National Library of Energy BETA

Sample records for oil refinery acquisition

  1. Improved oil refinery operations and cheaper crude oil to help...

    U.S. Energy Information Administration (EIA) Indexed Site

    Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude ...

  2. Integrating NABC bio-oil intermediates into the petroleum refinery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating NABC bio-oil intermediates into the petroleum refinery Integrating NABC bio-oil intermediates into the petroleum refinery Breakout Session 2: Frontiers and Horizons ...

  3. Innovative filter polishes oil refinery wastewater

    SciTech Connect (OSTI)

    Irwin, J.; Finkler, M.

    1982-07-01

    Describes how, after extensive testing of 4 different treatment techniques, a Hydro Clear rapid sand filter was installed at the Sohio oil refinery in Toledo, Ohio. This filtration system has proven to be more cost-effective than conventional approaches. The system handles the refinery's wastewater flow of 10.3 mgd. With the aid of the polishing filter, readily meets the NPDES permit limitations. The Toledo refinery is a highly integrated petroleum processing complex. It processes 127,000 barrels per day of crude oil, including 40,000 barrels per day of sour crude. Tables give dissolved air flotation performance data; biological system performance data; filter performance data; and refinery waste treatment unit compared with NPDES-BPT limitations. Diagram shows the Sohio refinery wastewater treatment facility. Through a separate backwash treatment system complete control is brought to the suspended solids in the effluent which also tends to control chemical oxygen demand and oil/grease levels.

  4. Opportunities for Biorenewables in Oil Refineries

    SciTech Connect (OSTI)

    Marker, T.L.

    2005-12-19

    Abstract: The purpose of this study was to evaluate the potential for using biorenewable feedstocks in oil refineries. Economic analyses were conducted, with support from process modeling and proof of principle experiments, to assess a variety of potential processes and configurations. The study considered two primary alternatives: the production of biodiesel and green diesel from vegetable oils and greases and opportunities for utilization of pyrolysis oil. The study identified a number of promising opportunities for biorenewables in existing or new refining operations.

  5. Aspects of Holly Corporation's Acquisition of Sunoco Inc.'s Tulsa, Oklahoma Refinery

    Reports and Publications (EIA)

    2009-01-01

    The Energy Information Administration has produced a review of aspects of the Holly's acquisition of Sunoco's 85,000-barrels-per-day Tulsa refinery.

  6. Combined-cycle cogeneration to power oil refinery

    SciTech Connect (OSTI)

    Broeker, R.J.

    1986-11-01

    A cogeneration plant now under construction at an oil refinery in Martinez, California, is an example of how the energy industry has been responding to the fundamental economic and technological challenges it has been facing over the past ten years. The industry is re-examining cogeneration as one way of meeting the requirements of the Public Utilities Regulatory Policy Act. The new plant is located at Tosco Corporation's Avon Oil Refinery, 45 miles northeast of San Francisco. It was designed by Foster Wheeler to supply process steam for the refinery as well as for a water-treatment installation that will benefit the Contra Costa Water District. Electric power produced will be used primarily by the refinery, with the balance purchased by the Pacific Gas and Electric Company.

  7. Refinery & Blenders Net Input of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished

  8. Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimizing Co-Processing of Bio-Oil in Refinery Unit Operations Using a Davison Circulating Riser (DCR) 2.4.2.402 March 25, 2015 Bio-Oil Technology Area Alan Zacher Pacific ...

  9. Refinery Upgrading of Hydropyrolysis Oil from Biomass Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Upgrading of Hydropyrolysis Oil from Biomass March 25,2015 Technology Area Review PI - Terry Marker Gas Technology Institute This presentation does not contain any proprietary, confidential, or otherwise restricted information Goals * Develop a cost-effective route for converting biomass to transportation fuels by first converting biomass to hydropyrolysis oil and then upgrading the hydropyrolysis oil in existing refinery equipment - Study properties and corrosion characteristics of

  10. ,"Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities",16,"Monthly","12/2015","1/15/1985" ,"Release Date:","2/29/2016" ,"Next Release

  11. Refinery Stocks of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils

  12. Contracts Awarded for Acquisition of Crude Oil for the Strategic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve January 16, ...

  13. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 - ...

  14. Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing July 30, 2014 Bryna Berendzen Technology Manager BETO Conversion Program 2 | Bioenergy Technologies Office Conversion Program FY13/14 Workshops * In the past year BETO has held 3 public workshops to engage stakeholders in discussions on the R&D needs within the various conversion technologies * Biochemical: o PRINCE - Process Integration and Carbon Efficiencies - June 11-12,

  15. Who lives near coke plants and oil refineries An exploration of the environmental inequity hypothesis

    SciTech Connect (OSTI)

    Graham, J.D.; Beaulieu, N.D.; Sussman, D.; Sadowitz, M.; Li, Y.C. )

    1999-04-01

    Facility-specific information on pollution was obtained for 36 coke plants and 46 oil refineries in the US and matched with information on populations surrounding these 82 facilities. These data were analyzed to determine whether environmental inequities were present, whether they were more economic or racial in nature, and whether the racial composition of nearby communities has changed significantly since plants began operations. The Census tracts near coke plants have a disproportionate share of poor and nonwhite residents. Multivariate analyses suggest that existing inequities are primarily economic in nature. The findings for oil refineries are not strongly supportive of the environmental inequity hypothesis. Rank ordering of facilities by race, poverty, and pollution produces limited (although not consistent) evidence that the more risky facilities tend to be operating in communities with above-median proportions of nonwhite residents (near coke plants) and Hispanic residents (near oil refineries). Over time, the radical makeup of many communities near facilities has changed significantly, particularly in the case of coke plants sited in the early 1900s. Further risk-oriented studies of multiple manufacturing facilities in various industrial sectors of the economy are recommended.

  16. The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining

    SciTech Connect (OSTI)

    Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K.

    2008-10-15

    In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

  17. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net ...

  18. Refinery Yield of Liquefied Refinery Gases

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes

  19. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  20. Refinery Capacity Report

    Reports and Publications (EIA)

    2015-01-01

    Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 states, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions. The Refinery Capacity Report does not contain working and shell storage capacity data. This data is now being collected twice a year as of March 31 and September 30 on the Form EIA-810, "Monthly Refinery Report", and is now released as a separate report Working and Net Available Shell Storage Capacity.

  1. Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report

    SciTech Connect (OSTI)

    Not Available

    1993-10-15

    The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

  2. New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - West Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  3. New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico - East Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  4. New Mexico Crude Oil + Lease Condensate Reserves Acquisitions...

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) New Mexico Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  5. SPR Crude Oil Acquisition Procedures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures Section 301(e)(2) of the Energy Policy Act of 2005 (Public Law 109-58) directs the Secretary of Energy to develop procedures to acquire petroleum, subject to certain conditions, in quantities to fill the Strategic Petroleum Reserve (SPR) to the authorized one billion barrel capacity. On April 24, 2006, a Notice of Proposed Rulemaking (NOPR) for acquisition of crude oil for the SPR was published in the Federal Register. The

  6. ,"U.S. Total Refiner Acquisition Cost of Crude Oil"

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","U.S. Total Refiner Acquisition Cost of Crude Oil",3,"Annual",2014,"6301968" ,"Release Date:","212016" ,"Next Release Date:","312016" ,"Excel File...

  7. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  8. DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated

    Energy Savers [EERE]

    for 2009 | Department of Energy to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 DOE to Resume Filling Strategic Petroleum Reserve: Oil Acquisition Slated for 2009 January 2, 2009 - 9:27am Addthis WASHINGTON, DC -- The U.S. Department of Energy today announced that it plans to take advantage of the recent large decline in crude oil prices, and has issued a solicitation to purchase approximately 12 million barrels of crude oil for the nation's Strategic Petroleum

  9. Cracking of simulated oil refinery off-gas over a coal char, petroleum coke, and quartz

    SciTech Connect (OSTI)

    Yuan Zhang; Jin-hu Wu; Dong-ke Zhang

    2008-03-15

    The cracking of oil refinery off-gas, simulated with a gas mixture containing methane (51%), ethylene (21.4%), ethane (21.1%), and propane (6.5%), over a coal char, petroleum coke, and quartz, respectively, has been studied in a fixed bed reactor. The experiments were performed at temperatures between 850 and 1000{sup o}C and at atmospheric pressure. The results show that the conversions of all species considered increased with increasing temperature. Ethane and propane completely decomposed over all three bed materials in the temperature range investigated. However, the higher initial conversion rates of methane and ethylene cracking at all temperatures were observed only over the coal char and not on the petroleum coke and quartz, indicating a significant catalytic effect of the coal char on methane and ethylene cracking. Methane and ethylene conversions decreased with reaction time due to deactivation of the coal char by carbon deposition on the char surface and, in the later stage of a cracking experiment, became negative, suggesting that methane and ethylene had been formed during the cracking of ethane and propane. 16 refs., 13 figs., 2 tabs.

