Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Northeast Home Heating Oil Reserve  

Gasoline and Diesel Fuel Update (EIA)

Northeast Home Heating Oil Reserve Northeast Home Heating Oil Reserve Information on the Northeast Home Heating Oil Reserve is available from the U.S. Department of Energy (DOE) Office of Petroleum Reserves web site at http://www.fossil.energy.gov/programs/reserves/heatingoil/. Northeast Home Heating Oil Reserve (NEHHOR) inventories now classified as ultra-low sulfur distillate (15 parts per million) are not considered to be in the commercial sector and therefore are excluded from distillate fuel oil supply and disposition statistics in Energy Information Administration publications, such as the Weekly Petroleum Status Report, Petroleum Supply Monthly, and This Week In Petroleum. Northeast Home Heating Oil Reserve Terminal Operator Location (Thousand Barrels) Hess Corp. Groton, CT 500*

2

Oil Reserves and Production  

Science Journals Connector (OSTI)

...research-article Oil Reserves and Production Eric Drake The growth of world energy requirements over the last...remaining proved recoverable reserves will probably decline continuously...to grow. The declining reserves will be insufficient to...

1974-01-01T23:59:59.000Z

3

Energy Information Administration survey of national oil and gas reserves  

SciTech Connect (OSTI)

A description is given of the reserves estimation program of the Energy Information Administration (EIA). EIA sends survey forms to the top 500 operators in the United States and to about 750 small operators who account for significant amounts of production within selected states. An 8% random sample is taken of the remaining small operators. Data are presented which compare the findings of EIA with those of the American Petroleum Institute and the American Gas Association for 1977, 1978, and 1979. 21 figures. (JMT)

Boyd, E.R.

1981-06-01T23:59:59.000Z

4

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

Levi, Ran

5

Northeast Home Heating Oil Reserve - Guidelines for Release ...  

Broader source: Energy.gov (indexed) [DOE]

Heating Oil Reserve Northeast Home Heating Oil Reserve - Guidelines for Release Northeast Home Heating Oil Reserve - Guidelines for Release The Energy Policy and Conservation...

6

Characteristics of North Sea oil reserve appreciation  

E-Print Network [OSTI]

In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

Watkins, G. C.

2000-01-01T23:59:59.000Z

7

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Office of Environmental Management (EM)

Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

8

AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions |  

Open Energy Info (EERE)

End-of-Year Reserves and Annual Reserve Additions End-of-Year Reserves and Annual Reserve Additions Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL)

9

DOE - Office of Legacy Management -- Naval Oil Shale Reserves...  

Office of Legacy Management (LM)

Oil Shale Reserves Site - 013 FUSRAP Considered Sites Site: Naval Oil Shale Reserves Site (013 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

10

Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

11

Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

12

Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

13

Federal Offshore--Louisiana and Alabama Crude Oil Reserves in...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade...

14

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

15

California--State Offshore Crude Oil Reserves in Nonproducing...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1...

16

DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...  

Energy Savers [EERE]

to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 -...

17

Table 7: Crude oil proved reserves, reserves changes, and production, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil proved reserves, reserves changes, and production, 2011" : Crude oil proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

18

Naval Petroleum and Oil Shale Reserves Combined Financial Statements September 30, 1994 and 1993 and Management Overview and Supplemental Financial and Management Information  

SciTech Connect (OSTI)

This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on the 1994 statements. Their reports on the NPOSR internal control structure and on compliance with laws and regulations, and management letter on addressing needed improvements are also provided. NPOSR consists of petroleum reserves in California and Wyoming, and oil shale reserves in Colorado and Utah. The Government`s interests in NPOSR are managed by the Department through its headquarters office in Washington, D.C. In addition, the Department has site offices in both California and Wyoming that are responsible for contractor oversight functions. Daily operations are conducted under contract by two management and operating contractors. By law, NPOSR was authorized to produce crude oil at the maximum efficient rate for six years. The law allowed production to be extended for three year periods, provided that the President of the United States certified that continued maximum production was in the best interest of the nation. The current three year period ends on April 5, 1997. Additional information about NPOSR is provided in the overview and notes to the financial statements.

NONE

1994-12-31T23:59:59.000Z

19

EIA-23L Reserves Information Gathering System (RIGS)  

Gasoline and Diesel Fuel Update (EIA)

EIA-23L Reserves Information Gathering System (RIGS) EIA-23L Reserves Information Gathering System (RIGS) Released: April 16, 2013 Background The Form EIA-23L, "Annual Survey of Domestic Oil and Gas Reserves, " is used to collect data on reserves of crude oil, natural gas, and natural gas liquids. These data are used to develop national and regional estimates of proved reserves of domestic crude oil, natural gas, and natural gas liquids, and to facilitate national energy policy decisions. Reporting on the Form EIA-23L is mandatory. Reserves Information Gathering System The Form EIA-23L Reserves Information Gathering System (RIGS), provides respondents with an efficient and effective means for filing the form using a personal computer (PC). Hardware / Software Requirements The minimum hardware requirements needed to install and use RIGS are:

20

U.S. oil reserves highest since 1975, natural gas reserves set...  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. oil reserves highest since 1975, natural gas reserves set new record U.S. proved oil reserves have topped 36 billion barrels for the first time in nearly four decades, while...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Naval Petroleum and Oil Shale Reserves | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserves To ensure sufficient fuel for the fleet, the Government began withdrawing probable oil-bearing...

22

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

23

Utah Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Utah Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

24

Ohio Crude Oil + Lease Condensate Estimated Production from Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Ohio Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

25

,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil Proved Reserves",1,"Annual",2013,"6301899" ,"Data 2","Changes in Reserves During...

26

Table 6: Crude oil and lease condensate proved reserves, reserves changes, and p  

U.S. Energy Information Administration (EIA) Indexed Site

: Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" : Crude oil and lease condensate proved reserves, reserves changes, and production, 2011" "million barrels" ,,"Changes in Reserves During 2011" ,"Published",,,,,,,,"New Reservoir" ,"Proved",,"Revision","Revision",,,,"New Field","Discoveries","Estimated","Proved" ,"Reserves","Adjustments","Increases","Decreases","Sales","Acquisitions","Extensions","Discoveries","in Old Fields","Production","Reserves" "State and Subdivision",40543,"(+,-)","(+)","(-)","(-)","(+)","(+)","(+)","(+)","(-)",40908

27

The Intricate Puzzle of Oil and Gas Reserves Growth  

Gasoline and Diesel Fuel Update (EIA)

Energy Information Administration / Natural Gas Monthly July 1997 Energy Information Administration / Natural Gas Monthly July 1997 The Intricate Puzzle of Oil and Gas "Reserves Growth" by David F. Morehouse Developing the Nation's discovered oil and gas resources This article begins with a background discussion of the for production is a complex process that is often methods used to estimate proved oil and gas reserves characterized by initial uncertainty as regards the and ultimate recovery, which is followed by a discussion ultimate size or productive potential of the involved of the factors that affect the ultimate recovery estimates reservoirs and fields. Because the geological and of a field or reservoir. Efforts starting in 1960 to analyze hydrological characteristics of the subsurface cannot - and project ultimate resource appreciation are then

28

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Crude Oil and Natural Gas Proved Reserves U.S. Crude Oil and Natural Gas Proved Reserves With Data for 2011 | Release Date: August 1, 2013 | Next Release Date: Early 2014 | full report Previous Issues: Year: 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 Go Summary In 2011, oil and gas exploration and production companies operating in the United States added almost 3.8 billion barrels of crude oil and lease condensate proved reserves, an increase of 15 percent, and the greatest volume increase since the U.S. Energy Information Administration (EIA) began publishing proved reserves estimates in 1977 (Table 1). Proved reserves of crude oil and lease condensate increased by 2.9 billion barrels in 2010, the previous record. Proved reserves of U.S. wet natural gas1 rose

29

Colorado Crude Oil + Lease Condensate Proved Reserves (Million...  

Gasoline and Diesel Fuel Update (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

30

Northeast Home Heating Oil Reserve - Online Bidding System | Department of  

Broader source: Energy.gov (indexed) [DOE]

Services » Petroleum Reserves » Heating Oil Reserve » Northeast Services » Petroleum Reserves » Heating Oil Reserve » Northeast Home Heating Oil Reserve - Online Bidding System Northeast Home Heating Oil Reserve - Online Bidding System The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve. We invite prospective bidders and other interested parties to try out this system and give us your views. You must register to use the system to practice or to participate in an actual emergency sale. Registration assures that you will receive e-mail alerts of sales or other pertinent news. You will also have the opportunity to establish a user ID and password to submit bids. If you establish a user ID, you will receive a temporary password by

31

U.S. Crude Oil and Natural Gas Proved Reserves, 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2013 i This report was prepared by the U.S. Energy...

32

DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |  

Broader source: Energy.gov (indexed) [DOE]

for Northeast Home Heating Oil Reserve for Northeast Home Heating Oil Reserve DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve March 14, 2011 - 1:00pm Addthis Washington, DC - The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. Offers are due no later than 9:00 a.m. EDT on March 29, 2011. Of the U.S. households that use heating oil to heat their homes, 69% reside in the Northeast. The Northeast Home Heating Oil Reserve was established by the Energy Policy Act of 2000 to provide an emergency buffer that can supplement commercial fuel supplies in the event of an actual or imminent severe supply disruption. The Reserve can provide supplemental supplies for

33

Some methods of oil and gas reserve estimation in Azerbaijan  

SciTech Connect (OSTI)

This article deals with the scientific and practical problems related to estimating oil and gas reserves in terrigenous reservoirs of the Productive Series of middle Pliocene and in Upper Cretaceous volcanic and sedimentary rocks. The deposits in question are spread over onshore Azerbaijan and adjacent offshore areas in the Caspian Sea and are approximately 6.5 km deep. This article presents lithologic, stratigraphic, and petrophysical criteria used for selecting prospects for reserve estimation. Also presented are information on structure of rocks and estimation of their lithologic and physical properties. New methods for the interpretation and application of petrophysical and logging data, as well as statistical estimation of reserves, in complex volcaniclastic reservoir rocks, are also discussed.

Abasov, M.T.; Buryakovsky, L.A.; Kondrushkin, Y.M.; Dzhevanshir, R.D.; Bagarov, T.Y. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Chilingar, G.V. [Univ. of Southern California, Los Angeles, CA (United States). Dept. of Civil and Environmental Engineering

1997-08-01T23:59:59.000Z

34

,"Colorado Crude Oil + Lease Condensate Proved Reserves (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

35

,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

36

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

37

Texas State Offshore Crude Oil + Lease Condensate Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Extensions...

38

Texas State Offshore Crude Oil + Lease Condensate Reserves Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales...

39

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

40

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

42

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

43

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

W Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate Reserves Sales...

44

,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

45

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

46

,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

47

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

48

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

49

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

50

,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

51

Table 18: Reported proved nonproducing reserves of crude oil...  

Gasoline and Diesel Fuel Update (EIA)

: Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012 Lease...

52

Table 18: Reported proved nonproducing reserves of crude oil...  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, " "nonassociated gas, associated-dissolved gas, and total gas (wet after lease separation), 2012"...

53

,"California--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

54

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

55

,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

56

,"Federal Offshore--California Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million...

57

,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

58

,"California Crude Oil plus Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

59

North Dakota and Texas help boost U.S. oil reserves to highest...  

U.S. Energy Information Administration (EIA) Indexed Site

in total U.S. oil reserves, driven by the continued development of North Dakota's Bakken shale formation. North Dakota's proved oil reserves now exceeds the oil reserves in the...

60

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...  

Broader source: Energy.gov (indexed) [DOE]

8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact 578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Announces Loans of Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

Loans of Oil from the Strategic Petroleum Reserve Loans of Oil from the Strategic Petroleum Reserve DOE Announces Loans of Oil from the Strategic Petroleum Reserve June 28, 2006 - 2:38pm Addthis WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE has approved two loan requests totaling 750,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to two Louisiana refineries. The refineries were not receiving scheduled shipments of crude oil because of the closure of the Calcasieu Ship Channel. "The Strategic Petroleum Reserve is a national asset that can be used in times of supply disruption. This loan will allow these two refineries to continue operations and help us maintain our nation's supply of gasoline leading into the holiday weekend," Secretary Bodman said.

62

DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated  

Broader source: Energy.gov (indexed) [DOE]

Resume Filling Strategic Petroleum Reserve: Oil Acquisition Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 - 9:27am Addthis WASHINGTON, DC -- The U.S. Department of Energy today announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude oil for the nation's Strategic Petroleum Reserve (SPR) to replenish SPR supplies sold following hurricanes Katrina and Rita in 2005. In addition, DOE is also moving forward with three other SPR acquisition and/or fill activities in order to fill the SPR as Congress directed in the 2005 Energy Policy Act (EPAct): refiner repayments of SPR emergency oil

63

DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |  

Broader source: Energy.gov (indexed) [DOE]

Purchase Heating Oil for the Northeast Home Heating Oil Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC -The U.S. Department of Energy (DOE) today issued a solicitation seeking to purchase heating oil for the Northeast Home Heating Oil Reserve (NEHHOR) using $3 million in appropriated funds. The Northeast Home Heating Oil Reserve provides an important safety cushion for millions of Americans residing in the Northeast region of the country. Due to the modest volume of heating oil expected to be purchased with the available funds, no impact on market prices is expected. In 2007 a 35,000 barrel sale was conducted to raise funds necessary to award new long-term storage contracts to fill NEHHOR to its authorized

64

U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report  

SciTech Connect (OSTI)

This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

NONE

1998-12-01T23:59:59.000Z

65

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil and Natural Gas Crude Oil and Natural Gas Proved Reserves, 2011 August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other federal agencies. August 2013 U.S. Energy Information Administration | U.S. Crude Oil and Natural Gas Proved Reserves, 2011 ii

66

Booking Geothermal Energy Reserves | Open Energy Information  

Open Energy Info (EERE)

portfolio management, is not yet a common practice among geothermal companies. In the petroleum industry booking of oil and gas reserves is a routine practice, and at least two...

67

U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

NONE

1996-11-01T23:59:59.000Z

68

US crude oil, natural gas, and natural gas liquids reserves 1996 annual report  

SciTech Connect (OSTI)

The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

NONE

1997-12-01T23:59:59.000Z

69

DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |  

Broader source: Energy.gov (indexed) [DOE]

Awards Storage Contracts for Northeast Home Heating Oil Reserve Awards Storage Contracts for Northeast Home Heating Oil Reserve DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve August 18, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) today announced that new contracts have been awarded for commercial storage of 650,000 barrels of ultra low sulfur distillate (ULSD) for the Northeast Home Heating Oil Reserve (NEHHOR). Awards were made to two companies for storage in New England--Hess Corporation in Groton, CT for 400,000 barrels, and Global Companies LLC in Revere, MA for 250,000 barrels. The procurement was conducted by the Defense Logistics Agency (DLA Energy), acting as the agent for DOE. Acquisition of storage services for an additional 350,000 barrels is planned to complete the establishment of a

70

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

71

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

72

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

73

Texas State Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

74

Texas State Offshore Crude Oil + Lease Condensate Reserves Acquisition...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

75

Texas State Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

76

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

77

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

78

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) California State Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

79

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

80

Texas State Offshore Crude Oil + Lease Condensate Reserves Adjustments...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

82

Louisiana State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

State Offshore Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0...

83

Northeast Home Heating Oil Reserve- Guidelines for Release  

Broader source: Energy.gov [DOE]

The Energy Policy and Conservation Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or...

84

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Broader source: Energy.gov (indexed) [DOE]

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

85

Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve  

Broader source: Energy.gov (indexed) [DOE]

Additional Storage Contracts Awarded for Northeast Home Heating Oil Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve Additional Storage Contracts Awarded for Northeast Home Heating Oil Reserve September 30, 2011 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has completed the acquisition of commercial storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). Two awards totaling 350,000 barrels have been made to companies that had earlier received storage contracts totaling 650,000 barrels. Hess Corporation in Groton, CT has been awarded a second contract for 100,000 barrels, increasing its storage obligation to 500,000 barrels. Global Companies LLC in Revere, MA was awarded a second contract for 250,000 barrels, increasing its obligation to 500,000 barrels.

86

U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

87

,"U.S. Crude Oil plus Lease Condensate Proved Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

plus Lease Condensate Proved Reserves" plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2011,"6/30/2009" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_cplc_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_cplc_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

88

Finding Hidden Oil and Gas Reserves Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Finding Hidden Oil and Gas Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas fields, have a long and established history in hydrocarbon reservoir exploration but the technology has encountered difficulty in discriminating different types of reservoir fluids, such as brines, oil, and gas. Why it Matters: Imaging methods that improve locating and extracting petroleum and gas from the earth by even a few percent can yield enormous payoffs. Geophysical realizations of hydrocarbon reservoirs at unprecedented levels of detail will afford new detection abilities, new efficiencies and new exploration savings by revealing where hydrocarbon deposits reside. Can also be used for improved understanding of potential

89

United States Producing and Nonproducting Crude Oil and Natural Gas Reserves From 1985 Through 2004  

Gasoline and Diesel Fuel Update (EIA)

United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004 By Philip M. Budzik Abstract The Form EIA-23 survey of crude oil and natural gas producer reserves permits reserves to be differentiated into producing reserves, i.e., those reserves which are available to the crude oil and natural gas markets, and nonproducing reserves, i.e., those reserves which are unavailable to the crude oil and natural gas markets. The proportion of nonproducing reserves relative to total reserves grew for both crude oil and natural gas from 1985 through 2004, and this growth is apparent in almost every major domestic production region. However, the growth patterns in nonproducing crude oil and natural gas reserves are

90

"U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Summary Data Tables, 2013" "Contents" "Table 1: U.S. proved reserves, and reserves changes, 2012-2013" "Table 2: Principal...

91

Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming  

SciTech Connect (OSTI)

This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

Not Available

1992-07-01T23:59:59.000Z

92

Dominant Middle East oil reserves critically important to world supply  

SciTech Connect (OSTI)

This paper reports that the location production, and transportation of the 60 million bbl of oil consumed in the world each day is of vital importance to relations between nations, as well as to their economic wellbeing. Oil has frequently been a decisive factor in the determination of foreign policy. The war in the Persian Gulf, while a dramatic example of the critical importance of oil, is just the latest of a long line of oil-influenced diplomatic/military incidents, which may be expected to continue. Assuming that the world's remaining oil was evenly distributed and demand did not grow, if exploration and development proceeded as efficiently as they have in the U.S., world oil production could be sustained at around current levels to about the middle of the next century. It then would begin a long decline in response to a depleting resource base. However, the world's remaining oil is very unevenly distributed. It is located primarily in the Eastern Hemisphere, mostly in the Persian Gulf, and much is controlled by the Organization of Petroleum Exporting Countries. Scientific resource assessments indicate that about half of the world's remaining conventionally recoverable crude oil resource occurs in the Persian Gulf area. In terms of proved reserves (known recoverable oil), the Persian Gulf portion increase to almost two-thirds.

Riva, J.P. Jr. (Library of Congress, Washington, DC (United States). Congressional Research Service)

1991-09-23T23:59:59.000Z

93

Proved Nonproducing Reserves of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Product: Crude Oil Lease Condensate Total Gas Nonassociated Gas Associated Gas Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2006 2007 2008 2009 2010 2011 View History U.S. 5,174 5,455 5,400 6,015 6,980 9,049 1996-2011 Federal Offshore U.S. 1,921 2,304 2,297 2,150 1,710 2,662 1996-2011 Pacific (California) 37 20 12 12 13 13 1996-2011 Louisiana & Alabama 1,816 2,231 2,229 2,013 1,595 2,597 1996-2011 Texas 68 53 56 125 102 52 1996-2011 Alaska 442 400 529 633 622 566 1996-2011 Lower 48 States 4,732 5,055 4,871 5,382 6,358 8,483 1996-2011 Alabama 0 0 0 0 0 1 1996-2011 Arkansas 1 0 0 0 1 0 1996-2011

94

U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves...  

