National Library of Energy BETA

Sample records for oil reserve doe

  1. DOE Announces Loans of Oil from the Strategic Petroleum Reserve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced today that DOE has approved two loan requests totaling 750,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to two Louisiana refineries. The...

  2. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude...

  3. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified...

  4. DOE Announces Loans of Oil from the Strategic Petroleum Reserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTat LosDepartment of Energy U. S.

  5. DOE Awards Storage Contracts for Northeast Home Heating Oil Reserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTathasBestI)SupportValleyDepartment of

  6. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE ZeroofBatteriesHybridNationalfor 2009 |

  7. DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE ZeroofBatteriesHybrid

  8. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  9. 4 oil firms turn secret on reserves

    SciTech Connect (OSTI)

    Schaffer, P.

    1980-04-14

    US oil companies are complying with Saudi Arabia's and Indonesia's request by not revealing the companies' shares of oil reserves, adding to supply uncertainties and increasing the power of the producing countries. The information blackout reduces the reserve estimates filed by Exxon, Mobil, Standard Oil of California, and Texaco with the Securities and Exchange Commission, which plans to deal with the reporting problem on a case-by-case basis. Unless the companies decide the information can be disclosed to DOE's Financial Reporting System, a legal battle will ensue. A summary of reserve reports indicates a trend in declining production relative to new discoveries as well. (DCK)

  10. DOE (US Department of Energy) slates 100,000 bbl/day of oil for SPR (US Strategic Petroleum Reserves) by December 1

    SciTech Connect (OSTI)

    Chayes, A.; Dingell, J.

    1980-09-22

    DOE, which has been criticized by members of the US House of Representatives Energy and Power Subcommittee for delaying the filling of SPR, has announced that it will start adding 100,000 bbl/day of oil to SPR by 12/1/80. According to A. Chayes (Department of Energy), the oil will be acquired through swaps for Elk Hills field Naval Petroleum Reserves crude. DOE has signed a contract to buy Pacific Refining Company's 10,000 bbl/day of oil from Elk Hills. The oil will be moved to the West Hackberry, LA, SPR storage cavern through the ARCO Four Corners Pipeline. According to J. Dingell (US Congress), SPR could at present, be filled at a 500,000-600,000 bbl/day rate. Chayes said that DOE agrees that 100,000 bbl/day is a minimal and suboptimal rate.

  11. Estimates of Oil Reserves Jean Laherrere

    E-Print Network [OSTI]

    O'Donnell, Tom

    Estimates of Oil Reserves Jean Laherrere e-mail: jean.laherrere@wanadoo.fr sites: http oil will solve the present problems on welfare, retirement and they would dearly love to see the reserves of oil

  12. DOE - Office of Legacy Management -- Naval Oil Shale Reserves Site - 013

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSellingAcme MachineOrdnance -Oil

  13. DOE Announces Additional Loan of Oil from the Strategic Petroleum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced that the Department of Energy (DOE) has approved a seventh loan request for crude oil from the Strategic Petroleum Reserve (SPR). Today's agreement with Total...

  14. DOE Will Convert Northeast Home Heating Oil Reserve to Ultra Low Sulfur

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes 9. TechnologyDOE Web Managers

  15. Characteristics of North Sea oil reserve appreciation

    E-Print Network [OSTI]

    Watkins, G. C.

    2000-01-01

    In many petroleum basins, and especially in more mature areas, most reserve additions consist of the growth over time of prior discoveries, a phenomenon termed reserve appreciation. This paper concerns crude oil reserve ...

  16. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum Reserve DOE to Issue Second Solicitation for Purchase of Crude Oil for the Strategic Petroleum...

  17. DOE Announces Award of a Contract to Repurchase Heating Oil for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating Oil Reserve DOE Announces Award of a Contract to Repurchase Heating Oil for the Northeast Home Heating...

  18. Naval petroleum reserves: Sales procedures and prices received for Elk Hills oil

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The Congress expressed concern about the Department of Energy's actions in selling oil from the Elk Hills Naval Petroleum Reserve at what appeared to be unreasonably low prices. DOE officials believe that Naval Petroleum Reserve oil has been and is currently being produced at the appropriate rate and that no recoverable oil has been lost. This fact sheet provides information on the basis for the procedures followed by DOE in selling Naval Petroleum Reserve oil and sales data for the period extending from October 1985 through April 1986.

  19. Oil and coal: reserves and production

    E-Print Network [OSTI]

    Canada Japan F.R I United Germany Kingdom France Italy Fig. 2. Oil's share of the increase in energy useOil and coal: reserves and production Anton Ziolkowski* The 1984-85 strike by British coal miners has focused attention on the difficulties of the coal industry at a time when demand for energy

  20. The Strategic Petroleum Reserve crude oil storage program experience

    SciTech Connect (OSTI)

    Linn, J.; Neal, J. [Sandia National Labs., Albuquerque, NM (United States); Berndsen, J. [Dept. of Energy, Washington, DC (United States)

    1996-09-01

    The US Strategic Petroleum Reserve is currently storing nearly 600 million barrels of crude oil in 62 leached and one mined salt cavern in salt domes located in Texas and Louisiana. In more than 15 years of operation the oil reserve has had unique experiences in liquid hydrocarbon storage in a former salt mine, long term effects of underground storage on crude oil and pipelines, and long term effects of underground salt creep. This paper reviews significant experiences, technological accomplishments, and major problems that have been overcome. Long term geomechanical effects on mines including modeling and experience, unique gas and thermal effects on stored liquid hydrocarbons, corrosion in brine pipelines, and the slow closure of caverns due to salt creep are specifically addressed. Additionally, the unique conditions, and the lessons learned which led to the DOE decision to withdraw from the Weeks Island storage site are discussed.

  1. Oil reserves -Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Oil_reserves 1 of 14 5/16/2006 2:49 AM

    E-Print Network [OSTI]

    Dahlquist, Kam D.

    Oil reserves - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Oil_reserves 1 of 14 5/16/2006 2:49 AM Oil reserves From Wikipedia, the free encyclopedia Oil reserves refer to portions of oil in place that are recoverable under economic constraints. In comparison, oil in place, or STOOIP, meaning

  2. The value of United States oil and gas reserves

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1996-01-01

    The object of this research is to estimate a time series, starting in 1979, for the value of in-ground oil reserves and natural gas reserves in the United States. Relatively good statistics exist for the physical quantities. ...

  3. Tiger Team Assessment of the Navel Petroleum and Oil Shale Reserves Colorado, Utah, and Wyoming

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW). NPOSR-CUW consists of Naval Petroleum Reserve Number 3 located near Casper, Wyoming; Naval Oil Shale Reserve Number I and Naval Oil Shale Reserve Number 3 located near Rifle, Colorado; and Naval Oil Shale Reserve Number 2 located near Vernal, Utah, which was not examined as part of this assessment. The assessment was comprehensive, encompassing environment, safety, and health (ES H) and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal NPOSR-CUW requirements was assessed. The NPOSR-CUW Tiger Team Assessment is part of a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary with information on the compliance status of DOE facilities with regard to ES H requirements, root causes for noncompliance, adequacy of DOE and contractor ES H management programs, response actions to address the identified problem areas, and DOE-wide ES H compliance trends and root causes.

  4. ,"New Mexico Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  5. Department of Energy, Office of Naval Petroleum & Oil Shale Reserves

    Energy Savers [EERE]

    Items that may be marked "disposrtron not Office of Naval Petroleum & Oil Shale Reserves approved" or "withdrawn" In column 10 4 Nameof Personwith whom to confer 5...

  6. Northeast Home Heating Oil Reserve - Guidelines for Release ...

    Broader source: Energy.gov (indexed) [DOE]

    Act, as amended, sets conditions for the release of the Northeast Home Heating Oil Reserve. The Secretary of Energy has the authority to sell, exchange, or otherwise...

  7. ,"U.S. Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2013,"06302009" ,"Release...

  8. ,"LA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"NM, East Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"LA, South Onshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Miscellaneous Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"NM, West Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"North Louisiana Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"CA, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"TX, State Offshore Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. The Naval Petroleum and Oil Shale Reserves | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in California, Utah, and Wyoming were set aside that became the Naval Petroleum and Oil Shale Reserves - the oldest component of today's Fossil Energy organization. Naval...

  17. U.S. Crude Oil and Natural Gas Proved Reserves

    Reports and Publications (EIA)

    2015-01-01

    U.S. crude oil proved reserves increased in 2014 for the sixth year in a row with a net addition of 3.4 billion barrels of proved oil reserves (a 9% increase), according to U.S. Crude Oil and Natural Gas Proved Reserves, 2014, released today by the U.S. Energy Information Administration (EIA). U.S. natural gas proved reserves increased 10% in 2014, raising the U.S. total to a record 388.8 trillion cubic feet.

  18. Annual report of operations. [Naval Petroleum Reserves No. 1, 2, 3; oil shale reserves

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Naval Petroleum and Oil Shale Reserves during FY 1980 deliver 59,993,213 bbl of crude oil and substantial quantities of natural gas, butane, propane and natural gasoline to the United States market. During September, Naval Petroleum Reserve oil was utilized to resume filling the Strategic Petroleum Reserve. During FY 1980, Naval Petroleum Reserve No. 1, Elk Hills, became the largest producing oil field in California and the second largest producing field in the United States. Production at the end of September was 165,000 bbl/d; production is expected to peak at about 190,000 bbl/d early in calender year 1982. Production from Naval Petroleum Reserves Nos. 2 and 3 in California and Wyoming, contributed 1,101,582 and 1,603,477 bbl of crude oil to the market, respectively. Enhanced oil recovery work has been inititated at Naval Petroleum Reserve no. 3. Total revenues from the Naval Petroleum Reserves during FY 1980 were 1.6 billion. The three Naval Oil Shale Reserves in Colorado and Utah have substantial potential. In addition to containing approximately 2.5 billion bbl recoverable shale oil. They probably contain significant quantities of conventional oil and gas.

  19. Naval petroleum reserves: Oil sales procedures and prices at Elk Hills, April through December 1986

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Elk Hills Naval Petroleum Reserve is located near Bakersfield, California and ranks seventh among domestic producing oil fields. In Feb. 1986 the Department of Energy awarded contracts to 16 companies for the sale of about 82,000 barrels per day of NPR crude oil between April and September 1986. These companies bid a record high average discount of $4.49 from DOE's base price. The discounts ranged from $0.87 to $6.98 per barrel. These contracts resulted in DOE selling Elk Hills oil as low as $3.91 per barrel. Energy stated that the process for selling from NPR had gotten out of step with today's marketplace. Doe subsequently revised its sales procedures which requires bidders to submit a specific price for the oil rather than a discount to a base price. DOE also initiated other efforts designed to avoid future NPR oil sales at less than fair market value.

  20. United States Producing and Nonproducing Crude Oil and Natural Gas Reserves From 1985 Through 2004

    Reports and Publications (EIA)

    2006-01-01

    This report discusses the regional and temporal trends in producing and nonproducing crude oil and natural gas reserves using the Energy Information Administration's (EIA) categorization of reserves. The report first focuses on EIA's collection and reporting of crude oil and natural gas reserves data, followed by a discussion of the natural gas reserve trends, and then the crude oil reserve trends.

  1. Oak Ridge ReseRvatiOn DOE/ORO/2379

    E-Print Network [OSTI]

    Pennycook, Steve

    Oak Ridge ReseRvatiOn DOE/ORO/2379 Annual Site Environmental Report 2010 #12;Cover Image and Design Annual Site Environmental Report 2010 #12;DOE/ORO/2379 Oak Ridge Reservation Annual Site Environmental ................................................................................................................................1-1 1.2 History of the Oak Ridge Reservation

  2. New Mexico Crude Oil + Lease Condensate Reserves Sales (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

  3. New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  5. New Mexico - East Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  6. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  7. New Mexico - West Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. New Mexico - East Crude Oil + Lease Condensate Reserves Extensions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  9. New Mexico Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  10. New Mexico - West Crude Oil + Lease Condensate Reserves Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Sales (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  11. New Mexico - East Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  12. New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  13. New Mexico - West Crude Oil + Lease Condensate Reserves Revision...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  14. New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  16. New Mexico Crude Oil + Lease Condensate Reserves Revision Increases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Increases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  17. New Mexico Crude Oil + Lease Condensate Reserves Extensions ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Extensions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. New Mexico Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  19. New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases...

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Revision Decreases (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. New Mexico - East Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Field Discoveries (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  1. New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments...

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Adjustments (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  2. Northeast Home Heating Oil Reserve- Online Bidding System

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has developed an on-line bidding system - an anonymous auction program - for the sale of product from the one million barrel Northeast Home Heating Oil Reserve.

  3. Statement from DOE's Chief Spokesperson Andrew Beck Regarding...

    Energy Savers [EERE]

    Delivery of Strategic Petroleum Reserve Oil Statement from DOE's Chief Spokesperson Andrew Beck Regarding Delivery of Strategic Petroleum Reserve Oil September 14, 2008 - 3:43pm...

  4. Statement from DOE's Chief Spokesperson Andrew Beck Regarding...

    Energy Savers [EERE]

    Strategic Petroleum Reserve Oil Deliveries Statement from DOE's Chief Spokesperson Andrew Beck Regarding Strategic Petroleum Reserve Oil Deliveries September 11, 2008 - 3:20pm...

  5. US crude oil, natural gas, and natural gas liquids reserves

    SciTech Connect (OSTI)

    Not Available

    1990-10-05

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1989, and production volumes for the year 1989 for the total United States and for selected states and state sub-divisions. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production reported separately. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. 28 refs., 9 figs., 15 tabs.

  6. Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we urgently need to find new

    E-Print Network [OSTI]

    Anderson, Jim

    Finding new reserves of oil and gas As the world's reserves of oil and gas become exhausted, we with oil or natural gas is greatly increased. Southampton academics have led the world in CSEM for more with Norwegian oil and gas company Statoil and UCSD's Scripps Institution of Oceanography. Southampton provided

  7. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 1

    SciTech Connect (OSTI)

    1998-06-01

    In the Autumn of 1996, consumers and Members of Congress from the Northeast expressed concern about high prices for heating oil and historically low levels of inventories. Some Members of Congress advocated building a Federal inventory of heating oil as part of the Strategic Petroleum Reserve (SPR). Regional reserves are authorized as part of the SPR for import dependent regions by the Energy Policy and Conservation Act. In response, the Department of Energy (DOE) proposed a series of studies related to heating fuels, including a study of the desirability, feasibility, and cost of creating a Federal reserve containing distillate fuel. This report documents that study.

  8. DOE/ORO/2296 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;DOE/ORO/2296 Oak Ridge Reservation Annual Site Environmental Report for 2008 on the World Project manager, DOE-ORO David Page September 2009 Prepared by Oak Ridge National Laboratory P.O. Box 2008 ........................................................................................................................ 1-1 1.2 History of the Oak Ridge Reservation

  9. DOE/ORO/2261 Oak Ridge Reservation Annual Site

    E-Print Network [OSTI]

    Pennycook, Steve

    #12;#12;DOE/ORO/2261 Oak Ridge Reservation Annual Site Environmental Report for 2007 on the World, Jane Parrott Project manager, DOE-ORO David Page September 2008 Prepared by Oak Ridge National........................................................................................................................ 1-1 1.2 History of the Oak Ridge Reservation

  10. Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Summary: U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves 2009 November 2010 U or other Federal agencies. #12;#12;1 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves to the prices used in 2008. U.S. crude oil plus lease condensate proved reserves rose 9 percent to 22.3 billion

  11. West Virginia Crude Oil + Lease Condensate Reserves New Field...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 0 0 0...

  12. Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009ReservesThousand CubicProductionCrude Oil

  13. EIS-0068: Development Policy Options for the Naval Oil Shale Reserves in Colorado

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Naval Petroleum and Oil Shale Reserves prepared this programmatic statement to examine the environmental and socioeconomic impacts of development projects on the Naval Oil Shale Reserve 1, and examine select alternatives, such as encouraging production from other liquid fuel resources (coal liquefaction, biomass, offshore oil and enhanced oil recovery) or conserving petroleum in lieu of shale oil production.

  14. Analysis of crude oil vapor pressures at the U.S. Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Lord, David L.

    2005-08-01

    Crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) are solution-mined from subsurface salt domes along the U.S. Gulf Coast. While these salt domes exhibit many attractive characteristics for large-volume, long-term storage of oil such as low cost for construction, low permeability for effective fluids containment, and secure location deep underground, they also present unique technical challenges for maintaining oil quality within delivery standards. The vapor pressures of the crude oils stored at SPR tend to increase with storage time due to the combined effects of geothermal heating and gas intrusion from the surrounding salt. This presents a problem for oil delivery offsite because high vapor-pressure oil may lead to excessive atmospheric emissions of hydrocarbon gases that present explosion hazards, health hazards, and handling problems at atmospheric pressure. Recognizing this potential hazard, the U.S. Department of Energy, owner and operator of the SPR, implemented a crude oil vapor pressure monitoring program that collects vapor pressure data for all the storage caverns. From these data, DOE evaluates the rate of change in vapor pressures of its oils in the SPR. Moreover, DOE implemented a vapor pressure mitigation program in which the oils are degassed periodically and will be cooled immediately prior to delivery in order to reduce the vapor pressure to safe handling levels. The work described in this report evaluates the entire database since its origin in 1993, and determines the current levels of vapor pressure around the SPR, as well as the rate of change for purposes of optimizing both the mitigation program and meeting safe delivery standards. Generally, the rate of vapor pressure increase appears to be lower in this analysis than reported in the past and, problematic gas intrusion seems to be limited to just a few caverns. This being said, much of the current SPR inventory exceeds vapor pressure delivery guidelines and must be degassed and cooled in order to meet current delivery standards.