  10. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOEs target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  11. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    7:16:49 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" ...US1","MMNRXNUS1","MPGRXNUS1" "Date","U.S. Refinery Net Production of Crude Oil and ...

  12. Ammonia Absorption Refrigeration Unit Provides Environmentally-Friendly Profits for an Oil Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Challenge Success Story MOTOR SYSTEM UPGRADES SMOOTH THE WAY TO SAVINGS OF $700,000 AT CHEVRON REFINERY BENEFITS * Reduced energy consumption by 1 million kWh per month * Resulted in cost savings of more than $700,000 annually * Eliminated demand charge on DHT's operation * Improved equipment reliability * Improved process control "We have had no mechanical failures since the drives went into service and vibration has dropped by a factor of 10," declares an obviously proud Mares.

  13. Refinery Outages: First Half 2015

    Reports and Publications (EIA)

    2015-01-01

    This report examines refinery outages planned for the first half of 2015 and the potential implications for available refinery capacity, petroleum product markets and supply of gasoline, diesel fuel, and heating oil. The U.S. Energy Information Administration (EIA) believes that dissemination of such analyses can be beneficial to market participants that may otherwise be unable to access such information.

  14. Refinery Input by PADD - Petroleum Supply Annual (2004)

    SciTech Connect (OSTI)

    2009-01-18

    Table showing refinery input of crude oil and petroleum products by Petroleum Administration for Defense Districts (PADD).

  15. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Arena, Blaise; Marinangelli, Richard; McCall, Michael; Marker, Terry; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2006-10-11

    a summary of our collaborative 2005 project Opportunities for Biorenewables in Petroleum Refineries at the Rio Oil and Gas Conference this September.

  16. Opportunities for Biorenewables in Petroleum Refineries

    SciTech Connect (OSTI)

    Holmgren, Jennifer; Marinangelli, Richard; Marker, Terry; McCall, Michael; Petri, John; Czernik, Stefan; Elliott, Douglas C.; Shonnard, David

    2007-02-01

    A presentation by UOP based on collaborative work from FY05 using some results from PNNL for upgrading biomass pyrolysis oil to petroleum refinery feedstock

  17. Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oils Presentation for BETO 2015 Project Peer Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mild Biomass Liquefaction Process for Economic Production of Stabilized Refinery-Ready Bio-oils March 23-27, 2015 Thermochemical Conversion Principal Investigator: Santosh Gangwal Technical Leaders: August Meng and Kevin McCabe Southern Research January 5 th , 2014 This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement  Project Goal - Develop a mild thermochemical liquefaction process to convert woody biomass to stabilized

  18. Saudi Aramco Mobile Refinery Company (SAMREF) | Open Energy Informatio...

    Open Energy Info (EERE)

    Company (SAMREF) Name: Saudi Aramco Mobile Refinery Company (SAMREF) Address: P.O. Box 30078 Place: Yanbu, Saudi Arabia Sector: Oil and Gas Product: Crude Oil Refining Phone...

  19. Refinery Capacity Report

    Gasoline and Diesel Fuel Update (EIA)

    1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200

  20. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 9 9 0 1,268,500 1,236,500 32,000 1,332,000 1,297,000 35,000 ............................................................................................................................................... PAD District I 1 1 0 182,200 182,200 0 190,200 190,200 0

  1. Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies

    Reports and Publications (EIA)

    2009-01-01

    A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

  2. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillation Crude Oil Atmospheric Distillation Vacuum Cracking Thermal Catalytic Cracking Fresh Recycled Catalytic Hydro- Cracking Catalytic Reforming Desulfurization Hydrotreating/ Fuels Solvent Deasphalting Downstream Charge Capacity Table 6. Operable Crude Oil and Downstream Charge Capacity of Petroleum Refineries, January 1, 1986 to (Thousand Barrels per Stream Day, Except Where Noted) January 1, 2015 JAN 1, 1986 16,346 6,892 1,880 5,214 463 1,125 3,744 8,791 NA JAN 1, 1987 16,460 6,935

  3. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mary Biddy Sue Jones NREL PNNL This presentation does not contain any proprietary, confidential, or otherwise restricted information DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Refinery Integration 4.1.1.31 NREL 4.1.1.51 PNNL Goal Statement GOALS: Model bio-intermediates insertion points to better define costs & ID opportunities, technical risks, information gaps, research needs Publish results Review with stakeholders 2 Leveraging existing refining infrastructure

  4. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Commodity PAD Districts I II III IV V United States Table 10a. Fuel Consumed at Refineries by PAD District, 2014 (Thousand Barrels, Except Where Noted) Crude Oil 0 0 0 0 0 0 Liquefied Petroleum Gases 0 1,348 421 23 513 2,305 Distillate Fuel Oil 0 33 174 0 102 309 Residual Fuel Oil 3 23 28 13 346 413 Still Gas 15,174 48,972 110,958 8,749 46,065 229,918 Marketable Petroleum Coke 0 0 0 493 143 636 Catalyst Petroleum Coke 8,048 16,837 44,599 2,925 12,482 84,891 Natural Gas (million cubic feet)

  5. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd) New Corporation/Refiner Date of Sale Table 12. Refinery Sales During 2014 Lindsay Goldberg LLC/Axeon Speciality Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Savannah, GA 28,000 Lindsay Goldberg LLC/Axeon Specialty Products LLC Nustar Asphalt LLC/Nustar Asphalt Refining LLC 2/14 Paulsboro, NJ 70,000 bbl/cd= Barrels per calendar day Sources: Energy Information Administration (EIA) Form

  6. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2015 (Barrels per Stream Day, Except Where Noted) a 83,429 10,111 26,500 87,665 21,045 21,120 69 1,159 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 New Jersey 29,200 0 65,000 4,000 12,000 7,500 26 280 Pennsylvania

  7. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Alkylates Aromatics Road Oil and Lubricants Petroleum Coke (MMcfd) Hydrogen Sulfur (short tons/day) Production Capacity Asphalt Isomers Marketable Table 7. Operable Production Capacity of Petroleum Refineries, January 1, 1986 to January 1, 2015 (Thousand Barrels per Stream Day, Except Where Noted) a JAN 1, 1986 941 276 804 258 246 356 2,357 NA JAN 1, 1987 974 287 788 326 250 364 2,569 23,806 JAN 1, 1988 993 289 788 465 232 368 2,418 27,639 JAN 1, 1989 1,015 290 823 469 230 333 2,501 28,369 JAN

  8. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  10. Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum

    Office of Environmental Management (EM)

    Reserve | Department of Energy Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve Contracts Awarded for Acquisition of Crude Oil for the Strategic Petroleum Reserve January 16, 2009 - 12:00pm Addthis Washington, DC - The U.S. Department of Energy (DOE) has awarded contracts to purchase 10,683,000 barrels of crude oil at a cost of $553 million for the Department's Strategic Petroleum Reserve (SPR). Deliveries of the oil will be made from February to April 2009.

  11. U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves Acquisitions (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 344 2010's 1,470 1,561 1,234 1,925 2,828 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease Condensate Reserves Acquisitions

  12. Former Soviet refineries face modernization, restructuring

    SciTech Connect (OSTI)

    Not Available

    1993-11-29

    A massive modernization and restructuring program is under way in the refining sector of Russia and other former Soviet republics. Economic reforms and resulting economic dislocation following the collapse of the Soviet Union has left refineries in the region grappling with a steep decline and changes in product demand. At the same time, rising oil prices and an aging, dilapidated infrastructure promise a massive shakeout. Even as many refineries in the former Soviet Union (FSU) face possible closure because they are running at a fraction of capacity, a host of revamps, expansions, and grass roots refineries are planned or under way. The paper discusses plans.

  13. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  14. Refinery Capacity Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 9 Shell Storage Capacity at Operable Refineries by PAD District as of January 1, 2006 PDF 10...

  15. EIA-820, Annual Refinery Report Page 1 U. S. ENERGY INFORMATION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil that first traveled 5,000 miles by tanker and then traveled 105 miles by pipeline to the refinery, report pipeline as the method of transportation. * If the refinery...

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Method PAD Districts I II III IV V United States Table 9. Refinery Receipts of Crude Oil by Method of Transportation by PAD District, 2014 (Thousand Barrels) a Pipeline 22,596 1,266,015 1,685,817 168,347 298,886 3,441,661 Domestic 2,632 658,717 1,421,768 82,043 240,522 2,405,682 Foreign 19,964 607,298 264,049 86,304 58,364 1,035,979 Tanker 252,479 0 1,046,008 0 529,319 1,827,806 Domestic 81,055 0 45,006 0 181,307 307,368 Foreign 171,424 0 1,001,002 0 348,012 1,520,438 Barge 39,045 6,360 259,903

  17. Aspects of Hess' Acquisition of American Oil & Gas

    Reports and Publications (EIA)

    2010-01-01

    On July 27, 2010, Hess Corporation announced that it had agreed to acquire American Oil & Gas, Inc. in a stock-only transaction worth as much as $488 million (based on Hess' closing price of $53.30/share, anticipated number of newly issued shares, and $30 million credit facility extended to American Oil & Gas prior to closing).