Gasoline and Diesel Fuel Update (EIA)

+ Lease Condensate Proved Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

95

EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

96

Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: June 10, 2002 0: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 to someone by E-mail Share Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Facebook Tweet about Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Twitter Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Google Bookmark Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Delicious Rank Vehicle Technologies Office: Fact #220: June 10, 2002 World Oil Reserves, Production, and Consumption, 2001 on Digg Find More places to share Vehicle Technologies Office: Fact #220:

97

Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: May 11, 1999 8: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 to someone by E-mail Share Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Facebook Tweet about Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Twitter Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Google Bookmark Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Delicious Rank Vehicle Technologies Office: Fact #88: May 11, 1999 World Oil Reserves, Production, and Consumption, 1998 on Digg Find More places to share Vehicle Technologies Office: Fact #88: May

98

Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

80: July 11, 2005 80: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 to someone by E-mail Share Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Facebook Tweet about Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Twitter Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Google Bookmark Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Delicious Rank Vehicle Technologies Office: Fact #380: July 11, 2005 World Oil Reserves, Production, and Consumption, 2004 on Digg Find More places to share Vehicle Technologies Office: Fact #380:

99

Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: May 5, 2003 6: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 to someone by E-mail Share Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Facebook Tweet about Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Twitter Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Google Bookmark Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Delicious Rank Vehicle Technologies Office: Fact #266: May 5, 2003 World Oil Reserves, Production, and Consumption, 2002 on Digg Find More places to share Vehicle Technologies Office: Fact #266:

100

,"U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

,"U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

102

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil and Natural Gas Proved Reserves With Data for 2013 | Release Date: December 4, 2014 | Revision: December 19, 2014 Next Release Date: December 2015 | full report Previous...

103

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Broader source: Energy.gov (indexed) [DOE]

Will Convert Northeast Home Heating Oil Reserve to Ultra Low Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast Home Heating Oil Reserve, a total of approximately 2 million barrels, and

104

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

105

Teanaway Solar Reserve | Open Energy Information  

Open Energy Info (EERE)

Sector: Solar Product: Washington State-based privately-held developer of the Teanaway Solar Reserve PV plant project. References: Teanaway Solar Reserve1 This article is a...

106

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

107

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

108

Department of Energy to Release Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

to Release Oil from the Strategic Petroleum to Release Oil from the Strategic Petroleum Reserve Department of Energy to Release Oil from the Strategic Petroleum Reserve June 23, 2011 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the U.S. and its partners in the International Energy Agency have decided to release a total of 60 million barrels of oil onto the world market over the next 30 days to offset the disruption in the oil supply caused by unrest in the Middle East. As part of this effort, the U.S. will release 30 million barrels of oil from the Strategic Petroleum Reserve (SPR). The SPR is currently at a historically high level with 727 million barrels. "We are taking this action in response to the ongoing loss of crude oil due to supply disruptions in Libya and other countries and their impact on the

109

Definition: Spinning Reserve | Open Energy Information  

Open Energy Info (EERE)

Spinning Reserve Spinning Reserve Jump to: navigation, search Dictionary.png Spinning Reserve Unloaded generation that is synchronized and ready to serve additional demand.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve is made up of the spinning reserve as well as the non-spinning or supplemental reserve: The spinning reserve is the extra generating capacity

110

A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report  

SciTech Connect (OSTI)

The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

Kabadi, V.N.

1992-10-01T23:59:59.000Z

111

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur  

Broader source: Energy.gov (indexed) [DOE]

DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur Distillate February 1, 2011 - 12:00pm Addthis Washington, DC - The current inventory of the Northeast Home Heating Oil Reserve will be converted to cleaner burning ultra low sulfur distillate to comply with new, more stringent fuel standards by some Northeastern states, the U.S. Department of Energy (DOE) said today. The State of New York and other Northeastern states are implementing more stringent fuel standards that require replacement of high sulfur (2,000 parts per million) heating oil to ultra low sulfur fuel (15 parts per million). As a result, DOE will sell the current inventory of the Northeast

112

U.S. Crude Oil plus Lease Condensate Proved Reserves  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reserves, Reserves Changes, and Production (Million Barrels) Area: U.S. Federal Offshore U.S. Federal Offshore, Pacific (California) Federal Offshore, Gulf of Mexico, LA & AL...

113

SolarReserve | Open Energy Information  

Open Energy Info (EERE)

SolarReserve SolarReserve Jump to: navigation, search Name SolarReserve Place Santa Monica, California Zip 90404 Sector Renewable Energy Product A joint venture between United Technologies (NYSE: UTX) subsidiary Hamilton Sundstrand and project developer US Renewables Group (USRG) for developing STEG projects using molten salt thermal storage. References SolarReserve[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. SolarReserve is a company located in Santa Monica, California . References ↑ "SolarReserve" Retrieved from "http://en.openei.org/w/index.php?title=SolarReserve&oldid=351420" Categories: Clean Energy Organizations Companies Organizations Stubs

114

Definition: Operating Reserve | Open Energy Information  

Open Energy Info (EERE)

Operating Reserve Operating Reserve Jump to: navigation, search Dictionary.png Operating Reserve That capability above firm system demand required to provide for regulation, load forecasting error, equipment forced and scheduled outages and local area protection. It consists of spinning and non-spinning reserve.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve

115

DOE Announces Additional Loan of Oil from the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

Loan of Oil from the Strategic Petroleum Loan of Oil from the Strategic Petroleum Reserve DOE Announces Additional Loan of Oil from the Strategic Petroleum Reserve September 19, 2005 - 10:43am Addthis WASHINGTON, DC - Energy Secretary Samuel W. Bodman today announced that the Department of Energy (DOE) has approved a seventh loan request for crude oil from the Strategic Petroleum Reserve (SPR). Today's agreement with Total Petrochemicals USA, Inc., for 600,000 barrels of sour crude takes the total volume DOE has agreed to loan to 13.2 million barrels. "We are committed to doing everything in our power to meet the immediate needs of those directly affected by Hurricane Katrina. By utilizing the resources of the Strategic Petroleum Reserve, we will help minimize any potential supply disruptions as a result of the hurricane," Secretary

116

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Extensions...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

117

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitio...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

118

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

119

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Adjustment...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

120

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves New...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

122

U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Revision...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

123

Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007  

Broader source: Energy.gov [DOE]

The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

124

Definition: Operating Reserve - Spinning | Open Energy Information  

Open Energy Info (EERE)

Reserve - Spinning Reserve - Spinning Jump to: navigation, search Dictionary.png Operating Reserve - Spinning The portion of Operating Reserve consisting of: Generation synchronized to the system and fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

125

Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993  

SciTech Connect (OSTI)

During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

Not Available

1993-12-31T23:59:59.000Z

126

Massachusetts Military Reservation | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Military Reservation Massachusetts Military Reservation Jump to: navigation, search Name Massachusetts Military Reservation Facility Massachusetts Military Reservation Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Air Force Center for Engineering & the Environment Energy Purchaser Air Force Center for Engineering & the Environment Location Massachusetts Military Reservation MA Coordinates 41.690386°, -70.550108° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.690386,"lon":-70.550108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

127

Definition: Contingency Reserve | Open Energy Information  

Open Energy Info (EERE)

Contingency Reserve Contingency Reserve Jump to: navigation, search Dictionary.png Contingency Reserve The provision of capacity deployed by the Balancing Authority to meet the Disturbance Control Standard (DCS) and other NERC and Regional Reliability Organization contingency requirements.[1] Also Known As replacement reserve Related Terms Disturbance Control Standard, Balancing Authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Contingency_Reserve&oldid=502577" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link

128

Allegations of diversion and substitution of crude oil. Bayou Choctaw Storage Site, Strategic Petroleum Reserve  

SciTech Connect (OSTI)

Investigation did not substantiate allegations that crude oil destined for the Strategic Petroleum Reserve storage site at Bayou Choctaw was diverted to private use and some other material substituted in its place. However, recommendations are made for handling intermediate transport and storage systems for crude oil to tighten security aspects. (PSB)

Not Available

1984-03-30T23:59:59.000Z

129

Audit implications of supplementary oil and gas reserve reporting  

SciTech Connect (OSTI)

To help decision makers judge the reliability and usefulness of information reported in the supplementary oil and gas disclosures required by Regulation S-X of the Securities Exchange Commission and the Statement of Financial Accounting Standards No. 60, the author provides an auditor's view of the implications of the accounting guidelines, with an emphasis on the supplementary disclosures and resultant responsibilities assumed by the auditor. She reviews pertinent definition and recent changes in reporting requirements. Statement of Accounting Standards (SAS) Nos. 11, 27, and 33 relate to review procedures used by the auditor.

Welker, D.L.

1984-12-01T23:59:59.000Z

130

Reserves  

Gasoline and Diesel Fuel Update (EIA)

1993 1993 1994 1995 1996 Reserves (billion cubic feet) Estimated Proved Reserves (dry) as of December 31 ....................................... 165,015 162,415 163,837 165,146 166,474 Number of Gas and Gas Condensate Wells Producing at End of Year ............................. 275,414 282,152 291,773 298,541 301,811 Production (million cubic feet) Gross Withdrawals From Gas Wells......................................... 16,164,874 16,691,139 17,351,060 17,282,032 17,680,777 From Oil Wells ........................................... 5,967,376 6,034,504 6,229,645 6,461,596 6,370,888 Total.............................................................. 22,132,249 22,725,642 23,580,706 23,743,628 24,051,665 Repressuring ................................................ -2,972,552 -3,103,014 -3,230,667 -3,565,023 -3,510,330

131

Optimal operating strategies coping with uncertainties of world oil prices for China's strategic petroleum reserve  

Science Journals Connector (OSTI)

Since 2003, China has begun to establish its own strategic petroleum reserves (SPR) to strengthen its oil supply security. Due to the unpredictable feature of the oil supply interruption or sudden price rising, questions about operating the SPR become an important issue for China's policy makers. This paper analysed the operating strategies for China's SPR by developing a stochastic dynamic programming model, which considered uncertainties of the world oil prices and the construction process of China's SPR sites. Different situations, including normal world oil prices, short-term world oil price rising, continuously high world oil prices and continuously oil price decrease were considered and discussed. Optimal SPR operating strategies coping with uncertainties of world oil prices for China were derived and relevant policy implications were obtained. The influence effects on world oil price caused by the acquisition or drawdown actions of China's SPR were considered, too.

Xin Chen; Hailin Mu

2013-01-01T23:59:59.000Z

132

Venezuelan projects advance to develop world`s largest heavy oil reserves  

SciTech Connect (OSTI)

A number of joint venture projects at varying stages of progress promise to greatly increase Venezuela`s production of extra heavy oil. Units of Conoco, Chevron, Total, Arco, and Mobil have either signed agreements or are pursuing negotiations with affiliates of state-owned Petroleos de Venezuela SA on the development of huge reserves of 8--10{degree} gravity crude. Large heavy oil resources are present in the oil producing areas of eastern and western Venezuela, and the largest are in eastern Venezuela`s Orinoco heavy oil belt. The paper discusses the Orinoco heavy oil belt geology and several joint ventures being implemented.

Croft, G.; Stauffer, K. [Pantera Petroleum Inc., San Leandro, CA (United States)

1996-07-08T23:59:59.000Z

133

Definition: Operating Reserve - Supplemental | Open Energy Information  

Open Energy Info (EERE)

Supplemental Supplemental Jump to: navigation, search Dictionary.png Operating Reserve - Supplemental The portion of Operating Reserve consisting of: Generation (synchronized or capable of being synchronized to the system) that is fully available to serve load within the Disturbance Recovery Period following the contingency event; or, Load fully removable from the system within the Disturbance Recovery Period following the contingency event.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the

134

Definition: Reserve Sharing Group | Open Energy Information  

Open Energy Info (EERE)

Sharing Group Sharing Group Jump to: navigation, search Dictionary.png Reserve Sharing Group A group whose members consist of two or more Balancing Authorities that collectively maintain, allocate, and supply operating reserves required for each Balancing Authority's use in recovering from contingencies within the group. Scheduling energy from an Adjacent Balancing Authority to aid recovery need not constitute reserve sharing provided the transaction is ramped in over a period the supplying party could reasonably be expected to load generation in (e.g., ten minutes). If the transaction is ramped in quicker (e.g., between zero and ten minutes) then, for the purposes of Disturbance Control Performance, the Areas become a Reserve Sharing Group.[1] Related Terms adjacent balancing authority, balancing authority, smart grid

135

A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum  

SciTech Connect (OSTI)

The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

Kabadi, V.N.

1992-10-01T23:59:59.000Z

136

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect (OSTI)

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

137

Maps: Exploration, Resources, Reserves, and Production - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

Maps: Exploration, Resources, Reserves, and Production Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural Gas in the Lower 48 States and North America Gas Production in Conventional Fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas Production in Offshore Fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale Gas and Oil Plays, Lower 48 States Updated 5/9/2011 PDF (1.6 MB) JPG (2.1 MB) Shale Gas and Oil Plays, North America Updated 5/9/2011 PDF (0.4 MB) JPG (1.2 MB) Major Tight Gas Plays, Lower 48 States PDF (1.6 MB) JPG (2.2 MB) Coalbed Methane Fields, Lower 48 States PDF (1.8 MB) JPG (2.7 MB) Oil- and Gas-Related Maps, Geospatial Data, and Geospatial Software Oil and Gas Field Maps in Portable Document Format Oil and Gas Field Data in Shapefile Format EIA's Oil and Gas Field Boundary Generation Scripts

138

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

renewable heating oil substitution Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution Two-day agenda from the workshop: Technical...

139

California State Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

140

California Federal Offshore Crude Oil + Lease Condensate Reserves...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Texas State Offshore Crude Oil + Lease Condensate Reserves New...  

U.S. Energy Information Administration (EIA) Indexed Site

Withheld to avoid disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Field Discoveries...

142

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

143

Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

2013-10-01T23:59:59.000Z

144

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

145

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we added numerical solution along streamline subroutines to our streamline compositional simulator. The WAG injection algorithms are being developed. We studied the wettability of the reservoir oil and formulated a four-phase relative permeability model based on two-phase relative permeabilities. The effect of new relative permeability formulations on a five-spot pattern WAG recovery was evaluated. Effect of horizontal wells on pattern sweep has been initiated. A model quarter five-spot experiment is being designed. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, evaluation of complex well-architecture and design of model quarter five-spot experiment.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

146

DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE  

SciTech Connect (OSTI)

North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

Kishore K. Mohanty

2003-07-01T23:59:59.000Z

147

Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution  

Broader source: Energy.gov [DOE]

Two-day agenda from the workshop: Technical Information Exchange on Pyrolysis Oil: Potential for a renewable heating oil substitution fuel in New England.

148

U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995  

SciTech Connect (OSTI)

The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

NONE

1997-03-01T23:59:59.000Z

149

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Broader source: Energy.gov (indexed) [DOE]

Renewab;e Heating Oil Substation Fuel in New England Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England This...

150

,"U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"1162014 3:33:23 PM" "Back to Contents","Data 1: U.S....

151

Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

2005-08-01T23:59:59.000Z

152

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

SciTech Connect (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

153

Strategic Petroleum Reserve  

Energy Savers [EERE]

of petroleum products from the Reserve." Due to significant changes in domestic crude oil production, increased imports of Canadian crude oil, and changes to crude oil...

154

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

155

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

156

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

157

Petroleum Reserves | Department of Energy  

Office of Environmental Management (EM)

of gasoline for consumers in the northeastern United States. Naval Petroleum and Oil Shale Reserves The Naval Petroleum and Oil Shale Reserve (NPOSR) has a storied history...

158

Definition: Non-Spinning Reserve | Open Energy Information  

Open Energy Info (EERE)

Spinning Reserve Spinning Reserve Jump to: navigation, search Dictionary.png Non-Spinning Reserve That generating reserve not connected to the system but capable of serving demand within a specified time., Interruptible load that can be removed from the system in a specified time.[1] View on Wikipedia Wikipedia Definition In electricity networks, the operating reserve is the generating capacity available to the system operator within a short interval of time to meet demand in case a generator goes down or there is another disruption to the supply. Most power systems are designed so that, under normal conditions, the operating reserve is always at least the capacity of the largest generator plus a fraction of the peak load. The operating reserve is made up of the spinning reserve as well as the non-spinning or

159

U.S. Uranium Reserves Estimates - Energy Information Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U3O8, and three-quarters of the reserves available at less than 50 per pound U3O8. By mining method, uranium reserves in underground mines constituted just under half of the...

160

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

SciTech Connect (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

162

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

163

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

164

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

165

United Oil Company | Open Energy Information  

Open Energy Info (EERE)

Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA References:...

166

Table 5. Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011 : Total U.S. proved reserves of crude oil and lease condensate, crude oil, and lease condensate, 2002-2011 million barrels Revisions a Net of Sales b New Reservoir Proved d Change Net and and New Field Discoveries Total c Estimated Reserves from Adjustments Revisions AdjustmentsAcquisitions Extensions Discoveries in Old Fields DiscoveriesProduction 12/31 Prior Year Year (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) Crude Oil and Lease Condensate (million barrels) 2002 423 682 1,105 51 600 318 187 1,105 2,082 24,023 180 2003 192 -9 183 -416 530 717 137 1,384 2,068 23,106 -917 2004 80 444 524 37 731 36 159 926 2,001 22,592 -514 2005 237 558 795 327 946 209 57 1,212 1,907 23,019 427 2006 109 43 152 189 685 38 62 785 1,834 22,311 -708 2007 21 1,275 1,296 44 865 81 87 1,033 1,872 22,812 501 2008 318 -2,189 -1,871 187 968 166 137 1,271 1,845 20,554 -2,258 2009 46 2,008 2,054

167

Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves  

SciTech Connect (OSTI)

The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

Not Available

1994-08-01T23:59:59.000Z

168

Department of Energy, Office of Naval Petroleum & Oil Shale Reserves  

Broader source: Energy.gov (indexed) [DOE]

Request for Records Disposition Authority Leave Blank (NARA Use Only) (See Instructions on reverse) Job Number I / {£. 0- _~ To. National Archives and Records Administration (NIR) NI-'-r 3 7- 6 6 J Washington, DC 20408 Date Received 1 From (Agencyor establishment) Department of Energy Notification to Agency 2 MajorSubdivrsion In accordance with the provisions of 44 Assistant Secretary for Fossil Energy USC 3303a. the disposition request. In- cluding amendments. ISapproved except for 3 Minorsubcrvrsron Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5 Telephone (Includearea code) [ Pamela Gentel 301-903-1856 6 Agency Certification

169

1 What is Oil ? General information  

E-Print Network [OSTI]

of petroleum products manufactured from crude oil. Many are for specific purposes, for example motor gasoline gasoline to heavier ones such as fuel oil. Oil #12;Crude oil Natural gas liquids Other hydrocarbons Aviation gasoline White spirit + SBP Gasoline type jet fuel Lubricants Unleaded gasoline Bitumen Leaded

Kammen, Daniel M.

170

EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California  

Broader source: Energy.gov [DOE]

The Office of Naval Petroleum and Oil Shale Reserves developed this supplemental statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Navel Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California. This SEIS is a supplement to DOE/EIS-0020, Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California.

