Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,,,"Residual Fuel Oil(b)",,,," Alternative...  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.5;" " Unit: Percents." ,,,"Residual Fuel Oil(b)",,,," Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

2

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1996...

3

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Prices," source for backcast estimates prior to January 1983. 19. U.S. Refiner Residual Fuel Oil Prices 36 Energy Information Administration Petroleum Marketing Annual 1997...

4

"Table A10. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel"  

U.S. Energy Information Administration (EIA) Indexed Site

0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" 0. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Barrels per Day)" ,,,," Inputs for Heat",,," Primary Consumption" " "," Primary Consumption for all Purposes",,," Power, and Generation of Electricity",,," for Nonfuel Purposes",,,"RSE" ," ------------------------------------",,," ------------------------------------",,," -------------------------------",,,"Row" "Economic Characteristics(a)","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","LPG","Distillate(b)","Residual","Factors"

5

Total Sales of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 10,706,479 8,341,552 6,908,028 7,233,765 6,358,120 6,022,115 1984-2012 East Coast (PADD 1) 5,527,235 4,043,975 2,972,575 2,994,245 2,397,932 2,019,294 1984-2012 New England (PADD 1A) 614,965 435,262 281,895 218,926 150,462 101,957 1984-2012 Connecticut 88,053 33,494 31,508 41,686 6,534 5,540 1984-2012 Maine 152,082 110,648 129,181 92,567 83,603 49,235 1984-2012 Massachusetts 300,530 230,057 59,627 52,228 34,862 30,474 1984-2012

6

,"U.S. Total Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsd_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsd_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

7

,"U.S. Adjusted Sales of Residual Fuel Oil by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil by End Use" Residual Fuel Oil by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Adjusted Sales of Residual Fuel Oil by End Use",8,"Annual",2012,"6/30/1984" ,"Release Date:","11/15/2013" ,"Next Release Date:","10/31/2014" ,"Excel File Name:","pet_cons_821rsda_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_821rsda_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

8

,,,,"Reasons that Made Residual Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 10.25;" 5 Relative Standard Errors for Table 10.25;" " Unit: Percents." ,,,,"Reasons that Made Residual Fuel Oil Unswitchable" " "," ",,,,,,,,,,,,," " ,,"Total Amount of ","Total Amount of","Equipment is Not","Switching","Unavailable ",,"Long-Term","Unavailable",,"Combinations of " "NAICS"," ","Residual Fuel Oil ","Unswitchable Residual","Capable of Using","Adversely Affects ","Alternative","Environmental","Contract ","Storage for ","Another","Columns F, G, " "Code(a)","Subsector and Industry","Consumed as a Fuel","Fuel Oil Fuel Use","Another Fuel","the Products","Fuel Supply","Restrictions(b)","in Place(c)","Alternative Fuels(d)","Reason","H, I, J, and K","Don't Know"

9

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

55.1 47.1 W W 55.1 46.2 See footnotes at end of table. 42. Residual Fuel Oil Prices by PAD District and State Energy Information Administration Petroleum...

10

Residual Fuel Oil Prices, Average - Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Product/Sales Type: Residual Fuel, Average - Sales to End Users Residual Fuel, Average - Sales for Resale Sulfur Less Than or Equal to 1% - Sales to End Users Sulfur Less Than or Equal to 1% - Sales for Resale Sulfur Greater Than 1% - Sales to End Users Sulfur Greater Than 1% - Sales for Resale Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product/Sales Type Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. - - - - - - 1983-2013 East Coast (PADD 1) - - - - - - 1983-2013 New England (PADD 1A) - - - - - - 1983-2013 Connecticut - - - - - - 1983-2013 Maine - - - - - - 1983-2013 Massachusetts - - - - - - 1983-2013

11

,"U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

12

,"U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil and No. 4 Fuel Sales Volumes" Residual Fuel Oil and No. 4 Fuel Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Residual Fuel Oil and No. 4 Fuel Sales Volumes",4,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_d_nus_vwr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

13

,"U.S. Residual Fuel Oil Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Refiner Sales Volumes" Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Residual Fuel Oil Refiner Sales Volumes",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_c_nus_eppr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_c_nus_eppr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

14

,"U.S. Residual Fuel Oil Prices by Sales Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Prices by Sales Type" Prices by Sales Type" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Average",2,"Monthly","9/2013","1/15/1983" ,"Data 2","Sulfur Less Than or Equal to 1%",2,"Monthly","9/2013","1/15/1983" ,"Data 3","Sulfur Greater Than 1%",2,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_pri_resid_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pri_resid_dcu_nus_m.htm"

15

,"Residual Fuel Oil Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales to End Users Refiner Sales Volumes" Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residual Fuel Oil Sales to End Users Refiner Sales Volumes",9,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refres_a_eppr_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refres_a_eppr_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

16

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect (OSTI)

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

17

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

18

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

7.4;" " Unit: Percents." " ",," "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal"...

19

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

20

Mechanisms of hydrocracking of heavy oil residues  

Science Journals Connector (OSTI)

Based on research data, a technology of low-pressure residual fuel oil hydrocracking with a suspended catalyst has been developed. The process has been refined on a laboratory setup. The reaction kinetics has ...

Kh. I. Abad-zade; F. M. Velieva…

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

22

Evaluation of a zirconium additive for the mitigation of molten ash formation during combustion of residual fuel oil  

SciTech Connect (OSTI)

Florida Power & Light Company (FP&L) currently fires a residual fuel oil (RFO) containing catalyst fines, which results in a troublesome black aluminosilicate liquid phase that forms on heat-transfer surfaces, remains molten, and flows to the bottom of the boiler. When the unit is shut down for a scheduled outage, this liquid phase freezes to a hard black glass that damages the contracting waterwalls of the boiler. Cleaning the boiler bottom and repairing damaged surfaces increase the boiler downtime, at a significant cost to FP&L. The Energy & Environmental Research Center (EERC) proposed to perform a series of tests for FP&L to evaluate the effectiveness of a zirconium additive to modify the mechanism that forms this liquid phase, resulting in the formation of a dry refractory phase that may be easily handled during cleanup of the boiler.

NONE

1996-12-01T23:59:59.000Z

23

Effects of alternate fuels report No. 8: analysis of degradiation of magnesia-based refractory bricks from a residual oil-fired rotary cement kiln  

SciTech Connect (OSTI)

Residual oil was used as an alternate fuel to natural gas to supply heat in a rotary cement kiln. Principal impurities in the residual oil were Ca, Fe, Mg, Na, Ni, P.S. and V. the kiln operators were concerned about the effects of these oil impurities on observed degradation of the magnesia-based bricks used as a liner in the burning zone of the kiln. Two degraded bricks, which had been in service for six to nine months, were analyzed to determine the role of fuel impurities on the observed degradation. The maximum hot-face temperature of the refractory during service was about 1500/sup 0/C. One brick had decreased in thickness about 45%, the about 15%. Various analytical measurements on these samples failed to reveal the presence of fuel impurities at or near the hot face of the bricks, and therefore it is concluded that the relatively short service life of these refractories was not due to use of residual oil as the fuel in the kiln. The observed degradation, therefore, was attributed to other reactions and to thermal mechanical conditions in the kiln, which inevitably resulted in extensive erosion of the bricks.

Federer, J.I.; Tennery, V.J.

1980-05-01T23:59:59.000Z

24

Fuel oil and kerosene sales 1997  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1997 report provides information, illustrations and state-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. 24 tabs.

NONE

1998-08-01T23:59:59.000Z

25

Vegetable oil fuel  

SciTech Connect (OSTI)

In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

Bartholomew, D.

1981-04-01T23:59:59.000Z

26

Fuel oil and kerosene sales 1996  

SciTech Connect (OSTI)

The Fuel Oil and Kerosene Sales 1996 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No. 1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off highway construction, and other uses. State-level residual fuel sales include volumes for commercial, industrial, oil company, vessel bunkering, military, electric utility, and other uses. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Fuel Oil and Kerosene Sales 1996. 24 tabs.

NONE

1997-08-01T23:59:59.000Z

27

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

28

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

for Table 5.4;" " Unit: Percents." " "," ",," ","Distillate"," "," " " "," ",,,"Fuel Oil",,,"Coal" "NAICS"," ","Net Demand","Residual","and",,"LPG and","(excluding Coal"...

29

Fuel oil and kerosene sales 1994  

SciTech Connect (OSTI)

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

30

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

31

Diesel fuel oils, 1980  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1980 were submitted for study and compilation under a cooperative agreement between the Department of Energy, Bartlesville Energy Technology Center, Bartlesville, Oklahoma and the American Petroleum Institute. Tests of 192 samples of diesel fuel oils from 95 refineries throughout the country were made by 28 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960-1980. Summaries of the results of the 1980 survey, compared with similar data for 1979, are shown.

Shelton, E.M.

1980-12-01T23:59:59.000Z

32

Fuel Oil Use in Manufacturing  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

of fuel oil relative to other fuels is that manufacturers must maintain large storage tanks. This can prove to be an added expense beyond the price of the fuel. Manufacturers...

33

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

34

Diesel fuel oils, 1982  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

35

Diesel fuel oils, 1981  

SciTech Connect (OSTI)

Properties of diesel fuels produced during 1981 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 160 samples of diesel fuel oils from 77 refineries throughout the country were made by 26 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1981. Summaries of the results of the 1981 survey, compared with similar data for 1980, are shown.

Shelton, E.M.

1981-12-01T23:59:59.000Z

36

Soybean Oil as Diesel Fuel  

Science Journals Connector (OSTI)

Soybean Oil as Diesel Fuel ... TESTS are reported from Japan on the use of soybean oil as Diesel fuel in a 12-horsepower engine of 150-mm. ... This trouble was overcome by passing through some of the Diesel cooling water to heat the fuel tank and supply line. ...

C.H.S. TUPHOLME

1940-10-10T23:59:59.000Z

37

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Diesel fuel is bascially the same product as home heating oil. The primary difference is that diesel has a lower sulfur content. When heating oil is in short supply, low sulfur diesel fuel can be diverted to heating oil supply. Thus, diesel fuel prices rise with heating heating oil prices. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. But prices in the Northeast jumped dramatically in the third week of January. Diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent, between January 17 and February 7. While EIA does not have

38

Marine Fuel Oil on a Mixed Base  

Science Journals Connector (OSTI)

Three grades of high–viscosity marine fuel oil are manufactured according to TU 38. ... developing the composition and technology for production of marine fuel oils [1– 4].

S. V. Kotov; A. G. Oltyrev; I. N. Kankaeva…

2001-05-01T23:59:59.000Z

39

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

40

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Fuel Future Oil Demands Enhanced Oil Recovery to Fuel Future Oil Demands Trevor Kirsten 2013.10.02 I'm Trevor Kirsten and I lead a team of GE researchers that investigate a...

42

Diesel engine lubrication with poor quality residual fuel  

SciTech Connect (OSTI)

The quality of marine residual fuel is declining. This is being caused by a gradual trend towards production of heavier crudes and increased residuum conversion processes in refineries to meet light product demand while holding down crude runs. Additionally, more stringent inland fuel sulfur regulations have caused the higher sulfur residues to be used for marine residual fuel blending. Engine manufacturers are making major efforts in design so that their engines can burn these fuels at high efficiency with minimum adverse effects. The oil industry is developing improved lubricants to reduce as much as possible the increased wear and deposit formation caused by these poor quality fuels. To guide the development of improved lubricants, knowledge is required about the impact of the main fuel characteristics on lubrication. This paper summarizes work conducted to assess the impact of fuel sulfur, Conradson carbon and asphaltenes on wear and deposit formation in engines representative of full scale crosshead diesel engines and medium speed trunk piston engines. Results obtained with improved lubricants in these engines are reviewed.

Van der Horst, G.W.; Hold, G.E.

1983-01-01T23:59:59.000Z

43

Retail Diesel Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Along with heating oil prices, the distillate supply squeeze has Along with heating oil prices, the distillate supply squeeze has severely impacted diesel fuel prices, especially in the Northeast. Retail diesel price data are available sooner than residential heating oil data. This graph shows that diesel prices turned the corner sometime after February 7 and are heading down. Retail diesel fuel prices nationally, along with those of most other petroleum prices, increased steadily through most of 1999. Prices jumped dramatically (by over 11 cents per gallon) in the third week of January, and rose 2 or more cents a week through February 7. The increases were much more rapid in the Northeast. From January 17 through February 7, diesel fuel prices in New England rose nearly 68 cents per gallon, or 47 percent. Prices in the Mid-Atlantic region rose about 58

44

Straight Vegetable Oil as a Diesel Fuel?  

SciTech Connect (OSTI)

Two-page fact sheet discussing the pitfalls of using straight vegetable oil (SVO) as a transportation fuel.

Not Available

2006-04-01T23:59:59.000Z

45

Oil Shale and Other Unconventional Fuels Activities | Department...  

Broader source: Energy.gov (indexed) [DOE]

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

46

Refiner options for converting and utilizing heavy fuel oil  

SciTech Connect (OSTI)

Ongoing advances in established technologies, together with recent commercial applications of residue fluid catalytic cracking (RFCC), automated residue demetallization, solvent deasphalting and gasification of pitch and coke, have markedly enhanced options for processing and economically using residues. Key long-term driving forces for processing strategies are: the need for flexibility to handle heavy, high-metals crude oils, and the economic benefit of being able to convert low-value residues to high-value light transportation fuels, hydrogen and electric power. Narrowing light/heavy crude oil price differentials and relatively low crude oil price levels since the early 1990s until the first quarter of 1996 have slowed the addition of new bottom-of-the-barrel conversion projects over the past two years. At the same time, world crude oil demand has increased at an annual average rate of nearly one million barrels/day (MMbpd) since 1985. Some major producer/refining companies forecast this rate of increase to continue well into the next decade. The inevitable net result will be the increased production of heavier crude oils. The authors project that this will be accompanied by flat or declining markets for heavy fuel oil and a resultant need for additional residue conversion/utilization capacity. The paper discusses technology application and status, economic observations, and technology outlook.

Dickenson, R.L.; Biasca, F.E.; Schulman, B.L.; Johnson, H.E. [SFA Pacific, Inc., Mountain View, CA (United States)

1997-02-01T23:59:59.000Z

47

Measurement and correlation of conditions for entrapment and mobilization of residual oil. Final report  

SciTech Connect (OSTI)

Six tasks are reported: capillary number relationships for rock samples, residual oil saturation near wellbore, residual oil structure, effect of gravity on residual saturation, magnitude of residual oil saturation, and effects of wettability on capillary number relationships. (DLC)

Morrow, N.R.

1981-10-01T23:59:59.000Z

48

Pyrolysis of shale oil residual fractions  

SciTech Connect (OSTI)

The freezing point of JP-5, the Navy jet fuel, has been related to the n-alkane content, specifically n-hexadecane. In general, jet fuels from shale oil have the highest n-alkanes. The formation of n-alkanes in the jet fuel distillation range can be explained if large n-alkanes are present in the crude oil source. Quantities of large n-alkanes are insufficient, however, to explain the amounts found - up to 37% n-alkanes in the jet fuel range. Other possible precursors to small straight chain molecules are substituted cyclic compounds. Attack in the side chain obviously afford a path to an n-alkane. Aromatic hydrocarbons, esters, acids, amines, and ethers also have the potential to form n-alkanes if an unbranched alkyl chain is present in the molecule. Investigations showed that the best yield of the JP-5 cut comes at different times for the various fractions, but a time in the 60 to 120 min range would appear to be the optimum time for good yield at 450/sup 0/C. The longer time would be preferred with respect to lower potential n-alkane yield. None of the fractions gave n-alkane yields approaching the 37% amount found in the Shale-I JP-5. A temperature different than the 450/sup 0/C used here might affect the conversion percentage. Further the combined saturate, aromatic, and polar fractions may interact under pyrolysis conditions to give higher potential n-alkane yields than the fractions stressed independently.

Hazlett, R.N.; Beal, E.; Vetter, T.; Sonntag, R.; Moniz, W.

1980-01-01T23:59:59.000Z

49

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents [OSTI]

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

50

"Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

ual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal","Breeze","Other(e)" ,"Total United States" "Value...

51

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"KD0VABNUS1","KPRVABNUS1" "Date","U.S. Total Distillate Adj SalesDeliveries to Vessel Bunker Consumers (Thousand Gallons)","U.S. Residual Fuel Oil Adj SalesDeliveries to Vessel...

52

Availability of heavy fuel oils by sulfur level, September 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held, refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 2 figures, 13 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

53

Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-05-01T23:59:59.000Z

54

Fuel oil and kerosene sales 1995  

SciTech Connect (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

55

An assessment of the potential for coal/residual oil coprocessing  

SciTech Connect (OSTI)

Among the promising new techniques to produce liquid hydrocarbon fuels from coal is coal/petroleum coprocessing based upon the use of heavy oil, tar sand bitumen and petroleum residua as ''solvents'' for the conversion of coal. Coprocessing is the simultaneous hydrogenation of coal and heavy oil fractions in specially designed reactors with coal contents by weight ranging from as low as 1% to potentially as high as 50-60% depending upon the technology employed. The results of a study on the potential for coal/residual oil coprocessing in the United States are addressed in this paper.

Huber, D.A.; Lee, Q.; Thomas, R.L.; Frye, K.; Rudins, G.

1986-09-01T23:59:59.000Z

56

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

57

Fuel oil and kerosene sales 1993  

SciTech Connect (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

58

"Characteristic(a)","Electricity","Fuel Oil","Fuel Oil(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Relative Standard Errors for Table 7.5;" " Unit: Percents." " ",," "," ",," "," " "Economic",,"Residual","Distillate",,"LPG and" "Characteristic(a)","Electricity","Fuel...

59

Primary and Secondary Distillates as Marine Fuel Oil  

Science Journals Connector (OSTI)

The component compositions of marine fuel oils satisfying the requirements of TU 38. ... were developed. Light gasoils replace standard diesel fuel in marine fuel oil. The demulsifiability of light and heavy ... ...

T. N. Mitusova; I. A. Pugach; N. P. Averina…

60

Model for Gasification of Residual Fuels from Petroleum Refineries Using the Equation Oriented (EO) Approach  

Science Journals Connector (OSTI)

An attractive way to use residual fuels from petroleum refineries (vacuum residue and petcoke) is their gasification to produce syngas, which contains mainly H2, CO and small quantities of CH4, CO2, as well as nitrogen and sulfur compounds. ... Vacuum residue and petroleum coke (petcoke) are, respectively, heavy liquid and solid byproducts from crude oil refining, they are often used as fuel in boilers for power production, natural gas has been more commonly used in the past few years in power generation; reducing the market for both vacuum residue and petcoke. ... Regarding petroleum refinery residuals Uson et al.(1) developed a model for cogasification of coal, petcoke and biomass, based on reaction kinetics. ...

Jorge E. Marin-Sanchez; Miguel A. Rodriguez-Toral

2010-07-29T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Evaluation of improved materials for stationary diesel engines operating on residual and coal based fuels. Final report  

SciTech Connect (OSTI)

Experimental results to date from an on-going research program on improved materials for stationary diesel engines using residual or coal-based fuels are presented with little discussion of conclusions about these results. Information is included on ring and liner wear, fuel oil qualities, ceramic materials, coatings, test procedures and equipment, and tribology test results. (LCL)

Not Available

1980-01-01T23:59:59.000Z

62

Residual Fuel Oil Sales for Military Use  

Gasoline and Diesel Fuel Update (EIA)

17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 17,719 9,250 14,609 9,851 14,653 10,324 1984-2012 East Coast (PADD 1) 15,618 8,626 14,049 9,344 14,362 9,408 1984-2012 New England (PADD 1A) 1,880 729 767 693 574 174 1984-2012 Connecticut 599 729 767 693 574 174 1984-2012 Maine 0 0 0 0 0 0 1984-2012 Massachusetts 1,280 0 0 0 0 0 1984-2012 New Hampshire 0 0 0 0 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 7,518 7,012 11,744 7,200 12,458 8,922 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 6,638 6,291 6,479 7,200 6,022 5,754 1984-2012 New Jersey 0 0 1,740 0 1,539 585 1984-2012 New York 0 0 3,518 0 4,897 2,583 1984-2012 Pennsylvania

63

Residual Fuel Oil for All Other Uses  

Gasoline and Diesel Fuel Update (EIA)

3,740 6,503 5,860 2,664 1,418 26 1984-2013 East Coast (PADD 1) 153 1,857 5,230 2,151 1,418 0 1984-2013 New England (PADD 1A) 30 385 0 0 0 0 1984-2013 Connecticut 30 7 0 0 0 0...

64

Response of Oil Sands Derived Fuels in Diesel HCCI Operation  

Broader source: Energy.gov (indexed) [DOE]

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Bruce G. Bunting senior staff scientist Fuels, Engines, and Emissions Research Center 2007 DOE DEER Conference...

65

Response of Oil Sands Derived Fuels in Diesel HCCI Operation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Response of Oil Sands Derived Fuels in Diesel HCCI Operation Response of Oil Sands Derived Fuels in Diesel HCCI Operation Presentation given at the 2007 Diesel Engine-Efficiency &...

66

Bioenergy Production via Microbial Conversion of Residual Oil to Natural Gas  

Science Journals Connector (OSTI)

...Microbiology May 15, 2008 ARTICLE PHYSIOLOGY AND BIOTECHNOLOGY Bioenergy Production via Microbial Conversion of Residual Oil to Natural...alkanes by anaerobic microorganisms. Nature 401: 266-269. Bioenergy production via microbial conversion of residual oil to natural...

Lisa M. Gieg; Kathleen E. Duncan; Joseph M. Suflita

2008-03-31T23:59:59.000Z

67

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

of residual fuel oil are identical in the inventory and inCARB SEDS inventory fuel use Residual fuel oil Distillatein their oil and gas extraction processes. In its inventory,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

68

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

residual fuel oil, petroleum coke, and waste and other oil)residual fuel oil, petroleum coke, and waste and other oil22 CHP plants. For petroleum coke, CALEB only reports final

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

69

Availability of heavy fuel oils by sulfur levels, February 1981  

SciTech Connect (OSTI)

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country or origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

70

Availability of heavy fuel oils by sulfur levels, March 1981  

SciTech Connect (OSTI)

This monthly report includes a narrative analysis of the status of the United States' total new supply of heavy fuel oils, with an emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing state. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. The December issue repeats the seven major tables with final data in all categories for the previous calendar year. This report was previously published by the Bureau of Mines in the Minerals Industries Survey Series under the same title. 2 figs., 13 tabs.

Wolfrey, J.

1981-10-15T23:59:59.000Z

71

Availability of heavy fuel oils by sulfur level, August 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and Refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterborne movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

72

Availability of heavy fuel oils by sulfur level, October 1981  

SciTech Connect (OSTI)

A narrative analysis of the status of the United States' total new supply of heavy fuel oils, is given with emphasis on sulfur levels. Tables detail refinery production, stocks, and imports of residual fuel oil and No. 4 fuel oil by sulfur content. All data except stock figures are reported on a monthly and on a year-to-date basis; stock data are reported on an end-of-current-month basis. Units of measure are thousands of barrels. Stocks held at refineries and bulk terminals and refinery production are given by Petroleum Administration for Defense (PAD) and refinery Districts. Imports are given by PAD District, by country of origin, and by importing State. Waterbone movements from PAD District III to other districts are detailed for the most recent month only. This report was previously published by the Bureau of Mines in the Minerals Industries Surveys Series under the same title. Publication was discontinued with the December 1981 issue. 1 figure, 14 tables.

Wolfrey, J.

1981-01-01T23:59:59.000Z

73

Lube oil for medium-speed, heavy-fuel engines  

SciTech Connect (OSTI)

A new generation of trunk-piston engine lube oils has been introduced by Chevron International Marine Lubricants for medium-speed, heavy-fuel, four-stroke engines. The new Chevron Delo 1000, 2000, 3000, and 3400 marine lubricants are specially designed for the demands of medium-speed diesel engines in today`s marine and stationary power markets. The new lube oil has been formulated to provide high levels of engine cleanliness, with low levels of wear. Testing by Chevron engineers shows that the new oils prevent the buildup of black sludge, a sticky, viscous deposit that can accumulate on the surfaces of medium-speed engines that run on heavy residual fuel. The performance of the new lube oils has been thoroughly evaluated by Chevron in a number of ongoing field tests. Results from 5000 hour teardown of a 6600 kW, model 6 MaK 601C engine in the cargo ship MV Germania serve as a good example of the field testing. 3 figs.

NONE

1995-09-01T23:59:59.000Z

74

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

U.S. Energy Information Administration (EIA) Indexed Site

No. 2 Distillate No. 4 Fuel a Total Distillate and Kerosene No. 2 Fuel Oil No. 2 Diesel Fuel No. 2 Distillate Low-Sulfur High-Sulfur Total United States January...

75

FIRST DRAFT OF OUTLINE: RPSEA 1 RESIDUAL OIL ZONE RESEARCH  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Commercial Exploitation and the Origin of Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas RPSEA PROJECT NUMBER.FINAL Commercial Exploitation and the Origin of Residual Oil Zones: Developing a Case History in the Permian Basin of New Mexico and West Texas Contract 81.089 08123-19-RPSEA June 28, 2012 Dr. Robert Trentham Director, Center for Energy and Economic Diversification The University of Texas of the Permian Basin Odessa, Texas 79762 L. Steven Melzer Melzer Consulting Midland, Texas 79701 David Vance Arcadis, U. S. Midland, Texas 79701 LEGAL NOTICE This report was prepared by Dr Robert Trentham as an account of work sponsored by the Research Partnership to Secure Energy for America, RPSEA. Neither RPSEA

76

Power Gas and Combined Cycles: Clean Power from Fossil Fuels  

Science Journals Connector (OSTI)

...gas has such a low heating value that it cannot...from residual fuel oil (the relatively...Oil Residual fuel oil with a low sulfur...stations in Maryland, Connecticut, and New York-has...low-sulfur residual fuel oil is growing and its price is rising. Residual...

William D. Metz

1973-01-05T23:59:59.000Z

77

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

78

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) -...

79

Chapter 8 - Algae Oils as Fuels  

Science Journals Connector (OSTI)

Abstract Biologically produced fuels are considered potential and viable alternatives to meet the world’s fuel requirements. In this context, algal-based oil is of significant importance due to its renewable and carbon-neutral nature. Biosynthesis of triglycerides by utilizing CO2 (by biofixation) or wastewater under stress conditions via photoautotrophic, heterotrophic (photo/dark), or mixotrophic mechanisms enumerates the potential of microalgae for generation of renewable biodiesel. In addition to the algal cultivation, the conversion of the accumulated lipids to biodiesel is gaining considerable interest. Though there exist some constraints, the process of harnessing biofuel from microalgae is both economically viable and environmentally sustainable compared to the other oil-producing terrestrial crops. This chapter explores biofuel production using microalgae. Concerted efforts are made in this chapter to discuss the biochemistry pertaining to algal lipid synthesis, nutritional modes of algae, cultivation systems used for algal oil production, and the cascade of steps involved, from biomass cultivation to transesterification of the fuel. The ability of microalgae to capture CO2 and its survivability in wastewater is also elaborated in the context of lipid synthesis.

S. Venkata Mohan; M. Prathima Devi; G. Venkata Subhash; Rashmi Chandra

2014-01-01T23:59:59.000Z

80

Vast Energy Resource in Residual Oil Zones, FE Study Says | Department of  

Broader source: Energy.gov (indexed) [DOE]

Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says Vast Energy Resource in Residual Oil Zones, FE Study Says July 20, 2012 - 1:00pm Addthis Washington, DC - Billions of barrels of oil that could increase domestic supply, help reduce imports, and increase U.S. energy security may be potentially recoverable from residual oil zones, according to initial findings from a study supported by the U.S. Department of Energy's Office of Fossil Energy (FE). The recently completed study, conducted by researchers at the University of Texas-Permian Basin (UTPB), is one of several FE-supported research projects providing insight that will help tap this valuable-but-overlooked resource. Residual oil zones, called ROZs, are areas of immobile oil found below the oil-water contact of a reservoir. ROZs are similar to reservoirs in the

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Potential of vegetable oils as a domestic heating fuel  

SciTech Connect (OSTI)

The dependence on imported oil for domestic heating has led to the examination of other potential fuel substitutes. One potential fuel is some form of vegetable oil, which could be a yearly-renewable fuel. In Western Canada, canola has become a major oilseed crop; in Eastern Canada, sunflowers increasingly are becoming a source for a similar oil; for this reason, the Canadian Combustion Research Laboratory (CCRL) has chosen these oils for experimentation. Trials have been conducted in a conventional warm air oil furnace, fitted with a flame retention head burner. Performance has been measured with pure vegetable oils as well as a series of blends with conventional No. 2 oil. The effects of increased fuel pressure and fuel preheating are established. Emissions of carbon monoxide, nitrogen oxides, unburned hydrocarbons and particulates are given for both steady state and cyclic operation. Canola oil cannot be fired in cyclic operation above 50:50 blends with No. 2 oil. At any level above a 10% blend, canola is difficult to burn, even with significant increased pressure and temperature. Sunflower oil is much easier to burn and can be fired as a pure fuel, but with high emissions of incomplete combustion products. An optimum blend of 50:50 sunflower in No. 2 oil yields emissions and performance similar to No. 2 oil. This blend offers potential as a means of reducing demand of imported crude oil for domestic heating systems.

Hayden, A.C.S.; Begin, E.; Palmer, C.E.

1982-06-01T23:59:59.000Z

82

Choline for neutralizing naphthenic acid in fuel and lubricating oils  

SciTech Connect (OSTI)

A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

Ries, D.G.; Roof, G.L.