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses. Methods to reduce metal content are being evaluated.

  19. ,"U.S. Refiner Acquisition Cost of Crude Oil"

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisition Cost of Crude Oil" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refiner Acquisition Cost of Crude Oil",3,"Monthly","1/2016","1/15/1974" ,"Release Date:","3/1/2016" ,"Next Release Date:","4/1/2016" ,"Excel File

  20. Refinery siting workbook: appendices A and B

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    The objective of this effort is to develop and provide basic refinery-related information for use by state and local government officials as a basis for establishing responsible refinery siting requirements and policies consistent with the federal clean air and water standards and socio-economic concerns. The report will be organized into two volumes. The main text comprises the basic topics of physical concerns, regulatory requirements, and permitting activities, while the second volume includes the detailed appendix materials such as the applicable laws, and the necessary permits, as available and a glossary of pertinent terms. As a means to this objective, three refinery sizes, 200,000, 100,000 and 30,000 barrels per day crude charge will be discussed in technical terms. Process unit configuration will be presented which will maximize either gasoline or heating oil production with either sweet or sour crude oil feedstocks. The major issues affecting the socio-economic impact of siting the refinery in a given locale will be presented. These data will review the factors affecting the human environment and the issues that must be addressed to assess the impact that a refinery will have on a community. The key federal registrations which impact upon a refinery siting decision shall be reviewed. Summaries of these regulations and a simplified decision diagram for the air and water acts shall be presented to assist both government and refinery officials in understanding the scope of regulatory impact. All pertinent procedures required for refinery permitting shall be reviewed under the generalized headings of air, water, health and safety, land use, and miscellaneous permits. This categorization at the federal, state and local levels of government shall be used as a basis for establishing degrees of emphasis.

  1. Exergoeconomic analysis of a refinery`s utilities plant: Part II-improvement proposals

    SciTech Connect (OSTI)

    Rivero, R.; Hernandez, R.

    1996-12-31

    A crude oil refinery normally consumes a large amount of energy, not only in the form of the combustion of fossil fuels in the process units, but also in the associated Utilities Plant which produces process steam at different pressure levels and electricity. Energy losses of the utilities plant represent some 40 % of the total refinery`s energy losses. It is then extremely important to evaluate the performance of this plant and the costs to be assigned to the production of steam and electricity as a supplier of energy to the process units. This paper presents the improvement proposals generated by the application of an exergoeconomic analysis to the Utilities Plant of an existing 150,000 BPD crude oil refinery. 2 refs., 7 figs.

  2. Regulatory impact analysis for the petroleum refineries neshap. Draft report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The report analyzes the regulatory impacts of the Petroleum Refinery National Emission Standard for Hazardous Air Pollutants (NESHAP), which is being promulgated under Section 112 of the Clean Air Act Amendments of 1990 (CCA). This emission standard would regulate the emissions of certain hazardous air pollutants (HAPs) from petroleum refineries. The petroleum refineries industry group includes any facility engaged in the production of motor gasoline, naphthas, kerosene, jet fuels, distillate fuel oils, residual fuel oils, lubricants, or other products made from crude oil or unfinished petroleum derivatives. The report analyzes the impact that regulatory action is likely to have on the petroleum refining industry.

  3. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Nominal Dollars" " (nominal dollars per barrel)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO

  4. Opportunities for Biomass-Based Fuels and Products in a Refinery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Opportunities for Biomass-Based Fuels and Products in a Refinery Opportunities for Biomass-Based Fuels and Products in a Refinery Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies Corinne Valkenburg, Staff Engineer, Pacific Northwest National Laboratory PDF icon biomass13_male_2-d.pdf More Documents & Publications FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds

  5. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Freeman, Charles J.; Jones, Susanne B.; Padmaperuma, Asanga B.; Santosa, Daniel M.; Valkenburg, Corinne; Shinn,...

  6. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions You are ...

  7. Initial Assessment of U.S. Refineries for Purposes of Potential...

    Office of Scientific and Technical Information (OSTI)

    Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions This study ...

  8. Secretary Bodman Tours Refinery and Calls for More Domestic Refining

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity | Department of Energy Refinery and Calls for More Domestic Refining Capacity Secretary Bodman Tours Refinery and Calls for More Domestic Refining Capacity May 18, 2006 - 10:43am Addthis Highlights President Bush's Four-Point Plan to Combat High Energy Prices PORT ARTHUR, TX - Secretary of Energy Samuel W. Bodman today renewed the call for expanded oil refining capacity in the United States and discussed additional steps the Department of Energy (DOE) is taking to prepare for the

  9. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual" "Projected Price in Constant Dollars" " (constant dollars per barrel in ""dollar year"" specific to each AEO)" ,"AEO $ Year",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013 "AEO 1994",1992,16.69,16.42999,16.9899,17.66,18.28,19.0599,19.89,20.72,21.65,22.61,23.51,24.29,24.9,25.6,26.3,27,27.64,28.16

  10. U.S. Refineries Competitive Positions

    Gasoline and Diesel Fuel Update (EIA)

    Refineries Competitive Positions 2014 EIA Energy Conference July 14, 2014 Joanne Shore American Fuel & Petrochemical Manufacturers Refiners competitive positions Function of optimizing feedstock costs, operating costs, and revenues through mix of products sold 2 Propane/butane Chemicals Gasoline Jet Fuel Diesel/heating oil Lubes Fuel for ships Asphalt FEEDSTOCKS Qualities: - Heavy/Light - Sweet/Sour Location (Distance) - Domestic - International PROCESSING Size Complexity Treating (sulfur)

  11. Mazheikiai refinery modernization study. Executive summary. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. The volume contains the Executive Summary.

  12. Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based

    Office of Scientific and Technical Information (OSTI)

    Oil Insertions (Technical Report) | SciTech Connect Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions Citation Details In-Document Search Title: Initial Assessment of U.S. Refineries for Purposes of Potential Bio-Based Oil Insertions This study examines how existing U.S. refining infrastructure matches in geography and processing capability with the needs projected from anticipated biofuels production. Key findings include:  a potential shortfall in

  13. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  14. Table 3a. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Constant Dollars (constant dollars per barrel in "dollar year" specific to each AEO) AEO $ Year 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 1992 16.69 16.43 16.99 17.66 18.28 19.06 19.89 20.72 21.65 22.61 23.51 24.29 24.90 25.60 26.30 27.00 27.64 28.16 AEO 1995 1993 14.90 16.41 16.90 17.45 18.00 18.53 19.13 19.65 20.16 20.63 21.08

  15. Table 3b. Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual

    Gasoline and Diesel Fuel Update (EIA)

    Imported Refiner Acquisition Cost of Crude Oil, Projected vs. Actual Projected Price in Nominal Dollars (nominal dollars per barrel) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 17.06 17.21 18.24 19.43 20.64 22.12 23.76 25.52 27.51 29.67 31.86 34.00 36.05 38.36 40.78 43.29 45.88 48.37 AEO 1995 15.24 17.27 18.23 19.26 20.39 21.59 22.97 24.33 25.79 27.27 28.82 30.38 32.14 33.89 35.85 37.97 40.28 AEO 1996 17.16 17.74 18.59 19.72

  16. Hydrogen Generation for Refineries

    Office of Environmental Management (EM)

    ADVANCED MANUFACTURING OFFICE PEER REVIEW MEETING May 5-6, 2014 DE-FG02-08ER85135 Hydrogen Generation for Refineries DOE Phase II SBIR Dr. Girish Srinivas P.I. gsrinivas@tda.com 303-940-2321 Dr. Steven Gebhard, P.E. Dr. Robert Copeland Mr. Jeff Martin TDA Research Inc. 1 This presentation does not contain any proprietary, confidential, or otherwise restricted information This presentation does not contain any proprietary, confidential, or otherwise restricted information. Project Overview *

  17. U.S. Refinery Yield

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Liquefied Refinery Gases 4.9 4.9 3.5 2.8 2.0 2.0 1993-2015 Finished Motor Gasoline 44.5 44.9 45.4 45.7 46.7 47.3 1993-2015 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2015 Kerosene-Type Jet Fuel 9.7 9.4 9.3 9.8 9.8 10.1 1993-2015 Kerosene 0.1 0.1 0.1 0.1 0.1 0.2 1993-2015 Distillate Fuel Oil 29.2 29.6 29.9 30.0 30.3 29.6 1993-2015 Residual Fuel Oil 2.4 2.4 2.5 2.6 2.3 2.2 1993-2015 Naphtha for Petrochemical Feedstock Use 1.0 1.1

  18. U.S. Refinery Yield

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Liquefied Refinery Gases 4.3 4.0 4.1 3.9 4.0 3.7 1993-2015 Finished Motor Gasoline 45.7 44.9 45.0 45.0 45.0 45.3 1993-2015 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2015 Kerosene-Type Jet Fuel 9.3 9.4 9.5 9.5 9.6 9.7 1993-2015 Kerosene 0.1 0.1 0.1 0.1 0.1 0.1 1993-2015 Distillate Fuel Oil 27.5 28.9 29.1 29.5 29.9 29.8 1993-2015 Residual Fuel Oil 3.8 3.4 3.2 2.9 2.7 2.5 1993-2015 Naphtha for Petrochemical Feedstock Use 1.4 1.3 1.3 1.5 1.3

  19. Outlook for Refinery Outages and Available Refinery Capacity...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    level of refinery outages outlined in this report. This report does not consider the impacts of refined product logistics and distribution, which could affect the movement of...