171

Peak Oil Food Network | Open Energy Information  

Open Energy Info (EERE)

Network Network Jump to: navigation, search Name Peak Oil Food Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilFoodNetwork. References Peak Oil Food Network[1] LinkedIn Connections This article is a stub. You can help OpenEI by expanding it. The Peak Oil Food Network is a networking organization located in Crested Butte, Colorado, and is open to the general public that seeks to promote the creation of solutions to the challenge of food production impacted by the peak phase of global oil production. Private citizens are encouraged to join and contribute by adding comments, writing blog posts or adding to discussions about food and oil related topics. Peak Oil Food Network can be followed on Twitter at: http://www.Twitter.com/PeakOilFoodNtwk Peak Oil Food Network on Twitter

172

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

173

Oil Pollution Act | Open Energy Information  

Open Energy Info (EERE)

Pollution Act Pollution Act Jump to: navigation, search Statute Name Oil Pollution Act Year 1990 Url OPA.jpg Description The Oil Pollution Act (OPA) of 1990 streamlined and strengthened EPA's ability to prevent and respond to catastrophic oil spills. References OPA[1] Federal Oil and Gas[2] The Oil Pollution Act (OPA) of 1990 streamlined and strengthened EPA's ability to prevent and respond to catastrophic oil spills. A trust fund financed by a tax on oil is available to clean up spills when the responsible party is incapable or unwilling to do so. The OPA requires oil storage facilities and vessels to submit to the federal government response plans detailing how they will respond to large discharges. EPA has published regulations for aboveground storage facilities; the Coast Guard

174

U.S. Coal Reserves  

U.S. Energy Information Administration (EIA) Indexed Site

Data - U.S. Energy Information Administration (EIA) Data - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

175

Analysis of the potential for enhanced oil recovery in the Shannon Formation at Naval Petroleum Reserve Number 3. Master's thesis  

SciTech Connect (OSTI)

Three EOR processes were evaluated for potential application in the Shannon reservoir at Naval Petroleum Reserve No. 3, in the Teapot Dome Oilfield near Casper, Wyoming. This reservoir is estimated to have originally held 180 million barrels of oil, of which only 8 million barrels are recoverable by primary means. Simplified computer models were used to predict the performance of in-situ combustion, polymer flooding, and steam flooding. Economic analyses were done on the results of these predictions and sensitivity studies were performed for various physical and economic parameters. This report provides a foundation of information, offers a template for economic decisions, and makes preliminary recommendations based on performance predictions. Before field-wide application of any project is undertaken, a better characterization of the reservoir must be accomplished and pilot projects evaluated. However, this analysis suggest that the most favorable application in the Shannon Sandstone is polymer flooding operated on 2.5-acre spacing. This technique is predicted to give a net present value of $5.43 million per 10-acre unit with a present value ration of 9.4 for its four year economic life.

Chappelle, H.H.

1985-05-01T23:59:59.000Z

176

SunEdison First Reserve JV | Open Energy Information  

Open Energy Info (EERE)

JV Sector: Solar Product: US-based joint venture that plans to acquire and develop solar projects in the US, Italy, Spain and Canada. References: SunEdison & First Reserve...

177

Energy Information Administration (EIA) - High World Oil Price Case  

Gasoline and Diesel Fuel Update (EIA)

High World Oil Price Case Projections Tables (1990-2030) High World Oil Price Case Projections Tables (1990-2030) International Energy Outlook 2007 High World Oil Price Case Projections Tables (1990-2030) Formats Data Table Titles (1 to 12 complete) High World Oil Price Case Projections Tables. Need help, contact the National Energy Information Center at 202-586-8800. High World Oil Price Case Tables. Need help, contact the National Energy Information Center at 202-586-8800. Table D1 World Total Primary Energy Consumption by Region Table D1. World Total Primary Energy Consumption by Region. Need help, contact the National Energy Information Center at 202-586-8800. Table D2 World Total Energy Consumption by Region and Fuel Table D2. World total Energy Consumption by Region and Fuel. Need help, contact the National Energy Information Center at 202-586-8800.

178

Oman Oil Company | Open Energy Information  

Open Energy Info (EERE)

Oman Oil Company Oman Oil Company Jump to: navigation, search Logo: Oman Oil Company (S.A.O.C.) Name Oman Oil Company (S.A.O.C.) Place Muscat, Oman Product Oil exploration and production Year founded 1966 Phone number + 968 - 2457 3100 Website http://www.oman-oil.com/ Coordinates 23.607918997246°, 58.492176532745° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.607918997246,"lon":58.492176532745,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

179

Research and information needs for management of oil shale development  

SciTech Connect (OSTI)

This report presents information and analysis to assist BLM in clarifying oil shale research needs. It provides technical guidance on research needs in support of their regulatory responsibilities for onshore mineral activities involving oil shale. It provides an assessment of research needed to support the regulatory and managerial role of the BLM as well as others involved in the development of oil shale resources on public and Indian lands in the western United States.

Not Available

1983-05-01T23:59:59.000Z

180

State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search State Oil and Gas Board and Commission sites are related to oil and gas production, well sites, and any other relevant data and information. The Interstate Oil and Gas Compact Commission is a multi-state government agency that promotes the quality of life for all Americans. This list is where information for OpenEI pages is held, and also, in most cases, where oil and gas data can be derived, open to the public. In many cases, EIA may hold the data related to Oil and Gas. Also, some datasets may only contain a state report pdf, in which case the data would need to be pulled out of the pdf and put into an excel or xml. Here are the states: State link Information Contact info Alabama Alabama Oil and Gas Board The State Oil and Gas Board of Alabama is a regulatory agency of the State of Alabama with the statutory charge of preventing waste and promoting the conservation of oil and gas while ensuring the protection of both the environment and the correlative rights of owners. The Board is granted broad authority in Alabama oil and gas conservation statutes to promulgate and enforce rules and regulations to ensure the conservation and proper development of Alabama's petroleum resources. 420 Hackberry Lane Tuscaloosa, AL 35401 205.349.2852

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

182

Iran Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Iran Oil and Gas Iran Oil and Gas Jump to: navigation, search Logo: Iran Oil and Gas Country Iran Name Iran Oil and Gas Address Unit #16, 3rd Fl., Bldg. No. 2, 9th Narenjestan St., North Pasdaran Ave. City Tehran, Iran Website http://www.iranoilgas.com/news Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

National Iranian Oil Company | Open Energy Information  

Open Energy Info (EERE)

Iranian Oil Company Iranian Oil Company Jump to: navigation, search Logo: National Iranian Oil Company Name National Iranian Oil Company Address Public Relations, 1st floor, 3rd NIOC Headquarters, No. 18, Roodsar St., Hafez St. Place Tehran, Iran Website http://www.nioc.ir/Portal/Home Coordinates 35.6961111°, 51.4230556° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6961111,"lon":51.4230556,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Oil/Liquids | Open Energy Information  

Open Energy Info (EERE)

Oil/Liquids Oil/Liquids < Oil Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report Full figure data for Figure 93. Reference Case Tables Table 1. Total Energy Supply, Disposition, and Price Summary Table 11. Liquid Fuels Supply and Disposition Table 12. Petroleum Product Prices Table 14. Oil and Gas Supply Table 21. Carbon Dioxide Emissions by Sector and Source - New England Table 22. Carbon Dioxide Emissions by Sector and Source- Middle Atlantic Table 23. Carbon Dioxide Emissions by Sector and Source - East North Central Table 24. Carbon Dioxide Emissions by Sector and Source - West North Central Table 25. Carbon Dioxide Emissions by Sector and Source - South Atlantic Table 26. Carbon Dioxide Emissions by Sector and Source - East South

185

Bio Oils Energy | Open Energy Information  

Open Energy Info (EERE)

Oils Energy Oils Energy Jump to: navigation, search Name Bio-Oils Energy Place Madrid, Spain Zip 28010 Sector Biofuels Product Madrid-based biofuels producer with plans to build a 500-tonne plant in Huelva. Coordinates 40.4203°, -3.705774° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4203,"lon":-3.705774,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

186

Feasibility report on alternative methods for cooling cavern oils at the U.S. Strategic Petroleum Reserve.  

SciTech Connect (OSTI)

Oil caverns at the U.S. Strategic Petroleum Reserve (SPR) are subjected to geothermal heating from the surrounding domal salt. This process raises the temperature of the crude oil from around 75 F upon delivery to SPR to as high as 130 F after decades of storage. While this temperature regime is adequate for long-term storage, it poses challenges for offsite delivery, with warm oil evolving gases that pose handling and safety problems. SPR installed high-capacity oil coolers in the mid-1990's to mitigate the emissions problem by lowering the oil delivery temperature. These heat exchanger units use incoming raw water as the cooling fluid, and operate only during a drawdown event where incoming water displaces the outgoing oil. The design criteria for the heat exchangers are to deliver oil at 100 F or less under all drawdown conditions. Increasing crude oil vapor pressures due in part to methane intrusion in the caverns is threatening to produce sufficient emissions at or near 100 F to cause the cooled oil to violate delivery requirements. This impending problem has initiated discussion and analysis of alternative cooling methods to bring the oil temperature even lower than the original design basis of 100 F. For the study described in this report, two alternative cooling methods were explored: (1) cooling during a limited drawdown, and (2) cooling during a degas operation. Both methods employ the heat exchangers currently in place, and do not require extra equipment. An analysis was run using two heat transfer models, HEATEX, and CaveMan, both developed at Sandia National Laboratories. For cooling during a limited drawdown, the cooling water flowrate through the coolers was varied from 1:1 water:oil to about 3:1, with an increased cooling capacity of about 3-7 F for the test cavern Bryan Mound 108 depending upon seasonal temperature effects. For cooling in conjunction with a degas operation in the winter, cavern oil temperatures for the test cavern Big Hill 102 were cooled sufficiently that the cavern required about 9 years to return to the temperature prior to degas. Upon reviewing these results, the authors recommended to the U.S. Department of Energy that a broader study of the cooling during degas be pursued in order to examine the potential benefits of cooling on all caverns in the current degasification schedule.

Levin, Bruce L.; Lord, David L.; Hadgu, Teklu

2005-06-01T23:59:59.000Z

187

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

188

Phoenix Canada Oil Company | Open Energy Information  

Open Energy Info (EERE)

Canada Oil Company Canada Oil Company Jump to: navigation, search Name Phoenix Canada Oil Company Place Toronto, Ontario, Canada Zip M5J 1S9 Sector Hydro, Hydrogen, Solar Product Oil and gas exploration company, with a US division, Phoenix International Energy Inc, developing a solar hydrogen production process catalysed with platinum group metals aligned with various ligands. Coordinates 43.64856°, -79.385324° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.64856,"lon":-79.385324,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

189

oil | OpenEI  

Open Energy Info (EERE)

oil oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

190

Peak Oil Awareness Network | Open Energy Information  

Open Energy Info (EERE)

Awareness Network Awareness Network Jump to: navigation, search Name Peak Oil Awareness Network Place Crested Butte, Colorado Zip 81224 Website http://www.PeakOilAwarenessNet Coordinates 38.8697146°, -106.9878231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8697146,"lon":-106.9878231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

191

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

192

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U.S. Energy Information Administration Office of Oil, Gas, and Coal Supply...

193

Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report  

SciTech Connect (OSTI)

This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

Taylor, A

1980-02-29T23:59:59.000Z

194

OpenEI - oil  

Open Energy Info (EERE)

/0 en AEO2011: Oil and Gas /0 en AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions http://en.openei.org/datasets/node/805 This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. 

License
Type of License: 

195

Strategic petroleum reserve (SPR): oil-storage cavern, Sulphur Mines 6 certification tests and analysis. [Louisiana  

SciTech Connect (OSTI)

Well leak tests and a cavern pressure test were conducted in June and July 1981 and indicated that oil leakage from the cavern is unlikely to exceed the DOE criterion if oil is stored at near atmospheric wellhead brine pressures and higher pressures are only used for short periods of oil fill and withdrawal. The data indicate that cavern structural failure during oil storage is unlikely and that there was no leakage from cavern 6 to the adjacent cavern 7. Because of the proximity of cavern 6 to cavern 7, it is recommended that a similar type of oil be stored in these two caverns.

Beasley, R.R.

1982-04-01T23:59:59.000Z

196

Climate VISION: Private Sector Initiatives: Oil and Gas: GHG Information  

Office of Scientific and Technical Information (OSTI)

GHG Information GHG Information Prior to developing the API Compendium of GHG Emissions Methodologies for the Oil and Gas Industry (PDF 14.6 MB), API reviewed a wide range of government estimates of greenhouse gas emissions from the oil and gas industry as well as existing and widely used methodologies for estimating emissions from our industry's operations. This review made it quite clear that while existing data and methods may be adequate for national-level estimates of greenhouse gas emissions, they were inadequate for developing reliable facility- and company-specific estimates of greenhouse gas emissions from oil and gas operations. Download Acrobat Reader The Compendium is used by industry to assess its greenhouse gas emissions. Working with a number of other international associations as well as

197

GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN  

SciTech Connect (OSTI)

Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated. Data from over 1,700 Illinois waterflood units and waterflood areas have been entered into an Access{reg_sign} database. The waterflood area data has also been assimilated into the ISGS Oracle database for mapping and dissemination on the ArcIMS website. Formation depths for the Beech Creek Limestone, Ste. Genevieve Limestone and New Albany Shale in all of the oil producing region of Illinois have been calculated and entered into a digital database. Digital contoured structure maps have been constructed, edited and added to the ILoil website as map layers. This technology/methodology addresses the long-standing constraints related to information access and data management in Illinois by significantly simplifying the laborious process that industry presently must use to identify underdeveloped pay zones in Illinois.

Beverly Seyler; John Grube

2004-12-10T23:59:59.000Z

198

Hydrogeologic aspects of brine disposal in the East Poplar oil field, Fort Peck Indian Reservation, northeastern Montana  

SciTech Connect (OSTI)

The East Poplar Oil Field encompasses about 70 square miles in the south-central part of the Fort Peck Indian Reservation. Oil production began in 1952 from the Mississippian Madison Group. Production depths range from about 5,500 to 6,000 feet below land surface. Large quantities of brine (water having a dissolved-solids concentration greater than 35,000 milligrams per liter) have been produced with the oil. The brine has a dissolved-solids concentration of as much as 160,000 milligrams per liter. Most of the brine has been disposed of by injection into shallower subsurface formations (mainly the Lower Cretaceous Dakota Sandstone at depths of about 3,300 feet and the Upper Cretaceous Judith River Formation at depths of about 1,000 feet). Smaller quantities of brine have been directed to storage and evaporation pits. Handling, transport, and disposal of the brine have resulted in its movement into and migration through shallow Quaternary alluvial and glacial deposits along the Poplar River valley. Locally, domestic water supplies are obtained from these deposits. The major point, sources of shallow ground-water contamination probably is leakage of brine from corroded disposal-well casing and pipelines. Using electromagnetic geophysical techniques and auger drilling, three saline-water plumes in alluvial deposits and one plum in glacial deposits have been delineated. Dominant constituents in plume areas are sodium and chloride, whereas those in nonplume areas are sodium and bicarbonate.

Craigg, S.D.; Thamke, J.N. (Geological Survey, Helena, MT (United States))

1993-04-01T23:59:59.000Z

199

3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming  

SciTech Connect (OSTI)

The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

La Pointe, Paul; Parney, Robert; Eiben, Thorsten; Dunleavy, Mike; Whitney, John; Eubanks, Darrel

2002-09-09T23:59:59.000Z

200

Press Room - Press Releases - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

1, 2013 1, 2013 New data show record growth in U.S. crude oil reserves and strong natural gas reserve additions in 2011 Crude oil reserves rose by 15 percent in 2011 to highest level since 1985 Natural gas reserves rose by almost 10 percent U.S. proved crude oil reserve additions in 2011 set a record volumetric increase for the second year in a row, according to U.S. Crude Oil and Natural Gas Proved Reserves, 2011, released today by the U.S. Energy Information Administration (EIA). Natural gas proved reserves rose also, but by less than 2010's record increase. Nevertheless, natural gas reserve additions in 2011 rank as the second largest annual increase since 1977. "Horizontal drilling and hydraulic fracturing in shale and other tight rock formations continued to increase oil and natural gas reserves," said EIA

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

NONE

1996-12-01T23:59:59.000Z

202

Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado  

SciTech Connect (OSTI)

As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

Not Available

1991-08-01T23:59:59.000Z

203

Oakwood Healthcare, 2014. All rights reserved. oakwood.org/foundation For more information, visit oakwood.org/foundation  

E-Print Network [OSTI]

©Oakwood Healthcare, 2014. All rights reserved. oakwood.org/foundation For more information, visit oakwood.org/foundation Oakwood Healthcare Foundation cordially invites you to Clays For Kids Sporting

Finley Jr., Russell L.

204

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

205

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

206

Strategic Petroleum Reserve oil-storage cavern: West Hackberry 6 recertification tests and analysis  

SciTech Connect (OSTI)

The final cavern pressure test and well leak test made in June-July 1981 indicated combined oil leakage from the three cavern entry wells will be well within the DOE leak rate criterion of 100 bbls/y per cavern at the most severe design operating conditions of the cavern. The tests did not indicate conclusively that there was no leakage from the cavern other than from the wells. However, they did give a positive indication of no leakage to cavern 9, the nearest cavern about 200 feet away. It is believed that serious structural failure of the cavern is unlikely during long term oil storage at normal pressures, or during accidental depressurization to oil head pressures.

Goin, K.L.

1982-03-01T23:59:59.000Z

207

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

208

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

Scott Hara

2001-05-07T23:59:59.000Z

209

Canola Oil: The Myths Debunked You're looking for more information about canola -the seed, the oil and the meal. Maybe you've  

E-Print Network [OSTI]

Canola Oil: The Myths Debunked You're looking for more information about canola - the seed, the oil's the truth. We promise. Q: What is canola oil? A: Canola oil is the healthiest of all commonly used cooking oils. It is lowest in saturated fat, high in cholesterol-lowering mono-unsaturated fat and the best

Balasundaram, Balabhaskar "Baski"

210

Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach  

Science Journals Connector (OSTI)

Uncertainty of Oil Field GHG Emissions Resulting from Information Gaps: A Monte Carlo Approach ... Regulations on greenhouse gas (GHG) emissions from liquid fuel production generally work with incomplete data about oil production operations. ... We study the effect of incomplete information on estimates of GHG emissions from oil production operations. ...

Kourosh Vafi; Adam R. Brandt

2014-08-10T23:59:59.000Z

211

Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31  

U.S. Energy Information Administration (EIA) Indexed Site

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 View History U.S. 22,315 25,181 28,950 2009-2011 Federal Offshore U.S. 4,357 4,710 5,171 2009-2011 Pacific (California) 350 363 352 2009-2011 Louisiana & Alabama 3,704 4,043 4,567 2009-2011 Texas 303 304 252 2009-2011 Alaska 3,566 3,722 3,852 2009-2011 Lower 48 States 18,749 21,459 25,098 2009-2011 Alabama 53 60 65 2009-2011 Arkansas 29 42 40 2009-2011

212

Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Data Series: Proved Reserves as of Dec. 31 Adjustments Revision Increases Revision Decreases Sales Acquisitions Extensions New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2009 2010 2011 View History U.S. 22,315 25,181 28,950 2009-2011 Federal Offshore U.S. 4,357 4,710 5,171 2009-2011 Pacific (California) 350 363 352 2009-2011 Louisiana & Alabama 3,704 4,043 4,567 2009-2011 Texas 303 304 252 2009-2011 Alaska 3,566 3,722 3,852 2009-2011 Lower 48 States 18,749 21,459 25,098 2009-2011 Alabama 53 60 65 2009-2011 Arkansas 29 42 40 2009-2011

213

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

214

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

215

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

216

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

Scott Hara

2001-05-08T23:59:59.000Z

217

Petroleum Reserves | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Services » Petroleum Reserves Services » Petroleum Reserves Petroleum Reserves Strategic Petroleum Reserve The SPR is the largest stockpile of government-owned emergency crude oil in the world. Read more Northeast Home Heating Oil Reserve The existence of the NEHHOR provides an important safety cushion for millions of Americans. Read more Naval Petroleum Reserves The only remaining naval petroleum reserve managed by DOE is the Teapot Dome field (NPR-3) in Casper, Wyoming. Read more Strategic Petroleum Reserve With a capacity of 727-million-barrels, the U.S. Strategic Petroleum Reserve is the largest stockpile of government-owned emergency crude oil in the world. Established in the aftermath of the 1973-74 oil embargo, the SPR provides the President with a powerful response option should a disruption

218

Naval Petroleum and Oil Shale Reserve. Hearing before the Subcommittee on Preparedness of the Committee on Armed Services, United States Senate, Ninety-Eighth Congress, First Session on S. 1810, September 29, 1983  

SciTech Connect (OSTI)

Captain Myron E. Smith, Jr., Director of the DOE Office of Naval Petroleum and Oil Shale Reserves, testified at a hearing on S. 1810, which authorizes funds relating to the petroleum and oil shale reserves. Smith reviewed revenues and expenditures since legislation was passed in 1976, noting that production at Elk Hills and Teapot Dome are at peak levels, in his justification of the budget request of $266.1 million. Questions from the committee and Smith's responses follow his formal testimony.