1986-07-15T23:59:59.000Z

83

Residual Fuel Oil Sales for Oil Company Use  

Gasoline and Diesel Fuel Update (EIA)

43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 43,972 57,914 25,166 20,783 19,759 17,031 1984-2012 East Coast (PADD 1) 21,290 7,593 5,726 3,827 2,793 2,205 1984-2012 New England (PADD 1A) 705 178 413 953 36 0 1984-2012 Connecticut 150 178 413 146 36 0 1984-2012 Maine 532 0 0 668 0 0 1984-2012 Massachusetts 0 0 0 0 0 0 1984-2012 New Hampshire 23 0 0 139 0 0 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 0 0 0 0 0 0 1984-2012 Central Atlantic (PADD 1B) 20,584 7,113 5,017 2,622 2,540 2,115 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 873 669 549 479 598 377 1984-2012 New Jersey 1,409 1,420 1,407 1,344 1,200 1,082 1984-2012 New York 614 467 477 748 742 656 1984-2012 Pennsylvania

84

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,"Coal Coke" "NAICS"," ","Total","...

85

Process for Converting Algal Oil to Alternative Aviation Fuel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process for Converting Algal Oil to Alternative Aviation Fuel Los Alamos National Laboratory Contact LANL About This Technology The conversion process uses a Kolbe-based method of...

86

,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Relative Standard Errors for Table 10.8;" " Unit: Percents." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,"Coal Coke" "NAICS"," ","Total","...

87

Thermal Effects by Firing Oil Shale Fuel in CFB Boilers  

Science Journals Connector (OSTI)

It is well known that during firing of oil shale fuel the amount of heat released during its combustion per kg of fuel is significantly affected by the endothermic and exothermic processes taking place in mine...

D. Neshumayev; A. Ots; T. Parve; T Pihu…

2010-01-01T23:59:59.000Z

88

PEMEX selects the H-Oil{reg_sign} process for their hydrodesulfurization residue complex at the Miguel Hidalgo Refinery  

SciTech Connect (OSTI)

Petroleos Mexicanos (PEMEX) has selected the H-Oil Process for the conversion and upgrading of a blend of Maya and Isthmus vacuum residua at the Miguel Hidalgo Refinery. The 8,450 metric ton/day (50,000 bpsd) H-Oil Plant will produce a low sulfur (0.8 wt%) fuel oil, diesel, naphtha, and LPG. The H-Oil Plant will be a key component of the Hydrodesulfurization Residue (HDR) Complex which will be located at the Miguel Hidalgo Refinery in Tula, State of Hidalgo, Mexico. The project is part of PEMEX`s Ecology Projects currently underway in Mexico. This paper describes the HDR Complex and the design basis of the H-Oil Plant and provides the current status of this project.

Wisdom, L.I.; Colyar, J.J. [Hydrocarbon Research, Inc., Princeton, NJ (United States)

1995-12-31T23:59:59.000Z

89

,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)"  

U.S. Energy Information Administration (EIA) Indexed Site

0.9 Relative Standard Errors for Table 10.9;" 0.9 Relative Standard Errors for Table 10.9;" " Unit: Percents." ,,"Distillate Fuel Oil(b)",,,"Alternative Energy Sources(c)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total"," ","Not","Electricity","Natural","Residual",,,"and" "Code(a)","Subsector and Industry","Consumed(d)","Switchable","Switchable","Receipts(e)","Gas","Fuel Oil","Coal","LPG","Breeze","Other(f)" ,,"Total United States" 311,"Food",8,15,9,21,19,18,0,27,0,41 311221," Wet Corn Milling",0,0,0,0,0,0,0,0,0,0

90

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline  

Science Journals Connector (OSTI)

Peak Oil Demand: The Role of Fuel Efficiency and Alternative Fuels in a Global Oil Production Decline ... (11) Another analysis suggests that a transition to hydrogen- and natural-gas-fueled vehicles—and the associated climate benefits—will partly be driven by dwindling oil supplies. ... Within each class, we do not attempt to predict the exact substitute that will dominate (for example, whether electricity, hydrogen fuel cells, or natural gas will prevail in the passenger car market), but rather model the aggregate contribution of alternatives to conventional oil. ...

Adam R. Brandt; Adam Millard-Ball; Matthew Ganser; Steven M. Gorelick

2013-05-22T23:59:59.000Z

91

Methods of analysis modified size exchange chromatography method for analysis of heavy oil residues  

Science Journals Connector (OSTI)

A modified size exchange chromatography method is used to obtain molecular weight distributions, average molecular weight, and other characteristics of heavy oil residues: coal asphalt, petroleum asphalt, vacu...

Changming Zhang; Adnan Alhajji…

2012-09-01T23:59:59.000Z

92

"Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Relative Standard Errors for Table 5.3;" 3 Relative Standard Errors for Table 5.3;" " Unit: Percents." " "," " " "," ",," ","Distillate"," "," " " "," ","Net Demand",,"Fuel Oil",,,"Coal" "NAICS"," ","for ","Residual","and","Natural","LPG and","(excluding Coal" "Code(a)","End Use","Electricity(b)","Fuel Oil","Diesel Fuel(c)"," Gas(d)","NGL(e)","Coke and Breeze)" ,,"Total United States" " 311 - 339","ALL MANUFACTURING INDUSTRIES" ,"TOTAL FUEL CONSUMPTION",2,3,6,2,4,9

93

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

94

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings  

Science Journals Connector (OSTI)

Microbial Degradation in Soil Microcosms of Fuel Oil Hydrocarbons from Drilling Cuttings ... Relation between Bioavailability and Fuel Oil Hydrocarbon Composition in Contaminated Soils ...

Claude-Henri. ChaIneau; Jean-Louis. Morel; Jean. Oudot

1995-06-01T23:59:59.000Z

95

Effects of No. 2 Fuel Oil, Nigerian Crude Oil, and Used Crankcase Oil on Attached Algal Communities: Acute and Chronic Toxicity of Water-Soluble Constituents  

Science Journals Connector (OSTI)

...EXTRACTS OF OILS ON ALGAE 677 (Chlorophyta...Exposure to no. 2 fuel oil extract led to domi...products such as no. 2 fuel oil are usually toxic to algae, invertebrates, and...EXTRACTS OF OILS ON ALGAE 681 2 fuel oil extracts decreased...

Thomas L. Bott; Kurt Rogenmuser

1978-11-01T23:59:59.000Z

96

Fundamentals of Petroleum Residue Cracking Gasification for Coproduction of Oil and Syngas  

Science Journals Connector (OSTI)

Fundamentals of Petroleum Residue Cracking Gasification for Coproduction of Oil and Syngas ... Thus, the terminology of heavy oil or heavy residue can be also used to indicate all such heavy petroleum oils. ... Notwithstanding, for the RCG process it is ideal to develop the catalyst that has moderate cracking activity for heavy residues or heavy oils but meanwhile good activity for catalyzing the deposited coke gasification so that the gasification can be at reasonably low temperatures to maintain the catalytic activity for cracking heavy fractions. ...

Yuming Zhang; Deping Yu; Wangliang Li; Yin Wang; Shiqiu Gao; Guangwen Xu

2012-10-23T23:59:59.000Z

97

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Gasoline and Diesel Fuel Update (EIA)

W 839.2 135.0 1,251.9 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

98

Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

W 1,039.3 132.9 1,418.3 See footnotes at end of table. 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State Energy Information Administration...

99

Table A3. Refiner/Reseller Prices of Distillate and Residual...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Fuel Oils, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) Geographic Area Year No. 1 Distillate No. 2 Distillate a No. 4 Fuel b Residual Fuel Oil Sales to End...

100

Smoking Status and Occupational Exposure Affects Oxidative DNA Injury in Boilermakers Exposed to Metal Fume and Residual Oil Fly Ash  

Science Journals Connector (OSTI)

...sensitization by residual oil fly ash particles...composition of residual oil fly ash determines...coupled plasma sector field mass spectrometry...particulate-mediated cytokine production in lung epithelial...et al. Residual oil fly ash induces cytotoxicity...probably through cumulative oxidative DNA damage...

Sutapa Mukherjee; Lyle J. Palmer; Jee Young Kim; David B. Aeschliman; Robert S. Houk; Mark A. Woodin; and David C. Christiani

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Experimental and theoretical study on the characteristics of vacuum residue gasification in an entrained-flow gasifier  

Science Journals Connector (OSTI)

About 200,000 bpd (barrel/day) vacuum residue oil is produced from oil refineries in Korea. These are supplied to use asphalt, high sulfur fuel oil, and upgrading residue hydro-desulfurization units. High sulfur ...

Young-Chan Choi; Jae-Goo Lee; Sang-Jun Yoon…

2007-01-01T23:59:59.000Z

102

Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel  

Science Journals Connector (OSTI)

Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil bio petroleum fuel and diesel which can be an energy source.

Mustafa Hamid Al-abbas; Wan Aini Wan Ibrahim; Mohd. Marsin Sanagi

2012-01-01T23:59:59.000Z

103

NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4.5 for heating to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

Hall, Julian

104

NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average  

E-Print Network [OSTI]

NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average octane levels must be at least 8.5 for gasoline, 7 for jet fuel, and 4. Distilled naphtha can be used only to produce gasoline or jet fuel. Distilled oil can be used to produce

Hall, Julian

105

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

0: Residual Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation...

106

Behavior of shale oil jet fuels at variable severities  

SciTech Connect (OSTI)

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.058m ID by 1.52m long reactor containing Ni/MO/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/sup 0/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, and aromatics, and increased hydrogen content. The nitrogen content even at high severity conditions was considerably higher than that of conventional jet fuel. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1988-01-01T23:59:59.000Z

107

Determination of metals in heavy oil residues by inductively coupled plasma atomic emission spectroscopy  

Science Journals Connector (OSTI)

A method is proposed for the sample preparation of heavy oil residues characterized by viscosity of more than 700 mm2/sec at 100°C to study their elemental composition. It is shown that a wide range of elements c...

T. A. Maryutina; N. S. Musina

2012-10-01T23:59:59.000Z

108

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

SciTech Connect (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

109

Improving operational efficiency of fuel oil facilities used at gas-and-oil-fired power stations  

Science Journals Connector (OSTI)

Results obtained from experimental investigations of energy consumption are described, and ways for considerably reducing it are proposed taking as an example the fuel oil facility at the 2400-MW Lukoml District ...

A. K. Vnukov; F. A. Rozanova; A. A. Bazylenko; V. L. Zhurbilo…

2009-09-01T23:59:59.000Z

110

Effect of severity on catalytic hydroprocessed shale oil jet fuels  

SciTech Connect (OSTI)

Catalytic hydroprocessed shale oil jet fuels in the USA were characterized and compared with petroleum jet fuel to demonstrate their possibility as a conventional jet fuel substitute. The shale oils (Geokinetics, Occidental, Paraho and Tosco II) were hydrotreated in a 0.0508m ID by K1.524m long reactor containing Ni/Mo/Al/sub 2/O/sub 3/ catalyst. The fractionated hydrogenated shale oils at jet fuel ranges (120-300/degree/C) were analyzed for composition and physical properties. The increasing hydroprocessing severity proportionally decreased nitrogen, sulfur, olefins, aromatics and increased hydrogen content. The nitrogen content was considerable higher even at high severity conditions. Sulfur and olefin contents were lower at all severities. The heat of combustion and the physical properties, except the freezing point, were comparable to petroleum jet fuels. The yields of jet fuels increased proportionally to increased severity. The study showed that high severity hydroprocessing gave better performance in processing shale oils to jet fuels.

Mukherjee, N.L.

1987-01-01T23:59:59.000Z

111

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: With the worst of the heating season (October-March) now behind us, we can be fairly confident that retail heating oil prices have seen their seasonal peak. Relatively mild weather and a softening of crude oil prices have helped ease heating oil prices. Spot heating oil prices recently reached their lowest levels in over six months. Because of relatively balmy weather in the Northeast in January and February, heating oil stock levels have stabilized. Furthermore, heating oil production has been unusually robust, running several hundred thousand barrels per day over last year's pace. Currently, EIA expects winter prices to average around $1.41, which is quite high in historical terms. The national average price in December 2000 was 44 cents per gallon above the December 1999 price. For February

112

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

113

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

114

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

115

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

116

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...revolutionizing the energy outlook in...revolutionizing the energy outlook in...estimate what the price of oil will...terminals in the USA to meet projected...and its history is instructive...domestic oil prices that followed...and for the USA as a whole...are used. -Energy return on...geological history, which could...

2014-01-01T23:59:59.000Z

117

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

Because of the higher projected crude oil prices and because of Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

118

Some physiochemical tests of sunflower oil and no. 2 diesel oil as fuels  

SciTech Connect (OSTI)

The suitability of sunflower oil as a fuel for diesel engines was evaluated by determining the physiochemical properties of sunflower oil, No. 2 diesel and blends of both. This evaluation was accomplished by determining the American Petroleum Institute (API) gravity, cetane rating, heat of combustion, kinematic viscosity, pour point, cloud point, and water content of these fuels using methods specified by the American Society of Testing Materials (ASTM) for diesel fuels. These tests for petroleum products are designed to standardize results so comparisons can be made from one laboratory to another.

Ramdeen, P.; Backer, L.F.; Kaufman, K.R.; Kucera, H.L.; Moilanen, C.W.

1982-05-01T23:59:59.000Z

119

,,,,"Reasons that Made Distillate Fuel Oil Unswitchable"  

U.S. Energy Information Administration (EIA) Indexed Site

fuels is not available due to the potential" "environmental impact of storage tanks." " NFNo applicable RSE rowcolumn factor." " * Estimate less than 0.5." " WWithheld...

120

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

9 9 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we now expect prices this winter for residential heating oil deliveries to peak at about $1.52 per gallon in January. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. This winter's expected peak price would be the highest on record in nominal terms, eclipsing the high set in February 2000. However, in real (constant dollar) terms, both of these prices remain well below the peak reached in March 1981, when the average residential heating oil price was $1.29 per gallon, equivalent to over $2.50 per gallon today.

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...groundwater contamination. Nevertheless, innovative solutions have been found to many of...long project lead times, environmental remediation and the future oil price. Canadian...operations, being cheaper than mining; -innovative technology; -co-generation to reduce...

2014-01-01T23:59:59.000Z

122

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents [OSTI]

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

123

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis  

Science Journals Connector (OSTI)

Conversion of Residual Biomass into Liquid Transportation Fuel: An Energy Analysis ... An energy balance, in broad outline, is presented for the production of a high-quality liquid transportation fuel from residual crop biomass. ... That is, 40% of the initial energy in the biomass will be found in the final liquid fuel after subtracting out external energy supplied for complete processing, including transportation as well as material losses. ...

J. Manganaro; B. Chen; J. Adeosun; S. Lakhapatri; D. Favetta; A. Lawal; R. Farrauto; L. Dorazio; D. J. Rosse

2011-04-20T23:59:59.000Z

124

Pretreatment of automobile shredder residue (ASR) for fuel utilization  

Science Journals Connector (OSTI)

Automobile shredder residue (ASR) was pretreated to improve its quality for fuel utilization. Composition analysis revealed that ASR components could be classified into four groups: (1) urethane and textile—light fraction and combustibles containing low levels of ash and Cl; (2) plastics and rubber—light or heavy fraction and combustibles containing high levels of Cl; (3) metals and electrical wire—heavy fraction and incombustibles, and (4) particles smaller than 5.6 mm with high ash contents. Based on these results, we successively performed sieving to remove particles smaller than 5.6 mm, float and sink separations to reject the heavy fraction and plastics and rubber containing Cl, thermal treatment under an inert atmosphere to remove Cl derived from PVC, and char washing to remove soluble chlorides. This series of pretreatments enabled the removal of 78% of the ash and 91% of the Cl from ASR. Sieving using a 5.6-mm mesh removed a considerable amount of ash. Product quality was markedly improved after the float and sink method. Specifically, the sink process using a 1.1 g cm?3 medium fluid rejected almost all rubber containing Cl and a large amount of PVC. The remaining Cl in char, after heating at 300 °C under an inert atmosphere and washing, was considered to be present as insoluble chlorides that volatilized at temperatures above 300 °C. Based on a tradeoff relationship between product quality and treatment cost, ASR may be utilized as a form of refuse plastic fuel or char.

I.H. Hwang; S. Yokono; T. Matsuto

2008-01-01T23:59:59.000Z

125

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award August 19, 2013 - 5:07pm Addthis Developed jointly...

126

An empirical analysis of the price discovery function of Shanghai fuel oil futures market  

Science Journals Connector (OSTI)

This paper analyzes the role of price discovery of Shanghai fuel oil futures market by using methods, such ... there exists a strong relationship between the spot price of Huangpu fuel oil spot market and the fut...

Zhen Wang; Zhenhai Liu; Chao Chen

2007-08-01T23:59:59.000Z

127

Simulation of Fuel Oil System in Marine Engine Simulator Based on Finite Element Method  

Science Journals Connector (OSTI)

This paper focuses on the simulation research to fuel oil system. Hydrodynamic analysis to fuel oil system pipelines network is done and the modeling method is using finite element theory. A relative accepted ...

Diyang Li; Yuan Jiang; Boyang Li

2012-01-01T23:59:59.000Z

128

E-Print Network 3.0 - ammonium nitrate-fuel oil Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nitrate-fuel oil Search Powered by Explorit Topic List Advanced Search Sample search results for: ammonium nitrate-fuel oil Page: << < 1 2 3 4 5 > >> 1 ORNL 2010-G01068jcn UT-B ID...

129

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network [OSTI]

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry… (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

130

Retail Heating Oil and Diesel Fuel Prices  

Gasoline and Diesel Fuel Update (EIA)

7 7 Notes: Because of the higher projected crude oil prices and because of increased tightening in the Northeast heating oil market since the last Outlook, we have raised expected peak prices this winter for residential heating oil deliveries to $1.55 per gallon (January) compared to $1.43 per gallon in last month's projections. This is significantly above the monthly peak reached last winter. Because these figures are monthly averages, we expect some price movements for a few days to be above the values shown on the graph. Primary distillate inventories in the United States failed to rise significantly in November despite some speculation that previous distributions into secondary and tertiary storage would back up burgeoning production and import volumes into primary storage that month. Average

131

Letter to the editor The bio-fuel debate and fossil energy use in palm oil  

E-Print Network [OSTI]

Letter to the editor The bio-fuel debate and fossil energy use in palm oil production: a critique-fuels based on palm oil to re- duce greenhouse gas emissions, due account should be taken of carbon emissions fuel use in palm oil pro- duction, making a number of assumptions that I believe to be incorrect

132

Hydrocarbon analysis of shrimp from oil polluted waters  

E-Print Network [OSTI]

), serious pollution problems are caused by crude oils, residual fuel oils, lubricating oils and miscel- laneous tank washings, sludges and tarsi known collectively as persis- tant oils, to distinguish them from light fuel oils such as gasoline, kerosene... obtained from crude oil, die- sel oil and lubricating oil. These "fingerprints" were compared to "fingerprints" from shrimp to obtain parameters for assessing pollution of shrimp by crude oil and its derivatives. Using these parameters, contaminated...

DeWitt, Bernard John

1982-01-01T23:59:59.000Z

133

?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)  

SciTech Connect (OSTI)

Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

Not Available

2010-06-01T23:59:59.000Z

134

The investigation of the effects of wettability on residual oil after water flooding  

E-Print Network [OSTI]

THE INVESTIGATION OF THE EFFECTS OF WETTABILITY ON RESIDUAL OIL AFTER WATER FLOODING A Thesis BY E. 0, BUR JA Approved as to style and content by: (Cha rman of C mmittee (Head of Department) (Mo th (Year) THE INVESTIGATION OF THE EFFECTS... OF WETTABILITY ON RESIDUAL OIL AFTER WATER FLOODING By E. O. Burja A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major Subject...

Burja, Edward Oscar

1953-01-01T23:59:59.000Z

135

New lube oil for stationary heavy fuel engines  

SciTech Connect (OSTI)

An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

NONE

1996-12-01T23:59:59.000Z

136

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

3.4 Relative Standard Errors for Table 3.4;" 3.4 Relative Standard Errors for Table 3.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy","Net","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States"

137

"Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)"  

U.S. Energy Information Administration (EIA) Indexed Site

2.4 Relative Standard Errors for Table 2.4;" 2.4 Relative Standard Errors for Table 2.4;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," ",," " " "," ","Any Combustible" "NAICS"," ","Energy","Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","and Breeze","Other(f)" ,,"Total United States" 311,"Food",27.5,"X",42,39.5,62,"X",0,9.8

138

"Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.3 Relative Standard Errors for Table 1.3;" 1.3 Relative Standard Errors for Table 1.3;" " Unit: Percents." " "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","Shipments" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","of Energy Sources" "Characteristic(a)","Total(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"

139

Evaluation of residual shale oils as feedstocks for valuable carbon materials  

SciTech Connect (OSTI)

Oil shale represents one of the largest fossil fuel resources in the US and in other pans of the world. Beginning in the 1970s until recently, there was considerable research and development activity directed primarily to technologies for the production of transportation fuels from oil shale. Due to the low cost of petroleum, as with other alternate fuel strategies, oil shale processing is not economically viable at present. However, future scenarios can be envisaged in which non-petroleum resources may be expected to contribute to the demand for hydrocarbon fuels and chemicals, with the expectation that process technologies can be rendered economically attractive. There is potential to improve the economics of oil shale utilization through broadening the spectrum of products that can be derived from this resource, and producing added-value materials that are either unavailable or more difficult to produce from other sources. This concept is by no means original. The history of oil shale development shows that most attempts to commercialize oil shale technology have relied upon the marketing of by-products. Results are presented on carbonization and the potential for generating a pitch that could serve as a precursur material.

Fei, You Qing; Derbyshire, F. [Univ. of Kentucky, Lexington, KY (United States)

1995-12-31T23:59:59.000Z

140

Removal of oil from oil-in-saltwater emulsions by adsorption onto nano-alumina functionalized with petroleum vacuum residue  

Science Journals Connector (OSTI)

Abstract Formation water from oilfields is one of the major environmental issues related to the oil industry. This research investigated oil adsorption onto nanoparticles of hydrophobic alumina and alumina nanoparticles functionalized with a petroleum vacuum residue (VR) at 2 and 4 wt% to reduce the amount of oil in oil–saltwater emulsions at different pH values (5, 7 and 9). The initial concentration of crude oil in water ranged from 100 to 500 mg/L. The change in oil concentration after adsorption was determined using a UV–vis spectrophotometer. The results indicated that all of the systems performed more effectively at a pH of 7 and using Al/4VR material. The oil adsorption was higher for neutral and acid systems compared with basic ones, and it was improved by increasing the amount of VR on the surface of the alumina. Additionally, the amount of NaCl adsorbed onto nanoparticles was estimated for different mixtures. The adsorption equilibrium and kinetics were evaluated using the Dubinin–Astakhov model, the Brunauer?Emmet?Teller model, and pseudo-first- and pseudo-second-order models, with a better fitting to the Brunauer?Emmet?Teller model and pseudo-second-order model.

Camilo A. Franco; Nashaat N. Nassar; Farid B. Cortés

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ocean Sequestration of Crop Residue Carbon: Recycling Fossil Fuel Carbon Back to Deep Sediments  

Science Journals Connector (OSTI)

burial of crop residues in the deep ocean (hereafter, CROPS: Crop Residue Oceanic Permanent Sequestration). ... As long as fuels exist with higher energy yield-to-carbon content (E/C) ratios than biomass, it will always be more energy efficient and less carbon polluting to sequester the biomass in the deep oceans, and use those fuels with higher E/C ratios for power generation, rather than to burn biomass for power generation. ...

Stuart E. Strand; Gregory Benford

2009-01-12T23:59:59.000Z

142

U.S. Residual Fuel Oil Prices by Sales Type  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period: Monthly Annual

143

Table 19. U.S. Refiner Residual Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

32.1 29.6 25.7 32.2 28.7 November ... 38.1 30.7 27.5 22.5 30.5 26.2 December ... 35.1 27.5 25.8 21.8 29.2 24.8 1993...

144

Table 19. U.S. Refiner Residual Fuel Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

31.0 28.1 27.0 29.7 28.2 November ... 33.6 27.3 28.9 25.1 30.5 26.0 December ... 31.9 24.0 24.5 23.0 26.8 23.3 1998...

145

Prime Supplier Sales Volumes of Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

1,074.1 10,679.4 10,602.6 10,945.6 10,686.8 12,334.3 1983-2014 East Coast (PADD 1) 4,258.9 4,087.0 4,152.1 4,730.2 4,524.6 4,500.2 1983-2014 New England (PADD 1A) 193.5 145.7 121.5...

146

Table 19. U.S. Refiner Residual Fuel Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

January 1983 forward; Form EIA-460, "Petroleum Industry Monthly Report for Product Prices," source for backcast estimates prior to January 1983. 36 Energy Information...

147

Residual Fuel Oil Prices, Average - Sales to End Users  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History U.S. 1.944 1.340 1.729 - - - 1983-2013 East Coast (PADD 1) 1.897 1.374 1.809 - - - 1983-2013 New England (PADD 1A) 1.841 1.426 1.900 - -...

148

Residual Fuel Oil Sales to End Users Refiner Sales Volumes  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

2008 2009 2010 2011 2012 2013 View History U.S. 8,431.6 8,544.1 7,556.6 6,422.8 5,516.8 5,179.4 1983-2013 PADD 1 2,687.4 2,890.4 2,080.3 1,414.7 1,057.0 961.0 1983-2013 New England...

149

Residual oil saturation, Annex VI-1. Venezuela-MEM/USA-DOE fossil energy report VI-1  

SciTech Connect (OSTI)

This report, dealing with the US/Venezuela Cooperative exchange agreement on residual oil saturation (Annex VI), contains the results of efforts by scientists from both countries to improve the state of present technology for accurately measuring the amount of residual oil remaining in a particular reservoir of interest. To date, those efforts have resulted in an exchange of ideas through a sharing of technical literature and bibliographic listings pertinent to the subject, reciprocal visits to the laboratories and field sites where residual oil saturation measurement R and D is in progress, an exchange of ideas through workshops held in each country, and open discussions covering areas of future cooperative R and D. The text of the basic agreement , Annex VI and all amendments, are appended to the report. In addition to a chronicle of events detailing progress under Annex VI, this report also inlcudes a discussion of future work to be performed in the areas of subsidence accompanying the extraction of oil and interwell oil saturation measurement. A meeting was held in Bartlesville May 10 and 11 to formulate plans in this area.

Wesson, T.C.; VonDomselaar, H.

1983-04-01T23:59:59.000Z

150

Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis  

Science Journals Connector (OSTI)

Abstract Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment.

I. López; C.E. Quintana; J.J. Ruiz; F. Cruz-Peragón; M.P. Dorado

2014-01-01T23:59:59.000Z

151

Risk based corrective action: An application to closure of a fuel oil bunker site  

SciTech Connect (OSTI)

An evaluation of the potential risk of adversely impacting the site ground water was conducted at a food processing facility in California. The facility stored fuel oil in a 50,000-gallon concrete bunker in addition to gasoline and kerosene tanks onsite. In response to an environmental impact assessment, a site remediation plan was implemented which consisted of removal of the concrete bunker and majority of the impacted soils to a depth of about 45 ft (13.72 m) below ground surface (bgs). Some of the soil samples collected at depths between 45 and 50 ft (13.72 and 15.24 m) indicated TPH levels as high as 5,275 mg/kg. A risk evaluation was conducted for a worst case scenario to document the fate and transport of the residual compounds reaching the shallow ground water flow system. It was demonstrated that the residual fuel oil present in the overlying soil did not impact the ground water at the time of investigation, and is not likely to have adverse impact on the shallow ground water beneath the site. Therefore, no further corrective action was needed and the site was closed.

Panigrahi, B.K.; Acharya, B.P.

1999-07-01T23:59:59.000Z

152

Tennessee: Da Vinci Fuel-in-Oil Reduces Emissions, Wins R&D 100 Award  

Office of Energy Efficiency and Renewable Energy (EERE)

Developed jointly by Da Vinci Emissions Services Ltd., Cummins Inc., and Oak Ridge National Laboratory (ORNL), the Da Vinci Fuel-in-Oil (DAFIO™) technology uses a fiber optic probe to obtain real-time measurements of oil in an operating engine to quantify the fuel dissolved in the lubricant oil.

153

Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State  

SciTech Connect (OSTI)

There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in the foreseeable future more expensive than residual fuel. So, another task was to explore potential alternative biofuels that might confer emission benefits similar to those of biodiesel, while being potentially significantly cheaper. Of course, for power plant use, availability in the required quantities is also a significant criterion. A subsidiary study to determine the effect of the temperature of the filter used to collect and measure the PM 2.5 emissions was conducted. This was done for reasons of accuracy in a residential boiler using distillate fuel blends. The present report details the results obtained in these tests with the baseline ASTM No. 6 fuel and blends of biodiesel with it as well as the results of the filter temperature study. The search for the alternative 'cheaper' biofuel identified a potential candidate, but difficulties encountered with the equipment during the testing prevented testing of the alternative biofuel.

Krishna, C.R.; McDonald, R.

2009-05-01T23:59:59.000Z

154

Wood Residues as Fuel Source for Lime Kilns  

E-Print Network [OSTI]

completed and the preliminary results indicate that our approach is potentially a very cost-effective and simple option to substantially reduce or possibly eliminate fossil-fuel usage in lime kilns....

Azarniouch, M. K.; Philp, R. J.

