National Library of Energy BETA

Sample records for oil reserve naval

  1. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in California, Utah, and Wyoming were set aside that became the Naval Petroleum and Oil Shale Reserves - the oldest component of today's Fossil Energy organization. Naval...

  2. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Energy Savers [EERE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  3. Annual report of operations. [Naval Petroleum Reserves No. 1, 2, 3; oil shale reserves

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Naval Petroleum and Oil Shale Reserves during FY 1980 deliver 59,993,213 bbl of crude oil and substantial quantities of natural gas, butane, propane and natural gasoline to the United States market. During September, Naval Petroleum Reserve oil was utilized to resume filling the Strategic Petroleum Reserve. During FY 1980, Naval Petroleum Reserve No. 1, Elk Hills, became the largest producing oil field in California and the second largest producing field in the United States. Production at the end of September was 165,000 bbl/d; production is expected to peak at about 190,000 bbl/d early in calender year 1982. Production from Naval Petroleum Reserves Nos. 2 and 3 in California and Wyoming, contributed 1,101,582 and 1,603,477 bbl of crude oil to the market, respectively. Enhanced oil recovery work has been inititated at Naval Petroleum Reserve no. 3. Total revenues from the Naval Petroleum Reserves during FY 1980 were 1.6 billion. The three Naval Oil Shale Reserves in Colorado and Utah have substantial potential. In addition to containing approximately 2.5 billion bbl recoverable shale oil. They probably contain significant quantities of conventional oil and gas.

  4. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  5. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  6. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  7. Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

  8. Naval petroleum reserves

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A hearing to consider two bills (S. 1744 and H.R. 3023) authorizing appropriations to operate the Naval Petroleum Reserve during fiscal 1982 brought testimony from officials of the Departments of Energy and Defense; from Chevron, USA; and from the Independent Refiners Association. Both bills authorize $228,463,000, of which $2.56 million will be available for the naval oil shale reserves and the remainder for the naval petroleum reserves. Chevron spokesmen noted that 8-11 months were required to reach full production at the Elk Hills site rather than the 60-90 days estimated by DOE, although both Chevron and the Independent Refiners Association of the west coast support the President's decision that it is in the national interest to continue the production of crude from naval petroleum reserves for the next three years.

  9. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  10. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  11. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  12. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  13. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.

  14. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  15. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  16. Naval Petroleum Reserve No. 1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    For several years, the administration has proposed selling the government's ownership interest in the Naval Petroleum Reserves, arguing that it would help reduce the federal budget deficit. The administration's latest proposal calls for the sale of reserves in fiscal year 1990. DOE estimates that if the reserves are sold in 1990, proceeds would amount to about $3.4 billion. The Naval Petroleum Reserve at Elk Hills, California, is the largest of the reserves. This report has reviewed and analyzed the new reserve data and found that DOE's reserve estimates for Elk Hills are still neither accurate nor up-to-date.

  17. US Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements and management overview and supplemental financial and management information, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-15

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on the NPOSR internal control structure and compliance with laws and regulations are also provided.

  18. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  19. Audit of controls over crude oil production under Public Law 94-258 Naval Petroleum Reserve No. 1, Elk Hills, California. [Compliance with legislation

    SciTech Connect (OSTI)

    Not Available

    1986-04-25

    The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258) requires the Secretary to produce oil and gas from the Reserve at the Maximum Efficient Rate (MER) developed consistent with sound engineering practices. MER is defined as ''the maximum sustainable daily oil or gas rate from a reservoir which will permit economic development and depletion of that reservoir without detriment to the ultimate recovery.'' MER is determined through analyses and calculations using defined factors and parameters acquired through standard oil field testing procedures. Economic development and depletion of a reservoir without detriment to ultimate recovery means that production rates should not cause loss of originally obtainable petroleum and that revenues should exceed the cost of production. The purpose of the audit was to determine if the Department had adhered to the MER limitation on production at the Reserve as required by Public Law 94-258. Our review disclosed that production rates at the Reserve were not developed through engineering-based MER calculations. Production for the past seven years has exceeded the MER calculated by the Reserve's own engineers and principal consultants. According to studies prepared by the Department's technical engineers and consultants, between 90 and 130 million barrels of otherwise recoverable oil is at risk of being lost through overproduction over the life of the Reserve. Based on the average market value of $18 per barrel on March 6, 1986, the value of this oil was between $1.60 billion and $2.30 billion. We estimate that about half of the oil at risk of loss could yet be recovered if Reserve management develops and implements valid engineering-based MERs. 11 refs.

  20. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    SciTech Connect (OSTI)

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  1. DOE - Office of Legacy Management -- Naval Oil Shale Reserves Site - 013

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSellingAcme MachineOrdnance -Oil

  2. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  3. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  4. Naval Petroleum and Oil Shale Reserve. Hearing before the Subcommittee on Preparedness of the Committee on Armed Services, United States Senate, Ninety-Eighth Congress, First Session on S. 1810, September 29, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Captain Myron E. Smith, Jr., Director of the DOE Office of Naval Petroleum and Oil Shale Reserves, testified at a hearing on S. 1810, which authorizes funds relating to the petroleum and oil shale reserves. Smith reviewed revenues and expenditures since legislation was passed in 1976, noting that production at Elk Hills and Teapot Dome are at peak levels, in his justification of the budget request of $266.1 million. Questions from the committee and Smith's responses follow his formal testimony.

  5. Naval Petroleum and Oil Shale Reserves Combined Financial Statements September 30, 1994 and 1993 and Management Overview and Supplemental Financial and Management Information

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on the 1994 statements. Their reports on the NPOSR internal control structure and on compliance with laws and regulations, and management letter on addressing needed improvements are also provided. NPOSR consists of petroleum reserves in California and Wyoming, and oil shale reserves in Colorado and Utah. The Government`s interests in NPOSR are managed by the Department through its headquarters office in Washington, D.C. In addition, the Department has site offices in both California and Wyoming that are responsible for contractor oversight functions. Daily operations are conducted under contract by two management and operating contractors. By law, NPOSR was authorized to produce crude oil at the maximum efficient rate for six years. The law allowed production to be extended for three year periods, provided that the President of the United States certified that continued maximum production was in the best interest of the nation. The current three year period ends on April 5, 1997. Additional information about NPOSR is provided in the overview and notes to the financial statements.

  6. Environmental assessment of a proposed steam flood of the Shallow Oil Zone, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The US Department of Energy proposes to develop a limited enhanced oil recovery project in the Shallow Oil Zone at Naval Petroleum Reserve No. 1 (NPR-1) Elk Hills. The project would employ steam forced into the oil-bearing formation through injector wells, and would involve two phases. The initiation of the second phase would be dependent on the economic success of the first phase. The total project would require the drilling of 22 new wells in a 45-acre area supporting seven existing production wells. It would also require construction of various surface facilities including a tank setting (gas-oil separation system), steam generators, and a water treatment plant. Adverse environmental impacts associated with the proposed steam flood project would include the effects on vegetation, wildlife and land-use resulting from the total reconfiguration of the topography within the project bondaries. Other adverse impacts include the emission of oxides of nitrogen, carbon monoxide, hydrocarbons and particulates from steam generators, vehicles and associated surface facilities. Minor adverse impacts include localized noise and dust during constuction, and reduction of visual quality. 48 refs., 7 figs., 10 tabs.

  7. Naval Petroleum Reserve No. 1: an assessment of production alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-30

    Under existing legislation, every 3 years the President must decide whether to shut-in or continue production of the Naval Petroleum Reserve No. 1 (NPR-1) oil field at Elk Hills, California. The current authorization for production expires on April 5, 1985. GAO discusses the geologic, budgetary, local economic, and national security implications of three production alternatives for NPR-1: continued production, shut-in, and partial shut in. In addition, GAO discusses the advantages and disadvantages of establishing a Defense Petroleum Reserve, a crude oil reserve for the military, using part of the revenues from continued production at NPR-1 to fund it. During the course of its review, GAO found that production rates at Elk Hills may be too high, causing problems within the reserve that could decrease ultimate recovery of oil by about 139 million barrels. The Department of Energy plans to analyze this situation and, if need be, adjust the rate. 2 figures, 2 tables.

  8. US Department of Energy Naval petroleum reserve number 1. Financial statement audit

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the United States taxpayer. NPOSR was established by a series of Executive Orders in the early 1900s as a future source of liquid fuels for the military. NPOSR remained largely inactive until Congress, responding to the Arab oil embargo of 1973-74, passed the Naval Petroleum Reserves Production Act of 1976. The law authorized production for six years. Thereafter, NPOSR production could be reauthorized by the President in three-year increments. Since enactment of the law, every President has determined that continuing NPOSR production is in the nation`s best interest. NPOSR currently is authorized to continue production through April 5, 2000.

  9. H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

  10. Collection of Windfall Profit Tax for crude oil sales at the Naval Petroleum Reserves in California (Elk Hills, California)

    SciTech Connect (OSTI)

    Not Available

    1985-05-31

    Our audit disclosed that between October 1, 1983 and March 31, 1984 the government lost about $244,000 in interest income due to delays in collecting the tax on NPRC crude oil sales. We found that purchasers of the crude oil were not paying the windfall profit tax at the same time that they paid the Department for the oil itself, as required by the oil sales contracts and the windfall profits tax regulations. Correction of the deficiencies, through changes in the tax code and improved oversight by Department officials, could lead to estimated annual interest savings to the government of about $500,000.

  11. Naval Petroleum Reserves | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive Summary In theEnergyNaval Petroleum Reserves

  12. Naval Petroleum Reserve No. 2: Buena Vista Oil and Gas Field, Kern County, California: Proved reserves, Developed and undeveloped, Sections 6 and 8: Development history and exploitation techniques, Effective July 1, 1987: (Final technical report)

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-09

    The research for the initial Naval Petroleum Reserve No. 2 (NPR-2), study Task Assignment 010, showed the possibility of undeveloped proved reserves in the Shallow Pool on Government leases. Task Assignment 010C included a study to confirm or disprove the possibility. The six-section area, which is highlighted on Exhibit M-2, was chosen as the area for specific study of this subject. The Shallow Oil Zone, as depicted on Exhibit S-1, was the focal point of the study in the area. Competitive development of Government land with adjacent privately held land is an issue which has often been raised regarding NPR-2; however, it has never been formally addressed. Task Assignment 010C commissioned a study of the subject in the same six-section area designated for the study of proved undeveloped reserves. The producing formations in the Buena Vista Field of NPR-2 are very similar to the producing formations in the Elk Hills Field of NPR-1 to the north. It is possible that some of the successful development techniques utilized in NPR-2 by the various operators might enhance production efficiency at NPR-1. Task Assignment 010C included a detailed task of researching techniques used in NPR-2 for possible application in NPR-1. Because the detailed tasks of Task Assignment 010C are divergent in scope, a composite summary of the study's research is not included in this report. Each task's research is detailed in a separate Discussion section. Exhibits for these discussions are contained in an Exhibit section at the end of this volume. The appendices include: task assignment; DOE letters to lessees; Evans, Carey and Crozier letters to lessees; reports and studies from lessees; core analysis data; production data; geologic picks of formation tops; and annotated well logs. 22 figs., 6 tabs.

  13. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  14. Habitat restoration on naval petroleum reserves in Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C. [EG& G Energy Measurements, Inc., Tupman, CA (United States)

    1990-12-31

    One of several task performed under contract to the Department of Energy (DOE) by EG & G Energy Measurements as part of the endangered species program is the restoration of abandoned well pads, roads, pipelines and soil borrow sites resulting from oil and gas production activities on Naval Petroleum Reserves in California (NPRC). Naval Petroleum Reserves in California is located in the Elk Hills approximately 30 miles southwest of Bakersfield in the rain shadow of the coastal range. Annual precipitation is approximately five inches. Reclamation of disturbed habitat on NPRC began with research plots and test trials in the early 1980s. Full scale reclamation began in 1985 and has continued through the 1989 planting season. Almost 700 acres have been revegetated, which represents over 1,200 sites distributed over the 47,250 acres of NPRC and averaging less than .75 acre in size. Monitoring of the sites began in 1987 to establish reclamation success and evaluate reclamation techniques. Reclamation objectives include the improvement of wildlife habitat for four endangered species living on NPRC, and the protection of the soils from wind and water erosion on the disturbed sites.

  15. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Broader source: Energy.gov (indexed) [DOE]

    a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. RMOTC...

  16. Naval Petroleum Reserves | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014Department of Energy Nationwide:Natural GasNaval

  17. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  18. Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C.

    1994-11-01

    Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

  19. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-08-01

    Legislation authorizing production from two Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents an assessment of the trade-offs of extending production or returning to a shut-in status. Strategic, economic, and energy factors at the national, regional, and local levels are considered. The results of the study indicate that the only major local impact of shut-in will be on small refineries near NPR-1. At the national level, shut-in increases the size of the national petroleum reserve system. However, economic losses as measured by changes in the present value of real GNP also occur. The estimate of the increase in the size of the national petroleum reserve with shut-in of the NPRs was found to be most sensitive to the assumed length of future import interruptions.

  20. Naval petroleum reserves: Preliminary analysis of future net revenues from Elk Hills production

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This is an interim report on the present value of the net revenues from Elk Hills Naval Petroleum Reserve. GAO calculated alternative present values of the net revenues applying (1) low, medium, and high forecasts of future crude oil prices and (2) alternative interest rates for discounting the future net revenues to their present values. The calculations are sensitive to both the oil price forecasts and discount rates used; they are preliminary and should be used with caution. They do not take into account possible added tax revenues collected by the government if Elk Hills were sold nor varying production levels and practices, which could either increase or decrease the total amount of oil that can be extracted.

  1. Naval Petroleum Reserve No. 1 (Elk Hills): Supplemental environmental impact statement. Record of decision

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Pursuant to the Council on Environmental Quality regulations, which implement the procedural provisions of the National Environmental Policy Act, and the US Department of Energy National Environmental Policy Act regulations, the Department of Energy, Office of Fossil Energy, is issuing a Record of Decision on the continued operation of Naval Petroleum Reserve No. 1, Kern County, California. The Department of Energy has decided to continue current operations at Naval Petroleum Reserve No. 1 and implement additional well drilling, facility development projects and other activities necessary for continued production of Naval Petroleum Reserve No. 1 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976. The final Supplemental Environmental Impact Statement, entitled ``Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California (DOE/SEIS-0158),`` was released on September 3, 1993.

  2. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    Jerry R. Bergeso and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume one contains the following: summary; introduction; and reservoir studies for tulare, dry gas zone, eastern shallow oil zone, western shallow oil zone, and Stevens --MBB/W31S, 31S NA/D.

  3. Oil Shale and Other Unconventional Fuels Activities | Department...

    Energy Savers [EERE]

    Services Petroleum Reserves Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy...

  4. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  5. Naval Petroleum Reserve Number 1 financial statements September 30, 1997 and 1996 (with independent auditors` report thereon)

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserve No. 1 (NPR-1) in a manner to achieve the greatest value and benefits to the US taxpayer. As required by the 1996 National Defense Authorization Act, the Department of Energy offered NPR-1 for sale during FY 1997. DOE structured the sale so as to offer two types of ownership segments: one operatorship segment, consisting of 74% of the US interest in NPR-1, and 13 nonoperating segments, each consisting of 2% of the US interest. Potential purchasers could bid on one, some, or all of the segments. If a single purchaser wanted to buy all of the Government`s interest, then its bid would have to exceed the total of the highest bids for all of the individual segments. Bids were due October 1, 1997, at which time DOE received 22 bids from 15 parties acting alone or in concert. The report and management letter present the results of the independent certified public accountants` audits of the Department of Energy`s Naval Petroleum Reserve Number 1 (NPR-1) financial statements as of, and for the years ended, September 30, 1997 and 1996.

  6. EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

  7. EA-1236: Preparation for Transfer of Ownership of Naval Petroleum Reserve No. 3, Natrona County, WY

    Broader source: Energy.gov [DOE]

    Final Sitewide Environmental Assessment (EA) This Sitewide EA evaluates activities that DOE would conduct in anticipation of possible transfer of Naval Petroleum Reserve No. 3 (NPR-3) out of Federal operation.

  8. EIS-0158: Sale of the Naval Petroleum Reserve No. 1 at Elk Hills, California (1997)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258.