  15. Proved Nonproducing Reserves of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane

  16. Proved Nonproducing Reserves of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane

  17. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    During fiscal year 1992, the reserves generated $473 million in revenues, a $181 million decrease from the fiscal year 1991 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $200 million, resulting in net cash flow of $273 million, compared with $454 million in fiscal year 1991. From 1976 through fiscal year 1992, the Naval Petroleum and Oil Shale Reserves generated more than $15 billion in revenues and a net operating income after costs of $12.5 billion. In fiscal year 1992, production at the Naval Petroleum Reserves at maximum efficient rates yielded 26 million barrels of crude oil, 119 billion cubic feet of natural gas, and 164 million gallons of natural gas liquids. From April to November 1992, senior managers from the Naval Petroleum and Oil Shale Reserves held a series of three workshops in Boulder, Colorado, in order to build a comprehensive Strategic Plan as required by Secretary of Energy Notice 25A-91. Other highlights are presented for the following: Naval Petroleum Reserve No. 1--production achievements, crude oil shipments to the strategic petroleum reserve, horizontal drilling, shallow oil zone gas injection project, environment and safety, and vanpool program; Naval Petroleum Reserve No. 2--new management and operating contractor and exploration drilling; Naval Petroleum Reserve No. 3--steamflood; Naval Oil Shale Reserves--protection program; and Tiger Team environmental assessment of the Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming.

  18. ,"TX, RRC District 1 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"TX, RRC District 9 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"TX, RRC District 8 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"TX, RRC District 6 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"TX, RRC District 5 Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  4. Another look at the strategic petroleum reserve: Should its oil holdings be privatized?

    SciTech Connect (OSTI)

    Blumstein, C. [Univ. of California, Berkeley, CA (United States)] [Univ. of California, Berkeley, CA (United States); Komor, P. [E Source, Inc., Boulder, CO (United States)] [E Source, Inc., Boulder, CO (United States)

    1996-12-31

    The sharp increases in crude oil prices in the 1970`s unleashed a gusher of economic and policy analyses concerning energy security. A consensus emerged concerning the desirability of building and using a large stock of oil to cushion the effects of a sudden loss of oil supply. The author examines the validity of this large stock of oil considering changes in the oil market and whether the oil holdings of the Strategic Petroleum Reserve should be privatized. 12 refs.

  5. New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226UndergroundProductionProvedCrude Oil Reserves

  6. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billionoff) ShaleCrude Oil + Lease

  7. DOE to Issue Second Solicitation for Purchase of Crude Oil for...

    Broader source: Energy.gov (indexed) [DOE]

    second of several solicitations planned to purchase up to four million barrels of crude oil for the United States' crude oil reserve. The first solicitation, issued March 16,...

  8. Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques

    SciTech Connect (OSTI)

    Stanford University; Department of Energy Resources Engineering Green Earth Sciences

    2007-09-30

    This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

  9. Statement from DOE's Chief Spokesperson Andrew Beck Regarding...

    Energy Savers [EERE]

    Citgo's Request for Oil from the Strategic Petroleum Reserve Statement from DOE's Chief Spokesperson Andrew Beck Regarding Citgo's Request for Oil from the Strategic Petroleum...

  10. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2005-02-07

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete high oil saturated shallow sand intervals. During the second report period, well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months. Post workover well production was marginally increased to 3.7 BOPD on average for the following six months.

  11. Development of Bypassed Oil Reserves Using Behind Casing Resistivity Measurements

    SciTech Connect (OSTI)

    Michael G. Conner

    2004-02-14

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  12. DEVELOPMENT OF BYPASSED OIL RESERVES USING BEHIND CASING RESISTIVITY MEASUREMENTS

    SciTech Connect (OSTI)

    Michael G. Conner; Jeffrey A. Blesener

    2006-04-02

    Tubing and rods of the S.P. Pedro-Nepple No.1 well were pulled and the well was prepared for running of Schlumberger's Cased Hole Formation Resistivity Tool (CHFR) in selected intervals. The CHFR tool was successfully run and data was captured. The CHFR formation resistivity readings were compared to original open hole resistivity measurements. Separation between the original and CHFR resistivity curves indicate both swept and un-swept sand intervals. Both watered out sand intervals and those with higher remaining oil saturation have been identified. Due to the nature of these turbidite sands being stratigraphically continuous, both the swept and unswept layers have been correlated across to one of the four nearby offset shallow wells. As a result of the cased hole logging, one well was selected for a workover to recomplete and test suspected oil saturated shallow sand intervals. Well S.P. Pedro-Nepple No.2 was plugged back with cement excluding the previously existing production interval, squeeze cemented behind casing, selectively perforated in the shallower ''Bell'' zone and placed on production to develop potential new oil reserves and increase overall well productivity. Prior workover production averaged 3.0 BOPD for the previous six-months from the original ''Meyer'' completion interval. Post workover well production was increased to 5.3 BOPD on average for the following fifteen months. In December 2005, a bridge plug was installed above the ''Bell'' zone to test the ''Foix'' zone. Another cement squeeze was performed behind casing, selectively perforated in the shallower ''Foix'' zone and placed on production. The ''Foix'' test has produced water and a trace of oil for two months.

  13. Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

  14. Naval Petroleum and Oil Shale Reserve. Hearing before the Subcommittee on Preparedness of the Committee on Armed Services, United States Senate, Ninety-Eighth Congress, First Session on S. 1810, September 29, 1983

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    Captain Myron E. Smith, Jr., Director of the DOE Office of Naval Petroleum and Oil Shale Reserves, testified at a hearing on S. 1810, which authorizes funds relating to the petroleum and oil shale reserves. Smith reviewed revenues and expenditures since legislation was passed in 1976, noting that production at Elk Hills and Teapot Dome are at peak levels, in his justification of the budget request of $266.1 million. Questions from the committee and Smith's responses follow his formal testimony.

  15. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007

    Office of Energy Efficiency and Renewable Energy (EERE)

    The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The...

  16. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  17. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  18. Oil and natural gas reserve prices, 1982-2002 : implications for depletion and investment cost

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2003-01-01

    A time series is estimated of in-ground prices - as distinct from wellhead prices ? of US oil and natural gas reserves for the period 1982-2002, using market purchase and sale transaction information. The prices are a ...

  19. US crude oil, natural gas, and natural gas liquids reserves 1996 annual report

    SciTech Connect (OSTI)

    1997-12-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1996, as well as production volumes for the US and selected States and State subdivisions for the year 1996. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1996 is provided. 21 figs., 16 tabs.

  20. U.S. crude oil, natural gas, and natural gas liquids reserves 1995 annual report

    SciTech Connect (OSTI)

    1996-11-01

    The EIA annual reserves report series is the only source of comprehensive domestic proved reserves estimates. This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate estimates of the Nation`s proved reserves of crude oil, natural gas, and natural gas liquids. These data are essential to the development, implementation, and evaluation of energy policy and legislation. This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1995, as well as production volumes for the US and selected States and State subdivisions for the year 1995. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1995 is provided. 21 figs., 16 tabs.

  1. Naval Petroleum and Oil Shale Reserves. Annual report of operations, Fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    During fiscal year 1993, the reserves generated $440 million in revenues, a $33 million decrease from the fiscal year 1992 revenues, primarily due to significant decreases in oil and natural gas prices. Total costs were $207 million, resulting in net cash flow of $233 million, compared with $273 million in fiscal year 1992. From 1976 through fiscal year 1993, the Naval Petroleum and Oil Shale Reserves generated $15.7 billion in revenues for the US Treasury, with expenses of $2.9 billion. The net revenues of $12.8 billion represent a return on costs of 441 percent. See figures 2, 3, and 4. In fiscal year 1993, production at the Naval Petroleum and Oil Shale Reserves at maximum efficient rates yielded 25 million barrels of crude oil, 123 billion cubic feet of natural gas, and 158 million gallons of natural gas liquids. The Naval Petroleum and Oil Shale Reserves has embarked on an effort to identify additional hydrocarbon resources on the reserves for future production. In 1993, in cooperation with the US Geological Survey, the Department initiated a project to assess the oil and gas potential of the program`s oil shale reserves, which remain largely unexplored. These reserves, which total a land area of more than 145,000 acres and are located in Colorado and Utah, are favorably situated in oil and gas producing regions and are likely to contain significant hydrocarbon deposits. Alternatively the producing assets may be sold or leased if that will produce the most value. This task will continue through the first quarter of fiscal year 1994.

  2. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify...

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  4. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  5. Naval Petroleum and Oil Shale Reserves annual report of operations for fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31

    During fiscal year 1996, the Department of Energy continued to operate Naval Petroleum Reserve No. 1 in California and Naval Petroleum Reserve No. 3 in Wyoming through its contractors. In addition, natural gas operations were conducted at Naval Petroleum Reserve No. 3. All productive acreage owned by the Government at Naval Petroleum Reserve No. 2 in California was produced under lease to private companies. The locations of all six Naval Petroleum and Oil Shale Reserves are shown in a figure. Under the Naval Petroleum Reserves Production Act of 1976, production was originally authorized for six years, and based on findings of national interest, the President was authorized to extend production in three-year increments. President Reagan exercised this authority three times (in 1981, 1984, and 1987) and President Bush authorized extended production once (in 1990). President Clinton exercised this authority in 1993 and again in October 1996; production is presently authorized through April 5, 2000. 4 figs. 30 tabs.

  6. Study of alternatives for future operations of the naval petroleum and oil shale reserves, NOSR-2, Uintah and Carbon Counties, Utah. Final report

    SciTech Connect (OSTI)

    1996-12-01

    The US Department of Energy (DOE) has asked Gustavson Associates, Inc. to serve as an Independent Petroleum Consultant and authorized a study and recommendations regarding future development of Naval Oil Shale Reserve No. 2 (NOSR-2) in Uintah and Carbon Counties, Utah. The US owns 100% of the mineral rights and about 60% of the surface rights in NOSR-2. The Ute Indian Tribe owns the other 40% of the surface. This 88,890-acre tract was set aside as an oil shale reserve for the US Navy by an Executive Order of President Wilson in 1916. Management of NOSR-2 is the responsibility of DOE. No drilling for oil and gas has occurred on the property and no production has been established. No reserves are present, although the area is hypothesized to overlay gas resources. Mapping by the US Geological Survey and others has resulted in speculative seismic leads for structures that may or may not hold conventional oil and gas. All of the mineral rights (including oil shale) must be considered exploratory and the mineral rights must be valued accordingly. The opinion recommended to maximize value to the US is Option 4, sale of the interest of the US of all or part of NOSR-2. Evaluation of this option results in an estimated value which is more than three times greater than the next highest estimated value, for Option 2, transfer to the Department of the Interior for leasing.

  7. ,"North Dakota Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  8. ,"Lower 48 States Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"California Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. ,"Texas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  12. ,"Oklahoma Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  13. ,"Colorado Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  14. ,"Indiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  15. ,"Kentucky Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  16. ,"Ohio Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio...

  17. ,"Nebraska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. ,"Pennsylvania Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  19. ,"Montana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  20. ,"Utah Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah...

  1. ,"Michigan Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  2. ,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. ,"Florida Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  4. ,"Illinois Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  5. ,"Kansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  6. ,"Wyoming Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  7. ,"West Virginia Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West...

  8. ,"Alabama Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  9. ,"Arkansas Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  10. ,"Alaska Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  11. Proposed natural gas protection program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    As a result of US Department of Energy (DOE) monitoring activities, it was determined in 1983 that the potential existed for natural gas resources underlying the Naval Oil Shales Reserves Nos. 1 and 3 (NOSrs-1 3) to be drained by privately-owned gas wells that were being drilled along the Reserves borders. In 1985, DOE initiated a limited number of projects to protect the Government's interest in the gas resources by drilling its own offset production'' wells just inside the boundaries, and by formally sharing in the production, revenues and costs of private wells that are drilled near the boundaries ( communitize'' the privately-drilled wells). The scope of these protection efforts must be expanded. DOE is therefore proposing a Natural Gas Protection Program for NOSRs-1 3 which would be implemented over a five-year period that would encompass a total of 200 wells (including the wells drilled and/or communitized since 1985). Of these, 111 would be offset wells drilled by DOE on Government land inside the NOSRs' boundaries and would be owned either entirely by the Government or communitized with adjacent private land owners or lessees. The remainder would be wells drilled by private operators in an area one half-mile wide extending around the NOSRs boundaries and communitized with the Government. 23 refs., 2 figs., 6 tabs.

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  13. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    SciTech Connect (OSTI)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  14. World heavy oil and bitumen riches - update 1983: Part one, reserves

    SciTech Connect (OSTI)

    Not Available

    1983-05-25

    The fact that there are several OPEC members with significant non-conventional petroleum reserves, coupled with the economic interdependence of OPEC with oil-importing industrialized countries, means it is very much in OPEC's interest to promote international cooperation on non-conventional oil. The rationale behind the goal of decreasing dependence on conventional oil, particularly in the case of imports, is promotive of reducing pressure not only on oil-importing nations, but exporters as well. Thus it is in the interests of all countries to plan for the heavying up of the petroleum barrel, as this will inevitably accompany the decreases in conventional supplies and any increases of non-petroleum participation in the world energy diet. Although the megaprojects in Canada and Venezuela and other ambitious plans for development of heavy oil and bitumen have been shelved or delayed indefinitely due to lower light oil prices and reduced financial support, it was found that these setbacks have been superficial. Both Canada and Venezuela continue to pursue joint research with foreign countries and private companies. Like conservation, non-conventional petroleum-resource development is seen as internationally constructive. In this updating of reserves, it is noted that the geopolitics are inescapable when most of the light and medium oil is in the Middle East, and most heavy oil and tar sands are in the Western Hemisphere. This issue presents the Energy Detente fuel price/tax series and industrial fuel prices for May 1983 for countries of the Western Hemisphere.

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  16. DOE to ship 20,000 b/d of Elk Hills oil to SPR

    SciTech Connect (OSTI)

    Not Available

    1992-05-11

    This paper reports that the U.S. department of Energy has decided to ship 20,000 b/d of its Elk Hills field production in California to the Strategic Petroleum Reserve on the Gulf Coast. DOE says prices are too low to sell the high quality Elk Hills Stevens zone oil on the California market. It had warned local buyers it might divert the oil to the Gulf Coast. It says shipping the Elk Hills crude to the SPR site at Big Hill, Tex., will save $2/bbl under the price of comparable crude delivered there for storage in the SPR. Pipeline shipments are to begin June 1 and continue for 4 months, totaling about 2.4 million bbl. DOE may or may not continue the shipments, depending on results of the semiannual Elk Hills crude oil sale in September. Reductions in the existing 12 sales contracts will be prorated among buyers. The 20,000 b/d volume is the most that can be shipped from the West Coast to the Gulf Coast through available pipelines.

  17. Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed+ Lease

  18. Kentucky Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReservesReserves (BillionCoalbed+

  19. Montana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year JanProved Reserves+

  20. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  1. DEVELOPMENT OF SHALLOW VISCOUS OIL RESERVES IN NORTH SLOPE

    SciTech Connect (OSTI)

    Kishore K. Mohanty

    2003-07-01

    North Slope of Alaska has huge oil deposits in heavy oil reservoirs such as Ugnu, West Sak and Shrader Bluff etc. The viscosity of the last two reservoir oils vary from {approx}30 cp to {approx}3000 cp and the amount in the range of 10-20 billion barrels. High oil viscosity and low formation strength impose problems to high recovery and well productivity. Water-alternate-gas injection processes can be effective for the lower viscosity end of these deposits in West Sak and Shrader Bluff. Several gas streams are available in the North Slope containing NGL and CO{sub 2} (a greenhouse gas). The goal of this research is to develop tools to find optimum solvent, injection schedule and well-architecture for a WAG process in North Slope shallow sand viscous oil reservoirs. In the last quarter, we have developed streamline generation and convection subroutines for miscible gas injection. The WAG injection algorithms are being developed. We formulated a four-phase relative permeability model based on two-phase relative permeabilities. The new relative permeability formulations are being incorporated into the simulator. Wettabilities and relative permeabilities are being measured. Plans for the next quarter includes modeling of WAG injection in streamline based simulation, relative permeability studies with cores, incorporation of complex well-architecture.

  2. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect (OSTI)

    Not Available

    1991-05-16

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose in providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The following topics were discussed, groundwater protection; temporarily abandoned and idle wells; effluent discharges; storm water runoff; monitoring and compliance; wetlands; naturally occurring radioactive materials; RCRA reauthorization and oil pollution prevention regulation. At the conclusion, all of the participants were asked to complete a questionnaire which critiqued the day activities. A discussion of each of the issues is made a part of this report as is a summary of the critique questionnaire which were received.

  3. Naturally fractured reservoirs contain a significant amount of the world oil reserves. A number of these reservoirs contain several

    E-Print Network [OSTI]

    Arbogast, Todd

    Summary Naturally fractured reservoirs contain a significant amount of the world oil reserves simulation of naturally fractured reservoirs is one of the most important, challenging, and computationally intensive problems in reservoir engineering. Parallel reservoir simulators developed for naturally fractured

  4. EA-0531: Proposed Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3, Garfield County, Colorado

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal for a Natural Gas Protection Program for Naval Oil Shale Reserves Nos. 1 and 3 which would be implemented over a five-year period that...

  5. Oil and natural gas reserve prices : addendum to CEEPR WP 03-016 ; including results for 2003 revisions to 2001

    E-Print Network [OSTI]

    Adelman, Morris Albert

    2005-01-01

    Introduction. A working paper entitled "Oil and Natural Gas Reserve Prices 1982-2002: Implications for Depletion and Investment Cost" was published in October 2003 (cited hereafter as Adelman & Watkins [2003]). Since then ...