  20. Storage tracking refinery trends

    SciTech Connect (OSTI)

    Saunders, J.

    1996-05-01

    Regulatory and marketplace shakeups have made the refining and petrochemical industries highly competitive. The fight to survive has forced refinery consolidations, upgrades and companywide restructurings. Bulk liquid storage terminals are following suit. This should generate a flurry of engineering and construction by the latter part of 1997. A growing petrochemical industry translates into rising storage needs. Industry followers forecasted flat petrochemical growth in 1996 due to excessive expansion in 1994 and 1995. But expansion is expected to continue throughout this year on the strength of several products.

  1. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2014 a b NEW PAD District II 19,000 Dakota Prairie Refining LLC Dickinson, ND 19,000 01/15 PAD District III 42,000 Kinder Morgan Crude & Condensate Galena Park, TX 42,000 01/15 SHUTDOWN PAD District I 28,000 0 Axeon Specialty Products LLC Savannah, GA 28,000 0 09/12 12/14 PAD District II 12,000 0 Ventura Refining & Transmission LLC Thomas, OK 12,000 0 10/10 12/14 PAD District III 0

  2. Virginia Biodiesel Refinery | Open Energy Information

    Open Energy Info (EERE)

    Refinery Jump to: navigation, search Name: Virginia Biodiesel Refinery Place: West Point, Virginia Zip: 23180 Product: Biodiesel producer based in Virginia References: Virginia...

  3. Valero: Houston Refinery Uses Plant-Wide Assessment to Develop an Energy Optimization and Management System

    SciTech Connect (OSTI)

    2005-08-01

    This Industrial Technologies Program case study describes an energy assessment team's recommendations for saving $5 million in energy, water, and other costs at an oil refinery in Houston, Texas.

  4. Refinery, petrochemical plant injuries decline

    SciTech Connect (OSTI)

    Not Available

    1994-07-25

    The National Petroleum Refiners Association (NPRA) reports a 7% reduction in workplace injury and illness incidence rates for refineries in 1993, and a 21% decrease for petrochemical plants. The report summarizes data from 135 of the 162 US member refineries, and 117 of the 172 US member petrochemical plants. This paper summarizes the report findings.

  5. Reformulated Gasoline Foreign Refinery Rules

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Foreign Refinery Rules Contents * Introduction o Table 1. History of Foreign Refiner Regulations * Foreign Refinery Baseline * Monitoring Imported Conventional Gasoline * Endnotes Related EIA Short-Term Forecast Analysis Products * Areas Participating in the Reformulated Gasoline Program * Environmental Regulations and Changes in Petroleum Refining Operations * Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model * Refiners Switch to Reformulated

  6. Refinery Outages: Description and Potential Impact on Petroleum Product Prices

    Reports and Publications (EIA)

    2007-01-01

    This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that the Energy Information Administration conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

  7. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect (OSTI)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  8. Table 5.21 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel)

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Crude Oil Refiner Acquisition Costs, 1968-2011 (Dollars per Barrel) Year Domestic Imported Composite Nominal 1 Real 2 Nominal 1 Real 2 Nominal 1 Real 2 1968E 3.21 14.57 [R] 2.90 13.16 [R] 3.17 14.39 [R] 1969E 3.37 14.58 [R] 2.80 12.11 [R] 3.29 14.23 [R] 1970E 3.46 14.22 [R] 2.96 12.16 [R] 3.40 13.97 [R] 1971E 3.68 14.40 [R] 3.17 12.41 [R] 3.60 14.09 [R] 1972E 3.67 13.77 [R] 3.22 12.08 [R] 3.58 13.43 [R] 1973E 4.17 14.82 [R] 4.08 14.50 [R] 4.15 14.75 [R] 1974 7.18 23.40 [R] 12.52 40.80 [R] 9.07

  9. This Week In Petroleum Crude Oil Section

    Gasoline and Diesel Fuel Update (EIA)

    as: U.S. crude oil stocks Four-week average U.S. crude oil refinery inputs Crude oil production and imports (million barrels per day) Production Imports U.S. crude oil...

  10. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    Cokers Catalytic Crackers Hydrocrackers Capacity Inputs Capacity Inputs Capacity Inputs Table 8. Capacity and Fresh Feed Input to Selected Downstream Units at U.S. Refineries, 2013 - 2015 (Barrels per Calendar Day) Reformers Capacity Inputs 2013 2,596,369 5,681,643 1,887,024 2,302,764 4,810,611 1,669,540 2,600,518 3,405,017 74,900 543,800 41,500 47,537 387,148 33,255 PADD I 162,249 240,550 450,093 1,196,952 303,000 414,732 1,028,003 263,238 PADD II 648,603 818,718 1,459,176 2,928,673 981,114

  11. Grupo Maris Capital ethanol refinery | Open Energy Information

    Open Energy Info (EERE)

    Maris Capital ethanol refinery Jump to: navigation, search Name: Grupo Maris (Capital ethanol refinery) Place: Nuporanga, Brazil Product: 32,000 m3 ethanol refinery owner...

  12. U.S. Refinery

    Gasoline and Diesel Fuel Update (EIA)

    Crude Oil and Petroleum Products 347,764 351,758 354,511 354,703 353,837 349,090 1993-2015 Crude Oil 99,146 101,838 102,678 105,923 101,530 100,805 1981-2015 All Oils (Excluding Crude Oil) 248,618 249,920 251,833 248,780 252,307 248,285 1993-2015 Pentanes Plus 877 682 778 711 1,018 718 1993-2015 Liquefied Petroleum Gases 16,246 18,334 18,650 18,308 16,631 14,329 1993-2015 Ethane/Ethylene 70 138 190 215 135 86 1993-2015 Propane/Propylene 3,949 4,665 4,567 4,837 5,033 4,107 1993-2015 Normal

  13. Refinery Outages: Fall 2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    some Libyan crude oil production to the market, and increasing U.S. crude production. Economic growth in 2014 outside of the United States has been slow, and some recent data...

  14. U.S. Refinery

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil and Petroleum Products 339,907 336,327 341,211 326,400 343,792 349,090 1993-2015 Crude Oil 88,982 90,640 88,781 85,114 95,794 100,805 1981-2015 All Oils (Excluding Crude Oil) 250,925 245,687 252,430 241,286 247,998 248,285 1993-2015 Pentanes Plus 971 895 884 564 580 718 1993-2015 Liquefied Petroleum Gases 14,896 14,429 15,934 11,693 15,100 14,329 1993-2015 Ethane/Ethylene 220 223 214 93 150 86 1993-2015 Propane/Propylene 4,278 4,087 4,574 2,831 4,652 4,107 1993-2015 Normal

  15. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Shell Oil Products US 12,500 0 0 0 15,000 0 9,000 ...... 189 413 Martinez 0 Tesoro Refining & Marketing Co 17,000 0 0 3,500 ...

  16. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Kenai ...... Arkansas 90,500 0 92,700 0 48,850 0 0 0 0 Cross Oil Refining & Marketing Inc 7,500 0 7,700 0 3,850 0 0 0 0 ...

  17. Refinery Capacity Report

    U.S. Energy Information Administration (EIA) Indexed Site

    CORPORATION / Refiner / Location Table 5. Refiners' Total Operable Atmospheric Crude Oil Distillation Capacity as of January 1, 2015 Calendar Day Barrels per CORPORATION / Refiner / Location Calendar Day Barrels per Companies with Capacity Over 100,000 bbl/cd .............................................................................................................................. VALERO ENERGY CORP 1,964,300 Valero Refining Co Texas LP

  18. Motiva Refinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refinery Motiva Refinery May 18, 2006 - 10:45am Addthis Remarks Prepared for Energy Secretary Bodman Much of my time lately has been devoted to explaining why the price of gasoline has risen so sharply. President Bush understands the pinch this is creating for American consumers and has come forward with a variety of steps to address the problem. Rapid economic growth in emerging economies like China and India-and the growth here in the U.S.-have pushed up demand. Political unrest in some

  19. Martinez Refinery Completes Plant-Wide Energy Assessment

    SciTech Connect (OSTI)

    2002-11-01

    This OIT BestPractices Case Study describes how the Equilon Enterprises oil refinery in Martinez, California undertook a plant-wide energy assessment that focused on three key areas: waste minimization, process debottlenecking, and operations optimization. The assessment yielded recommendations, which, if implemented, can save more than 6,000,000 MMBtu per year and an estimated $52,000,000 per year, plus improve process control and reduce waste.

