have outlined a comprehensive approach to doing this in our proposed scope of work, along with specific steps for refining our estimate of the available wave energy resources.

  17. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  18. The Development of Dynamic Operational Risk Assessment in Oil/Gas and Chemical Industries

    E-Print Network [OSTI]

    Yang, Xiaole

    2011-08-08T23:59:59.000Z

    by regulations for the use and execution of risk analysis in 1991[16]. QRA became an official requirement for offshore after the Piper Alpha platform disaster that took place in 1988. Lord Cullen in his report recommended QRA as a technique to provide a... than 500,000 people to MIC and other chemicals. It killed at least 3,800 people and caused significant morbidity and premature death for many thousands more. An explosion and resulting fire in the Piper Alpha disaster[4] destroyed the oil production...

  19. Direct heat resource assessment: Phase II, year 1. Final report, February 1, 1979-January 31, 1980

    SciTech Connect (OSTI)

    Thomas, D.M.; Cox, M.E.; Kauahikaua, J.P.; Mattice, M.D.

    1980-02-01T23:59:59.000Z

    During 1979 reconnaissance field surveys were conducted on the islands of Hawaii, Maui, and Oahu with the objective of confirming groundwater chemical data and geophysical data compiled during the preliminary regional assessment of Phase I of the Direct Heat Resource Assessment Program. The exploration techniques applied include (1) groundwater chemistry, (2) mercury-radon surveys, (3) isotopic composition of groundwaters, (4) time domain electromagnetics, and (5) Schlumberger resistivity surveys. The results of these surveys can be classified as follows: (1) Hawaii: Kailua-Kona, strong geochemical anomalies; Kawaihae, strong geophysical anomalies, moderate to strong geochemical anomalies; Hualalai northwest rift, weak geochemical and moderate geophysical anomalies; South Point, moderate to weak geophysical anomalies; Hualalai southeast rift, weak geophysical anomalies; Keaau, weak geophysical and geochemical anomalies; (2) Maui: Haiku-Paia, strong geochemical anomalies; Olowalu-Ukamehame canyons, moderate to strong geochemical and geophysical anomalies; Lahaina, weak geochemical and geophysical anomalies; (3) Oahu: Lualualei, moderate to strong geochemical and geophysical anomalies; Waimanalo-Maunawili, insufficient data.

  20. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    SciTech Connect (OSTI)

    Munroe, Norman

    2009-01-30T23:59:59.000Z

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.