  6. DOE Seeks Commercial Storage for Northeast Home Heating Oil Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes on Another1990, status:Definition

  7. Florida Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved Reserves (Billion Cubic Feet)

  8. Florida Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWells (MillionProved Reserves (Billion Cubic

  9. Kansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (Billion Cubic+ Lease Condensate

  10. Kansas Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969CentralWellsMillionReserves (Billion Cubic+ Lease

  11. Lower 48 States Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential ConsumersProductionBarrels) Reserves in Nonproducing

  12. Michigan Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved Reserves (Billion Cubic Feet)+

  13. Michigan Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProved Reserves (Billion Cubic

  14. Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers THURSDAY,Proved Reserves (Billion

  15. Arkansas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona - Natural GasYear Jan FebProved Reserves+

  16. Colorado Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4Cubic Feet) Gas Wells (Million7Proved Reserves+

  17. Ohio Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate Proved Reserves (Million

  18. Ohio Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ Lease Condensate Proved Reserves

  19. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+ LeaseWellhead PriceProved ReservesProved+

  20. Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6Proved ReservesProved+ Lease

  1. Pennsylvania Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2 Year-3+Elements) Gas6Proved ReservesProved+

  2. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved Reserves (Billion Cubic Feet)Shale

  3. Montana Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014Proved ReservesFoot)Year JanProved

  4. Texas - RRC District 6 Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved Reserves (Billion Cubic Feet)

  5. Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million(MillionReserves (BillionCrude

  6. Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (BillionProduction (MillionProved

  7. U.S. Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData Files TransportationSalesProved

  8. Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2. Number+ Lease Condensate

  9. Utah Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010Feet)2. Number+ Lease

  10. West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0 Year-1 Year-2Year Jan FebBarrels) Reserves

  11. U.S. Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements, September 30, 1996 and 1995

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves (NOSR) numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the US taxpayer. NPOSR consists of the Naval Petroleum Reserve in California (NPRC or Elk Hills), which is responsible for operations of NPR-1 and NPR-2; the Naval Petroleum Oil Shale Reserve in Colorado, Utah, and Wyoming (NPOSR-CUW), which is responsible for operations of NPR-3, NOSR-1, 2, and 3 and the Rocky Mountain Oilfield Testing Center (RMOTC); and NPOSR Headquarters in Washington, DC, which is responsible for overall program direction. Each participant shares in the unit costs and production of hydrocarbons in proportion to the weighted acre-feet of commercially productive oil and gas formations (zones) underlying the respective surface lands as of 1942. The participating shares of NPR-1 as of September 30, 1996 for the US Government and Chevron USA, Inc., are listed. This report presents the results of the independent certified public accountants` audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1996.

  12. How can we build an oil reserve without offending the Saudis

    SciTech Connect (OSTI)

    Madison, C.

    1980-06-28

    Congress has ordered the Department of Energy to resume filling the strategic oil reserves at about the same 100,000 barrels of crude oil a day as the government fields at Elk Hills, California produce. Pressure to increase this amount while a world surplus exists will be strong, even though members of the Organization of Petroleum Exporting Countries (OPEC) have threatened to reduce their production if the US takes such action. The concept of a strategic reserve of 750 million barrels (a 90-day supply) first emerged as a way to separate foreign-policy decisions from foreign-oil supplies. The present level of 92 million barrels (12-13-days imports), however, has made the reserve a political issue. Delays were caused by a combination of site problems, budget cuts, market disruptions, and policy changes. The debate centers on timing - when the US should return to the market to continue filling the storage sites. US relations with Saudi Arabia are sensitive to Middle East peace agreements, the security of Saudi Arabian territory, and the security of Saudi Arabian production levels. The foreign-policy implications and their severity are disputed. (DCK)

  13. IOGCC/DOE oil and gas environmental workshop

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    The Interstate Oil and Gas Compact Commission (IOGCC) in cooperation with US Department of Energy (DOE) has developed a workshop format to allow state regulatory officials and industry representatives the opportunity to participate in frank and open discussions on issues of environmental regulatory compliance. The purpose of providing this forum is to assist both groups in identifying the key barriers to the economic recoverability of domestic oil and gas resources while adequately protecting human health and the environment. The IOGCC and DOE staff worked with key state and industry representatives to develop a list of appropriate regulatory and industry representatives to be invited to participate. These same industry and regulatory representatives also provided a prioritized list of topics to be discussed at this workshop. After the topic leader set out the issue, views of those present were solicited. In almost every case, both the industry representatives and the regulatory personnel spoke with candor in discussing the problems. Common points of discussion for each topic were: (1) conflicting state and federal regulations; (2) conflicting regulations or permit requirements established by different state agencies; (3) increasing compliance costs; and (4) regulatory constraints that will result in ``no net growth`` in California oil and gas production and more likely a net decrease. This report contains a copy of the written presentation for each topic as well as a summary of the participants discussion.

  14. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297Feet)Separation,Crude Oil

  15. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number(Million(Million Barrels) Crude Oil

  16. Alaska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers4.32 4.46ProductionCrude Oil + Lease

  17. California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 Arizona -ProductionWet AfterWetLeaseCrude Oil +

  18. California State Offshore Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal4 ArizonaResidential(Million Barrels) Crude Oil +

  19. Nebraska Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00 p.m.,9,7,3, 2011Crude Oil +

  20. Nebraska Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2,2,435,2226 (next release 2:00 p.m.,9,7,3, 2011Crude Oil

  1. Texas - RRC District 8 Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved(Million Barrels) Crude Oil +

  2. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1for AcquisitionNORTHEAST HOME HEATING OIL

  3. U.S. Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries andArea: U.S.

  4. ,"U.S. Total Crude Oil Proved Reserves, Reserves Changes, and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015" ,"ReleaseMonthly","10/2015"Prime Supplier Sales VolumesPrices by Sales Type"Proved Reserves,

  5. DOE Takes Next Steps to Expand Strategic Petroleum Reserve to...

    Energy Savers [EERE]

    of Energy Secretary Samuel W. Bodman today announced that DOE has identified the salt domes at Richton, in Mississippi, as the preferred alternative to lead the expansion of...

  6. Table 6. Crude oil and lease condensate proved reserves, reserves changes, and p

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocksU.S. shale gas plays: natural gasPetroleum NetCrude oil and

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  10. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  11. ,"New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 ©Annual",2014 ,"ReleaseLiquids Lease Condensate, ProvedCrude Oil Reserves

  12. ,"Calif--Coastal Region Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves in Nonproducing

  13. Report to Congress on the feasibility of establishing a heating oil component to the Strategic Petroleum Reserve. Volume 2: Appendices

    SciTech Connect (OSTI)

    1998-06-01

    Nine appendices to the main report are included in this volume. They are: Northeastern US distillate supply systems; New England fuel oil storage capacities and inventories; Characteristics of the northeast natural gas market; Documentation of statistical models and calculation of benefits; Regional product reserve study; Other countries` experience with refined product storage; Global refining supply demand appraisal; Summary of federal authorities relevant to the establishment of petroleum product reserves; Product stability and turnover requirements.

  14. EIS-0020: Crude Oil Transport Alternate From Naval Petroleum Reserve No. 1 Elk Hills/SOHIO Pipeline Connection Conveyance System, Terminal Tank Farm Relocation to Rialto, California

    Broader source: Energy.gov [DOE]

    The Office of Naval Petroleum and Oil Shale Reserves developed this supplement to a Department of Navy statement to evaluate the environmental impacts associated with a modified design of a proposed 250,000 barrels per day crude oil conveyance system from Naval Petroleum Reserve No. 1 to connect to the proposed SOHIO West Coast to Midcontinent Pipeline at Rialto, California.

  15. Y. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis," 16th International Conference on Information Quality, Nov. 18-20, 2011, Adelaide, Australia

    E-Print Network [OSTI]

    Berleant, Daniel

    have important implications due to the heavy reliance of modern economy on petroleum. Bad data can and governments or are not freely available. In some cases, oil reserve figures are exaggerated for economicY. Yiliyasi and D. Berleant, "World oil reserves data: information quality assessment and analysis

  16. The use of petroleum for liquid-transportation fuels has strained the environment and caused the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary fuel

    E-Print Network [OSTI]

    the global crude oil reserves to diminish. Therefore, there exists a need to replace petroleum as the primary

  17. DOE to Defer Strategic Petroleum Reserve RIK Deliveries | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zeroof Energy DOE site

  18. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  19. Investigation of oil injection into brine for the Strategic Petroleum Reserve : hydrodynamics and mixing experiments with SPR liquids.

    SciTech Connect (OSTI)

    Castaneda, Jaime N.; Cote, Raymond O.; Torczynski, John Robert; O'Hern, Timothy John

    2004-05-01

    An experimental program was conducted to study a proposed approach for oil reintroduction in the Strategic Petroleum Reserve (SPR). The goal was to assess whether useful oil is rendered unusable through formation of a stable oil-brine emulsion during reintroduction of degassed oil into the brine layer in storage caverns. An earlier report (O'Hern et al., 2003) documented the first stage of the program, in which simulant liquids were used to characterize the buoyant plume that is produced when a jet of crude oil is injected downward into brine. This report documents the final two test series. In the first, the plume hydrodynamics experiments were completed using SPR oil, brine, and sludge. In the second, oil reinjection into brine was run for approximately 6 hours, and sampling of oil, sludge, and brine was performed over the next 3 months so that the long-term effects of oil-sludge mixing could be assessed. For both series, the experiment consisted of a large transparent vessel that is a scale model of the proposed oil-injection process at the SPR. For the plume hydrodynamics experiments, an oil layer was floated on top of a brine layer in the first test series and on top of a sludge layer residing above the brine in the second test series. The oil was injected downward through a tube into the brine at a prescribed depth below the oil-brine or sludge-brine interface. Flow rates were determined by scaling to match the ratio of buoyancy to momentum between the experiment and the SPR. Initially, the momentum of the flow produces a downward jet of oil below the tube end. Subsequently, the oil breaks up into droplets due to shear forces, buoyancy dominates the flow, and a plume of oil droplets rises to the interface. The interface was deflected upward by the impinging oil-brine plume. Videos of this flow were recorded for scaled flow rates that bracket the equivalent pumping rates in an SPR cavern during injection of degassed oil. Image-processing analyses were performed to quantify the penetration depth and width of the oil jet. The measured penetration depths were shallow, as predicted by penetration-depth models, in agreement with the assumption that the flow is buoyancy-dominated, rather than momentum-dominated. The turbulent penetration depth model overpredicted the measured values. Both the oil-brine and oil-sludge-brine systems produced plumes with hydrodynamic characteristics similar to the simulant liquids previously examined, except that the penetration depth was 5-10% longer for the crude oil. An unexpected observation was that centimeter-size oil 'bubbles' (thin oil shells completely filled with brine) were produced in large quantities during oil injection. The mixing experiments also used layers of oil, sludge, and brine from the SPR. Oil was injected at a scaled flow rate corresponding to the nominal SPR oil injection rates. Injection was performed for about 6 hours and was stopped when it was evident that brine was being ingested by the oil withdrawal pump. Sampling probes located throughout the oil, sludge, and brine layers were used to withdraw samples before, during, and after the run. The data show that strong mixing caused the water content in the oil layer to increase sharply during oil injection but that the water content in the oil dropped back to less than 0.5% within 16 hours after injection was terminated. On the other hand, the sediment content in the oil indicated that the sludge and oil appeared to be well mixed. The sediment settled slowly but the oil had not returned to the baseline, as-received, sediment values after approximately 2200 hours (3 months). Ash content analysis indicated that the sediment measured during oil analysis was primarily organic.

  20. Geomechanical analysis to predict the oil leak at the wellbores in Big Hill Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Park, Byoung Yoon

    2014-02-01

    Oil leaks were found in wellbores of Caverns 105 and 109 at the Big Hill Strategic Petroleum Reserve site. According to the field observations, two instances of casing damage occurred at the depth of the interbed between the caprock bottom and salt top. A three dimensional finite element model, which contains wellbore element blocks and allows each cavern to be configured individually, is constructed to investigate the wellbore damage mechanism. The model also contains element blocks to represent interface between each lithology and a shear zone to examine the interbed behavior in a realistic manner. The causes of the damaged casing segments are a result of vertical and horizontal movements of the interbed between the caprock and salt dome. The salt top subsides because the volume of caverns below the salt top decrease with time due to salt creep closure, while the caprock subsides at a slower rate because the caprock is thick and stiffer. This discrepancy yields a deformation of the well. The deformed wellbore may fail at some time. An oil leak occurs when the wellbore fails. A possible oil leak date of each well is determined using the equivalent plastic strain failure criterion. A well grading system for a remediation plan is developed based on the predicted leak dates of each wellbore.

  1. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. Final technical report

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  2. Report to the President on agreements and programs relating to the Naval Petroleum and Oil Shale Reserves

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Department of Energy monitors commercial natural gas production activities along the boundaries of Naval Oil Shale Reserve No. 1 and Naval Oil Shale Reserve No. 3, which are located in Garfield County, Colorado, and were created in the early part of this century to provide a future source of shale oil for the military. In response to the private sector`s drilling of natural gas wells along the south and southwest boundaries of the Reserves, which began in the early 1980`s, the Department developed a Natural Gas Protection Program to protect the Government`s resources from drainage due to the increasing number of commercial gas wells contiguous to Naval Oil Shale Reserve No. 3. This report provides an update of the Gas Protection Program being implemented and the agreements that have been placed in effect since December 19, 1991, and also includes the one communitized well containing Naval Petroleum Reserve No. 3 lands. The Protection Program employs two methods to protect the Government`s resources: (1) sharing with the private sector in the costs and production of wells by entering into ``communitization`` agreements; and (2) drilling wholly-owned Government wells to ``offset`` commercial wells that threaten to drain natural gas from the Reserves. The methods designed to protect the Government`s resources are achieving their objective of abating gas drainage and migration. As a result of the Protection Program, the Department of Energy is able to produce natural gas and either sell its share on the open market or transfer it for use at Government facilities. The Natural Gas Protection Program is a reactive, ongoing program that is continually revised as natural gas transportation constraints, market conditions, and nearby commercial production activities change.

  3. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H.

    1996-12-31

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  4. Increased reserves through horizontal drilling in a mature waterflood, Long Beach unit, Wilmington Oil Field, California

    SciTech Connect (OSTI)

    Berman, B.H. )

    1996-01-01

    Ranger Zone development started in 1965. A waterflood was initiated from the start using a staggered line-drive pattern. Infill drilling in the early 1980s and again in the 1990s revealed bypassed oil in the upper Ranger Fo sand. Detailed studies of the aerial extent of the remaining oil resulted in drilling 17 horizontal wells to recover these reserves. The Fo target sand thickness is 20 to 50 feet. Well courses are between 10 and 15 feet below the top of the Fo with lengths varying from 800 to 1,000 feet. The success of the Fo drilling program has prompted expansion of horizontal drilling into thin-bedded sand units. Well lengths have increased to between 1,500 and 1,800 feet with structural trend used to advantage. Where needed, probes are designed to penetrate the target sand before setting intermediate casing. The drilling program has been extended into bilateral horizontal completions. Geosteering with MWD/GR and a 2 MHz dual propagation resistivity tool is used to the casing point. In the completion interval, only the MWD/GR tool is used and a drillpipe conveyed E-log is run afterward to confirm expected resistivities. Despite the many well penetrations in the Ranger Zone, structural control is only fair. Accuracy of MWD data is generally low and geosteering is done by TVD log correlation. With a recovery factor of over 30 percent in Ranger West, from approximately 800 wells drilled in the last 30 years, the horizontal drilling program targeting bypassed reserves has brought new life to this mature reservoir.

  5. DOE's Portal to Deepwater Horizon Oil Spill Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    On April 20, 2010, the Deepwater Horizon platform in the Gulf of Mexico exploded. The explosion and fire killed and injured workers on the oil rig, and caused major releases of oil and gas into the Gulf for several months. The Department of Energy, in keeping with the Obama Administrations ongoing commitment to transparency, provided online access to data and information related to the response to the BP oil spill. Included are schematics, pressure tests, diagnostic results, video clips, and other data. There are also links to the Restore the Gulf website, to the trajectory forecasts from NOAA, and oil spill information from the Environmental Protection Agency.

  6. ,"Calif--Los Angeles Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrude Oil

  7. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  8. Does Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks with another spike in gasoline

    E-Print Network [OSTI]

    Ahmad, Sajjad

    with another spike in gasoline prices and their reported record profits. Some months ago, during the last gasoline price spike, Congress summoned the executives of the Big Oil companies to testify aboutDoes Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks

  9. Naval petroleum reserves

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    A hearing to consider two bills (S. 1744 and H.R. 3023) authorizing appropriations to operate the Naval Petroleum Reserve during fiscal 1982 brought testimony from officials of the Departments of Energy and Defense; from Chevron, USA; and from the Independent Refiners Association. Both bills authorize $228,463,000, of which $2.56 million will be available for the naval oil shale reserves and the remainder for the naval petroleum reserves. Chevron spokesmen noted that 8-11 months were required to reach full production at the Elk Hills site rather than the 60-90 days estimated by DOE, although both Chevron and the Independent Refiners Association of the west coast support the President's decision that it is in the national interest to continue the production of crude from naval petroleum reserves for the next three years.

  10. 05663_AlaskaHeavyOil | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fluid and Rock Property Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery...

  11. EIA - Analysis of Natural Gas Exploration & Reserves

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10292009, PDF, XLS, and...