Not Available

1984-01-01T23:59:59.000Z

219

Technical Information Exchange on Pyrolysis Oil: Potential for a Renewab;e Heating Oil Substation Fuel in New England  

Broader source: Energy.gov [DOE]

This report summarizes the results of an information exchange sponsored by the DOE/EERE Bioenergy Technologies Office in Manchester, New Hampshire, on May 9-10, 2012. The participand identifies top challenges regarding feedstocks and production, logistics and compatibility, and operational issues, then prioritized next steps for expanding use of pyrolysis oil as a replacement for home heating oil in the Northeast

220

U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 1996 Annual Report  

E-Print Network [OSTI]

This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. HOW TO OBTAIN EIA PRODUCTS AND SERVICES

November Energy Information; U. S. Crude Oil; Natural Gas

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

Scott Hara

2000-02-18T23:59:59.000Z

222

Oil field waste disposal in salt caverns: An information website  

SciTech Connect (OSTI)

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10T23:59:59.000Z

223

Strategic Petroleum Reserve | Department of Energy  

Office of Environmental Management (EM)

Strategic Petroleum Reserve Strategic Petroleum Reserve Crude oil pipes at SPR Bryan Mound site near Freeport, TX. Crude oil pipes at SPR Bryan Mound site near Freeport, TX. The...

224

Yemen Ministry of Oil and Minerals | Open Energy Information  

Open Energy Info (EERE)

Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and Minerals Jump to: navigation, search Logo: Yemen Ministry of Oil and Minerals Country Yemen Name Yemen Ministry of Oil and Minerals Website http://www.mom.gov.ye/en/ References Yemen Ministry of Oil and Minerals Website[1] The Yemen Ministry of Oil and Minerals Website contains some content in English. Associated Organizations Yemeni Company for Oil-Product Distribution Petroleum Exploration and Production Authority Safr Company for Scouting Production Operations Organization of Oil Scouting Aden Refinery Company Yemen Company for Oil Refining Yemen Investments Company for Oil & Mineral Geological Land Survey & Mineral Wealth Organization References ↑ "Yemen Ministry of Oil and Minerals Website" Retrieved from "http://en.openei.org/w/index.php?title=Yemen_Ministry_of_Oil_and_Minerals&oldid=334954"

225

Form:Federal Oil and Gas Statute | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Statute Jump to: navigation, search Federal Oil and Gas Statute This is the "Federal Oil and Gas Statute" form. To create a page with this form, enter the page name...

226

Strategic Petroleum Reserve (SPR) oil storage cavern sulfur mines 7. Certification tests and analysis  

SciTech Connect (OSTI)

Cavern 7 at the Sulphur Mines, Louisiana SPR oil storage site was certified for oil storage on December 17, 1977. The Dowell Sonar caliper survey taken November 29, 1977, indicated a total cavern volume of 5.60 x 10/sup 6/ bbls. The surveys taken December 19, 1979, and June 10, 1981, indicated a total cavern volume of 6.33 x 10/sup 6/ and 6.36 x 10/sup 6/ bbls respectively. This volume increase was a result of continued brining, prior to June 10, 1981, to get brine enrichment for PPG. A well leak test in May 1981 indicated some well leakage. Well workover actions to repair well and wellhead leaks were taken by Texas Brine Corp/Dravo Utility Constructors, Inc. (TBC/DUCI). Testing was restarted in June 1981 using test procedures which were developed in conjunction with the procedures and testing of West Hackberry cavern 6. This report includes a general history of the cavern and a description of the certification testing, analyses, conclusions, and recommendations. The data from cavern 7 and 6 indicate no fluid communication between caverns. Cavern 7 is about 160 ft from the dome edge. The pressure data at maximum operating pressure is comparable to the data from both West Hackberry cavern 6 and Sulphur Mines cavern 6. Therefore, it is considered unlikely that there is a leak to the dome edge. The well test data indicates leaks in the well casing seat area are approximately 100 bbls/yr.

Beasley, R.R.

1982-05-01T23:59:59.000Z

227

end-of-year reserves | OpenEI  

Open Energy Info (EERE)

2 2 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142281512 Varnish cache server end-of-year reserves Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed

228

5/7/2010 9:22 AM Deepwater Horizon Oil Spill: BP Claims Information  

E-Print Network [OSTI]

on for subsistence use purposes have been injured, destroyed, or lost by an oil spill incident. Anyone who is the Oil Spill Liability Trust Fund (OSLTF) and how can it be used? · The OSLTF can provide up to $15/7/2010 9:22 AM Deepwater Horizon Oil Spill: BP Claims Information Frequently Asked Questions 1

229

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

230

Wireless technology collects real-time information from oil and gas wells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wireless technology collects real-time information from oil and gas Wireless technology collects real-time information from oil and gas wells Wireless technology collects real-time information from oil and gas wells The patented system delivers continuous electromagnetic data on the reservoir conditions, enabling economical and effective monitoring and analysis. April 3, 2012 One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells already producing oil and gas and drilling operations for new wells. One of several active projects, LANL and Chevron co-developed INFICOMM(tm), a wireless technology used to collect real-time temperature and pressure information from sensors in oil and gas wells, including very deep wells

231

Technology on In-Situ Gas Generation to Recover Residual Oil Reserves  

SciTech Connect (OSTI)

This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

Sayavur Bakhtiyarov

2008-02-29T23:59:59.000Z

232

Management of resources and reserves for increase the use oil shale and increase of recovery of your organic matter in form of oil and gas derivatives.  

E-Print Network [OSTI]

??This work is about the use of mineral reserves through of the concepts of complete extraction and appropriate use of the ore, and considers these (more)

Leandro Carlos dos Santos

2009-01-01T23:59:59.000Z

233

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

234

International Oil and Gas Exploration and Development 1991  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Oil and Gas Exploration and Development 1991 November 1993 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, D.C. 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration International Oil and Gas Exploration and Development 1991 iii Contacts International Oil and Gas Exploration and Development 1991 was prepared by the Energy Information Administration (EIA), Office of Oil and Gas, Reserves and Natural Gas Division, Reserves and Production Branch.

235

Illinois DNR oil and gas division | Open Energy Information  

Open Energy Info (EERE)

DNR oil and gas division DNR oil and gas division Jump to: navigation, search State Illinois Name Illinois DNR oil and gas division City, State Springfield, IL Website http://dnr.state.il.us/mines/d References Illinois DNR Oil and Gas[1] The Illinois DNR Oil and Gas division is located in Springfield, Illinois. About The Oil and Gas Division is one of four divisions within the Illinois Department of Natural Resources, Office of Mines and Minerals. Created in 1941, the Division of Oil & Gas is the regulatory authority in Illinois for permitting, drilling, operating, and plugging oil and gas production wells. The Division implements the Illinois Oil and Gas Act and enforces standards for the construction and operation of related production equipment and facilities. References

236

Table 19. Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011  

U.S. Energy Information Administration (EIA) Indexed Site

: Reported proved nonproducing reserves of crude oil, lease condensate, : Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, associated dissolved gas, and total gas (wet after lease separation), 2011 a Lease Nonassociated Associated Total Crude Oil Condensate Gas Dissolved Gas Gas State and Subdivision (Million bbls) (Million bbls) (Bcf) (Bcf) (Bcf) Alaska 566 0 288 63 351 Lower 48 States 8,483 880 104,676 13,197 117,873 Alabama 1 0 101 1 102 Arkansas 0 0 5,919 0 5,919 California 542 2 267 128 395 Coastal Region Onshore 248 0 0 20 20 Los Angeles Basin Onshore 69 0 0 23 23 San Joaquin Basin Onshore 163 0 265 54 319 State Offshore 62 2 2 31 33 Colorado 208 30 5,316 1,478 6,794 Florida 4 0 4 0 4 Kansas 4 0 244 39 283 Kentucky 0 0 75 0 75 Louisiana 152 29 14,905 257 15,162 North 30 10 13,820 12 13,832 South Onshore 113 17 1,028 232 1,260 State Offshore 9 2 57 13 70 Michigan 0

237

Form:Federal Oil and Gas Regulation | Open Energy Information  

Open Energy Info (EERE)

Regulation Jump to: navigation, search Federal Oil and Gas Regulation This is the "Federal Oil and Gas Regulation" form. To create a page with this form, enter the page name below;...

238

Title 40 CFR 112 Oil Pollution Prevention | Open Energy Information  

Open Energy Info (EERE)

12 Oil Pollution Prevention Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal Regulation: Title 40 CFR 112 Oil Pollution...

239

16 TAC 3 - Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

TAC 3 - Oil and Gas Division Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 16 TAC 3 - Oil and Gas DivisionLegal Abstract...

240

WSDNR Oil and Gas Forms | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: WSDNR Oil and Gas FormsLegal Abstract The Washington State...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Oil and Gas Well Drilling | Open Energy Information  

Open Energy Info (EERE)

Not Provided Check for DOI availability: http:crossref.org Online Internet link for Oil and Gas Well Drilling Citation Jeff Tester. 2011. Oil and Gas Well Drilling. NA. NA....

242

Inversion of heavy crude oil-in-brine emulsions.  

E-Print Network [OSTI]

??A large portion of Canada's reserves of crude oil consists of extra heavy crude and natural bitumens. As the reserves of conventional crude oil continue (more)

Sun, Ruijun

2010-01-01T23:59:59.000Z

243

Strategic Significance of Americas Oil Shale Resource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

II Oil Shale Resources Technology and Economics Office of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of...

244

California Federal Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1...

245

California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

246

Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

247

Department of Energy Announces Two Additional Loans of Oil from...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Additional Loans of Oil from the Strategic Petroleum Reserve Department of Energy Announces Two Additional Loans of Oil from the Strategic Petroleum Reserve September 2, 2005 -...

248

Deepwater Oil & Gas Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

249

Colorado Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Commission Oil and Gas Conservation Commission Name Colorado Oil and Gas Conservation Commission Place Denver, Colorado References COGCC Website[1] This article is a stub. You can help OpenEI by expanding it. Colorado Oil and Gas Conservation Commission is an organization based in Denver, Colorado. The mission of the Colorado Oil and Gas Conservation Commission (COGCC) is to foster the responsible development of Colorado's oil and gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public health, safety and welfare The prevention of waste The protection of mineral owners' correlative rights The prevention and mitigation of adverse environmental impacts

250

Filling the Strategic Petroleum Reserve | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Filling the Strategic Petroleum Reserve Established in 1975 in the aftermath of the OPEC oil embargo, the Strategic Petroleum Reserve was originally intended to hold at least 750...

251

The informational content of oil and natural gas prices in energy fund performance  

Science Journals Connector (OSTI)

This paper explores whether the informational content of oil and gas prices has an impact on energy mutual fund returns. We first re-visit the relationship between oil and gas prices and energy index returns; our findings confirm that better energy index performance is associated with oil and gas price increases. Using the Fama and MacBeth (1973) two-stage regressions, we find that the information contained in oil and gas prices also plays a significant role in explaining energy mutual fund returns, making these an alternative investment to direct energy stock investments.

Viet Do; Tram Vu

2012-01-01T23:59:59.000Z

252

,"Alabama Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

L2R9911SAL1","RNGR9908SAL1","RNGR9909SAL1","RNGR9910SAL1" "Date","Alabama (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alabama (with...

253

,"Alaska Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

RL2R9911SAK1","RNGR9908SAK1","RNGR9909SAK1","RNGR9910SAK1" "Date","Alaska (with Total Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Alaska (with...

254

Republic of Iraq - Ministry of Oil | Open Energy Information  

Open Energy Info (EERE)

Republic of Iraq - Ministry of Oil Republic of Iraq - Ministry of Oil Jump to: navigation, search Logo: Republic of Iraq - Ministry of Oil Country Iraq Name Republic of Iraq - Ministry of Oil Address Oil Complex Building Port Saeed Street City Baghdad Website http://www.oil.gov.iq/ Coordinates 33.3157°, 44.3922° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3157,"lon":44.3922,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

255

Technical Information Exchange on Pyrolysis Oil: Potential for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Potential for a renewable heating oil substitution fuel in New England - Agenda Time Pre-Conference Presentation and Discussion (Grenier Room) May 8, 2012; Manchester New Hampshire...

256

DOE Makes Public Detailed Information on the BP Oil Spill | Department of  

Broader source: Energy.gov (indexed) [DOE]

Makes Public Detailed Information on the BP Oil Spill Makes Public Detailed Information on the BP Oil Spill DOE Makes Public Detailed Information on the BP Oil Spill June 8, 2010 - 12:00am Addthis WASHINGTON - As part of the Obama Administration's ongoing commitment to transparency surrounding the response to the BP oil spill, U.S. Energy Secretary Steven Chu announced today that Department is providing online access to schematics, pressure tests, diagnostic results and other data about the malfunctioning blowout preventer. Secretary Chu insisted on making the data widely available to ensure the public is as informed as possible, and to ensure that outside experts making recommendations have access to the same information that BP and the government have. The site will be updated with additional data soon. "Transparency is not only in the public interest, it is part of the

257

H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session  

SciTech Connect (OSTI)

This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

NONE

1995-12-31T23:59:59.000Z

258

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all Petroleum Reports all Petroleum Reports Heating Oil and Propane Update Weekly heating oil and propane prices are only collected during the heating season, which extends from October through March. U.S. Heating Oil and Propane Prices Residential Heating Oil Graph. Residential Propane Graph. change from change from Heating Oil 12/16/2013 week ago year ago Propane 12/16/2013 week ago year ago Residential 3.952 values are down 0.004 values are down 0.008 Residential 2.712 values are up 0.091 values are up 0.469 Wholesale 3.074 values are down 0.063 values are not available NA Wholesale 1.637 values are up 0.113 values are not available NA Note: Price in dollars per gallon, excluding taxes. Values shown on the graph and corresponding data pages for the previous week may be revised to account for late submissions and corrections.

259

RMOTC - Testing - Enhanced Oil Recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

260

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

The Strategic Petroleum Reserve Quarterly Report is submitted in accordance with section 165(b) of the Energy Policy and Conservation Act, as amended, which requires that the Secretary of Energy submit quarterly reports to Congress on Activities undertaken with respect to the Strategic Petroleum Reserve. This August 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1990, through June 30, 1990. 3 tabs.

Not Available

1990-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Arizona Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Commission Oil and Gas Commission Jump to: navigation, search Logo: Arizona Oil and Gas Commission State Arizona Name Arizona Oil and Gas Commission Address 416 W. Congress Street, Suite 100 City, State Tucson, Arizona Zip 85701 Website http://www.azogcc.az.gov/ Coordinates 32.221642°, -110.977439° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221642,"lon":-110.977439,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Oil and Gas Field Code Master List - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Field Code Master List Oil and Gas Field Code Master List With Data for 2012 | Release Date: May 8, 2013 | Next Release Date: April 2014 Previous Issues Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2012 Definition of a Field Afield is defined as "an area consisting of a single reservoir ormultiple reservoirs all grouped on, or related to, the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both." More › About the Field Code Master List Related Links

263

Bahrain National Gas and Oil Authority | Open Energy Information  

Open Energy Info (EERE)

Bahrain National Gas and Oil Authority Bahrain National Gas and Oil Authority Jump to: navigation, search Logo: Bahrain National Gas and Oil Authority Country Bahrain Name Bahrain National Gas and Oil Authority Address 1435 Manama-Bahrain City Manama, Bahrain Website http://www.noga.gov.bh/en/defa Coordinates 26.231155°, 50.5705391° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":26.231155,"lon":50.5705391,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

264

Category:Federal Oil and Gas Statutes | Open Energy Information  

Open Energy Info (EERE)

Statutes Statutes Jump to: navigation, search Add a new Federal Oil and Gas Statute You need to have JavaScript enabled to view the interactive timeline. Further results for this query.DECADEFederal Oil and Gas Royalty Simplification and Fairness Act of 19961996-01-010Year: 1996 Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)1987-01-010Year: 1987 Federal Oil and Gas Royalty Management Act of 19821982-01-010Year: 1982 Indian Mineral Development Act of 19821982-01-010Year: 1982 Federal Land Policy and Management Act of 19761976-01-010Year: 1976 Mining and Minerals Policy Act of 19701970-01-010Year: 1970 Mineral Leasing Act for Acquired Lands of 19471947-01-010Year: 1947 Indian Mineral Leasing Act of 19381938-01-010Year: 1938 Mineral Leasing Act of 19201920-01-010Year: 1920

265

Abu Dhabi National Oil Company | Open Energy Information  

Open Energy Info (EERE)

Oil Company Oil Company Jump to: navigation, search Logo: Abu Dhabi National Oil Company Name Abu Dhabi National Oil Company Place Abu Year founded 1971 Phone number 971-2-6020000 Website http://www.adnoc.ae/default.as Coordinates 24.493064080334°, 54.370239274576° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.493064080334,"lon":54.370239274576,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

State of Kuwait Ministry of Oil | Open Energy Information  

Open Energy Info (EERE)

State of Kuwait Ministry of Oil State of Kuwait Ministry of Oil Jump to: navigation, search Logo: State of Kuwait Ministry of Oil Country Kuwait Name State of Kuwait Ministry of Oil City Kuwait City, Kuwait Website http://www.moo.gov.kw/ Coordinates 29.3697222°, 47.9783333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.3697222,"lon":47.9783333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

267

West Virginia Office of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Virginia Office of Oil and Gas Virginia Office of Oil and Gas Jump to: navigation, search State West Virginia Name West Virginia Office of Oil and Gas Address 601 57th Street, SE City, State Charleston, West Virginia Zip 25304-2345 Website http://www.dep.wv.gov/oil-and- Coordinates 38.31256°, -81.570616° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.31256,"lon":-81.570616,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Oman Ministry of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Oman Ministry of Oil and Gas Oman Ministry of Oil and Gas Jump to: navigation, search Logo: Oman Ministry of Oil and Gas Country Oman Name Oman Ministry of Oil and Gas Address Al-Khuwair, Ministry Streets, Opposite Sultan Qaboos Street City Muscat Website http://www.mog.gov.om/english/ Coordinates 23.6138199°, 58.5922413° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23.6138199,"lon":58.5922413,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Category:Federal Oil and Gas Regulations | Open Energy Information  

Open Energy Info (EERE)

Add a new Federal Oil and Gas Regulation This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:FederalOilandGasReg...

270

Form:Oil and Gas Company | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Company" form. To create a page with this form, enter the page name below; if a page with that name already exists, you will be sent to a form to edit that page. Create...