1984-01-01T23:59:59.000Z

155

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

The U.S. DOE Weatherization Assistance Program (WAP) Division requested Oak Ridge National Laboratory to help design and conduct an up-to-date assessment of the Program. The evaluation includes five separate studies; the fuel oil study is the subject of this paper. The primary goal of the fuel-oil study was to provide a region-wide estimate of the space-heating fuel oil saved by the Program in the Northeast during the 1991 and 1992 program years. Other goals include assessing the cost effectiveness of the Program within the fuel-oil submarket, and identifying factors which caused fuel-oil savings to vary. This paper reports only the highlights from the fuel-oil study`s final report.

Levins, W.P.; Ternes, M.P.

1994-09-01T23:59:59.000Z

156

Application of High-Temperature Simulated Distillation to the Residuum Oil Supercritical Extraction Process in Petroleum Refining  

Science Journals Connector (OSTI)

......fractions from the residual oil supercritical...JOURNAL ARTICLE The gas chromatographic method...presented for refinery residual feed, deasphalted...fractions from the residual oil supercritical...fuels, gasoline, turbine (jet) fuels, diesel...high-value deasphalted gas oil (DAO) from......

Joe C. Raia; Dan C. Villalanti; Murugesan Subramanian; Bruce Williams

2000-01-01T23:59:59.000Z

157

Characteristics of naphthenic and paraffinic hydrocarbons of residual oil from West Siberian crudes  

SciTech Connect (OSTI)

This article examines the naphthenic/paraffinic hydrocarbons segregated by liquid chromatography from a residual oil after removal of the resins and solid hydrocarbons. The studied hydrocarbons were fractionated on the basis of molecular weight (by molecular distillation) and on the basis of the content of rings (by thermal diffusion separation in a laboratory column). The results of mass-spectrometric analysis indicate that the first fraction consists mainly of isoparaffins and naphthenes with few rings. The polycyclic condensed naphthenes are concentrated in the last fraction. The content of isoparaffins drops off and the content of condensed polycyclic naphthenic structures increases from the second fraction to the next to the last. It is concluded that the naphthenic/paraffinic hydrocarbons of the residual oil from mixed West Siberian crudes have a relatively narrow composition and therefore have similar physicochemical properties.

Detusheva, E.P.; Khramtsova, L.P.; Muchinskii, T.D.; Shkol'nikov, V.M.

1984-05-01T23:59:59.000Z

158

Crude oil and finished fuel storage stability: an annotated review  

SciTech Connect (OSTI)

The Bartlesville Energy Technology Center (BETC) of the Deopartment of Energy (DOE) and the US Army Fuels and Lubricants Research laboratory (AFLRL) at Southwest Research Institute (SwRI) have been working together on a support effort for the Strategic Petroleum Reserve Office (SPRO) of DOE. One task within this effort was a detailed literature survey of previous experiences in long-term storage of crude oil and finished fuels with an emphasis on underground storage. Based on the discussion presented in this review, in the limited number of cases reported, the refinability of crude oil was not significantly affected by prolonged storage. It was found that most crudes will deposit a sludge during storage which may interfere with withdrawal pumping. This sludge is probably composed of wax, sediment, water, and possibly asphaltenes. Emulsions of the water-oil interface have been reported after prolonged storage which have been attributed to action of centrifugal pumps used to remove accumulated seepage water. It is possible that these emulsions resulted from biological activity, such as the anaerobic activity reported, but no hydrogen sulfide production was observed.

Brinkman, D.W.; Bowden, J.N.; Giles, H.N.

1980-02-01T23:59:59.000Z

159

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils  

Science Journals Connector (OSTI)

NMR Sensor for Onboard Ship Detection of Catalytic Fines in Marine Fuel Oils ... Vermeire, M. B. Everything You Need to Know About Marine Fuels; Chevron Global Marine Products: Ghent, Belgium, 2007. ...

Morten K. Sørensen; Mads S. Vinding; Oleg N. Bakharev; Tomas Nesgaard; Ole Jensen; Niels Chr. Nielsen

2014-07-02T23:59:59.000Z

160

Residual oil saturation determination. Wilmington micellar-polymer project. Final report  

SciTech Connect (OSTI)

The City of Long Beach, California conducted a program to obtain residual oil saturation (ROS) data in the HX/sub a/ Sand, Fault Block VB, Wilmington Field. This program utilized many complementary techniques for determining the ROS in a watered-out unconsolidated sand, typical of many reservoirs in the California Coastal Province. This program was to be performed in two stages. The first, Phase 1, was intended to determine the ROS in an area which had been flooded out during the course of a peripheral waterflood and to make a comparative analysis of current methods for determination of in-situ oil in place. The second stage, Phase 2 of the ROS program, was intended to measure the ROS after tertiary recovery by a micellar-polymer flood; however, the second phase was not carried out for lack of funds. This report describes the diagnostic tools and techniques which have been used to establish ROS. It then presents a comparative analysis of the results obtained using the different techniques. Inasmuch as the determination of in-situ oil saturation is directly dependent upon the in-situ value for porosity, it is required that the pore volume as a fraction of the reservoir rock be determined before the residual oil equation can be solved. Because of this, much of the study necessarily was concerned with measurement of porosity of the unconsolidated sand. The method finally used to obtain a very good core recovery in this highly unconsolidated sand is described. Present oil saturation and oil content of the HX/sub a/ sand in the Pilot is now believed to be better defined. This conclusion is supported by results obtained for electrical log analysis, analysis of full sized native state cores run under stress conditions, plug core analysis under stressed conditions and a Single-Well Tracer Survey. 15 references, 18 figures, 16 tables.

Staub, H.L.

1983-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Engine deposit and pour point studies using canola oil as a diesel fuel  

SciTech Connect (OSTI)

Engine tests conducted during previous investigations have established the viability of using canola oil as a substitute for diesel fuel on a short term basis, but also revealed the need to assess possible combustion chamber deposits from long range testing. Low temperature problems in handling vegetable oils has also been recognized as posing a threat to their use in winter operation. This paper reports a procedure involving a direct comparison of running two different fuels in an engine simultaneously to study deposit problems, and also reports on three attempted methods - fuel blending, fuel heating and fuel additives to reduce the pour point of canola oil. 3 figures, 1 table.

Strayer, R.C.; Craig, W.K.; Zoerb, G.C.

1982-01-01T23:59:59.000Z

162

Distillate Fuel Oil Assessment for Winter 1996-1997  

Gasoline and Diesel Fuel Update (EIA)

following Energy Information Administration sources: Weekly following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208(96-39); Petroleum Supply Monthly, September 1996, DOE/EIA-0109(96/09); Petroleum Supply Annual 1995, DOE/EIA-0340(95); Petroleum Marketing Monthly, September 1996, DOE/EIA-0380(96/09); Short-Term Energy Outlook, DOE/EIA-0202(96/4Q) and 4th Quarter 1996 Short-Term Integrated Forecasting System; and an address by EIA Administrator Jay E. Hakes on the Fall 1996 Heating Fuel Assessment before the National Association of State Energy Officials, September 16, 1996. Table FE1. Distillate Fuel Oil Demand and Supply Factors, Winter (October - March) 1993-94 Through 1996-97 History STEO Mid Case Factor Winter Winter Winter Winter 1993-94

163

New Zealand Energy Data: Oil Consumption by Fuel and Sector | OpenEI  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector Oil Consumption by Fuel and Sector Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Included here are two oil consumption datasets: quarterly petrol consumption by sector (agriculture, forestry and fishing; industrial; commercial; residential; transport industry; and international transport), from 1974 to 2010; and oil consumption by fuel type (petrol, diesel, fuel oil, aviation fuels, LPG, and other), also for the years 1974 through 2010. The full 2010 Energy Data File is available: http://www.med.govt.nz/upload/73585/EDF%202010.pdf. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 02nd, 2010 (4 years ago)

164

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents [OSTI]

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E [Knoxville, TN; Partridge, Jr., William P [Oak Ridge, TN

2010-11-23T23:59:59.000Z

165

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

166

Table 3.3 Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2002;" 3 Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

167

Characterization of contaminants in oil shale residuals and the potential for their management to meet environmental quality standards. Final report  

SciTech Connect (OSTI)

Some general aspects of various oil shale processes developed for scale-up to commercial size modular units are described. The overall magnitude of an envisioned commercial shale oil operation and the magnitude of resulting potentially polluting residues in particular solid residues from retorting oil shale and associated operations and wastewater from retort streams and other sources are considered. The potential problems ensuing from self-oxidation of stockpiles of oil shale and from residual carbonaceous retorted oil shale disposed above ground and/or from in situ retorting operations are examined. Some methods for managing self-heating processes are suggested. The most plausible method of avoiding potential self-heating for retorted oil shale is to oxidize as much as possible of the organic carbon present by utilizing a process that will produce low carbon or carbon-free retorted oil shale residues. In the case of unretorted oil shale, the dimensions and shapes of the stockpiles should be designed such that heat build-up is eliminated or kept to a minimum.

Schmidt-Collerus, J.J.

1984-02-01T23:59:59.000Z

168

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 Heavy Fuel Oil Prices for Electricity Generation for Selected Countries1 U.S. Dollars per Metric Ton2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria 83.0 96.4 146.4 153.3 182.2 226.1 220.3 342.3 248.3 Barbados NA NA NA NA NA NA NA NA NA Belgium 155.1 160.4 - - - - - - - - - - - - - - Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 115.7 117.8 180.4 141.5 198.4 222.4 NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) NA NA NA NA NA NA NA NA NA Colombia NA NA NA NA NA NA NA NA NA Cuba NA NA NA 183.4 NA NA NA NA NA

169

Viability study of automobile shredder residue as fuel  

Science Journals Connector (OSTI)

Abstract Car Fluff samples collected from a shredding plant in Italy were classified based on particle size, and three different size fractions were obtained in this way. A comparison between these size fractions and the original light fluff was made from two different points of view: (i) the properties of each size fraction as a fuel were evaluated and (ii) the pollutants evolved when each size fraction was subjected to combustion were studied. The aim was to establish which size fraction would be the most suitable for the purposes of energy recovery. The light fluff analyzed contained up to 50 wt.% fines (particle size fraction inappropriate for energy recovery, and therefore, landfilling would be the best option. The 50–100 mm fraction exhibited a high calorific value and low PCDD/F emissions were generated when the sample was combusted, making it the most suitable fraction for use as refuse-derived fuel (RDF). Results obtained suggest that removing fines from the original ASR sample would lead to a material product that is more suitable for use as RDF.

Mar Edo; Ignacio Aracil; Rafael Font; Manuela Anzano; Andrés Fullana; Elena Collina

2013-01-01T23:59:59.000Z

170

Molecular gas in early-type galaxies: Fuel for residual star formation  

E-Print Network [OSTI]

Abstract: Molecular gas in early-type galaxies: Fuel for residual star formation Timothy A. Davis Survey 2. The ATLAS3D CARMA Survey 3. Kinematic Misalignments 4. Origin of the molecular gas The ATLAS3D is to determine how (major and minor) mergers, gas, star formation and feedback affect the transformation

Bureau, Martin

171

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers [EERE]

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

172

Concentration measurements of biodiesel in engine oil and in diesel fuel  

Science Journals Connector (OSTI)

This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

A Mäder; M Eskiner; C Burger; W Ruck; M Rossner; J Krahl

2012-01-01T23:59:59.000Z

173

Effects of no. 2 fuel oil on hatchability of marine and estuarine bird eggs  

Science Journals Connector (OSTI)

Eggs of Louisiana herons, sandwich terns, and laughing gulls were oiled with either 0, 5, or 20 ?l of No. 2 fuel oil in the field and in the laboratory. After 5 days of natural incubation, field-oiled and cont...

Donald H. White; Kirke A. King…

174

Diesel vehicle performance on unaltered waste soybean oil blended with petroleum fuels  

Science Journals Connector (OSTI)

Interest in using unaltered vegetable oil as a fuel in diesel engines has experienced an increase due to uncertainty in the crude oil market supply and the detrimental effects petroleum fuels have on the environment. Unaltered vegetable oil blended with petroleum fuels is less expensive, uses less energy to produce and is more environmentally friendly compared to petroleum diesel or biodiesel. Here we investigate the engine performance of unaltered waste soybean oil blended with petroleum diesel and kerosene for three vehicles. Five biofuel blends ranging from 15% to 50% oil by volume were tested on a 2006 Jeep Liberty CRD, a 1999 Mercedes E300 and a 1984 Mercedes 300TD. A DynoJet 224x chassis dynamometer was used to test vehicle engine performance for horsepower and torque through a range of RPMs. Results for the Jeep showed a modest decrease in horsepower and torque compared to petroleum diesel ranging from 0.9% for the 15% oil blend to 5.0% lower for the 50% oil blend. However, a 30% oil blend showed statistically better performance (P < 0.05) compared to petroleum diesel. For the 1999 Mercedes, horsepower performance was 1.1% lower for the 15% oil blend to 6.4% lower for the 50% oil blend. Engine performance for a 30% blend was statistically the same (P < 0.05) compare to diesel. Finally, horsepower performance was 1.1% lower for the 15% oil blend to 4.7% lower for the 50% oil blend for the 1984 Mercedes. Overall, the performance on these oil blended fuels was excellent and, on average 1.1% lower than petroleum diesel for blends containing 40% or lower waste soybean oil content. The more significant decrease in power between the 40% and 50% oil blends indicates that oil content in these blended fuels should be no more than 40%.

Eugene P. Wagner; Patrick D. Lambert; Todd M. Moyle; Maura A. Koehle

2013-01-01T23:59:59.000Z

175

Co-Firing Oil Shale with Coal and Other Fuels for Improved Efficiency and Multi-Pollutant Control  

SciTech Connect (OSTI)

Oil shale is an abundant, undeveloped natural resource which has natural sorbent properties, and its ash has natural cementitious properties. Oil shale may be blended with coal, biomass, municipal wastes, waste tires, or other waste feedstock materials to provide the joint benefit of adding energy content while adsorbing and removing sulfur, halides, and volatile metal pollutants, and while also reducing nitrogen oxide pollutants. Oil shale depolymerization-pyrolysis-devolatilization and sorption scoping studies indicate oil shale particle sorption rates and sorption capacity can be comparable to limestone sorbents for capture of SO2 and SO3. Additionally, kerogen released from the shale was shown to have the potential to reduce NOx emissions through the well established “reburning” chemistry similar to natural gas, fuel oil, and micronized coal. Productive mercury adsorption is also possible by the oil shale particles as a result of residual fixed-carbon and other observed mercury capture sorbent properties. Sorption properties were found to be a function particle heating rate, peak particle temperature, residence time, and gas-phase stoichmetry. High surface area sorbents with high calcium reactivity and with some adsorbent fixed/activated carbon can be produced in the corresponding reaction zones that exist in a standard pulverized-coal or in a fluidized-bed combustor.

Robert A. Carrington; William C. Hecker; Reed Clayson

2008-06-01T23:59:59.000Z

176

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)"  

U.S. Energy Information Administration (EIA) Indexed Site

4.4 Relative Standard Errors for Table 4.4;" 4.4 Relative Standard Errors for Table 4.4;" " Unit: Percents." " "," "," ",," "," "," "," "," "," "," ",," " " "," ","Any" "NAICS"," ","Energy",,"Residual","Distillate",,"LPG and",,"Coke"," " "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","and Breeze","Other(g)" ,,"Total United States" , 311,"Food",0.4,0.4,19.4,9,2,6.9,5.4,0,10.3

177

Chemical fate of Bunker C fuel oil in a subtropical marine environment  

SciTech Connect (OSTI)

On August 10, 1993, a major oil spill occurred when approximately 1.2 million liters of Bunker C (No. 6) fuel oil spilled from the fuel tanker Bouchard 155 after it collided with the phosphate freighter Balsa 37 in a shipping channel at the entrance to Tampa Bay, Florida. Although early hydrodynamic conditions with ebbing tides caused most of the oil to be carried several kilometers out of Tampa Bay and into the Gulf of Mexico, subsequent onshore winds and spring tides caused significant quantities of the oil to be deposited on nearby beaches and in mangrove, seagrass and estuarine habitats north of the mouth of Tampa Bay.

Wetzel, D.L.; Van Vleet, E.S. [Univ. of South Florida, St. Petersburg, FL (United States)

1996-12-31T23:59:59.000Z

178

The Effect of Weld Residual Stress on Life of Used Nuclear Fuel Dry Storage Canisters  

SciTech Connect (OSTI)

With the elimination of Yucca Mountain as the long-term storage facility for spent nuclear fuel in the United States, a number of other storage options are being explored. Currently, used fuel is stored in dry-storage cask systems constructed of steel and concrete. It is likely that used fuel will continue to be stored at existing open-air storage sites for up to 100 years. This raises the possibility that the storage casks will be exposed to a salt-containing environment for the duration of their time in interim storage. Austenitic stainless steels, which are used to construct the canisters, are susceptible to stress corrosion cracking (SCC) in chloride-containing environments if a continuous aqueous film can be maintained on the surface and the material is under stress. Because steel sensitization in the canister welds is typically avoided by avoiding post-weld heat treatments, high residual stresses are present in the welds. While the environment history will play a key role in establishing the chemical conditions for cracking, weld residual stresses will have a strong influence on both crack initiation and propagation. It is often assumed for modeling purposes that weld residual stresses are tensile, high and constant through the weld. However, due to the strong dependence of crack growth rate on stress, this assumption may be overly conservative. In particular, the residual stresses become negative (compressive) at certain points in the weld. The ultimate goal of this research project is to develop a probabilistic model with quantified uncertainties for SCC failure in the dry storage casks. In this paper, the results of a study of the residual stresses, and their postulated effects on SCC behavior, in actual canister welds are presented. Progress on the development of the model is reported.

Ronald G. Ballinger; Sara E. Ferry; Bradley P. Black; Sebastien P. Teysseyre

2013-08-01T23:59:59.000Z

179

Testing Waste Olive Oil Methyl Ester as a Fuel in a Diesel Engine  

Science Journals Connector (OSTI)

In this sense, to gain knowledge about the implications of its use, waste olive oil methyl ester was evaluated as a fuel for diesel engines during a 50-h short-term performance test in a diesel direct-injection Perkins engine. ... At the beginning of the last century, Rudolph Diesel fueled a diesel engine with the oil of an African groundnut (peanut), thus demonstrating the idea of using vegetable oil as a substitute for No. 2 diesel fuel. ... In this way, we obtained a volume value for each trio of working values, making a brake-specific fuel consumption comparison between different tests or fuels possible, as shown in Table 2, where Vi is the volume value for each test and V50 corresponds to that of No. 2 diesel fuel after 50 h (the test that showed the minimum value). ...

M. P. Dorado; E. Ballesteros; J. M. Arnal; J. Gómez; F. J. López Giménez

2003-10-02T23:59:59.000Z

180

Feasibility study of utilization of degummed soybean oil as a substitute for diesel fuel. Final report  

SciTech Connect (OSTI)

The purpose of this project was to determine the economic and technological feasibility of producing a diesel oil substitute or extender from soybean oil. Existing technology was reviewed, to determine the minimum modification necessary for production of an acceptable fuel product. Current methods of oil extraction and refining were considered, as well as the products of those processes. The information developed indicated that the degummed soybean oil produced by existing processing plants is theoretically suitable for use as a diesel fuel extender. No modification of process design or equipment is required. This situation is very favorable to early commercialization of degummed soybean oil as a diesel fuel extender during the 1980's. Moreover, a large energy gain is realized when the soybean oil is utilized as fuel. Its heat of combustion is reported as 16,920 Btu per pound, or 130,000 Btu per gallon. Production of soybean oil consumes between 3000 and 5000 Btu per pound or 23,000 and 39,000 Btu per gallon. A resource availability study disclosed that the southeastern region of the United States produces approximately 260 million bushels of soybeans per year. In the same general area, fourteen extraction plants are operating, with a combined annual capacity of approximately 200 million bushels. Thus, regional production is sufficient to support the extraction capacity. Using an average figure of 1.5 gallons of oil per bushel of soybeans gives annual regional oil production of approximately 300 million gallons.

Not Available

1981-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

VARIABLE FIRING RATE OIL BURNER USING PULSE FUEL FLOW CONTROL.  

SciTech Connect (OSTI)

The residential oil burner market is currently dominated by the pressure-atomized retention head burner, which has an excellent reputation for reliability and efficiency. In this burner, oil is delivered to a fuel nozzle at pressures from 100 to 150 psi. In addition, to atomizing the fuel, the small, carefully controlled size of the nozzle exit orifice serves to control the burner firing rate. Burners of this type are currently available at firing rates of more than 0.5 gallons-per-hour (70,000 Btu/hr). Nozzles have been made for lower firing rates, but experience has shown that such nozzles suffer rapid fouling of the necessarily small passages, leading to bad spray patterns and poor combustion performance. Also, traditionally burners and the nozzles are oversized to exceed the maximum demand. Typically, this is figured as follows. The heating load of the house on the coldest day for the location is considered to define the maximum heat load. The contractor or installer adds to this to provide a safety margin and for future expansion of the house. If the unit is a boiler that provides domestic hot water through the use of a tankless heating coil, the burner capacity is further increased. On the contrary, for a majority of the time, the heating system is satisfying a much smaller load, as only rarely do all these demands add up. Consequently, the average output of the heating system has to be much less than the design capacity and this is accomplished by start and stop cycling operation of the system so that the time-averaged output equals the demand. However, this has been demonstrated to lead to overall efficiencies lower than the steady-state efficiency. Therefore, the two main reasons for the current practice of using oil burners much larger than necessary for space heating are the unavailability of reliable low firing rate oil burners and the desire to assure adequate input rate for short duration, high draw domestic hot water loads. One approach to solve this problem is to develop a burner, which can operate at two firing rates, with the lower rate being significantly lower than 0.5 gallons per hour. This paper describes the initial results of adopting this approach through a pulsed flow nozzle. It has been shown that the concept of flow modulation with a small solenoid valve is feasible. Especially in the second configuration tested, where the Lee valve was integrated with the nozzle, reasonable modulation in flow of the order of 1.7 could be achieved. For this first prototype, the combustion performance is still not quite satisfactory. Improvements in operation, for example by providing a sharp and positive shut-off so that there is no flow under low pressures with consequent poor atomization could lead to better combustion performance. This could be achieved by using nozzles that have shut off or check valves for example. It is recommended that more work in cooperation with the valve manufacturer could produce a technically viable system. Marketability is of course a far more complex problem to be addressed once a technically viable product is available.

KRISHNA,C.R.; BUTCHER,T.A.; KAMATH,B.R.

2004-10-01T23:59:59.000Z

182

Secure Fuels from Domestic Resources- Oil Shale and Tar Sands  

Broader source: Energy.gov [DOE]

Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development

183

Microstructure, residual stress, and mechanical properties of thin film materials for a microfabricated solid oxide fuel cell  

E-Print Network [OSTI]

The microstructure and residual stress of sputter-deposited films for use in microfabricated solid oxide fuel cells are presented. Much of the work focuses on the characterization of a candidate solid electrolyte: Yttria ...

Quinn, David John, Sc. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

184

RECS Fuel Oil Usage Form_v1 (Draft).xps  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total...

185

Characterization by photoacoustic spectroscopy of the photosynthetic Scenedesmus armatus system affected by fuel oil contamination  

Science Journals Connector (OSTI)

The effect of aqueous fuel oil extract (AFOE)1 on the photosynthetic system in green algae Scenedesmus armatus...cultures was examined by photoacoustic spectroscopy. After a 24-h culture growth, the photosyntheti...

J. Szurkowski; Z. Tukaj

1995-10-01T23:59:59.000Z

186

Toxicity of Fuel Oil Water Accommodated Fractions on Two Marine Microalgae, Skeletonema costatum and Chlorela spp  

Science Journals Connector (OSTI)

In this paper, the acute toxicity of four fuel oils including F120, F180, F380 and No.-20 was evaluated by exposing the marine microalgae Chlorela spp. (Chlorophyta) and Skeletonema costatum (Bacillariophyta) in ...

Min Chao; Xinqiang Shen; Fengxia Lun…

2012-05-01T23:59:59.000Z

187

Operating temperature effects on nozzle coking in a cottonseed oil fueled diesel engine  

E-Print Network [OSTI]

OPERATING TEMPERATURE EFFECTS ON NOZZLE COKING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis CHARLES MICHAEL YARBROUGH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirements for the degree cf... MASTER OF SCIENCE December 1984 Major Subject: Agricultural Engineering OPERATING TEMPERATURE EFFECTS ON NOZZLE CORING IN A COTTONSEED OIL FUELED DIESEL ENGINE A Thesis by CHARLES MICHAEL YARBROUGH Approved as to style and content by: ayne A. Le...

Yarbrough, Charles Michael

2012-06-07T23:59:59.000Z

188

Method of producing a colloidal fuel from coal and a heavy petroleum fraction. [partial liquefaction of coal in slurry, filtration and gasification of residue  

DOE Patents [OSTI]

A method is provided for combining coal as a colloidal suspension within a heavy petroleum fraction. The coal is broken to a medium particle size and is formed into a slurry with a heavy petroleum fraction such as a decanted oil having a boiling point of about 300 to 550/sup 0/C. The slurry is heated to a temperature of 400 to 500/sup 0/C for a limited time of only about 1 to 5 minutes before cooling to a temperature of less than 300/sup 0/C. During this limited contact time at elevated temperature the slurry can be contacted with hydrogen gas to promote conversion. The liquid phase containing dispersed coal solids is filtered from the residual solids and recovered for use as a fuel or feed stock for other processes. The residual solids containing some carbonaceous material are further processed to provide hydrogen gas and heat for use as required in this process.

Longanbach, J.R.

1981-11-13T23:59:59.000Z

189

Evaluation of an eastern shale oil residue as an asphalt additive  

SciTech Connect (OSTI)

An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age-hardening and moisture susceptibility was conducted. The ESO residue, having a viscosity of 23.9 Pa{sm_bullet}s at 60{degrees}C (140{degrees}F), was blended with three different petroleum-derived asphalts, AAD-1, AAK-1, and AAM-1, that are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age-hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption limestone (RD), and a silicious Gulf Coast gravel (RL), and compacted into briquets. Successive freeze-thaw cycling was then conducted to evaluate the moisture susceptibility of the prepared briquets. The abbreviations used above for the asphalts and the aggregates are part of the Strategic Highway Research Program nomenclature.

Thomas, K.P.; Harnsberger, P.M.

1995-12-19T23:59:59.000Z

190

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

191

Evaluation of an eastern shale oil residue as an asphalt additive  

SciTech Connect (OSTI)

An evaluation of eastern shale oil (ESO) residue as an asphalt additive to reduce oxidative age hardening and moisture susceptibility was conducted by Western Research Institute (WRI). The ESO residue, have a viscosity of 23.9 Pa{lg_bullet}s at 60{degree}C (140{degree}F), was blended with three different petroleum-derived asphalts, ASD-1, AAK-1, and AAM-1, which are known to be very susceptible to oxidative aging. Rheological and infrared analyses of the unaged and aged asphalts and the blends were then conducted to evaluate oxidative age hardening. In addition, the petroleum-derived asphalts and the blends were coated onto three different aggregates, Lithonia granite (RA), a low-absorption limestone (RD), and a siliceous Gulf Coast gravel (RL), and compacted into briquettes. Successive freeze-thaw cycling was then conducted to evaluate the moisture susceptibility of the prepared briquettes. The rheological analyses of the unaged petroleum-derived asphalts and their respective blends indicate that the samples satisfy the rutting requirement. However, the aging indexes for the rolling thin film oven (RTFO)-aged and RTFO/pressure aging vessel (PAV)-aged samples indicate that the blends are stiffer than the petroleum-derived asphalts. This means that when in service the blends will be more prone to pavement embrittlement and fatigue cracking than the petroleum-derived asphalts. Infrared analyses were also conducted on the three petroleum-derived asphalts and the blends before and after RTFO/PAV aging. In general, upon RTFO/PAV aging, the amounts of carbonyls and sulfoxides in the samples increase, indicating that the addition of the ESO residue does not mitigate the chemical aging (oxidation) of the petroleum-derived asphalts. This information correlates with the rheological data and the aging indexes that were calculated for the petroleum-derived asphalts and the blends.

Thomas, K.P.; Harnsberger, P.M.

1995-09-01T23:59:59.000Z

192

Evaluation of soy based heavy fuel oil emulsifiers for energy efficiency and environmental improvement  

SciTech Connect (OSTI)

It is known that the emulsification of water into heavy fuel oil (No. 6) can result in improved atomization of the fuel in a combustion chamber, which results in several benefits. In this study, two soybean lecithin based emulsifiers were evaluated. The emulsifiers were added to the No. 6 fuel at 0.5% and 1 % levels and emulsions of 10% and 15% water were prepared and burned in a pilot scale combustion chamber. The results showed a significant decrease in NO{sub x} emissions, and a reduction in carbon particulates, as well as a decrease in the excess oxygen requirement when the emulsions were burned when compared to fuel oil alone and a fuel oil/water mixture without the emulsifier. It was concluded that the use of a soybean lecithin based emulsifier may be used to increase the burning efficiency of heavy fuel oils, reduce emissions and particulates, and reduce down time for cleaning. This can be very important in utility plants which burn large volumes of heavy fuel oil and are located near urban areas.

Lee, P.K.; Szuhaj, B.F. [Central Soya Company, Inc., Fort Wayne, IN (United States); Diego, A. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

1996-12-31T23:59:59.000Z

193

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost and equipment  

E-Print Network [OSTI]

Fuel switch could bring big savings for HECO Liquefied natural gas beats low-sulfur oil in cost gas instead of continuing to burn low-sulfur fuel oil, a report said. Switching to liquefied natural who switch from gasoline-powered vehicles to ones fueled by compressed natural gas could save as much

194

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area  

Science Journals Connector (OSTI)

Effects of Switching to Lower Sulfur Marine Fuel Oil on Air Quality in the San Francisco Bay Area ... Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. ...