  12. Naval Petroleum Reserve No. 2: Buena Vista Oil and Gas Field, Kern County, California: Proved reserves, Developed and undeveloped, Sections 6 and 8: Development history and exploitation techniques, Effective July 1, 1987: (Final technical report)

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-09

    The research for the initial Naval Petroleum Reserve No. 2 (NPR-2), study Task Assignment 010, showed the possibility of undeveloped proved reserves in the Shallow Pool on Government leases. Task Assignment 010C included a study to confirm or disprove the possibility. The six-section area, which is highlighted on Exhibit M-2, was chosen as the area for specific study of this subject. The Shallow Oil Zone, as depicted on Exhibit S-1, was the focal point of the study in the area. Competitive development of Government land with adjacent privately held land is an issue which has often been raised regarding NPR-2; however, it has never been formally addressed. Task Assignment 010C commissioned a study of the subject in the same six-section area designated for the study of proved undeveloped reserves. The producing formations in the Buena Vista Field of NPR-2 are very similar to the producing formations in the Elk Hills Field of NPR-1 to the north. It is possible that some of the successful development techniques utilized in NPR-2 by the various operators might enhance production efficiency at NPR-1. Task Assignment 010C included a detailed task of researching techniques used in NPR-2 for possible application in NPR-1. Because the detailed tasks of Task Assignment 010C are divergent in scope, a composite summary of the study's research is not included in this report. Each task's research is detailed in a separate Discussion section. Exhibits for these discussions are contained in an Exhibit section at the end of this volume. The appendices include: task assignment; DOE letters to lessees; Evans, Carey and Crozier letters to lessees; reports and studies from lessees; core analysis data; production data; geologic picks of formation tops; and annotated well logs. 22 figs., 6 tabs.

  13. A study of the effects of enhanced oil recovery agents on the quality of Strategic Petroleum Reserves crude oil. [Physical and chemical interactions of Enhanced Oil Recovery reagents with hydrocarbons present in petroleum

    SciTech Connect (OSTI)

    Kabadi, V.N.

    1992-10-01

    The project was initiated on September 1, 1990. The objective of the project was to carry out a literature search to estimate the types and extents of long time interactions of enhanced oil recovery (EOR) agents, such as surfactants, caustics and polymers, with crude oil. This information is necessary to make recommendations about mixing EOR crude oil with crude oils from primary and secondary recovery processes in the Strategic Petroleum Reserve (SPR). Data were sought on both adverse and beneficial effects of EOR agents that would impact handling, transportation and refining of crude oil. An extensive literature search has been completed, and the following informations has been compiled: (1) a listing of existing EOR test and field projects; (2) a listing of currently used EOR agents; and (3) evidence of short and long term physical and chemical interactions of these EOR-agents with hydrocarbons, and their effects on the quality of crude oil at long times. This information is presented in this report. Finally some conclusions are derived and recommendations are made. Although the conclusions are based mostly on extrapolations because of lack of specific data, it is recommended that the enhancement of the rates of biodegradation of oil catalyzed by the EOR agents needs to be further studied. There is no evidence of substantial long term effects on crude oil because of other interactions. Some recommendations are also made regarding the types of studies that would be necessary to determine the effect of certain EOR agents on the rates of biodegradation of crude oil.

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001. Much of the second quarter was spent writing DOE annual and quarterly reports to stay current with contract requirements.

  15. Audit of controls over crude oil production under Public Law 94-258 Naval Petroleum Reserve No. 1, Elk Hills, California. [Compliance with legislation

    SciTech Connect (OSTI)

    Not Available

    1986-04-25

    The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258) requires the Secretary to produce oil and gas from the Reserve at the Maximum Efficient Rate (MER) developed consistent with sound engineering practices. MER is defined as ''the maximum sustainable daily oil or gas rate from a reservoir which will permit economic development and depletion of that reservoir without detriment to the ultimate recovery.'' MER is determined through analyses and calculations using defined factors and parameters acquired through standard oil field testing procedures. Economic development and depletion of a reservoir without detriment to ultimate recovery means that production rates should not cause loss of originally obtainable petroleum and that revenues should exceed the cost of production. The purpose of the audit was to determine if the Department had adhered to the MER limitation on production at the Reserve as required by Public Law 94-258. Our review disclosed that production rates at the Reserve were not developed through engineering-based MER calculations. Production for the past seven years has exceeded the MER calculated by the Reserve's own engineers and principal consultants. According to studies prepared by the Department's technical engineers and consultants, between 90 and 130 million barrels of otherwise recoverable oil is at risk of being lost through overproduction over the life of the Reserve. Based on the average market value of $18 per barrel on March 6, 1986, the value of this oil was between $1.60 billion and $2.30 billion. We estimate that about half of the oil at risk of loss could yet be recovered if Reserve management develops and implements valid engineering-based MERs. 11 refs.

  16. enhanced_oil_current_proj | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princetondefault Sign InEnhanced Oil Recovery and

  17. enhanced_oil_recovery | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princetondefault Sign InEnhanced Oil Recovery

  18. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientific andComplexOfficeOfficeOil & Gas

  19. ,"Calif--San Joaquin Basin Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude Oil Reserves inCrudeCrude

  20. Oil & Natural Gas Technology DOE Award No.: FWP 49462

    E-Print Network [OSTI]

    Boyer, Elizabeth W.

    Supply by Source Source: DOE/EIA Annual Energy Outlook 2009. Note that Tcf refers to trillion cubic feet, IL Prepared for: United States Department of Energy National Energy Technology Laboratory July 2010 Office of Fossil Energy #12;T #12;#12;Water Management in the Marcellus Shale Page 1 Chapter 1

  1. Does Ownership Matter? The Performance and Efficiency of State Oil vs. Private Oil (1987-2006)

    E-Print Network [OSTI]

    Wolf, C.

    of years had officially dropped to just 38%. 12 the appropriate CPI deflators; the annual average real-terms crude oil price and global refining margin (average of US Gulf Coast, North-West Europe and Singapore), sourced from the BP Statistical Review... ), the coverage of the PIW dataset becomes more comprehensive over time, indicating an ongoing consolidation trend in the industry. Coverage of global oil production increases from 59% in 1987 to 80% in 2006 (73% on average), coverage of global gas production...

  2. Does "Paper Oil" Matter? Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full reportTown August1Documents forDoes

  3. 3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, and River Reservation, Arapaho and Shoshone Tribes, Wyoming

    SciTech Connect (OSTI)

    La Pointe, Paul R.; Hermanson, Jan

    2002-09-09

    The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.

  4. US Department of Energy Naval Petroleum and Oil Shale Reserves combined financial statements and management overview and supplemental financial and management information, September 30, 1995 and 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-15

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on the 1995 statements. Their reports on the NPOSR internal control structure and compliance with laws and regulations are also provided.

  5. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE`s Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES&H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES&H/QA programs was conducted.

  6. Texas--RRC District 7C Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)Proved Reserves (Billion

  7. U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData Files TransportationSalesProved Reserves

  8. DOE to Sell 35,000 Barrels of Oil from the Northeast Home Heating Oil

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE ZeroofBatteriesHybridNationalfor 2009

  9. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  11. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  12. Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2000 SPE/DOE Improved Oil Recovery

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    at the 2000 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, 35 April 2000. This paper, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers could be modified? Does water injection help to recover sufficiently more oil or is it just for pressure

  13. ,"California - Coastal Region Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude OilCrude Oil + Lease

  14. ,"California Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014CrudeCoalbedCrude Oil +Crude Oil +

  15. Report on inspection of concerns regarding DOE`s evaluation of Chevron USA`s unsolicited proposal for the Elk Hills Naval Petroleum Reserve

    SciTech Connect (OSTI)

    NONE

    1997-11-17

    An allegation was made to the Office of Inspector General (OIG) that the integrity of the Department of Energy`s (DOE) unsolicited proposal review process may have been compromised by the actions of a former Deputy Secretary of Energy and his Executive Assistant during the review of an unsolicited proposal received from Chevron U.S.A. Production Company (Chevron) in may 1993. The Chevron unsolicited proposal was for the management and operation of DOE`s Elk Hills Naval Petroleum Reserve (Elk Hills), located near Bakersfield, California. Chevron submitted the unsolicited proposal on May 19, 1993. DOE formally rejected Chevron`s unsolicited proposal in May 1995. Although Chevron`s unsolicited proposal was eventually rejected by DOE, the complainant specifically alleged that the {open_quotes}sanctity, integrity, and sensitivity{close_quotes} of the unsolicited proposal review process had been breached in meetings during the Fall of 1993 between Chevron officials, the Deputy Secretary of Energy (Deputy Secretary), and his Executive Assistant. Based on our review of the allegation, we identified the following issue as the focus of our inspection.

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  19. Tiger Team Assessment of the Naval Petroleum Reserves in California

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    This report documents the Tiger Team Assessment of the Naval Petroleum Reserves in California (NPRC) which consists of Naval Petroleum Reserve Number 1 (NPR-1), referred to as the Elk Hills oil field and Naval Petroleum Reserve Number 2 (NPR-2), referred to as the Buena Vista oil field, each located near Bakersfield, California. The Tiger Team Assessment was conducted from November 12 to December 13, 1991, under the auspices of DOE's Office of Special Projects (OSP) under the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety, and health (ES H), and quality assurance (OA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal, State of California, and local regulations; applicable DOE Orders; best management practices; and internal NPRC requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of DOE/NPRC, CUSA, and BPOI management of the ES H/QA programs was conducted.

  20. Nigeria steps up action to define and increase its oil reserves

    SciTech Connect (OSTI)

    Page, N.

    1992-01-06

    This paper reports that within the past 18 months, the Nigerian Ministry of Petroleum Resources has moved aggressively to increase investment in known producing areas and stimulate exploration in frontier regions in order to define and expand the country's reserve base for the start of the 21st century. At industry seminars held in November and December 1991 in Houston, London, and Lagos, the Ministry in association with TGSI-Mabon Geophysical Co. reviewed the Nigerian political and economic climate, recent industry development and leasing activity, deep-water geology and exploration potential, and the probable areas' terms and conditions for a new bidding round to be announced in early 1992.

  1. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per Thousand CubicCoalbed Methane Proved Reserves (Billion+

  2. ,"Pennsylvania Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per ThousandAnnual",2014Coalbed Methane Proved Reserves+

  3. ,"U.S. Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"CoalbedGas,+ Lease Condensate Proved Reserves

  4. ,"U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet After LeaseAnnual",2014Value

  5. ,"Utah Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, Wet AfterPetroleumU.S. Underground NaturalStateCoalbed+

  6. ,"West Virginia Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, WetAnnual",2014Associated-Dissolved+ Lease

  7. ,"West Virginia Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas, WetAnnual",2014Associated-Dissolved+

  8. ,"Wyoming Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves,Summary" ,"Click worksheet name or tabCoalbed+

  9. ,"Federal Offshore--California Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbed Methane Proved Reserves (BillionGulf

  10. ,"Illinois Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG StorageCoalbedPrices"+ Lease Condensate Proved Reserves

  11. ,"Kentucky Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUnderground Natural Gas StorageCoalbed Methane Proved Reserves+

  12. Texas - RRC District 4 Onshore Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1Plant ProcessingProductionCubicProved Reserves

  13. Texas - RRC District 7B Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved Reserves (BillionSeparation,

  14. Texas - RRC District 7C Crude Oil + Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation, Proved ReservesSeparation, Proved(Million

  15. Texas--RRC District 6 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1PlantSeparation,%Production(MillionProved Reserves

  16. Texas--RRC District 7B Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet) Texas--RRC District

  17. Texas--RRC District 8 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic Feet)ProvedShale(Million Barrels)

  18. Texas--RRC District 8A Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(Million Barrels)Proved

  19. Texas--RRC District 9 Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved Reserves (Billion Cubic(MillionProductionProvedProved(Million

  20. U.S. Federal Offshore Crude Oil + Lease Condensate Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData FilesAdjustmentsOriginOrigin State2009

  1. U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData FilesAdjustmentsOriginOrigin State2009(Million

  2. U.S. Total Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table 1 | Table 3Crude

  3. 2016 EIA-23 Annual Survey of Domestic Oil and Gas Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas ReservesAlabama AlabamaSurvey Forms Proposed Changes6

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  5. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  6. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, R.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-10-21

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period July - September 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  7. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker.

    1998-01-26

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the Federal Assistance Reporting Checklist . The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  8. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1998-04-22

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1998 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

  9. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management.

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nauyen, John; Moos, Dan; Tagbor, Kwasi

    1997-07-28

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period April - June 1997 and to report all technical data and findings as specified in the `Federal Assistance Reporting Checklist`. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    Through December 1999, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar (Tar II-A) Zone. Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood project. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone in order to focus the remaining time on using the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the Tar II-A steamflood project. On January 12, 1999, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations by injecting cold water into the flanks of the steamflood. The purpose of flank injection has been to increase and subsequently maintain reservoir pressures at a level that would fill-up the steam chests in the ''T'' and ''D'' sands before they can collapse and cause formation compaction and to prevent the steam chests from reoccurring. A new 3-D deterministic thermal reservoir simulation model was used to provide operations with the necessary water injection rates and allowable production rates by well to minimize future surface subsidence and to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current thermal operations in the Wilm

  11. Naval Petroleum and Oil Shale Reserves Combined Financial Statements September 30, 1994 and 1993 and Management Overview and Supplemental Financial and Management Information

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This report presents the results of the independent certified public accountant`s audit of the Department of Energy`s (Department) Naval Petroleum and Oil Shale Reserves (NPOSR) financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on the 1994 statements. Their reports on the NPOSR internal control structure and on compliance with laws and regulations, and management letter on addressing needed improvements are also provided. NPOSR consists of petroleum reserves in California and Wyoming, and oil shale reserves in Colorado and Utah. The Government`s interests in NPOSR are managed by the Department through its headquarters office in Washington, D.C. In addition, the Department has site offices in both California and Wyoming that are responsible for contractor oversight functions. Daily operations are conducted under contract by two management and operating contractors. By law, NPOSR was authorized to produce crude oil at the maximum efficient rate for six years. The law allowed production to be extended for three year periods, provided that the President of the United States certified that continued maximum production was in the best interest of the nation. The current three year period ends on April 5, 1997. Additional information about NPOSR is provided in the overview and notes to the financial statements.

  12. Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2000 SPE/DOE Improved Oil Recovery

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    at the 2000 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, 35 April 2000. This paper, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers

  13. This paper was prepared for presentation at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery held in Tulsa, Oklahoma, 1317 April 2002.

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    This paper was prepared for presentation at the SPE/DOE Thirteenth Symposium on Improved Oil and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any

  14. Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2000 SPE/DOE Improved Oil Recovery Symposium

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    at the 2000 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, 35 April 2000. This paper, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers

  15. DOE Announces Additional Loan of Oil from the Strategic Petroleum Reserve |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment of EnergyResearchersOctoberCharles DOEJungleWinter

  16. Department of Energy Announces Two Additional Loans of Oil from...

    Office of Environmental Management (EM)

    Two Additional Loans of Oil from the Strategic Petroleum Reserve Department of Energy Announces Two Additional Loans of Oil from the Strategic Petroleum Reserve September 2, 2005 -...

  17. Oil Shale and Other Unconventional Fuels Activities | Department...

    Energy Savers [EERE]

    Services Petroleum Reserves Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy...

  18. Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; Dwasi Tagbor; John Nguygen; Roy Koerner; Scott Walker

    1997-04-10

    The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

  19. Table 2. U.S. tight oil plays: production and proved reserves, 2013-14

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price toStocks 2009CubicAnalysisYear Jana.Alabama"U.S. tight oil

  20. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry Natural GasGas, WetLiquids LeaseShaleCrude Oil

  1. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA -Liquids Lease Condensate, ProvedShaleUndergroundCrude Oil + Lease

  2. ,"Texas Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"Coalbed MethaneDryDryDry NaturalCrude Oil + Lease

  3. ,"Texas State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by9"CoalbedGas, Wet After LeaseCrude Oil + Lease

  4. ,"California Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014CrudeCoalbedCrude Oil + Lease

  5. ,"California State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage Net WithdrawalsNonassociated Natural Gas, WetCrude Oil

  6. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDry Natural GasGas, Wet AfterCrude Oil + Lease

  7. Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct: Crude Oil and

  8. Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct: Crude Oil andData Series:

  9. U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries andArea: U.S.U.S.

  10. U.S. Crude Oil + Lease Condensate Reserves Sales (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of the NationalSales (Million Barrels) U.S. Crude Oil + Lease

  11. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940s and was severely weathered. The composition of this dead Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  12. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  13. DOE - Office of Legacy Management -- Naval Petroleum Reserve No 3 - 046

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth Dakota Edgemont,Manufacturing - OHSellingAcmePetroleum Reserve No

  14. International Oil and Gas Exploration and Development

    Reports and Publications (EIA)

    1993-01-01

    Presents country level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve to production ratios (R/P ratios) for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form.

  15. H.R. 817: A Bill to authorize the Secretary of Energy to lease lands within the naval oil shale reserves to private entities for the development and production of oil and natural gas. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    This bill would give the Secretary of Energy authority to lease lands within the Naval oil shale reserves to private entities for the purpose of surveying for and developing oil and gas resources from the land (other than oil shale). It also allows the Bureau of Land Management to be used as a leasing agent, establishes rules on royalties, and the sharing of royalties with the state, and covers the transfer of existing equipment.

  16. Environmental assessment of a proposed steam flood of the Shallow Oil Zone, Naval Petroleum Reserve No. 1 (Elk Hills), Kern County, California

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The US Department of Energy proposes to develop a limited enhanced oil recovery project in the Shallow Oil Zone at Naval Petroleum Reserve No. 1 (NPR-1) Elk Hills. The project would employ steam forced into the oil-bearing formation through injector wells, and would involve two phases. The initiation of the second phase would be dependent on the economic success of the first phase. The total project would require the drilling of 22 new wells in a 45-acre area supporting seven existing production wells. It would also require construction of various surface facilities including a tank setting (gas-oil separation system), steam generators, and a water treatment plant. Adverse environmental impacts associated with the proposed steam flood project would include the effects on vegetation, wildlife and land-use resulting from the total reconfiguration of the topography within the project bondaries. Other adverse impacts include the emission of oxides of nitrogen, carbon monoxide, hydrocarbons and particulates from steam generators, vehicles and associated surface facilities. Minor adverse impacts include localized noise and dust during constuction, and reduction of visual quality. 48 refs., 7 figs., 10 tabs.