271

Mississippi Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

272

California Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

273

Pennsylvania Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Pennsylvania Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

274

Naval Petroleum Reserves | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Naval Petroleum Reserves For much of the 20th century, the Naval Petroleum and Oil Shale Reserves served as a contingency source of fuel for the Nation's military. All that...

275

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect (OSTI)

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

276

Mississippi State Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Mississippi Name Mississippi State Oil and Gas Board Address 500 Greymont Ave., Suite E City, State Jackson, MS Zip 39202-3446 Website http://www.ogb.state.ms.us/ Coordinates 32.304339°, -90.169735° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.304339,"lon":-90.169735,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

Pennsylvania Bureau of Oil and Gas Management | Open Energy Information  

Open Energy Info (EERE)

Bureau of Oil and Gas Management Bureau of Oil and Gas Management Jump to: navigation, search State Pennsylvania Name Pennsylvania Bureau of Oil and Gas Management Address Rachel Carson State Office Building City, State Harrisburg, PA Zip 17105-8765 Website http://www.dep.state.pa.us/dep Coordinates 40.267244°, -76.886214° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.267244,"lon":-76.886214,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

278

Oklahoma Corporate Commission Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Corporate Commission Oil and Gas Corporate Commission Oil and Gas Jump to: navigation, search State Oklahoma` Name Oklahoma Corporate Commission Oil and Gas City, State Oklahoma City, Oklahoma Zip 73152-2000 Website http://www.occeweb.com/og/ogho Coordinates 35.49°, -97.51° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.49,"lon":-97.51,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Louisiana DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Louisiana Name Louisiana DNR Oil and Gas Division Address P.O. Box 94396 City, State Baton Rouge, LA Zip 70804-9396 Website http://dnr.louisiana.gov/index Coordinates 30.45°, -91.15° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.45,"lon":-91.15,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

Arkansas Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Jump to: navigation, search State Arkansas Name Arkansas Oil and Gas Commission Address 301 Natural Resources Dr. Ste 102 City, State Little Rock, AR Zip 72205 Website http://www.aogc.state.ar.us/JD Coordinates 34.7586275°, -92.3894219° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7586275,"lon":-92.3894219,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Zhuhai Oil Energy Science and Technology | Open Energy Information  

Open Energy Info (EERE)

Zhuhai Oil Energy Science and Technology Zhuhai Oil Energy Science and Technology Jump to: navigation, search Name Zhuhai Oil Energy Science and Technology Place Zhuhai, China Sector Biofuels Stock Symbol BMGP Coordinates 22.27094°, 113.577261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22.27094,"lon":113.577261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

282

Alaska Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Alaska Name Alaska Division of Oil and Gas Address 550 W. 7th Ave., Suite 1100 City, State Anchorage, Alaska Zip 99501 Website http://dog.dnr.alaska.gov/ Coordinates 61.2154607°, -149.8928599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.2154607,"lon":-149.8928599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

283

Balaji Agro Oils Ltd BAOL | Open Energy Information  

Open Energy Info (EERE)

Balaji Agro Oils Ltd BAOL Balaji Agro Oils Ltd BAOL Jump to: navigation, search Name Balaji Agro Oils Ltd. (BAOL) Place Vijayawada, Andhra Pradesh, India Zip 520 007 Sector Biomass Product Vijayawada-based, biomass project developers. Coordinates 16.50794°, 80.64239° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16.50794,"lon":80.64239,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

284

Montana Board of Oil and Gas Conservation | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Conservation Oil and Gas Conservation Jump to: navigation, search State Montana Name Montana Board of Oil and Gas Conservation Address 2535 St. Johns Avenue City, State Billings, Montana Zip 59102 Website http://bogc.dnrc.mt.gov/defaul Coordinates 45.772091°, -108.580921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.772091,"lon":-108.580921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Virginia Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Division of Oil and Gas Division of Oil and Gas Jump to: navigation, search State Virginia Name Virginia Division of Oil and Gas Address 1100 Bank Street City, State Richmond, Virginia Zip 23219 Website http://www.dmme.virginia.gov/d Coordinates 37.5373074°, -77.4334187° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.5373074,"lon":-77.4334187,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Kentucky DNR Oil and Gas Division | Open Energy Information  

Open Energy Info (EERE)

DNR Oil and Gas Division DNR Oil and Gas Division Jump to: navigation, search State Kentucky Name Kentucky DNR Oil and Gas Division Address 1025 Capital Center Drive City, State Frankfort, KY Zip 40601 Website http://oilandgas.ky.gov/Pages/ Coordinates 38.1819649°, -84.8153457° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.1819649,"lon":-84.8153457,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

288

Utah Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Board Oil and Gas Board Jump to: navigation, search State Utah Name Utah Oil and Gas Board Address 1594 West North Temple City, State Salt Lake City, Utah Zip 84116 Website http://oilgas.ogm.utah.gov/ Coordinates 40.7721389°, -111.9374208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7721389,"lon":-111.9374208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect (OSTI)

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

290

FE Petroleum Reserves News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reserves News Petroleum Reserves News FE Petroleum Reserves News RSS March 14, 2011 DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve The Department of Energy, through its agent, DLA Energy, has issued a solicitation for new contracts to store two million barrels of ultra low sulfur distillate for the Northeast Home Heating Oil Reserve in New York Harbor and New England. February 10, 2011 DOE Completes Sale of Northeast Home Heating Oil Stocks The U.S. Department of Energy today has awarded contracts to four companies who successfully bid for the purchase of 1,000,000 barrels of heating oil from the Northeast Home Heating Oil Reserve storage sites in Groton and New Haven, CT. February 3, 2011 DOE Accepts Bids for Northeast Home Heating Oil Stocks The U.S. Department of Energy (DOE) today has awarded contracts to three

291

Category:State Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

State Oil and Gas Board State Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

292

Energy & Financial Markets: What Drives Crude Oil Prices? - Energy  

U.S. Energy Information Administration (EIA) Indexed Site

& Financial Markets - U.S. Energy Information Administration (EIA) & Financial Markets - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

293

Property description and fact-finding report for NPR-3 Natrona County, Wyoming. Addendum to 22 August 1996 study of alternatives for future operations of the naval petroleum and oil shale reserves NPR-3  

SciTech Connect (OSTI)

The U.S. Department of Energy has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant under contract DE-AC01-96FE64202. This authorizes a study and recommendations regarding future development of Naval Petroleum Reserve No. 3 (NPR-3) in Natrona County, Wyoming. The report that follows is the Phase I fact-finding and property description for that study. The United States of America owns 100 percent of the mineral rights and surface rights in 9,321-acre NPR-3. This property comprises the Teapot Dome oil field and related production, processing and other facilities. Discovered in 1914, this field has 632 wells producing 1,807 barrels of oil per day. Production revenues are about $9.5 million per year. Remaining recoverable reserves are approximately 1.3 million barrels of oil. Significant plugging and abandonment (P&A) and environmental liabilities are present.

NONE

1997-05-01T23:59:59.000Z

294

Oil Shale and Other Unconventional Fuels Activities | Department...  

Broader source: Energy.gov (indexed) [DOE]

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

295

Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Arctic Oil and Natural Gas Potential Arctic Oil and Natural Gas Potential Philip Budzik U.S. Energy Information Administration Office of Integrated Analysis and Forecasting Oil and Gas Division October, 2009 Introduction The Arctic is defined as the Northern hemisphere region located north of the Arctic Circle, the circle of latitude where sunlight is uniquely present or absent for 24 continuous hours on the summer and winter solstices, respectively. The Arctic Circle spans the globe at 66.56° (66°34') north latitude (Figure 1). 1 The Arctic could hold about 22 percent of the world's undiscovered conventional oil and natural gas resources. The prospects for Arctic oil and natural gas production are discussed taking into consideration the nature of the resources, the cost of developing them, and the

296

Definition: Reduced Oil Usage (Not Monetized) | Open Energy Information  

Open Energy Info (EERE)

Usage (Not Monetized) Usage (Not Monetized) Jump to: navigation, search Dictionary.png Reduced Oil Usage (Not Monetized) The functions that provide this benefit eliminate the need to send a line worker or crew to the switch or capacitor locations to operate them eliminate the need for truck rolls to perform diagnosis of equipment condition, and reduce truck rolls for meter reading and measurement purposes. This reduces the fuel consumed by a service vehicle or line truck. The use of plug-in electric vehicles can also lead to this benefit since the electrical energy used by plug-in electric vehicles displaces the equivalent amount of oil.[1] References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition

297

Category:Oil and Gas Companies | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Oil and Gas Companies Jump to: navigation, search Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

298

Alaska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Conservation Commission Conservation Commission Jump to: navigation, search Logo: Alaska Oil and Gas Conservation Commission State Alaska Name Alaska Oil and Gas Conservation Commission Address 333 W. 7th Ave., Ste. 100 City, State Anchorage, Alaska Zip 9950 Website http://doa.alaska.gov/ogc/ Coordinates 61.215808°, -149.8889769° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":61.215808,"lon":-149.8889769,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Alabama Oil and Gas Board | Open Energy Information  

Open Energy Info (EERE)

Board Board Jump to: navigation, search Logo: Alabama Oil and Gas Board State Alabama Name Alabama Oil and Gas Board Address 420 Hackberry Lane City, State Tuscaloosa, AL Zip 35401 Website http://www.gsa.state.al.us/ogb Coordinates 33.2121633°, -87.5431231° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2121633,"lon":-87.5431231,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

SEQUENCE STRATIGRAPHIC ANALYSIS AND FACIES ARCHITECTURE OF THE CRETACEOUS MANCOS SHALE ON AND NEAR THE JICARILLA APACHE INDIAN RESERVATION, NEW MEXICO-THEIR RELATION TO SITES OF OIL ACCUMULATION  

SciTech Connect (OSTI)

Oil distribution in the lower part of the Mancos Shale seems to be mainly controlled by fractures and by sandier facies that are dolomite-cemented. Structure in the area of the Jicarilla Apache Indian Reservation consists of the broad northwest- to southeast-trending Chaco slope, the deep central basin, and the monocline that forms the eastern boundary of the San Juan Basin. Superimposed on the regional structure are broad low-amplitude folds. Fractures seem best developed in the areas of these folds. Using sequence stratigraphic principals, the lower part of the Mancos Shale has been subdivided into four main regressive and transgressive components. These include facies that are the basinal time equivalents to the Gallup Sandstone, an overlying interbedded sandstone and shale sequence time equivalent to the transgressive Mulatto Tongue of the Mancos Shale, the El Vado Sandstone Member which is time equivalent to part of the Dalton Sandstone, and an unnamed interbedded sandstone and shale succession time equivalent to the regressive Dalton Sandstone and transgressive Hosta Tongue of the Mesaverde Group. Facies time equivalent to the Gallup Sandstone underlie an unconformity of regional extent. These facies are gradually truncated from south to north across the Reservation. The best potential for additional oil resources in these facies is in the southern part of the Reservation where the top sandier part of these facies is preserved. The overlying unnamed wedge of transgressive rocks produces some oil but is underexplored, except for sandstones equivalent to the Tocito Sandstone. This wedge of rocks is divided into from two to five units. The highest sand content in this wedge occurs where each of the four subdivisions above the Tocito terminates to the south and is overstepped by the next youngest unit. These terminal areas should offer the best targets for future oil exploration. The El Vado Sandstone Member overlies the transgressive wedge. It produces most of the oil (except for the Tocito Sandstone) from the lower Mancos. In the central and southern part of the Reservation, large areas, currently not productive or not tested, have the potential to contain oil in the El Vado simply based on the trend of the facies and structure. There has been little oil or gas production from the overlying regressive-transgressive wedge of rock and much of this interval is untested. Thus, large areas of the Reservation could contain hydrocarbon resources in these strata. Most of the Reservation lies within the oil generation window based on new Rock-Eval data from the Mancos Shale just south of the southern part of the Reservation. If these observations are valid then oil could have been generated locally and would only have needed to migrate short distances in to sandy reservoirs and fractures. This does not rule out long distance migration of oil from the deeper, more thermally mature part of the basin to the north. However, low porosity and permeability characterize sandier rocks in the Mancos, with the exception of Tocito-like sandstones. These factors could retard long distance oil migration through the sediment package, except through fracture or fault conduits. Thus, it is suggested that future oil and gas explorations in the Mancos treat the accumulations and reservoirs as unconventional and consider whether the source and reservoir are in closer proximity than has previously been assumed.

Jennie Ridgley

2000-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

File:OilSands.pdf | Open Energy Information  

Open Energy Info (EERE)

OilSands.pdf OilSands.pdf Jump to: navigation, search File File history File usage File:OilSands.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Go to page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Go! next page → next page → Full resolution ‎(1,275 × 1,650 pixels, file size: 1.69 MB, MIME type: application/pdf, 85 pages) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 14:24, 14 February 2012 Thumbnail for version as of 14:24, 14 February 2012 1,275 × 1,650, 85 pages (1.69 MB) Graham7781 (Talk | contribs)

302

Strategic Petroleum Reserve quarterly report  

SciTech Connect (OSTI)

This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

Not Available

1991-08-15T23:59:59.000Z

303

U.S. Crude Oil Export Policy  

Gasoline and Diesel Fuel Update (EIA)

or use therein. * Crude exported from Alaska's Cook Inlet. * Heavy California crude oil. * Exports connected to refining or exchange of petroleum reserve oil. * Re-exportation...

304

EIA - Analysis of Natural Gas Exploration & Reserves  

Gasoline and Diesel Fuel Update (EIA)

Exploration & Reserves Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10/29/2009, PDF, XLS, and HTML formats) U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2007 Annual Report Categories: Resources & Reserves (Released, 2/10/2009, PDF, XLS, and HTML formats) 2007 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2006 Annual Report Categories: Resources & Reserves (Publication, Dec. 2007, PDF and HTML formats) 2006 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2005 Annual Report Categories: Resources & Reserves (Publication, Dec. 2006, PDF and HTML formats) Overview of the Federal Offshore Royalty Relief Program

305

Category:International Oil and Gas Boards | Open Energy Information  

Open Energy Info (EERE)

Boards Boards Jump to: navigation, search Add a new International Oil and Gas Board Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

306

3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING  

SciTech Connect (OSTI)

This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

2002-11-18T23:59:59.000Z

307

Kansas Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kansas Oil and Gas Conservation Commission Jump to: navigation, search State Kansas Name Kansas Oil and Gas Conservation Commission Address 1500 SW Arrowhead Road City, State Topeka, KS Zip 66604-4027 Website http://www.kcc.state.ks.us/con Coordinates 39.04059°, -95.756198° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.04059,"lon":-95.756198,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Indiana DNR Division of Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Indiana DNR Division of Oil and Gas Jump to: navigation, search State Indiana Name Indiana DNR Division of Oil and Gas Address 402 W. Washington St., Rm. 293 City, State Indianapolis, IN Zip 46204 Website http://www.in.gov/dnr/dnroil/ Coordinates 39.741129°, -86.412336° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.741129,"lon":-86.412336,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Estimation of resources and reserves  

E-Print Network [OSTI]

This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

Massachusetts Institute of Technology. Energy Laboratory.

1982-01-01T23:59:59.000Z

310

Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Marks 25th Anniversary of 1973 Oil Embargo Marks 25th Anniversary of 1973 Oil Embargo Jay Hakes, Administrator, Energy Information Administration (EIA) September 3, 1998 Click here to start Table of Contents Energy Information Administration Some Views of 1973 Major Disruptions of World Oil Supply Imported Oil as a Percent of Total U. S. Consumption Percent of OPEC and Persian Gulf World Oil Production U. S. Retail Price of Gasoline U. S. Total Petroleum Consumption U. S. Per Capita Use of Petroleum U. S. Government Owned Crude Oil Stocks Cost of Finding Oil and Gas Reserves U. S. MPG Ratings for New Vehicles U. S. Average Horsepower of a New Vehicle Share of U. S. Electricity Generated By Petroleum Futures And Options Markets Changed Energy Marketing U. S. Total Energy Consumption U. S. Per Capita Use of Energy

311

New Mexico Oil Conservation Division | Open Energy Information  

Open Energy Info (EERE)

Conservation Division Conservation Division Jump to: navigation, search State New Mexico Name New Mexico Oil Conservation Division Address 1220 South St. Francis Drive City, State Santa Fe, New Mexico Zip 87505 Website http://www.emnrd.state.nm.us/o Coordinates 35.669674°, -105.957212° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.669674,"lon":-105.957212,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

312

Oregon Oil, Gas, and Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal Jump to: navigation, search State Oregon Name Oregon Oil, Gas, and Geothermal Address 229 Broadalbin St. SW City, State Albany, Oregon Zip 97321 Website http://www.oregongeology.org/m Coordinates 44.6358741°, -123.1071584° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6358741,"lon":-123.1071584,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

313

Nebraska Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

State Nebraska State Nebraska Name Nebraska Oil and Gas Conservation Commission Address 922 Illinois City, State Sidney, Nebraska Zip 69162 Website http://www.nogcc.ne.gov/ Coordinates 41.1449288°, -102.9758174° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1449288,"lon":-102.9758174,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Colorado Oil and Gas Commission | Open Energy Information  

Open Energy Info (EERE)

State Colorado State Colorado Name Colorado Oil and Gas Commission Address 1120 Lincoln Street, Suite 801 City, State Denver, CO Zip 80203 Website http://cogcc.state.co.us/ Coordinates 39.734421°, -104.985764° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.734421,"lon":-104.985764,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

New York Oil and Gas DOEC | Open Energy Information  

Open Energy Info (EERE)

DOEC DOEC Jump to: navigation, search State New York Name New York Oil and Gas DOEC Address 625 Broadway City, State Albany, New York Zip 12233-0001 Website http://www.dec.ny.gov/energy/2 Coordinates 42.6533334°, -73.7489462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.6533334,"lon":-73.7489462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

What's Driving Oil Prices? James L. Smith  

E-Print Network [OSTI]

Issues in Energy Federal Reserve Bank of Dallas November 2, 2006 The Price of OPEC Oil ($/bbl) $0 $20 $40;8 DIFFERENCES AMONG OPEC MEMBERS Proved Oil Crude Oil Reserves to GDP Reserves Production Production Ratio Member $ per capita bbl per capita bbl per capita years Algeria 3,113 373 15 25 Indonesia 1,290 20 2 11

O'Donnell, Tom

317

Follow-up Review of Security at the Strategic Petroleum Reserve  

Broader source: Energy.gov (indexed) [DOE]

Follow-up Review of Security at the Follow-up Review of Security at the Strategic Petroleum Reserve INS-O-12-01 October 2011 Department of Energy Washington, DC 20585 October 27, 2011 MEMORANDUM FOR THE PROJECT MANAGER, STRATEGIC PETROLEUM RESERVE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: "Follow-up Review of Security at the Strategic Petroleum Reserve" BACKGROUND The Department of Energy's (Department) Strategic Petroleum Reserve (SPR) has the largest stockpile of Government-owned emergency crude oil in the world and exists foremost as an emergency response tool the President can use should the United States be confronted with an economically-threatening disruption in oil supplies. Established in the aftermath of the 1973-74

318

Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. This is the sixth quarterly technical progress report for the project. Through September 1996, the project continues to make good progress but is slightly behind schedule. Estimated costs are on budget for the work performed to date. Technical achievements accomplished during the quarter include placing the first two horizontal wells on production following cyclic steam stimulation, completing several draft technical reports and preparing presentations on the deterministic geologic model, steam channel crossing and horizontal well drilling for technical transfer. Cyclic steam injection into the first two horizontal wells was completed in June 1996 and initial oil production from the project began the same month. Work has commenced on the stochastic geologic and reservoir simulation models. High temperature core work and reservoir tracer work will commence in the First Quarter 1997.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)

1996-12-01T23:59:59.000Z

319

Strategic Significance of Americas Oil Shale Resource  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Deputy Assistant Secretary for Petroleum Reserves Office of Naval Petroleum and Oil Shale Reserves U.S. Department of Energy Washington, D.C. March 2004 Strategic...