Ling Tao; David Fairley; Michael J. Kleeman; Robert A. Harley

2013-08-14T23:59:59.000Z

195

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant  

Science Journals Connector (OSTI)

Chemical-Looping Combustion with Fuel Oil in a 10 kW Pilot Plant ... The unit is based on interconnected fluidized beds and is similar to the design originally presented by Lyngfelt et al.(12) In the riser section there is a fast-fluidized regime, whereas in the loop-seals and the fuel reactor there is a bubbling regime. ... Energy Combust. ...

Patrick Moldenhauer; Magnus Rydén; Tobias Mattisson; Ali Hoteit; Aqil Jamal; Anders Lyngfelt

2014-08-29T23:59:59.000Z

196

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

197

Thermo economic evaluation of oxy fuel combustion cycle in Kazeroon power plant considering enhanced oil recovery revenues  

Science Journals Connector (OSTI)

Oxy fuel combustion and conventional cycle (currently working cycle ... for enhanced oil recovery in the various oil price indices is conducted and indices net present ... models reveal that gross efficiency of t...

Ehsan Torabnejad; Ramin Haghighi-Khoshkhoo…

2014-03-01T23:59:59.000Z

198

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391  

E-Print Network [OSTI]

Oil and Fuel Spills EHS Contact: Lysa Holland (ljh17@psu.edu) 814-865-6391 Procedures implemented. Other spills/releases of oil containing materials must be reported if they exceed 1 quart

Maroncelli, Mark

199

Estimating household fuel oil/kerosine, natural gas, and LPG prices by census region  

SciTech Connect (OSTI)

The purpose of this research is to estimate individual fuel prices within the residential sector. The data from four US Department of Energy, Energy Information Administration, residential energy consumption surveys were used to estimate the models. For a number of important fuel types - fuel oil, natural gas, and liquefied petroleum gas - the estimation presents a problem because these fuels are not used by all households. Estimates obtained by using only data in which observed fuel prices are present would be biased. A correction for this self-selection bias is needed for estimating prices of these fuels. A literature search identified no past studies on application of the selectivity model for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas. This report describes selectivity models that utilize the Dubin/McFadden correction method for estimating prices of residential fuel oil/kerosine, natural gas, and liquefied petroleum gas in the Northeast, Midwest, South, and West census regions. Statistically significant explanatory variables are identified and discussed in each of the models. This new application of the selectivity model should be of interest to energy policy makers, researchers, and academicians.

Poyer, D.A.; Teotia, A.P.S.

1994-08-01T23:59:59.000Z

200

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

4b. Relative Standard Errors for Total Fuel Oil Consumption per 4b. Relative Standard Errors for Total Fuel Oil Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Fuel Oil (thousand) Total Fuel Oil Consumption (trillion Btu) Fuel Oil Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 10 14 13 13 Building Floorspace (Square Feet) 1,001 to 5,000 10 16 11 11 5,001 to 10,000 15 22 18 18 10,001 to 25,000 15 24 19 19 25,001 to 50,000 13 25 29 29 50,001 to 100,000 14 27 21 22 100,001 to 200,000 13 36 34 34 200,001 to 500,000 13 37 33 33 Over 500,000 17 51 50 50 Principal Building Activity Education 17 17 16 17 Food Sales and Service 25 36 16 16 Health Care 29 48 47 47 Lodging 27 37 32 32 Mercantile and Service 14 25 26 26 Office 14 19 21 21 Public Assembly 23 46 35 34 Public Order and Safety 28 48 46 46 Religious Worship

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Remaining Sites Verification Package for the 100-D-9 Boiler Fuel Oil Tank Site, Waste Site Reclassification Form 2006-030  

SciTech Connect (OSTI)

The 100-D-9 site is the former location of an underground storage tank used for holding fuel for the 184-DA Boiler House. Results of soil-gas samples taken from six soil-gas probes in a rectangle around the site the tank had been removed from concluded that there were no volatile organic compounds at detectable levels in the area. The 100-D-9 Boiler Fuel Oil Tank Site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

L. M. Dittmer

2006-08-10T23:59:59.000Z

202

A naphthenic jet fuel produced from an Australian marine oil shale  

SciTech Connect (OSTI)

CSR Limited holds title to an Authority to Prospect covering the Cretaceous Julia Creek oil shale deposit, located in Queensland, Australia, approximately 600 km inland from the eastern seaboard. The shale is of marine origin, having been deposited as an anaerobic sediment in a restricted epicontinental sea. Algae are the predominant source of organic matter. Resources are estimated at 20 billion barrels of oil, approximately half in shale deposits suitable for open cut mining. Typical oil shale analyses are given. Average oil yields are 70 liters per ton. The oil has several deleterious characteristics which necessitate its upgrading at higher severity than is conventional at existing refineries. Heteroatom levels are in total significantly higher than values for petroleum crudes and the aromaticity and metal content of the oil add to its complexity and unusual nature. Two processing routes have been proposed for this oil - either the production of a syncrude by hydrostabilization of the whole oil, or alternatively, upgrading separate fractions to marketable fuels. Pilot plant studies were carried out to simulate refinery processes options. During these investigations, they were successful in the first Australian production of shale-derived jet and diesel synfuels which met all specifications. In this paper, they present details of the jet fuel production and describe its unusual naphthenic character.

Stephenson, L.C.; Muradian, A. (CSR Ltd., Sydney (Australia)); Fookes, C.J.R.; Atkins, A.R. (CSIRO Div. of Energy Chemistry, Sutherland (Australia)); Batts, B.D. (Macquarie Univ., North Ryde (Australia))

1987-04-01T23:59:59.000Z

203

A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production  

SciTech Connect (OSTI)

The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

2012-07-01T23:59:59.000Z

204

Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

many vehicle owners and fleet managers seek- ing to reduce emissions and support U.S. energy security. Questions sometimes arise about the viability of fueling vehicles with...

205

Impacts of the Weatherization Assistance Program in fuel-oil heated houses  

SciTech Connect (OSTI)

In 1990, the US Department of Energy (DOE) initiated a national evaluation of its lowincome Weatherization Assistance Program. This report, which is one of five parts of that evaluation, evaluates the energy savings and cost-effectiveness of the Program as it had been applied to single-family houses heated primarily by fuel-oil. The study was based upon a representative sample (41 local weatherization agencies, 222 weatherized and 115 control houses) from the nine northeastern states during 1991 and 1992 program years. Dwelling-specific and agency-level data on measures installed, costs, and service delivery procedures were collected from the sampled agencies. Space-heating fuel-oil consumption, indoor temperature, and outdoor temperature were monitored at each house. Dwelling characteristics, air-leakage measurements, space-heating system steady-state efficiency measurements, safety inspections, and occupant questionnaires were also collected or performed at each monitored house. We estimate that the Program weatherized a total of 23,400 single-family fuel-oil heated houses in the nine northeastern states during program years 1991 and 1992. Annual fuel-oil savings were calculated using regression techniques to normalize the savings to standard weather conditions. For the northeast region, annual net fuel-oil savings averaged 160 gallons per house, or 17.7% of pre-weatherization consumption. Although indoor temperatures changed in individual houses following weatherization, there was no average change and no significant difference as compared to the control houses; thus, there was no overall indoor temperature takeback effect influencing fuel-oil savings. The weatherization work was performed cost effectively in these houses from the Program perspective, which included both installation costs and overhead and management costs but did not include non-energy benefits (such as employment and environmental).

Levins, W.P.; Ternes, M.P.

1994-10-01T23:59:59.000Z

206

Oil Shale: A Huge Resource of Low-Grade Fuel  

Science Journals Connector (OSTI)

...barrel of oil. With coal, only about 0...the technology for coal liquefaction were...shale would require mining, transporting...same condition as Appalachia. There is no doubt...cornered for surface coal mining. One would think...

William D. Metz

1974-06-21T23:59:59.000Z

207

Kinetics and Equilibrium Sorption Studies of 4-Nitrophenol on pyrolyzed and activated oil shale residue  

Science Journals Connector (OSTI)

Sorption of the organic pollutant 4-nitrophenol (4-NP) by pyrolyzed and activated Jordanian oil-shale was studied. Pyrolyzed oil shale was prepared using a fluidized bed reactor ... activation was carried out by ...

Sameer Al-Asheh; Fawzi Banat; Asmahan Masad

2004-06-01T23:59:59.000Z

208

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant  

Science Journals Connector (OSTI)

Case Study of the Emissions from a Heavy-Oil-Fueled Hungarian Power Plant ... More than 50% of the electric power in Hungary is produced by fossil-fuel-burning power plants. ... 15 The concentration of the pollutant at a location is described by an explicit function in Descartes coordinate system, where the origin is the source; the direction of the abscissa is the same as the wind direction. ...

János Osán; Szabina Török; Jenõ Fekete; Anders Rindby

2000-08-26T23:59:59.000Z

209

Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential  

Science Journals Connector (OSTI)

A laboratory experiment was conducted to identify key hydrocarbon degraders from a marine oil spill sample (Prestige fuel oil), to ascertain their role in ... . After a 17-month enrichment in weathered fuel, the ...

Núria Jiménez; Marc Viñas; Cèlia Guiu-Aragonés…

2011-08-01T23:59:59.000Z

210

Technology on In-Situ Gas Generation to Recover Residual Oil Reserves  

SciTech Connect (OSTI)

This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

Sayavur Bakhtiyarov

2008-02-29T23:59:59.000Z

211

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

212

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

213

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

214

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

215

Actions of Mycobacterium sp. Strain AP1 on the Saturated- and Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium  

Science Journals Connector (OSTI)

...Aromatic-Hydrocarbon Fractions of Fuel Oil in a Marine Medium Published ahead...Biodegradation of TPHs of fuel oil by Mycobacterium sp. strain AP1 in marine medium. Strain AP1...aromatic-hydrocarbon fractions of fuel oil in a marine medium. | The pyrene-degrading...

Joaquim Vila; Magdalena Grifoll

2009-08-07T23:59:59.000Z

216

ExxonMobil Fuels Venter's Efforts To Run Vehicles on Algae-Based Oil  

Science Journals Connector (OSTI)

...engineered Escherichia coli instead of algae to make fuel, hopes to open a large-scale...California, expects to have a commercial algae biodiesel facility online in 2012, and Algenol...Venter's efforts to run vehicles on algae-based oil. | News | 0 Hydrocarbons...

Robert F. Service

2009-07-24T23:59:59.000Z

217

Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco Busan oil spill in San Francisco Bay  

Science Journals Connector (OSTI)

...in SI Appendix, Fig. S1. General descriptions...Hatching Assay. Upon arrival, general condition of samples...bunker fuel, a combination of diesel and residual fuel oil...surface throughout the tidal cycle. We also collected naturally...

John P. Incardona; Carol A. Vines; Bernadita F. Anulacion; David H. Baldwin; Heather L. Day; Barbara L. French; Jana S. Labenia; Tiffany L. Linbo; Mark S. Myers; O. Paul Olson; Catherine A. Sloan; Sean Sol; Frederick J. Griffin; Karl Menard; Steven G. Morgan; James E. West; Tracy K. Collier; Gina M. Ylitalo; Gary N. Cherr; Nathaniel L. Scholz

2012-01-01T23:59:59.000Z

218

Development of gas turbine combustor fed with bio-fuel oil  

SciTech Connect (OSTI)

Considering the increasing interest in the utilization of biofuels derived from biomass pyrolysis, ENEL/CRT carried out some experimental investigations on feasibility of biofuels utilization in the electricity production systems. The paper considers the experimental activity for the development and the design optimization of a gas turbine combustor suitable to be fed with biofuel oil, on the basis of the pressurized combustion performance obtained in a small gas turbine combustor fed with bio-fuel oil and ethanol/bio-fuel oil mixtures. Combustion tests were performed using the combustion chamber of a 40 kWe gas turbine. A small pressurized rig has been constructed including a nozzle for pressurization and a heat recovering combustion air preheating system, together with a proper injection system consisting of two dual fuel atomizers. Compressed air allowed a good spray quality and a satisfactory flame instability, without the need of a pilot frame, also when firing crude bio-fuel only. A parametric investigation on the combustion performance has been performed in order to evaluate the effect of fuel properties, operating conditions and injection system geometry, especially as regards CO and NO{sub x} emissions and smoke index.

Ardy, P.L.; Barbucci, P.; Benelli, G. [ENEL SpA R& D Dept., Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

219

Biomass Feedstocks for Renewable Fuel Production: A review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors  

SciTech Connect (OSTI)

Renewable transportation fuels from biomass have the potential to substantially reduce greenhouse gas emissions and diversify global fuel supplies. Thermal conversion by fast pyrolysis converts up to 75% of the starting plant material (and its energy content) to a bio-oil intermediate suitable for upgrading to motor fuel. Woody biomass, by far the most widely-used and researched material, is generally preferred in thermochemical processes due to its low ash content and high quality bio-oil produced. However, the availability and cost of biomass resources, e.g. forest residues, agricultural residues, or dedicated energy crops, vary greatly by region and will be key determinates in the overall economic feasibility of a pyrolysis-to-fuel process. Formulation or blending of various feedstocks, combined with thermal and/or chemical pretreatment, could facilitate a consistent, high-volume, lower-cost biomass supply to an emerging biofuels industry. However, the impact of biomass type and pretreatment conditions on bio-oil yield and quality, and the potential process implications, are not well understood. This literature review summarizes the current state of knowledge regarding the effect of feedstock and pretreatments on the yield, product distribution, and upgradability of bio-oil.

Daniel Carpenter; Stefan Czernik; Whitney Jablonski; Tyler L. Westover

2014-02-01T23:59:59.000Z

220

"Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)"  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 Relative Standard Errors for Table 1.4;" 1.4 Relative Standard Errors for Table 1.4;" " Unit: Percents." ,,"Any",,,,,,,,,"Shipments" "NAICS",,"Energy","Net","Residual","Distillate",,"LPG and",,"Coke and",,"of Energy Sources" "Code(a)","Subsector and Industry","Source(b)","Electricity(c)","Fuel Oil","Fuel Oil(d)","Natural Gas(e)","NGL(f)","Coal","Breeze","Other(g)","Produced Onsite(h)" ,,"Total United States" 311,"Food",0.4,0.4,19.4,8.9,2,6.9,5.4,0,10.1,9.1 3112," Grain and Oilseed Milling",0,0,21.1,14.7,8.4,13.3,7.9,"X",17.9,9.1

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Distillate Fuel Oil Assessment for Winter 1995-1996  

Gasoline and Diesel Fuel Update (EIA)

U.S. Refining Capacity Utilization U.S. Refining Capacity Utilization by Tancred Lidderdale, Nancy Masterson, and Nicholas Dazzo* U.S. crude oil refinery utilization rates have steadily increased since oil price and allocation decontrol in 1981. The annual average atmospheric distillation utilization rate has increased from 68.6 percent of operable capacity in 1981 to 92.6 percent in 1994. The distillation utilization rate reached a peak of 96.4 percent in August 1994, the highest one-month average rate in over 20 years. This dramatic increase in refining capacity utilization has stimulated a growing interest in the ability of U.S. refineries to supply domestic requirements for finished petroleum products. This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in

222

Method to upgrade bio-oils to fuel and bio-crude  

DOE Patents [OSTI]

This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

2013-12-10T23:59:59.000Z

223

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

224

Quantitative Analysis of Constituents in Heavy Fuel Oil by 1H Nuclear Magnetic Resonance (NMR) Spectroscopy and Multivariate Data Analysis  

Science Journals Connector (OSTI)

This applies in particular to the shipping industry. ... The fuel oil samples were collected during the bunkering of the oil in various ports around the world and sent to Lloyd’s Register’s Fuel Oil Bunker Analysis and Advisory Service (FOBAS) for detailed physicochemical characterization. ... The mixture of two incompatible fuels leads to extensive formation of solid material, with devastating effects in the case where the precipitation takes place in the engine or tank of a HFO-powered ship or power plant. ...

Katrine Ellemann Nielsen; Jens Dittmer; Anders Malmendal; Niels Chr. Nielsen

2008-11-05T23:59:59.000Z

225

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

226

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

227

Sand pack residual oil saturations as affected by extraction with various solvents  

E-Print Network [OSTI]

invalidate the conclusions of Jennings, as his natural cores were obtained using oQ-base muds, Data presented by Shneerson an4 VasOieva sho? that reservoir 7 mineral surfaces made preferentially oil-wst with crude oils could not be altered in wettability..., and air pressure was main tained on the supply reservoirs for a minimum time. Tbe fluids used to saturate the sand packs were tap water, kerosene, Sradford crude and topped East Texas crude oil, Organic solvents used to extract the sand packs were...

Murray, Clarence

1958-01-01T23:59:59.000Z

228

Advanced thermal treatment of auto shredder residue and refuse derived fuel  

Science Journals Connector (OSTI)

The disposal of End-of-Life Vehicles (ELVs) results in a highly heterogeneous polymeric waste stream of Automobile shredder residue (ASR). Within Europe, strict legislation, such as the End-of-Life Vehicle Directive and the Landfill Directive, has imposed targets for reducing this waste stream and diverting the material away from landfill. One pathway open to recyclers is to thermally process these wastes, but the presence of chlorine and metallic species can present challenges to traditional incineration technologies. This paper discusses the use of Gasplasma®, an advanced thermal treatment technology, comprising fluidised bed oxy-steam gasification followed by plasma treatment, for ASR, refuse derived fuel (RDF) and blends of ASR and RDF wastes. The work demonstrates the ability to process these highly heterogeneous materials achieving high energy conversion (87–94%) and virtually complete carbon conversion, producing a calorific synthetic gas (syngas) capable of being used for power generation or as a chemical feedstock. The actual conversion efficiency achieved is dependent on feed chemistry and properties. The study also shows that ash components of the feed material can be transformed into an environmentally stable vitrified product.

Richard Taylor; Ruby Ray; Chris Chapman

2013-01-01T23:59:59.000Z

229

Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs  

Science Journals Connector (OSTI)

The efficiency of water flooding in heavy oil reservoirs would be improved by increasing the viscosity of the displacing phase, but the sweep efficiency is not of significance due to the low mobility of the vi...

Leiting Shi; Zhongbin Ye; Zhuo Zhang; Changjiang Zhou; Shanshan Zhu…

2010-06-01T23:59:59.000Z

230

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

SciTech Connect (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

231

Hydroconversion of polyethylene and tire rubber in a mixture with heavy oil residues  

Science Journals Connector (OSTI)

The results of studies on the processing of solid polymer wastes in a mixture with the heavy petroleum residues by hydroconversion with the use of the precursors of nanosized catalysts are given. It was found ...

Kh. M. Kadiev; A. U. Dandaev; A. M. Gyul’maliev; A. E. Batov…

2013-03-01T23:59:59.000Z

232

Modification of the feeding behavior of marine copepods by sub-lethal concentrations of water-accommodated fuel oil  

Science Journals Connector (OSTI)

The feeding behaviors of Acartia clausi and A. tonsa were measured in samples of water containing low levels of a water-accommodated fraction of No. 2 fuel oil. The copepods fed normally at a hydrocarbon concentr...

M. S. Berman; D. R. Heinle

233

Distillate Fuel Oil Imports Could Be Available - For A Price  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: So it wasn't demand and production explains only part of the reason we got through last winter with enough stocks. The mystery is solved when you look at net imports of distillate fuel last winter. As we found out, while imports are a small contributor to supply, they are sometimes crucial. Last winter, imports were the main source of supply increase following the price spike. Previous record levels were shattered as imports came pouring into the country. The fact that Europe was enjoying a warmer-than-normal winter also encouraged exports to the United States. It was massive amounts of imports, particularly from Russia, that helped us get through last winter in as good a shape as we did. Imports are expected to be relatively normal this winter. Added imports

234

Table E3.1. Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

E3.1. Fuel Consumption, 1998;" E3.1. Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,"Net","Residual","Distillate",,"LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

235

Table 4.3 Offsite-Produced Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

3 Offsite-Produced Fuel Consumption, 2002;" 3 Offsite-Produced Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," "," "," "," " " "," ",," "," ",," "," ",," ","RSE" "Economic",,,"Residual","Distillate","Natural ","LPG and",,"Coke and"," ","Row" "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Gas(d)","NGL(e)","Coal","Breeze","Other(f)","Factors"

236

Evaluation of artificially-weathered standard fuel oil toxicity by marine invertebrate embryogenesis bioassays  

Science Journals Connector (OSTI)

Weathering of petroleum spilled in the marine environment may not only change its physical and chemical properties but also its effects on the marine ecosystem. The objective of this study was to evaluate the toxicity of the water-accommodated fraction (WAF) obtained from a standard fuel oil following an environmentally realistic simulated weathering process for a period of 80 d. Experimental flasks with 40 g L?1 of fuel oil were incubated at 18 °C with a 14 h light:10 h dark photoperiod and a photosynthetically active radiation (PAR) intensity of 70 ?E m?2 s?1. Samples were taken at four weathering periods: 24 h, 7, 21 and 80 d. WAF toxicity was tested using the sea urchin (Paracentrotus lividus) and mussel (Mytilus galloprovincialis) embryo–larval bioassays and the aromatic hydrocarbons levels (AH) in the WAF were measured by gas chromatography/mass spectrometry. In contrast with the classic assumption of toxicity decrease with oil weathering, the present study shows a progressive increase in WAF toxicity with weathering, being the EC50 after 80 d eightfold lower than the EC50 at day 1, whereas AH concentration slightly decreased. In the long term, inoculation of WAF with bacteria from a hydrocarbon chronically-polluted harbor slightly reduced toxicity. The differences in toxicity between fresh and weathered fuels could not be explained on the basis of the total AH content and the formation of oxidized derivatives is suggested to explain this toxicity increase.

Juan Bellas; Liliana Saco-Álvarez; Óscar Nieto; Josep María Bayona; Joan Albaigés; Ricardo Beiras

2013-01-01T23:59:59.000Z

237

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

238

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

239

Demand growth to continue for oil, resume for gas this year in the U.S.  

SciTech Connect (OSTI)

Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

Beck, R.J.

1998-01-26T23:59:59.000Z

240

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A two-component heavy fuel oil evaporation model for CFD studies in marine Diesel engines  

Science Journals Connector (OSTI)

Abstract The paper presents an evaporation model for Heavy Fuel Oil (HFO) combustion studies. In the present work, HFO is considered as a mixture of a heavy and a light fuel component, with the thermophysical properties of the heavy component calculated from the recently introduced model of Kyriakides et al. (2009) [1]. The model proposes a proper treatment of convective heat transfer to the evaporating fuel droplets. Computational Fluid Dynamics (CFD) simulations of HFO spray combustion in constant volume chambers are performed, utilizing a modified characteristic time combustion model. The results are in good agreement with literature experimental data. Computational results for a two-stroke marine Diesel engine also compare favorably against experiments. The present development yields a basis for detailed CFD studies of HFO combustion in large marine Diesel engines.

Nikolaos Stamoudis; Christos Chryssakis; Lambros Kaiktsis

2014-01-01T23:59:59.000Z

242

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect (OSTI)

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

243

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

244

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

245

Evaluation of Gas, Oil and Wood Pellet Fueled Residential Heating System Emissions Characteristics  

SciTech Connect (OSTI)

This study has measured the emissions from a wide range of heating equipment burning different fuels including several liquid fuel options, utility supplied natural gas and wood pellet resources. The major effort was placed on generating a database for the mass emission rate of fine particulates (PM 2.5) for the various fuel types studied. The fine particulates or PM 2.5 (less than 2.5 microns in size) were measured using a dilution tunnel technique following the method described in US EPA CTM-039. The PM 2.5 emission results are expressed in several units for the benefit of scientists, engineers and administrators. The measurements of gaseous emissions of O{sub 2}, CO{sub 2}, CO, NO{sub x} and SO{sub 2} were made using a combustion analyzer based on electrochemical cells These measurements are presented for each of the residential heating systems tested. This analyzer also provides a steady state efficiency based on stack gas and temperature measurements and these values are included in the report. The gaseous results are within the ranges expected from prior emission studies with the enhancement of expanding these measurements to fuels not available to earlier researchers. Based on measured excess air levels and ultimate analysis of the fuel's chemical composition the gaseous emission results are as expected and fall within the range provided for emission factors contained in the US-EPA AP 42, Emission Factors Volume I, Fifth Edition. Since there were no unexpected findings in these gaseous measurements, the bulk of the report is centered on the emissions of fine particulates, or PM 2.5. The fine particulate (PM 2.5) results for the liquid fuel fired heating systems indicate a very strong linear relationship between the fine particulate emissions and the sulfur content of the liquid fuels being studied. This is illustrated by the plot contained in the first figure on the next page which clearly illustrates the linear relationship between the measured mass of fine particulate per unit of energy, expressed as milligrams per Mega-Joule (mg/MJ) versus the different sulfur contents of four different heating fuels. These were tested in a conventional cast iron boiler equipped with a flame retention head burner. The fuels included a typical ASTM No. 2 fuel oil with sulfur below 0.5 percent (1520 average ppm S), an ASTM No. 2 fuel oil with very high sulfur content (5780 ppm S), low sulfur heating oil (322 ppm S) and an ultra low sulfur diesel fuel (11 ppm S). Three additional oil-fired heating system types were also tested with normal heating fuel, low sulfur and ultralow sulfur fuel. They included an oil-fired warm air furnace of conventional design, a high efficiency condensing warm air furnace, a condensing hydronic boiler and the conventional hydronic boiler as discussed above. The linearity in the results was observed with all of the different oil-fired equipment types (as shown in the second figure on the next page). A linear regression of the data resulted in an Rsquared value of 0.99 indicating that a very good linear relationship exits. This means that as sulfur decreases the PM 2.5 emissions are reduced in a linear manner within the sulfur content range tested. At the ultra low sulfur level (15 ppm S) the amount of PM 2.5 had been reduced dramatically to an average of 0.043 mg/MJ. Three different gas-fired heating systems were tested. These included a conventional in-shot induced draft warm air furnace, an atmospheric fired hydronic boiler and a high efficiency hydronic boiler. The particulate (PM 2.5) measured ranged from 0.011 to 0.036 mg/MJ. depending on the raw material source used in their manufacture. All three stoves tested were fueled with premium (low ash) wood pellets obtained in a single batch to provide for uniformity in the test fuel. Unlike the oil and gas fired systems, the wood pellet stoves had measurable amounts of particulates sized above the 2.5-micron size that defines fine particulates (less than 2.5 microns). The fine particulate emissions rates ranged from 22 to 30 mg/ MJ with an average value

McDonald, R.

2009-12-01T23:59:59.000Z

246

Chapter 2: BACKGROUND (I) Description of the coal Conversion and Oil Shale Retorting Fuel Cycles 2  

E-Print Network [OSTI]

oil shale 2.2 Coal and Oil Shale Resources energy systems retorting. Coal and oil shale resources are

unknown authors

247

Correlation of selected rock and fluid properties with residual oil saturation obtained by laboratory waterfloods  

E-Print Network [OSTI]

Saturation Conditions for Cores. 15 Fluid Properties at 76 F 0 19 Core Oil Saturations After Cumulative Hater In]ection. 26 Fluid and Hock Properties of Unconsolidated Cores. 28 7. Equation !models for Independent Variables. 8. Equations From Model E-1... for Unconsolidated Ottawa Sands 35 Equations From Kodel E-2 for Unconsolidated Ottawa Sands 56 10. Comparison of Best Ecuations for Ottawa Sand and. Combined Data. . . . . . . . . . . . . . . 37 11. Experimental Data From Other Investigators 12. Equations From...

Edgington, Jason Monroe

2012-06-07T23:59:59.000Z

248

JV Task 5 - Evaluation of Residual Oil Fly Ash As A Mercury Sorbent For Coal Combustion Flue Gas  

SciTech Connect (OSTI)

The mercury adsorption capacity of a residual oil fly ash (ROFA) sample collected form Florida Power and Light Company's Port Everglades Power Plant was evaluated using a bituminous coal combustion flue gas simulator and fixed-bed testing protocol. A size-segregated (>38 {micro}g) fraction of ROFA was ground to a fine powder and brominated to potentially enhance mercury capture. The ROFA and brominated-ROFA were ineffective in capturing or oxidizing the Hg{sup 0} present in a simulated bituminous coal combustion flue gas. In contrast, a commercially available DARCO{reg_sign} FGD initially adsorbed Hg{sup 0} for about an hour and then catalyzed Hg{sup 0} oxidation to produce Hg{sup 2+}. Apparently, the unburned carbon in ROFA needs to be more rigorously activated in order for it to effectively capture and/or oxidize Hg{sup 0}.

Robert Patton

2006-12-31T23:59:59.000Z

249

Extended end-point distillate fuels from shale oil by hydrotreating coupled with catalytic dewaxing  

SciTech Connect (OSTI)

It is generally accepted that shale oils derived by either surface or in situ retorting of western oil shale require relatively severe hydrotreatment as a consequence of their high oxygen, nitrogen and olefin contents. However, the hydrotreated syn crudes so produced typically possess pour points on the order of 20-30/sup 0/C which may require transport in heated pipelines. In addition distillates derived from the hydrotreated shale oil may also be unacceptable as jet and diesel fuels as a consequence of their poor low temperature fluidity characteristics. The authors report here a relatively simple process modification which overcomes these problems, i.e., addition of a shape-selective ZSM-5 dewaxing reactor in series with the conventional hydrotreating reactor. This process scheme is shown to be operative without interstage separation of light products from the hydrotreater including ammonia. Processing conditions for the dewaxing reactor are compatible with those of the hydrotreater. Surprisingly low levels of zeolite acidity are required for substantial pour point reduction. As a result of such processing, naphthas with octanes higher than those typically obtained by hydrocracking are produced in addition to a high yield of extended end point distillate which meets essentially all requirements for acceptable diesel fuel.