  17. Naval Petroleum Reserve No. 1

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    For several years, the administration has proposed selling the government's ownership interest in the Naval Petroleum Reserves, arguing that it would help reduce the federal budget deficit. The administration's latest proposal calls for the sale of reserves in fiscal year 1990. DOE estimates that if the reserves are sold in 1990, proceeds would amount to about $3.4 billion. The Naval Petroleum Reserve at Elk Hills, California, is the largest of the reserves. This report has reviewed and analyzed the new reserve data and found that DOE's reserve estimates for Elk Hills are still neither accurate nor up-to-date.

  18. The Oil Security Metrics Model: A Tool for Evaluating the Prospective Oil Security Benefits of DOE's Energy Efficiency and Renewable Energy R&D Programs

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL

    2006-05-01

    Energy technology R&D is a cornerstone of U.S. energy policy. Understanding the potential for energy technology R&D to solve the nation's energy problems is critical to formulating a successful R&D program. In light of this, the U.S. Congress requested the National Research Council (NRC) to undertake both retrospective and prospective assessments of the Department of Energy's (DOE's) Energy Efficiency and Fossil Energy Research programs (NRC, 2001; NRC, 2005). ("The Congress continued to express its interest in R&D benefits assessment by providing funds for the NRC to build on the retrospective methodology to develop a methodology for assessing prospective benefits." NRC, 2005, p. ES-2) In 2004, the NRC Committee on Prospective Benefits of DOE's Energy Efficiency and Fossil Energy R&D Programs published a report recommending a new framework and principles for prospective benefits assessment. The Committee explicitly deferred the issue of estimating security benefits to future work. Recognizing the need for a rigorous framework for assessing the energy security benefits of its R&D programs, the DOE's Office of Energy Efficiency and Renewable Energy (EERE) developed a framework and approach for defining energy security metrics for R&D programs to use in gauging the energy security benefits of their programs (Lee, 2005). This report describes methods for estimating the prospective oil security benefits of EERE's R&D programs that are consistent with the methodologies of the NRC (2005) Committee and that build on Lee's (2005) framework. Its objective is to define and implement a method that makes use of the NRC's typology of prospective benefits and methodological framework, satisfies the NRC's criteria for prospective benefits evaluation, and permits measurement of that portion of the prospective energy security benefits of EERE's R&D portfolio related to oil. While the Oil Security Metrics (OSM) methodology described in this report has been specifically developed to estimate the prospective oil security benefits of DOE's R&D programs, it is also applicable to other strategies and policies aimed at changing U.S. petroleum demand.

  19. S. 2375: a bill to disapprove of certain deferrals of Strategic Petroleum Reserve budget authority, to authorize additional appropriations with respect to the Strategic Petroleum Reserve, and to increase oil import fees. Introduced in the Senate of the United States, Ninety-Ninth Congress, Second Session, April 28, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The purpose of this bill is to disapprove of certain deferrals of the Strategic Petroleum Reserve (SPR) budget authority, to authorize additional appropriations to the SPR, and to increase oil import fees. The bill authorizes $1 billion for fiscal years 1987, 88, and 89 for crude oil acquisitions for the SPR and $163 million for storage and related facility construction during 1987. It also instructs the Energy Secretary to cease production from the Naval Petroleum Reserve at Elk Hills for six months to allow the reservoir depletion to stabilize.

  20. Collection of Windfall Profit Tax for crude oil sales at the Naval Petroleum Reserves in California (Elk Hills, California)

    SciTech Connect (OSTI)

    Not Available

    1985-05-31

    Our audit disclosed that between October 1, 1983 and March 31, 1984 the government lost about $244,000 in interest income due to delays in collecting the tax on NPRC crude oil sales. We found that purchasers of the crude oil were not paying the windfall profit tax at the same time that they paid the Department for the oil itself, as required by the oil sales contracts and the windfall profits tax regulations. Correction of the deficiencies, through changes in the tax code and improved oversight by Department officials, could lead to estimated annual interest savings to the government of about $500,000.

  1. The Politics of Mexicos Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01

    2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

  2. Habitat reclamation plan to mitigate for the loss of habitat due to oil and gas production activities under maximum efficient rate, Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C.

    1994-11-01

    Activities associated with oil and gas development under the Maximum Efficiency Rate (MER) from 1975 to 2025 will disturb approximately 3,354 acres. Based on 1976 aerial photographs and using a dot grid methodology, the amount of land disturbed prior to MER is estimated to be 3,603 acres. Disturbances on Naval Petroleum Reserve No. 1 (NPR-1) were mapped using 1988 aerial photography and a geographical information system. A total of 6,079 acres were classified as disturbed as of June, 1988. The overall objective of this document is to provide specific information relating to the on-site habitat restoration program at NPRC. The specific objectives, which relate to the terms and conditions that must be met by DOE as a means of protecting the San Joaquin kit fox from incidental take are to: (1) determine the amount and location of disturbed lands on NPR-1 and the number of acres disturbed as a result of MER activities, (2) develop a long term (10 year) program to restore an equivalent on-site acres to that lost from prior project-related actions, and (3) examine alternative means to offset kit fox habitat loss.

  3. DOE, States Seek Closer Collaboration on Oil and Gas Supply and Delivery, Climate Change Mitigation

    Broader source: Energy.gov [DOE]

    An agreement aimed at improving cooperation and collaboration in the areas of oil and natural gas supply, delivery, and climate change mitigation, has been signed by the U.S. Department of Energy and the Interstate Oil and Gas Compact Commission (IOGCC).

  4. Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050

    SciTech Connect (OSTI)

    Greene, D.L.

    2003-11-14

    This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

  5. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  6. DOE-Funded Project Shows Promise for Tapping Vast U.S. Oil Shale Resources

    Office of Energy Efficiency and Renewable Energy (EERE)

    A technology as simple as an advanced heater cable may hold the secret for tapping into the nation's largest source of oil, which is contained in vast amounts of shale in the American West.

  7. Fiscal Policy and Utah's Oil and Gas Industry

    E-Print Network [OSTI]

    features of Utah's oil and gas industry. The Oil and Gas Industry in Utah Reserves and Production Oil of production. New discoveries of oil and gas, as well as extensions of known oil and gas fields, increase and gas production has taken place on federal lands. Oil and gas reserves are as much an economic

  8. DOE Seeks Commercial Storage to Complete Fill of Northeast Home Heating Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY Takes on Another1990, status:DefinitionReserve

  9. ,"California - Los Angeles Basin Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 ©Prices"Annual",2014Crude OilCrude OilCoalbed

  10. 3-D RESERVOIR AND STOCHASTIC FRACTURE NETWORK MODELING FOR ENHANCED OIL RECOVERY, CIRCLE RIDGE PHOSPHORIA/TENSLEEP RESERVOIR, WIND RIVER RESERVATION, ARAPAHO AND SHOSHONE TRIBES, WYOMING

    SciTech Connect (OSTI)

    Paul La Pointe; Jan Hermanson; Robert Parney; Thorsten Eiben; Mike Dunleavy; Ken Steele; John Whitney; Darrell Eubanks; Roger Straub

    2002-11-18

    This report describes the results made in fulfillment of contract DE-FG26-00BC15190, ''3-D Reservoir and Stochastic Fracture Network Modeling for Enhanced Oil Recovery, Circle Ridge Phosphoria/Tensleep Reservoir, Wind River Reservation, Arapaho and Shoshone Tribes, Wyoming''. The goal of this project is to improve the recovery of oil from the Tensleep and Phosphoria Formations in Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models. Fields in which natural fractures dominate reservoir permeability, such as the Circle Ridge Field, often experience sub-optimal recovery when recovery processes are designed and implemented that do not take advantage of the fracture systems. For example, a conventional waterflood in a main structural block of the Field was implemented and later suspended due to unattractive results. It is estimated that somewhere less than 20% of the OOIP in the Circle Ridge Field have been recovered after more than 50 years' production. Marathon Oil Company identified the Circle Ridge Field as an attractive candidate for several advanced IOR processes that explicitly take advantage of the natural fracture system. These processes require knowledge of the distribution of matrix porosity, permeability and oil saturations; and understanding of where fracturing is likely to be well-developed or poorly developed; how the fracturing may compartmentalize the reservoir; and how smaller, relatively untested subthrust fault blocks may be connected to the main overthrust block. For this reason, the project focused on improving knowledge of the matrix properties, the fault block architecture and to develop a model that could be used to predict fracture intensity, orientation and fluid flow/connectivity properties. Knowledge of matrix properties was greatly extended by calibrating wireline logs from 113 wells with incomplete or older-vintage logging suites to wells with a full suite of modern logs. The model for the fault block architecture was derived by 3D palinspastic reconstruction. This involved field work to construct three new cross-sections at key areas in the Field; creation of horizon and fault surface maps from well penetrations and tops; and numerical modeling to derive the geometry, chronology, fault movement and folding history of the Field through a 3D restoration of the reservoir units to their original undeformed state. The methodology for predicting fracture intensity and orientation variations throughout the Field was accomplished by gathering outcrop and subsurface image log fracture data, and comparing it to the strain field produced by the various folding and faulting events determined through the 3D palinspastic reconstruction. It was found that the strains produced during the initial folding of the Tensleep and Phosphoria Formations corresponded well without both the orientations and relative fracture intensity measured in outcrop and in the subsurface. The results have led to a 15% to 20% increase in estimated matrix pore volume, and to the plan to drill two horizontal drain holes located and oriented based on the modeling results. Marathon Oil is also evaluating alternative tertiary recovery processes based on the quantitative 3D integrated reservoir model.

  11. DOE to Unveil New Online Database of Oil and Natural Gas Research Results

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy plans to introduce a new, user-friendly online repository of oil and natural gas research results at the Society of Petroleum Engineers' Annual Technical Conference and Exhibition, to be held in New Orleans, La., October 4-7, 2009.

  12. DOE-Supported Publication Boosts Search for Oil, Natural Gas by Petroleum Operators

    Office of Energy Efficiency and Renewable Energy (EERE)

    A comprehensive publication detailing the oil-rich fields of Utah and nearby states, sponsored by the U.S. Department of Energy, can now provide petroleum companies and related service providers with the geologic, geographic, and engineering data needed to tap into these resources.

  13. DOE Issues Solicitation for Purchase of Oil for the Strategic Petroleum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice of Headquarters Accounting OperationsSupport ServicesReserve |

  14. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  15. Strategic Petroleum Reserve quarterly report

    SciTech Connect (OSTI)

    Not Available

    1991-08-15

    This August 15, 1991, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period April 1, 1991, through June 30, 1991. The Strategic Petroleum Reserve storage facilities development program is proceeding on schedule. The Reserve's capacity is currently 726 million barrels. A total of 5.5 million barrels of new gross cavern volume was developed at Big Hill and Bayou Choctaw during the quarter. There were no crude oil deliveries to the Strategic Petroleum Reserve during the calendar quarter ending June 30, 1991. Acquisition of crude oil for the Reserve has been suspended since August 2, 1990, following the invasion of Kuwait by Iraq. As of June 30, 1991, the Strategic Petroleum Reserve inventory was 568.5 million barrels. The reorganization of the Office of the Strategic Petroleum Reserve became effective June 28, 1991. Under the new organization, the Strategic Petroleum Reserve Project Management Office in Louisiana will report to the Strategic Petroleum Reserve Program Office in Washington rather than the Oak Ridge Field Office in Tennessee. 2 tabs.

  16. Estimation of resources and reserves

    E-Print Network [OSTI]

    Massachusetts Institute of Technology. Energy Laboratory.

    1982-01-01

    This report analyzes the economics of resource and reserve estimation. Current concern about energy problems has focused attention on how we measure available energy resources. One reads that we have an eight-year oil ...

  17. Copyright 1998, Society of Petroleum Engineers, Inc. This paper was prepared for presentation at the 1998 SPE/DOE Improved Oil Recovery

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    at the 1998 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, 1922 April 1998. This paper-972-952-9435. Abstract This paper deals with growth of injection hydrofractures in transient linear flow in a low flow. In other words, at constant injection pressure, injection rate is remarkably constant. Therefore

  18. Oil transportation in the global landscape : the Murmansk Oil Terminal and Pipeline proposal evaluated

    E-Print Network [OSTI]

    Roy, Ankur, 1976-

    2003-01-01

    Oil and transportation have been commingled since the first oil reserves were discovered. The importance of energy, namely oil, and the transportation of that energy from the producers to the consumers is persistently ...

  19. Report Title: The Economic Impact of Oil and Gas Extraction in New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    presented. Historical oil and gas production, reserves, and price data are also presented and discussed. #12 ..................................................................................................................................................7 Oil Production ...............................................................................................................................................8 World Oil Production

  20. Natural Reserve System UNIVERSITY OF CALIFORNIA

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    and saltwater marshes, pickleweed flats, and a pocket beach featuring native dune vegetation. Tidepools Scripps Coastal Reserve Santa Barbara 29 Carpinteria Salt Marsh Reserve 30 Coal Oil Point Natural Reserve in low-oxygen lagoon waters. Upland terraces, once farm fields, are being restored to coastal prairie

  1. Strategic Petroleum Reserve (SPR) oil storage cavern sulphur mines 2-4-5 certification tests and analysis. Part I: 1981 testing. Part II: 1982 testing

    SciTech Connect (OSTI)

    Beasley, R.R.

    1982-12-01

    Well leak tests and a cavern pressure were conducted in June through December 1981, and are described in Part I. The tests did not indicate conclusively that there was no leakage from the cavern, but the data indicate that cavern structural failure during oil storage is unlikely. The test results indicated that retesting and well workover were desirable prior to making a decision on the cavern use. Well leak tests were conducted in March through May 1982, and are described in Part II. The tests indicated that there was no significant leakage from wells 2 and 4 but that the leakage from wells 2A and 5 exceeded the DOE criterion. Because of the proximity of cavern 2-4-5 to the edge of the salt, this cavern should be considered for only one fill/withdrawal cycle prior to extensive reevaluation. 57 figures, 17 tables.

  2. Register for DOE Tribal Leader Forum on Oil and Gas by Aug. 7 | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudgetFinancial Opportunitiesof Energy Register for DOE

  3. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01

    AND SOCIAL IMPACTS OF OIL product, product that does notthe quantity of oil products that escapes from pipelines. transport of crude oil and petroleum products accounted for

  4. Sustainable growth and valuation of mineral reserves

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1994-01-01

    The annual change in the value of an in-ground mineral is equal to the increase or decrease of inventories ("reserves"), multiplied by the market value of a reserve unit. The limited shrinking resource base does not exist. ...

  5. Access to DOE Database of Oil and Natural Gas Research Results Expanded |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s sconveyance(EPACT 2005) and09-2012 DOE

  6. DOE Announces Award of a Contract to Repurchase Heating Oil for the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTat Los Alamos | Department of|Northeast

  7. DOE to Issue Second Solicitation for Purchase of Crude Oil for the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zeroof EnergyWestern

  8. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  9. EIS-0034: Strategic Petroleum Reserve, Expansion of Reserve, Supplemental

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserve (SPR) developed this SEIS to address the environmental impacts of expanding the SPR to store 1,000 million barrels of oil. The final programmatic EIS (FEA-FES-76-2), addressed the environmental impacts of storing 500 million barrels of oil.

  10. Oil Mill Operators

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Natural gas and petroleum are non-renewable and scarce energy sources. Although, it is well known that hydrocarbon reserves are depleting through the years, oil and gas remain the principal source of energy upon which our ...

  11. Report to the Congress on alternative financing methods for the Strategic Petroleum Reserve

    SciTech Connect (OSTI)

    Not Available

    1990-02-01

    Under current practice, the Federal Government owns the Strategic Petroleum Reserve (SPR) crude oil and the storage facilities. The funds to acquire and maintain the reserve generally have been derived from normal Federal budget resources; $20 billion in appropriated funds have thus far been made available. During 1989, in Public Law No. 101-46, the Congress extended the EPCA authorities until April 1, 1990 and required the Department of Energy (DOE) to conduct a study of alternative ways of financing the reserve, with a final report on the study to be submitted by February 1, 1990. The Administration decided to undertake the study of alternative SPR financing methods in conjunction with a parallel study of SPR size, through an Interagency Steering group, chaired by the DOE Deputy Under Secretary. Day-to-day responsibility for the study was assigned to an Interagency Working Group comprised of representatives of interested Federal agencies. Study activities are described. 4 tabs.

  12. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  13. DOE to accept bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-05-04

    This paper reports that the Department of Energy will accept bids in a reoffering sale covering 53,400 b/d of Elk Hills field oil but later may exercise an option to cut sales volumes and ship 20,000 b/d to Strategic Petroleum Reserve sites in Texas. DOE rejected all 19 bids submitted in an earlier semiannual sale of crude oil from the California naval petroleum reserve, saying they were too low. DOE the, The unique combination of federal and state government policies affecting the movement of oil into and out of the California market has contributed to a situation in which it apparently is very difficult for the government to receive a price for Elk Hills oil that satisfies the minimum price tests that govern the sale of Elk Hills oil. The 12 winning bids in the reoffering sale averaged $13.58/bbl, with bids for the higher quality Stevens zone crude averaging $13.92/bbl, about 67 cents/bbl higher than bids rejected last month. DOE the 20,000 b/d is all local pipelines can ship to the interstate All-American pipeline for transfer to Texas beginning in June.

  14. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  15. Increased oil production and reserves from improved completion techniques in the Bluebell Field, Uinta Basin, Utah. Quarterly technical progress report, April 1, 1996--June 30, 1996, 11th Quarter of the project

    SciTech Connect (OSTI)

    Allison, E.; Morgan, C.D.

    1996-07-30

    The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of the project.

  16. DOE

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table 1.101CompanyProduct: Crude Oil/E/A- 0202( 83//Q

  17. Deepwater Oil & Gas Resources | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this...

  18. Expansion of the commercial output of Estonian oil shale mining and processing

    SciTech Connect (OSTI)

    Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

    1996-09-01

    Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

  19. Top 100 Operators: Proved Reserves and Production, Operated vs...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    reserves are defined as those volumes of oil and natural gas that geological and engineering data demonstrate with reasonable certainty to be recoverable in future years from...