  20. FEASIBILITY STUDY FOR A PETROLEUM REFINERY FOR THE JICARILLA APACHE TRIBE

    SciTech Connect (OSTI)

    John D. Jones

    2004-10-01

    A feasibility study for a proposed petroleum refinery for the Jicarilla Apache Indian Reservation was performed. The available crude oil production was identified and characterized. There is 6,000 barrels per day of crude oil production available for processing in the proposed refinery. The proposed refinery will utilize a lower temperature, smaller crude fractionation unit. It will have a Naphtha Hydrodesulfurizer and Reformer to produce high octane gasoline. The surplus hydrogen from the reformer will be used in a specialized hydrocracker to convert the heavier crude oil fractions to ultra low sulfur gasoline and diesel fuel products. The proposed refinery will produce gasoline, jet fuel, diesel fuel, and a minimal amount of lube oil. The refinery will require about $86,700,000 to construct. It will have net annual pre-tax profit of about $17,000,000. The estimated return on investment is 20%. The feasibility is positive subject to confirmation of long term crude supply. The study also identified procedures for evaluating processing options as a means for American Indian Tribes and Native American Corporations to maximize the value of their crude oil production.

  1. Implications of Increasing U.S. Crude Oil Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implications of Increasing U.S. Crude Oil Production By John Powell June 18, 2013 U.S. crude oil production is up dramatically since 2010 and will continue to grow rapidly; this has implications for: John Powell June 18, 2013 2 * Refinery operations * Refinery investment * Logistics infrastructure investment * Exports of petroleum products * Exports of crude oil Increased U.S. crude oil production has resulted in: John Powell June 18, 2013 3 * Declines in U.S. crude imports * Changes to refinery

  2. Mazheikiai refinery modernization study. Final report. Volume 2. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 2 of the study.

  3. Mazheikiai refinery modernization study. Final report. Volume 3. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 3 of the study.

  4. Mazheikiai refinery modernization study. Final report. Volume 1. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The study, conducted by Foster Wheeler Corporation, was funded by the U.S. Trade and Development Agency on behalf of Lithuania's Ministry of Energy. The Mazheikiai Oil Refinery is the only one in the Baltic Region and serves the needs of Lithuania, Latvia, Estonia, and Kaliningrad. Before Lithuania's independence in 1990, the refinery was assured of crude supplies from Russia. However, since then the need has arisen to secure alternate sources of crude oil and the ability to process them. The purpose of the report is to provide recommendations to the Ministry of Energy for process improvements, environmental control measures, physical rehabilitation and energy conservation plans for the Mazheikiai Oil Refinery. This is Volume 1 of the study.

  5. Inorganic Membranes for Refinery Gas Separations

    SciTech Connect (OSTI)

    2009-02-01

    This factsheet describes a research project whose goal is to push the performance limits of inorganic membranes for large-scale gas separations in refinery applications.

  6. Refinery burner simulation design architecture summary.

    SciTech Connect (OSTI)

    Pollock, Guylaine M.; McDonald, Michael James; Halbgewachs, Ronald D.

    2011-10-01

    This report describes the architectural design for a high fidelity simulation of a refinery and refinery burner, including demonstrations of impacts to the refinery if errors occur during the refinery process. The refinery burner model and simulation are a part of the capabilities within the Sandia National Laboratories Virtual Control System Environment (VCSE). Three components comprise the simulation: HMIs developed with commercial SCADA software, a PLC controller, and visualization software. All of these components run on different machines. This design, documented after the simulation development, incorporates aspects not traditionally seen in an architectural design, but that were utilized in this particular demonstration development. Key to the success of this model development and presented in this report are the concepts of the multiple aspects of model design and development that must be considered to capture the necessary model representation fidelity of the physical systems.

  7. High-Octane Fuel from Refinery Exhaust Gas: Upgrading Refinery Off-Gas to High-Octane Alkylate

    SciTech Connect (OSTI)

    2009-12-01

    Broad Funding Opportunity Announcement Project: Exelus is developing a method to convert olefins from oil refinery exhaust gas into alkylate, a clean-burning, high-octane component of gasoline. Traditionally, olefins must be separated from exhaust before they can be converted into another source of useful fuel. Exelus process uses catalysts that convert the olefin to alkylate without first separating it from the exhaust. The ability to turn up to 50% of exhaust directly into gasoline blends could result in an additional 46 million gallons of gasoline in the U.S. each year.

  8. Hydrotreating Pyrolytic Lignin to Produce a Refinery Feedstock (Poster)

    SciTech Connect (OSTI)

    French, R. J.

    2013-09-01

    Fast pyrolysis of biomass followed by water separation to produce pyrolytic lignin and hydrotreating of the lignin could be used to produce a stable volatile low-oxygen intermediate liquid. Such a liquid could be converted into a finished motor-fuel in a refinery, taking advantage of the existing infrastructure and economies of scale of refineries. Hydrotreating just the lignin would consume less hydrogen while preserving about half of the energy of the original oil. The aqueous by-products could be reformed to produce the needed hydrogen and would contain much of the unwanted acids and unstable oxygenates. To assess such intermediate liquids, several pyrolytic lignins were prepared by mixing pyrolysis oil with water at 1:1 and 3:1 ratios. The carboxylic acidity in the pyrolytic lignin was reduced to 24 and 10 mg-KOH/g-lignin compared to 81 in the whole oil. These lignins were hydrotreated using Ni-Mo(S)/alumina, Pt/char, or Pd/C(activated) in a semi-batch 1 L stirred autoclave. The oil was stabilized under hydrogen at 150-280 degrees C, then water and light organics were removed by partial depressurization. Hydrodeoxygenation was then performed at 340-400 degrees C. Total pressure was controlled at 70 or 170 bar with hydrogen gas. Organic liquid yields of 39-56% were obtained. For many experiments the organic oxygen content was <7%, acidity was < 7 mg-KOH/g-oil, the volatility was greater than or equal to 94% and, on a carbon basis, the total yield of organic products miscible in hydrocarbons at a 1:10 ratio was over 50%. These properties are probably acceptable to a refinery.The residual liquids left in the reactor at the end of the experiment comprised 60-85% of the organic-phase product while the rest was condensate. 13C-NMR of the residual liquids showed that they were 50-80% aliphatic. 13C-NMR coupled with GC-MS identified phenolic compounds as the main oxygenates in most residual liquids.

  9. From the Woods to the Refinery

    Broader source: Energy.gov [DOE]

    Breakout Session 2D—Building Market Confidence and Understanding II: Carbon Accounting and Woody Biofuels From the Woods to the Refinery Stephen S. Kelley, Principal and Department Head, Department of Forest Biomaterials, North Carolina State University

  10. Iran to build new refinery at Arak

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This paper reports Iranian plans to construct a grassroots 150,000-b/d refinery in Arak. The plant, to be completed in early 1993, will be capable of producing unleaded gasoline and other light products.

  11. ,"U.S. Refinery Net Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"10272015 12:31:05 PM" "Back to Contents","Data 1: U.S. Refinery Net Production" "Sourcekey","MTTRXNUS1","MLPRXNUS1","METRXNUS1","MENRXNUS1","MEYRXNUS1","...

  12. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    information Myriant Succinic Acid BioRefinery DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Mark Shmorhun, Principal Investigator March 25, 2015 2 Goal Statement * Renewable Succinic Acid Production * A high value bio based chemical derived from renewable feedstocks * Validate proposed technology at a demonstration plant located in Lake Providence, LA. * Nameplate Capacity: 30 million lbs/year 3 Myriant's Succinic Acid BioRefinery (MySAB) Lake Providence , LA 4 The Myriant

  13. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650[degrees]F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  14. Assessment of coal liquids as refinery feedstocks

    SciTech Connect (OSTI)

    Zhou, P.

    1992-02-01

    The R&D of direct coal liquefaction has reached such a stage that current two-stage processes can produce coal liquids with high yields and improved quality at a reasonable cost. To fully realize the potential value, these coal liquids should be refined into high-value liquid transportation fuels. The purpose of this study is to assess coal liquids as feedstocks to be processed by modern petroleum refining technologies. After the introduction, Section 2.0 summarizes ASTM specifications for major transportation fuels: gasoline, jet fuel, and diesel fuel, which serve as a target for coal-liquid refining. A concise description of modern refining processes follows with an emphasis on the requirements for the raw materials. These provide criteria to judge the quality of coal liquids as a refinery feedstock for the production of marketable liquid fuels. Section 3.0 surveys the properties of coal liquids produced by various liquefaction processes. Compared with typical petroleum oils, the current two-stage coal liquids are: Light in boiling range and free of resids and metals; very low in sulfur but relatively high in oxygen; relatively low in hydrogen and high in cyclics content; and essentially toxicologically inactive when end point is lower than 650{degrees}F, particularly after hydroprocessing. Despite these characteristics, the coal liquids are basically similar to petroleum. The modern refining technology is capable of processing coal liquids into transportation fuels meeting all specifications, and hydroprocessinq is obviously the major tool. The important point is the determination of a reasonable product slate and an appropriate refining scheme.