320

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels)...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Louisiana - North Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

322

Texas - RRC District 10 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 10 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

323

U.S. Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

324

Nebraska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Nebraska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

325

Texas - RRC District 7B Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7B Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

326

Florida Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Florida Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

327

Texas - RRC District 6 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 6 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

328

Alabama Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alabama Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

329

Louisiana State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

330

Louisiana - South Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

331

Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 2 Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

332

New Mexico - West Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

333

Texas - RRC District 7C Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 7C Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

334

Texas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

335

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

336

Indiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Indiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

337

Arkansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Arkansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

338

Kansas Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Kansas Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

339

Alaska Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Alaska Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

340

California State Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

New Mexico - East Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

342

Colorado Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Colorado Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

343

California Federal Offshore Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) California Federal Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

344

Miscellaneous States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Miscellaneous States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

345

Oklahoma Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Oklahoma Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

346

Texas State Offshore Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas State Offshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

347

California - Los Angeles Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

348

Louisiana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

349

California - Coastal Region Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - Coastal Region Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

350

Texas - RRC District 8A Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8A Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

351

Texas - RRC District 9 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 9 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

352

Michigan Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Michigan Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

353

New Mexico Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) New Mexico Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

354

Montana Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Montana Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

355

Illinois Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Illinois Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

356

Lower 48 States Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Lower 48 States Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

357

California - San Joaquin Basin Onshore Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Production from Reserves (Million Barrels) California - San Joaquin Basin Onshore Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0...

358

Texas - RRC District 8 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 8 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

359

North Dakota Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) North Dakota Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

360

Texas - RRC District 1 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 1 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Texas - RRC District 5 Crude Oil + Lease Condensate Estimated...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Texas - RRC District 5 Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1...

362

West Virginia Crude Oil + Lease Condensate Estimated Production...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) West Virginia Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2...

363

Fracturing alliance allows massive diatomite oil reserves to be economically produced at Lost Hills, California: A case study  

SciTech Connect (OSTI)

As North American oilfield operations mature, there is a perceptible loosening of the autocratic ties between oil companies and contractors. They are being replaced by alliances or partnerships designed to minimize cost while improving profitability of the companies involved. Many papers have been written concerning alliance theory, but little documentation exists detailing actual performance. This paper evaluates a mature alliance, its implementation, structure and results. In Lost Hills, California, the diatomite formation requires hydraulic fracturing to allow oil recovery at profitable production rates. Because hydraulic fracturing is approximately two-thirds of the total well cost, it is imperative that fracturing investments be optimized to allow field development to proceed at optimum levels. Therefore, in 1990, a fracturing alliance (the first of its kind) was initiated between Chevron and Schlumberger Dowell. Over 1 billion lbm of sand has been successfully placed during approximately 2,000 fracture stimulation jobs. Through this prototype fracturing alliance, many major accomplishments are being achieved. The most notable are the hydraulic fracturing costs that have been reduced by 40% while improving the profitability of both companies. This paper illustrates the benefits of an alliance and justifies the change in management style from a low-bid operating strategy to a win-win customer/supplier attitude.

Klins, M.A.; Stewart, D.W.; Pferdehirt, D.J.; Stewart, M.E.

1995-12-31T23:59:59.000Z

364

EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental  

Broader source: Energy.gov [DOE]

The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

365

Table 3. Changes to proved reserves of wet natural gas by source, 2011  

U.S. Energy Information Administration (EIA) Indexed Site

Changes to proved reserves of wet natural gas by source, 2011" Changes to proved reserves of wet natural gas by source, 2011" "trillion cubic feet" ,"Proved",,"Revisions &",,"Proved" ,"Reserves","Discoveries","Other Changes","Production","Reserves" "Source of Gas","Year-End 2010",2011,2011,2011,"Year-End 2011" "Coalbed Methane",17.5,0.7,0.4,-1.8,16.8 "Shale",97.4,33.7,8.5,-8,131.6 "Other (Conventional & Tight)" " Lower 48 Onshore",181.7,14.7,-3.5,-12.8,180.1 " Lower 48 Offshore",12.1,0.8,-0.4,-1.7,10.8 " Alaska",8.9,0,0.9,-0.3,9.5 "TOTAL",317.6,49.9,5.9,-24.6,348.8 "Source: U.S. Energy Information Administration, Form EIA-23, "Annual Survey of Domestic Oil and Gas Reserves."

366

Experimental studies in a bottom-burning oil shale combustion retort.  

E-Print Network [OSTI]

??As the domestic demand for oil continues to increase, it is expected that the enormous worldwide oil shale reserves will eventually be tapped. Oil from (more)

Udell, Kent S.

1905-01-01T23:59:59.000Z

367

State of Missouri 1991--1992 Energy Information Administration State Heating Oil and Propane Program (SHOPP)  

SciTech Connect (OSTI)

The objective of the Missouri State Heating Oil and Propane Program was to develop a joint state-level company-specific data collective effort. The State of Missouri provided to the US Department of Energy's Energy Information Administration company specific price and volume information on residential No. 2 heating oil and propane on a semimonthly basis. The energy companies participating under the program were selected at random by the US Department of Energy and provided to the Missouri Department of Natural Resources' Division of Energy prior to the implementation of the program. The specific data collection responsibilities for the Missouri Department of Natural Resources' Division of Energy included: (1) Collection of semimonthly residential heating oil and propane prices, collected on the first and third Monday from August 1991 through August 1992; and, (2) Collection of annual sales volume data for residential propane for the period September 1, 1990 through August 31. 1991. This data was required for the first report only. These data were provided on a company identifiable level to the extent permitted by State law. Information was transmitted to the US Department of Energy's Energy Information Administration through the Petroleum Electronic Data Reporting Option (PEDRO).

Not Available

1992-01-01T23:59:59.000Z

368

Residential Energy Consumption Survey (RECS) - Energy Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumption Survey (RECS) - U.S. Energy Information Consumption Survey (RECS) - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels

369

Mexicos Deteriorating Oil Outlook: Implications and Energy Options for the Future  

E-Print Network [OSTI]

No. 8: David Shields, Mexicos Deteriorating Oil Outlook:years. Estimating oil reserves in Mexico has long been aof as yet unproven oil reserves in Mexicos part of the

Shields, David

2008-01-01T23:59:59.000Z

370

Microsoft PowerPoint - GlobalOilEcon.ppt  

U.S. Energy Information Administration (EIA) Indexed Site

Globalization, Oil Prices and Globalization, Oil Prices and U.S. Economic Activity Stephen Brown Federal Reserve Bank of Dallas 2008 Energy Conference U.S. Energy Information Administration Globalization, Oil Price Shocks and U.S. Economic Activity Nathan Balke, Stephen Brown, Mine Yücel March 31, 2008 I. Introduction. What are the economic consequences to the United States of an increase in the oil price? Conventional thinking: oil supply shock * Higher oil price * Slower GDP growth * Increased price level Real oil price and recessions (shaded) Index, 1982 = 100 0 30 60 90 120 150 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99 02 05 Empirical evidence of a negative relationship is mixed: For: Mork and Hall (1980), Hamilton (1983, 2003), Balke, Brown, and Yücel (2002), Hamilton and Herrera (2004),

371

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

TCF) of proven natural gas reserves and over 100 TCF ofTCF) of known natural gas reserves on the North Slope tothe oil reserve while others are above the gas cap. For

Leighty, Wayne

2008-01-01T23:59:59.000Z

372

Drunk On Oil: Russian Foreign Policy 2000-2007  

E-Print Network [OSTI]

worlds largest natural gas reserves, about twice that oftotal recoverable reserves. 139 Gas fields are declining asgas. 12 Russia has around 6% to 10% of the worlds known oil reserves.

Brugato, Thomas

2008-01-01T23:59:59.000Z

373

Mass Transfer Mechanisms during the Solvent Recovery of Heavy Oil.  

E-Print Network [OSTI]

??Canada has the second largest proven oil reserves next to Saudi Arabia which is mostly located in Alberta and Saskatchewan but is unconventional heavy oil (more)

James, Lesley

2009-01-01T23:59:59.000Z

374

The evolution and present status of the study on peak oil in China  

Science Journals Connector (OSTI)

Peak oil theory is a theory concerning long-term oil reserves and the rate of oil production. Peak oil refers to the maximum rate of the production of oil or gas in any area under consideration. ... from three as...

Xiongqi Pang; Lin Zhao; Lianyong Feng; Qingyang Meng; Xu Tang

2009-06-01T23:59:59.000Z

375

Proved reserves  

Science Journals Connector (OSTI)

Proved reserves are the working stocks of the energy industries on which they have to rely for the supply of energy in the near term. The major proved reserves on a world scale are restricted to those from the...

D. C. Ion

1980-01-01T23:59:59.000Z

376

DOE - Office of Legacy Management -- Naval Petroleum Reserve...  

Office of Legacy Management (LM)

Naval Petroleum Reserve No. 3 is located in Natrona County, Wyoming. The site is a small oil field and covers approximately 9400 acres. Environmental remediation efforts are...

377

Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated  

E-Print Network [OSTI]

Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

Roy, Ankur, 1976-

2003-01-01T23:59:59.000Z

378

Press Room - Press Releases - U.S. Energy Information Administration...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

proved reserves 36.5 354.0 Percentage change 9% 10% At the state level, North Dakota led in additions of oil reserves (adding almost 2 billion barrels of proved oil reserves in...

379

The role of information technology in small and medium enterprises in the Brazilian oil offshore industry  

Science Journals Connector (OSTI)

Suppliers of oil companies, even Small and Medium Enterprises (SMEs), have to strive for continuous technological development and excellence at management. In this scenario, the adequate use of Information Technology (IT) stands out as a supporting factor for the success in competition. This paper brings together the considerations found in the literature about the advantages, difficulties, causes of failure and success factors. From a case study carried out in the State of Rio de Janeiro (RJ) ? Brazil, the paper points out some characteristics of the adoption and the use of IT that are common among small firms in general and to other peculiarities observed in the sector of offshore maintenance.

Francisco Duarte; Suzana Dantas Hecksher; Roberto dos Santos Bartholo Junior

2012-01-01T23:59:59.000Z

380

Energy Information Administration (EIA)- About the Commercial Buildings  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Performance Profiles of Major Energy Producers - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Analysis - U.S. Energy Information Administration (EIA) Analysis - U.S. Energy Information Administration (EIA) U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

382

Title 30 USC 226 Lease of Oil and Gas Lands | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: Title 30 USC 226 Lease of Oil and Gas LandsLegal Abstract Section 226 - Lease of Oil and Gas Lands in Subchapter IV: Oil and Gas under Title 30: Mineral Lands and...

383

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network [OSTI]

-heavy oil, and oil shale. Tremendous amounts of heavy oil resources are available in the world. Fig. 1.1 shows the total world oil reserves, and indicates that heavy oil, extra heavy oil, and bitumen make up about 70% of the world?s total oil resources...

Yang, Daegil

2011-02-22T23:59:59.000Z

384

Gulf of Mexico Proved Reserves By Water Depth, 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 Gulf of Mexico Proved Reserves and Production by Water Depth, 2009 1 Gulf of Mexico Proved Reserves and Production by Water Depth The Gulf of Mexico Federal Offshore region (GOM Fed) has long been one of the Nation's principal sources of proved reserves. At the end of 2009, the GOM Fed accounted for close to one-fifth of oil proved reserves (second only to Texas) and just over four percent of natural gas proved reserves (the country's seventh largest reporting region). 1 Natural gas proved reserves from the GOM Fed have gradually diminished, both volumetrically and as a percentage of overall U.S. proved reserves. The latter is especially true in recent years as onshore additions (particularly those associated with shale gas activity) have increased considerably. Proved oil reserves from

385

,"TX, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

2R9911RTXSF1","RNGR9908RTXSF1","RNGR9909RTXSF1","RNGR9910RTXSF1" "Date","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Texas--State...

386

,"LA, State Offshore Proved Nonproducing Reserves"  

U.S. Energy Information Administration (EIA) Indexed Site

11RLASF1","RNGR9908RLASF1","RNGR9909RLASF1","RNGR9910RLASF1" "Date","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)","Louisiana--Stat...

387

OpenEI:Projects/Improvements Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Improvements Oil and Gas Improvements Oil and Gas Jump to: navigation, search This page is used to coordinate plans for creating content for the Oil and Gas Gateway. Contents 1 Oil | Energy Basics 2 Oil | General Classification 3 Oil | Uses 3.1 Fuels 3.2 Derivatives 3.3 Agriculture 4 Natural Gas | Energy Basics 5 Natural Gas | General Classification 5.1 Biogas 6 Natural Gas | Uses 6.1 Power Generation 6.2 Domestic Use 6.3 Transportation 6.4 Fertilizers 6.5 Aviation 6.6 Creation of Hydrogen 6.7 Additional Uses 7 State Oil and Gas Boards, Commissions, etc. 8 Federal Statutes, Laws, Regulations related to Oil and Gas 9 International Oil and Gas Boards, Commissions, etc. 10 Private Datasets 11 Oil and Gas Companies 12 Other Notes 12.1 Definitely Helpful 12.2 Possibly Helpful 13 Project Participants Oil | Energy Basics

388

No Oil: The coming Utopia/Dystopia and Communal Possibilities  

E-Print Network [OSTI]

supplies of conventional oil, and exploitable supplies of alternative forms of oil and related hydrocarbons, including tar sands and oil shale. Because new supplies of conventional oil are declining steadily, there is quite a lot of activity in the oil... to exploit the huge deposits of oil sands in Canada. Oil sands and oil shale look good because they contain vast amounts of oil. The problem is that of turning the reserves, locked into other geological formations, into useful oil. According to current...

Miller, Timothy

2006-03-01T23:59:59.000Z

389

Filling the Strategic Petroleum Reserve | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Filling the Strategic Petroleum Reserve Filling the Strategic Petroleum Reserve Filling the Strategic Petroleum Reserve Established in 1975 in the aftermath of the OPEC oil embargo, the Strategic Petroleum Reserve was originally intended to hold at least 750 million barrels of crude oil as an insurance policy against future supply cutoffs (the maximum size was later reduced when a geologically unstable storage site was decommissioned). Today's capacity is 727 million barrels. Direct Purchases Early fill of the SPR was primarily accomplished by purchasing crude oil on the open market. Concern over the vulnerability of the United States to additional oil cutoffs prompted the federal government to purchase most of the oil for the SPR in the late 1970s and early 1980s when world oil prices often exceeded $30 per barrel. Since that time, world oil prices have

390

Categorical Exclusion Determinations: Strategic Petroleum Reserve Field  

Broader source: Energy.gov (indexed) [DOE]

Strategic Petroleum Reserve Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations: Strategic Petroleum Reserve Field Office Categorical Exclusion Determinations issued by Strategic Petroleum Reserve Field Office. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 2013 CX-010876: Categorical Exclusion Determination Smart and Calibrated Pig Surveys of Strategic Petroleum Reserve Raw Water/Crude Oil Pipelines CX(s) Applied: B1.3 Date: 08/22/2013 Location(s): Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 19, 2013 CX-010877: Categorical Exclusion Determination Clean and Inspect West Hackberry T-15 Brine Tank CX(s) Applied: B1.3 Date: 08/19/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office August 8, 2013 CX-010878: Categorical Exclusion Determination

391

U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium

392

Strategic Petroleum Reserve: Annual/quarterly report  

SciTech Connect (OSTI)

Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

Not Available

1994-02-16T23:59:59.000Z

393

Department of Energy Update on Strategic Petroleum Reserve Sale |  

Broader source: Energy.gov (indexed) [DOE]

Update on Strategic Petroleum Reserve Sale Update on Strategic Petroleum Reserve Sale Department of Energy Update on Strategic Petroleum Reserve Sale June 30, 2011 - 1:00pm Addthis Washington, DC - On June 23, 2011, the International Energy Agency (IEA) announced that its 28 member countries would release 60 million barrels of crude oil and refined products into the global market. As part of that action, the President directed the Department of Energy to auction 30.237 million barrels of light, sweet crude oil from the Strategic Petroleum Reserve. Yesterday, bids were received. Industry interest in the Department of Energy's sale of Strategic Petroleum Reserve (SPR) oil was very high. Over 90 offers to purchase oil were received yesterday and the Department's offering of 30.2 million barrels of light, sweet crude oil was substantially oversubscribed. The

394

Reservation Emergency Public Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A cooperative publication of the following agencies: United States Department of Energy Oak Ridge Office, Oak Ridge National Laboratory Site Office, and Oak Ridge Office of...

395

Stretched Exponential Decline Model as a Probabilistic and Deterministic Tool for Production Forecasting and Reserve Estimation in Oil and Gas Shales  

E-Print Network [OSTI]

in the United States. Estimation of P50 and P10 reserves that meet SPE/WPC/AAPG/SPEE Petroleum Resources Management System (PRMS) criteria is important for internal resource inventories for most companies. In this work a systematic methodology was developed...

Akbarnejad Nesheli, Babak

2012-07-16T23:59:59.000Z

396

oil supply | OpenEI  

Open Energy Info (EERE)

oil supply oil supply Dataset Summary Description CIA: World Factbook assessment of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated with a high degree of confidence to be commercially recoverable from a given date forward, from known reservoirs and under current economic conditions. Estimated as of January 1st, 2010. Source CIA Date Released January 01st, 2010 (4 years ago) Date Updated Unknown Keywords crude oil energy energy data international oil oil supply Data text/csv icon 2010 Proved Oil Reserves (csv, 4.6 KiB) text/plain icon Original Text Format (txt, 6.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency

397

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

398

Natural Gas Production and U.S. Oil Imports | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What are the key facts? Over the next 33 years, the Energy Information Administration expect domestic natural gas production to increase to 28 trillion cubic feet per year, contributing to a decline in U.S. reliance on imported crude oil. During the State of the Union speech Tuesday night, President Obama spoke of the importance of reducing our reliance on imported oil by increasing domestic energy production. As the U.S. has only 2 percent of the world's oil reserves, natural gas and renewable energy production will play an important role in reducing our net oil imports.

399

TNRC, Title 2, Chapter 52.186 Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

TNRC, Title 2, Chapter 52.186 Oil and Gas Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: TNRC, Title 2, Chapter 52.186 Oil and...

400

RCW 79.14 Mineral, Coal, Oil and Gas Leases | Open Energy Information  

Open Energy Info (EERE)

RCW 79.14 Mineral, Coal, Oil and Gas Leases Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: RCW 79.14 Mineral, Coal, Oil and Gas...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FE Petroleum Reserves News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Petroleum Reserves News Petroleum Reserves News FE Petroleum Reserves News RSS April 10, 2013 President Requests $638.0 Million for Fossil Energy Programs President Obama's FY 2014 budget seeks $638.0 million for the Office of Fossil Energy (FE) to advance technologies related to the reliable, efficient, affordable and environmentally sound use of fossil fuels as well as manage the Strategic Petroleum Reserve and Northeast Home Heating Oil Reserve to provide strategic and economic security against disruptions in U.S. oil supplies. November 9, 2012 Energy Department Provides Additional Emergency Fuel Loan to Department of Defense as Part of Hurricane Sandy and Nor'easter Recovery As part of the government-wide response and recovery effort for Hurricane Sandy and the Nor'easter, the Energy Department is providing the

402

Staking claims to China's borderland : oil, ores and statebuilding in Xinjiang Province, 1893-1964  

E-Print Network [OSTI]

Chinas oil and natural gas reserves and they were not tos total and natural gas reserves estimated at one quarter ofreserves in 1935; that same year, another team investigated the oil and gas

Kinzley, Judd Creighton; Kinzley, Judd Creighton

2012-01-01T23:59:59.000Z

403

Numerical Simulation of Low Salinity Water Flooding Assisted with Chemical Flooding for Enhanced Oil Recovery.  