  9. Estimates of Oil Reserves Jean Laherrere

    E-Print Network [OSTI]

    O'Donnell, Tom

    Estimates of Oil Reserves Jean Laherrere e-mail: jean.laherrere@wanadoo.fr sites: http oil will solve the present problems on welfare, retirement and they would dearly love to see the reserves of oil

  10. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report, Executive summary

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The Naval Petroleum Reserve No. 1 (Elk Hills) is located in Kern County, California, and is jointly owned by the US Department of Energy and Chevron USA Inc. The Elk Hills Field is presently producing oil and gas from five geologic zones. These zones contain a number of separate and geologically complex reservoirs. Considerable field development and production of oil and gas have occurred since initial estimates of reserves were made. Total cumulative field production through December 1987 is 850 MMBbls of oil, 1.2 Tcf of gas and 648.2 MMBbls of water. In December 1987, field producing rates expressed on a calendar day basis amounted to 110,364 BOPD, 350,946 Mcfd and 230,179 BWPD from 1157 producers. In addition, a total of two reservoirs have gas injection in progress and four reservoirs have water injection in progress and four reservoirs have water injection in progress. Cumulative gas and water injection amounted to 586 Bcf of gas and 330 MMB of water. December 1987 gas and water injection rates amounted to 174 MMcfd and 234 MBWPD, into 129 injectors. In addition, a steamflood pilot program is currently active in the Eastern Shallow Oil Zone. Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase II of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objectives for this phase of the study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 28 figs., 37 tabs.

  11. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  12. Characteristics of North Sea oil reserve appreciation

    E-Print Network [OSTI]

    Watkins, G. C.

    2000-01-01

    In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

  13. Naval Petroleum Reserves in California site environmental report for calendar year 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This summary for Naval Petroleum Reserves in California (NPRC) is divided into NPR-1 and NPR-2. Monitoring efforts at NPR-1 include handling and disposal of oilfield wastes; environmental preactivity surveys for the protection of endangered species and archaeological resources; inspections of topsoil stockpiling; monitoring of revegetated sites; surveillance of production facilities for hydrocarbons and oxides of nitrogen (NO{sub x}) emissions; monitoring of oil spill prevention and cleanup; and monitoring of wastewater injection. No major compliance issues existed for NPR-1 during 1989. Oil spills are recorded, reviewed for corrective action, and reported. Environmental preactivity surveys for proposed projects which may disturb or contaminate the land are conducted to prevent damage to the federally protected San Joaquin kit fox, blunt-nosed leopard lizard, Tipton kangaroo rat and the giant kangaroo rat. Projects are adjusted or relocated as necessary to avoid impact to dens, burrows, or flat-bottomed drainages. A major revegetation program was accomplished in 1989 for erosion control enhancement of endangered species habitat. The main compliance issue on NPR-2 was oil and produced water discharges into drainages by lessees. An additional compliance issue on NPR-2 is surface refuse from past oilfield operations. 17 refs.

  14. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

  15. Conservation plan for protected species on Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; Cypher, B.L.

    1997-07-01

    Habitats in and around Naval Petroleum Reserve No. 1 (NPR-1) support populations of various vertebrates and plants, including a number of threatened and endangered species. Adequate conservation of habitats and species, particularly protected species, can be facilitated through development and implementation of management plans. This document provides a comprehensive plan for the conservation of protected species on NPR-1, through compliance with terms and conditions expressed in Biological Opinions rendered by the U.S. Fish and Wildlife Service for NPR-1 activities. Six conservation strategies by which threatened and endangered species have been, and will be, protected are described: population monitoring, mitigation strategies, special studies, operating guidelines and policies, information transfer and outreach, and the endangered species conservation area. Population monitoring programs are essential for determining population densities and for assessing the effects of oil field developments and environmental factors on protected species. Mitigation strategies (preactivity surveys and habitat reclamation) are employed to minimize the loss of important habitats components and to restore previously disturbed lands to conditions more suitable for species` use. A number of special studies were undertaken between 1985 and 1995 to investigate the effectiveness of a variety of population and habitat management techniques with the goal of increasing the density of protected species. Operating guidelines and policies governing routine oil field activities continue to be implemented to minimize the potential for the incidental take of protected species and minimize damage to wildlife habitats. Information transfer and outreach activities are important means by which technical and nontechnical information concerning protected species conservation on NPR-1 is shared with both the scientific and non-scientific public.

  16. Assessment of impacts and evaluation of restoration methods on areas affected by a well blowout, Naval Petroleum Reserve No. 1, California

    SciTech Connect (OSTI)

    Warrick, G.D.; Kato, T.T.; Phillips, M.V. [and others

    1996-12-01

    In June 1994, an oil well on Naval Petroleum Reserve No. 1 blew-out and crude oil was deposited downwind. After the well was capped, information was collected to characterize the release and to assess effects to wildlife and plants. Oil residue was found up to 13.7 km from the well site, but deposition was relatively light and the oil quickly dried to form a thin crust on the soil surface. Elevated levels of hydrocarbons were found in livers collected from Heermann`s kangaroo rats (Dipodomys heermanni) from the oiled area but polycyclic aromatic hydrocarbons (known carcinogens or mutagens) were not detected in the livers. Restoration techniques (surface modification and bioremediation) and natural recovery were evaluated within three portions of the oiled area. Herbaceous cover and production, and survival and vigor of desert saltbush (Atriplex polycarpa) were also monitored within each trapping grid.

  17. Investigation on the continued production of the Naval Petroleum Reserves beyond April 5, 1991

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    The authority to produce the Naval Petroleum Reserves (NPRs) is due to expire in April 1991, unless extended by Presidential finding. As provided in the Naval Petroleum Reserves Production act of 1976 (Public Law 94-258), the President may continue production of the NPRs for a period of up to three years following the submission to Congress, at least 180 days prior to the expiration of the current production period, of a report that determines that continued production of the NPRs is necessary and a finding by the President that continued production is in the national interest. This report assesses the need to continue production of the NPRs, including analyzing the benefits and costs of extending production or returning to the shut-in status that existed prior to 1976. This continued production study considers strategic, economic, and energy issues at the local, regional, and national levels. 15 figs., 13 tabs.

  18. Technical Safety Appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    This report presents the results of a focused Technical Safety Appraisal (TSA) of the Naval Petroleum Reserve No. 1 (NPR-1), Elk Hills, California, conducted during November 27 through December 8, 1989. The Department of Energy (DOE) program organization responsible for NPR-1 is the Assistant Secretary for Fossil Energy (FE); the responsible Field Office is the Naval Petroleum Reserves California (NPRC) Office. This appraisal is an application of the program that was initiated in 1985 to strengthen the DOE Environment, Safety and Health Program. The appraisal was conducted by the staff of the DOE Assistant Secretary for Environment, Safety and Health (EH), Office of Safety Appraisals, with support from experts in specific appraisal areas, including a number from the petroleum industry, and a liaison representative from FE. The Senior EH Manager for the appraisal was Mr. Robert Barber, Acting Director, Office of Compliance Programs; the Team Leader was Dr. Owen Thompson, Office of Safety Appraisals.

  19. Endangered species program Naval Petroleum Reserves in California. Annual report FY94

    SciTech Connect (OSTI)

    NONE

    1995-04-01

    In FY94, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to conserve endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly star. To mitigate impacts of oil field activities on listed species, 400 preactivity surveys covering approximately 315 acres were conducted in FY94. Mitigation measures implemented as a result of survey findings resulted in avoidance of incidental takes of listed species during construction activities. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. Third-party projects in FY94 included three pipeline projects and two well abandonment/clean-up projects. Cultural resource support provided to NPRC consisted primarily of conducting preliminary surveys for cultural resources, and preparing a Cultural Resource Management Plan and Programmatic Agreement for NPR-1. These two documents will be finalized in FY95. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY94, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was initiated to assess reclamation efficacy. Results will be used to direct future habitat reclamation efforts at NPRC. In addition to this effort, 347 reclaimed sites were assessed to evaluate reclamation success.

  20. Endangered species and cultural resources program, Naval Petroleum Reserves in California: Annual report FY95

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    In FY95, EG and G Energy Measurements, Inc. (EG and G/EM) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on Federal properties. Population monitoring activities are conducted annually for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. To mitigate impacts of oil field activities on listed species, 674 preactivity surveys covering approximately 211 hectares (521 acres) were conducted in FY95. EG and G/EM also assisted with mitigating effects from third-party projects, primarily by conducting biological and cultural resource consultations with regulatory agencies. EG and G/EM has conducted an applied habitat reclamation program at NPRC since 1985. In FY95, an evaluation of revegetation rates on reclaimed and non-reclaimed disturbed lands was completed, and the results will be used to direct future habitat reclamation efforts at NPRC. In FY95, reclamation success was monitored on 50 sites reclaimed in 1985. An investigation of factors influencing the distribution and abundance of kit foxes at NPRC was initiated in FY94. Factors being examined include habitat disturbance, topography, grazing, coyote abundance, lagomorph abundance, and shrub density. This investigation continued in FY95 and a manuscript on this topic will be completed in FY96. Also, Eg and G/EM completed collection of field data to evaluate the effects of a well blow-out on plant and animal populations. A final report will be prepared in FY96. Finally, EG and G/EM completed a life table analysis on San Joaquin kit foxes at NPRC.

  1. 4 oil firms turn secret on reserves

    SciTech Connect (OSTI)

    Schaffer, P.

    1980-04-14

    US oil companies are complying with Saudi Arabia's and Indonesia's request by not revealing the companies' shares of oil reserves, adding to supply uncertainties and increasing the power of the producing countries. The information blackout reduces the reserve estimates filed by Exxon, Mobil, Standard Oil of California, and Texaco with the Securities and Exchange Commission, which plans to deal with the reporting problem on a case-by-case basis. Unless the companies decide the information can be disclosed to DOE's Financial Reporting System, a legal battle will ensue. A summary of reserve reports indicates a trend in declining production relative to new discoveries as well. (DCK)

  2. Production accounting and controls at the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-07-17

    Purpose of the audit was to determine if the Reserve's crude oil and gas products were properly accounted for and controlled from well-head to ultimate use or sale and physical controls and security measures at the Reserve were sufficient to ensure that Government assets were safeguarded as required. Our review showed that the Reserve used sales rather than actual production as the basis for its production accounting process. This method of accounting gave the Reserve only an approximation of the oil and gas it produced. Security measures had been significantly improved since the Reserve was opened; however, there were certain well and tank site areas which were not adequately secured and safeguarded against loss. During the course of the audit, management took prompt action to enhance security procedures.

  3. Influence of physiography and vegetation on small mammals at the Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Cypher, B.L.

    1995-02-13

    Influence of physiography and vegetation on small mammal abundance and species Composition was investigated at Naval Petroleum Reserve No. 1 in California to assess prey abundance for Federally endangered San Joaquin kit foxes (Vulpes macrotis mutica) and to assess the distribution of two Federal candidate species, San Joaquin antelope squirrels (Ammospermophilus nelsoni) and short-nosed kangaroo rats (Dinodomys nitratoides brevinasus). The specific objectives of this investigation were to determine whether small mammal abundance and community composition varied with north-south orientation, terrain, ground cover, and Cypher shrub density, and whether these factors influenced the distribution and abundance of San Joaquin antelope squirrels and short-nosed kangaroo rats.

  4. Oil and coal: reserves and production

    E-Print Network [OSTI]

    Canada Japan F.R I United Germany Kingdom France Italy Fig. 2. Oil's share of the increase in energy useOil and coal: reserves and production Anton Ziolkowski* The 1984-85 strike by British coal miners has focused attention on the difficulties of the coal industry at a time when demand for energy

  5. Endangered Species Program, Naval Petroleum Reserves in California. Annual report FY93

    SciTech Connect (OSTI)

    NONE

    1995-02-01

    The Naval Petroleum Reserves in California (NPRC) are operated by the US Department of Energy (DOE) and Chevron USA. Production Company (CPDN). Four federally-listed endangered animal species and one federally-threatened plant species are known to occur on NPRC: San Joaquin kit fox, blunt-nosed leopard lizard, giant kangaroo rat, Tipton kangaroo rat, and Hoover`s wooly-star. All five are protected under the Endangered Species Act of 1973, which declares that it is ``...the policy of Congress that all Federal departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of the Act.`` DOE is also obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 will have any effects on endangered species or their habitats. The major objective of the EG&G Energy Measurements, Inc. Endangered Species Program on NPRC is to provide DOE with the scientific expertise necessary for compliance with the Endangered Species Act. The specific objective of this report is to summarize progress and results of the Endangered Species Program made during fiscal year 1993.

  6. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  7. Review of mineral estate of the United States at Naval Petroleum Reserve No. 2, Buena Vista Hills Field, Kern County, California

    SciTech Connect (OSTI)

    1996-08-09

    The purpose of this report is to present this Consultant`s findings regarding the nature and extent of the mineral estate of the United States at National Petroleum Reserve No. 2 (NPR-2), Buena Vista Hills Field, Kern County, California. Determination of the mineral estate is a necessary prerequisite to this Consultant`s calculation of estimated future cash flows attributable to said estate, which calculations are presented in the accompanying report entitled ``Phase II Final Report, Study of Alternatives for Future Operations of the Naval Petroleum and Oil Shale Reserves, NPR-2, California.`` This Report contains a discussion of the leases in effect at NPR-2 and subsequent contracts affecting such leases. This Report also summarizes discrepancies found between the current royalty calculation procedures utilized at NPR-2 and those procedures required under applicable agreements and regulations. Recommendations for maximizing the government`s income stream at NPR-2 are discussed in the concluding section of this Report.

  8. EIS-0158-S2: Supplemental Environmental Impact Statement Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement, the supplement to DOE/EIS-0158, to analyze the environmental and socioeconomic impacts of the sale of Naval Petroleum Reserve No. 1 in Kern County, California to Occidental Petroleum Corporation.

  9. Oil reserves -Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Oil_reserves 1 of 14 5/16/2006 2:49 AM

    E-Print Network [OSTI]

    Dahlquist, Kam D.

    Oil reserves - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Oil_reserves 1 of 14 5/16/2006 2:49 AM Oil reserves From Wikipedia, the free encyclopedia Oil reserves refer to portions of oil in place that are recoverable under economic constraints. In comparison, oil in place, or STOOIP, meaning

  10. Environmental Survey preliminary report, Naval Petroleum Reserves in California (NPRC), Tupman, California

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Naval Petroleum Reserves 1 (NPR-1) and 2 (NPR-2) in California (NPRC), conducted May 9--20, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPRC. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involved the review of existing site environmental data, observations of the operations carried on at NPRC, and interviews with site personnel. 120 refs., 28 figs., 40 tabs.

  11. Naval Petroleum Reserves: assessment of alternative operating strategies beyond 1982. Analysis and supporting data

    SciTech Connect (OSTI)

    Gsellman, L.R.; Mendis, M.S.; Rosenberg, J.I.

    1981-06-01

    Legislation authorizing production from two of the Naval Petroleum Reserves, i.e., NPR-1 (Elk Hills, California) and NPR-3 (Teapot Dome, Wyoming), expires in 1982. This paper presents analyses and supporting data concerning the trade-offs of extending production or returning to a shut-in status in order to provide the Department of Energy with information needed to formulate a recommendation. The primary objective of the study is to evaluate a range of possible futures (through 1990) to determine technical, economic, energy, strategic and political trade-offs between the two options. A secondary objective is to develop a data base for use by DOE to respond to questions and issues raised by interested parties during executive branch and Congressional reviews.

  12. Occurrence and distribution of special status plant species on the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Anderson, D.C.; Cypher, B.L.; Holmstead, G.L.; Hammer, K.L.; Frost, N.

    1994-10-01

    Several special status plant species occur or potentially occur at the Naval Petroleum Reserves in California (NPRC). Special status species are defined as those species that are either federally listed as endangered or threatened, or candidate taxa. Candidate species are classified as Category 1 or Category 2. Category 1 taxa are those species for which there is sufficient evidence to support listing, while Category 2 taxa are those species for which listing may possibly be appropriate, but for which sufficient data are lacking to warrant immediate listing. Determining the presence and distribution of these species on NPRC is necessary so that appropriate conservation or protection measures can be implemented. In the spring of 1988, a survey of Naval Petroleum Reserve No. 1 (NPR-1) was conducted to determine the occurrence of Hoover`s wooly-star (Eriastrum hooveri), Kern Mallow (Eremalche kemensis), San Joaquin wooly-threads (Lembertia congdonii), and California jewelflower (Caulanthus califonicus), all listed by the US Fish and Wildlife Service (FWS) as Category 2 species at that time. Of the four species, only Hoover`s wooly-star was found. It was concluded that Kern mallow and San Joaquin wooly-threads could potentially be found on NPR-1, but habitat for California jewelflower did not occur on NPR-1 and its occurrence was unlikely. As part of an ongoing effort to document the presence or absence of sensitive plant species on NPRC, surveys for species other than Hoover`s wooly-star were conducted in the spring of 1993. Abundant spring rains in 1993 created favorable growing conditions for annual forbs. Surveys in 1993 focused on potential habitat of several endangered and candidate species. The results of those surveys are presented in this report.