  15. Refinery Outages: First Half 2015

    Gasoline and Diesel Fuel Update (EIA)

    to increase by 820,000 bbld in 2015. While global oil supply growth has been strong, economic growth outside of the United States has been slow, particularly in Russia and...

  16. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in a series of special reports by the Oil & Gas Journal ... 2006 2008 2010 2012 2014 2016 2018 2020 W orld Oil price ... Floors Market demand for refinery feedstock and chemical ...

  17. Over a barrel: Government influence and mergers and acquisitions in the petroleum industry. The case of Sun Oil Company, 1938-1980

    SciTech Connect (OSTI)

    Powers, W.P. Jr.

    1993-01-01

    This dissertation examines the nature of government business relations, as perceived by the owners and managers of the Sun Oil Company, a large integrated oil and gas producer, transporter, refiner, and marketer. Sun has had a long and profitable career in the oil industry, success which came despite a complex, often bitter relationship with government in its regulatory and antitrust capacity. The founding Pew family has historically been quite outspoken in its opposition to what they perceived to be the government's chronic, unwelcome intrusion into the affairs of business. Sun's almost one hundred year history can be readily divided into two distinct phases. The first, the period from 1938-1947, could best be characterized as the time when Sun Company officials fought bitterly against what they thought to be excessive government domination over their industry, fearing either the government's outright takeover, or its imposition of burdensome restrictions. After freeing themselves from the government's oppression, Sun management then set out to build a growing, profitable oil concern. From 1938 to the present, Sun has undertaken several transactions that have established the firm as a highly successful petroleum company, including a merger, an aborted takeover, and a successful acquisition. Sun's survival in an endeavor where many perish, either purchased or driven out, provides the focus of this dissertation.

  18. Crude Oil | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISACCrude Oil content top National Transportation Fuels Model Posted by tmanzan on Oct 3, 2012 in | Comments 0 comments National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,

  19. U.S. Refinery Net Production

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    12,813 12,516 12,287 12,009 12,148 11,916 2005-2014 Liquefied Refinery Gases 623 659 619 630 623 653 2005-2014 EthaneEthylene 19 20 20 18 7 6 2005-2014 Ethane 14 14 14 13 7 5...

  20. Refinery siting workbook: appendices C to O

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Applicable laws and permits available for the selection and building of petroleum refineries are enclosed. A glossary of pertinent terms is also included. References related to the National Environmental Policy Act, the Clean Air Act, the Federal Water Pollution Control Act, Resource Conservation and Recovery Act, Toxic Substance Control Act, and Wetlands and Coastal Zone are included. Permit information is also presented. (DC)

  1. U.S. Refinery Stocks

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. PADD 1 East Coast Appalachian No. 1 PADD 2 Ind., Ill. and Ky. Minn., Wis., N. Dak., S. Dak. Okla., Kans., Mo. PADD 3 Texas Inland Texas Gulf Coast La. Gulf Coast N. La., Ark New Mexico PADD 4 PADD 5 Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Crude Oil and Petroleum

  2. From the Woods to the Refinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Woods to the Refinery CORRIM Life Cycle Analyses of Woody Feedstocks Dr. Steve Kelley Dr. Elaine Oneil President, CORRIM Executive Director, CORRIM Professor North Carolina State Consortium for Research on Renewable Industrial Materials A non-profit corporation formed by 17 research institutions to conduct cradle to grave environmental studies of wood products * Seventeen years of LCI/LCA work on durable wood products * Biofuel LCI/LCA research support from: * Eight institutions/cooperators

  3. Motiva Enterprises Refinery Expansion Groundbreaking | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In 1901 Texas wildcatters struck oil near here at a place called Spindletop, setting off the Texas Oil Boom. Like the California Gold Rush some 50 years before, the Texas Oil Boom ...

  4. Economic impact analysis for the petroleum refineries NESHAP. Final report

    SciTech Connect (OSTI)

    1995-08-01

    An economic analysis of the industries affected by the Petroleum Refineries National Emmissions Standard for Hazardous Air Pollutants (NESHAP) was completed in support of this standard. The industry for which economic impacts was computed was the petroleum refinery industry. Affected refineries must reduce HAP emissions by the level of control required in the standard. Several types of economic impacts, among them price product changes, output changes, job impacts, and effects on foriegn trade, were computed for the selected regulatory alternative.

  5. Potential Vulnerability of US Petroleum Refineries to Increasing Water

    Energy Savers [EERE]

    Temperature and/or Reduced Water Availability | Department of Energy Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability This report discusses potential impacts of increased water temperature and reductions in water availability on petroleum refining and presents case studies related to refinery water use. Report

  6. Market Assessment of Refinery Outages Planned for October 2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average values for 2002-2009 excluding months in 2005, 2006, and 2008 affected by hurricanes & refinery closures. Similarly, typical historical values are average planned...

  7. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas. PDF icon Displacing Natural Gas Consumption and...

  8. Development of an Integrated Biofuel and Chemical Refinery Presentatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of an Integrated Biofuel and Chemical Refinery John D. Trawick Research ... HT Screening In vivo assays Metabolic Engineering Tools HT Cloning Data LIMS Fermentation ...

  9. Refinery & Blender Net Production of Total Finished Petroleum...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases EthaneEthylene Ethane Ethylene PropanePropylene Propane Propylene Normal Butane...

  10. Integrated Forest Products Refinery (IFPR)

    SciTech Connect (OSTI)

    van Heiningen, Adriaan R. P.

    2010-05-29

    Pre-extractionkraft studies of hardwoods showed that when extracting about 10% of the wood, the final kraft pulp yield and physical properties could only be maintained at a level similar to that of regular kraft pulp when the final extract pH was close to neutral. This so-called near neutral pre-extraction condition at a level of 10% wood dissolution was achieved by contacting the wood chips with green liquor (GL) at a charge of about 3% (as Na2O on wood) at 160 C for almost 2 hours (or an H-factor of about 800 hrs.). During subsequent kraft cooking of the pre-extracted hardwood chips the effective alkali charge could be reduced by about 3% (as Na2O on wood) and the cooking time shortened relative to that during regular kraft cooking, while still producing the same bleachable grade kappa number as the kraft control pulp. For softwood, no extraction conditions were discovered in the present investigation whereby both the final kraft pulp yield and physical properties could be maintained at a level similar to that of regular softwood kraft pulp. Therefore for hardwoods the near- neutral green liquor pre-extraction conditions do meet the requirements of the IFPR concept, while for softwood, no extraction conditions were discovered which do meet these requirements. Application of simulated industrial GL at an extraction H-factor of about 800 hrs and 3% GL charge in a recirculating digester produced an hardwood extract containing about 4% (on wood) of total anhydro-sugars, 2% of acetic acid, and 1.3% of lignin. Xylan comprised of 80% of the sugars of which about 85% is oligomeric. Since only polymeric hemicelluloses and lignin may be adsorbed on pulp (produced at a yield of about 50% from the original wood), the maximum theoretical yield increase due to adsorption may be estimated as 10% on pulp (or 5% on wood). However, direct application of raw GL hardwood extract for hemicelluloses adsorption onto hardwood kraft pulp led to a yield increase of only about 1% (on pulp). By using the wet-end retention aid guar gum during the adsorption process at a charge of 0.5% on pulp the yield gain may be increased to about 5%. Unfortunately, most of this yield increase is lost during subsequent alkaline treatments in the pulp bleach plant. It was found that by performing the adsorption at alkaline conditions the adsorption loss during alkaline treatment in the bleach plant is mostly avoided. Thus a permanent adsorption yield of about 3 and 1.5% (on pulp) was obtained with addition of guar gum at a charge of 0.5 and 0.1% respectively during adsorption of GL hardwood extract on pre-extracted kraft pulp at optimal conditions of pH 11.5, 90 C for 60 minutes at 5% consistency. The beatability of the adsorbed kraft pulps was improved. Also, significant physical strength improvements were achieved. Further study is needed to determine whether the improvements in pulp yield and paper properties make this an economic IFPR concept. Application of the wood solids of a hot water extract of Acer rubrum wood strands as a substitute for polystyrene used for production of SMC maintained the water adsorption properties of the final product. Further work on the physical properties of the hemicellulose containing SMCs need to be completed to determine the potential of wood extracts for the production of partially renewable SMCs. The discovery of the near-neutral green liquor extraction process for hardwood was formed the basis for a commercial Integrated Biorefinery that will extract hemicelluloses from wood chips to make biofuels and other specialty chemicals. The pulp production process will be maintained as is proposed in the present researched IFBR concept. This Integrated Biorefinery will be constructed by Red Shield Acquisition LLC (RSA) at the Old Town kraft pulp mill in Maine. RSA in collaboration with the University of Maine will develop and commercialize the hemicellulose extraction process, the conversion of the hemicellulose sugars into butanol by fermentation, and the separation of specialty chemicals such as acetic acid fr