  20. NERSC Supercomputers Help Reveal Secrets of Natural Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Reserves New structural information could yield more efficient extraction of gas and oil from shale December 3, 2013 Supercomputers at the Department of Energy's...

  1. Comprehensive study of a heavy fuel oil spill : modeling and analytical approaches to understanding environmental weathering

    E-Print Network [OSTI]

    Lemkau, Karin Lydia

    2012-01-01

    Driven by increasingly heavy oil reserves and more efficient refining technologies, use of heavy fuel oils for power generation is rising. Unlike other refined products and crude oils, a large portion of these heavy oils ...

  2. Implementation of the Clean Air Act, Title III, Section 112(r) Prevention of Accidental Release Rule requirements at U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.; Fellers, H.L. [Lockheed-Martin Energy Systems K-25 Site, Oak Ridge, TN (United States)

    1997-12-31

    Title III, Section 112(r) of the Clean Air Act (CAA) Amendments of 1990 requires the Environmental Protection Agency (EPA) to promulgate regulations to prevent accidental releases of regulated substances and to reduce the severity of those releases that do occur. The final EPA rule for Risk Management Programs under Section 112(r)(7) of the CAA, promulgated June 20, 1996, applies to all stationary sources with processes that contain more than a threshold quantity of any of 139 regulated substances listed under 40 CFR 68.130. All affected sources will be required to prepare a risk management plan which must be submitted to EPA and be made available to state and local governments and to the public. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of the Prevention of Accidental Release Rule. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the K-25 Site. The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the K-25 Site conducts a variety of research and development activities and is the home of a mixed waste incinerator. ORR activities underway and soon to be undertaken toward implementation of the Prevention of Accidental Release Rule include: compilation of inventories of regulated substances at all processes at each of the three ORR Facilities for determination of affected processes and facilities; plans for inventory reduction to levels below threshold quantities, where necessary and feasible; determination of the overlap of processes subject to the OSHA PSM Standard and determination of parallel requirements; preparation of Risk Management Plans and Programs for affected processes and facilities including detailed requirements for hazard assessment, prevention, and emergency response.

  3. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

  4. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (DOE- EM. The 1992 Federal Facility Compliance Agreement requires that all DOE facilities manage and dispose of mixed

  5. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is peak oil a genuine concern? Why did oil prices ...

  6. DOE/ID-Number

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Pollastro et al., 2008) and contains significant (3.59 billion barrels) reserves of oil shale (EIA, 2011b). GIS data for the Bakken (Figure 5-19) are based on constraints...

  7. EAC Recommendations for DOE Action Regarding a Strategic Portable...

    Office of Environmental Management (EM)

    a Strategic Portable Generation Reserve - October 17, 2012 EAC Recommendations for DOE Action Regarding a Strategic Portable Generation Reserve - October 17, 2012 EAC...

  8. DOE turns down all bids for Elk Hills crude

    SciTech Connect (OSTI)

    Not Available

    1992-03-30

    This paper reports that the U.S. Department of Energy has rejected all bids submitted in the Mar. 5 semiannual sale of crude oil from Elk Hills Naval Petroleum Reserve (NPR-1) in California. DOE the all 19 bids for the 53,740 b/d of crude were too low. The bids ranged from $11.71 to $14.06/bbl, with the top bids for the highest quality Stevens zone crude averaging $13.25/bbl. California oil companies the they bid what the market would bear, explaining a surplus of Alaskan crude on the West Coast has driven down the price of local crudes, notably heavy crudes. DOE will extend the current oil purchase contracts through April while it issues a new request for bids. It planned to issue the solicitation Mar. 23 and receive bids Apr. 15.

  9. What's Driving Oil Prices? James L. Smith

    E-Print Network [OSTI]

    O'Donnell, Tom

    1 What's Driving Oil Prices? James L. Smith Cary M. Maguire Chair in Oil & Gas Management Critical Issues in Energy Federal Reserve Bank of Dallas November 2, 2006 The Price of OPEC Oil ($/bbl) $0 $20 $40 $60 $80 1970 1975 1980 1985 1990 1995 2000 2005 Real Price ($2005) #12;2 Hubbert's Curve (Peak Oil

  10. DOE/CF-0088

    Office of Environmental Management (EM)

    Research and Development 337,074 494,969 420,575 +83,501 +24.8% Naval Petroleum and Oil Shale Reserves 14,909 15,000 20,000 +5,091 +34.1% Strategic Petroleum Reserve 192,704...

  11. DOE-Sponsored Online Mapping Portal Helps Oil and Gas Producers Comply with New Mexico Compliance Rules

    Office of Energy Efficiency and Renewable Energy (EERE)

    An online mapping portal to help oil and natural gas operators comply with a revised New Mexico waste pit rule has been developed by a team of New Mexico Tech researchers.

  12. AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS

    E-Print Network [OSTI]

    Lucarelli, Bart

    2013-01-01

    MBtu) Savings/ Investment Ratio (SIR) Oil Barrel (MBtu)Funding) DOE Investment per Potential Barrel of Oil SavingsSO% DOE Investment per Potential Barrel of Oil Savings

  13. Strategic Petroleum Reserve annual/quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-02-16

    During 1992 the Department continued planning activities for the expansion of the Strategic Petroleum Reserve to one billion barrels. A draft Environmental Impact Statement for the five candidate sites was completed in October 1992, and a series of public hearings was held during December 1992. Conceptual design engineering activities, life cycle cost estimates and geotechnical studies to support the technical requirements for an Strategic Petroleum Reserve Plan Amendment were essentially completed in December 1992. At the end of 1992, the Strategic Petroleum Reserve crude oil inventory was 574.7 million barrels and an additional 1.7 million barrels was in transit to the Reserve. During 1992 approximately 6.2 million barrels of crude oil were acquired for the Reserve. A Department of Energy Tiger Team Environmental, Safety and Health (ES&H) Assessment was conducted at the Strategic Petroleum Reserve from March 9 through April 10, 1992. In general, the Tiger Team found that Strategic Petroleum Reserve activities do not pose undue environmental, safety or health risks. The Strategic Petroleum Reserve`s Final Corrective Action Plan, prepared in response to the Tiger Team assessment, was submitted for Department approval in December 1992. On November 18, 1992, the Assistant Secretary for Fossil Energy selected DynMcDennott Petroleum Operations Company to provide management and operating services for the Strategic Petroleum Reserve for a period of 5 years commencing April 1, 1993. DynMcDermott will succeed Boeing Petroleum Services, Inc.

  14. Strategic Petroleum Reserve: Annual/quarterly report

    SciTech Connect (OSTI)

    Not Available

    1994-02-16

    Section 165 of the Energy Policy and Conservation Act (Public Law 94-163), as amended, requires the Secretary of Energy to submit annual and quarterly reports to the President and the Congress on activities of the Strategic Petroleum Reserve. This report combines the fourth quarter 1993 Quarterly Report with the 1993 Annual Report. Key activities described include appropriations; life extension planning; expansion planning; Strategic Petroleum Reserve oil acquisition; the oil stabilization program; and the refined petroleum product reserve test programs. Sections of this report also describe the program mission; the storage facility development program; environmental compliance; budget and finance; and drawdown and distribution.

  15. Strategic Petroleum Reserve Site Environmental Report for calendar year 1994

    SciTech Connect (OSTI)

    NONE

    1995-05-31

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts. The SER, provided annually in accordance with Department of Energy DOE Order 5400.1, serves the public by summarizing monitoring data collected to assess how the Strategic Petroleum Reserve (SPR) impacts the environment. This report (SER) provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a description of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1994. Two of these highlights include decommissioning of the Weeks Island facility (disposition of 73 million barrels of crude oil inventory) as well as the degasification of up to 144 million barrels of crude oil inventory at the Bayou Choctaw, Big Hill, Bryan Mound, and West Hackberry facilities. The decision to decommission the Weeks Island facility is a result of diminishing mine integrity from ground water intrusion. Degasifying the crude oil is required to reduce potentially harmful emissions that would occur during oil movements. With regard to still another major environmental action, 43 of the original 84 environmental findings from the 1992 DOE Tiger Team Assessment were closed by the end of 1994. Spills to the environment, another major topic, indicates a positive trend. Total volume of oil spilled in 1994 was only 39 barrels, down from 232 barrels in 1993, and the total volume of brine spilled was only 90 barrels, down from 370 barrels in 1993. The longer term trend for oil and brine spills has declined substantially from 27 in 1990 down to nine in 1994.

  16. Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental

    E-Print Network [OSTI]

    Pennycook, Steve

    monitoring program are analyzed to assess the environmental impact of DOE operations on the entire1 Oak Ridge Reservation Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE

  17. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Operations Office of Environmental Management Compliance Agreement requires that all DOE facilities manage and dispose of mixed waste in accordance

  18. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM Compliance Agreement requires that all DOE facilities manage and dispose of mixed waste in accordance

  19. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (EM Compliance Agreement requires that all DOE facilities manage and dispose of mixed waste in accordance

  20. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  1. Reservation DOE/ORO/2204

    E-Print Network [OSTI]

    Pennycook, Steve

    Ridge National Laboratory East Tennessee Technology Park Electronic publisher Coordinating editor.L.C. for the U.S. Department of Energy under Contract No. DE-AC05-00OR22800 and by East Tennessee Technology Park.................................................................................................... 1-1 1.3 Climate

  2. Strategic Petroleum Reserve quarterly report, (July 1, 1990--September 30, 1990)

    SciTech Connect (OSTI)

    Not Available

    1990-11-15

    This November 15, 1990, Strategic Petroleum Reserve Quarterly Report describes activities related to the site development, oil acquisition, budget and cost of the Reserve during the period July 1, 1990, through September 30, 1990. 4 tabs.

  3. ,"Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Texas Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014,"06302009"...

  4. Department of Energy Announces Two Additional Loans of Oil from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    announced today that the Department of Energy has approved two additional loans of crude oil from the Strategic Petroleum Reserve (SPR). "We are committed to doing everything in...

  5. Energy Department Announces Emergency Oil Loan In Response to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    today that the Energy Department has agreed to lend 1 million barrels of sweet crude oil from the Strategic Petroleum Reserve's (SPR) Bayou Choctaw site in Louisiana to...

  6. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAs standard analysis of the potential of the Alaska North Slope...

  7. ,"TX, RRC District 10 Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"CA, San Joaquin Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Federal Offshore, Pacific (California) Crude Oil plus Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"TX, RRC District 4 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"CA, Coastal Region Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"TX, RRC District 3 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"CA, Los Angeles Basin Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"TX, RRC District 2 Onshore Crude Oil plus Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. The rheological complexity of waxy crude oils : yielding, thixotropy and shear heterogeneities

    E-Print Network [OSTI]

    Dimitriou, Christopher (Christopher J.)

    2013-01-01

    Precipitate-containing crude oils are of increasing economic importance, due to diminishing oil reserves and the increased need to extract hydrate and wax-containing crude oil from ultra deep-water resources. Despite this ...

  16. Division of Oil, Gas, and Mining Permitting

    E-Print Network [OSTI]

    Utah, University of

    " or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

  17. Increasing waterflood reserves in the Wilmington Oil Field through improved reservoir characterization and reservoir management. Annual report, March 21, 1995--March 20, 1996

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1997-08-01

    This project uses advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three- dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturation sands will be stimulated by recompleting existing production and injection wells in these sands using conventional means as well as short radius and ultra-short radius laterals. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  18. Alaska Prudhoe Bay Crude Oil Shut-in Report

    Reports and Publications (EIA)

    2006-01-01

    Background and facts on Alaska's crude oil reserves, production, and transportation with the Energy Information Administration's analysis of potential shut-in impacts on U.S. oil markets.

  19. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01

    petroleum reserve no. 1 (Elk Hills) Kern County, California:crude oil transport: Elk Hills/Coalinga Conveyance System.Key words: Oil Spill, Elk Hills, California U.S. Department

  20. NuclearHydrogen Oil and gas

    E-Print Network [OSTI]

    Birmingham, University of

    Policy NuclearHydrogen Transport Education Oil and gas Distribution Society Supply Ecology Demand Hydrogen 08 Policy and society 10 Environment 11 Transport 12 Manufacturing 14 Oil and gas 15 Nuclear 16 and infrastructure, and broaden our methods of generation. Our declining reserves of oil and gas must be repla

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  2. An integrated approach to seismic stimulation of oil reservoirs: laboratory, field and theoretical results from DOE/industry collaborations.

    SciTech Connect (OSTI)

    Roberts, P. M.; Majer, Ernest Luther; Lo, W. C.; Sposito, Garrison,; Daley, T. M.

    2003-01-01

    It has been observed repeatedly that low-frequency (10-500 Hz) seismic stress waves can enhance oil production from depleted reservoirs . Until recently, the majority of these observations have been anecdotal or at the proof-of-concept level. The physics coupling stress waves to multiphase fluid flow behavior in porous media is still poorly understood, even though numerous underlying physical mechanisms have been proposed to explain the observations . Basic research on the phenomenon is being conducted through a U .S. Department of Energy funded collaboration between Lawrence Berkeley National Laboratory, the University of California at Berkeley, Los Alamos National Laboratory and the U .S . oil and gas industry . The project has focused on three main areas of research: (1) laboratory core flow experiments, (2) field seismic monitoring of downhole stimulation tests, and (3) theoretical modeling of the coupled stress/flow phenomenon . The major goal is to obtain a comprehensive scientific understanding of the seismic stimulation phenomenon so that field application technologies can be improved. Initial developments and experimental results in all three research focus areas confirm historic observations that the stimulated flow phenomenon is real and that a fundamental scientific understanding can be obtained through continued research . Examples of project results and developments are presented here.

  3. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  4. Increasing waterflood reserves in the Wilmington oil field through improved reservoir characterization and reservoir management. [Quarterly report], October 1, 1995--December 31, 1995

    SciTech Connect (OSTI)

    Sullivan, D.; Clarke, D.; Walker, S.; Phillips, C.; Nguyen, J.; Moos, D.; Tagbor, K.

    1996-01-23

    The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with a pulsed acoustic cased-hole logging tool. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to convert shear wave velocity measured through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius and ultra-short radius lateral recompletions as well as other techniques. Technical progress is reported for the following tasks; reservoir characterization, reservoir engineering; deterministic (3-D) geologic modeling; pulsed acoustic logging; and technology transfer.

  5. Strategic Petroleum Reserve. Quarterly report

    SciTech Connect (OSTI)

    Not Available

    1993-11-15

    The Strategic Petroleum Reserve serves as one of the most important investments in reducing the Nation`s vulnerability to oil supply disruptions. This Quarterly Report highlights activities undertaken during the third quarter of calendar year 1993, including: inventory of petroleum products stored in the Reserve, under contract and in transit at the end of the calendar quarter; fill rate for the quarter and projected fill rate for the next calendar quarter; average price of the petroleum products acquired during the calendar quarter; current and projected storage capacity and plans to accelerate the acquisition or construction of such capacity; analysis of existing or anticipated problems with the acquisition and storage of petroleum products and future expansion of storage capacity; funds obligated by the Secretary from the SPR Petroleum Account and the Strategic Petroleum Reserve Account during the prior calendar quarter and in total; and major environmental actions completed, in progress, or anticipated. Samples of the oil revealed two problems that, although readily correctable, have reduced the availability of some of the oil inventory for drawdown in the near-term. These problems are: (1) a higher-than-normal gas content in some of the crude oil, apparently from years of intrusion of methane form the surrounding salt formation; and (2) elevated temperatures of some of the crude oil, due to geothermal heating, that has increased the vapor pressure of the oil. Investigations are proceeding to determine the extent to which gas intrusion and geothermal heating are impacting the availability of oil for drawdown. Preliminary designs have been developed for systems to mitigate both problems.

  6. Final state of the Strategic Petroleum Reserve (SPR) Weeks Island Mine

    SciTech Connect (OSTI)

    MOLECKE,MARTIN A.

    2000-02-01

    This report documents the decommissioning and abandonment activities at the Weeks Island Strategic Petroleum Reserve (SPR) site, Iberia Parish, Louisiana, that were concluded in 1999. These activities required about six years of intense operational, engineering, geotechnical, and management support efforts, following initiation of site abandonment plans in 1994. The Weeks Island SPR mine stored about 72.5 million bbl of crude oil following oil fill in 1980--1982, until November 1995, when the DOE initiated oil drawdown procedures, with brine refill and oil skimming, and numerous plugging and sealing activities. About 98% of the crude oil was recovered and transferred to other SPR facilities in Louisiana and Texas; a small amount was also sold. This document summarizes recent pre- and post-closure: conditions of surface features at the site, including the sinkholes, the freeze wall, surface subsidence measurements and predictions; conditions within the SPR mine, including oil recovery, brine filling, and the Markel Wet Drift; risk assessment evaluations relevant to the decommissioning and long-term potential environmental impacts; continuing environmental monitoring activities at the site; and, an overview on the background and history of the Weeks Island SPR facility.

  7. Strategic Petroleum Reserve - Part 2. Hearing before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, Second Session, March 4, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    Part 2 of the hearing record covers the testimony of representatives of the General Accounting Office, DOE, the Petroleum Industry Research Foundation, and members of Congress on the future of the strategic petroleum (SPR) and the naval petroleum reserves (NPR). At issue was the Administration's plans to discontinue filling the SPR at the half-billion barrel mark raise and sell the NPR. Among the concerns under considerations was the adequacy of the reserves, the opportunity to buy petroleum for the reserves at a time when oil prices are low, and the opportunity to raise needed cash with a sale. Debate centers on financial and national security issues. Additional material submitted for the record by the witnesses, DOE, and the Congressional Research Service follows the testimony of the five witnesses.