  13. Petroleum production at Maximum Efficient Rate Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Final Supplemental Environmental Impact Statement

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This document provides an analysis of the potential impacts associated with the proposed action, which is continued operation of Naval Petroleum Reserve No. I (NPR-1) at the Maximum Efficient Rate (MER) as authorized by Public law 94-258, the Naval Petroleum Reserves Production Act of 1976 (Act). The document also provides a similar analysis of alternatives to the proposed action, which also involve continued operations, but under lower development scenarios and lower rates of production. NPR-1 is a large oil and gas field jointly owned and operated by the federal government and Chevron U.SA Inc. (CUSA) pursuant to a Unit Plan Contract that became effective in 1944; the government`s interest is approximately 78% and CUSA`s interest is approximately 22%. The government`s interest is under the jurisdiction of the United States Department of Energy (DOE). The facility is approximately 17,409 acres (74 square miles), and it is located in Kern County, California, about 25 miles southwest of Bakersfield and 100 miles north of Los Angeles in the south central portion of the state. The environmental analysis presented herein is a supplement to the NPR-1 Final Environmental Impact Statement of that was issued by DOE in 1979 (1979 EIS). As such, this document is a Supplemental Environmental Impact Statement (SEIS).

  14. Petroleum production at maximum efficient rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California. Draft Supplement to the 1979 Final Environmental Impact Statement

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    The proposed action involves the continued operation of the Naval Petroleum Reserve No. 1 (NPR-1) at the Maximum Efficiency Rate (MER) through the year approximately 2025 in accordance with the requirements of the Naval Petroleum Reserves Production Act of 1976 (P.L. 94-258). NPR-1 is a large oil and gas field comprising 74 square miles. MER production primarily includes continued operation and maintenance of existing facilities; a well drilling and abandonment program; construction and operation of future gas processing, gas compression, and steamflood, waterflood, cogeneration, and butane isomerization facilities; and continued implementation of a comprehensive environmental protection program. The basis for the draft environment impact statement (DSEIS) proposed action is the April 1989 NPR-1 Long Range Plan which describes a myriad of planned operational, maintenance, and development activities over the next 25--30 years. These activities include the continued operation of existing facilities; additional well drilling; expanded steamflood operations; expanded waterflood programs; expanded gas compression, gas lift, gas processing and gas injection; construction of a new cogeneration facility; construction of a new isobutane facility; and a comprehensive environmental program designed to minimize environmental impacts.

  15. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency MaineAutoSecurity | DepartmenthistoryDepartment

  16. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, economic development and production plan

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    Jerry R. Bergeson and Associates, Inc. (Bergeson) has completed Phase 3 of the Reservoir Analysis, Naval Petroleum Reserve Number 1, Elk Hills Oilfield, California. The objective of this phase of the study was to establish the economic potential for the field by determining the optimum economic plan for development and production. The optimum economic plan used net cash flow analysis to evaluate future expected Department of Energy revenues less expenses and investments for proved developed, proved undeveloped, probable, possible and possible-enhanced oil recovery (EOR) reserves assigned in the Phase 2 study. The results of the Phase 2 study were used to define future production flowstreams. Additional production scheduling was carried out to evaluate accelerated depletion of proved developed reserves in the 29R, 31 C/D Shale and Northwest Stevens T Sand/N Shale Reservoirs. Production, cost and investment schedules were developed for the enhanced oil recovery projects identified in Phase 2. Price forecasts were provided by the Department of Energy. Operating costs and investment requirements were estimated by Bergeson. 4 figs., 48 tabs.

  17. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    DOE prepared an EA that assesses the potential environmental impacts of the proposed discontinuation of DOE operations at the Rocky Mountain Oilfield Testing Center (RMOTC) and the proposed divestiture of Naval Petroleum Reserve Number 3 (NPR-3)

  18. Naval Petroleum Reserve. Hearing before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, First Session, November 3, 1981

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A November 3, 1981 hearing reviewed President Reagan's proposal to continue the 180,000 barrels per day of oil and 320 million cubic foot per day of gas production at the Elk Hills, California Naval Petroleum Reserve No. 1. Without approval by both Houses, production will automatically be reduced to the minimum level. At issue are national security, the value of $2 billion in receipts from Elk Hills oil sales, and the local impacts of a decision to continue or reduce production. The statements of 11 witnesses from the public and private sectors are followed by additional materials submitted for the record. (DCK)

  19. Wildlife management plan, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Scrivner, J.H.

    1987-01-01

    Under the Naval Petroleum Act of 1976, Congress directed the Secretary of the Navy and subsequently the Secretary of Energy, to produce petroleum products from Naval Petroleum Reserve No. 1 (NPR-1) in Kern County, California, at the maximum efficient rate consistent with sound engineering practices. Because of the presence of two endangered species and the quality, quantity, and contiguous nature of habitat on NPR-1, the area is unique and management of its resources deserves special attention. The purpose of this wildlife management plan is to: (1) draw together specific information on NPR-1 wildlife resources; (2) suggest management goals that could be implemented, which if achieved, would result in diverse, healthy wildlife populations; and (3) reinitiate cooperative agreements between the US Department of Energy (DOE) and other conservation organizations regarding the management of wildlife on NPR-1. NPR-1 supports an abundant and diverse vertebrate fauna. Twenty-five mammalian, 92 avian, eight reptilian, and two amphibian species have been observed on Elk Hills. Of these, three are endangered (San Joaquin kit fox, Vulpes macrotis mutica; giant kangaroo rat, Dipodomys ingens; blunt-nosed leopard lizard, Gambelia silus). Nine vertebrates, six invertebrates, and four plant species known to occur or suspected of occurring on Elk Hills are potential candidates for listing. A major objective of this management plan is to minimize the impact of petroleum development activities on the San Joaquin kit fox, giant kangaroo rat, blunt-nosed leopard lizard, and their essential habitats. This will mainly be achieved by monitoring the status of these species and their habitat and by restoring disturbed habitats. In general, management policies designed to benefit the above three species and other species of concern will also benefit other wildlife inhabiting NPR-1.

  20. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1, (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; O`Farrell, T.P.; Briden, L.E.

    1992-06-01

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted between July 3 and August 5, 1989 to determine the distribution and relative density of endangered species and other wildlife. Results were compared with other reported results, particularly the 1979 and 1984 surveys of NPR-1. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. Of the 516 San Joaquin kit fox dens observed, 496 were typical subterranean dens and 20 were atypical dens in man-made structures. Estimated den density was 36.7 {plus_minus} 4.1 per square mile; and relative den density was 10.5/1,000 acres for all of NPR-1. Characteristics of typical kit fox dens were comparable to characteristics reported for other studies, except mean number of entrances per den, which was lower. Observers counted a total of 300 dens previously marked with an identification sign, 191 of which contained at least one complete entrance and would have been observed without a sign. Relative densities of preferred kit fox prey, black-toiled jackrabbits (40.1/1,000 acres) and desert cottontails (14.1/1,000 acres), were lower than previously recorded. Five blunt-nosed leopard lizards were observed along the southwest and northeast perimeter of the Reserve. Most of the 59 giant kangaroo rat burrow systems were observed in the flat terrain along the northeast and south perimeters of the Reserve. San Joaquin antelope squirrels were observed in the central and western parts of NPR- 1. A total of 73 antelope squirrels were observed, and the relative density was 1.511,000 acres. A total.of 30 possible environmental hazards were observed during transect surveys. Most of these were oil and water leaks of small size and appeared to pose little risk to endangered species. Results of this survey indicate that NPR-1 is supporting less wildlife than it did during either the 1979 or 1984 surveys.

  1. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1, (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Otten, M.R.M.; O'Farrell, T.P.; Briden, L.E.

    1992-06-01

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted between July 3 and August 5, 1989 to determine the distribution and relative density of endangered species and other wildlife. Results were compared with other reported results, particularly the 1979 and 1984 surveys of NPR-1. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. Of the 516 San Joaquin kit fox dens observed, 496 were typical subterranean dens and 20 were atypical dens in man-made structures. Estimated den density was 36.7 [plus minus] 4.1 per square mile; and relative den density was 10.5/1,000 acres for all of NPR-1. Characteristics of typical kit fox dens were comparable to characteristics reported for other studies, except mean number of entrances per den, which was lower. Observers counted a total of 300 dens previously marked with an identification sign, 191 of which contained at least one complete entrance and would have been observed without a sign. Relative densities of preferred kit fox prey, black-toiled jackrabbits (40.1/1,000 acres) and desert cottontails (14.1/1,000 acres), were lower than previously recorded. Five blunt-nosed leopard lizards were observed along the southwest and northeast perimeter of the Reserve. Most of the 59 giant kangaroo rat burrow systems were observed in the flat terrain along the northeast and south perimeters of the Reserve. San Joaquin antelope squirrels were observed in the central and western parts of NPR- 1. A total of 73 antelope squirrels were observed, and the relative density was 1.511,000 acres. A total.of 30 possible environmental hazards were observed during transect surveys. Most of these were oil and water leaks of small size and appeared to pose little risk to endangered species. Results of this survey indicate that NPR-1 is supporting less wildlife than it did during either the 1979 or 1984 surveys.

  2. The value of United States oil and gas reserves

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1996-01-01

    The object of this research is to estimate a time series, starting in 1979, for the value of in-ground oil reserves and natural gas reserves in the United States. Relatively good statistics exist for the physical quantities. ...

  3. ,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  4. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Broader source: Energy.gov (indexed) [DOE]

    Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise...

  5. DOE Announces Loans of Oil from the Strategic Petroleum Reserve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced today that DOE has approved two loan requests totaling 750,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to two Louisiana refineries. The...

  6. ,"U.S. Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"06302009" ,"Release...

  7. ,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"NM, East Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"LA, South Onshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"NM, West Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"North Louisiana Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. Reproduction of the San Joaquin kit fox on Naval Petroleum Reserve No. 1, Elk Hills, California: 1980-1985

    SciTech Connect (OSTI)

    Zoellick, B.W.; O'Farrell, T.P.; McCue, P.M.; Harris, C.E.; Kato, T.T.

    1987-01-01

    Reproduction of the San Joaquin kit fox (Vulpes macrotis mutica) was studied in areas of petroleum development and areas relatively undisturbed by development on and adjacent to Elk Hills Naval Petroleum Reserve No. 1 (NPR-1), California from 1980-1985. Pregnancy rates of adults did not differ between habitats (93 to 100%), but the yearling pregnancy rate in developed habitat (56%) was lower than the adult rates and the yearling rate for undeveloped habitat (100%). Mean corpora lutea and placental scar counts did not differ between undeveloped and developed habitats, but adults had greater corpora lutea and placental scar counts than yearlings. Litter sizes averaged 4.1 and 4.4 for undeveloped and developed habitats respectively from 1980-1985 and did not differ between years or habitats. Mean number of litters observed per square mile during 1980-1985 did not differ between undeveloped (0.34) and developed habitats (0.29). The percentage of all females successfully raising pups in developed habitat declined significantly from 1980-1985 in comparison with the percent success of females in undeveloped habitat. Numbers of litters per square mile in developed habitat also declined significantly after 1981. The sex ratio of pups trapped in developed habitat was skewed towards males during the decline in litters produced per square mile from 1982-1985, but the ratio of males to females in undeveloped habitat did not differ from 1:1 during this time. The decline in some measures of reproductive success in developed habitat after 1981 coincided with a decrease in black-tailed jackrabbit and desert cottontail numbers on the NPR-1 study area. The decreased reproductive success of foxes in developed habitat after 1981 may have resulted from habitat degradation caused by oil field production activities, declining lagomorph numbers, or other unknown causes. 49 refs., 7 figs., 8 tabs.

  16. Endangered species and cultural resources program Naval petroleum Reserves in California. Annual report FY96

    SciTech Connect (OSTI)

    NONE

    1997-07-01

    In FY96, Enterprise Advisory Services, Inc. (EASI) continued to support efforts to protect endangered species and cultural resources at the Naval Petroleum Reserves in California (NPRC). These efforts are conducted to ensure NPRC compliance with regulations regarding the protection of listed species and cultural resources on federal properties. Population monitoring activities were conducted for San Joaquin kit foxes, giant kangaroo rats, blunt-nosed leopard lizards, and Hoover`s wooly-star. Kit fox abundance and distribution was assessed by live-trapping over a 329-km{sup 2} area. Kit fox reproduction and mortality were assessed by radiocollaring and monitoring 22 adults and two pups. Reproductive success and litter size were determined through live-trapping and den observations. Rates and sources of kit fox mortality were assessed by recovering dead radiocollared kit foxes and conducting necropsies to determine cause of death. Abundance of coyotes and bobcats, which compete with kit foxes, was determined by conducting scent station surveys. Kit fox diet was assessed through analysis of fecal samples collected from live-trapped foxes. Abundance of potential prey for kit foxes was determined by conducting transect surveys for lagornorphs and live-trapping small mammals.

  17. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report: Volume 1, Appendices

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    The objectives for the Phase II study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. 43 figs., 103 tabs.

  18. U.S. Crude Oil and Natural Gas Proved Reserves

    Reports and Publications (EIA)

    2015-01-01

    U.S. crude oil proved reserves increased in 2014 for the sixth year in a row with a net addition of 3.4 billion barrels of proved oil reserves (a 9% increase), according to U.S. Crude Oil and Natural Gas Proved Reserves, 2014, released today by the U.S. Energy Information Administration (EIA). U.S. natural gas proved reserves increased 10% in 2014, raising the U.S. total to a record 388.8 trillion cubic feet.

  19. Results of analyses of fur samples from the San Joaquin Kit Fox and associated soil and water samples from the Naval Petroleum Reserve No. 1, Tupman, California

    SciTech Connect (OSTI)

    Suter, G.W. II; Rosen, A.E.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Kato, T.T. [EG and G Energy Measurements, Inc., Tupman, CA (United States)

    1992-12-01

    The purpose of this study was to determine whether analysis of the elemental content of fur from San Joaquin kit foxes (Vulpes macrotis mutica) and of water and soil from kit fox habitats could be used to make inferences concerning the cause of an observed decline in the kit fox population on Naval Petroleum Reserve No. 1 (NPR-1). Fur samples that had been collected previously from NPR-1, another oil field (NPR-2), and two sites with no oil development were subjected to neutron activation analysis. In addition, soil samples were collected from the home ranges of individual foxes from undisturbed portions of major soil types on NPR-1 and from wastewater samples were collected from tanks and sumps and subjected to neutron activation analysis. Most elemental concentrations in fur were highest at Camp Roberts and lowest on the undeveloped portions of NPR-I. Fur concentrations were intermediate on the developed oil fields but were correlated with percent disturbance and with number of wells on NPR-1 and NPR-2. The fact that most elements covaried across the range of sites suggests that some pervasive source such as soil was responsible. However, fur concentrations were not correlated with soft concentrations. The kit foxes on the developed portion of NPR-1 did not have concentrations of elements in fur relative to other sites that would account for the population decline in the early 1980s. The oil-related elements As, Ba, and V were elevated in fox fur from oil fields, but only As was sufficiently elevated to suggest a risk of toxicity in individual foxes. However, arsenic concentrations suggestive of sublethal toxicity were found in only 0.56% of foxes from developed oil fields, too few to account for a population decline.

  20. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  1. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  2. New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  3. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  4. New Mexico - East Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  5. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  6. New Mexico - West Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  7. New Mexico - East Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. New Mexico Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  9. New Mexico - West Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  12. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  13. New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  14. New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  15. New Mexico Crude Oil + Lease Condensate Reserves Revision Increases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. New Mexico Crude Oil + Lease Condensate Reserves Extensions ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  17. New Mexico Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  19. New Mexico - East Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  20. New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  1. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  2. EIS-0158: Supplemental Environmental Impact Statement to the 1979 Petroleum Production at Maximum Efficient Rate, Naval Petroleum Reserve No. 1(Elk Hills), Kern County, California (1993)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assess the potential environmental impacts of the continued operation of the Naval Petroleum Reserve No. 1 at the Maximum Efficient Rate authorized by Public Law 94-258. This EIS supplements DOE/EIS-0012.