LaPierre, R.B.; Gorring, R.L.; Smith, R.L.

1986-03-01T23:59:59.000Z

250

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

251

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

252

Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply of about 8000 Tonnes of Heavy Fuel Oil per Year over a Period of Three Years

1989-01-01T23:59:59.000Z

253

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

254

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

255

Life-Cycle Analysis of Transportation Fuels and Vehicle Technologies  

E-Print Network [OSTI]

Camelina Algae Gasoline Diesel Jet Fuel Liquefied Petroleum Gas Naphtha Residual Oil Hydrogen Fischer Coke Nuclear Energy Hydrogen #12;GREET examines more than 80 vehicle/fuel systems Conventional Spark-Tropsch diesel 4 Dimethyl ether 4 Biodiesel Fuel Cell Vehicles 4 On-board hydroge

Bustamante, Fabián E.

256

Marine residual fuel sorption and desorption kinetics by alkali treated rice husks  

Science Journals Connector (OSTI)

An oil absorbent material has been produced from waste biomass with an alkali treatment process. The simple yet effective process is carried out on the agricultural biowaste at 90 °C and ambient pressure. The pre...

Alireza Bazargan; Chi Wai Hui; Gordon Mckay

2014-06-01T23:59:59.000Z

257

Emission characteristics of GTL fuel as an alternative to conventional marine gas oil  

Science Journals Connector (OSTI)

The study examine the gaseous, smoke and particulate matter emission characteristics of a turbocharged heavy-duty diesel engine operated on conventional marine gas oil and gas-to-liquid Fischer–Tropsch fuel under modes of propulsion and generator operation. The gas-to-liquid showed average reductions up to 19% in nitrogen oxides, 25% in carbon monoxide, 4% in carbon dioxide and 30% in smoke with slight increase in unburned hydrocarbon emissions. Particulate number concentrations for gas-to-liquid were up to 21% higher, whereas particulates mass showed a 16% decrease at medium and high loads, while increasing by 12–15% under lower load conditions. Very low aromatic content of gas-to-liquid fuel and nearly zero sulfur level are responsible for particulate reduction.

Sergey Ushakov; Nadine G.M. Halvorsen; Harald Valland; Dag H. Williksen; Vilmar Æsøy

2013-01-01T23:59:59.000Z

258

Heating with energy saving alternatives to prevent biodeterioration of marine fuel oil  

Science Journals Connector (OSTI)

This study examined how alternative handling practices, including heat shock, can facilitate the prevention of biodeterioration of fuel oil onboard ships. At temperatures exceeding 50 °C, no microbes were observed after incubation for 2 days. Under 30 °C incubation, the total number of viable aerobic bacteria, Escherichia coli and Pseudomonas maltophilia, decreased gradually during the incubation period. Conversely, most fungi were destroyed after incubation for 5 days. Fungi generally had a better tolerance in marine fuel than E. coli after heat shock treatment. After incubation starting at ?45 °C, followed by different heat shock patterns, the total number of viable fungi and E. coli increased steadily during the 10-h incubation period. In contrast to fungi, heat shock effectively controlled E. coli growth. Heat shock treatment can control the growth of certain types of microbes at temperatures of up to 10 °C lower than commonly used.

J. Hua

2012-01-01T23:59:59.000Z

259

Straight Vegetable Oil as a Diesel Fuel? Vehicle Technologies Program (VTP) (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Performance of SVO Performance of SVO While straight vegetable oil or mixtures of SVO and diesel fuel have been used by some over the years, research has shown that SVO has technical issues that pose barriers to widespread acceptance. The published engineering literature strongly indicates that the use of SVO will lead to reduced engine life. This reduced engine life is caused by the buildup of carbon deposits inside the engine, as well as negative impacts of SVO on the engine lubricant. Both carbon deposits and excessive buildup of SVO in the lubricant are caused by the very high boiling point and viscosity of SVO relative to the required boiling range for diesel fuel. The carbon buildup doesn't necessarily happen quickly but instead over a longer period. These conclusions are

260

oil1990.xls  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(dollars) (dollars) (dollars) (dollars) Table 1. Consumption and Expenditures in U.S. Households that Use Fuel OilKerosene, 1990 Residential Buildings Average Fuel Oil...

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

33.7 33.7 27.5 25.9 23.4 28.0 25.3 February ............................. 31.8 22.3 24.8 21.6 26.9 21.8 March .................................. 32.8 27.0 26.7 24.2 28.5 25.3 April .................................... 33.1 30.7 30.7 30.0 31.4 30.3 May ..................................... 36.3 34.7 32.4 30.9 33.5 32.8 June .................................... 36.3 34.7 33.8 32.3 34.6 33.3 July ..................................... 40.2 38.5 36.0 35.0 37.5 36.3 August ................................ 45.6 44.0 42.7 41.3 43.5 42.7 September .......................... 45.6 46.8 47.6 44.2 47.0 45.6 October ............................... 51.2 47.8 48.9 44.4 49.5 45.8 November ........................... 51.9 48.9 49.0 44.7 49.8 47.1 December ........................... 53.9 50.6 50.3 45.3 51.5 48.0

262

U.S. Sales of Residual Fuel Oil by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period:

263

U.S. Adjusted Sales of Residual Fuel Oil by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period:

264

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

43.9 43.9 36.4 33.3 29.9 36.4 32.4 February ............................. 39.8 32.5 31.0 27.4 33.7 29.3 March .................................. 36.8 30.7 26.7 24.4 29.8 27.2 April .................................... 36.4 33.4 31.1 28.9 32.6 30.6 May ..................................... 36.4 32.1 31.1 28.5 32.5 29.7 June .................................... 36.4 29.7 29.9 27.3 31.7 28.1 July ..................................... 34.8 30.8 30.2 28.9 31.6 29.7 August ................................ 32.5 27.6 27.8 26.5 29.1 27.0 September .......................... 31.9 29.8 26.4 27.0 27.7 27.9 October ............................... 33.4 31.4 28.8 27.1 30.1 28.5 November ........................... 34.2 28.3 28.9 25.2 30.6 26.4 December ........................... 31.2 25.5 25.1 22.5 27.3 23.8

265

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

28.8 27.1 30.1 28.5 November ... 34.2 28.3 28.9 25.2 30.6 26.4 December ... 31.2 25.5 25.1 22.5 27.3 23.8 1998 Average...

266

Table 42. Residual Fuel Oil Prices by PAD District and State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

34.5 32.9 36.2 33.9 November ... 43.5 37.7 35.5 32.9 38.4 35.6 December ... 49.2 44.2 40.1 36.9 44.2 41.0 1995 Average...

267

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

48.9 44.4 49.5 45.8 November ... 51.9 48.9 49.0 44.7 49.8 47.1 December ... 53.9 50.6 50.3 45.3 51.5 48.0 1999 Average...

268

Table 42. Residual Fuel Oil Prices by PAD District and State  

U.S. Energy Information Administration (EIA) Indexed Site

6.4 46.6 46.1 40.7 50.6 43.7 February ... 52.4 43.7 42.3 37.0 46.3 39.8 March ... 47.2 39.6 38.4 35.3 41.3 36.7 April...

269

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

6.4 6.4 46.6 46.1 40.7 50.6 43.7 February ............................. 52.4 43.7 42.3 37.0 46.3 39.8 March .................................. 47.2 39.6 38.4 35.3 41.3 36.7 April .................................... 44.5 38.3 38.3 35.6 40.4 36.4 May ..................................... 42.6 37.7 38.9 36.3 40.1 36.7 June .................................... 43.2 39.7 39.0 36.0 40.3 37.2 July ..................................... 42.9 39.1 38.3 36.5 39.8 37.4 August ................................ 43.0 40.1 39.5 37.9 40.9 38.8 September .......................... 43.8 40.3 40.3 37.9 41.5 39.0 October ............................... 47.9 45.4 43.2 40.4 44.6 42.9 November ........................... 51.0 46.9 44.4 42.2 46.8 44.7 December ........................... 48.1 40.3 38.3 34.9 41.5 37.3 1997 Average

270

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect (OSTI)

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

271

The pass through of oil prices into euro area consumer liquid fuel prices in an environment of high and volatile oil prices  

Science Journals Connector (OSTI)

Crude and refined oil prices have been relatively high and volatile on a sustained basis since 1999. This paper considers the pass through of oil prices into consumer liquid (i.e. petrol, diesel and heating) fuel prices in such an environment. The pass through of oil prices into consumer liquid fuel prices has already been addressed extensively in the literature. Nonetheless much of this literature has either focused on the United States or on a time period when oil prices were relatively stable, or has used monthly data. The main contribution of this paper is a comprehensive combination of many features that have been considered before but rarely jointly. These features include: (1) the analysis of the euro area as an aggregate and a large number of countries (the initial 12 member states); (2) the consideration of different time periods; (3) the modelling of the data in raw levels rather than in log levels. This turns out to have important implications for our findings; (4) the use of high frequency (weekly) data, which, as results will suggest, are the lowest frequency one should consider; (5) the investigation of the different stages of the production chain from crude oil prices to retail distribution — refining costs and margins, distribution and retailing costs and margins; (6) the examination of prices including and excluding taxes — excise and value-added; (7) the modelling of prices for three fuel types — passenger car petrol and diesel separately and home heating fuel oil; (8) lastly we also address the issue of possible asymmetries, allowing for the pass through to vary according to (a) whether price are increasing or decreasing and (b) whether price levels are above or below their equilibrium level. The main findings are as follows: First, as distribution and retailing costs and margins have been broadly stable on average, the modelling of the relationship between consumer prices excluding taxes and upstream prices in raw levels rather than in logarithms has important implications for the stability of estimates of pass through when oil price levels rise significantly. Second, considering spot prices for refined prices improves significantly the fit of the estimated models relative to using crude oil prices. It also results in more economically meaningful results concerning the extent of pass through. Third, oil price pass through occurs quickly, with 90% occurring within three to five weeks. Fourth, using a relatively broad specification allowing for asymmetry in the pass through from upstream to downstream prices, there is little evidence of statistically significant asymmetries. Furthermore, even where asymmetry is found to be statistically significant, it is generally not economically significant. Lastly, these results generally hold across most euro area countries with few exceptions.

Aidan Meyler

2009-01-01T23:59:59.000Z

272

Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of  

E-Print Network [OSTI]

#12;Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of this report, the other people in the Peak Oil Netherlands Foundation for their work, peakoil.com & the oildrum

Keeling, Stephen L.

273

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

274

Validation of LED spectrofluorimeter for determination of both biodiesel and nontransesterified residual cooking oil in diesel samples  

Science Journals Connector (OSTI)

Abstract This paper presents the results of the validation of a LED spectrofluorimeter patented for the analysis of biodiesel in diesel and non-transesterified residual cooking oil (RCO) in diesel. Detection limit, quantification limit and sensitivity were determined from the regression lines. The spectrofluorimeter validated in this study was adequate for quantifying the amount of biodiesel in diesel in the range from 2% to 45% (B02–B45) with an R-squared value of 0.9962 and a detection limit of 3%. For the analysis of non-transesterified RCO in diesel, the linear range was from 2% to 20% with an R-squared value of 0.9872 and a detection limit of 2%. The accuracy of the equipment for the analysis of biodiesel in diesel and non-transesterified RCO in diesel was evaluated using Student’s t-test for paired data. With 95% confidence level there was no significant difference between the actual values and those determined by the equipment.

Marilena Meira; Cristina M. Quintella; Pedro Ramos Costa Neto; Iuri M. Pepe; Erika M. de O. Ribeiro; Weidson Leal Silva; Alexandre Lopes Del Cid; Alexandre Kamei Guimarães

2015-01-01T23:59:59.000Z

275

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network [OSTI]

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

276

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

277

Combinations of mineral oils and similar compounds with pyrethroid and organophosphate insecticides: effects on residues on plants and on toxicity to insects  

E-Print Network [OSTI]

permethri n and the organophosphate methyl parathion against house flies. Additives increased the speed of action of methyl parathion at low addi- tive:insecticide ratios. At high additive:insecticide ratios, the effect on the speed of action was more.... Leaf residues of parathion were altered by additives. Most of the parathion when applied without additives was recovered in the leaf interior. However, when applied with oils, a greater proportion of parathion was recovered on the leaf surface. Most...

Hesler, Louis Samuel

2012-06-07T23:59:59.000Z

278

High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina  

SciTech Connect (OSTI)

We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

2014-03-01T23:59:59.000Z

279

Time course of systemic oxidative stress and inflammatory response induced by an acute exposure to Residual Oil Fly Ash  

SciTech Connect (OSTI)

It is suggested that systemic oxidative stress and inflammation play a central role in the onset and progression of cardiovascular diseases associated with the exposure to particulate matter (PM). The aim of this work was to evaluate the time changes of systemic markers of oxidative stress and inflammation, after an acute exposure to Residual Oil Fly Ash (ROFA). Female Swiss mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight) or saline solution, and plasma levels of oxidative damage markers [thiobarbituric acid reactive substances (TBARSs) and protein carbonyls], antioxidant status [reduced (GSH) and oxidized (GSSG) glutathione, ascorbic acid levels, and superoxide dismutase (SOD) activity], cytokines levels, and intravascular leukocyte activation were evaluated after 1, 3 or 5 h of exposure. Oxidative damage to lipids and decreased GSH/GSSG ratio were observed in ROFA-exposed mice as early as 1 h. Afterwards, increased protein oxidation, decreased ascorbic acid content and SOD activity were found in this group at 3 h. The onset of an adaptive response was observed at 5 h after the ROFA exposure, as indicated by decreased TBARS plasma content and increased SOD activity. The observed increase in oxidative damage to plasma macromolecules, together with systemic antioxidants depletion, may be a consequence of a systemic inflammatory response triggered by the ROFA exposure, since increased TNF-? and IL-6 plasma levels and polymorphonuclear leukocytes activation was found at every evaluated time point. These findings contribute to the understanding of the increase in cardiovascular morbidity and mortality, in association with environmental PM inhalation. - Highlights: • An acute exposure to ROFA triggers the occurrence of systemic oxidative stress. • Changes in plasmatic oxidative stress markers appear as early as 1 h after exposure. • ROFA induces proinflammatory cytokines release and intravascular leukocyte activation. • PMN activation is a relevant source of reactive oxygen species in this model. • These findings may account for previously described cardiopulmonary alterations.

Marchini, T.; Magnani, N.D. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Paz, M.L. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Vanasco, V. [Cátedra de Química General e Inorgánica, Instituto de Bioquímica y Medicina Molecular (IBIMOL UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); Tasat, D. [CESyMA, Facultad de Ciencia Tecnología, Universidad Nacional de General San Martín, Martín de Irigoyen 3100, 1650 San Martín, Buenos Aires (Argentina); González Maglio, D.H. [Cátedra de Inmunología, Instituto de Estudios de la Inmunidad Humoral (IDEHU UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 954, C1113AAB Buenos Aires (Argentina); and others

2014-01-15T23:59:59.000Z

280

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 10,433 1,047 18,983 9,592 488 -617 17,890 3,998 19,273 PADD 1 130 25 3,403 1,515 3,374 230 -269 3,374 264 5,307 PADD 2 1,993 892 4,464 2,094 500 -317 -225 4,240 386 5,224 PADD 3 6,249 96 7,346 4,283 -3,758 511 -211 6,723 2,976 5,239 PADD 4 887 14 643 287 -425 -18 51 615 10 713 PADD 5 1,174 20 3,127 1,413 310 82 36 2,939 362 2,789 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Properties and performance of cotton seed oil–diesel blends as a fuel for compression ignition engines  

Science Journals Connector (OSTI)

This paper presents the evaluation of properties of straight vegetable cotton seed oil (CSO) and its blends with diesel fuel in various proportions to evaluate the performance and emission characteristics of a single cylinder compression ignition (CI) engine at constant speed of 1500 rev ? min . Diesel and CSO oil fuel blends (10% 30% 50% and 70%) were used to conduct engine performance and smoke emission tests at varying loads of 0% 20% 40% 60% 80% and 100% of full load in addition to their straight CSO and diesel fuel. The performance parameters of brake specific energy consumption (BSFC) brake thermal efficiency (BTE) mechanical efficiency (ME) exhaust gas temperature (EGT) and exhaust emission (smoke) were evaluated to find the optimum CSO and diesel fuel blend. From the experimental results the CSO10D90 blend fuel showed 3.7% reduction in BSFC 1.7% increase in BTE 6.7% increase in ME and 21.7% reduction in the smoke emissions in comparison with conventional diesel operated engine. Finally it is concluded that CSO10D90 can be used straight away in CI engines without any major modifications to the engine as it showed good performance and improved emission compared to all other fuels tested for the entire range of engine operation in comparison with diesel.

B. Murali Krishna; J. M. Mallikarjuna

2009-01-01T23:59:59.000Z

282

SRC burn test in 700-hp oil-designed boiler. Annex Volume C. Boiler emission report. Final technical report  

SciTech Connect (OSTI)

The Solvent-Refined Coal (SRC) test burn program was conducted at the Pittsburgh Energy Technology Center (PETC) located in Bruceton, Pa. One of the objectives of the study was to determine the feasibility of burning SRC fuels in boilers set up for fuel oil firing and to characterize emissions. Testing was conducted on the 700-hp oil-fired boiler used for research projects. No. 6 fuel oil was used for baseline data comparison, and the following SRC fuels were tested: SRC Fuel (pulverized SRC), SRC Residual Oil, and SRC-Water Slurry. Uncontrolled particulate emission rates averaged 0.9243 lb/10/sup 6/ Btu for SRC Fuel, 0.1970 lb/10/sup 6/ Btu for SRC Residual Oil, and 0.9085 lb/10/sup 6/ Btu for SRC-Water Slurry. On a lb/10/sup 6/ Btu basis, emissions from SRC Residual Oil averaged 79 and 78%, respectively, lower than the SRC Fuel and SRC-Water Slurry. The lower SRC Residual Oil emissions were due, in part, to the lower ash content of the oil and more efficient combustion. The SRC Fuel had the highest emission rate, but only 2% higher than the SRC-Water Slurry. Each fuel type was tested under variable boiler operating parameters to determine its effect on boiler emissions. The program successfully demonstrated that the SRC fuels could be burned in fuel oil boilers modified to handle SRC fuels. This report details the particulate emission program and results from testing conducted at the boiler outlet located before the mobile precipitator take-off duct. The sampling method was EPA Method 17, which uses an in-stack filter.

Not Available

1983-09-01T23:59:59.000Z

283

Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England  

Broader source: Energy.gov [DOE]

This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

284

Tall oil pitch  

Science Journals Connector (OSTI)

n....Undistilled residue from the distillation of crude tall oil. It is generally recognized that tall oil pitches contain some high-boiling esters and neutral...

2007-01-01T23:59:59.000Z

285

Reduction of fuel consumption  

Science Journals Connector (OSTI)

Replacing standard oil pumps with bypass control by regulated oil pumps with variable oil pressure which adapt their variable oil pumping quantity to the engine oil pressure requirements promises reductions in fuel

Dieter Voigt

2003-12-01T23:59:59.000Z

286

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

287

Changes in nesting behavior and lipid content of a marine amphipod (Amphithoe valida) to the toxicity of a no. 2 fuel oil  

Science Journals Connector (OSTI)

Laboratory cultured amphipods, Amphithoe valida, were exposed to the water soluble fractions (WSF) of a No. 2 fuel oil for 6 days, and then transferred to clean sea water for one week. Survival and nesting behavi...

W.Y. Lee; S.A. Macko; J.A.C. Nicol

1981-02-01T23:59:59.000Z

288

Petroleum hydrocarbon resistance in the marine wormNeanthes arenaceodentata (polychaeta: Annelida), induced by chronic exposure to no. 2 fuel oil  

Science Journals Connector (OSTI)

Three successive generations of the marine polychaetous annelidNeanthes arenaceodentata...taken from a laboratory population, were continuously exposed to one of three sublethal concentrations of No. 2 Fuel Oil w...

S. S. Rossi; J. W. Anderson

1978-07-01T23:59:59.000Z

289

Smoking Status and Occupational Exposure Affects Oxidative DNA Injury in Boilermakers Exposed to Metal Fume and Residual Oil Fly Ash  

Science Journals Connector (OSTI)

...oxidative damage on the weekends (e.g., marathon running and exposure to environmental tobacco...coal tars and derived products, shale oils and soots. Part 4. 35. Lyon, France...Williams N. Vanadium poisoning from cleaning oil-fired burners. Br J Ind Med, 1952...

Sutapa Mukherjee; Lyle J. Palmer; Jee Young Kim; David B. Aeschliman; Robert S. Houk; Mark A. Woodin; and David C. Christiani

2004-03-01T23:59:59.000Z

290

Smoking Status and Occupational Exposure Affects Oxidative DNA Injury in Boilermakers Exposed to Metal Fume and Residual Oil Fly Ash  

Science Journals Connector (OSTI)

...exposure) during the overhaul of an oil-fired boiler. The well-validated...plant during the overhaul of an oil-fired boiler. Study Population...spectrometer measured 20 lines/peak using 50 ms/line for the following...adequate signal equilibration. The peaks for each analyte were integrated...

Sutapa Mukherjee; Lyle J. Palmer; Jee Young Kim; David B. Aeschliman; Robert S. Houk; Mark A. Woodin; and David C. Christiani

2004-03-01T23:59:59.000Z

291

Development, Application and Performance of Venturi Register L. E. A. Burner System for Firing Oil and Gas Fuels  

E-Print Network [OSTI]

DEVELOPMENT, APPLICATION AND PERFORMANCE OF VENTURI REGISTER L. E. A. BURNER SYSTEM FOR FIRING OIL AND GAS FUELS A. D. Cawte CEA Combustion, Inc. Stamford, Connecticut INTRODUCTION The effect of reducing excess air as a means of curtailing..., extensive investigation work was undertaken us ing the water analog model techniques developed by Associated British Combustion for burner design. The development work resulted in the burner design known today as the Venturi Register, LEA (low excess air...

Cawte, A. D.

1979-01-01T23:59:59.000Z

292

Competitiveness of Wind Power with the Conventional Thermal Power Plants Using Oil and Natural Gas as Fuel in Pakistan  

Science Journals Connector (OSTI)

Abstract The fossil fuels mainly imported oil and natural gas are major sources of electricity generation in Pakistan. The combustion of fossil fuels in thermal power plants has greater environmental impacts like air pollution and global warming. Additionally, the import of oil is a heavy burden on the poor economy of the country. Pakistan is a country with huge renewable sources; wind energy being the major one. This paper elucidate the cost-competitiveness of wind power with the conventional thermal power plants. In this regard, Levelized estimated cost of a 15MW wind power plant is compared with three types of conventional thermal power plants, namely (i) Oil-fired thermal power plant (ii) Natural gas-fire combine cycle power plant (iii) Diesel oil- fired gas turbine cycle 100MW each. The results show that the cost of wind energy is lowest with Rs. 3/kWh. It is concluded that the wind power is cost-competitive to the conventional thermal power plants in Pakistan. The cost estimation for wind energy is lowest of all others with Rs. 3/kWh.

A. Mengal; M.A. Uqaili; K. Harijan; Abdul Ghafoor Memon

2014-01-01T23:59:59.000Z

293

Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD  

SciTech Connect (OSTI)

Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inert sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.

Short, Mark [Los Alamos National Laboratory; Quirk, James J [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Briggs, Matthew E [Los Alamos National Laboratory; Shinas, Micheal A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

294

Effects of Microwave Radiation on Oil Recovery  

Science Journals Connector (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil?in?water and oil?water?solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers water can be discharged and oil is collected. High?frequency microwave recycling process can recover oil and gases from oil shale residual oil drill cuttings tar sands oil contaminated dredge/sediments tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly fuel?generating recycler to reduce waste cut emissions and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.

2011-01-01T23:59:59.000Z

295

Chemical Kinetic Modeling of Fuels  

Broader source: Energy.gov (indexed) [DOE]

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

296

Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report  

SciTech Connect (OSTI)

The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

Bradshaw, W.M.

1988-08-01T23:59:59.000Z

297

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

298

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

299

The Role of Sustainability Standards in the Energetic Use of Palm Oil Plantation Residues: Case Study of Cameroon  

Science Journals Connector (OSTI)

This chapter aims to discuss the sustainability aspects of using residual wood from plantations for the production of electricity and heat. ... There are continuous debates about the potential of biomass feedstoc...

Michael Schmidt; Berthold Hansmann; Pia Dewitz

2014-01-01T23:59:59.000Z

300

Secure Fuels from Domestic Resources The Continuing Evolution of America’s Oil Shale and Tar  

E-Print Network [OSTI]

domestic oil shale and tar sands industries since the first release and to include profiles of additional

Sands Industries

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A BREAF OVERVIEW OF MOTOR FUELS FROM SHALE OIL OF KUKERSITE  

E-Print Network [OSTI]

conventional oil) have existed since before World War II. While long-term full-scale applications had in most

V. Oja

302

Marine fuels. (Latest citations from Information Services in Mechanical Engineering database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning research and experimentation, fuel system design, future demands, contrast and comparisons, and applications of various marine engine fuels and lubricants. Residual fuel oils, coal powered steam propulsion, homogenizing and treating fuels, coal liquefication, diesel fuel power, electrical power, gas turbines, waste exhaust heat-energy recovery systems, exhaust emissions, water-emulsified fuels, conservation, and nuclear fuels are among the topics discussed. Developments in fuels and their effects on power plant wear are included. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

303

Heavy fuel oil fired CHP plant -- Impact on environment: Case Germany  

SciTech Connect (OSTI)

In 1995 Waertsilae NSD Finland Oy got the order to build a 14 MWe CHP (simultaneous heat and power) diesel power plant for Cerestar GMBH in Germany. The order consisted of a complete delivery, installation and commissioning of the fuel treatment system, the diesel engine with alternator, the process control system, the exhaust gas cleaning system (SCR and DESOX) and the heat recovery system. The factory producing starch is situated in the city of Krefeld close to Dusseldorf. The process integration of the diesel power plant into the existing factory was done in a close cooperation between the client and Waertsilae and the result is a CHP-plant suiting well into the existing factory. The diesel power plant went into operation in January 1996. The operating experience has been very encouraging, the annual running time is above 8,000 h and by the end of December 1997 about 16,300 running hours had been accumulated. The power plant is fulfilling the strict TA-LUFT emission limits and even half TA-LUFT values regarding NO{sub x} and SO{sub x}. The measured total efficiency of the power plant is above 90%. The choice of the most economical DESOX-method is dependent on several factors: investment and running cost, plant size, environmental legislation requirements, commercially available heavy fuel oil brands, etc. In small diesel plants the NaOH-scrubber is the most competitive desulfurization (DESOX) method, due to the lower investment cost compared to other DESOX-systems. A wet NaOH scrubbers system is installed. The used reagent is an about 50 wt-% aqueous NaOH solution. Low SO{sub x}-emissions of the flue gas is easily achieved by adjusting the pH of the scrubber liquid. The dissolved salt in the generated liquid end-product consists mainly of Na{sub 2}SO{sub 4}, due to the high oxygen content of the diesel flue gas. Running experiences have shown that the installed wet NaOH scrubber is easy to operate and suits the factory in Krefeld well.

Boij, J.

1998-07-01T23:59:59.000Z

304

SUPRI heavy oil research program  

SciTech Connect (OSTI)

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

305

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between...

306

LOW COST BIOHEATING OIL APPLICATION.  

SciTech Connect (OSTI)

The report describes primarily the results of combustion tests carried out with a soy methyl ester (SME) that can be considered as a biofuel that does not quite meet the ASTM D 6751-02 specifications for biodiesel. The tests were performed in a residential boiler and a commercial boiler. Blends of the SME in distillate fuel (home heating fuel or equivalently, ASTM No.2 fuel oil) were tested in both the boilers. Similar tests had been conducted in a previous project with ASTM biodiesel blends and hence provided a comparison. Blends of the SME in ASTM No.6 oil (residual oil) were also tested in the commercial boiler using a different burner. Physical properties of the blends (in both the petroleum based fuels) were also measured. It was found that the SME blends in the distillate burned, not surprisingly, similarly to biodiesel blends. Reductions in NOx with blending of the SME were the most significant finding as before with biodiesel blends. The blends in No.6 oil also showed reductions in NOx in the commercial boiler combustion tests, though levels with No.6 blends are higher than with No.2 blends as expected. A significant conclusion from the physical property tests was that even the blending of 10% SME with the No.6 oil caused a significant reduction in viscosity, which suggests a potential direction of application of such blends.

KRISHNA,C.R.