  11. U.S. Refinery Crude Oil Input Qualities

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Sulfur Content, Weighted Average (Percent) 1.39 1.36 1.36 1.37 1.44 1.44 1985-2015 API Gravity, Weighted Average (Degrees) 31.73 31.69 31.44 31.53 31.67 31.31 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this

  12. Total Refinery Net Input of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    346,773 340,480 321,878 318,765 321,561 328,213 2005-2015 PADD 1 22,886 23,148 20,094 22,062 22,083 20,464 2005-2015 East Coast 19,812 20,114 17,024 19,313 19,160 17,357 2005-2015 Appalachian No. 1 3,074 3,034 3,070 2,749 2,923 3,107 2005-2015 PADD 2 70,767 68,865 61,444 54,690 59,836 63,570 2005-2015 Ind., Ill. and Ky. 44,601 42,709 39,206 34,355 39,460 40,006 2005-2015 Minn., Wis., N. Dak., S. Dak. 10,306 9,772 7,576 7,633 8,646 9,446 2005-2015 Okla., Kans., Mo. 15,860 16,384 14,662 12,702

  13. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 1.39 1.36 1.36 1.37 1.44 1.44 1985-2015 PADD 1 0.85 0.97 0.62 0.83 0.75 0.75 1985-2015 East Coast 0.78 0.91 0.51 0.76 0.68 0.67 1985-2015 Appalachian No. 1 1.57 1.62 1.71 1.59 1.61 1.65 1985-2015 PADD 2 1.44 1.46 1.40 1.33 1.54 1.55

  14. U.S. Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Sulfur Content, Weighted Average (Percent) 1.39 1.40 1.42 1.44 1.45 1.40 1985-2015 API Gravity, Weighted Average (Degrees) 30.71 30.69 31.0 30.79 31.77 31.68 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum of components due to independent rounding. See Definitions, Sources, and Notes link above for more information on this table. Release

  15. Distillate Fuel Oil Refinery, Bulk Terminal, and Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    07,750 111,024 120,511 117,143 111,235 123,812 1993-2015 PAD District 1 35,684 41,109 47,692 48,247 50,887 55,286 1993-2015 Connecticut 1,693 1,981 2,714 3,388 3,960 4,509...

  16. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","8312016" ,"Excel File Name:","petpnpcrqdcunusa.xls" ,"Available from Web Page:","http:www.eia.govdnavpet...

  17. ,"U.S. Refinery Crude Oil Input Qualities"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","1292016" ,"Next Release Date:","2292016" ,"Excel File Name:","petpnpcrqdcunusm.xls" ,"Available from Web Page:","http:www.eia.govdnavpet...

  18. U.S. Refinery Net Production

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 379,398 376,546 352,148 350,299 353,077 362,368 2005-2015 Liquefied Refinery Gases 26,335 25,920 17,388 13,536 9,912 10,243 2005-2015 Ethane/Ethylene 188 127 158 202 196 226 2005-2015 Ethane 163 110 133 173 165 194 2005-2015 Ethylene 25 17 25 29 31 32 2005-2015 Propane/Propylene 18,010 17,811 15,869 16,121 16,574 17,905 2005-2015 Propane 8,767 8,530 7,955 7,965 8,303 8,831 2005-2015 Propylene 9,243 9,281 7,914 8,156 8,271 9,074

  19. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking. Investigation of coal extraction as a method to produce RCO continues; the reactor modifications to filter the products hot and to do multi-stage extraction improve extraction yields from {approx}50 % to {approx}70%. Carbon characterization of co-cokes for use as various carbon artifacts continues.

  20. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO from the latest modification) indicates that the fraction is heavier than a No. 6 fuel oil. Combustion efficiency on our research boiler is {approx}63% for the heavy RCO fraction, lower than the combustion performance for previous co-coking fuel oils and No. 6 fuel oil. Emission testing indicates that the coal derived material has more trace metals related to coal than petroleum, as seen in previous runs. An additional coal has been procured and is being processed for the next series of delayed co-coking runs. The co-coking of the runs with the new coal have begun, with the coke yield similar to previous runs, but the gas yield is lower and the liquid yield is higher. Characterization of the products continues. Work continues on characterization of liquids and solids from co-coking of hydrotreated decant oils; liquid yields include more saturated and hydro- aromatics, while the coke quality varies depending on the conditions used. Pitch material is being generated from the heavy fraction of co-coking.

  1. Waste oil reclamation. (Latest citations from the NTIS database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  2. Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

  3. World Energy Projection System Plus Model Documentation: Refinery Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) Refinery Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1252016 6:37:20 PM" "Back to Contents","Data 1: Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks" "Sourcekey","MGFSXUS1"...

  5. Effective Fouling Minimization Increases the Efficiency and Productivity of Refineries

    Broader source: Energy.gov [DOE]

    This factsheet details a project to improve operating procedures, including physical and chemical methods and the use of high-temperature coatings, to allow refineries to operate equipment below threshold fouling conditions and use the most effective minimization techniques.

  6. U.S. Crude Oil and Petroleum Products Stocks by Type

    Gasoline and Diesel Fuel Update (EIA)

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils,

  7. NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol

    Office of Environmental Management (EM)

    from Algae | Department of Energy NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae NREL Refinery Process Shows Increased Effectiveness of Producing Ethanol from Algae February 11, 2016 - 5:07pm Addthis A new biorefinery process developed by scientists at the Energy Department's National Renewable Energy Laboratory (NREL) with funding from the U.S. Department of Energy's Bioenergy Technologies Office (BETO) has proven to be significantly more effective at

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    SciTech Connect (OSTI)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to commercial fuels ({approx}60 ON for coal-based gasoline and {approx}20 CN for coal-based diesel fuel). Therefore, the allowable range of blending levels was studied where the blend would achieve acceptable performance. However, in both cases of the coal-based fuels, their ignition characteristics may make them ideal fuels for advanced combustion strategies where lower ON and CN are desirable. Task 3 was designed to develop new approaches for producing ultra clean fuels and value-added chemicals from refinery streams involving coal as a part of the feedstock. It consisted of the following three parts: (1) desulfurization and denitrogenation which involves both new adsorption approach for selective removal of nitrogen and sulfur and new catalysts for more effective hydrotreating and the combination of adsorption denitrogenation with hydrodesulfurization; (2) saturation of two-ring aromatics that included new design of sulfur resistant noble-metal catalysts for hydrogenation of naphthalene and tetralin in middle distillate fuels, and (3) value-added chemicals from naphthalene and biphenyl, which aimed at developing value-added organic chemicals from refinery streams such as 2,6-dimethylnaphthalene and 4,4{prime}-dimethylbiphenyl as precursors to advanced polymer materials. Major advances were achieved in this project in designing the catalysts and sorbent materials, and in developing fundamental understanding. The objective of Task 4 was to evaluate the effect of introducing coal into an existing petroleum refinery on the fuel oil product, specifically trace element emissions. Activities performed to accomplish this objective included analyzing two petroleum-based commercial heavy fuel oils (i.e., No. 6 fuel oils) as baseline fuels and three co-processed fuel oils, characterizing the atomization performance of a No. 6 fuel oil, measuring the combustion performance and emissions of the five fuels, specifically major, minor, and trace elements when fired in a watertube boiler designed for natural gas/fuel oil, and determining the boiler performance when firing the five fuels. Two different co-processed fuel oils were tested: one that had been partially hydrotreated, and the other a product of fractionation before hydrotreating. Task 5 focused on examining refining methods that would utilize coal and produce thermally stable jet fuel, included delayed coking and solvent extraction. Delayed coking was done on blends of decant oil and coal, with the goal to produce a premium carbon product and liquid fuels. Coking was done on bench scale and large laboratory scale cokers. Two coals were examined for co-coking, using Pittsburgh seam coal and Marfork coal product. Reactions in the large, laboratory scaled coker were reproducible in yields of products and in quality of products. While the co-coke produced from both coals was of sponge coke quality, minerals left in the coke made it unacceptable for use as anode or graphite grade filler.

  9. ACQUISITION PLANNING

    Broader source: Energy.gov (indexed) [DOE]

    Management for the Acquisition of Capital Assets 22. DOE O 436.1 Departmental Sustainability 23. DOE G 413.3-13 Acquisition Strategy Guide for Capital Asset Projects 24. DOE O...