  3. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  4. Five-year resurvey for endangered species on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Mathews, N.E.

    1987-09-01

    A transect survey of Naval Petroleum Reserve No. 1 (NPR-1), Kern County, California, was conducted in 1984 to determine the distribution and relative abundance of endangered species and other wildlife. A total of 589.8 miles of transects were walked through approximately 47,235 acres in all or parts of 81 sections. A total of 16,401 observations of 58 species of wildlife were made which demonstrated the richness and abundance of wildlife on NPR-1 in spite of the intensity of recent petroleum developments. Although most construction activities associated with increased petroleum production took place between the first transect survey in 1979 and this resurvey, no adverse changes in relative densities of kit fox dens, prey base, or other wildlife were observed. NPR-1 should be resurveyed again in 1989. 33 refs., 5 figs., 13 tabs.

  5. Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new

    E-Print Network [OSTI]

    Anderson, Jim

    Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we with oil or natural gas is greatly increased. Southampton academics have led the world in CSEM for more with Norwegian oil and gas company Statoil and UCSD's Scripps Institution of Oceanography. Southampton provided

  6. Final sitewide environmental assessment for preparation for transfer of ownership of Naval Petroleum Reserve No. 3 (NPR-3), Natrona County, Wyoming

    SciTech Connect (OSTI)

    1998-04-01

    The Secretary of Energy is authorized to produce the Naval Petroleum Reserves No. 3 (NPR-3) at its maximum efficient rate (MER) consistent with sound engineering practices, for a period extending to April 5, 2000 subject to extension. Production at NPR-3 peaked in 1981 and has declined since until it has become a mature stripper field, with the average well yielding less than 2 barrels per day. The Department of Energy (DOE) has decided to discontinue Federal operation of NPR-3 at the end of its life as an economically viable oilfield currently estimated to be 2003. Although changes in oil and gas markets or shifts in national policy could alter the economic limit of NPR-3, it productive life will be determined largely by a small and declining reserve base. DOE is proposing certain activities over the next six years in anticipation of the possible transfer of NPR-3 out of Federal operation. These activities would include the accelerated plugging and abandoning of uneconomic wells, complete reclamation and restoration of abandoned sites including dismantling surface facilities, batteries, roads, test satellites, electrical distribution systems and associated power poles, when they are no longer needed for production, and the continued development of the Rocky Mountain Oilfield Testing Center (RMOTC). DOE has prepared this environmental assessment that analyzes the proposed plugging and abandonment of wells, field restoration and development of RMOTC. Based on the analysis in the EA, the DOE finds that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). The preparation of an environmental impact statement is not required, and DOE is issuing this Finding of No Significant Impact (FONSI).

  7. Reservoir analysis study, Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 2 report: Volume 2

    SciTech Connect (OSTI)

    Not Available

    1988-06-01

    The objectives for this Phase II study included the establishment of revised estimates of the original oil and gas-in-place for each of the zones/reservoirs, estimation of the remaining proved developed, proved undeveloped, probable and possible reserves, and assessment of the effects of historical development and production operations and practices on recoverable reserves. Volume two contains reservoir studies for: Stevens/endash/26R/2B; Stevens/endash/29R242/132/Asphalto; Stevens/endash/Northwest; and Carneros.

  8. EA-0962: Construction and Routine Operation of a 12-kilovolt Overhead Powerline and Formal Authorization for a 10-inch and 8-inch Fresh Water Pipeline Right-of-Way at Naval Petroleum Reserve No. 1, Kern County, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to install an overhead powerline extension from the U.S. Department of Energy's Naval Petroleum Reserve No. 1 (NPR-1) power source to the...

  9. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U or other Federal agencies. #12;#12;1 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves to the prices used in 2008. U.S. crude oil plus lease condensate proved reserves rose 9 percent to 22.3 billion

  10. West Virginia Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0...

  11. Audit of joint owner costing and billing practices, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Richards, J.R.

    1986-01-13

    The review showed a need for the Department to revise and strengthen cash management and cost allocation procedures and practices for jointly shared Reserve operating costs funded by the Government. The procedures and practices in effect for processing Joint Owner costs, billings and collections do not permit the Government to receive full advantage of the time value of money paid in behalf of Chevron or provide for the full sharing of all costs incurred by the Government to absorb unnecessary interest and operating costs since assuming responsibility for funding Reserve operations in October 1975. It is estimated that the Department would benefit by over $3 million per year if our recommendations in these areas are fully implemented.

  12. Superfund Record of Decision (EPA Region 5): Naval Industrial Reserve Ordnance Plant, Fridley, MN. (First remedial action), September 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28

    The 82.6-acre Naval Industrial Reserve Ordnance Plant (NIROP) site is a weapons system manufacturing facility in Fridley, Minnesota, which began operations in 1940. The site is a government-owned, contractor-operated, plant located just north of the FMC Corp. During the 1970s, paint sludge and chlorinated solvents were disposed of onsite in pits and trenches. In 1981, State investigations identified TCE in onsite water supply wells drawing from the Prairie DuChien/Jordan aquifer, and the wells were shut down. In 1983, EPA found drummed waste in the trenches or pits at the northern portion of the site, and as a result, during 1983 and 1984, the Navy authorized an installation restoration program, during which approximately 1,200 cubic yards of contaminated soil and 42 drums were excavated and landfilled offsite. The Record of Decision (ROD) addresses the remediation of a shallow ground water operable unit. The primary contaminants of concern affecting the ground water are VOCs including PCE, TCE, toluene, and xylene.

  13. Summary and evaluation of the coyote control program on Naval Petroleum Reserve No. 1, Kern County, California, 1987

    SciTech Connect (OSTI)

    Scrivner, J.H.

    1987-09-01

    For the third consecutive year (1987) the US Department of Energy (DOE) funded a coyote (Canis latrans) control program in an attempt to reduce coyote predation on the endangered San Joaquin kit fox (Vulpes macrotis mutica) on Naval Petroleum Reserve No. 1 (NPR-1, Elk Hills) in Kern County, California. During approximately 8 weeks of control activities, personnel from the US Department of Agriculture, Division of Animal Damage Control (ADC), removed 16 adult coyotes: 14 were trapped, 2 were shot. Data were gathered on standard measurements, weights, ages, and reproductive condition. No kit foxes were accidently trapped. Based on the results of canid scent-station surveys, the coyote population on NPR-1 declined and the kit fox population was relatively stable. Recommendations were made to conduct the 1987/1988 coyote control program between December 1987 and February 1988, use helicopters for aerial gunning and locating coyote dens, and develop a cooperative agreement between DOE, ADC, US Fish and Wildlife Service, Bureau of Land Management, and the California Department of Fish and Game to conduct the coyote control program on lands surrounding NPR-1 owned by DOE and others. 8 refs., 2 figs., 2 tabs.

  14. U.S. Department of Energy Naval Petroleum Reserve Number 1 quarterly financial statements, December 31, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-18

    The report presents the results of the independent certified public accountants` review of the Department of Energy`s Naval Petroleum Reserve Number 1 interim financial statements as of December 31, 1996 and 1995. The review was done in accordance with Statements on Standards for Accounting and Review Services issued by the American Institute of Certified Public Accountants. A review of interim financial statements consists principally of inquiries of NPR-1 personnel and analytical procedures applied to financial data. It is substantially less in scope than an audit in accordance with generally accepted auditing standards, the objective of which is the expression of an opinion regarding the financial statements take as a whole. Accordingly, the certified public accountants do not express such an opinion. The auditors have stated that, except for the omission of certain disclosures, they are not aware of any material modifications that should be made to the financial statements in order for them to be in conformity with the other comprehensive basis of accounting described in Note 1 to the financial statements.

  15. U.S. Department of Energy Naval Petroleum Reserve Number 1 quarterly financial statements, March 31, 1997 and 1996

    SciTech Connect (OSTI)

    NONE

    1997-04-17

    The report presents the results of the independent certified public accountants` review of the Department of Energy`s Naval Petroleum Reserve Number 1 interim financial statements as of March 31, 1997 and 1996. The review was done in accordance with Statements on Standards for Accounting and Review Services issued by the American Institute of Certified Public Accountants. A review of interim financial statements consist principally of inquires of NPR-1 personnel and analytical procedures applied to financial data. It is substantially less in scope than an audit in accordance with generally accepted auditing standards, the objective of which is the expression of an opinion regarding the financial statements taken as a whole. Accordingly, the certified public accountants do not express such an opinion. The auditors have stated that, except for the omission of certain disclosures, they are not aware of any material modifications that should be made to the financial statements in order for them to be in conformity with the other comprehensive basis of accounting described in Note 1 to the financial statements.

  16. The Strategic Petroleum Reserve crude oil storage program experience

    SciTech Connect (OSTI)

    Linn, J.; Neal, J. [Sandia National Labs., Albuquerque, NM (United States); Berndsen, J. [Dept. of Energy, Washington, DC (United States)

    1996-09-01

    The US Strategic Petroleum Reserve is currently storing nearly 600 million barrels of crude oil in 62 leached and one mined salt cavern in salt domes located in Texas and Louisiana. In more than 15 years of operation the oil reserve has had unique experiences in liquid hydrocarbon storage in a former salt mine, long term effects of underground storage on crude oil and pipelines, and long term effects of underground salt creep. This paper reviews significant experiences, technological accomplishments, and major problems that have been overcome. Long term geomechanical effects on mines including modeling and experience, unique gas and thermal effects on stored liquid hydrocarbons, corrosion in brine pipelines, and the slow closure of caverns due to salt creep are specifically addressed. Additionally, the unique conditions, and the lessons learned which led to the DOE decision to withdraw from the Weeks Island storage site are discussed.

  17. S. 2375: a bill to disapprove of certain deferrals of Strategic Petroleum Reserve budget authority, to authorize additional appropriations with respect to the Strategic Petroleum Reserve, and to increase oil import fees. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, April 28, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The purpose of this bill is to disapprove of certain deferrals of the Strategic Petroleum Reserve (SPR) budget authority, to authorize additional appropriations to the SPR, and to increase oil import fees. The bill authorizes $1 billion for fiscal years 1987, 88, and 89 for crude oil acquisitions for the SPR and $163 million for storage and related facility construction during 1987. It also instructs the Energy Secretary to cease production from the Naval Petroleum Reserve at Elk Hills for six months to allow the reservoir depletion to stabilize.

  18. DOE - Office of Legacy Management -- Naval Petroleum Reserve No 3 - 046

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSellingAcmePetroleum Reserve No

  19. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009ReservesThousand CubicProductionCrude Oil

  20. Technical safety appraisal of the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    The existing Elk Hills facilities for fluid production consist of tank settings, gas and oil/water gathering pipelines, gas plants, compressor facilities, lease automatic custody transfer units which meter the crude oil going to sales, and natural gas sales meters and pipelines, water injection and source wells, and gas injection pipelines and wells. The principal safety concerns presented by operations at Elk Hills are fire, occupational safety and industrial hygiene considerations. Transportation and motor vehicle accidents are also of great concern because of the large amount of miles driven on more than 900 miles of roads. Typical operations involve hazardous materials and processing equipment such as vessels, compressors, boilers, piping and valves. The aging facilities, specifically the 35R Gas Plant (constructed in 1952) and many of the pipelines, introduce an additional element of hazard to the operations.

  1. DOE (US Department of Energy) slates 100,000 bbl/day of oil for SPR (US Strategic Petroleum Reserves) by December 1

    SciTech Connect (OSTI)

    Chayes, A.; Dingell, J.

    1980-09-22

    DOE, which has been criticized by members of the US House of Representatives Energy and Power Subcommittee for delaying the filling of SPR, has announced that it will start adding 100,000 bbl/day of oil to SPR by 12/1/80. According to A. Chayes (Department of Energy), the oil will be acquired through swaps for Elk Hills field Naval Petroleum Reserves crude. DOE has signed a contract to buy Pacific Refining Company's 10,000 bbl/day of oil from Elk Hills. The oil will be moved to the West Hackberry, LA, SPR storage cavern through the ARCO Four Corners Pipeline. According to J. Dingell (US Congress), SPR could at present, be filled at a 500,000-600,000 bbl/day rate. Chayes said that DOE agrees that 100,000 bbl/day is a minimal and suboptimal rate.

  2. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S.; Shiflett, D.W.; Deutsch, H.A.

    1996-12-31

    The {open_quotes}A{close_quotes} sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the {open_quotes}N Point{close_quotes} stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  3. Reservoir compartmentalization caused by mass transport deposition Northwest Stevens pool, Elk Hills Naval Petroleum Reserves, California

    SciTech Connect (OSTI)

    Milliken, M.D.; McJannet, G.S. ); Shiflett, D.W. ); Deutsch, H.A. )

    1996-01-01

    The [open quotes]A[close quotes] sands of the Northwest Stevens Pool consist of six major subdivisions (A1-A6) and numerous sublayers. These sands are above the [open quotes]N Point[close quotes] stratigraphic marker, making them much younger than most other Stevens sands at Elk Hills. Cores show the A1-A3 sands to be possibly mass transport deposition, primarily debris flows, slumps, and sand injection bodies. The A4-A6 sands are characterized by normally graded sheet-like sand bodies Hospital of traditional outer fan turbidite lithofacies. Most current production from the A1-A2 interval comes from well 373A-7R, are completed waterflood wells that came on line in 1992 at 1400 BOPD. Well 373A-7R is an anomaly in the A1-A2 zone, where average production from the other ten wells is 200 BOPD. Other evidence for compartmentalization in the A1-A2 interval includes sporadic oil-water contacts and drawdown pressures, difficult log correlations, and rapid thickness changes. In 1973, well 362-7R penetrated 220 ft of wet Al sand. The well was redrilled updip and successfully completed in the A1, where the oil-water contact is more than 130 ft lower than the original hole and faulting is not apparent. In 1992, horizontal well 323H-7R unexpectedly encountered an entirely wet Al wedge zone. Reevaluation of the A1-A3 and other sands as mass transport origin is important for modeling initialization and production/development strategies.

  4. Proved Nonproducing Reserves of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane

  5. Proved Nonproducing Reserves of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane

  6. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  12. Another look at the strategic petroleum reserve: Should its oil holdings be privatized?

    SciTech Connect (OSTI)

    Blumstein, C. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); Komor, P. [E Source, Inc., Boulder, CO (United States)] [E Source, Inc., Boulder, CO (United States)

    1996-12-31

    The sharp increases in crude oil prices in the 1970`s unleashed a gusher of economic and policy analyses concerning energy security. A consensus emerged concerning the desirability of building and using a large stock of oil to cushion the effects of a sudden loss of oil supply. The author examines the validity of this large stock of oil considering changes in the oil market and whether the oil holdings of the Strategic Petroleum Reserve should be privatized. 12 refs.

  13. New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226UndergroundProductionProvedCrude Oil Reserves

  14. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billionoff) ShaleCrude Oil + Lease

  15. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2005-02-07

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete high oil saturated shallow sand intervals. During the second report period, well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months. Post workover well production was marginally increased to 3.7 BOPD on average for the following six months.

  16. Biological assessment of the effects of petroleum production at maximum efficient rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California, on the endangered blunt-nosed leopard lizard, Gambelia silus

    SciTech Connect (OSTI)

    Kato, T.T.; O'Farrell, T.P.

    1986-06-01

    Surveys to determine the distribution and relative abundance of blunt-nosed leopard lizards on Naval Petroleum Reserve-1 were conducted in 1980 and 1981. In 1982 radiotelemetry and pitfall trapping techniques were used to gain additional information on the species and develop alternative methods of study. Incidental observations of blunt-nosed leopard lizards were recorded and used in the distribution information for NPR-1. DOE determined during this biological assessment that the construction projects and operational activities necessary to achieve and sustain MER have not adversely affected the blunt-nosed leopard lizard and its habitat, because only approximately 6% of the potential blunt-nosed leopard lizard habitat on NPR-1 was disturbed by construction and operational activities. DOE believes that the direct, indirect, and cumulative effects of MER will not jeopardize the continued existence of the species, because results of surveys indicated that blunt-nosed leopard lizards are mainly distributed near the periphery of Elk Hills where few petroleum developments occurred in the past and where they are unlikely to occur in the future. A policy of conducting preconstruction surveys to protect blunt-nosed leopard lizard habitat was initiated, a habitat restoration plan was developed and implemented, and administrative policies to reduce vehicle speeds, contain oil spills, restrict off-road vehicle (ORV) travel, and to prohibit public access, livestock grazing, and agricultural activities were maintained.