E-Print Network [OSTI]

?? World proved oil reserve gradually decreases due to the increase production but decrease new field discovery. The focus on enhance oil recovery from the (more)

Atthawutthisin, Natthaporn

2012-01-01T23:59:59.000Z

404

DOE to Issue Second Solicitation for Purchase of Crude Oil for...  

Energy Savers [EERE]

Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum...

405

International oil and gas exploration and development activities  

SciTech Connect (OSTI)

This report is part of an ongoing series of quarterly publications that monitors discoveries of oil and natural gas in foreign countries and provides an analysis of the reserve additions that result. The report is prepared by the Energy Information Administration (EIA) of the US Department of Energy (DOE) under the Foreign Energy Supply Assessment Program (FESAP). It presents a summary of discoveries and reserve additions that result from recent international exploration and development activities. It is intended for use by petroleum industry analysts, various government agencies, and political leaders in the development, implementation, and evaluation of energy plans, policy, and legislation. 25 refs., 8 figs., 4 tabs.

Not Available

1990-10-29T23:59:59.000Z

406

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Broader source: Energy.gov (indexed) [DOE]

Sell 35,000 Barrels of Oil from the Northeast Home Heating Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order to restore the inventory of the Reserve to its full authorized size.

407

File:Uscells1msmall.oil.gas.pdf | Open Energy Information  

Open Energy Info (EERE)

Uscells1msmall.oil.gas.pdf Uscells1msmall.oil.gas.pdf Jump to: navigation, search File File history File usage US Oil & Natural Gas Production Map Size of this preview: 776 × 600 pixels. Full resolution ‎(1,650 × 1,275 pixels, file size: 3.33 MB, MIME type: application/pdf) Description US Oil & Natural Gas Production Map Sources USGS Authors derived from Mast, et al, 1998 Related Technologies Oil, Natural Gas Extent country Countries United States UN Region Northern America US Oil & Natural Gas Production Map (PDF Format) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 17:31, 6 January 2011 Thumbnail for version as of 17:31, 6 January 2011 1,650 × 1,275 (3.33 MB) Kch (Talk | contribs) US Oil & Natural Gas Production Map (PDF Format)

408

343. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Na  

Broader source: Energy.gov (indexed) [DOE]

3. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Natural Gas 3. Document entitled "Develop "Frontier" Resources to Ensure Future Oil and Natural Gas Supply," dated March 8, 2001. B-5 Exemption - Information withheld (under Exemption 5) consists of deliberative material reflecting comments, recommendations and revisions of draft documents relating to NEPDG. 2 pages. #4139-4140 Withheld 344. Document entitled "The Northeast Home Heating Oil Reserve," dated March 7, 2001. B-5 Exemption - Information withheld (under Exemption 5) consists of deliberative material reflecting comments, recommendations and revisions of draft documents relating to NEPDG. 2 pages. #4141-4142 Withheld 345. Document entitled "The Northeast Home Heating Oil Reserve," dated March 8, 2001. B- 5 Exemption -

409

Energy Information Administration/Petroleum Marketing Annual  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

. . . . . . . . . . . . . April 1987 Determining Minimum Acceptable Bid Prices for the Test Sale of Strategic Petroleum Reserve Crude Oil . . . . . . . . . . . . . . . . . . . . ....

410

Update of assessment of geotechnical risks, strategic petroleum reserve, Weeks Island site  

SciTech Connect (OSTI)

This report is a critical reassessment of the geotechnical risks of continuing oil storage at the Weeks Island Strategic Petroleum Reserve site. It reviews all previous risk abatement recommendations, subsequent mitigative actions, and new information. Of increased concern, due to the discovery of a surface levels, is the long term maintainability of the mine as an oil storage repository. Mine operational changes are supported in order to facilitate monitoring of water entry diagnostics. These changes are also intended to minimize the volume in the mine available for water entry. Specific recommendations are made to implement the mine changes.

Bauer, S.J. [ed.

1994-12-01T23:59:59.000Z

411

Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae  

Science Journals Connector (OSTI)

...depletion of the world's reserves of oil and...sources of energy during the...sources of energy in the framework...depletion of the world's reserves of oil and...depletion of the world's reserves of oil and...sources of energy during the...

Juan Cesar Federico Ortiz-Marquez; Mauro Do Nascimento; Maria de los Angeles Dublan; Leonardo Curatti

2012-01-20T23:59:59.000Z

412

,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2011,"6/30/1989" ,"Release Date:","8/1/2013" ,"Next Release Date:","8/1/2014" ,"Excel File Name:","ng_enr_coalbed_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_enr_coalbed_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov"

413

File:BOEMRE OCS.oil.gas.2007-12.map.pdf | Open Energy Information  

Open Energy Info (EERE)

OCS.oil.gas.2007-12.map.pdf OCS.oil.gas.2007-12.map.pdf Jump to: navigation, search File File history File usage Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Size of this preview: 700 × 600 pixels. Full resolution ‎(5,250 × 4,500 pixels, file size: 1.39 MB, MIME type: application/pdf) Description Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012 Sources Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) Related Technologies Oil, Natural Gas Creation Date 2008-09-12 Extent Continental US plus Alaska Countries United States UN Region Northern America US Outer Continental Shelf (OCS) Oil & Gas Leasing Program 2007 - 2012. Includes Atlantic, Gulf of Mexico, Pacific and Alaska Regions.Shows existing leases, areas available for leasing, areas withdrawn from leasing,

414

Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996  

SciTech Connect (OSTI)

This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

1997-08-01T23:59:59.000Z

415

Systematic Comparison of Operating Reserve Methodologies: Preprint  

SciTech Connect (OSTI)

Operating reserve requirements are a key component of modern power systems, and they contribute to maintaining reliable operations with minimum economic impact. No universal method exists for determining reserve requirements, thus there is a need for a thorough study and performance comparison of the different existing methodologies. Increasing penetrations of variable generation (VG) on electric power systems are posed to increase system uncertainty and variability, thus the need for additional reserve also increases. This paper presents background information on operating reserve and its relationship to VG. A consistent comparison of three methodologies to calculate regulating and flexibility reserve in systems with VG is performed.

Ibanez, E.; Krad, I.; Ela, E.

2014-04-01T23:59:59.000Z

416

U.S. Energy Information Administration (EIA) - Report  

Gasoline and Diesel Fuel Update (EIA)

- Report - Report U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency Energy use in homes, commercial buildings, manufacturing, and transportation. Coal Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol.

417

,"California Lease Condensate Proved Reserves, Reserve Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2012,...

418

,"Colorado Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

419

,"Arkansas Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

420

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

,"Montana Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

422

,"Oklahoma Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

423

,"Virginia Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

424

,"Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

425

,"Miscellaneous Coalbed Methane Proved Reserves, Reserves Changes...  

U.S. Energy Information Administration (EIA) Indexed Site

Coalbed Methane Proved Reserves, Reserves Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

426

,"Alabama Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

427

Assumptions to the Annual Energy Outlook - Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module Assumption to the Annual Energy Outlook Oil and Gas Supply Module Figure 7. Oil and Gas Supply Model Regions. Having problems, call our National Energy Information Center at 202-586-8800 for help. Table 50. Crude Oil Technically Recoverable Resources (Billion barrels) Printer Friendly Version Crude Oil Resource Category As of January 1, 2002 Undiscovered 56.02 Onshore 19.33 Northeast 1.47 Gulf Coast 4.76 Midcontinent 1.12 Southwest 3.25 Rocky Moutain 5.73 West Coast 3.00 Offshore 36.69 Deep (>200 meter W.D.) 35.01 Shallow (0-200 meter W.D.) 1.69 Inferred Reserves 49.14 Onshore 37.78 Northeast 0.79 Gulf Coast 0.80 Midcontinent 3.73 Southwest 14.61 Rocky Mountain 9.91 West Coast 7.94

428

Annual Energy Outlook with Projections to 2025-Market Trends - Oil and  

Gasoline and Diesel Fuel Update (EIA)

Oil and Natural Gas Oil and Natural Gas Index (click to jump links) Natural Gas Consumption and Prices Natural Gas Production Natural Gas Imports and Wellhead Prices Natural Gas Alternative Cases Oil Prices and Reserve Additions Oil Production Alaskan Oil Production and Oil Imports Petroleum Refining Refined Petroleum Products Natural Gas Consumption and Prices Projected Increases in Natural Gas Use Are Led by Electricity Generators Figure 85. Natural gas consumption by end-use sector, 1990-2025 (trillion cubic feet). Having problems, call our National Energy Information Center at 202-586-8800 for help. Figure data Total natural gas consumption is projected to increase from 2002 to 2025 in all the AEO2004 cases. The projections for domestic natural gas consumption in 2025 range from 29.1 trillion cubic feet per year in the low economic

429

Assessment of Eagle Ford Shale Oil and Gas Resources  

E-Print Network [OSTI]

, and to assess Eagle Ford shale oil and gas reserves, contingent resources, and prospective resources. I first developed a Bayesian methodology to generate probabilistic decline curves using Markov Chain Monte Carlo (MCMC) that can quantify the reserves...

Gong, Xinglai

2013-07-30T23:59:59.000Z

430

File:EIA-AK-NPRA-ANWR-GAS.pdf | Open Energy Information  

Open Energy Info (EERE)

National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 6.78 MB, MIME type: application/pdf) Description National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

431

File:EIA-AK-NPRA-ANWR-LIQ.pdf | Open Energy Information  

Open Energy Info (EERE)

National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Liquids Reserve Class National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Liquids Reserve Class Size of this preview: 776 × 600 pixels. Full resolution ‎(6,600 × 5,100 pixels, file size: 6.77 MB, MIME type: application/pdf) Description National Petroleum Reserve-Alaska and Arctic National Wildlife Refuge 1002 Area By 2001 Liquids Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional Countries United States UN Region Northern America States Alaska File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment

432

CONFERENCE ROOMS CONFERENCE ROOMS FOR RESERVATION  

E-Print Network [OSTI]

CONFERENCE M0700 BASEMENT CONFERENCE ROOMS CONFERENCE M0720 HRCMEB CONFERENCE M0390 CONFERENCE ROOMS FOR RESERVATION INFORMAL MEETING SPACE TBRC CLASSROOM SPACE #12;CONFERENCE H1210 CONFERENCE H1320 HRC MEB INFORMAL MEETING SPACE CONFERENCE ROOMS FOR RESERVATION TBRC LOUNGE C1068 LOUNGE C1050 LOUNGE

433

HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES  

SciTech Connect (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing, vertical, field wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the third project year (April 6 through October 5, 2002). This work included capillary pressure/mercury injection analysis, scanning electron microscopy, and pore casting on selected samples from Cherokee and Bug fields, Utah. The diagenetic fabrics and porosity types found at these fields are indicators of reservoir flow capacity, storage capacity, and potential for enhanced oil recovery via horizontal drilling. The reservoir quality of Cherokee and Bug fields has been affected by multiple generations of dissolution, anhydrite plugging, and various types of cementation which act as barriers or baffles to fluid flow. The most significant diagenetic characteristics are microporosity (Cherokee field) and micro-boxwork porosity (Bug field), as shown from porethroat radii histograms, and saturation profiles generated from the capillary pressure/mercury injection analysis, and identified by scanning electron microscopy and pore casting. These porosity types represent important sites for untapped hydrocarbons and primary targets for horizontal drilling. Technology transfer activities consisted of exhibiting a booth display of project materials at the Rocky Mountain Section meeting of the American Association of Petroleum Geologists, a technical presentation, and publications. The project home page was updated for the Utah Geological Survey Internet web site.

Thomas C. Chidsey, Jr.

2002-12-01T23:59:59.000Z

434

Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6: September 6, 6: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 to someone by E-mail Share Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Facebook Tweet about Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Twitter Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Google Bookmark Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Delicious Rank Vehicle Technologies Office: Fact #336: September 6, 2004 World Oil Reserves, Production, and Consumption, 2003 on Digg Find More places to share Vehicle Technologies Office: Fact #336:

435

Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7: September 17, 7: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 to someone by E-mail Share Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Facebook Tweet about Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Twitter Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Google Bookmark Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Delicious Rank Vehicle Technologies Office: Fact #487: September 17, 2007 World Oil Reserves, Production, and Consumption, 2006 on Digg Find More places to share Vehicle Technologies Office: Fact #487:

436

Peak Oil and REMI PI+: State Fiscal Implications  

E-Print Network [OSTI]

, nation, and states) · Shale oil not included ­ Shale oil reserve estimates 2.0 Trillion bbls in USPeak Oil and REMI PI+: State Fiscal Implications Jim Peach Arrowhead Center Prosper Project is peak oil? · Why peak oil (and gas) matters ­ (In energy and non-energy states) ­ National Real GDP

Johnson, Eric E.

437

Recovery rates, enhanced oil recovery and technological limits  

Science Journals Connector (OSTI)

...significantly extend global oil reserves once oil prices are high enough to make these techniques...last plan on the assumption that the oil price is likely to remain relatively high...1970s at a time of relatively high oil prices. Improved oil recovery (IOR) is...

2014-01-01T23:59:59.000Z

438

DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil  

Broader source: Energy.gov (indexed) [DOE]

to Sell 35,000 Barrels of Oil from the Northeast Home Heating to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil Reserve May 24, 2007 - 4:16pm Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that it will sell approximately 35,000 barrels of home heating oil from the Northeast Home Heating Oil Reserve (NEHHOR). The Reserve's current 5-year storage contracts expire on September 30, 2007 and market conditions have caused new storage costs to rise to a level that exceeds available funds. Revenue from the sale will be used to supplement funds for the award of new long-term storage contracts that will begin on October 1, 2007. The Department will work with Congress to resolve these funding issues in order

439

Texas GLO Oil and Gas Sealed Bid Forms | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Texas GLO Oil and Gas Sealed Bid FormsLegal Abstract The Texas General Land Office provides various...

440

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect (OSTI)

The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

2003-10-05T23:59:59.000Z

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1...

442

,"Federal Offshore Texas Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"630...

443

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

444

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

445

,"Texas State Offshore Crude Oil plus Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas State Offshore Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

446

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

447

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

448

Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Million Barrels) Gulf of Mexico Federal Offshore - Texas Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

449

,"California Federal Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

450

,"Louisiana State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

451

,"California State Offshore Crude Oil + Lease Condensate Proved...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2013...

452

,"Federal Offshore California Crude Oil plus Lease Condensate...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore California Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2012,"6302009"...

453

U.S. Energy Information Administration | Petroleum Marketing...  

U.S. Energy Information Administration (EIA) Indexed Site

. . . . . . . . . . . . . April 1987 Determining Minimum Acceptable Bid Prices for the Test Sale of Strategic Petroleum Reserve Crude Oil . . . . . August 1986 Commercial...

454

Using oil shale ash waste as a modifier for asphalt binders  

Science Journals Connector (OSTI)

Oil shale rocks represent one of the most available ... Jordan land contains about 50 billion tons of oil shale, which makes Jordan the third in the ... world of the reserve of this material. Oil shale ash is a b...

Khalid Ghuzlan; Ghazi Al-Khateeb

2013-10-01T23:59:59.000Z

455

DOE Announces Award of a Contract to Repurchase Heating Oil for...  

Office of Environmental Management (EM)

Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

456

New information on disposal of oil field wastes in salt caverns  

SciTech Connect (OSTI)

Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

Veil, J.A.

1996-10-01T23:59:59.000Z

457

Strategic Petroleum Reserve (SPR) oil storage cavern sulphur mines 2-4-5 certification tests and analysis. Part I: 1981 testing. Part II: 1982 testing  

SciTech Connect (OSTI)

Well leak tests and a cavern pressure were conducted in June through December 1981, and are described in Part I. The tests did not indicate conclusively that there was no leakage from the cavern, but the data indicate that cavern structural failure during oil storage is unlikely. The test results indicated that retesting and well workover were desirable prior to making a decision on the cavern use. Well leak tests were conducted in March through May 1982, and are described in Part II. The tests indicated that there was no significant leakage from wells 2 and 4 but that the leakage from wells 2A and 5 exceeded the DOE criterion. Because of the proximity of cavern 2-4-5 to the edge of the salt, this cavern should be considered for only one fill/withdrawal cycle prior to extensive reevaluation. 57 figures, 17 tables.

Beasley, R.R.

1982-12-01T23:59:59.000Z

458

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect (OSTI)

The primary objective of this project was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 25 to 50 million barrels (40-80 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvania (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performances, and report associated validation activities.

Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

2001-04-19T23:59:59.000Z

459

Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques  

SciTech Connect (OSTI)

The project's primary objective was to enhance domestic petroleum production by demonstration and transfer of horizontal drilling technology in the Paradox Basin, Utah, Colorado, Arizona, and New Mexico. If this project can demonstrate technical and economic feasibility, then the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 25 to 50 million barrels (4-8 million m3) of oil. This project was designed to characterize several shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation, choose the best candidate(s) for a pilot demonstration project to drill horizontally from existing vertical wells, monitor well performance(s), and report associated validation activities.

Chidsey, Jr., Thomas C.; Eby, David E.; Wray, Laural L.

2001-11-26T23:59:59.000Z

460

Restraint urged in developing oil shale  

Science Journals Connector (OSTI)

Restraint urged in developing oil shale ... An oil shale industry producing 400,000 bbl per day could be created by 1990 using existing technologies and without additional leasing of federal land. ... "Utah and Colorado, with most of the nation's oil shale reserves," Hatch says, "are looking at the business end of a very large federal cannon, loaded with billions for synthetic fuels development." ...

1980-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bayesian Networks and Geographical Information Systems for Environmental Risk Assessment for Oil and Gas Site Development  

E-Print Network [OSTI]

The objective of this work is to develop a Bayesian Network (BN) model to produce environmental risk maps for oil and gas site developments and to demonstrate the models scalability from a point to a collection of points. To reach this objective...

Varela Gonzalez, Patricia Ysolda

2013-04-03T23:59:59.000Z

462

Used oil re-refining: Cote d`ivoire. Final report. Export trade information  

SciTech Connect (OSTI)

The scope of work for this project was divided into two major phases of work, the Feasibility Study (FS) and the Process Design Specification (PDS). The Feasibility Study performed by Matrix Engineering, Inc. (Matrix) reviewed three solvent extraction processes, plus fractionation and adsorbent filtration, as suitable technologies for use in a used oil re-refining facility for Cote d`Ivoire.

NONE

1995-11-16T23:59:59.000Z

463

US Crude oil exports  

Gasoline and Diesel Fuel Update (EIA)

2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since...