2003-05-01T23:59:59.000Z

307

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

308

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

309

Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities  

Science Journals Connector (OSTI)

The issue of a peak in world oil supply has become a mainstream concern over the past several years. The petroleum geology models of post-peak oil production indicate supply declines from 1.5% to 6% per year. Travel requires fuel energy, but current transportation planning models do not include the impacts of constrained fuel supply on private travel demand. This research presents a method to assess the risk to activities due to a constrained fuel supply relative to projected unconstrained travel demand. The method assesses the probability of different levels of fuel supply over a given planning horizon, then calculates impact due to the energy supply not meeting the planning expectations. A new travel demand metric which characterizes trips as essential, necessary, and optional to wellbeing is used in the calculation. A case study explores four different urban forms developed from different future growth options for the urban development strategy of Christchurch, New Zealand to 2041. Probable fuel supply availability was calculated, and the risk to transport activities in the 2041 transport model was assessed. The results showed all the urban forms had significantly reduced trip numbers and lower energy mode distributions from the current planning projections, but the risk to activities differed among the planning options. Density is clearly one of the mitigating factors, but density alone does not provide a solution to reduced energy demand. The method clearly shows how risk to participation in activities is lower for an urban form which has a high degree of human powered and public transport access to multiple options between residential and commercial/industrial/service destinations. This analysis has led to new thinking about adaptation and reorganization of urban forms as a strategy for energy demand reduction rather than just densification.

Susan Krumdieck; Shannon Page; André Dantas

2010-01-01T23:59:59.000Z

310

Performance, emission and combustion characteristics of DI diesel engine running on blends of calophyllum inophyllum linn oil (honne oil)/diesel fuel/kerosene  

Science Journals Connector (OSTI)

Kerosene (K)/diesel fuel (D)/honne oil (H) blends have a potential to improve the performance and emissions and to be alternatives to neat diesel fuel (ND) and has not been reported in the literature. Experiments have been conducted on DI diesel engine when fuelled with ND, H10 (10%H + 90%D, by volume) to H30, HK10 (10%H + 45%K + 45%D), HK20 (20%H + 40%K + 40%D) and HK30 (30%H + 35%K + 35%D). The emissions [CO, HC and smoke density (SD)] of fuel blend HK20 are found to be lowest, with CO and HC dropping significantly. The NOx level is higher with HK10 to HK30 compared to ND and H10 to H30. The brake thermal efficiency of HK10 to HK30 is almost the same and it is higher as compared to ND and H10 to H30. There is a good trade off between NOx and SD. Peak cylinder pressure and premixed combustion phase increases as kerosene content increases.

B.K. Venkanna; C. Venkataramana Reddy

2011-01-01T23:59:59.000Z

311

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

312

Effect of Fuel Injection Timing on the Emissions of a Direct-Injection (DI) Diesel Engine Fueled with Canola Oil Methyl Ester?Diesel Fuel Blends  

Science Journals Connector (OSTI)

(3, 4) A lot of researchers have reported that using biodiesel as a fuel in diesel engines causes a diminution in harmful exhaust emissions as well as equivalent engine performance with diesel fuel. ... Engine tests have been carried out with the aim of obtaining comparative measures of torque, power, specific fuel consumption and emissions such as CO, smoke d. and NOx to evaluate and compute the behavior of the diesel engine running on the above-mentioned fuels. ... Ma, Z.; Huang, Z. H.; Li, C.; Wang, X. B.; Miao, H.Effects of fuel injection timing on combustion and emission characteristics of a diesel engine fueled with diesel?propane blends Energy Fuels 2007, 21 ( 3) 1504– 1510 ...

Cenk Sayin; Metin Gumus; Mustafa Canakci

2010-03-11T23:59:59.000Z

313

Usage of Fuel Mixtures Containing Ethanol and Rapeseed Oil Methyl Esters in a Diesel Engine  

Science Journals Connector (OSTI)

However, its use in the diesel engine cycle is hampered by the poor motor-fueling characteristics of lower alcohols and, primarily, the limited solubility of ethanol in fossil diesel fuel and its low self-ignition characteristics. ... Coefficient ? = Gair/(GfL0) estimates air supply into a diesel engine cylinder (indicator process), taking into account the differences of stoichiometric ratio L0 of the tested fuels, caused by the increase of the E portion in the RME?E mixture (Gair is air consumption, and Gf is fuel consumption). ... Future research will concentrate on the analysis of fuel injection and heat release rate characteristics in a cylinder, while a diesel engine is running on biodiesel fuels RME?E, and also on the operational parameters of diesel engines when fossil diesel fuel is replaced with three-component fuels D?RME?E. ...

Sergejus Lebedevas; Galina Lebedeva; Violeta Makareviciene; Prutenis Janulis; Egle Sendzikiene

2008-11-12T23:59:59.000Z

314

Basic studies in the displacement of residual oil by chemical flooding. Annual report, February 1, 1978-January 31, 1979  

SciTech Connect (OSTI)

Research studies at the University of Houston are concerned with (1) the role of dynamic interfacial properties on the displacement and reconnection processes occurring in surfactant flooding processes and (2) the analytical description of multiphase displacement dynamics using ganglia population balance models and simulation algorithms. Tests on oil-water-surfactant systems using both a drop deformation and orientation method and the viscous traction method indicate the largest interfacial viscosities at salt concentrations in the neighborhood of the optimal salinity. Values of interfacial viscosities for crude oil systems were considerably larger than those associated with iso-octane systems. A new technique involving the use of a spinning drop apparatus has been developed for controlled coalescence tests. Tests to date on several iso-octane-brine-surfactant systems and one crude oil-brine-surfactant system indicate that the fastest coalescence occurs at salt concentrations near the point of optimal salinity. Also, the crude oil systems coalesce at significantly slower rates than the iso-octane systems. Capillary displacement tests involving iso-octane drops being displaced by water have been attempted in both constant pressure drop and constant displacement rate systems. Work has continued in the development of a theoretical description of the dynamics of mobilized oil ganglia, their breakup, coalescence, and entrapment. Improvements in the mobilization criteria have been effected, and hundreds of computer-aided stochastic realizations have been performed for solitary ganglia of all sizes of interest moving in a 100 x 200 sandpack. These realizations show clearly that a solitary ganglion gets slenderized as it moves, and that either it gets restranded whole after a few rheons, or that it first breaks into two daughter ganglia, which eventually get stranded.

Flumerfelt, R.W.; Payatakes, A.C.; Tham, M.K.

1980-02-01T23:59:59.000Z

315

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

316

Characteristics of the performance and emissions of a HSDI diesel engine running with cottonseed oil or its methyl ester and their blends with diesel fuel  

Science Journals Connector (OSTI)

An experimental study has been conducted to evaluate the use of various blends of cottonseed oil or its methyl ester (bio-diesel) with diesel fuel, in blend ratios from 10/90 up to 100/0, in a fully instrumented, four-stroke, High Speed Direct Injection (HSDI), Ricardo/Cussons 'Hydra' diesel engine. The tests were conducted using each of the above fuel blends or neat fuels, with the engine working at a medium and a high load. Volumetric fuel consumption, exhaust smokiness and exhaust-regulated gas emissions such as nitrogen oxides, carbon monoxide and unburnt hydrocarbons were measured. The differences in the performance and exhaust emissions from the baseline operation of the engine, that is, when working with neat diesel fuel, were determined and compared, as well as the differences between cottonseed oil or its methyl ester and their blends. Theoretical aspects of diesel engine combustion were used to aid the correct interpretation of the engine behaviour.

Constantine D. Rakopoulos; Kimon A. Antonopoulos; Dimitrios C. Rakopoulos; Emmanuel C. Kakaras; Efthimios G. Pariotis

2007-01-01T23:59:59.000Z

317

The effect of low-temperature oxidation on the fuel and produced oil during in situ combustion  

SciTech Connect (OSTI)

Combustion tube experiments using 10.2{degrees} API crude oil were performed, in which a different sample matrix was used in each run. Three matrix types were tested: sand, sand and clay, and sand and sand fines. As a result of the low fuel concentration, low-temperature oxidation (LTO) was observed in the run where the matrix consisted of sand only. High-temperature oxidation (HTO) was observed in runs where either clay or sand fines were part of the matrix. Ignition was not obtained in the LTO run, which had a reaction front temperature of only 350{degrees}C (662{degrees}F), compared to a combustion front temperature of 500{degrees}C (932{degrees}F) for the HTO runs. From elemental analysis, the fuel during the LTO run was determined to be an oxygenated hydrocarbon with an atomic oxygen-carbon ratio of 0.3.

Mamora, D.D. [Texas A& M Univ., College Station, TX (United States); Brigham, W.E. [Stanford Univ., CA (United States)

1995-02-01T23:59:59.000Z

318

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network [OSTI]

2 Jet fuel and crude oil price history. From IATA website:oil discovery and fuel production………………………. ……..4 Figure.2: Jet fuel and crude oil price history……………………………. …………

Hu, Sangran

2012-01-01T23:59:59.000Z

319

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

320

Biodegradation of Fuel Oil Hydrocarbons in Soil Contaminated by Oily Wastes Produced During Onshore Drilling Operations  

Science Journals Connector (OSTI)

The petroleum industry generates high amount of oily wastes during drilling, storage and refining operations. Onshore drilling operations produce oil based wastes, typically 100–150m-3 well. The drilling cuttings...

Qaude-Henri Chaîneau; Jean-Louis Morel; Jean Oudot

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Risk-Cost Tradeoff Analysis of Oil vs. Coal Fuels for Power Generation  

Science Journals Connector (OSTI)

This study examines the economic requirements and health consequences of converting an electrical power generating unit from oil to coal combustion at the West Springfield, MA Generating Station. Three alterna...

Lawrence B. Gratt; Gregory S. Kowalczyk

1991-01-01T23:59:59.000Z

322

Effects of SO2/SO2 on the efficiency with which MgO inhibits vanadic corrosion in residual fuel fired gas turbines  

Science Journals Connector (OSTI)

The use of MgO as a fuel additive to combat vanadic corrosion is widely accepted practice for boilers and turbines operating on residual or low grade fuels. MgO has the ability to form high melting stable vanadates but the presence of SO2/SO2 can react with the magnesium and reduce its effectiveness. This paper aims to quantify the effectiveness of MgO as an inhibitor in the presence of increasing amounts of SOx. A method of determining permissible levels of \\{SOx\\} to satisfy predetermined corrosion rates or additive efficiencies is described. Examples of the loss of additive efficiency with volume of \\{SOx\\} at temperatures of 750 and 850°C are given for both nickel and cobalt base alloys.

T.N. Rhys-Jones; J.R. Nicholls; P. Hancock

1983-01-01T23:59:59.000Z

323

Table 5.2 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 End Uses of Fuel Consumption, 2010; 2 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280

324

Table 5.1 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5.1 End Uses of Fuel Consumption, 2010; 5.1 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(d) LPG and Coke and Breeze) NAICS Total Electricity(b) Fuel Oil Diesel Fuel(c) (billion NGL(e) (million Other(f) Code(a) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process

325

Table 5.7 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

7 End Uses of Fuel Consumption, 2010; 7 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Demand for Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Demand Residual and Natural Gas(c) LPG and Coke and Breeze) for Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million End Use (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) Total United States TOTAL FUEL CONSUMPTION 845,727 13 22 5,064 18 39 Indirect Uses-Boiler Fuel 12,979 7 3 2,074 3 26 Conventional Boiler Use 12,979 3 1 712 1 3 CHP and/or Cogeneration Process -- 4 3 1,362 2 23 Direct Uses-Total Process 675,152 4 9 2,549 7 13 Process Heating

326

Table 5.5 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010; 5 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Physical Units or Btu. Distillate Coal Fuel Oil (excluding Coal Net Residual and Natural Gas(c) LPG and Coke and Breeze) Total Electricity(a) Fuel Oil Diesel Fuel(b) (billion NGL(d) (million Other(e) End Use (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) (trillion Btu) Total United States TOTAL FUEL CONSUMPTION 14,228 714,166 13 22 5,064 18 39 5,435 Indirect Uses-Boiler Fuel -- 7,788 7 3 2,074 3 26 -- Conventional Boiler Use -- 7,788 3 1 712 1 3 -- CHP and/or Cogeneration Process -- 0 4 3 1,362 2 23 -- Direct Uses-Total Process

327

Table 5.6 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010; 6 End Uses of Fuel Consumption, 2010; Level: National and Regional Data; Row: End Uses; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal Net Residual and LPG and (excluding Coal End Use Total Electricity(a) Fuel Oil Diesel Fuel(b) Natural Gas(c) NGL(d) Coke and Breeze) Other(e) Total United States TOTAL FUEL CONSUMPTION 14,228 2,437 79 130 5,211 69 868 5,435 Indirect Uses-Boiler Fuel -- 27 46 19 2,134 10 572 -- Conventional Boiler Use -- 27 20 4 733 3 72 -- CHP and/or Cogeneration Process -- 0 26 15 1,401 7 500 -- Direct Uses-Total Process -- 1,912 26 54 2,623 29 289 -- Process Heating -- 297 25 14 2,362 24 280 -- Process Cooling and Refrigeration -- 182 * Q 25

328

Table 5.4 End Uses of Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

4 End Uses of Fuel Consumption, 2010; 4 End Uses of Fuel Consumption, 2010; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 2,886 79 130 5,211 69 868 Indirect Uses-Boiler Fuel 44 46 19 2,134 10 572 Conventional Boiler Use 44 20 4 733 3 72 CHP and/or Cogeneration Process -- 26 15 1,401 7 500 Direct Uses-Total Process 2,304 26 54 2,623 29 289 Process Heating 318 25 14 2,362 24 280 Process Cooling and Refrigeration

329

DURABILITY OF VERY LOW CAPACITY PRESSURE ATOMIZED FUEL NOZZLES USED WITH LOW FIRING RATE RESIDENTIAL OIL BURNERS.  

SciTech Connect (OSTI)

Brookhaven National Laboratory (BNL), working for the United States Department of Energy (DOE), has conducted a preliminary evaluation of the potential of very low fuel input capacity Simplex type pressure atomizing nozzles for use with oil burners designed for residential boilers, furnaces and water heaters. These nozzles under suitable conditions can be sufficiently reliable to enable new heating system designs. This would allow for the design of heating appliances that match the smaller load demands of energy efficient homes built with modern components and architectural systems designed to minimize energy use. When heating systems are installed with excessive capacity, oversized by three to four times the load, the result is a loss of up to ten percent as compared to the rated appliance efficiency. The use of low capacity nozzles in systems designed to closely match the load can thereby result in significant energy savings. BNL investigated the limitations of low flow rate nozzles and designed long-term experiments to see if ways could be determined that would be beneficial to long-term operation at low input capacities without failures. In order to maximize the potential for success the best possible industry practices available were employed. Low flow rate nozzles primarily fail by blockage or partial blockage of internal fuel flow passages inside the nozzle. To prevent any contaminants from entering the nozzle BNL investigated the geometry and critical dimensions and the current sate of the art of fuel filter design. Based on this investigation it was concluded that the best available filters should be more than capable of filtering contaminants from the fuel prior to entering the oil burner itself. This position was indeed validated based on the long-term trials conducted under this study no evidence resulted to change our position. It is highly recommended that these filters rated at 10 microns and with large filter capacity (surface area), should be used with all oil burner installations. The other possible failure mode had been attributed to fuel degradation and this became the main focus of the evaluation. The degradation of fuel usually occurs faster under higher temperature conditions. To preclude this as much as possible controls that provided for a post-purge of combustion airflow after burner shut down were selected. This provided a short period of time where the burner's combustion air blower continues to operate after the flame has gone out. This tends to cool the nozzle and in turn the fuel inside the small flow pathways inside the nozzle components. This study concludes that the use of low capacity nozzles is possible but only when the temperature and thermal mass environment of the combustion chamber result in a relatively ''cool'' condition. This was accomplished in one long-term experiment that essentially operated for a full heating season equivalent with no evidence of nozzle plugging or failure. The nozzle body surface temperature was kept at or below 150 F during the duration of the trial. On the other hand, a second system was studied that ended in a partial nozzle blockage and a system failure. In this ''hot environment'' system the nozzle body temperature reached 210 F. This occurred at close to a full heating season equivalent, yet it still would have resulted in a no-heat complaint by the homeowner.

MCDONALD,R.J.

2007-05-01T23:59:59.000Z

330

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

retrofitted with an auxiliary fuel tank to enable the use of biodiesel, waste vegetable oil, or straight vegetable oil. Eligible buses must pass inspection in accordance with the...

331

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Tax Exemption Biodiesel producers that produce biodiesel from waste vegetable oil feedstock are exempt from the state special fuel tax. Waste vegetable oil is used...

332

Utilization of Estonian oil shale at power plants  

SciTech Connect (OSTI)

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

333

Preparation of liquid motor fuel components from oil shale gasification products  

Science Journals Connector (OSTI)

The gasification of shale from two domestic deposits (Kashpirskoe and Leningradskoe) and the subsequent transformation of the products of this process into the components of liquid motor fuels were studied.

B. I. Katorgin; A. L. Lapidus

2011-04-01T23:59:59.000Z

334

Marine fuels. January 1973-February 1988 (Citations from Information Services in Mechanical Engineering data base). Report for January 1973-February 1988  

SciTech Connect (OSTI)

This bibliography contains citations concerning research and experimentation, fuel-system design, future demands, contrast and comparisons, and applications of various marine-engine fuels and lubricants. Residual fuel oils, coal-powered steam propulsion, homogenizing and treating fuels, coal liquefication, diesel-fuel power, electrical power, gas turbines, waste-exhaust heat-energy recovery systems, exhaust emissions, water-emulsified fuels, conservation, and nuclear fuels are among the topics discussed. Developments in fuels and their effects on power-plant wear are included. (This updated bibliography contains 260 citations, 73 of which are new entries to the previous edition.)

Not Available

1988-03-01T23:59:59.000Z

335

Marine fuels. January, 1973-October, 1981 (citations from Information Services in Mechanical Engineering Data Base). Report for Jan 73-Oct 81  

SciTech Connect (OSTI)

Citations in this bibliography cover research and experimentation, fuel system design, future demands, contrast and comparisons, and applications of various marine engine fuels and lubricants. Residual fuel oils, coal powered steam propulsion, homogenizing and treating fuels, electrical power, gas turbines, waste exhaust heat-energy recovery systems, exhaust emissions, conservation, and nuclear fuels are among the topics discussed relevant to marine engine fuels and fuel systems. Developments in fuels and their effects on power plant wear are included. (Contains 74 citations fully indexed and including a title list.)

Not Available

1981-10-01T23:59:59.000Z

336

Chapter 7 - Gas Turbine Fuel Systems and Fuels  

Science Journals Connector (OSTI)

Abstract The basics of a gas turbine fuel system are similar for all turbines. The most common fuels are natural gas, LNG (liquid natural gas), and light diesel. With appropriate design changes, the gas turbine has proved to be capable of handling residual oil, pulverized coal, syngas from coal and various low BTU fluids, both liquid and gas, that may be waste streams of petrochemical processes or, for instance, gas from a steel (or other industry) blast furnace. Handling low BTU fuel can be a tricky operation, requiring long test periods and a willingness to trade the savings in fuel costs with the loss of turbine availability during initial prototype full load tests. This chapter covers gas turbine fuel systems and includes a case study (Case 5) on blast furnace gas in a combined cycle power plant (CCPP). “All truths are easy to understand once they are discovered, the point is to discover them.” —Plato

Claire Soares

2015-01-01T23:59:59.000Z

337

Performance Evaluation of Fuel Blends Containing Croton Oil, Butanol, and Diesel in a Compression Ignition Engine  

Science Journals Connector (OSTI)

† Department of Mechanical Engineering, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa ... (2) The use of vegetable oils in diesel engines is as old as the diesel engine itself. ... The results indicate a general increase in NOx emissions as the load increases at a steady engine speed. ...

Frank Lujaji; Akos Bereczky; Makame Mbarawa

2010-07-15T23:59:59.000Z

338

Assessment of the effect of low viscosity oils usage on a light duty diesel engine fuel consumption in stationary and transient conditions  

Science Journals Connector (OSTI)

Abstract Regarding the global warming due to CO2 emissions, the crude oil depletion and its corresponding rising prices, \\{OEMs\\} are exploring different solutions to increase the internal combustion engine efficiency, among which, the use of Low Viscosity Oils (LVO) represents one attractive cost-effective way to accomplish this goal. Reported in terms of fuel consumption, the effect of LVO is round 2%, depending on the test conditions, especially if the test has taken place in laboratory or “on road” conditions. This study presents the fuel consumption benefits of a commercial 5W20, compared against higher SAE grade oils, on a light duty diesel engine, when it is running under motored test, stationary fired test and the New European Driving Cycle (NEDC).

Vicente Macián; Bernardo Tormos; Vicente Bermúdez; Leonardo Ramírez

2014-01-01T23:59:59.000Z

339

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

Adam R. 2008. “Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. Inunconventional (tar sands or shale oil) being more energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

340

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

from Conventional Oil Production and Oil Sands. ” Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

Coughlin, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

342

Biodiesel production from Stauntonia chinensis seed oil (waste from food processing): Heterogeneous catalysis by modified calcite, biodiesel purification, and fuel properties  

Science Journals Connector (OSTI)

Abstract In the present research, the potential of Stauntonia chinensis (SC) seed oil obtained from processing waste was investigated for the first time as biodiesel feedstock, including physicochemical properties of the oil, the heterogeneous catalysis process, purification, and fuel properties. A 29.37 ± 0.64 wt.% of oil content and 2.41 mg KOH/g of acid value was found. Under the optimised reaction conditions in the presence of modified calcite, an 88.02% of yield and a 98.90 wt.% of FAME content were achieved. According to EN 14124 (2012), SC biodiesel exhibited superior fuel properties compared to the most of other feedstock oils since it had an ideal fatty acid composition (low Cn:0 (8.06 wt.%), high Cn:1 (80.16 wt.%), and low Cn:2,3 (8.45 wt.%)). It was absolutely vital that the use of SC seed oil as a biodiesel feedstock would not compete with its use in food. In summary, SC seed oil should be recommended as a promising feedstock for biodiesel.

Rui Wang; Lili Sun; Xiaolin Xie; Lizhi Ma; Zhigang Liu; Xiaoyan Liu; Ning Ji; Guofang Xie

2014-01-01T23:59:59.000Z

343

Fuel Cell Technologies Overview  

Broader source: Energy.gov (indexed) [DOE]

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

344

At-sea test and demonstration of coal-oil mixture as a marine boiler fuel. part I: shoreside testing. Final report Nov 81-Mar 82  

SciTech Connect (OSTI)

This report documents laboratory and wear-loop experimental evaluations and a combustion test using a full-scale Marine burner and fuel-supply equipment using a coal/oil mixture (COM). Laboratory work led to selection of a fuel acceptable for use in a shipboard demonstration from six candidate COMs. Significant variations were discovered among these samples, and an appropriate final selection was made for the shipboard tests. This COM was further evaluated during a land-based combustion test using a Marine burner (30 million-Btu/hr scale) installed in an industrial package boiler. Comparative tests using No. 6 fuel oil and the selected COM were performed along with a general shakedown and test run of the pump and heating set designed for the at-sea demonstration. Combustion tests indicated that the replacement of No. 6 fuel oil with the proper COM is quite feasible. However, close attention must be given to the handling and atomization of this fuel. A modified T-jet atomizer performed with acceptable levels of wear, plugging, and ash disposition problems. It was concluded that an at-sea demonstration of the COM should be pursued.

Wagoner, C.L.; Eckhart, C.F.; Clark, G.A.

1982-04-01T23:59:59.000Z

345

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect (OSTI)

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

346

A Contrast Between Distillate Fuel Oil Markets in Autumn 1996 and 1997  

Gasoline and Diesel Fuel Update (EIA)

Cheryl Cheryl J. Trench, an independent petroleum analyst, contributed to this article. Unless otherwise referenced, data in this article are taken from the following Energy Information Administration sources: Weekly Petroleum Status Report, DOE/EIA-0208; Petroleum Supply Monthly, DOE/EIA-0109; Petroleum Supply Annual, DOE/EIA-0340; Petroleum Marketing Monthly, DOE/EIA-0380; Short-Term Energy Outlook, DOE/EIA-0202; and Short-Term Integrated Forecasting System. 1996 Factor 1997 Record low Previous end-winter stocks In the historical range High Prevailing prices $5/barrel lower (WTI) Falling prices Price expectations (overall) Stable prices Falling prices Price expectations (heating oil) Seasonally higher prices Strong growth Off-season demand Weaker growth Europe out-bidding US World competition for heating oil Europe's markets calm Untested; Trainor

347

Investigation on combustion characteristics of crude rice bran oil methyl ester blend as a heavy duty automotive engine fuel  

Science Journals Connector (OSTI)

In the present work, an attempt was made to test the suitability of crude rice bran oil methyl ester (CRBME) blend as a heavy duty automotive engine fuel. A four stroke, six cylinder direct injection 117.6 kW turbo-charged compression ignition (CI) engine was used for the work. The operation of the engine with CRBME blend showed that the peak pressure increased with lower maximum rate of pressure rise and maximum heat release rate with shorter delay period. Burning rate of the CRBME blend was slower and required a higher crank angle to complete the combustion cycle when compared to diesel. The brake thermal efficiency of the CRBME blend was lower than that of diesel at all speeds except at 2300rpm. As the measured combustion and performance parameters for CRBME blend differs only by a smaller magnitude when compared with diesel, this investigation ensures the suitability of the CRBME blend as fuel for heavy duty automotive engine without any design modifications [Received: August 12, 2010; Accepted: August 29, 2010

S. Saravanan; G. Nagarajan; S. Sampath

2011-01-01T23:59:59.000Z

348

Comparison of the combustion behavior of Orimulsion{trademark} and heavy fuel oil in 70 MW flames  

SciTech Connect (OSTI)

Results of an experimental study are shown in this publication to compare the combustion behavior of heavy fuel oil (HFO) and Orimulsion in 70 MW flames. The investigation was carried out with the use of the combustion test rig at the International Combustion Limited in Derby, UK. The main objective of this test work was to quantify the extent of differences in flame properties, particulate and gaseous emissions of Orimulsion and HFO. Under identical combustion conditions, axial profiles of flame temperature and radiation heat flux were determined at 70 MW thermal input and 1% O{sub 2} for both fuels. Gas compositions at flame tail and furnace exit were obtained to estimate flame length and emission of gaseous pollutants. Stack concentration, carbon content, size and chemical composition of fly ash were also measured. The effect of excess air level on exit NOx and CO concentration were studied. Results of detailed flame measurements and the parametric study have shown that orimulsion fuel can be burnt with 99.97% efficiency at 1% exit O{sub 2} with a modified burner system of Dunamenti Power Station. However, significant implications of Orimulsion firing were observed. Gas temperature data and CO concentrations at flame tail have indicated a 1.5--2 m longer flame for Orimulsion. At flame tail, gas temperature in the Orimulsion flame was higher by 100 C than that for HFO. Lower radiant heat flux was measured in the near burner region for Orimulsion. Higher SO{sub 3}, SO{sub 2} and lower NOx emission were found when firing Orimulsion. Despite the higher ash content of Orimulsion, its combustion resulted in smaller particulate emission, which might be due to fly ash deposition in the furnace.

Barta, L.E. [Inst. for Energy, Budapest (Hungary); Horvath, G. [Hungarian Power Companies, Ltd., Budapest (Hungary); Allen, J.W.; Darar, J.S.; Wright, J.A. [International Combustion Ltd., Derby (United Kingdom). Rolls Royce Industrial Power Group; Szederkenyi, S.

1996-12-31T23:59:59.000Z

349

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

blends must comply with ASTM specification D7467-10. Biodiesel produced from palm oil is not considered biodiesel fuel unless the palm oil is waste oil or grease collected...

350

A study of Shanghai fuel oil futures price volatility based on high frequency data: Long-range dependence, modeling and forecasting  

Science Journals Connector (OSTI)

In existing researches, the investigations of oil price volatility are always performed based on daily data and squared daily return is always taken as the proxy of actual volatility. However, it is widely accepted that the popular realized volatility (RV) based on high frequency data is a more robust measure of actual volatility than squared return. Due to this motivation, we investigate dynamics of daily volatility of Shanghai fuel oil futures prices employing 5-minute high frequency data. First, using a nonparametric method, we find that RV displays strong long-range dependence and recent financial crisis can cause a lower degree of long-range dependence. Second, we model daily volatility using RV models and GARCH-class models. Our results indicate that RV models for intraday data overwhelmingly outperform GARCH-class models for daily data in forecasting fuel oil price volatility, regardless the proxy of actual volatility. Finally, we investigate the major source of such volatile prices and found that trader activity has major contribution to fierce variations of fuel oil prices.

Li Liu; Jieqiu Wan

2012-01-01T23:59:59.000Z

351

U.S. oil, natural gas demand still climbing  

SciTech Connect (OSTI)

Steady economic growth and slightly lower prices will boost demand for petroleum and natural gas in the US again this year. Economic growth will lag behind last year`s level but will remain strong. Increased worldwide petroleum production should lower oil prices and encourage fuel-switching, which will suppress natural gas prices. In the US, total energy consumption will grow less rapidly than economic activity due to continuing improvement in energy efficiency. US petroleum product demand will move up to 1.5% in 1997 to average 18.45 million b/d. And natural gas consumption will be up 0.7% at 22.05 tcf. Despite the oil price increases of 1996, US crude oil production will continue to slide in 1997; Oil and Gas Journal projects a drop of 1.1%. US production has been falling since 1985, except for a modest increase in 1991 related to the Persian Gulf War. The rate of decline has diminished in the past 2 years, but US crude oil production has still fall at an average rate of about 226,000 b/d/year since 1985. The paper discusses the economy, total energy consumption, the oil supply, imports, stocks, refining, refining margins and prices, demand for motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products, and natural gas demand and supply.

Beck, R.J.