  17. Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements

    SciTech Connect (OSTI)

    Michael G. Conner

    2004-02-14

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  18. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2006-04-02

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  19. Results of preconstruction surveys used as a management technique for conserving endangered species and their habitats on Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Kato, T.T.; O'Farrell, T.P.; Johnson, J.W.

    1985-08-01

    In 1976 an intensive program of petroleum production at maximum efficient rate was initiated on the US Department of Energy's (DOE) Naval Petroleum Reserve No. 1 (Elk Hills) in western Kern County, California. In a Biological Opinion required by the Endangered Species Act, the US Fish and Wildlife Service concluded that proposed construction and production activities may jeopardize the continued existence of the endangered San Joaquin kit fox, Vulpes macrotis mutica, and the blunt-nosed leopard lizard, Gambelia silus, inhabiting the Reserve. DOE committed itself to carrying out a compensation/mitigation plan to offset impacts of program activities on endangered species and their habitats. One compensation/mitigation strategy was to develop and implement preconstruction surveys to assess potential conflicts between proposed construction activities, and endangered species and their critical habitats, and to propose reasonable and prudent alternatives to avoid conflicts. Between 1980 and 1984, preconstruction surveys were completed for 296 of a total of 387 major construction projects encompassing 3590 acres. Fewer than 22% of the projects potentially conflicted with conservation of endangered species, and most conflicts were easily resolved by identifying sensitive areas that required protection. Only 8% of the projects received minor modification in their design or locations to satisfy conservation needs, and only three projects had to be completely relocated. No projects were cancelled or delayed because of conflicts with endangered species, and costs to conduct preconstruction surveys were minimal. 27 refs., 9 figs., 2 tabs.

  20. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

  1. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  2. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  3. Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2003-01-01

    A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

  4. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  5. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  6. Biological assessment of the effects of petroleum production at maximum efficient rate, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California, on the endangered San Joaquin kit fox, Vulpes macrotis mutica

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Harris, C.E.; Kato, T.T.; McCue, P.M.

    1986-06-01

    Between 1980 and 1986 DOE sponsored field studies to gather sufficient information to determine the status of the species on Naval Petroleum Reserve-1 and to evaluate the possible effects of MER. Transect surveys were conducted in 1979 and 1984 to document the distribution and relative density of fox dens. Radiotelemetry studies were initiated to provide information on reproductive success, den use patterns, responses to petroleum field activities, food habits, movement patterns and home ranges, and sources and rates of mortality. Techniques for conducting preconstruction surveys to minimize possible negative effects of MER activities on foxes plus a habitat restoration program were developed and implemented. DOE determined during this biological assessment that the construction projects and operational activities necessary to achieve and sustain MER may have adversely affected the San Joaquin kit fox and its habitat. However, the direct, indirect, and cumulative effects of MER will not jeopardize the continued existence of the species because: (1) results of the extensive field studies did not provide evidence that MER effected negative changes in relative abundance, reproductive success, and dispersal of the species; (2) a successful policy of conducting preconstruction surveys to protect kit fox, their dens, and portions of their habitat was initiated; (3) the Secretary of the Interior did not designate critical habitat; (4) a habitat restoration plan was developed and implemented; (5) a monitoring program was implemented to periodically assess the status of kit fox; (6) a coyote control program was established with FWS to reduce predation on fox; and (7) administrative policies to reduce vehicle speeds, contain oil spills, restrict off-road vehicle (ORV) travel, and to prohibit hunting, trapping, livestock grazing, and agricultural activities, were maintained to protect kit fox.

  7. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  8. Distribution, abundance, and habitat use of the endangered blunt-nosed leopard lizard on the Naval Petroleum Reserves, Kern County, California

    SciTech Connect (OSTI)

    Kato, T.T.; Rose, B.R.; O'Farrell, T.P.

    1987-09-01

    The distribution, abundance, and habitat use of the endangered blunt-nosed leopard lizard, Gambelia silus, was studied on and adjacent to Naval Petroleum Reserves No. 1 (NPR-1, Elk Hills), and No. 2 (NPR-2, Buena Vista), Kern County, CAlifornia. A total of 262 blunt-nosed leopard lizards were seen over 8 years (1979-1987) in 28 sections of NPR-1, 15 sections of NPR-2, and 10 sections adjacent to the petroleum reserves. All but one were in areas of gentle or flat relief with sparse annual ground cover. Home range size and overlap, activity patterns, and habitat use were determined from monitoring blunt-nosed leopard lizards fitted with miniature radiocollars on two study sites. Mean home range size estimated by the minimum polygon method was 2.7 acres for female blunt-nosed leopard lizards, which was significantly smaller than the 5.4 acres mean home range size for males inhabiting a major wash. The structure of the habitat affected significantly the lizards' activity and burrow use. Lizards inhabiting the wash study site were more frequently seen on the surface not associated with a burrow than lizards in the more sparsely vegetated grassland study site (63% compared with 48% of their sightings); 51.5% of the sightings for lizards in the grassland study site were associated with burrows, compared with 37.1% for lizards in the wash study site. Burrows were not shared and some burrows were used more than once (30% of burrows and 62% of burrow sightings).

  9. Report on inspection of concerns regarding DOE`s evaluation of Chevron USA`s unsolicited proposal for the Elk Hills Naval Petroleum Reserve

    SciTech Connect (OSTI)

    NONE

    1997-11-17

    An allegation was made to the Office of Inspector General (OIG) that the integrity of the Department of Energy`s (DOE) unsolicited proposal review process may have been compromised by the actions of a former Deputy Secretary of Energy and his Executive Assistant during the review of an unsolicited proposal received from Chevron U.S.A. Production Company (Chevron) in may 1993. The Chevron unsolicited proposal was for the management and operation of DOE`s Elk Hills Naval Petroleum Reserve (Elk Hills), located near Bakersfield, California. Chevron submitted the unsolicited proposal on May 19, 1993. DOE formally rejected Chevron`s unsolicited proposal in May 1995. Although Chevron`s unsolicited proposal was eventually rejected by DOE, the complainant specifically alleged that the {open_quotes}sanctity, integrity, and sensitivity{close_quotes} of the unsolicited proposal review process had been breached in meetings during the Fall of 1993 between Chevron officials, the Deputy Secretary of Energy (Deputy Secretary), and his Executive Assistant. Based on our review of the allegation, we identified the following issue as the focus of our inspection.

  10. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  11. ,"North Dakota Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Lower 48 States Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"California Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  15. ,"Texas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  16. ,"Oklahoma Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  17. ,"Colorado Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"Indiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"Ohio Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  1. ,"Nebraska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"Pennsylvania Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"Montana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  5. ,"Michigan Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. ,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. ,"Florida Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. ,"Illinois Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"Kansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"Wyoming Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"West Virginia Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  12. ,"Alabama Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Arkansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"Alaska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  15. Audit of wet gas processing at Chevron's McKittrick Plant, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-04-10

    The purpose of the audit was to determine if: (1) volumes of wet gas delivered to the McKittrick plant were properly calculated and reported; (2) processing fees paid to Chevron conformed to contract provisions; (3) wet gas processing at Chevron's facility was economical; and (4) controls over natural gas liquid sales were adequate. Our review showed that there were weaknesses in internal controls, practices and procedures regarding the Department's management of the wet gas which is processed by Chevron under contract to the Reserve. The findings, recommendations and management comments are synopsized in the Executive Summary.

  16. A Brief Introduction to Ocean Oil Spills Professor Tommy Dickey, Secretary of the Navy/Chief of Naval Operations

    E-Print Network [OSTI]

    Fabrikant, Sara Irina

    by BP Photo provided by BP NASA Terra image #12;What are Causes of Ocean Oil Spills? * Oil drilling rig of Mexico Spill Ongoing BP Deepwater Horizon ≠ Gulf of Mexico ≠ estimates of 12,000-24,000 bbls/day or 430,000 -930,000 bbls as of May 28, 2010 #12;Santa Barbara Channel - 1969 Drilling rig blowout ≠ Union Oils

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  18. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  19. World heavy oil and bitumen riches - update 1983: Part one, reserves

    SciTech Connect (OSTI)

    Not Available

    1983-05-25

    The fact that there are several OPEC members with significant non-conventional petroleum reserves, coupled with the economic interdependence of OPEC with oil-importing industrialized countries, means it is very much in OPEC's interest to promote international cooperation on non-conventional oil. The rationale behind the goal of decreasing dependence on conventional oil, particularly in the case of imports, is promotive of reducing pressure not only on oil-importing nations, but exporters as well. Thus it is in the interests of all countries to plan for the heavying up of the petroleum barrel, as this will inevitably accompany the decreases in conventional supplies and any increases of non-petroleum participation in the world energy diet. Although the megaprojects in Canada and Venezuela and other ambitious plans for development of heavy oil and bitumen have been shelved or delayed indefinitely due to lower light oil prices and reduced financial support, it was found that these setbacks have been superficial. Both Canada and Venezuela continue to pursue joint research with foreign countries and private companies. Like conservation, non-conventional petroleum-resource development is seen as internationally constructive. In this updating of reserves, it is noted that the geopolitics are inescapable when most of the light and medium oil is in the Middle East, and most heavy oil and tar sands are in the Western Hemisphere. This issue presents the Energy Detente fuel price/tax series and industrial fuel prices for May 1983 for countries of the Western Hemisphere.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  1. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed+ Lease

  2. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed+

  3. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year JanProved Reserves+

  4. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude...

  5. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  6. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  7. Oil and natural gas reserve prices : addendum to CEEPR WP 03-016 ; including results for 2003 revisions to 2001

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2005-01-01

    Introduction. A working paper entitled "Oil and Natural Gas Reserve Prices 1982-2002: Implications for Depletion and Investment Cost" was published in October 2003 (cited hereafter as Adelman & Watkins [2003]). Since then ...

  8. Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved Reserves (Billion Cubic Feet)

  9. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved Reserves (Billion Cubic

  10. Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (Billion Cubic+ Lease Condensate

  11. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (Billion Cubic+ Lease

  12. Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProductionBarrels) Reserves in Nonproducing

  13. Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved Reserves (Billion Cubic Feet)+

  14. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved Reserves (Billion Cubic

  15. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,Proved Reserves (Billion

  16. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan FebProved Reserves+

  17. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7Proved Reserves+

  18. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate Proved Reserves (Million

  19. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate Proved Reserves

  20. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead PriceProved ReservesProved+

  1. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6Proved ReservesProved+ Lease

  2. Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6Proved ReservesProved+

  3. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billion Cubic Feet)Shale

  4. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year JanProved

  5. Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved Reserves (Billion Cubic Feet)

  6. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million(MillionReserves (BillionCrude

  7. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction (MillionProved

  8. U.S. Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData Files TransportationSalesProved

  9. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2. Number+ Lease Condensate

  10. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2. Number+ Lease

  11. West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2Year Jan FebBarrels) Reserves

  12. How can we build an oil reserve without offending the Saudis

    SciTech Connect (OSTI)

    Madison, C.

    1980-06-28

    Congress has ordered the Department of Energy to resume filling the strategic oil reserves at about the same 100,000 barrels of crude oil a day as the government fields at Elk Hills, California produce. Pressure to increase this amount while a world surplus exists will be strong, even though members of the Organization of Petroleum Exporting Countries (OPEC) have threatened to reduce their production if the US takes such action. The concept of a strategic reserve of 750 million barrels (a 90-day supply) first emerged as a way to separate foreign-policy decisions from foreign-oil supplies. The present level of 92 million barrels (12-13-days imports), however, has made the reserve a political issue. Delays were caused by a combination of site problems, budget cuts, market disruptions, and policy changes. The debate centers on timing - when the US should return to the market to continue filling the storage sites. US relations with Saudi Arabia are sensitive to Middle East peace agreements, the security of Saudi Arabian territory, and the security of Saudi Arabian production levels. The foreign-policy implications and their severity are disputed. (DCK)

  13. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect (OSTI)

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  14. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297Feet)Separation,Crude Oil

  15. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million(Million Barrels) Crude Oil

  16. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46ProductionCrude Oil + Lease

  17. California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -ProductionWet AfterWetLeaseCrude Oil +

  18. California State Offshore Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 ArizonaResidential(Million Barrels) Crude Oil +

  19. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00 p.m.,9,7,3, 2011Crude Oil +

  20. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00 p.m.,9,7,3, 2011Crude Oil

  1. Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million Barrels) Crude Oil +

  2. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for AcquisitionNORTHEAST HOME HEATING OIL

  3. U.S. Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries andArea: U.S.

  4. ,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type"Proved Reserves,

  5. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

  6. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  7. Table 6. Crude oil and lease condensate proved reserves, reserves changes, and p

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocksU.S. shale gas plays: natural gasPetroleum NetCrude oil and

  8. Reservoir analysis study: Naval Petroleum Reserve No. 1, Elk Hills Field, Kern County, California: Phase 3 report, Recommended additional reservoir engineering analysis

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    The basis for completion of the Phase III tasks above were the reports of Phases I and II and the associated backup material. The Phase II report was reviewed to identify the major uncertainties in all of the reserve assignments. In addition to the Proved, Probable and Possible reserves of Phase II, ''potential reserves'' or those associated with a greater degree of risk than the Possible reserves included in the Phase II report, were also identified based on the work performed by Bergeson through the Phase II reporting date. Thirty-three specific studies were identified to address the major Phase II reserve uncertainties or these potential reserves. These studies are listed in Table 1 and are grouped by the Elk Hills pool designation. The basis and need for each study are elaborated in the discussion which follows. Where possible, the need for the study was quantified by associating the study with a particular reserve estimate which would be clarified by the analysis. This reserve value was either the Probable or Possible reserves which were being studied, the potential reserves that were identified, or simply the uncertainty inherent in the proved reserves as identified in the study purpose. The costs associated with performing the study are also shown in Table 1 and were estimated based on Bergeson's knowledge of the Elk Hills reservoirs and data base following Phases I and II, as well as the company's experience in performing similar studies in other fields. The cost estimates are considered reasonable for general budgeting purposes, but may require refinement prior to actual initiation of these studies. This is particularly true for studies involving field testing to obtain additional log, core or test information as the cost of such items is not considered in this report. 51 figs., 46 tabs.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  12. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  13. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 ©Annual",2014 ,"ReleaseLiquids Lease Condensate, ProvedCrude Oil Reserves

  14. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves in Nonproducing

  15. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  16. Y. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis," 16th International Conference on Information Quality, Nov. 18-20, 2011, Adelaide, Australia

    E-Print Network [OSTI]

    Berleant, Daniel

    have important implications due to the heavy reliance of modern economy on petroleum. Bad data can and governments or are not freely available. In some cases, oil reserve figures are exaggerated for economicY. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis

  17. The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel

    E-Print Network [OSTI]

    the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary

  18. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  19. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    SciTech Connect (OSTI)

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

    2004-05-01

    An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

  20. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  1. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  2. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  3. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  4. THE FOLLOWING TEXT ON BIO-OIL EXTRACTION IS AN EXCERPT FROM THE FINAL TECHNICAL REPORT SUBMITTED BY HNEI TO OFFICE OF NAVAL

    E-Print Network [OSTI]

    shown to execute one-step extractions of both bio-oils and proteins at low pressure and moderateTHE FOLLOWING TEXT ON BIO-OIL EXTRACTION IS AN EXCERPT FROM THE FINAL TECHNICAL REPORT SUBMITTED Solvent-Based Extraction of Bio-oils and Protein from Biomass The overall objective of this project

  5. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrude Oil

  6. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  7. Biological assessment: possible impacts of exploratory drilling in sections 8B and 18H, Naval Petroleum Reserve No. 2, Kern County, California on the endangered San Joaquin kit fox, blunt-nosed leopard lizard, and other sensitive species

    SciTech Connect (OSTI)

    O'Farrell, T.P.; Sauls, M.L.