464

Categorical Exclusion Determinations: Strategic Petroleum Reserve Field  

Broader source: Energy.gov (indexed) [DOE]

10, 2012 10, 2012 CX-008350: Categorical Exclusion Determination Re-work Bryan Mound 30" Crude Oil Pipeline Mainline Valves CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office April 10, 2012 CX-008349: Categorical Exclusion Determination Replacement Anode Bed on West Hackberry 42-inch Crude Oil Pipeline at Gum Cove Road CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office March 28, 2012 CX-008351: Categorical Exclusion Determination Transport and Perform TD&I on Big Hill TX-29 Transformer CX(s) Applied: B1.3 Date: 03/28/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office February 23, 2012 CX-007816: Categorical Exclusion Determination

465

WSU ABLAH LIBRARY RESERVE REQUEST FORM COURSE INSTRUCTOR  

E-Print Network [OSTI]

WSU ABLAH LIBRARY RESERVE REQUEST FORM COURSE INSTRUCTOR Department: Last Name: Course Number or print this form and please list only one item per space. List only one author and one title for each, in the instructions, for information concerning electronic reserve. Type of Reserve: A. Two hour Library only B. One

466

Strategic petroleum reserve, quarterly report  

SciTech Connect (OSTI)

As of December 31, 1981, the cumulative fill capability for the storage of crude oil for the SPR was 257 million barrels. Development of Phase I of the program consisting of 250 million barrels of capacity is complete and development of Phase II, consisting of 290 million barrels of capacity, is continuing. During 1981, the design of Phase III commenced. Phase III will increase the SPR capacity by 210 million barrels. The cumulative fill capability is expected to be 750 million barrels by 1990. The SPR was filled at a rate of 338,391 barrels per day during the last quarter of 1981, and had a total of 230.3 million barrels of oil in storage at the end of 1981. The Department of Energy has aggressively pursued oil purchases during 1981 in order to take advantage of the favorable international oil market. A long-term commercial contract was signed on August 20, 1981, with Petroleos Mexicanos (PEMEX), Mexico's state-owned oil company, for purchase of 110 million barrels of crude oil through 1986. The contract provided for the SPR to purchase 24 million barrels between September 1, 1981, and December 31, 1981. Thereafter PEMEX will supply crude oil to the SPR at the rate of 50,000 barrels a day through August 31, 1986. In addition, under the terms of a settlement of an overcharge allegation, Chevron USA agreed to supply 1,029,000 barrels of oil to the Reserve without cost. Deliveries under this settlement were completed in January 1982. The Omnibus Budget Reconciliation Act also requires the Secretary of the Treasury to establish an account to be known as the SPR Petroleum Account which may be obligated for the acquisition, transportation, and injection of petroleum products into the SPR. For FY 1982, Congress appropriated $3.7 billion to this account. The amount of funds obligated from the SPR Petroleum Account during the first quarter FY 1982 ending December 31, 1981, was $2056 million.

Not Available

1982-02-16T23:59:59.000Z

467

Developing Refined Products Storage in the Strategic Petroleum Reserve |  

Broader source: Energy.gov (indexed) [DOE]

Refined Products Storage in the Strategic Petroleum Refined Products Storage in the Strategic Petroleum Reserve Developing Refined Products Storage in the Strategic Petroleum Reserve May 12, 2009 - 3:14pm Addthis Statement of David F. Johnson, Deputy Assistant Secretary for Petroleum Reserves before the Committee on Energy and Natural Resources, United States Senate. Mr. Chairman and members of the Committee, I am pleased to be here today to discuss the issue of developing refined products storage in the Strategic Petroleum Reserve. As you know, the SPR was established by Congress through passage of the Energy Policy and Conservation Act in 1975 in response to the Arab oil embargoes. The primary policy of the U.S. petroleum stockpiling program has been to store crude oil. The SPR has served to protect our Nation from crude oil supply interruptions for over three

468

DOE to Resume Filling Strategic Petroleum Reserve | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

to Resume Filling Strategic Petroleum Reserve to Resume Filling Strategic Petroleum Reserve DOE to Resume Filling Strategic Petroleum Reserve January 2, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy today announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude oil for the nation's Strategic Petroleum Reserve (SPR) to replenish SPR supplies sold following hurricanes Katrina and Rita in 2005. In addition, DOE is also moving forward with three other SPR acquisition and/or fill activities in order to fill the SPR as Congress directed in the 2005 Energy Policy Act (EPAct): refiner repayments of SPR emergency oil releases following Hurricanes Gustav and Ike; the delivery of deferred

469

Loan Loss Reserve Agreement  

Broader source: Energy.gov [DOE]

Loan Loss Reserve Agreement, from the Tool Kit Framework: Small Town University Energy Program (STEP).

470

Petrochemicals: Dow Chemical and oil company YPF explore shale gas in Argentina  

Science Journals Connector (OSTI)

With eyes on what could be the first shale gas project in Argentina, Dow Chemical has signed a memorandum of understanding with the Argentinian oil company YPF to develop a gas-rich area of the country. ... According to the U.S. Energy Information Administration and consulting firm Advanced Resources International, Argentina has 774 trillion cu ft of recoverable shale gas reserves, the third-largest amount after the U.S. and China. ...

ALEX TULLO

2013-04-08T23:59:59.000Z

471

A new method to optimize the fracture geometry of a frac-packed well in unconsolidated sandstone heavy oil reservoirs  

Science Journals Connector (OSTI)

The worldwide proven recoverable reserves of conventional oil are less than the amount of the heavy oil. Owing to weakly consolidated formation, sand production is an important problem encountered during oil p...

XiaoBing Bian; ShiCheng Zhang; JingChen Zhang

2012-06-01T23:59:59.000Z

472

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April  

E-Print Network [OSTI]

61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

Kulp, Mark

473

Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say  

E-Print Network [OSTI]

by a strongman for 42 years, a country of tribes and conflicting interests, a country with oil reserves desired, there is of course the matter of Libya's substantial oil reserves. An existing gas pipeline from Libya to ItalyOil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say By LONA O

Belogay, Eugene A.

474

[Outlook for 1997 in the oil and gas industries of the US  

SciTech Connect (OSTI)

This section contains 7 small articles that deal with the outlook for the following areas: US rotary rigs (Moving back up, finally); US production (Crude decline continues, gas rising); producing oil wells (Oil stays steady); producing gas wells (Well numbers up again); drilling and producing depths (New measured depths records); and US reserves (Gas reserves jump; oil dips slightly).

NONE

1997-02-01T23:59:59.000Z

475

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

476

Energy: world needs and reserves  

Science Journals Connector (OSTI)

Energy: world needs and reserves ... Lippencott takes stock of the world energy reserves and the demand the US places on these reserves. ...

W. T. Lippincott

1974-01-01T23:59:59.000Z

477

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

478

Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

479

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 2002 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

480

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

Note: This page contains sample records for the topic "oil reserve information" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Crude Oil Prices  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

482

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

483

DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum  

Broader source: Energy.gov (indexed) [DOE]

Solicitation for Purchase of Oil for the Strategic Solicitation for Purchase of Oil for the Strategic Petroleum Reserve DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum Reserve March 16, 2007 - 11:37am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will seek solicitations to purchase up to four million barrels of crude oil for the Strategic Petroleum Reserve (SPR). This is the first of a series of solicitations planned to replace 11 million barrels of oil sold in the fall of 2005 after Hurricane Katrina disrupted refinery supplies. This would be the first direct purchase of crude oil for the reserve since 1994. The Strategic Petroleum Reserve will use the proceeds from the emergency sale totaling $584 million to complete the purchases. "The Strategic Petroleum Reserve is a critical national asset that bolsters

484

Gulf of Mexico Fact Sheet - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Fact Sheet Gulf of Mexico Fact Sheet Overview Data Petroleum and Other Liquids Crude Oil, Condensate and NGL Proved Reserves Natural Gas Natural Gas Proved Reserves Refinery Capacity Natural Gas Processing Plants The Gulf of Mexico area, both onshore and offshore, is one of the most important regions for energy resources and infrastructure. Gulf of Mexico federal offshore oil production accounts for 23 percent of total U.S. crude oil production and federal offshore natural gas production in the Gulf accounts for 7 percent of total U.S. dry production. Over 40 percent of total U.S. petroleum refining capacity is located along the Gulf coast, as well as 30 percent of total U.S. natural gas processing plant capacity. Energy Infrastructure with Real-time Storm Information

485

Beach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point, California  

E-Print Network [OSTI]

quantification was used at Coal Oil Point (COP), California to study the mechanisms transporting oil/tar fromBeach tar accumulation, transport mechanisms, and sources of variability at Coal Oil Point 2007 Elsevier Ltd. All rights reserved. Keywords: Santa Barbara Channel; Tar; Seeps; Oil slick; Oil

Luyendyk, Bruce

486

DOE Announces Award of a Contract to Repurchase Heating Oil for the  

Broader source: Energy.gov (indexed) [DOE]

DOE Announces Award of a Contract to Repurchase Heating Oil for the DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve July 23, 2008 - 2:15pm Addthis WASHINGTON, DC - The U.S. Department of Energy today announced the award of a contract to Hess Corporation for the delivery of approximately 808,625 gallons (approximately 19,250 barrels) of home heating oil for the Northeast Home Heating Oil Reserve (NEHHOR). The purchased oil is expected to be delivered to the Hess First Reserve terminal at Perth Amboy, NJ in New York Harbor later this week. The award resulted from a solicitation issued on June 23, 2008, to repurchase heating oil using $3 million in funds appropriated after the

487

RMOTC to Test Oil Viscosity Reduction Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Test Oil Viscosity Reduction Technology to Test Oil Viscosity Reduction Technology The Rocky Mountain Oilfield Testing Center (RMOTC) announces that the "Teapot Dome" oil field in Wyoming is hosting a series of tests funded by STWA, Inc. ("STWA") to determine the performance of its Applied Oil Technology (AOT(tm)) in reducing crude oil's viscosity to lower transportation costs for pipeline operators. The testing is managed by RMOTC, and conducted at Naval Petroleum Reserve No. 3, also known as the Teapot Dome oil field. RMOTC is providing the infrastructure and technical expertise to support companies such as STWA in their efforts to validate new technologies and bring those products and

488

The future of oil: Geology versus technology  

Science Journals Connector (OSTI)

Abstract We discuss and reconcile the geological and economic/technological views concerning the future of world oil production and prices, and present a nonlinear econometric model of the world oil market that encompasses both views. The model performs far better than existing empirical models in forecasting oil prices and oil output out-of-sample. Its point forecast is for a near doubling of the real price of oil over the coming decade, though the error bands are wide, reflecting sharply differing judgments on the ultimately recoverable reserves, and on future price elasticities of oil demand and supply.

Jaromir Benes; Marcelle Chauvet; Ondra Kamenik; Michael Kumhof; Douglas Laxton; Susanna Mursula; Jack Selody

2015-01-01T23:59:59.000Z

489

Reserves Overstatements: History, Enforcement, Identification, and Implications of New SEC Disclosure Requirements  

E-Print Network [OSTI]

. ? Reserves from nontraditional sources, such as gas hydrates, synthetic oil and gas mined from coal and oil shale, and bitumen mined from oil sands, are now reportable. A greater focus has been placed upon the ?end product? rather than the source...

Olsen, Grant

2010-07-14T23:59:59.000Z

490

Oil, economic growth and strategic petroleum stocks  

Science Journals Connector (OSTI)

Abstract An examination of over 40 years of data reveals that oil price shocks are invariably followed by 23 years of weak economic growth and weak economic growth is almost always preceded by an oil price shock. This paper reviews why the price-inelastic demand and supply of oil cause oil price shocks and why oil price shocks reduce economic growth through dislocations of labor and capital. This paper also reviews the current state of oil-supply security noting that previous episodes of supply instability appear to have become chronic conditions. While new unconventional oil production technologies have revitalized North American oil production, there are significant barriers to a world-wide uptake of these technologies. Strategic petroleum stocks could provide a large measure of protection to the world economy during an oil supply disruption if they are used promptly and in sufficient volume to prevent large oil-price spikes. Despite the large volume of world-wide emergency reserves, their effectiveness in protecting world economies is not assured. Strategic oil stocks have not been used in sufficient quantity or soon enough to avoid the economic downturns that followed past oil supply outages. In addition, the growth of U.S. oil production has reduced the ability of the U.S. Strategic Petroleum Reserve to protect the economy following a future oil supply disruption. The policy implications of these findings are discussed.

Carmine Difiglio

2014-01-01T23:59:59.000Z

491

Crude Oil plus Lease Condensate Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

,305 1,766 3,107 2009-2011 ,305 1,766 3,107 2009-2011 Federal Offshore U.S. 159 77 29 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 158 61 29 2009-2011 Texas 1 16 0 2009-2011 Alaska 25 30 40 2009-2011 Lower 48 States 1,280 1,736 3,067 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 6 0 2009-2011 California 30 24 37 2009-2011 Coastal Region Onshore 0 1 1 2009-2011 Los Angeles Basin Onshore 1 1 6 2009-2011 San Joaquin Basin Onshore 22 13 18 2009-2011 State Offshore 7 9 12 2009-2011 Colorado 37 80 96 2009-2011 Florida 0 0 0 2009-2011 Illinois 3 2 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 5 23 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 26 28 21 2009-2011 North 1 2 0 2009-2011 South Onshore 24 25 17 2009-2011 State Offshore

492

Crude Oil plus Lease Condensate Reserves Extensions  

Gasoline and Diesel Fuel Update (EIA)

,305 1,766 3,107 2009-2011 ,305 1,766 3,107 2009-2011 Federal Offshore U.S. 159 77 29 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 158 61 29 2009-2011 Texas 1 16 0 2009-2011 Alaska 25 30 40 2009-2011 Lower 48 States 1,280 1,736 3,067 2009-2011 Alabama 0 0 0 2009-2011 Arkansas 0 6 0 2009-2011 California 30 24 37 2009-2011 Coastal Region Onshore 0 1 1 2009-2011 Los Angeles Basin Onshore 1 1 6 2009-2011 San Joaquin Basin Onshore 22 13 18 2009-2011 State Offshore 7 9 12 2009-2011 Colorado 37 80 96 2009-2011 Florida 0 0 0 2009-2011 Illinois 3 2 0 2009-2011 Indiana 0 0 0 2009-2011 Kansas 2 5 23 2009-2011 Kentucky 0 0 0 2009-2011 Louisiana 26 28 21 2009-2011 North 1 2 0 2009-2011 South Onshore 24 25 17 2009-2011 State Offshore

493

Crude Oil plus Lease Condensate Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

344 1,470 1,561 2009-2011 344 1,470 1,561 2009-2011 Federal Offshore U.S. 16 108 56 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 14 102 52 2009-2011 Texas 2 6 4 2009-2011 Alaska 0 0 79 2009-2011 Lower 48 States 344 1,470 1,482 2009-2011 Alabama 0 0 20 2009-2011 Arkansas 0 0 3 2009-2011 California 20 156 40 2009-2011 Coastal Region Onshore 2 154 0 2009-2011 Los Angeles Basin Onshore 0 1 9 2009-2011 San Joaquin Basin Onshore 18 1 16 2009-2011 State Offshore 0 0 15 2009-2011 Colorado 2 38 4 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 9 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 8 19 2009-2011 Kentucky 0 6 4 2009-2011 Louisiana 11 52 53 2009-2011 North 1 12 31 2009-2011 South Onshore 7 26 17 2009-2011 State Offshore 3 14 5 2009-2011

494

Crude Oil plus Lease Condensate Reserves Sales  

Gasoline and Diesel Fuel Update (EIA)

249 803 1,024 2009-2011 249 803 1,024 2009-2011 Federal Offshore U.S. 20 56 42 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 20 54 42 2009-2011 Texas 0 2 0 2009-2011 Alaska 7 0 17 2009-2011 Lower 48 States 242 803 1,007 2009-2011 Alabama 0 3 11 2009-2011 Arkansas 3 3 28 2009-2011 California 3 1 7 2009-2011 Coastal Region Onshore 0 1 0 2009-2011 Los Angeles Basin Onshore 0 0 2 2009-2011 San Joaquin Basin Onshore 3 0 0 2009-2011 State Offshore 0 0 5 2009-2011 Colorado 17 3 19 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 15 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 6 6 2009-2011 Kentucky 0 0 5 2009-2011 Louisiana 9 23 63 2009-2011 North 2 5 28 2009-2011 South Onshore 7 7 34 2009-2011 State Offshore 0 11 1 2009-2011

495

Crude Oil plus Lease Condensate Proved Reserves  

Gasoline and Diesel Fuel Update (EIA)

46 188 207 2009-2011 46 188 207 2009-2011 Federal Offshore U.S. 0 -6 -1 2009-2011 Pacific (California) -1 -2 1 2009-2011 Louisiana & Alabama 2 -3 -2 2009-2011 Texas -1 -1 0 2009-2011 Alaska 0 0 1 2009-2011 Lower 48 States 46 188 206 2009-2011 Alabama 1 12 2 2009-2011 Arkansas 2 3 -2 2009-2011 California -17 14 32 2009-2011 Coastal Region Onshore 1 0 -3 2009-2011 Los Angeles Basin Onshore 10 15 19 2009-2011 San Joaquin Basin Onshore -30 1 16 2009-2011 State Offshore 2 -2 0 2009-2011 Colorado -9 25 -1 2009-2011 Florida -1 2 -2 2009-2011 Illinois 3 10 -10 2009-2011 Indiana -7 1 0 2009-2011 Kansas 20 61 22 2009-2011 Kentucky 4 -11 1 2009-2011 Louisiana -1 7 -8 2009-2011 North -4 -7 1 2009-2011 South Onshore 4 13 -6 2009-2011 State Offshore

496

Crude Oil plus Lease Condensate Reserves Acquisitions  

Gasoline and Diesel Fuel Update (EIA)

344 1,470 1,561 2009-2011 344 1,470 1,561 2009-2011 Federal Offshore U.S. 16 108 56 2009-2011 Pacific (California) 0 0 0 2009-2011 Louisiana & Alabama 14 102 52 2009-2011 Texas 2 6 4 2009-2011 Alaska 0 0 79 2009-2011 Lower 48 States 344 1,470 1,482 2009-2011 Alabama 0 0 20 2009-2011 Arkansas 0 0 3 2009-2011 California 20 156 40 2009-2011 Coastal Region Onshore 2 154 0 2009-2011 Los Angeles Basin Onshore 0 1 9 2009-2011 San Joaquin Basin Onshore 18 1 16 2009-2011 State Offshore 0 0 15 2009-2011 Colorado 2 38 4 2009-2011 Florida 0 0 0 2009-2011 Illinois 0 9 0 2009-2011 Indiana 0 2 0 2009-2011 Kansas 2 8 19 2009-2011 Kentucky 0 6 4 2009-2011 Louisiana 11 52 53 2009-2011 North 1 12 31 2009-2011 South Onshore 7 26 17 2009-2011 State Offshore 3 14 5 2009-2011

497

Heating Oil Reserve | Department of Energy  

Energy Savers [EERE]

Energy Support Center issued a solicitation to companies willing to provide the storage tanks, heating stocks, or a combination. Contracts were awarded and, by October 13, 2000,...

498

Department of Energy Update on Strategic Petroleum Reserve Sale |  

Broader source: Energy.gov (indexed) [DOE]

June 30, 2011 - 12:00am June 30, 2011 - 12:00am Addthis Washington, DC -- On June 23, 2011, the International Energy Agency (IEA) announced that its 28 member countries would release 60 million barrels of crude oil and refined products into the global market. As part of that action, the President directed the Department of Energy to auction 30.237 million barrels of light, sweet crude oil from the Strategic Petroleum Reserve. Yesterday, bids were received. Industry interest in the Department of Energy's sale of Strategic Petroleum Reserve (SPR) oil was very high. Over 90 offers to purchase oil were received yesterday and the Department's offering of 30.2 million barrels of light, sweet crude oil was substantially oversubscribed. The Department expects all contract awards to be completed by July 11, 2011, at which time

499

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

500

US coal reserves: A review and update  

SciTech Connect (OSTI)

This report is the third in series of ``U.S. Coal Reserves`` reports. As part of the Administration of the Energy Information Administration (EIA) program to provide information on coal, it presents detailed estimates of domestic coal reserves, which are basic to the analysis and forecasting of future coal supply. It also describes the data, methods, and assumptions used to develop such estimates and explain terminology related to recent data programs. In addition, the report provides technical documentation for specific revisions and adjustments to the demonstrated reserve base (DRB) of coal in the United States and for coal quality and reserve allocations. It makes the resulting data available for general use by the public. This report includes data on recoverable coal reserves located at active mines and on the estimated distribution of rank and sulfur content in those reserves. An analysis of the projected demand and depletion in recoverable reserves at active mines is used to evaluate the areas and magnitude of anticipated investment in new mining capacity.

NONE

1996-08-01T23:59:59.000Z