  8. 61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts Rockies Gas & Oil Conference, Denver, CO, April

    E-Print Network [OSTI]

    Kulp, Mark

    61. Nelson, D. C. Oil Shale: New Technologies Defining New Opportunities. Presented at the Platts I, II Modeling of the In-Situ Production of Oil from .',1 l ',".1" Oil Shale ilil 'I' 'I~ :' l of conventional oil reserves amidst increasing liquid fuel demand in the world have renewed interest in oil shale

  9. Innovative DOE Technology Demonstrates Potential for Significant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential...

  10. MOTOR POOL RESERVATIONS Reservation Number:_______________

    E-Print Network [OSTI]

    Ottino, Julio M.

    of Department Chair or Organization Advisor: ________________________________________ Chart String Number: Fund: ______________________________________________________________________ Name of Department or Organization: _____________________________________________________ Name reservations require the "Organization Authorization for University Vehicles" form to be faxed to Motor Pool

  11. Naval Petroleum Reserve Number 1 financial statements September 30, 1997 and 1996 (with independent auditors` report thereon)

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserve No. 1 (NPR-1) in a manner to achieve the greatest value and benefits to the US taxpayer. As required by the 1996 National Defense Authorization Act, the Department of Energy offered NPR-1 for sale during FY 1997. DOE structured the sale so as to offer two types of ownership segments: one operatorship segment, consisting of 74% of the US interest in NPR-1, and 13 nonoperating segments, each consisting of 2% of the US interest. Potential purchasers could bid on one, some, or all of the segments. If a single purchaser wanted to buy all of the Government`s interest, then its bid would have to exceed the total of the highest bids for all of the individual segments. Bids were due October 1, 1997, at which time DOE received 22 bids from 15 parties acting alone or in concert. The report and management letter present the results of the independent certified public accountants` audits of the Department of Energy`s Naval Petroleum Reserve Number 1 (NPR-1) financial statements as of, and for the years ended, September 30, 1997 and 1996.

  12. Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say

    E-Print Network [OSTI]

    Fernandez, Eduardo

    Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say By LONA O by a strongman for 42 years, a country of tribes and conflicting interests, a country with oil reserves desired, there is of course the matter of Libya's substantial oil reserves. An existing gas pipeline from Libya to Italy

  13. San Diego County Reservation

    E-Print Network [OSTI]

    Laughlin, Robert B.

    San Diego County Brenda Pisgah Iron Mountain Riverside East Imperial East Morongo Reservation Colorado River Reservation San Pasqual Reservation Santa Ysabel Reservation Torres-Martinez Reservation) Reservation 60 95 95 95 115 San Diego Banning Yucca Valley Twentynine Palms Desert Hot Springs Palm Springs

  14. ,"Pennsylvania Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  15. ,"Nebraska Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  16. ,"Michigan Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  17. ,"Kentucky Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  18. ,"Wyoming Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  19. ,"Arkansas Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"Alabama Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  1. ,"Miscellaneous Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  2. ,"California Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  3. ,"Mississippi Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  4. ,"Colorado Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  5. ,"Louisiana Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  6. ,"Montana Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  7. ,"Oklahoma Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  8. ,"Florida Lease Condensate Proved Reserves, Reserve Changes,...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  9. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM and newly generated waste from the ORR. The Bechtel Jacobs Waste Operations Project manages the Toxic

  10. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Setting Much of Environmental Management (EM) work done on the ORR is performed as a result), which preceded the Act (see Sect. 2.2.4), requires that all DOE facilities manage and dispose of waste

  11. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (EM and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The 1992 Federal Facility

  12. Strategic Petroleum Reserve site environmental report for calendar year 1997

    SciTech Connect (OSTI)

    1998-11-01

    The purpose of this Site Environmental Report (SER) is to characterize site environmental management performance, confirm compliance with environmental standards and requirements, and highlight significant programs and efforts for the US Department of Energy (DOE) Strategic Petroleum Reserve (SPR). The SER, provided annually in accordance with DOE order 5400.1, serves the public by summarizing monitoring data collected to assess how the SPR impacts the environment. The SER provides a balanced synopsis of non-radiological monitoring and regulatory compliance data and affirms that the SPR has been operating within acceptable regulatory limits. Included in this report is a describe of each site`s environment, an overview of the SPR environmental program, and a recapitulation of special environmental activities and events associated with each SPR site during 1997. Two of these highlights include decommissioning of the Weeks Island site, involving the disposition of 11.6 million m{sup 3} (73 million barrels) of crude oil inventory, as well as the degasification of over 12.6 million m{sup 3} (79.3 million barrels) of crude oil inventory at the Big Hill and Bryan Mound facilities.

  13. Increased oil production and reserves from improved completion techniques in the Bluebell field, Uinta Basin, Utah. Annual report, October 1, 1995--September 30, 1996

    SciTech Connect (OSTI)

    Morgan, C.D.; Allison, M.L.

    1997-08-01

    The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been used to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.

  14. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    SciTech Connect (OSTI)

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  15. Strategic Petroleum Reserve annual report for calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1998-12-31

    The Strategic Petroleum Reserve was established in 1975 as an emergency response to the 1973 Arab oil embargo. It is authorized by the Energy Policy and Conservation Act (EPCA), and by the comprehensive energy plans of all Administrations since 1975, in recognition of the long-term dependence of the US on imported crude oil and petroleum products. Section 165 of EPCA requires the Secretary of Energy to submit an Annual Report to the President and the Congress. On May 13, 1998, the Department published a Statement of Administration Policy which reaffirmed its commitment to maintain a Government-owned and controlled, centrally located Strategic Petroleum Reserve of crude oil. The Reserve is to be used solely for responding to the types of severe oil supply interruptions presently contemplated in EPCA. Over the past twenty years, the Reserve has grown as large as 592 million barrels--a peak reached in 1994. From 1994 to 1996, nearly 28 million barrels were sold to raise revenues for the U S Treasury. As of December 31, 1998, the crude oil inventory was 561,108,127 barrels which equated to 60 days of net oil imports during 1998. The US now relies on a combination of both the Reserve and private stocks to meet its oil storage obligations to the International Energy Agency.

  16. Oil Trading Simon Basey / November 28, 2013

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    Oil Trading Simon Basey / November 28, 2013 #12;2 What does IST do? Imports crude oil and other Markets BP's equity crude oil, NGLs and natural gas Generates entrepreneurial trading income Manages BP trader, focussing on US crude oil futures. How would you trade the following timeline of events: a

  17. VEE-0023- In the Matter of Oil Products, Inc.

    Broader source: Energy.gov [DOE]

    On May 13, 1996, Oil Products, Inc. (Oil Products) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Oil...

  18. Selected Abstracts & Bibliography of International Oil Spill Research, through 1998

    E-Print Network [OSTI]

    Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

    1998-01-01

    1984): 91 Key words: oil shale, Colorado, industrial plantof arsenic from retorted oil shale. In Rep No DOE/Pp IV1-IV36, 1982 ($27 00) (Oil Shale Environmental Research

  19. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  20. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  1. Annex III-evaluation of past and ongoing enhanced oil recovery projects

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Infill Drilling Predictive Model (IDPM) was developed by Scientific Software-Intercomp (SSI) for the Bartlesville Project Office (BPO) of the United States Department of Energy (DOE). The model and certain adaptations thereof were used in conjunction with other models to support the Interstate Oil and Gas Compact Commission`s (IOGCC) 1993 state-by-state assessment of the potential domestic reserves achievable through the application of Advanced Secondary Recovery (ASR) and Enhanced Oil Recovery (EOR) techniques. Funding for this study was provided by the DOE/BPO, which additionally provided technical support. The IDPM is a three-dimensional (stratified, five-spot), two-phase (oil and water) model which uses a minimal amount of reservoir and geologic data to generate production and recovery forecasts for ongoing waterflood and infill drilling projects. The model computes water-oil displacement and oil recovery using finite difference solutions within streamtubes. It calculates the streamtube geometries and uses a two-dimensional reservoir simulation to track fluid movement in each streamtube slice. Thus the model represents a hybrid of streamtube and numerical simulators.

  2. How does the connectivity of open-framework conglomerates within multi-scale hierarchical fluvial architecture affect oil sweep efficiency in waterflooding?

    E-Print Network [OSTI]

    Gershenzon, Naum I; Ritzi, Robert W; Dominic, David F; Keefer, Don; Shaffer, Eric; Storsved, Brynne

    2015-01-01

    We studied the effects on oil sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. Utilizing numerical simulations and the RVA/Paraview open-source visualization package, we analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. The effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound bars. As a result oil sweep efficiency critically depends on the direction of the pressure gradient. When pressure gradient is oriented normal to paleoflow direction, the total oil production and the water breakthrough time are larger, and remaining oil saturation is smaller. This result is found regardless of the proportion or connectivity of the OFC cross-sets, within th...

  3. ,"TX, RRC District 7B Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"TX, RRC District 7C Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"TX, RRC District 8A Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Federal Offshore U.S. Crude Oil plus Lease Condensate Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. The virtual oil company

    SciTech Connect (OSTI)

    Garibaldi, C.A.; Haney, R.M.; Ross, C.E. [Arthur D Little, Houston, TX (United States)

    1995-09-01

    In anticipation of continuing declines in upstream activity levels over the next 15 years, the virtual oil company model articulates a vision of fewer, leaner, but financially stronger firms that concentrate only on their core competencies and outsource the rest through well-structured partnering arrangements. Freed from the ``clutter,`` these leading companies will be in better position to focus on those opportunities that offer the potential for renewed reserve and revenue growth.

  8. Naval Petroleum Reserve No. 1: an assessment of production alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-30

    Under existing legislation, every 3 years the President must decide whether to shut-in or continue production of the Naval Petroleum Reserve No. 1 (NPR-1) oil field at Elk Hills, California. The current authorization for production expires on April 5, 1985. GAO discusses the geologic, budgetary, local economic, and national security implications of three production alternatives for NPR-1: continued production, shut-in, and partial shut in. In addition, GAO discusses the advantages and disadvantages of establishing a Defense Petroleum Reserve, a crude oil reserve for the military, using part of the revenues from continued production at NPR-1 to fund it. During the course of its review, GAO found that production rates at Elk Hills may be too high, causing problems within the reserve that could decrease ultimate recovery of oil by about 139 million barrels. The Department of Energy plans to analyze this situation and, if need be, adjust the rate. 2 figures, 2 tables.

  9. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  10. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  11. Sea Oil Field Satellite Monitoring: An Opera3onal View

    E-Print Network [OSTI]

    Kuligowski, Bob

    :on alone contains 54% of the sea's oil reserves and 45% of its gasSea Oil Field Satellite Monitoring: An Opera3onal View Maurizio, Camp Springs, MD 20746 #12;Outline Introduc:on Sea oil fields Synthe:c Aperture

  12. Oil, Environment, and Influence Proposed in 2007 to the UN

    E-Print Network [OSTI]

    New Hampshire, University of

    Oil, Environment, and Influence Levi Byers 4/14/11 #12; Proposed in 2007 to the UN and agreed upon in August 2010 Ecuador will indefinitely forgo 900 million barrels of oil in the ITT-Block of the Amazon) by not exploiting the oil in the Yasuni reserve, avoiding deforestation, promoting reforestation and reducing

  13. Habitat restoration on naval petroleum reserves in Kern County, California

    SciTech Connect (OSTI)

    Anderson, D.C. [EG& G Energy Measurements, Inc., Tupman, CA (United States)

    1990-12-31

    One of several task performed under contract to the Department of Energy (DOE) by EG & G Energy Measurements as part of the endangered species program is the restoration of abandoned well pads, roads, pipelines and soil borrow sites resulting from oil and gas production activities on Naval Petroleum Reserves in California (NPRC). Naval Petroleum Reserves in California is located in the Elk Hills approximately 30 miles southwest of Bakersfield in the rain shadow of the coastal range. Annual precipitation is approximately five inches. Reclamation of disturbed habitat on NPRC began with research plots and test trials in the early 1980s. Full scale reclamation began in 1985 and has continued through the 1989 planting season. Almost 700 acres have been revegetated, which represents over 1,200 sites distributed over the 47,250 acres of NPRC and averaging less than .75 acre in size. Monitoring of the sites began in 1987 to establish reclamation success and evaluate reclamation techniques. Reclamation objectives include the improvement of wildlife habitat for four endangered species living on NPRC, and the protection of the soils from wind and water erosion on the disturbed sites.

  14. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  15. Benin: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports Ashland discovered additional oil reserves deeper than current production in Seme, Benin's only oil field. The field is on a steep decline, producing as little as 2,500 bopd, down from 7,671 bopd in 1984. In an effort to restart offshore exploration, three offshore blocks have been designated. Hardy Oil and Gas (UK) Ltd. has since acquired 20% interest in Blocks 1 and 2 from International Petroleum Ltd. (IPL). IPL completed seismic work during 1990 that identified two large channel prospects similar to those that produce offshore elsewhere in West Africa. The first well is expected in 1991.

  16. From the hills to the mountain. [Oil recovery in California

    SciTech Connect (OSTI)

    McDonald, J.

    1980-05-01

    The oil reserves at Elk Hills field, California, are listed as amounting to 835 million bbl. There is 12 times that amount lying in shallow sands in the San Joaquin Valley, although the oil is much heavier and requires more refining before use. Improved recovery techniques have enabled higher rates of recovery for heavy oil than in the past. Some of these techniques are described, including bottom-hole heating, steam injection, and oil mining. Bottom-hole heating alone raised recovery rates for heavy oil to 25%, and steam injection raised rates to 50%. It is predicted that oil mining may be able to accomplish 100% recovery of the heavy oil.

  17. DOE Will Not Enter Into Contracts for Continued SPR Fill | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    contracts this year for the receipt and transportation of up to 13 million barrels of crude oil to the Nation's strategic petroleum reserve sites (SPR). The Department received...

  18. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    of nuclear weapons for the nation's defense. Production of materials for nuclear weapons, which began, making DOE-ORO responsible for cleanup of the reservation; Lockheed Martin Energy Systems, Inc., served into safe configuration. 3.2.2 East Tennessee Technology Park The remedial action strategy taken by DOE

  19. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  20. The Oak Ridge Reservation Annual Site Environmental Report Summary, 2007

    SciTech Connect (OSTI)

    None, None

    2009-02-28

    The Oak Ridge Reservation Annual Site Environmental Report is prepared and published each year to inform the public of the environmental activities that take place on the reservation and in the surrounding areas. It is written to comply with DOE Order 231.1A, Environment, Safety, and Health Reporting. This document has been prepared to present the highlights of the Oak Ridge Reservation Annual Site Environmental Report 2007 in an easy-to-read, summary format.

  1. Statement from DOE's Chief Spokesperson Andrew Beck Regarding...

    Energy Savers [EERE]

    Statement from DOE's Chief Spokesperson Andrew Beck Regarding Delivery of SPR Oil to Marathon Petroleum Company Statement from DOE's Chief Spokesperson Andrew Beck Regarding...

  2. Copyright 2000 All Rights Reserved Copyright 2000 All Rights Reserved

    E-Print Network [OSTI]

    Kari, Lila

    Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000 All Rights Reserved #12;Copyright 2000

  3. Copyright 2000. All Rights Reserved. Copyright 2000. All Rights Reserved.

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright 2000. All Rights Reserved. #12;Copyright

  4. Copyright 1995. All rights reserved. Copyright 1995. All rights reserved.

    E-Print Network [OSTI]

    Gelman, Andrew

    Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12;Copyright © 1995. All rights reserved. #12

  5. Copyright 2001. All Rights Reserved. Copyright 2001. All Rights Reserved.

    E-Print Network [OSTI]

    Lin, Andrew Tien-Shun

    Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright 2001. All Rights Reserved. #12;Copyright

  6. Copyright 2001. All Rights Reserved. Copyright 2001. All Rights Reserved.

    E-Print Network [OSTI]

    Schultz, Ted

    Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright ©2001. All Rights Reserved. #12;Copyright

  7. Copyright 2001 All Rights Reserved Copyright 2001 All Rights Reserved

    E-Print Network [OSTI]

    Amaral, Luis A.N.

    Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights Reserved #12;Copyright © 2001

  8. Copyright 1999. All rights reserved. Copyright 1999. All rights reserved.

    E-Print Network [OSTI]

    Monteiro, Renato

    Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12;Copyright 1999. All rights reserved. #12

  9. Heating Oil Reserve History | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,Security Officer Program |quickHeather Zichal -Creation

  10. Finding Hidden Oil and Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES OctoberEvanServices » Incentives &ReportseBooks FindFinding

  11. Heating Oil Reserve | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof Energy ServicesContracting OversightEMS Policy HQDepartmentHeatofHeating

  12. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  13. Implementation plan for the environmental impact statement on the Strategic Petroleum Reserve expansion

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    During 1990, Congress enacted two bills requiring the Department of Energy (DOE) to undertake planning activities associated with the expansion of the Strategic Petroleum Reserve (SPR) from 750 million barrels to one billion barrels: the Energy Policy and Conservation Act Amendments of 1990 (P.L. 101-383) and the Department of Interior and Related Agencies` Appropriations Act for Fiscal Year 1991 (P.L. 101-512). DOE has determined that the development and operation of additional SPR crude oil storage facilities would be a major federal action significantly affecting the quality of the human environment, and, therefore, an environmental impact statement (EIS) will be prepared by DOE to assess the environmental impacts of the proposed action and alternatives. The EIS will be prepared in accordance with Section 102(2)(c) of the National Environmental Policy Act (NEPA), as stipulated in regulations promulgated by the Council on Environmental Quality (CEQ) (40 CFR Parts 1500-1508, November 1978) and DOE`s implementing guidelines (45 FR 20694, March 28, 1980). This report is a discussion of the implementation of the EIS.

  14. Quality assurance in the petroleum industry: Oil and gas industry Total Quality Management (TQM)

    SciTech Connect (OSTI)

    Penny, N.P.