    1982-07-01

    The U.S. Department of Energy proposes to drill exploratory wells on two sections, 8B and 18H, within Naval Petroleum Reserve No. 2 in western Kern County, California. The proposed sites are thought to provide habitat for the endangered San Joaquin kit fox and blunt-nosed leopard lizard, as well as two sensitive species: the giant kangaroo rat and San Joaquin antelope ground squirrel. The objective was to assess the possible impacts of the exploratory drilling on these species and their essential habitats. Although 23 potential San Joaquin kit fox den sites were found during surveys of a total of 512 ha (1280 acres) surrounding both well sites, no burrows were closer than 30 m from proposed disturbance, and most were over 200 m away. Two blunt-nosed leopard lizards were observed on private land within 8B, one was observed on private land in 18H, and two were seen on DOE portions of 18H. No evidence of blunt-nosed leopard lizards was gathered in the immediate vicinity of either proposed well site. Although 5 ha of habitat will be disturbed, there is no evidence to indicate any of the species has burrows on-site that will be lost during land clearing. Loss of habitat will be mitigated during the cleanup and restoration phases when disturbed areas will be revegetated. Increased traffic, human activities, noise and ground vibration levels, as well as illumination throughout the night, may disturb the fauna. However, these species have adapted to intensive human disturbances on Elk Hills without obvious negative effects. The short duration of the project should allow any displaced animals to return to the sites after drilling ceases.

  8. Serologic survey for disease in endangered San Joaquin kit fox, Vulpes macrotis mutica, inhabiting the Elk Hills Naval Petroleum Reserve, Kern County, California

    SciTech Connect (OSTI)

    McCue, P.M.; O'Farrell, T.P.

    1986-07-01

    Serum from endangered San Joaquin kit foxes, Vulpes macrotis mutica, and sympatric wildlife inhabiting the Elk Hills Petroleum Reserve, Kern County, and Elkhorn Plain, San Luis Obispo County, California, was collected in 1981 to 1982 and 1984, and tested for antibodies against 10 infectious disease pathogens. Proportions of kit fox sera containing antibodies against diseases were: canine parvovirus, 100% in 1981 to 1982 and 67% in 1984; infectious canine hepatitis, 6% in 1981 to 1982 and 21% in 1984; canine distemper, 0 in 1981 to 1982 and 14% in 1984; tularemia, 8% in 1981 to 1982 and 31% in 1984; Brucella abortus, 8% in 1981 to 1982 and 3% in 1984; Brucella canis, 14% in 1981 to 1982 and 0 in 1984; toxoplasmosis, 6% in 1981 to 1982; coccidioidomycosis, 3% in 1981 to 1982; and plague and leptospirosis, 0 in 1981 to 1982. High population density, overlapping home ranges, ability to disperse great distances, and infestation by ectoparasites were cited as possible factors in the transmission and maintenance of these diseases in kit fox populations.

  9. EIA - Analysis of Natural Gas Exploration & Reserves

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10292009, PDF, XLS, and...

  10. Environmental Assessment and Finding of No Significant Impact: Waste Remediation Activities at Elk Hills (Former Naval petroleum Reserve No. 1), Kern County, California

    SciTech Connect (OSTI)

    N /A

    1999-12-17

    DOE proposes to conduct a variety of post-sale site remediation activities, such as characterization, assessment, clean-up, and formal closure, at a number of inactive waste sites located at Elk Hills. The proposed post-sale site remediation activities, which would be conducted primarily in developed portions of the oil field, currently are expected to include clean-up of three basic categories of waste sites: (1) nonhazardous solid waste surface trash scatters, (2) produced wastewater sumps, and (3) small solid waste landfills. Additionally, a limited number of other inactive waste sites, which cannot be typified under any of these three categories, have been identified as requiring remediation. Table 2.1-1 presents a summary, organized by waste site category, of the inactive waste sites that require remediation per the PSA, the ASA, and/or the UPCTA. The majority of these sites are known to contain no hazardous waste. However, one of the surface scatter sites (2G) contains an area of burn ash with hazardous levels of lead and zinc, another surface scatter site (25S) contains an area with hazardous levels of lead, a produced wastewater sump site (23S) and a landfill (42-36S) are known to contain hazardous levels of arsenic, and some sites have not yet been characterized. Furthermore, additional types of sites could be discovered. For example, given the nature of oil field operations, sites resulting from either spills or leaks of hazardous materials could be discovered. Given the nature of the agreements entered into by DOE regarding the required post-sale clean-up of the inactive waste sites at Elk Hills, the Proposed Action is the primary course of action considered in this EA. The obligatory remediation activities included in the Proposed Action are standard procedures such that possible variations of the Proposed Action would not vary substantially enough to require designation as a separate, reasonable alternative. Thus, the No Action Alternative is the only other option considered in this EA.

  11. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  12. Naval Architecture and Marine Engineering

    E-Print Network [OSTI]

    Eustice, Ryan

    knowledge of mathematics, science, and engineering within naval architecture and marine engineering and marine engineering problems; an ability to apply basic knowledge in fluid mechanics, dynamicsNaval Architecture and Marine Engineering Undergraduate Program The University of Michigan #12

  13. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrudeCrude

  14. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  15. A CO{sub 2}-based analysis of a light-oil steamflood at NPR-1, Elk Hills, CA

    SciTech Connect (OSTI)

    Shotts, D.R.; Senum, G.I.

    1992-12-01

    A steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No 1 (NPR1) in the Elk Hills oil field, Kern County, CA. The goal of this work was to establish a correlation between a documented growth in CO{sub 2} concentrations found in producing wells in the pilot area to the light-oil steamflood (LOSF); then to use a thermodynamic analysis of the expended energy to come up with an energy efficiency of the steamdrive.

  16. Russian naval bases due commercial development

    SciTech Connect (OSTI)

    Not Available

    1992-04-27

    Tecnogrid Group, New York, has signed a joint venture with the Russian Navy for commercial development of a wide range of sea dn land based assets owned by the former Soviet Navy. This paper reports that among other things, the venture aims for projects that will allow greater volumes of oil exports by revamping several naval bases. Tecnogrid's partner in the joint venture is AO Navicon, A Russian stock holding company that is the commercial arm of the Navy. Navicon has the sole right to commercially develop and deploy the Navy's assets. The Navy can no longer depend on the state for support, and Adm. Ig. Malhonin. With that in mind, the Navy is looking to become the leading force in moving toward a free market economy. Mahonin is Russia's second ranking naval official.

  17. NAVAL POSTGRADUATE SCHOOL Monterey, California

    E-Print Network [OSTI]

    #12;Thesis F2lJ6 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS AN ANALYSIS OF HYPERSPECTRAL;DUDLEY K~OX LlRRARY NAVAL -0 SCHOOL MONTE"ev C.A ;:I3~~5101 #12;5. FlJNDING NUMBERS 8, PERFOR"TE IN SYSTEMS TF.CHNOLOGY (SPACE SYSTEMS OPERATJONS) from the NAVAL POSTGRADUATE SCHOOL J. . . . Matthew

  18. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  19. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  20. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  1. Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)Proved Reserves (Billion

  2. U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData Files TransportationSalesProved Reserves

  3. Final joint environmental assessment for the construction and routine operation of a 12-kilovolt (KV) overhead powerline right-of-way, and formal authorization for a 10-inch and 8-inch fresh water pipeline right-of-way, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The purpose and need of the proposed action, which is the installation of an overhead powerline extension from an Naval Petroleum Reserve No. 1 (NPR-1) power source to the WKWD Station A, is to significantly reduce NPR-1`s overall utility costs. While the proposed action is independently justified on its own merits and is not tied to the proposed NPR-1 Cogeneration Facility, the proposed action would enable DOE to tie the NPR-1 fresh water pumps at Station A into the existing NPR-1 electrical distribution system. With the completion of the cogeneration facility in late 1994 or early 1995, the proposed action would save additional utility costs. This report deals with the environmental impacts of the construction of the powerline and the water pipeline. In addition, information is given about property rights and attaining permission to cross the property of proposed affected owners.

  4. Fuel Cell Power Plant Experience Naval Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reliable, efficient, ultra-clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC...

  5. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  7. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  8. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude OilCrude Oil + Lease

  9. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014CrudeCoalbedCrude Oil +Crude Oil +

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  11. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  14. Nigeria steps up action to define and increase its oil reserves

    SciTech Connect (OSTI)

    Page, N.

    1992-01-06

    This paper reports that within the past 18 months, the Nigerian Ministry of Petroleum Resources has moved aggressively to increase investment in known producing areas and stimulate exploration in frontier regions in order to define and expand the country's reserve base for the start of the 21st century. At industry seminars held in November and December 1991 in Houston, London, and Lagos, the Ministry in association with TGSI-Mabon Geophysical Co. reviewed the Nigerian political and economic climate, recent industry development and leasing activity, deep-water geology and exploration potential, and the probable areas' terms and conditions for a new bidding round to be announced in early 1992.

  15. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per Thousand CubicCoalbed Methane Proved Reserves (Billion+

  16. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per ThousandAnnual",2014Coalbed Methane Proved Reserves+

  17. ,"U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"CoalbedGas,+ Lease Condensate Proved Reserves

  18. ,"U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet After LeaseAnnual",2014Value

  19. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet AfterPetroleumU.S. Underground NaturalStateCoalbed+

  20. ,"West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, WetAnnual",2014Associated-Dissolved+ Lease

  1. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, WetAnnual",2014Associated-Dissolved+

  2. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves,Summary" ,"Click worksheet name or tabCoalbed+

  3. ,"Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbed Methane Proved Reserves (BillionGulf

  4. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices"+ Lease Condensate Proved Reserves

  5. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUnderground Natural Gas StorageCoalbed Methane Proved Reserves+

  6. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1Plant ProcessingProductionCubicProved Reserves

  7. Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved Reserves (BillionSeparation,

  8. Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved ReservesSeparation, Proved(Million

  9. Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production(MillionProved Reserves

  10. Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet) Texas--RRC District

  11. Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)ProvedShale(Million Barrels)

  12. Texas--RRC District 8A Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(Million Barrels)Proved

  13. Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(MillionProductionProvedProved(Million

  14. U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData FilesAdjustmentsOriginOrigin State2009

  15. U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData FilesAdjustmentsOriginOrigin State2009(Million

  16. U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table 1 | Table 3Crude

  17. 2016 EIA-23 Annual Survey of Domestic Oil and Gas Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms Proposed Changes6

  18. Fracture of aluminum naval structures

    E-Print Network [OSTI]

    Galanis, Konstantinos, 1970-

    2007-01-01

    Structural catastrophic failure of naval vessels due to extreme loads such as underwater or air explosion, high velocity impact (torpedoes), or hydrodynamic loads (high speed vessels) is primarily caused by fracture. ...

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  20. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  1. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, R.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-10-21

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  2. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker.

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the Federal Assistance Reporting Checklist . The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  3. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-04-22

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1998 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  4. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nauyen, John; Moos, Dan; Tagbor, Kwasi

    1997-07-28

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period April - June 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilm

  6. Department of Energy Announces Two Additional Loans of Oil from...

    Office of Environmental Management (EM)

    Two Additional Loans of Oil from the Strategic Petroleum Reserve Department of Energy Announces Two Additional Loans of Oil from the Strategic Petroleum Reserve September 2, 2005 -...

  7. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  8. Table 2. U.S. tight oil plays: production and proved reserves, 2013-14

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana.Alabama"U.S. tight oil

  9. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry Natural GasGas, WetLiquids LeaseShaleCrude Oil

  10. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -Liquids Lease Condensate, ProvedShaleUndergroundCrude Oil + Lease

  11. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"Coalbed MethaneDryDryDry NaturalCrude Oil + Lease

  12. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"CoalbedGas, Wet After LeaseCrude Oil + Lease

  13. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014CrudeCoalbedCrude Oil + Lease

  14. ,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage Net WithdrawalsNonassociated Natural Gas, WetCrude Oil

  15. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry Natural GasGas, Wet AfterCrude Oil + Lease

  16. Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct: Crude Oil and

  17. Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct: Crude Oil andData Series:

  18. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries andArea: U.S.U.S.

  19. U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the NationalSales (Million Barrels) U.S. Crude Oil + Lease

  20. EIS-0070: Mining, Construction and Operation for a Full-size Module at the Anvil Points Oil Shale Facility, Rifle, Garfield County, Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this environmental impact statement to assess the environmental and socioeconomic implications of its proposal to mine 11 million tons of oil shale from the Naval Oil Shale Reserves (NOSR) at Anvil Points, Colorado; to construct an experimental full-size shale retort module on a 365-acre lease tract having a 4700 bbl/day production capacity; and to consider extension, modification or new leasing of the facility. This project was cancelled after the DEIS was issued.

  1. TO: Procurement Directors/Contracting Officers FROM: Director

    Office of Environmental Management (EM)

    Nuclear Energy, Fossil Energy Research and Development, Naval Petroleum and Oil Shale Reserves, Strategic Petroleum Reserves, Northeast Home Heating Oil Reserve, Energy...

  2. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940ís but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940ís and was severely weathered. The composition of this Ďdeadí Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  3. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  4. International Oil and Gas Exploration and Development

    Reports and Publications (EIA)

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  5. NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

    E-Print Network [OSTI]

    OR unmanned OR U?V OR A?V OR drone OR (remotely piloted)) Reports (Technical Reports): 'naval postgraduate school' AND (robot$ OR autonomous OR unmanned OR U?V OR A?V OR drone OR (remotely piloted)) NOT (thesis OR U?$V OR A?$V OR drone* OR (remotely piloted))) AND (AD=((USN OR Nav*) AND (NPS OR NPGS OR post

  6. The form, function, and interrelationships of naval rams: a study of naval rams from antiquity†

    E-Print Network [OSTI]

    Pridemore, Matthew Garnett

    1996-01-01

    The discovery of several naval rams from sites around the Mediterranean has given scholars a brief glimpse of one of the most widely used naval weapons of the ancient world. Examining these physical examples provides ...

  7. The Politics of Mexicoís Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01

    2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

  8. Strategic Petroleum Reserve - Part 2. Hearing before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, Second Session, March 4, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    Part 2 of the hearing record covers the testimony of representatives of the General Accounting Office, DOE, the Petroleum Industry Research Foundation, and members of Congress on the future of the strategic petroleum (SPR) and the naval petroleum reserves (NPR). At issue was the Administration's plans to discontinue filling the SPR at the half-billion barrel mark raise and sell the NPR. Among the concerns under considerations was the adequacy of the reserves, the opportunity to buy petroleum for the reserves at a time when oil prices are low, and the opportunity to raise needed cash with a sale. Debate centers on financial and national security issues. Additional material submitted for the record by the witnesses, DOE, and the Congressional Research Service follows the testimony of the five witnesses.

  9. Geothermal energy at Long Beach Naval Shipyard and Naval Station and at Seal Beach Naval Weapons Station, California. Final report

    SciTech Connect (OSTI)

    Higgins, C.T.; Chapman, R.H.

    1984-01-01

    The purpose of this project was to determine and evaluate sources of geothermal energy at two military bases in southern California, the Long Beach Naval Shipyard and Naval Station and the Seal Beach Naval Weapons Station. One part of the project focused on the natural geothermal characteristics beneath the naval bases. Another part focused on the geothermal energy produced by oilfield operations on and adjacent to each base. Results of the study are presented here for the US Department of the Navy to use in its program to reduce its reliance on petrolem by the development of different sources of energy. The study was accomplished under a cooperative agreement between the US Department of Energy's San Francisco Operations Office and the Department of the Navy's Naval Weapons Center, China Lake, California, for joint research and development of geothermal energy at military installations.

  10. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the...

  11. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

  12. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  13. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  14. Naval Waste Package Design Report

    SciTech Connect (OSTI)

    M.M. Lewis

    2004-03-15

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository.

  15. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil of production. New discoveries of oil and gas, as well as extensions of known oil and gas fields, increase and gas production has taken place on federal lands. ∑ Oil and gas reserves are as much an economic

  16. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  17. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude OilCrude OilCoalbed

  18. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  19. Comparative naval architecture analysis of diesel submarines

    E-Print Network [OSTI]

    Torkelson, Kai Oscar

    2005-01-01

    Many comparative naval architecture analyses of surface ships have been performed, but few published comparative analyses of submarines exist. Of the several design concept papers, reports and studies that have been written ...