1997-01-27T23:59:59.000Z

352

Table 3.1 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Fuel Consumption, 2010; 1 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Net Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,158 75,407 2 4 563 1 8 * 99 3112 Grain and Oilseed Milling 350 16,479 * * 118 * 6 0 45 311221 Wet Corn Milling 214 7,467 * * 51 * 5 0 25 31131 Sugar Manufacturing 107 1,218 * * 15 * 2 * 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 9,203

353

Oil shale fueled FBC power plant – Ash deposits and fouling problems  

Science Journals Connector (OSTI)

A 41 MWth oil shale fired demonstration power plant was built in 1989 by PAMA in Mishor Rotem, Negev, Israel. The raw material for the plant is the local “oil shale”, which is in fact organic-rich marl. Since then, and until today, the unit is operated at high reliability and availability. At first, heavy soft fouling occurred due to the Circulating Fluidized Bed Combustion (CFBC) mode of operation, which caused a considerable reduction in the heat transfer coefficient of the heat exchangers. By going over to the Fluidized Bed Combustion (FBC) mode of operation the soft fouling phenomenon stopped at once, the heat transfer coefficient improved, and the power plant could be operated at its designed values. After five months of operation at the FBC mode the boiler had to be shut down because Hard Deposits (HD) blocked physically the passes in the boiler. These deposits could be removed only with the help of mechanical devices. During the first two years the boiler had to be stopped, at least, three times a year for deposit cleaning purposes. Research conducted at the plant and in the laboratories of the Geological Survey of Israel enabled us to understand the mechanism of formation of these deposits. The results showed that the HD are formed in two stages: (1) Deposition of very fine ash particles on the pipes of the boiler, as a result of the impact of larger particles on the pipes. The fine particles adhere to the pipes and to each other, and step by step build the deposit. The growth of the deposit on the pipe surface is always perpendicular to the particles flow direction. (2) The deposits harden due to chemical reactions. The joint experiments at the plant and at the laboratories of the Geological Survey showed:(A) The rate of deposition depends mainly on the lime concentration in the fly ash. (B) The lime concentration in the fly ash is a function of the clays concentration in the oil shale. (C) The increase and hardening of the deposit with time is due to solid–gas reactions within the deposit. At first recarbonation occurs, reaction between CaO in the deposit and CO2 (produced by the combustion) in the flue gas to form CaCO3 (bonded deposits), and then sulfatization; the reactions of the sulfatization are: (1) SO2 in the flue gas with CaO and CaCO3 in the deposit, leading to the formation of anhydrite CaSO4; and (2) SO2 in the flue gas with the amorphous silicates in the deposit forming hydroxylellestadite Ca10(SiO4)3(SO4)3(OH)2. These minerals are the hard deposits. The conclusions following these findings for the combustion of oil shales with a significant Ca-carbonate content are:(A) The FBC is the preferred mode of combustion. (B) The rate of deposition in the boiler depends mainly on the lime (free CaO) concentration in the Fly \\{ASh\\} (FAS). (C) The ratio Ca-carbonates to silicates (Al, Fe, etc.), in the oil shale feed, determines the concentration of lime in the FAS. (D) The rate of deposition in the boiler depends also on the geometry of the boiler and on the particles aerodynamic conditions in it. Following these conclusions, the plant was able to reduce the shutdowns to twice a year. Furthermore, based on the understanding of the deposit formation mechanism, it will be possible to minimize shutdowns, for deposit cleaning, to only once a year in future similar oil shale fuelled power plants.

O. Yoffe; A. Wohlfarth; Y. Nathan; S. Cohen; T. Minster

2007-01-01T23:59:59.000Z

354

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

355

Low NOx combustion system for heavy oil  

SciTech Connect (OSTI)

As a result of the increasing demand for white oil as one of countermeasures for pollution control and as a fuel for motor vehicle, coupled with the increasing import of heavy crude oil, heavy oils such as asphalt and distillation residue have become surplus in Japan. It is difficult by the conventional low NOx technology to control the NOx emission from the industrial small and medium capacity boilers, which use heavy oil as their fuels. The authors have been developing and improving NOx control technologies for boilers such as low NOx burners, two-stage combustion methods and so on. They have developed a new combustion system for heavy oil, which generates less NOx and soot than conventional systems, by applying the knowledge, obtained in the course of their development of Coal Partial Combustor (CPC). The conventional low NOx combustion method for oil firing boilers has been developed based on decreasing the flame temperature and delaying the combustion reaction. In the system, however, the heavy oil shall be combusted in the intense reducing atmosphere at the high flame temperature between 1,500 C and 1,600 C, and then the combustions gas shall be cooled and oxidized by two-stage combustion air. With this system, NOx emission can be suppressed below 100ppm (converted as O{sub 2}=4%).

Kurata, Chikatoshi; Sasaki, Hideki

1999-07-01T23:59:59.000Z

356

Heating Oil and Propane Update  

Gasoline and Diesel Fuel Update (EIA)

Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map...

357

Supply and Disposition of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 23,431 32,462 588,466 297,359 15,122 -19,137 554,586 123,943 597,448 1,812,484 PADD 1 4,022 783 105,480 46,972 104,579 7,133 -8,328 104,584 8,184 164,527 145,574 PADD 2 61,781 27,645 138,371 64,904 15,509 -9,838 -6,968 131,427 11,955 161,957 273,603 PADD 3 193,724 2,967 227,728 132,784 -116,513 15,829 -6,533 208,398 92,256 162,398 1,211,066 PADD 4 27,499 433 19,935 8,906 -13,181 -544 1,567 19,066 310 22,105 38,275 PADD 5 36,406 635 96,952 43,793 9,606 2,542 1,124 91,111 11,237 86,461 143,965 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Imports at the PAD District level represent the PAD District in which the material entered the U.S. and not necessarily where the crude oil or product is processed and/or consumed. PAD District level net receipts includes implied net receipts for fuel ethanol and oxygenates (excluding fuel ethanol). Implied net receipts are calculated as the sum of stock change, refinery and blender net inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously referred to as Unaccounted For Crude Oil. Also included is an adjustment for motor gasoline blending components, fuel ethanol, and distillate fuel oil. A negative stock change indicates a decrease in stocks and a positive number indicates an increase in stocks. Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil Reserve. Total residual fuel oil stocks include stocks held at pipelines. Residual fuel oil stocks by sulfur content exclude pipeline stocks. Therefore, the sum of residual fuel oil stocks by sulfur content may not equal total residual fuel oil stocks. Exports of distillate fuel oil with sulfur greater than 15 ppm to 500 ppm may include distillate fuel oil with sulfur content 15 ppm and under due to product detail limitations in exports data received from the U.S. Census Bureau. LRG = Liquefied Refinery Gas. Data may not add to total due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table.

358

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

359

Process evaluation - steam reforming of diesel fuel oil. Final technical report 24 Apr-24 Dec 79 on phases 1-4  

SciTech Connect (OSTI)

This project is an evaluation of a proprietary catalyst as a means of steam-reforming diesel fuel oil (Fed. Spec. VV-F-800B, symbol DF-2). A system for testing the catalyst has been designed, built and successfully used to screen operating conditions of temperature, space velocity, and H2O/C ratio. A duration test has been conducted showing the catalyst capable of steam reforming diesel fuel, but with the production of naphthalene after 30 hours. Hydrogen production remained stable through the 86 hours of the test.

Jarvi, G.A.; Bowman, R.M.; Camara, E.H.; Lee, A.L.

1980-02-15T23:59:59.000Z

360

SRC burn test in 700-hp oil-designed boiler. Annex Volume B. DOE-Pittsburgh Energy Technology Center report. Final technical report  

SciTech Connect (OSTI)

Solvent Refined Coal (SRC) combustion tests were conducted at the U.S. Department of Energy's Pittsburgh Energy Technology Center. Combustion and flue-gas treatment of three different physical forms of SRC, as well as a No. 6 fuel oil, were evaluated. The three SRC fuels were (1) pulverized SRC Fuel; (2) SRC Residual Fuel Oil; and (3) SRC/Water Slurry. The SRC Residual Fuel Oil was a solution of SRC Fuel dissolved in heated process solvent. Approximately 500 tons of pulverized SRC Fuel and 30,000 gallons of SRC Residual Fuel Oil were combusted in a 700 hp (30 x 130 x 10/sup 6/ Btu/hr fuel input) oil-designed watertube package boiler. Sixty four-hour ASME combustion tests with three different SRC fuels were successfully concluded. The principal parameters evaluated were excess air levels and combustion air preheat temperature levels. Extensive data were collected on flue-gas levels of O/sub 2/, CO/sub 2/, CO, unburned hydrocarbons, SO/sub x/, NO/sub x/, uncontrolled particulates, uncontrolled opacity and carbon content of the flue-gas particulates. Boiler and combustion efficiencies were measured. The particulates were characterized via mass loadings, impactors, in-situ resistivity measurements, ultra-fine sampling, optical large particle sampling, five-stage cyclone sampling and chemical analysis of various cut sizes. A three-field pilot electrostatic precipitator (ESP) containing over 1000 square feet of plate collection area, a reverse air fabric filter pilot dust collector and a commercial pulse-jet fabric filter dust collector were operated at high collection efficiency. The results will be valuable in making recommendations for future tests and will provide a basis for conversion of industrial oil-fired boilers to SRC fuels. 11 references, 20 figures, 29 tables.

Not Available

1983-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Highlights Highlights Thermochemical conversion technologies convert biomass and its residues to fuels and chemicals using gasification and pyrolysis. Gasification entails heating biomass and results in a mixture of carbon monoxide and hydrogen, known as syngas. Pyrolysis, which is heating biomass in the absence of oxygen, produces liquid pyrolysis oil. Both syngas and pyrolysis oil can be chemically converted into clean, renewable transportation fuels and chemicals. The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass. Thermochemical processes include gasification and pyrolysis-processes used to convert

362

Statistical Overview of 5 Years of HCCI Fuel and Engine Data...  

Broader source: Energy.gov (indexed) [DOE]

series of fuels, covering 2005 to 2009 - Conventional, biodiesel, oil sands, oil shale, surrogate, primary and secondary reference, FACE - 95 fuels total, 18 fuel related...

363

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil & Gas Publications KMD Contacts Project Summaries EPAct 2005 Arctic Energy Office Announcements Software Stripper Wells Efficient recovery of our nation's fossil fuel resources...

364

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

365

Reactive oxygen species produced by NADPH oxidase and mitochondrial dysfunction in lung after an acute exposure to Residual Oil Fly Ashes  

SciTech Connect (OSTI)

Reactive O{sub 2} species production triggered by particulate matter (PM) exposure is able to initiate oxidative damage mechanisms, which are postulated as responsible for increased morbidity along with the aggravation of respiratory diseases. The aim of this work was to quantitatively analyse the major sources of reactive O{sub 2} species involved in lung O{sub 2} metabolism after an acute exposure to Residual Oil Fly Ashes (ROFAs). Mice were intranasally instilled with a ROFA suspension (1.0 mg/kg body weight), and lung samples were analysed 1 h after instillation. Tissue O{sub 2} consumption and NADPH oxidase (Nox) activity were evaluated in tissue homogenates. Mitochondrial respiration, respiratory chain complexes activity, H{sub 2}O{sub 2} and ATP production rates, mitochondrial membrane potential and oxidative damage markers were assessed in isolated mitochondria. ROFA exposure was found to be associated with 61% increased tissue O{sub 2} consumption, a 30% increase in Nox activity, a 33% increased state 3 mitochondrial O{sub 2} consumption and a mitochondrial complex II activity increased by 25%. During mitochondrial active respiration, mitochondrial depolarization and a 53% decreased ATP production rate were observed. Neither changes in H{sub 2}O{sub 2} production rate, nor oxidative damage in isolated mitochondria were observed after the instillation. After an acute ROFA exposure, increased tissue O{sub 2} consumption may account for an augmented Nox activity, causing an increased O{sub 2}{sup ·?} production. The mitochondrial function modifications found may prevent oxidative damage within the organelle. These findings provide new insights to the understanding of the mechanisms involving reactive O{sub 2} species production in the lung triggered by ROFA exposure. - Highlights: • Exposure to ROFA alters the oxidative metabolism in mice lung. • The augmented Nox activity contributes to the high tissue O{sub 2} consumption. • Exposure to ROFA produces alterations in mitochondrial function. • ??{sub m} decrease in state 3 may be responsible for the decreased ATP production. • Mild uncoupling prevents mitochondrial oxidative damage.

Magnani, Natalia D.; Marchini, Timoteo; Vanasco, Virginia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Tasat, Deborah R. [CESyMA, Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, San Martín, Buenos Aires (Argentina); Alvarez, Silvia [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina); Evelson, Pablo, E-mail: pevelson@ffyb.uba.ar [Instituto de Bioquímica Medicina Molecular (IBIMOL-UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires (Argentina)

2013-07-01T23:59:59.000Z

366

Biomass Derivatives Competitive with Heating Oil Costs.  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Derivatives Competitive with Heating Oil Costs Transportation fuel Heat or electricity * Data are from literature, except heating oil is adjusted from 2011 winter average *...

367

Chedabucto Bay 1992 shoreline oil conditions survey: Long-term fate of bunker C oil from the arrow spill in Chedabucto Bay, Nova Scotia  

SciTech Connect (OSTI)

The report presents a description of the activities related to and a summary of the information generated by a field survey carried out in Chedabucto Bay, Nova Scotia, for Environment Canada from June to September 1992. The objective of the survey was to locate and document any residual oil on the shores of Chedabucto Bay. The grounding of the tanker Arrow in February 1970 resulted in the release of more than 11 million liters of Bunker C fuel oil. This oil was stranded over an estimated 305 km of shoreline in the Chedabucto Bay area.

Owens, E.H.; McGuire, B.E.; Humphrey, B.

1994-03-01T23:59:59.000Z

368

Impact of thermal barrier coating application on the combustion, performance and emissions of a diesel engine fueled with waste cooking oil biodiesel–diesel blends  

Science Journals Connector (OSTI)

Abstract Biodiesel fuel was produced from waste cooking oil by transesterification process. B20 and B50 blends of biodiesel–petroleum diesel were prepared. These blends and D2 fuels were tested in a single cylinder CI engine. Performance, combustion and emission values of the engine running with the mentioned fuels were recorded. Then the piston and both exhaust and intake valves of the test engine were coated with layers of ceramic materials. The mentioned parts were coated with 100 ?m of NiCrAl as lining layer. Later the same parts were coated with 400 ?m material of coating that was the mixture of 88% of ZrO2, 4% of MgO and 8% of Al2O3. After the engine coating process, the same fuels were tested in the coated engine at the same operation condition. Finally, the same engine out parameters were obtained and compared with those of uncoated engine parameters in order to find out how this modification would change the combustion, performance and emission parameters. Results showed that the modification of the engine with coating process resulted in better performance, especially in considerably lower brake specific fuel consumption (Bsfc) values. Besides, emissions of the engine were lowered both through coating process and biodiesel usage excluding the nitrogen oxides (NOx) emission. In addition, the results of the coated engine are better than the uncoated one in terms of cylinder gas pressure, heat release rate (HRR) and heat release (HR).

Selman Ayd?n; Cenk Say?n

2014-01-01T23:59:59.000Z

369

Utilization of palm solid residue as a source of renewable and sustainable energy in Malaysia  

Science Journals Connector (OSTI)

Abstract Today, global energy consumers are addicted to fossil fuels such as natural gas, oil and coal. Although it has been anticipated that fossil fuels will be depleted soon, these fuels are still dominant as the primary source of energy in the world. Recently, many efforts have been done to substitute renewable alternative fuels to reduce dependency on fossil fuels. Biomass as one of the earliest energy sources appears to be the most promising renewable energy source due to its numerous resources and its environmentally sound characteristics. Since Malaysia is agriculture based tropical country, many crops such as palm, paddy rice and sugarcane are cultivated in this region. Malaysian palm oil industry generate huge amounts of palm solid residue (PSR) biomass such as empty fruit bunches (EFB), palm fiber, shell, trunks and fronds as byproducts which are capable to be taken into account in the energy mix of the country. In this paper, an overview of the PSR generation from Malaysian palm oil industries and its social and economic effects has been given. Indeed, performance of the direct combustion of PSR in terms of PSR composition, properties, heating value, emissions and its effects on the equipment or the components of the boilers have been reviewed. It has been found that the very high moisture content of PSR of palm industry makes their collection and transportation expensive, therefore energy conversion process could be inefficient and utilization of these materials inside the palm oil mills seems more beneficial.

Seyed Ehsan Hosseini; Mazlan Abdul Wahid

2014-01-01T23:59:59.000Z

370

Destruction and formation of PCDD/Fs in a fluidised bed combustor co-incinerating automotive shredder residue with refuse derived fuel and wastewater treatment sludge  

Science Journals Connector (OSTI)

During an eight day trial automotive shredder residue (ASR) was added to the usual waste feed of a Fluidized Bed Combustor (FBC) for waste-to-energy conversion; the input waste mix consisted of 25% ASR, 25% refuse-derived fuel (RDF) and 50% wastewater treatment (WWT) sludge. All inputs and outputs were sampled and the concentration of the 17 PCDD/Fs with TEF-values was determined in order to obtain “PCDD/F fingerprints”. The ASR contained approximately 9000 ng PCDD/Fs/kgDW, six times more than the RDF and 10 times more than the WWT sludge. The fingerprint of ASR and RDF was dominated by HpCDD and OCDD, which accounted for 90% of the total PDDD/F content, whereas the WWT sludge contained relatively more HpCDFs and OCDF (together 70%). The flue gas cleaning residue (FGCR) and fly and boiler ash contained approximately 30,000 and 2500 ng PCDD/Fs/kgDW, respectively. The fingerprints of these outputs were also dominated by HpCDFs and OCDF. The bottom ash contained only OCDD and OCDF, in total 8 ng PCDD/Fs/kgDW. From the comparison of the bottom ash fingerprints with the fingerprints of the other output fractions and of the inputs, it could be concluded that the PCDD/Fs in the waste were destroyed and new PCDD/Fs were formed in the post combustion process by de novo synthesis. During the ASR-co-incineration, the PCDD/F congener concentrations in the fly and boiler ash, FGCR and flue gas were 1.25–10 times higher compared to the same output fractions generated during incineration of the usual waste mix (70% RDF and 30% WWT sludge). The concentration of the higher chlorinated PCDD/Fs increased most. As these congeners have the lowest TEF-factors, the total PCDD/F output, expressed in kg TEQ/year, of the FBC did not increase significantly when ASR was co-incinerated. Due to the relatively high copper levels in the ASR, the copper concentrations in the \\{FBCs\\} outputs increased. As copper catalysis the de novo syntheses, this could explain the increase in PCDD/F concentrations in these outputs.

J. Van Caneghem; I. Vermeulen; C. Block; A. Van Brecht; P. Van Royen; M. Jaspers; G. Wauters; C. Vandecasteele

2012-01-01T23:59:59.000Z

371

Oil vulnerability in the greater Toronto area: impacts of high fuel prices on urban form and environment  

Science Journals Connector (OSTI)

The rising cost of fossil fuel is a recognized phenomenon, but its impact ... . Understanding how the socioeconomic impacts of rising fuel prices might be distributed across urban areas is...2007...)] by incorpor...

S. Akbari; K. Nurul Habib

2014-08-01T23:59:59.000Z

372

A slow-release K+ fertilizer from residues of the Brazilian oil-shale industry: synthesis of kalsilite-type structures  

Science Journals Connector (OSTI)

...The preparation of a potential slow-release potassium fertilizer (SRKF) from discharge from the Brazilian oil-shale industrialization process (PETROSIX) is described in...2MgSi3O8. The solubility of the produc...

A. Mangrich; L. Tessaro; A. Dos Anjos; F. Wypych; J. Soares

2001-06-01T23:59:59.000Z

373

Activity concentrations of 224Ra, 226Ra, 228Ra and 40K radionuclides in refinery products and the additional radiation dose originated from oil residues in Turkey  

Science Journals Connector (OSTI)

......radioactive materials (TENORM). Oil and gas production, coal mining and combustion, drinking or waste water treatments...Sources from the point of view of radiation protection, taking economic and social factors into account, the common goal is to keep......

A. Parmaksiz; Y. Agus; F. Bulgurlu; E. Bulur; Ç. Yildiz; T. Öncü

2013-10-01T23:59:59.000Z

374

World oil demand’s shift toward faster growing and less price-responsive products and regions  

Science Journals Connector (OSTI)

Using data for 1971–2008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product – transport oil, fuel oil (residual and heating oil), and other oil – for six groups of countries. Most of the demand reductions since 1973–74 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole – by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC – we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project.

Joyce M. Dargay; Dermot Gately

2010-01-01T23:59:59.000Z

375

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

376

Table 4.1 Offsite-Produced Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 Offsite-Produced Fuel Consumption, 2010; 1 Offsite-Produced Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Physical Units or Btu. Coke Residual Distillate Natural Gas(d) LPG and Coal and Breeze NAICS Total Electricity(b) Fuel Oil Fuel Oil(c) (billion NGL(e) (million (million Other(f) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) Total United States 311 Food 1,113 75,673 2 4 563 1 8 * 54 3112 Grain and Oilseed Milling 346 16,620 * * 118 * 6 0 41 311221 Wet Corn Milling 214 7,481 * * 51 * 5 0 25 31131 Sugar Manufacturing 72 1,264 * * 15 * 2 * * 3114 Fruit and Vegetable Preserving and Specialty Foods 142 9,258 * Q 97

377

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

378

Hazardous air pollutants from the combustion of an emulsified heavy fuel oil in a firetube boiler. Final report, May-November 1995  

SciTech Connect (OSTI)

The report gives results of measuring emissions of hazardous air pollutants (HAPS) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose determining the impacts of the emulsifier on HAP emissions. The boiler flue gases were sampled and analyzed for both metal and organic HAPs, and the effects of the emulsification on criteria emissions such as carbon dioxide (CO), nitrogen oxides (NOx), and particulate matter (PM) were also measured.

Miller, C.A.

1996-02-01T23:59:59.000Z

379

Table 1.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

.5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,328 Natural Gas 5,725 Net Electricity 2,437 Purchases 2,510 Transfers In 33 Onsite Generation from Noncombustible Renewable Energy 7 Sales and Transfers Offsite 113 Coke and Breeze 374 Residual Fuel Oil 170 Distillate Fuel Oil 135 Liquefied Petroleum Gases and Natural Gas Liquids 2,057 Other 7,381 Asphalt and Road Oil (a) 946 Lubricants (a) 386

380

Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration  

Science Journals Connector (OSTI)

The first set of results presented were the inventory of air emissions (CO, CO2, CH4, SOx, NOx, NH3, Pb, Hg, etc.), wastewater-containing acids and sulfides, and solid wastes released because of both fossil fuel production and energy usage from the power plant. ... Gases of SO2 and NOx are reported to pollute the air because of conventional oil production activities,16 but these contributions, as displayed by cases I and II, are less compared to the accumulated impacts coming from the CO2 sequestration chain. ... (1)?McKee, B. Solutions for the 21st Century:? Zero Emissions Technology for Fossil Fuels; Technology Status Report, International Energy Agency, Committee for Energy Research Technology, OECD/IEA:? France, 2002. ...

Hsien H. Khoo; Reginald B. H. Tan

2006-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution  

Broader source: Energy.gov [DOE]

Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

382

Total Imports of Residual Fuel  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. Total 5,752 5,180 7,707 9,056 6,880 6,008 1936-2013 PAD District 1 1,677 1,689 2,008 3,074 2,135 2,814 1981-2013 Connecticut 1995-2009 Delaware 1995-2012 Florida 359 410 439 392 704 824 1995-2013 Georgia 324 354 434 364 298 391 1995-2013 Maine 65 1995-2013 Maryland 1995-2013 Massachusetts 1995-2012 New Hampshire 1995-2010 New Jersey 903 756 948 1,148 1,008 1,206 1995-2013 New York 21 15 14 771 8 180 1995-2013 North Carolina 1995-2011 Pennsylvania 1995-2013 Rhode Island 1995-2013 South Carolina 150 137 194 209 1995-2013 Vermont 5 4 4 5 4 4 1995-2013 Virginia 32 200 113 1995-2013 PAD District 2 217 183 235 207 247 179 1981-2013 Illinois 1995-2013

383

Rerefined Oil: An Option that Saves Oil, Minimizes Pollution  

Science Journals Connector (OSTI)

...of the annual oil consumption of the United States...desirably, burned as a fuel under carefully...percent of U.S. consumption of petroleum. About...oil was burned as fuel. Another 200 million...from gasoline and diesel fuel, carbon...me-tallic particles from engine wear, and metals...

THOMAS H. MAUGH II

1976-09-17T23:59:59.000Z

384

Performance and Emissions of a Compression-Ignition Engine Fueled with Dimethyl Ether and Rapeseed Oil Blends  

Science Journals Connector (OSTI)

Sorenson and Mikkelsen2 had studied DME in a modified diesel engine, and their results showed that the engine could achieve ultralow-emission prospects without a fundamental change in combustion systems. ... Meanwhile, these parameters are compared with those of pure diesel fuel in order to clarify the effect of blends on the combustion and emission of engines (a CI engine cannot run for much longer of a period with pure DME fuel, so a comparison is only made with pure diesel fuel). ... Moreover, owing to the lower calorific value of the blend compared to diesel fuel, the fuel supply amount per cycle for blend operation is enlarged by increasing the plunger stroke of the fuel pump in order to make the power and torque output of the blends approach those of the corresponding diesel engine. ...

Wang Ying; Zhou Longbao

2007-04-20T23:59:59.000Z

385

E-Print Network 3.0 - active oil producing Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

making distillate- based fuels such as diesel and jet fuel. The cost of producing oil shale remains... and produce gasoline. The South African oil company Sasol later developed...

386

Oil | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

387

Effect of fuel oil and dispersant on cell cycle and macromolecular synthesis in the chlorococcal alga Scenedesmus armatus  

Science Journals Connector (OSTI)

Growth and reproductive processes in synchronous cultures of the alga Scenedesmus armatus...(isolated from Baltic phytoplankton) were followed in the presence of various concentrations of dispersant DP-105, oil, ...

V. Zachleder; Z. Tukaj

1993-10-01T23:59:59.000Z

388

Cobalt-cement catalysts for the synthesis of motor fuel components from synthesis gas obtained from oil shale  

Science Journals Connector (OSTI)

Highly effective cobalt-cement catalysts for the synthesis of aliphatic hydrocarbons from CO and H2, which are formed upon the thermolysis or gasification of oil shale or coals, are considered. The formation of t...

A. L. Lapidus; E. Z. Golosman; Yu. A. Strizhakova

2011-06-01T23:59:59.000Z

389

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

100 million for an alternative fuel or gasification facility that uses coal, oil shale, or tar sands as the primary feedstock; 25 million for an energy-efficient...

390

Fuel.vp  

Gasoline and Diesel Fuel Update (EIA)

F8: Distillate Fuel Oil Price and Expenditure Estimates, 2012 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial...

391

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to take actions to promote the growth of domestic alternative fuel sources, such as natural gas, and reduce dependence on foreign oil. (Reference House Concurrent Resolution 132...

392

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling Station Regulations The Colorado Department of Labor and Employment, Division of Oil and Public Safety, enforces regulations concerning the design, construction, siting,...

393

1 What is Oil ? General information  

E-Print Network [OSTI]

of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Aviation gasoline White spirit + SBP Gasoline type jet fuel Lubricants Unleaded gasoline Bitumen Leaded

Kammen, Daniel M.

394

Using waste wood as fuel saves $2000 per day  

SciTech Connect (OSTI)

Sawdust and wood residue replaced natural gas or number 2 fuel oil to fire 2 kilns at the Cherokee Brick Co. in Raleigh, NC, resulting in savings of $2000/day. Exhaust air from the kilns was sent directly back to a rotating dryer to dry the waste wood. The dried wood containing 8 to 12% moisture was supplied, around the clock, at a rate of 140 ton/day of dry material. (BLM)

Ragland, W. (Cherokee Brick Co., Raleigh, NC); Byrnes, D.

1981-11-01T23:59:59.000Z

395

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence Livermorekinetics between and oil-shale residual carbon. 1. co Effectkinetics between and oil-shale residual carbon. 2. co 2

Fox, J.P.

2013-01-01T23:59:59.000Z

396

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence LivermoreReaction kinetics between and oil-shale residual carbon. 1.Reaction kinetics between and oil-shale residual carbon. 2.

Fox, J.P.

2013-01-01T23:59:59.000Z

397

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

398

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel comprised of mono-alkyl esters of long chain fatty acids from biologically derived oil and fats. A biodiesel blend is defined as a fuel comprised of a specified ratio of...

399

Residential heating oil prices decline  

U.S. Energy Information Administration (EIA) Indexed Site

heating oil prices decline The average retail price for home heating oil is 3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by...

400

Harvesting Residuals-Economic Energy Link  

E-Print Network [OSTI]

business. Results from several conversions of heating facilities from oil to particulate wood fuel in Atlantic Canada over the past few years, show a range of acceptable purchase prices for the wood. This range is a reflection of the variety... to wood fuel, and consumers whose conversion cost is minimal and thus can pay a relatively high price for wood fuel yet and save over oil. Fuel costs for most consumers fall within the $15 to $25 price range. Declining oil prices will affect total...

Owens, E. T.; Curtis, D. B.

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

E-Print Network 3.0 - assisted thermal oil Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that produced synthetic fuel from coal, oil... the CRS Web Order Code RL33359 Oil Shale: History, Incentives, and Policy April 13, 2006 Anthony Andrews... ;Oil Shale:...