    1991-01-01

    This paper describes the development and implementation of Total Quality Management (TQM) at the Naval Petroleum Reserves in California (NPRC), known as Elk Hills', and one of the largest oil and gas producing and processing facilities in the nation. NPRC is jointly owned by the United States Department of Energy (DOE), and Chevron USA Inc. (CUSA), and is managed and operated by Bechtel Petroleum Operations Inc. (BPOI). This paper describes step-by-step methods for getting started in TQM in the oil and gas industry, including the essential quality systems ingredients. The paper also illustrates how the President's Award for Quality and Productivity Improvement and the Malcolm Baldrige National Quality Award (MBNQA) can be used as the assessment standards and benchmarks for measuring TQM. 8 refs., 2 figs.

  15. Naval Petroleum Reserve No. 3 Disposition Decision Analysis and...

    Broader source: Energy.gov (indexed) [DOE]

    a summary of the analysis supporting DOE's determination to dispose of the Naval Petroleum Reserve No. 3 through sale of all right, title, interest on the open market. RMOTC...

  16. Exemplary Hurricane Damage Cleanup Earns Petroleum Reserve Coveted Environmental Award

    Broader source: Energy.gov [DOE]

    An exceptional waste management project at a Texas Strategic Petroleum Reserve site following Hurricane Ike in 2008 has won a DOE Environmental Sustainability (EStar) Award for Waste/Pollution Prevention.

  17. Performance evaluation of starch based polymer for enhanced oil recovery

    E-Print Network [OSTI]

    Skurner, James Andrew

    1997-01-01

    Ever since the first petroleum well was drilled, water production has been a deterring force in maximizing an oilfield's hydrocarbon reserves. To satisfy the ever increasing global demand for petroleum, many different techniques for enhancing oil...

  18. Improving CO2 Efficiency for Recovering Oil in Heterogeneous Reservoirs

    SciTech Connect (OSTI)

    Grigg, Reid B.; Svec, Robert K.

    2003-03-10

    The work strived to improve industry understanding of CO2 flooding mechanisms with the ultimate goal of economically recovering more of the U.S. oil reserves. The principle interests are in the related fields of mobility control and injectivity.

  19. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyAprilEnergy EERE Infrastructure-EEREHiringSystemof Energy

  20. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01

    F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

  1. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  2. Endangered species and cultural resources program, Naval Petroleum Reserves in California, annual report FY97

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The Naval Petroleum Reserves in California (NPRC) are oil fields administered by the DOE in the southern San Joaquin Valley of California. Four federally endangered animal species and one federally threatened plant species are known to occur on NPRC: San Joaquin kit fox (Vulpes macrotis mutica), blunt-nosed leopard lizard (Gambelia silus), giant kangaroo rat (Dipodomys ingens), Tipton kangaroo rat (Dipodomys nitratoides), and Hoover`s wooly-star (Eriastrum hooveri). All five are protected under the Endangered Species Act (ESA) of 1973. The DOE/NPRC is obliged to determine whether actions taken by their lessees on Naval Petroleum Reserve No. 2 (NPR-2) will have any effects on endangered species or their habitats. The primary objective of the Endangered Species and Cultural Resources Program is to provide NPRC with the scientific expertise necessary for compliance with the ESA, the National Environmental Policy Act (NEPA), and the National Historic Preservation Act (NHPA). The specific objective of this report is to summarize progress, results, and accomplishments of the program during fiscal year 1997 (FY97).

  3. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  4. Oil shale as an energy source in Israel

    SciTech Connect (OSTI)

    Fainberg, V.; Hetsroni, G. [Technion-Israel Inst. of Tech., Haifa (Israel)

    1996-01-01

    Reserves, characteristics, energetics, chemistry, and technology of Israeli oil shales are described. Oil shale is the only source of energy and the only organic natural resource in Israel. Its reserves of about 12 billion tons will be enough to meet Israel`s requirements for about 80 years. The heating value of the oil shale is 1,150 kcal/kg, oil yield is 6%, and sulfur content of the oil is 5--7%. A method of oil shale processing, providing exhaustive utilization of its energy and chemical potential, developed in the Technion, is described. The principal feature of the method is a two-stage pyrolysis of the oil shale. As a result, gas and aromatic liquids are obtained. The gas may be used for energy production in a high-efficiency power unit, or as a source for chemical synthesis. The liquid products can be an excellent source for production of chemicals.

  5. Revolving Loan Funds and Loan Loss Reserves

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) State Energy Program (SEP) guidance to states, Indian tribes, and overseas U.S. territories receiving SEP grants under the 209 Recovery Act dealing with loan loss reserves for revolving loan funds.

  6. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  7. Reserves Overstatements: History, Enforcement, Identification, and Implications of New SEC Disclosure Requirements

    E-Print Network [OSTI]

    Olsen, Grant

    2010-07-14

    Despite the need for accurate oil and gas reserves estimates which honor disclosure requirements of the United States Securities and Exchange Commission (SEC), a number of exploration and production companies have allegedly ...

  8. Imminence of peak in US coal production and overestimation of reserves

    E-Print Network [OSTI]

    Khare, Sanjay V.

    be produced at the current rate of consumption. This assumption is based on the large reported coal reserves fuels, coal, oil, and natural gas, it is coal that is the most carbon intensive (W. Moomaw, 2011). Due

  9. Study sizes up Iraq`s reserves, exploration status, production potential

    SciTech Connect (OSTI)

    Ibrahim, M.W. [Target Exploration Consultants, London (United Kingdom)

    1996-06-24

    Iraq has a volatile exploration and production history, but unlike more stable OAPEC countries it was National Oil Co. (INOC) rather than foreign oil companies that discovered most of the country`s proved oil reserves. Proved reserves are in Paleozoic, Triassic, Jurassic, Cretaceous, and Tertiary reservoirs charged by Silurian and Jurassic and/or Cretaceous source rocks. The pre-gulf war production capacity was 3.5 million b/d, but the country`s current damaged production capacity is about 2.5 million b/d. New discoveries have elevated Iraq`s proved reserves to 120 billion bbl of oil. The paper discusses exploration history, proven reserves, exploration plays, exploration potential, and production potential.

  10. US Department of Energy Naval petroleum reserve number 1. Financial statement audit

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    The Naval Petroleum and Oil Shale Reserves (NPOSR) produces crude oil and associated hydrocarbons from the Naval Petroleum Reserves (NPR) numbered 1, 2, and 3, and the Naval Oil Shale Reserves numbered 1, 2, and 3 in a manner to achieve the greatest value and benefits to the United States taxpayer. NPOSR was established by a series of Executive Orders in the early 1900s as a future source of liquid fuels for the military. NPOSR remained largely inactive until Congress, responding to the Arab oil embargo of 1973-74, passed the Naval Petroleum Reserves Production Act of 1976. The law authorized production for six years. Thereafter, NPOSR production could be reauthorized by the President in three-year increments. Since enactment of the law, every President has determined that continuing NPOSR production is in the nation`s best interest. NPOSR currently is authorized to continue production through April 5, 2000.

  11. ORR Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental

    E-Print Network [OSTI]

    Pennycook, Steve

    program are analyzed to assess the environmental impact of DOE operations on the entire reservationORR Environmental Monitoring Program 6-1 6. Oak Ridge Reservation Environmental Monitoring Program In addition to environmental monitoring conducted at the three major Oak Ridge DOE installations

  12. Peak Oil, Peak Energy Mother Nature Bats Last

    E-Print Network [OSTI]

    Sereno, Martin

    no oil in basaltic ocean floor or granitic basement #12;(Used to be!) Second Largest Oilfield Cantarell://www.eia.doe.gov/emeu/cabs/Mexico/Oil.html named after Yucatan fisherman Rudecindo Cantarell, who discovered an oil seep! Chicxulub crater Cantarell Complex #12;from ASPO Colin Campbell, 2009 THE GROWING GAP Regular Conventional Oil (the main

  13. Green Colorado Credit Reserve

    Broader source: Energy.gov [DOE]

    The Green Colorado Credit Reserve (GCCR) is a loan loss reserve that was created by the Colorado Energy Office (CEO) to incentivize private lenders in Colorado to make small commercial loans up to ...

  14. Modeling the Oil Transition: A Summary of the Proceedings of the DOE/EPA Workshop on the Economic and Environmental Implications of Global Energy Transitions

    SciTech Connect (OSTI)

    Greene, David L

    2007-02-01

    The global energy system faces sweeping changes in the next few decades, with potentially critical implications for the global economy and the global environment. It is important that global institutions have the tools necessary to predict, analyze and plan for such massive change. This report summarizes the proceedings of an international workshop concerning methods of forecasting, analyzing, and planning for global energy transitions and their economic and environmental consequences. A specific case, it focused on the transition from conventional to unconventional oil and other energy sources likely to result from a peak in non-OPEC and/or global production of conventional oil. Leading energy models from around the world in government, academia and the private sector met, reviewed the state-of-the-art of global energy modeling and evaluated its ability to analyze and predict large-scale energy transitions.

  15. RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; William E. Brigham

    1999-06-01

    The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

  16. VEE-0032- In the Matter of Thomas Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE)

    On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

  17. Development Practices for Optimized MEOR in Shallow Heavy Oil Reservoirs

    SciTech Connect (OSTI)

    Shari Dunn-Norman

    2006-09-30

    The goal of this project is to demonstrate an economically viable and sustainable method of producing shallow heavy oil reserves in southwest Missouri and southeast Kansas using a combination of microbial enhanced oil recovery (MEOR) and hydraulic fracturing of vertical wells.

  18. Oil Market Simulation model user's manual. [Oil market

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    The Oil Market Simulation (OMS) model is a LOTUS 1-2-3 spreadsheet that simulates the world oil market. OMS is an annual model that projects the world oil market through the year 2010 from a data base that begins in 1979. The geographic coverage includes all market economies, with net imports from the centrally planned economies taken as an assumption. The model estimates the effects of price changes on oil supply and demand and computes an oil price path over nine that allows supply and demand to remain in balance within the market economies area as a whole. The input assumptions of OMS are highlighted (in color) on the spreadsheet and include the following: The capacity of the OPEC countries to produce petroleum liquids (crude oil, natural gas liquids, condensates, refinery gains); a reference case projection of regional oil supply and demand at some arbitrary reference path of oil prices over time. The reference case provided with this diskette is that used for EIA's latest base case in the International Energy Outlook 1992 DOE/EIA-0484(92). The demonstration requires an IBM PC (or compatible), preferably with a color monitor. The demonstration diskette is self-contained, with all the files needed to run the demonstration. It does not, however, have the DOS system files, so this diskette cannot be used to start (boot) the computer.

  19. Strategic petroleum reserve data acquisition system

    SciTech Connect (OSTI)

    Merillat, P D; Bauer, A G

    1980-10-01

    The Strategic Petroleum Reserve Data Acquisition System is a general purpose, digital data acquisition system designed for field use in the DOE's Strategic Petroleum Reserve testing and monitoring program. The system is computer driven, under the control of an operator. The system is designed to allow the operator to perform pre-test system configuration; test monitoring and control; and post test analysis. This document is a system description and an operator users manual. Topics covered include: configuration and running on-line tests, software documentation, and maintenance programming information.

  20. Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2000 SPE/DOE Improved Oil Recovery

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation by the Society of Petroleum Engineers and are subject to correction by the author(s). The material, as presented, does not necessarily reflect any position of the Society of Petroleum Engineers, its officers

  1. The State, Corporations and Oil: Exploring the Manifestations of Sovereignty through the development of the Petroleum Industry in Ecuador since 1972

    E-Print Network [OSTI]

    Mateos Rodrguez, Pablo

    In 1972, oil was first produced in the Ecuadorian Amazon region of el Oriente. This region, sparsely populated by indigenous communities, was found to contain the largest oil reserves in Ecuador. That same year, Ecuador witnessed a military coup...

  2. Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device

    E-Print Network [OSTI]

    Rothstein, Jonathan

    Effect of fluid rheology on enhanced oil recovery in a microfluidic sandstone device Michael A 2013 Keywords: Microfluidics Enhanced oil recovery Shear-thickening Viscoelastic Sandstone Interfacial tension a b s t r a c t As global energy usage increases, maximizing oil recovery from known reserves

  3. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  4. Separation and Purification Technology 40 (2004) 251257 Copper and zinc sorption by treated oil shale ash

    E-Print Network [OSTI]

    Shawabkeh, Reyad A.

    2004-01-01

    Jordanian oil shale ash was used as an adsorbent for the removal of copper and zinc from aqueous solution.V. All rights reserved. Keywords: Oil shale; Ash; Adsorption; Copper and zinc removal 1. IntroductionSeparation and Purification Technology 40 (2004) 251257 Copper and zinc sorption by treated oil

  5. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G; accepted 3 July 2004 (Communicated by L. DEBNATH) Abstract Forced displacement of oil by polymer flooding reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  6. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  7. International oil and gas exploration and development: 1991

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This report starts where the previous quarterly publication ended. This first publication of a new annual series contains most of the same data as the quarterly report, plus some new material, through 1991. It also presents historical data covering a longer period of time than the previous quarterly report. Country-level data on oil reserves, oil production, active drilling rigs, seismic crews, wells drilled, oil reserve additions, and oil reserve-to-production rations (R/P ratios) are listed for about 85 countries, where available, from 1970 through 1991. World and regional summaries are given in both tabular and graphical form. The most popular table in the previous quarterly report, a listing of new discoveries, continues in this annual report as Appendix A.

  8. Reserve asset values and the "hotelling valuation principle"

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1992-01-01

    The Hotelling Valuation Principle, that the in-situ value of a mineral unit equals the current net price, is a special case of a more general relation. Tested against a set of recent Canadian sales of oil and gas reserves, ...

  9. Copyright 2001 All Rights ReservedCopyright 2001 All Rights ReservedCopyright 2001 All Rights Reserved Copyright 2001 All Rights ReservedCopyright 2001 All Rights ReservedCopyright 2001 All Rights Reserved

    E-Print Network [OSTI]

    Troyer, Todd W.

    Copyright © 2001 All Rights ReservedCopyright © 2001 All Rights ReservedCopyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights ReservedCopyright © 2001 All Rights ReservedCopyright © 2001 All Rights Reserved #12;Copyright © 2001 All Rights ReservedCopyright © 2001 All Rights Reserved

  10. Markets slow to develop for Niger delta gas reserves

    SciTech Connect (OSTI)

    Thomas, D. [Thomas and Associates, Hastings (United Kingdom)

    1995-11-27

    Nigeria produces a very high quality, light, sweet crude oil but with a large percentage of associated gas derived from a high gas-to-oil ratio. Official proved gas reserves, both associated and nonassociated, are 120 tcf. Proved and probable reserves are estimated as high as 300 tcf. The internal market for gas has only begun to develop since the 1980s, and as a result approximately 77% of associated gas production is flared. Domestic gas consumption is currently approximately 700 MMcfd and is projected to have a medium term potential of 1.450 bcfd. The article discusses resource development, gas markets, gas flaring, gas use programs, the Bonny LNG scheme, the gas reserve base, LNG project status, competition, and energy opportunities.

  11. Guatemala: World Oil Report 1991

    SciTech Connect (OSTI)

    Not Available

    1991-08-01

    This paper reports that government officials have been working on changes to the hydrocarbon law to make it easier for operators to explore. In a reform effort, Minister of Energy and Mines Carlos Hutarte brought a new staff dedicated to spurring oil development into office with him. This includes the Directorate of Hydrocarbons, which held a three-day seminar in Dallas, Texas, to acquaint U.S. firms with new policies. Only one company, Basic Resources International, has been operating in Guatemala over the last year. The firm drilled three onshore wells in 1990 for 16,499 ft, including one oil producer. Two further onshore wells are slated this year. Oil production from 14 active wells out of 16 capable averaged 3,943 bpd, up 8.4% from 1989. Reserves are 191 MMbbl.

  12. Production accounting and controls at the Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-07-17

    Purpose of the audit was to determine if the Reserve's crude oil and gas products were properly accounted for and controlled from well-head to ultimate use or sale and physical controls and security measures at the Reserve were sufficient to ensure that Government assets were safeguarded as required. Our review showed that the Reserve used sales rather than actual production as the basis for its production accounting process. This method of accounting gave the Reserve only an approximation of the oil and gas it produced. Security measures had been significantly improved since the Reserve was opened; however, there were certain well and tank site areas which were not adequately secured and safeguarded against loss. During the course of the audit, management took prompt action to enhance security procedures.

  13. Electricity Generation from Geothermal Resources on the Fort Peck Reservation in Northeast Montana

    SciTech Connect (OSTI)

    Carlson, Garry J.; Birkby, Jeff

    2015-05-12

    Tribal lands owned by Assiniboine and Sioux Tribes on the Fort Peck Indian Reservation, located in Northeastern Montana, overlie large volumes of deep, hot, saline water. Our study area included all the Fort Peck Reservation occupying roughly 1,456 sq miles. The geothermal water present in the Fort Peck Reservation is located in the western part of the Williston Basin in the Madison Group complex ranging in depths of 5500 to 7500 feet. Although no surface hot springs exist on the Reservation, water temperatures within oil wells that intercept these geothermal resources in the Madison Formation range from 150 to 278 degrees F.

  14. ,"U.S. Coalbed Methane Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"06301989"...

  15. ,"New Mexico Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Lease Condensate Proved Reserves, Reserve Changes, and Production",10,"Annual",2014,"0...

  16. ,"New Mexico Shale Gas Proved Reserves, Reserves Changes, and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Shale Gas Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0630...

  17. ,"New Mexico Coalbed Methane Proved Reserves, Reserves Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2014,"0...

  18. ,"North Louisiana Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  19. ,"New York Lease Condensate Proved Reserves, Reserve Changes...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...

  20. ,"TX, RRC District 10 Lease Condensate Proved Reserves, Reserve...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease Condensate Proved Reserves, Reserve Changes, and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Late...