  20. Naval Petroleum Reserve No. 3 Site Environmental Report

    SciTech Connect (OSTI)

    2000-06-14

    The CY1999 Site Environmental Report and Compliance Summary discusses environmental compliance activities for NPR-3 (Teapot Dome). All hazardous wastes that were stored in the hazardous waste accumulation at NPR-3 were removed in CY1999. NPR-3 maintains its status as a conditionally exempt small quantity generator. Hydrogen sulfide (H2S) flares have not operated at NPR-3 since 1996; monitoring of H2S indicates readings well below limits. All underground storage tanks were removed in 1998. Wastewater samples were in compliance with applicable standards.

  1. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and Timeline |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgramImports by Pipeline intosome of

  2. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  3. Nuclear Naval Propulsion: A Feasible Proliferation Pathway?

    SciTech Connect (OSTI)

    Swift, Alicia L.

    2014-01-31

    There is no better time than now to close the loophole in Article IV of the Nuclear Non-proliferation Treaty (NPT) that excludes military uses of fissile material from nuclear safeguards. Several countries have declared their intention to pursue and develop naval reactor technology, including Argentina, Brazil, Iran, and Pakistan, while other countries such as China, India, Russia, and the United States are expanding their capabilities. With only a minority of countries using low enriched uranium (LEU) fuel in their naval reactors, it is possible that a state could produce highly enriched uranium (HEU) under the guise of a nuclear navy while actually stockpiling the material for a nuclear weapon program. This paper examines the likelihood that non-nuclear weapon states exploit the loophole to break out from the NPT and also the regional ramifications of deterrence and regional stability of expanding naval forces. Possible solutions to close the loophole are discussed, including expanding the scope of the Fissile Material Cut-off Treaty, employing LEU fuel instead of HEU fuel in naval reactors, amending the NPT, creating an export control regime for naval nuclear reactors, and forming individual naval reactor safeguards agreements.

  4. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  5. Investigation of waste rag generation at Naval Station Mayport. Project report, May 1990-July 1993

    SciTech Connect (OSTI)

    1995-08-01

    The report presents the results of an investigation examining pollution prevention alternatives for reducing the volume of waste rags generated at Naval Station Mayport, located near Jacksonville Beach, Florida. The report recommends five specific pollution prevention alternatives: better operating practices, installation of equipment cleaning stations to remove contaminants normally removed with rags; replacement of SERVE MART rags with disposable wipers; use of recyclable rats for oil and great removal; and confirmation that used rags are fully contaminated prior to disposal.

  6. Estimation of resources and reserves

    E-Print Network [OSTI]

    Massachusetts Institute of Technology. Energy Laboratory.

    1982-01-01

    This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

  7. Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated

    E-Print Network [OSTI]

    Roy, Ankur, 1976-

    2003-01-01

    Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

  8. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits†

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    1995-01-01

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  9. Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    presented. Historical oil and gas production, reserves, and price data are also presented and discussed. #12 ..................................................................................................................................................7 Oil Production ...............................................................................................................................................8 World Oil Production

  10. Natural Reserve System UNIVERSITY OF CALIFORNIA

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    and saltwater marshes, pickleweed flats, and a pocket beach featuring native dune vegetation. Tidepools Scripps Coastal Reserve Santa Barbara 29 Carpinteria Salt Marsh Reserve 30 Coal Oil Point Natural Reserve in low-oxygen lagoon waters. Upland terraces, once farm fields, are being restored to coastal prairie

  11. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  12. EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

  13. Oil Mill Operators†

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Natural gas and petroleum are non-renewable and scarce energy sources. Although, it is well known that hydrocarbon reserves are depleting through the years, oil and gas remain the principal source of energy upon which our ...

  14. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  15. O:\\A76\\FAIR\\Fair Act 2008\\Guidance\\PDF\\ATTACHMENT 4.pdf.prn.pdf

    Energy Savers [EERE]

    Field Office Fossil Energy National Energy Technology Laboratory Naval Petroleum & Oil Shale Reserves in ColoradoUtahWyoming Strategic Petroleum Reserve Project Office Legacy...

  16. FY 2008 Budget Justification | Department of Energy

    Energy Savers [EERE]

    Administration Volume 7 Fossil Energy Research and Development Naval Petroleum & Oil Shale Reserves Elk Hills School Lands Fund Strategic Petroleum Reserve Northeast Home...

  17. President Requests $842.1 Million for Fossil Energy Programs...

    Energy Savers [EERE]

    fossil fuels, implement ongoing federal responsibilities at the Naval Petroleum and Oil Shale Reserves, and manage the Strategic Petroleum Reserve, Northeast Gasoline Supply...

  18. DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL

    E-Print Network [OSTI]

    DEPARTMENT OF THE NAVY NAVAL POSTGRADUATE SCHOOL 1 UNIVERSITY CIR MONTEREY, CA 93943-5000 IN REPLY FOR ADMINISTRATION AND MANAGEMENT OF NAVY FULLY-FUNDED GRADUATE EDUCATION PROGRAMS AT CIVILIAN INSTITUTIONS guidance for the U.S. Navy's fully funded graduate education programs at Civilian Institutions (CIVINS

  19. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  20. Deepwater Oil & Gas Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this...

  1. Top 100 Operators: Proved Reserves and Production, Operated vs...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    reserves are defined as those volumes of oil and natural gas that geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from...

  2. NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Reserves New structural information could yield more efficient extraction of gas and oil from shale December 3, 2013 Supercomputers at the Department of Energy's...

  3. Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering

    E-Print Network [OSTI]

    Lemkau, Karin Lydia

    2012-01-01

    Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

  4. Microsoft Word - Annual Report 2010 Master_Nov22_2011.docx

    Broader source: Energy.gov (indexed) [DOE]

    rate of 100 thousand barrels and precluded sale of Naval Petroleum Reserve Numbered 1 (Elk Hills Oil Field, Kern County, California) crude oil except to fill the Strategic...

  5. Horizontal wells improve recovery at the Elk Hills Petroleum Reserve

    SciTech Connect (OSTI)

    Rintoul, B.

    1995-11-01

    In 1988 the US Department of Energy and Bechtel implemented a program to slow production declines in the Elk Hills 26R pool sand of the Naval Petroleum Reserve No. 1. It was also hoped horizontal wells would increase the production rate, decrease gas production and extend economic life of the reservoir. The Stevens sand pool targeted for the project is a high-quality, sand-rich turbidite channel system encapsulated within Miocene Monterey siliceous shales, mudstones and associated sediments. The pool is about 3-miles long by 3/4-mile wide. The paper describes the specifications and drilling of the first four out of the 14 horizontal wells drilled at this facility. Horizontal drilling technology has completely altered the future of the 26R pool. In 1980 estimated ultimate recovery (EUR) from the sand was 211 million bbl. With the latest horizontal well drilling campaign, the pool is expected to pass that estimate in 1997 when oil production is forecasted to be at least 13,000 b/d. EUR form the 26R sand now is more than 250 million bbl, and even that estimate is being revised upward.

  6. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum...

  7. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  8. DESIGN ANALYSIS FOR THE NAVAL SNF WASTE PACKAGE

    SciTech Connect (OSTI)

    T.L. Mitchell

    2000-05-31

    The purpose of this analysis is to demonstrate the design of the naval spent nuclear fuel (SNF) waste package (WP) using the Waste Package Department's (WPD) design methodologies and processes described in the ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000b). The calculations that support the design of the naval SNF WP will be discussed; however, only a sub-set of such analyses will be presented and shall be limited to those identified in the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The objective of this analysis is to describe the naval SNF WP design method and to show that the design of the naval SNF WP complies with the ''Naval Spent Nuclear Fuel Disposal Container System Description Document'' (CRWMS M&O 1999a) and Interface Control Document (ICD) criteria for Site Recommendation. Additional criteria for the design of the naval SNF WP have been outlined in Section 6.2 of the ''Waste Package Design Sensitivity Report'' (CRWMS M&O 2000c). The scope of this analysis is restricted to the design of the naval long WP containing one naval long SNF canister. This WP is representative of the WPs that will contain both naval short SNF and naval long SNF canisters. The following items are included in the scope of this analysis: (1) Providing a general description of the applicable design criteria; (2) Describing the design methodology to be used; (3) Presenting the design of the naval SNF waste package; and (4) Showing compliance with all applicable design criteria. The intended use of this analysis is to support Site Recommendation reports and assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the technical product development plan (TPDP) ''Design Analysis for the Naval SNF Waste Package (CRWMS M&O 2000a).

  9. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    system. Distributed Energy Resources at Naval Base Ventura2003. ďDistributed Energy Resources in Practice: A Case2004. ďDistributed Energy Resources Customer Adoption Model

  10. 13.400 Introduction to Naval Architecture, Fall 2004

    E-Print Network [OSTI]

    Herbein, David

    Introduction to principles of naval architecture, ship geometry, hydrostatics, calculation and drawing of curves of form, intact and damaged stability, hull structure strength calculations and ship resistance. Projects ...

  11. Distributed energy resources at naval base ventura county building 1512

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2004-01-01

    up by a DER system. Distributed Energy Resources at NavalFebruary 2003. ďDistributed Energy Resources in Practice: ARyan. January 2004. ďDistributed Energy Resources Customer

  12. What's Driving Oil Prices? James L. Smith

    E-Print Network [OSTI]

    O'Donnell, Tom

    1 What's Driving Oil Prices? James L. Smith Cary M. Maguire Chair in Oil & Gas Management Critical Issues in Energy Federal Reserve Bank of Dallas November 2, 2006 The Price of OPEC Oil ($/bbl) $0 $20 $40 $60 $80 1970 1975 1980 1985 1990 1995 2000 2005 Real Price ($2005) #12;2 Hubbert's Curve (Peak Oil

  13. THE NAVAL RESEARCH ENTERPRISE AND PLASMA PHYSICS RESEARCH AT THE NAVAL RESEARCH LAB

    E-Print Network [OSTI]

    Shyy, Wei

    , to create Xray simulators for testing nuclear weapons effects, and to understand high altitude nuclear ex and space plasmas, intense electron and ion beams and photon sources, atomic physics, pulsed power also participates in two Innovative Naval Prototype programs: the electromagnetic railgun and the free

  14. About Naval Reactors | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouthReport for the t-) S/,,5 'a C O09Our MissionPublicationsNNSA |Naval

  15. Naval Reactors | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CSNationalNational UserNaval Reactors

  16. Light-oil steamdrive pilot test at NPR-1, Elk Hills, California

    SciTech Connect (OSTI)

    Garner, T.A. (Bechtel Petroleum Operations Inc. (United States))

    1992-08-01

    This paper reports that a steamdrive pilot was run on a light-oil reservoir at the Naval Petroleum Reserve No. 1 (NPR-1) in the Elk Hills oil field, Kern County, CA. From a reservoir perspective, the steamdrive process behaved much as expected. The first event to occur was the appearance of freshened water production accompanied by CO[sub 2] gas 3 months from startup of steam injection. The second event, an increase in crude gravity, appeared 3 months later, or 6 months into the project. Finally, the third event was the arrival of the heat front at the producing wells 13 months after startup. From a production perspective, CO[sub 2] in the freshened produced water caused wellbore scale damage and loss of well productivity. The steamdrive, however, mobilized residual oil, which mostly was captured outside the pilot pattern area. Acid stimulations to restore well productivity were done by injecting inhibitor in the steam feedwater and by designing acid cleanup treatments on the basis of results from laboratory tests.

  17. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General Reservoir Study, Executive Summary: Bittium, Wilhelm, Gusher, and Calitroleum Sands

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-12-22

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. The study addresses the Bittium Wilhelm, Gusher, and Calitroleum Sands and their several sub units and pools. A total of twenty-eight (28) separate reservoir units have been identified and analyzed. Areally, these reservoirs are located in 31 separate sections of land including and lying northwest of sections 5G, 8G, and 32S, all in the Elk Hills Oil Fileds, Naval Petroleum Reserve No. 1, Kern County California. Vertically, the reservoirs occur as shallow as 2600 feet and as deep as 4400 feet. Underlying a composite productive area of about 8300 acres, the reservoirs originally contained an estimated 138,022,000 stock tank barrels of oil, and 85,000 MMCF of gas, 6300 MMCF of which occurred as free gas in the Bittium and W-1B Sands. Since original discovery in April 1919, a total of over 500 wells have been drilled into or through the zones, 120 of which were completed as Western Shallow Oil Zone producers. Currently, these wells are producing about 2452 barrels of oil per day, 1135 barrels of water per day and 5119 MCF of gas per day from the collective reservoirs. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent vertification. This study has successfully identified the size and location of all commercially productive pools in the Western Shallow Oil Zone. It has identified the petrophysical properties and the past productive performance of the reservoirs. Primary reserves have been determined and general means of enhancing future recovery have been suggested. 11 figs., 8 tabs.

  18. Navy looks to bugs for cleanup task. [Bioremediation of Naval Fuel Depot

    SciTech Connect (OSTI)

    Not Available

    1993-05-03

    The US Navy is about to step into bioremediation in a big way, using the largest naval fuel depot in the continental US as a test bed for better ways to clean oil-soaked soils. Craney Island, a 900-acre peninsula near Portsmouth, Va., has been the Navy's main East Coast fueling depot since World War II. In the next few weeks, a 15-acre site on the island will be transformed into the largest bioremediation experiment on the East Coast, say officials with the Naval Facilities Engineering Command (NAVFAC), Atlantic Division, which is in charge of the cleanup for the Fleet and Industrial Supply Center at Norfolk, VA. The site is extremely contaminated with petroleum, oil and lubricants (POL), primarily ship bunker fuel, and it will be cleaned up under the Navy's Installation Restoration Program, says John Peters, a NAVFAC spokesman. Using naturally occurring bacteria, the contractor will churn and aerate the soil, add lime and fertilizers, bring the moisture level to 20% and allow the mix to [open quote]bake[close quote] for about four months.

  19. Strategic Petroleum Reserve annual/quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-02-16

    During 1992 the Department continued planning activities for the expansion of the Strategic Petroleum Reserve to one billion barrels. A draft Environmental Impact Statement for the five candidate sites was completed in October 1992, and a series of public hearings was held during December 1992. Conceptual design engineering activities, life cycle cost estimates and geotechnical studies to support the technical requirements for an Strategic Petroleum Reserve Plan Amendment were essentially completed in December 1992. At the end of 1992, the Strategic Petroleum Reserve crude oil inventory was 574.7 million barrels and an additional 1.7 million barrels was in transit to the Reserve. During 1992 approximately 6.2 million barrels of crude oil were acquired for the Reserve. A Department of Energy Tiger Team Environmental, Safety and Health (ES&H) Assessment was conducted at the Strategic Petroleum Reserve from March 9 through April 10, 1992. In general, the Tiger Team found that Strategic Petroleum Reserve activities do not pose undue environmental, safety or health risks. The Strategic Petroleum Reserve`s Final Corrective Action Plan, prepared in response to the Tiger Team assessment, was submitted for Department approval in December 1992. On November 18, 1992, the Assistant Secretary for Fossil Energy selected DynMcDennott Petroleum Operations Company to provide management and operating services for the Strategic Petroleum Reserve for a period of 5 years commencing April 1, 1993. DynMcDermott will succeed Boeing Petroleum Services, Inc.

  20. Strategic Petroleum Reserve: Annual/quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-16

    Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

  1. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  2. LCEs for Naval Reactor Benchmark Calculations

    SciTech Connect (OSTI)

    W.J. Anderson

    1999-07-19

    The purpose of this engineering calculation is to document the MCNP4B2LV evaluations of Laboratory Critical Experiments (LCEs) performed as part of the Disposal Criticality Analysis Methodology program. LCE evaluations documented in this report were performed for 22 different cases with varied design parameters. Some of these LCEs (10) are documented in existing references (Ref. 7.1 and 7.2), but were re-run for this calculation file using more neutron histories. The objective of this analysis is to quantify the MCNP4B2LV code system's ability to accurately calculate the effective neutron multiplication factor (k{sub eff}) for various critical configurations. These LCE evaluations support the development and validation of the neutronics methodology used for criticality analyses involving Naval reactor spent nuclear fuel in a geologic repository.

  3. Strategic Petroleum Reserve quarterly report, (July 1, 1990--September 30, 1990)

    SciTech Connect (OSTI)

    Not Available

    1990-11-15

    This November 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period July 1, 1990, through September 30, 1990. 4 tabs.