402

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

403

Diesel fuel qualities  

SciTech Connect (OSTI)

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

404

Performance and Exhaust Emissions of an Indirect-Injection (IDI) Diesel Engine When Using Waste Cooking Oil as Fuel  

Science Journals Connector (OSTI)

In addition, measurements were taken of the basic engine operational parameters such as engine speed, engine load, fuel consumption, pressure and temperature in the intake and exhaust systems, and the concentration of gaseous components and particulates in the exhaust gases. ... As can be seen, the torque and, consequently, the power of the engine are almost identical for both fuels WCO75 and D2, which is surprising, because the calorific value of the WCO is approximately 13% lower than that of D2 fuel. ... A series of engine tests provided adequate and relevant information that the biodiesel can be used as an alternative, environment friendly fuel in existing diesel engines without substantial hardware modification. ...

Ales Hribernik; Breda Kegl

2009-02-11T23:59:59.000Z

405

TURKISH OIL SHALES POTENTIAL FOR SYNTHETIC CRUDE OIL and CARBON MATERIALS PRODUCTION  

E-Print Network [OSTI]

research activities on solid fuels. In order to make a new start, research work on Turkish oil shales that

Ekrem Ekinci

406

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Project 61040 quarterly report, April 1-June 30, 1980  

SciTech Connect (OSTI)

Progress is reported on the HYTORT Process development work conducted from April 1 through June 30, 1980. Thermobalance tests have been conducted on samples of shale from each large multiton sample prior to large-scale tests and these test results have been fit with specific kinetic expressions. Approximately 80% of the instrumentation for the laboratory-scale reactor has been received. Fabrication of the reactor, feed hopper, and residue receiver is about 95% complete. Two successful moving-bed tests were conducted in the bench-scale reactor during this quarter. A large, 50-ton sample of the Lower Huron member of the Ohio Shale was mined and readied for shipment to IGT. Modification of the bench-scale steam-oxygen unit was completed. Spent shale from PDU tests was prepared for use in these tests. A set of five screening runs on New Albany shale oil and a set of four screening runs on Sunbury shale oil were conducted during this quarter. The nitrogen content of these oils was reduced to the 0.16 to 0.30 weight percent range in the bench-scale hydrotreating unit. Design of the laboratory test system for mist-size control studies was completed. Methods are being studied for measuring mist particle size. Shakedown and initial testing of the liquid-sealed lockhopper were performed during this quarter. Two runs were made in the PDU with Kentucky shales using a sample of the Cleveland member of the Ohio shale and a sample of New Albany shale. Samples for environmental analysis were taken during the PDU runs discussed above. On-line sampling equipment was installed prior to the PDU run with New Albany shale and samples were taken of the Stage 2 raw product gases.

None

1980-11-01T23:59:59.000Z

407

Global Alternative Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternative Fuels Place: El Paso, Texas Zip: 79922 Product: Global Alternative Fuels processes virgin oils (palm, soybean, cottonseed, and canola), yellow and brown greases, and...

408

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

409

Qualification of Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Alternative Fuels Thomas Butcher presentation on May 8, 2012 at the Pyrolysis Oil Workshop on the qualification of alternative fuels. pyrolysisbutcher.pdf More...

410

Influence of inorganic compounds on char formation and quality of fast pyrolysis oils  

SciTech Connect (OSTI)

Inorganic compounds, especially potassium, calcium, sodium, silicon, phosphorus, and chlorine, are the main constituents of ash in biomass feedstocks. The concentrations of ash in biomass feedstocks range from less than 1% in softwoods to 15% in herbaceous biomass and agricultural residues. During biomass pyrolysis, these inorganics, especially potassium and calcium, catalyze both decomposition and char formation reactions. Decomposition reactions may either result in levoglucosan-rich or hydroxyacetaldehyde-rich pyrolysis products depending on the concentration of the ash in the feedstocks. The catalytic effect of the ash levels off at high organic ion concentrations. Chars formed during these reactions invariably end up in the pyrolysis oils (biofuel oils). A high proportion of the alkali metals in the ash are sequestered in the chars. The presence of high concentrations of alkali metals in the biofuel oils make them unsuitable for combustion in boilers, diesel engines, and in turbine operations. The highest concentration of alkali metals are found in herbaceous feedstocks and agricultural residue biofuel oils. Leaching studies conducted on the chars suspended in the oils showed no leaching of the alkali metals from the chars into the oils. Our data suggest that hot gas filtration of the oils can effectively reduce the alkali metals contents of the biofuel oils to acceptable levels to be used as turbine, diesel engine, and boiler fuels.

Agbleyor, F.A.; Besler, S.; Montane, D. [National Renewable Energy Lab., Golden, CO (United States)

1995-12-01T23:59:59.000Z

411

HS_Oil_Studyguide.indd  

Broader source: Energy.gov (indexed) [DOE]

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

412

Metabolic Engineering and Synthetic Biology in Strain Development Every year, we consume about 27 billion barrels of fossil oil.  

E-Print Network [OSTI]

billion barrels of fossil oil. This enormous amount of oil is used for fueling our cars and airplanes

413

2013 Fuel Cell Technologies Market Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

cell (GFC), a modified solid oxide fuel cell, to test in extraction of oil from oil shale. 83 The 4.5 kW natural gas-fueled GFC was designed and built by Delphi for IEP...

414

Utilization of pyrolysis oil in industrial scale boilers.  

E-Print Network [OSTI]

??The performance of pyrolysis oil in a large-scale combustion system is investigated to determine the feasibility of displacing fuel oil or natural gas in current… (more)

Redfern, Kyle D.

2013-01-01T23:59:59.000Z

415

Control Strategies for Abandoned in situ Oil Shale Retorts  

E-Print Network [OSTI]

Presented elt the TUJelfth Oil Shale Synlposittnz, Golden,for Abandoned In Situ Oil Shale Retorts P. Persoll and ]. P.Water Pollution of Spent Oil Shale Residues, EDB Lea,

Persoff, P.; Fox, J.P.

1979-01-01T23:59:59.000Z

416

Alternative Fuels Data Center - Fuel Properties Comparison  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuels Data Center - Fuel Properties Comparison Fuels Data Center - Fuel Properties Comparison www.afdc.energy.gov 1 2/27/2013 Gasoline Diesel (No. 2) Biodiesel Propane (LPG) Compressed Natural Gas (CNG) Liquefied Natural Gas (LNG) Ethanol Methanol Hydrogen Electricity Chemical Structure C 4 to C 12 C 8 to C 25 Methyl esters of C 12 to C 22 fatty acids C 3 H 8 (majority) and C 4 H 10 (minority) CH 4 (83-99%), C 2 H 6 (1-13%) CH 4 CH 3 CH 2 OH CH 3 OH H 2 N/A Fuel Material (feedstocks) Crude Oil Crude Oil Fats and oils from sources such as soy beans, waste cooking oil, animal fats, and rapeseed A by-product of petroleum refining or natural gas processing Underground reserves Underground reserves Corn, grains, or

417

SUPRI heavy oil research program. Fourteenth annual report, October 1, 1989--September 30, 1990  

SciTech Connect (OSTI)

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

418

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

419

Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season  

SciTech Connect (OSTI)

This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

Not Available

1991-10-01T23:59:59.000Z

420

Assessment of the impacts on health due to the emissions of Cuban power plants that use fossil fuel oils with high content of sulfur. Estimation of external costs  

Science Journals Connector (OSTI)

Fossil fuel electricity generation has been demonstrated to be a main source of atmospheric pollution. The necessity of finding out a balance between the costs of achieving a lower level of environmental and health injury and the benefits of providing electricity at a reasonable cost have lead to the process of estimating the external costs derived from these impacts and not included in the electricity prices as a quantitative measure of it that, even when there are large uncertainties involved, can be used by decision makers in the process of achieving a global sustainable development. The external costs of the electricity generation in three Cuban power plants that use fossil fuel oils with high sulfur content have been assessed. With that purpose a specific implementation of the Impact Pathways Methodology for atmospheric emissions was developed. Dispersion of atmospheric pollutants is modeled at local and regional scales in a detailed way. Health impacts include mortality and those morbidity effects that showed relation with the increment of selected pollutant concentration in national studies. The external cost assessed for the three plants was 40,588,309 USD yr?1 (min./max.: 10,194,833/169,013,252), representing 1.06 USD Cent kWh?1. Costs derived from sulfur species (SO2 and sulfate aerosol) stand for 93% of the total costs.

L. Turtós Carbonell; E. Meneses Ruiz; M. Sánchez Gácita; J. Rivero Oliva; N. Díaz Rivero

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

422

Fuels - Biodiesel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

423

residual magnetism  

Science Journals Connector (OSTI)

The magnetization, i.e., the magnetic polarization, that remains in a magnetized material after all attempts to remove the magnetization have been made. Note: An example of residual magnetization is the magnetiza...

2001-01-01T23:59:59.000Z

424

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

425

Automotive shredder residue (ASR) characterization for a valuable management  

Science Journals Connector (OSTI)

Car fluff is the waste produced after end-of-life-vehicles (ELVs) shredding and metal recovery. It is made of plastics, rubber, glass, textiles and residual metals and it accounts for almost one-third of a vehicle mass. Due to the approaching of Directive 2000/53/EC recycling targets, 85% recycling rate and 95% recovery rate in 2015, the implementation of automotive shredder residue (ASR) sorting and recycling technologies appears strategic. The present work deals with the characterization of the shredder residue coming from an industrial plant, representative of the Italian situation, as for annual fluxes and technologies involved. The aim of this study is to characterize ASR in order to study and develop a cost effective and environmentally sustainable recycling system. Results show that almost half of the residue is made of fines and the remaining part is mainly composed of polymers. Fine fraction is the most contaminated by mineral oils and heavy metals. This fraction produces also up to 40% ashes and its LHV is lower than the plastic-rich one. Foam rubber represents around half of the polymers share in car fluff. Moreover, some chemical–physical parameters exceed the limits of some parameters fixed by law to be considered refuse derived fuel (RDF). As a consequence, ASR needs to be pre-treated in order to follow the energy recovery route.

Luciano Morselli; Alessandro Santini; Fabrizio Passarini; Ivano Vassura

2010-01-01T23:59:59.000Z

426

Table 1.1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; 1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Physical Units or Btu. Coke and Shipments Net Residual Distillate Natural Gas(e) LPG and Coal Breeze of Energy Sources NAICS Total(b) Electricity(c) Fuel Oil Fuel Oil(d) (billion NGL(f) (million (million Other(g) Produced Onsite(h) Code(a) Subsector and Industry (trillion Btu) (million kWh) (million bbl) (million bbl) cu ft) (million bbl) short tons) short tons) (trillion Btu) (trillion Btu) Total United States 311 Food 1,162 75,407 2 4 567 2 8 * 96 * 3112 Grain and Oilseed Milling 355 16,479 * * 119 Q 6 0 47 * 311221 Wet Corn Milling 215 7,467 * * 51 * 5 0 26 0 31131 Sugar Manufacturing

427

Liquid fuel resources and prospects for ligno-cellulosic ethanol: An Egyptian case study  

Science Journals Connector (OSTI)

Abstract Fossil fuels (oil, natural gas and coal) presently represent about 90% of the world’s total commercial primary energy demand. Yet, they are depletable sources of energy. Growth in the production of easily accessible oil, the main source of high energy liquid transportation fuels, will not match the projected rate of demand growth, especially in developing countries. In the transport sector, today, the only alternative to non-sustainable fossil fuels is biofuels that are produced from biomass, a stored environmentally neutral solar energy. These fuels are compatible with current vehicles and blendable with conventional fuels. Moreover, they share the long-established distribution infrastructure with little, if any, modification of equipment. The main biofuels presently in commercial production are bioethanol and biodiesel. Industrial countries started production of the 1st generation bioethanol and biodiesel from food products (grains and edible oil) since a few decades and these fuels are currently available at petrol stations. Second generation bioethanol from ligno-cellulosic materials is on the research, pilot and/or demonstration stage. This paper discusses the current situation regarding liquid fuels in Egypt which are experiencing imbalance between total production and demand for gasoline and diesel fuels. The quantified need for nonconventional sources is presented. Based on a thorough assessment of current and prospective generated agriculture residues as distributed over the political areas, mapping of the number and capacity of plants to be installed for production of bioethanol from available residues namely rice straw, sugar cane residues and cotton stalks has been developed. Annual capacities of 3000, 10,000 and 20,000 tons ethanol/year until year 2021 have been proposed. Capital and operating requirements and economic indicators have been estimated. It has been concluded that at current price of ethanol of about $0.6/kg, the simple rate of return on investments is about 2.8%, 11% and 16% for the 3000, 10,000 and 20,000 tons annual capacity ethanol respectively.

Shadia R. Tewfik; Nihal M. El Defrawy; Mohamed H. Sorour

2013-01-01T23:59:59.000Z

428

Fuel Switching Strategies for the 1990s  

E-Print Network [OSTI]

, petroleum coke, waste hydrocarbons (such as recovered from lubricants), biomass, and in the near future, methanol and other oxygenates or alcohols. Coal may also conceivably be a long-term sWitching candidate when utilized in a number of advanced open... under mos t conditions, in a manner that generates less NO x than heavier fuels such as coal, coke, and residual oil. Achieving NO x reductions with the latter is often a matter of capital investments and operating costs in either combustion...

Cascone, R.

429

Fuel Cell Distributed Power Package Unit: Fuel Processing Based On  

E-Print Network [OSTI]

Gas or Biogas or Biomass derived Pyrolysis oil In-situ heat generation on catalyst lowers capital cost is burnt off during regenerationDiesel, NG, Propane, Biogas, Biomass Pyrolysis Oil Fuel Flexibility ·In

430

AEO Early Release 2013 - oil  

U.S. Energy Information Administration (EIA) Indexed Site

Growing U.S. oil output and rising vehicle fuel economy to cut Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid fuels imports over the rest of this decade because of growing domestic crude oil production and more fuel-efficient vehicles on America's highways. The new long-term outlook from the U.S. Energy Information Administration shows America's dependence on imported petroleum and liquid fuels will decline from 45 percent of domestic demand last year to 34 percent by 2019. U.S. dependence on imported oil had reached 60 percent as recently as 2005. EIA Administrator Adam Sieminski explains: "The United States will be able to meet more of its own energy needs because of two key

431

Algae: fuel of the future?  

Science Journals Connector (OSTI)

Algae: fuel of the future? ... Start-ups and oil giants are investing millions in the photosynthetic powers of algae. ... Start-ups and oil giants are investing millions in the photosynthetic powers of algae. ...

Amanda Leigh Mascarelli

2009-09-02T23:59:59.000Z

432

Heat Requirements for Retorting Oil Shale  

Science Journals Connector (OSTI)

Heat Requirements for Retorting Oil Shale ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ... Converting Oil Shale to Liquid Fuels: Energy Inputs and Greenhouse Gas Emissions of the Shell in Situ Conversion Process ...

H. W. Sohns; L. E. Mitchell; R. J. Cox; W. I. Barnet; W. I. R. Murphy

1951-01-01T23:59:59.000Z

433

Oil burner nozzle  

DOE Patents [OSTI]

An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

Wright, Donald G. (Rockville Center, NY)

1982-01-01T23:59:59.000Z

434

Biodiesel Fuel Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Fuel Basics Biodiesel Fuel Basics July 30, 2013 - 2:43pm Addthis Biodiesel is a domestically produced, renewable fuel that can be manufactured from vegetable oils, animal...

435

Shale Oil and Gas, Frac Sand, and Watershed  

E-Print Network [OSTI]

;Bakken Oil Shale scope · Light, Sweet crude ­ ideal for automotive fuels and mid-size refineries (Midwest

Minnesota, University of

436

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

437

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

438

Table 3.2 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

2 Fuel Consumption, 2010; 2 Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. NAICS Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 1,158 257 12 22 579 6 182 2 99 3112 Grain and Oilseed Milling 350 56 * 1 121 * 126 0 45 311221 Wet Corn Milling 214 25 * * 53 * 110 0 25 31131 Sugar Manufacturing 107 4 1 1 15 * 49 2 36 3114 Fruit and Vegetable Preserving and Specialty Foods 143 31 1 Q 100 1 2 0 4 3115 Dairy Products 105 33 2 2 66 1 * 0 2 3116 Animal Slaughtering and Processing 212 69 5 3 125 2 Q 0 8 312 Beverage and Tobacco Products 86 29 1 1 38 1 10 0 7 3121 Beverages

439

Table 3.3 Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

3 Fuel Consumption, 2010; 3 Fuel Consumption, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Energy Sources; Unit: Trillion Btu. Economic Net Residual Distillate LPG and Coke and Characteristic(a) Total Electricity(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal Breeze Other(f) Total United States Value of Shipments and Receipts (million dollars) Under 20 1,148 314 6 53 446 14 25 Q 291 20-49 1,018 297 13 22 381 18 97 5 185 50-99 1,095 305 7 13 440 6 130 9 186 100-249 1,728 411 16 11 793 7 131 7 353 250-499 1,916 391 16 11 583 3 185 5 722 500 and Over 7,323 720 21 21 2,569 21 300 348 3,323 Total 14,228 2,437 79 130 5,211 69 868 376 5,059 Employment Size Under 50 1,149 305 12 45 565 21 31

440

Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Affecting Fuel Economy and Engine Wear Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Development of High Performance Heavy Duty Engine Oils...

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fuel Additive Strategies for Enhancing the Performance of Engines...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additive Strategies for Enhancing the Performance of Engines and Engine Oils Fuel Additive Strategies for Enhancing the Performance of Engines and Engine Oils 2003 DEER Conference...

442

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

E-Print Network [OSTI]

as international marine bunker fuel. For the remaining 5% ofOf the distillate fuel consumed by all marine vessels, weresidual fuel oil from international marine travel. However,

de la Rue du Can, Stephane

2010-01-01T23:59:59.000Z

443

Bureau of Land Management Oil Shale Development  

E-Print Network [OSTI]

Bureau of Land Management Oil Shale Development Unconventional Fuels Conference University of Utah May 17, 2011 #12;#12;Domestic Oil Shale Resources Primary oil shale resources in the U.S. are in the Green River Formation in Wyoming, Utah, and Colorado. 72 % of this oil shale resource is on Federal

Utah, University of

444

Enhanced Oil Recovery | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

445

Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation  

Science Journals Connector (OSTI)

Abstract Two oil shale combustion technologies, pulverized firing (PF) and circulated fluidized bed (CFB) were compared with respect to partitioning of selected elements (Ba, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Th, Tl, U, V, and Zn) in the ashes along the flue gas ducts. The ash samples were characterized by high-resolution ICP-MS. The average contents of toxic heavy metals in fly ash samples from the CFB boiler are lower compared to the PF boiler. Main differences in trace element contents between combustion technologies were as follows: Cd content in the fly ash samples of PF boiler was up to 0.9 mg/kg while in CFB boiler it remained below 0.1 mg/kg in all analyzed ash samples; Hg was observed in the ashes of electrostatic precipitator (ESP) of CFB boiler while in the PF boiler it was close to or below detection limit. In the PF boiler content of Sn was detected only in the ashes of ESPs, while in CFB boiler it was evenly distributed between bottom and fly ash samples. Highest content among heavy metals in ash samples was observed for Pb in the last field of ESP of the PF boiler (142 mg/kg).

Janek Reinik; Natalya Irha; Eiliv Steinnes; Gary Urb; Jekaterina Jefimova; Eero Piirisalu; Jüri Loosaar

2013-01-01T23:59:59.000Z

446

Biodiesel Production from Greenseed Canola Oil  

Science Journals Connector (OSTI)

Biodiesel Production from Greenseed Canola Oil† ... Biodiesel properties are comparable to those of fossil-based diesel fuel, and biodiesels can be produced from animal fats or vegetable oils; thus, they are renewable. ...

Titipong Issariyakul; Ajay K. Dalai

2010-02-04T23:59:59.000Z

447

Used oil re-refining  

SciTech Connect (OSTI)

Used oils, especially used lubricating oils which are normally considered waste and are discarded or burned, are reclaimed for reuse by a re-refining procedure involving the steps of: heat soaking the used oil; distilling the heat soaked oil; passing the distillate through a guard bed of activated material; hydrotreating the guard bed treated distillate under standard hydrotreating conditions. If the used oil to be re-refined contains a quantity of water and/or fuel fraction which the practioner considers sufficiently large to be detrimental, the used oil may be subjected to a dewatering/defueling step prior to being heat soaked.

Reid, L. E.; Ryan, D. G.; Yao, K. C.

1985-04-23T23:59:59.000Z

448

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

449

Characterization of Gaseous- and Particle-Phase Emissions from the Combustion of Biomass-Residue-Derived Fuels in a Small Residential Boiler  

Science Journals Connector (OSTI)

The aim of this study was to fill the gap in the data of emissions from the combustion of agricultural biomass fuels. ... Before starting each experiment, the heat transfer medium (water) was preheated to 70 °C by an additional natural gas boiler, with the objective to reach optimal combustion conditions quicker and avoid condensation on the surfaces of the boiler during the startup phase. ... hydrocarbons (PAHs) in residential areas, particularly in the winter season, is the burning process when wood is used for domestic heating. ...

Edvinas Krugly; Dainius Martuzevicius; Egidijus Puida; Kestutis Buinevicius; Inga Stasiulaitiene; Inga Radziuniene; Algirdas Minikauskas; Linas Kliucininkas

2014-07-15T23:59:59.000Z

450

Life Cycle Analysis of the Production of Aviation Fuels Using the CE-CERT Process  

E-Print Network [OSTI]

Jet fuel and crude oil price history……………………………. …………6Figure 2 Jet fuel and crude oil price history. From IATAa sharp decrease in crude oil price occurred in the 1950s.

Hu, Sangran

2012-01-01T23:59:59.000Z

451

Interactive coastal oil spill transport model  

E-Print Network [OSTI]

. 6 fuel oils, diesel or No. 2 fuel oils, and light petroleum products such as kerosenes or gasolines. Crude oils of different ge- ologic and geographic sources vary widely in composition. Thousands of individual compounds, mostly hydrocarbons... Composition (by Weight) of Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 16 IV Comparison of Solubilities for Various Petroleum Substances, (adapted from Moore, Dwyer, and Katz 1972) 17 V Biodegradation Rates of Crude Oils...

Thalasila, Nanda K.

1992-01-01T23:59:59.000Z

452

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

453

Miscibility of Ethanol in Diesel Fuels  

Science Journals Connector (OSTI)

The fuels selected were as follows:? US-1D, US-2D, kerosene, light cycle oil, #1 fuel oil, Fischer Tropsch Liquid 2 (FTL-2, FTL refers to a broad-cut fraction of Fischer?Tropsch products not meeting diesel volatility specifications.), ... The close proximity of a mixture's UCST to the fuel's cloud point masked the classical UCST phase behavior for the FTL fuels and light cycle oil; however, the general trends persisted. ...

K. R. Gerdes; G. J. Suppes

2001-01-12T23:59:59.000Z

454

Heating oils, 1980  

SciTech Connect (OSTI)

Properties of 247 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center and the American Petroleum Institute. The fuels were manufactured by 26 petroleum refining companies in 87 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuel are defined by the American Society for Testing and Materials Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1980 compared with data for 1979 are shown in tables. Analyses of grades 2, 5(light), and 6 foreign import oils are presented.

Shelton, E.M.

1980-10-01T23:59:59.000Z

455

Heating oils, 1981  

SciTech Connect (OSTI)

Properties of 249 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 28 petroleum refining companies in 92 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1981 compared with data for 1980 are shown in Tables 1 through 6. Analyses of grade 6 foreign import oils are presented in Table 13.

Shelton, E.M.

1981-08-01T23:59:59.000Z

456

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

457

SciTech Connect: DOE Project 18546, AOP Task 1.1, Fuel Effects...  

Office of Scientific and Technical Information (OSTI)

Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP,...

458

untitled  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Oil a Propane (Consumer Grade) Residual Fuel Oil Sulfur Less Than or Equal to 1 Percent Sulfur Greater Than 1 Percent Total Residual Fuel Oil United States January...

459

Workbook Contents  

U.S. Energy Information Administration (EIA) Indexed Site

Residual Fuel Oil Retail Sales by All Sellers (Dollars per Gallon)","New Mexico Residual Fuel Oil Retail Sales by All Sellers (Dollars per Gallon)","Texas Residual...

460

FY 2012 Progress Report for Fuel & Lubricant Technologies  

Energy Savers [EERE]

For example, oil-sand-derived fuels from Canada, Fischer-Tropsch fuels made from natural gas, and biofuels derived from fats and vegetable oils will play increasingly important...

Note: This page contains sample records for the topic "oil residual fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

vegetable oils or animal fats, either in pure form or mixed in any combination with petroleum-based diesel fuel. The definition of biodiesel is expanded for purposes of existing...

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

gas produced from biomass, where biomass is defined as any organic material other than oil, natural gas, and coal; liquid, gaseous or solid synthetic fuels produced from coal; or...

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the 0.30 per gallon state fuel excise tax. The exemption does not...

464

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

that is comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oil or animal fats and that meets ASTM D6751. Green diesel is defined as a fuel produced...

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

of this mandate, biodiesel is defined as a motor vehicle fuel derived from vegetable oil, animal fat, or other non-petroleum resources, that is designated as B100 and complies...

466

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Deduction Entities and individuals that receive biodiesel consisting of 99% vegetable oil or animal fat are eligible for a tax deduction for the fuel, provided that it is used...

467

U.S. Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels, Except Where Noted) Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View History Crude Oil 0 0 0 0 0 0 1986-2012 Liquefied Petroleum Gases 2,663 2,930 2,866 2,404 1,291 1,521 1986-2012 Distillate Fuel Oil 420 472 339 440 483 539 1986-2012 Residual Fuel Oil 1,844 1,390 1,249 980 759 540 1986-2012 Still Gas 247,106 237,161 220,191 219,890 217,716 220,094 1986-2012 Petroleum Coke 88,015 81,811 82,516 82,971 84,053 85,190 1986-2012 Marketable Petroleum Coke

468

A study on ultra heavy oil gasification technology  

SciTech Connect (OSTI)

Raising the thermal efficiency of a thermal power plant is an important issue from viewpoints of effective energy utilization and environmental protection. In view of raising the thermal efficiency, a gas turbine combined cycle power generation is considered to be very effective. The thermal efficiency of the latest LNG combined cycle power plant has been raised by more than 50%. On the other hand, the diversification of fuels to ensure supply stability is also an important issue, particularly in Japan where natural resources are scarce. Because of excellent handling characteristics petroleum and LNG which produces clean combustion are used in many sectors, and so the demand for such fuels is expected to grow. However, the availability of such fuels is limited, and supplies will be exhausted in the near future. The development of a highly efficient and environment-friendly gas turbine combined cycle using ultra heavy oil such as Orimulsion{trademark} (trademark of BITOR) is thus a significant step towards resolving these two issues. Chubu Electric Power Co, Inc., the Central Research Institute of Electric Power Industry (CRIEPI), and Mitsubishi Heavy Industries, Ltd. (MHI) conducted a collaboration from 1994 to 1998 with the objective of developing an ultra heavy oil integrated gasification combined cycle (IGCC). Construction of the ultra heavy oil gasification testing facility (fuel capacity:2.4t/d) was completed in 1995, and Orimulsion{trademark} gasification tests were carried out in 1995 and 1996. In 1997, the hot dedusting facility with ceramic filter and the water scrubber used as a preprocessor of a wet desulfurization process were installed. Gasification and clean up the syngs tests were carried out on Orimulsion{trademark}, Asmulsion{trademark} (trademark of Nisseki Mitsubishi K.K.), and residue oil in 1997 and 1998. The results of the collaboration effort are described below.

Kidoguchi, Kazuhiro; Ashizawa, Masami; Taki, Masato; Ishimura, Masato; Takeno, Keiji

2000-07-01T23:59:59.000Z

469

Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound speed, shockless, aluminum confiner  

SciTech Connect (OSTI)

Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could desensitize the explosive by crushing porosity required for shock initiation or destroying confinement ahead of the detonation. As these phenomena are not well understood, most numerical explosive models are unable to account for them. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by an aluminum confining tube. Detonation velocity, detonation front curvature, and aluminum response are recorded as a function of confiner wall thickness and length. Front curvature profiles display detonation acceleration near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness due to the additional inertial confinement of the reaction zone flow. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected which interfered with the front curvature measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation.

Jackson, Scott I [Los Alamos National Laboratory; Klyanda, Charles B [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

470

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

471

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

472

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

2007-01-01T23:59:59.000Z

473

Alvan Blanch Green Fuels joint venture | Open Energy Information  

Open Energy Info (EERE)

venture Place: United Kingdom Product: A partnership in which Alvan Blanch provides an oil press to extract oil from rape and Green Fuels provides the equipment to turn the oil...

474

aviation fuels | OpenEI  

Open Energy Info (EERE)

aviation fuels aviation fuels Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other petroleum products. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated Unknown Keywords aviation fuels diesel fuel oil oil petrol Data application/vnd.ms-excel icon annual production, imports, and exports of all oil products (xls, 294.9 KiB) application/vnd.ms-excel icon quarterly production of oil products by fuel type (xls, 272.4 KiB) application/vnd.ms-excel icon total petrol (xls, 155.1 KiB) application/vnd.ms-excel icon premium unleaded petrol (xls, 95.2 KiB) application/vnd.ms-excel icon regular unleaded petrol (xls, 119.3 KiB) application/vnd.ms-excel icon diesel (xls, 151 KiB)

475

POTENTIAL USES OF SPENT SHALE IN THE TREATMENT OF OIL SHALE RETORT WATERS  

E-Print Network [OSTI]

pore-volume study of retorted oil shale," Lawrence Livermoreits contact with the oil and shale. The gas condensate, onkinetics between and oil-shale residual carbon. 1. co Effect

Fox, J.P.

2013-01-01T23:59:59.000Z

476

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

SciTech Connect (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

477