  4. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  5. Department of Energy Announces Two Additional Loans of Oil from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced today that the Department of Energy has approved two additional loans of crude oil from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in...

  6. Energy Department Announces Emergency Oil Loan In Response to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today that the Energy Department has agreed to lend 1 million barrels of sweet crude oil from the Strategic Petroleum Reserve's (SPR) Bayou Choctaw site in Louisiana to...

  7. DOE Announces Additional Loan of Oil from the Strategic Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced that the Department of Energy (DOE) has approved a seventh loan request for crude oil from the Strategic Petroleum Reserve (SPR). Today's agreement with Total...

  8. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAs standard analysis of the potential of the Alaska North Slope...

  9. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Federal Offshore, Pacific (California) Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"CA, Coastal Region Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

  18. The rheological complexity of waxy crude oils : yielding, thixotropy and shear heterogeneities

    E-Print Network [OSTI]

    Dimitriou, Christopher (Christopher J.)

    2013-01-01

    Precipitate-containing crude oils are of increasing economic importance, due to diminishing oil reserves and the increased need to extract hydrate and wax-containing crude oil from ultra deep-water resources. Despite this ...

  19. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S[sub O] relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. (System Technology Associates, Inc., Golden, CO (United States))

    1996-01-01

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1[1/2]-2[1/2] ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  20. Identification and delineation of low resistivity, low permeability reservoirs using qualitative sidewall sample log k * S{sub O} relationships in the western shallow oil zone, Elk Hills Field, California

    SciTech Connect (OSTI)

    Beacom, E.K.; Kornreich, I.S. [System Technology Associates, Inc., Golden, CO (United States)

    1996-12-31

    Over 500 wells, including wells producing from the deeper Miocene Stevens sands, penetrate the Western Shallow Oil Zone (Pliocene Etchegoin Formation) at the Elk Hills Naval Petroleum Reserve in California. The Western Shallow Oil Zone Gusher and Calitroleum sands are very fine grained, silty and pyritic and are interbedded with silty shales. Electric logs generally show 1{1/2}-2{1/2} ohm-meters of deep resistivity and the spontaneous potential displays little or no response to the sands. However, approximately 180 wells in each of the mapped productive sands have sidewall sample data to visually inspect the rock for hydrocarbons. Each productive interval within the Western Shallow Oil Zone has two or more pools. The most exploited (and most heavily drilled) of these pools is at the western end of the Eastern anticline. The pools on the Western anticline have few tests and production is limited and generally commingled. In order to identify productive intervals and to delineate the areal extent of these sands, qualitative assessment of sidewall sample data was done and maps of log permeability times oil saturation were prepared for each zone. The analysis showed large amounts of unexploited hydrocarbons in the Western pools. Complete exploitation of the Gusher and Calitroleum sands will recover in excess of 11 million additional barrels of 38 degree gravity oil.

  1. Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-08-01

    This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  2. NA 30 - Deputy Administrator for Naval Reactors | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Annual Report FY14 Year End Report Semi Annual Report FY12 Semi Annual Report FY11 Year End Report NX 3 - Naval Reactors Laboratory Field Office FY11 NX3 Year End Report FY10 NX3...

  3. Naval Nuclear Propulsion Plants | National Nuclear Security Administra...

    National Nuclear Security Administration (NNSA)

    and works in an office building. U.S. naval nuclear propulsion plants use a pressurized-water reactor design that has two basic systems: the primary system and the secondary...

  4. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  5. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01

    petroleum reserve no. 1 (Elk Hills) Kern County, California:crude oil transport: Elk Hills/Coalinga Conveyance System.Key words: Oil Spill, Elk Hills, California U.S. Department

  6. NuclearHydrogen Oil and gas

    E-Print Network [OSTI]

    Birmingham, University of

    Policy NuclearHydrogen Transport Education Oil and gas Distribution Society Supply Ecology Demand Hydrogen 08 Policy and society 10 Environment 11 Transport 12 Manufacturing 14 Oil and gas 15 Nuclear 16 and infrastructure, and broaden our methods of generation. Our declining reserves of oil and gas must be repla

  7. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  9. Increasing waterflood reserves in the Wilmington oil field through improved reservoir characterization and reservoir management. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1996-01-23

    The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques. Technical progress is reported for the following tasks; reservoir characterization, reservoir engineering; deterministic (3-D) geologic modeling; pulsed acoustic logging; and technology transfer.

  10. Strategic Petroleum Reserve. Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-11-15

    The Strategic Petroleum Reserve serves as one of the most important investments in reducing the Nation`s vulnerability to oil supply disruptions. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated. Samples of the oil revealed two problems that, although readily correctable, have reduced the availability of some of the oil inventory for drawdown in the near-term. These problems are: (1) a higher-than-normal gas content in some of the crude oil, apparently from years of intrusion of methane form the surrounding salt formation; and (2) elevated temperatures of some of the crude oil, due to geothermal heating, that has increased the vapor pressure of the oil. Investigations are proceeding to determine the extent to which gas intrusion and geothermal heating are impacting the availability of oil for drawdown. Preliminary designs have been developed for systems to mitigate both problems.

  11. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  12. EIS-0020: Final Environmental Impact Statement

    Broader source: Energy.gov [DOE]

    Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

  13. SciTech Connect: "aerogel insulation"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  14. SciTech Connect: plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  15. SciTech Connect: "enriched uranium"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  16. SciTech Connect: milagro*

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  17. SciTech Connect: higgs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  18. SciTech Connect: "light emitting diodes"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  19. SciTech Connect: supernova*

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  20. SciTech Connect: enriched uranium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  1. SciTech Connect: "Greenhouse Effect"

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  2. SciTech Connect: graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  3. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Petroleum Technology Office (NPTO), Tulsa, OK (United States) National Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves...

  5. U V

    Energy Savers [EERE]

    10 -- * ELM Operations O National Energy Technology Laboratory * Naval Petroleum & Oil Shale Reserve * Oak Ridge Field Office 6 O Engineering & Facilities Management, MA-432 4 B...

  6. SciTech Connect: "high temperature superconductivity"

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Office (NPTO), Tulsa, OK (United States) National Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States)...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  10. SciTech Connect:

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  11. SciTech Connect: auroras

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO (United States) Naval Petroleum and Oil Shale Reserves (United States) Navarro Navarro Nevada Environmental Services Nevada Field...

  12. 61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April

    E-Print Network [OSTI]

    Kulp, Mark

    61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

  13. MOTOR POOL RESERVATIONS Reservation Number:_______________

    E-Print Network [OSTI]

    Ottino, Julio M.

    of Department Chair or Organization Advisor: ________________________________________ Chart String Number: Fund: ______________________________________________________________________ Name of Department or Organization: _____________________________________________________ Name reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

  14. Strategic Petroleum Reserve (SPR) oil storage cavern sulphur mines 2-4-5 certification tests and analysis. Part I: 1981 testing. Part II: 1982 testing

    SciTech Connect (OSTI)

    Beasley, R.R.

    1982-12-01

    Well leak tests and a cavern pressure were conducted in June through December 1981, and are described in Part I. The tests did not indicate conclusively that there was no leakage from the cavern, but the data indicate that cavern structural failure during oil storage is unlikely. The test results indicated that retesting and well workover were desirable prior to making a decision on the cavern use. Well leak tests were conducted in March through May 1982, and are described in Part II. The tests indicated that there was no significant leakage from wells 2 and 4 but that the leakage from wells 2A and 5 exceeded the DOE criterion. Because of the proximity of cavern 2-4-5 to the edge of the salt, this cavern should be considered for only one fill/withdrawal cycle prior to extensive reevaluation. 57 figures, 17 tables.

  15. Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say By LONA O by a strongman for 42 years, a country of tribes and conflicting interests, a country with oil reserves desired, there is of course the matter of Libya's substantial oil reserves. An existing gas pipeline from Libya to Italy

  16. San Diego County Reservation

    E-Print Network [OSTI]

    Laughlin, Robert B.

    San Diego County Brenda Pisgah Iron Mountain Riverside East Imperial East Morongo Reservation Colorado River Reservation San Pasqual Reservation Santa Ysabel Reservation Torres-Martinez Reservation) Reservation 60 95 95 95 115 San Diego Banning Yucca Valley Twentynine Palms Desert Hot Springs Palm Springs

  17. ,"Pennsylvania Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. ,"Nebraska Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  19. ,"Michigan Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"Kentucky Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. ,"Wyoming Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"Arkansas Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"Miscellaneous Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  5. ,"California Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"Mississippi Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. ,"Colorado Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  8. ,"Louisiana Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  9. ,"Montana Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  10. ,"Oklahoma Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  11. ,"Florida Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  12. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Cairns, E.J.

    2010-01-01

    ROSENFELD J. RUDY (Acting) OIL SHALE CONTROL TECHNOLOGY FIREOrganic Ligands of Metals in Oil Shale Process Waters R. H.Holes from the Naval oil Shale Reserve No. 1 R. D. Giauque,

  13. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  14. Page 1 of 16 Naval Power and Globalization

    E-Print Network [OSTI]

    Aronov, Boris

    years China has followed the same path as its predecessor modernizing Asian neighbors. It has committed size and the scale, China is affecting both the regional and worldwide economic balances of power and India are influenced by the potential for China's increasing role as both an economic and naval power

  15. Strategic Petroleum Reserve annual report for calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-31

    The Strategic Petroleum Reserve was established in 1975 as an emergency response to the 1973 Arab oil embargo. It is authorized by the Energy Policy and Conservation Act (EPCA), and by the comprehensive energy plans of all Administrations since 1975, in recognition of the long-term dependence of the US on imported crude oil and petroleum products. Section 165 of EPCA requires the Secretary of Energy to submit an Annual Report to the President and the Congress. On May 13, 1998, the Department published a Statement of Administration Policy which reaffirmed its commitment to maintain a Government-owned and controlled, centrally located Strategic Petroleum Reserve of crude oil. The Reserve is to be used solely for responding to the types of severe oil supply interruptions presently contemplated in EPCA. Over the past twenty years, the Reserve has grown as large as 592 million barrels--a peak reached in 1994. From 1994 to 1996, nearly 28 million barrels were sold to raise revenues for the U S Treasury. As of December 31, 1998, the crude oil inventory was 561,108,127 barrels which equated to 60 days of net oil imports during 1998. The US now relies on a combination of both the Reserve and private stocks to meet its oil storage obligations to the International Energy Agency.

  16. Calculation of the Naval Long and Short Waste Package Three-Dimensional Thermal Interface Temperatures

    SciTech Connect (OSTI)

    H. Marr

    2006-10-25

    The purpose of this calculation is to evaluate the thermal performance of the Naval Long and Naval Short spent nuclear fuel (SNF) waste packages (WP) in the repository emplacement drift. The scope of this calculation is limited to the determination of the temperature profiles upon the surfaces of the Naval Long and Short SNF waste package for up to 10,000 years of emplacement. The temperatures on the top of the outside surface of the naval canister are the thermal interfaces for the Naval Nuclear Propulsion Program (NNPP). The results of this calculation are intended to support Licensing Application design activities.

  17. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  18. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Federal Offshore U.S. Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. The virtual oil company

    SciTech Connect (OSTI)

    Garibaldi, C.A.; Haney, R.M.; Ross, C.E. [Arthur D Little, Houston, TX (United States)

    1995-09-01

    In anticipation of continuing declines in upstream activity levels over the next 15 years, the virtual oil company model articulates a vision of fewer, leaner, but financially stronger firms that concentrate only on their core competencies and outsource the rest through well-structured partnering arrangements. Freed from the ``clutter,`` these leading companies will be in better position to focus on those opportunities that offer the potential for renewed reserve and revenue growth.

  3. Performance and evaluation of gas-engine-driven split-system cooling equipment at the Willow Grove Naval Air Station

    SciTech Connect (OSTI)

    Armstrong, P.R.; Schmelzer, J.R.

    1997-01-01

    DOE`s Federal Energy Management Program supports efforts to reduce energy use and associated expenditures within the federal sector; one such effort, the New Technology Demonstration Program (NTDP)(formerly the Test Bed Demonstration program), seeks to evaluate new energy saving US technologies and secure their more timely adoption by the federal government. This report describes the field evaluation conducted to examine the performance of a 15-ton natural-gas-engine- driven, split-system, air-conditioning unit. The unit was installed at a multiple-use building at Willow Grove Naval Air Station, a regular and reserve training facility north of Philadelphia, and its performance was monitored under the NTDP.

  4. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  5. Sea Oil Field Satellite Monitoring: An Opera3onal View

    E-Print Network [OSTI]

    Kuligowski, Bob

    :on alone contains 54% of the sea's oil reserves and 45% of its gasSea Oil Field Satellite Monitoring: An Opera3onal View Maurizio, Camp Springs, MD 20746 #12;Outline Introduc:on Sea oil fields Synthe:c Aperture

  6. Oil, Environment, and Influence Proposed in 2007 to the UN

    E-Print Network [OSTI]

    New Hampshire, University of

    Oil, Environment, and Influence Levi Byers 4/14/11 #12; Proposed in 2007 to the UN and agreed upon in August 2010 Ecuador will indefinitely forgo 900 million barrels of oil in the ITT-Block of the Amazon) by not exploiting the oil in the Yasuni reserve, avoiding deforestation, promoting reforestation and reducing

  7. The 2006 Naval S&T Partnership Conference is presented by NDIA with technical support from ONR The Naval Postgraduate School's Role

    E-Print Network [OSTI]

    ∑ the operational community to utilize and experiment with new technologies #12;The 2006 Naval S&T Partnership ∑ Directed Energy Systems ∑ Software Engineering ∑ Combat System Physics ∑ Electronic Warfare ∑ SIGINT% Marine Corps 15% Coast Guard 1% Other 2% #12;The 2006 Naval S&T Partnership Conference is presented

  8. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  9. Benin: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports Ashland discovered additional oil reserves deeper than current production in Seme, Benin's only oil field. The field is on a steep decline, producing as little as 2,500 bopd, down from 7,671 bopd in 1984. In an effort to restart offshore exploration, three offshore blocks have been designated. Hardy Oil and Gas (UK) Ltd. has since acquired 20% interest in Blocks 1 and 2 from International Petroleum Ltd. (IPL). IPL completed seismic work during 1990 that identified two large channel prospects similar to those that produce offshore elsewhere in West Africa. The first well is expected in 1991.

  10. 1996 environmental monitoring report for the Naval Reactors Facility

    SciTech Connect (OSTI)

    1996-12-31

    The results of the radiological and nonradiological environmental monitoring programs for 1996 at the Naval Reactors Facility (NRF) are presented in this report. The NRF is located on the Idaho National Engineering and Environmental Laboratory and contains three naval reactor prototypes and the Expended Core Facility, which examines developmental nuclear fuel material samples, spent naval fuel, and irradiated reactor plant components/materials. The results obtained from the environmental monitoring programs verify that releases to the environment from operations at NRF were in accordance with state and federal regulations. Evaluation of the environmental data confirms that the operation of NRF continues to have no adverse effect on the quality of the environment or the health and safety of the general public. Furthermore, a conservative assessment of radiation exposure to the general public as a result of NRF operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency (EPA) and the Department of Energy (DOE).

  11. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  12. Sale of the Elk Hills Naval Petroleum Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProjectData Dashboard RutlandSTEAB's PrioritiesFuel CellFlip Switch on

  13. Title 10, Chapter 641 Pertaining to Naval Petroleum Reserves in U.S.C. |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Laclede GasEfficiency| Department of Energy TheMeeks -Lighting

  14. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  15. Copyright 2000 All Rights Reserved Copyright 2000 All Rights Reserved

    E-Print Network [OSTI]

    Kari, Lila

    Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000 All Rights Reserved #12;Copyright © 2000

  16. Copyright 2000. All Rights Reserved. Copyright 2000. All Rights Reserved.

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright ©2000. All Rights Reserved. #12;Copyright

  17. Copyright 1995. All rights reserved. Copyright 1995. All rights reserved.

    E-Print Network [OSTI]

    Gelman, Andrew

    Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12

  18. Copyright 2001. All Rights Reserved. Copyright 2001. All Rights Reserved.

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright

  19. Copyright 2001. All Rights Reserved. Copyright 2001. All Rights Reserved.

    E-Print Network [OSTI]

    Schultz, Ted

    Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright

  20. Copyright 2001 All Rights Reserved Copyright 2001 All Rights Reserved

    E-Print Network [OSTI]

    Amaral, Luis A.N.

    Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001