  10. Acquisition Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    _____________________________________________________________ __________________________________________________Chapter 15.4-4 (December 2010) GENERAL GUIDE FOR TECHNICAL ANALYSIS OF COST PROPOSALS FOR ACQUISITION CONTRACTS Acquisition Guide _____________________________________________________________ __________________________________________________Chapter 15.4-4 (November 2010) TABLE OF CONTENT CHAPTER 1 - INTRODUCTION KEY CONCEPTS

  11. U.S. Refinery Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,568,301 4,484,600 4,395,128 4,433,893 4,349,316 4,273,291 2005-2015 Liquefied Refinery Gases 240,454 225,992 230,413 227,349 238,485 223,448 2005-2015 Ethane/Ethylene 7,228 7,148 6,597 2,626 2,038 2,134 2005-2015 Ethane 5,200 5,105 4,835 2,439 1,777 1,835 2005-2015 Ethylene 2,028 2,043 1,762 187 261 299 2005-2015 Propane/Propylene 204,223 201,492 202,309 206,038 214,378 203,954 2005-2015 Propane 102,913 98,508 100,933 103,568 111,813 103,253

  12. Total Crude Oil and Petroleum Products Exports

    Gasoline and Diesel Fuel Update (EIA)

    Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter

  13. Record U.S. oil inventories continue increasing over next two...

    Gasoline and Diesel Fuel Update (EIA)

    of February. In its new monthly forecast, the U.S. Energy Information Administration said the increase in oil inventories will moderate as refineries ramp up their processing of...

  14. Shale Oil Value Enhancement Research

    SciTech Connect (OSTI)

    James W. Bunger

    2006-11-30

    Raw kerogen oil is rich in heteroatom-containing compounds. Heteroatoms, N, S & O, are undesirable as components of a refinery feedstock, but are the basis for product value in agrochemicals, pharmaceuticals, surfactants, solvents, polymers, and a host of industrial materials. An economically viable, technologically feasible process scheme was developed in this research that promises to enhance the economics of oil shale development, both in the US and elsewhere in the world, in particular Estonia. Products will compete in existing markets for products now manufactured by costly synthesis routes. A premium petroleum refinery feedstock is also produced. The technology is now ready for pilot plant engineering studies and is likely to play an important role in developing a US oil shale industry.

  15. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  16. Achieving very low mercury levels in refinery wastewater by membrane filtration.

    SciTech Connect (OSTI)

    Urgun Demirtas, M.; Benda, P.; Gillenwater, P. S.; Negri, M. C.; Xiong, H.; Snyder, S. W.

    2012-05-15

    Microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes were evaluated for their ability to achieve the world's most stringent Hg discharge criterion (<1.3 ng/L) in an oil refinery's wastewater. The membrane processes were operated at three different pressures to demonstrate the potential for each membrane technology to achieve the targeted effluent mercury concentrations. The presence of mercury in the particulate form in the refinery wastewater makes the use of MF and UF membrane technologies more attractive in achieving very low mercury levels in the treated wastewater. Both NF and RO were also able to meet the target mercury concentration at lower operating pressures (20.7 bar). However, higher operating pressures ({ge}34.5 bar) had a significant effect on NF and RO flux and fouling rates, as well as on permeate quality. SEM images of the membranes showed that pore blockage and narrowing were the dominant fouling mechanisms for the MF membrane while surface coverage was the dominant fouling mechanism for the other membranes. The correlation between mercury concentration and particle size distribution was also investigated to understand mercury removal mechanisms by membrane filtration. The mean particle diameter decreased with filtration from 1.1 {+-} 0.0 {micro}m to 0.74 {+-} 0.2 {micro}m after UF.

  17. U.S. Fuel Consumed at Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History Crude Oil 0 0 0 0 0 0 1986-2014 Liquefied Petroleum Gases 2,866 2,404 1,291 1,521 1,311 2,305 1986-2014 Distillate Fuel Oil 339 440 483 539 475 309 1986-2014

  18. ACQUISITION PLANNING

    Office of Environmental Management (EM)

    --------------------------Chapter 7.1 (February 2015) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process. 

  19. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    April 2014) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process.  Contracting professionals play a key role in

  20. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 2015) ACQUISITION PLANNING Guiding Principles  Sound acquisition planning ensures that the contracting process is conducted in a timely manner, in accordance with statutory, regulatory, and policy requirements, and reflects the mission needs of the program.  An integrated team approach that includes appropriate representation from all organizations having an interest in the requirement will benefit the acquisition planning process.  Contracting professionals play a key role in

  1. Acquisition Regulation

    Energy Savers [EERE]

    8 August 24, 2015 ACQUISITION LETTER This Acquisition Letter is issued under the authority of the Senior Procurement Executives of DOE and NNSA. It is intended for use by procurement professionals of DOE and NNSA, primarily Contracting Officers, and other officials of DOE and NNSA that are involved in the acquisition process. Other parties are welcome to its information, but definitive interpretations of its effect on contracts, and related procedures, if any, may only be made by DOE NNSA

  2. Acquisition Regulation

    Energy Savers [EERE]

    .1 * * ~, No. AL-2015-09 Date August 25, 2015 fJ~ ~* - . *--~o' 1 '.j ! t :i ?';; * ~~* ~'~"l'ES'ffito":J ACQUISITION LETTER This Acquisition Letter is issued under the authority of the Senior Procurement Executives of DOE and NNSA Subject: Conference Related Activities and Spending References: Deputy Secretary Memorandum of 8/ 17I15 When is this Acquisition Letter (AL) effective? This AL is effective immediately upon issuance. When does this AL expire? Updated Guidance on Conference-

  3. Acquisition Regulation

    Energy Savers [EERE]

    6 Rev. 1 Date 09/09/2015 Department of Energy No. FAL 2015-04 Rev. 1 Date 09/09/2015 Financial Assistance Regulations ACQUISITION/FINANCIAL ASSISTANCE LETTER This Acquisition/Financial Assistance Letter is issued under the authority of the Senior Procurement Executive of DOE. It is intended for use by procurement professionals of DOE, primarily Contracting Officers, and other officials of DOE that are involved in the acquisition process. Other parties are welcome to its information, but

  4. Acquisition Regulation

    Broader source: Energy.gov (indexed) [DOE]

    5 Date 05/12/2015 ACQUISITION LETTER This Acquisition Letter is issued under the authority of the DOE and NNSA Senior Procurement Executives. Acquisition Letters (AL) that remain in effect are identified below. All other previously issued ALs have been superseded by a formal rule-making, incorporated into other guidance, and/or canceled. ** ************** ACQUISITION LETTERS REMAINING IN EFFECT NUMBER DATE SUBJECT 93-4 04/07/1993 Displaced Workers Benefits Program 94-19 12/09/1994 Basic Labor

  5. ACQUISITION PLANNING

    Broader source: Energy.gov (indexed) [DOE]

    - Multiple Award Preference 10. FAR 17.5 Interagency Acquisitions 11. FAR Subpart 17.6 Management and Operating Contracts 12. FAR Part 19 Small Business Programs Guiding...

  6. Acquisition Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A single purchase order value shall not exceed the simplified acquisition threshold (SAT). Contracting Officers shall not "split" requirements into multiple orders to avoid...

  7. Virent is Replacing Crude Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virent is Replacing Crude Oil Virent is Replacing Crude Oil Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent PDF icon cortright_biomass_2014.pdf More Documents & Publications Bioproducts and Biofuels - Growing Together! NABC Webinar Navigating Roadblocks on the Path to Advanced Biofuels Deployment

  8. Alternative multimedia regulatory programs for next-generation refineries

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Arguerro, R.; Emerson, D.

    2000-06-22

    The 25-year-old command-and-control environmental regulatory structure in the US has resulted in significant environmental improvements. Recently, however, its limitations (e.g., rigid application regardless of site-specific conditions, disregard of cross-media and multimedia impacts, limited incentives for new technology development and use) have become increasingly apparent. New regulatory approaches that recognize current and anticipated economic constraints, new knowledge of environmental processes and impacts, and the benefits of new technologies are needed. Such approaches could be especially important for the US petroleum refining industry. This industry operates under thin profit margins, releases chemicals that can produce adverse health and environmental impacts, and must meet the technological challenges of producing more highly refined fuels from poorer quality feedstocks. Under a grant from the Environmental Technology Initiative (ETI), Argonne National Laboratory and its subcontractor, Analytical Services, Inc. developed two alternative environmental regulatory programs for next-generation petroleum refineries. (In this report, next-generation refineries refers to the refineries of today as they operate in the next 20 or more years rather than to fully reengineered future refineries.) The objective of the ETI refinery project was to develop future-oriented regulatory programs for next-generation refineries that will expand the use of innovative technologies, encourage pollution prevention, demonstrate environmental responsibility, and maintain refinery economic performance. Rather than suggesting targeted, short-term modifications to existing media-specific command-and-control regulations, the ETI project suggests the use of new approaches that are broader and more flexible. It recognizes that giving refineries flexibility in meeting environmental protection goals can stimulate new technology development and use. Unlike most US Environmental Protection Agency (EPA) reinvention efforts, which seek results in 12 to 18 months, this ETI effort assumes a time frame of 20 years or more. It also assumes that existing laws and regulations can be changed. An iterative and interactive process was used by the project team to develop the alternative approaches. Information and stakeholder input were integrated to provide for constant revision and improvement. First, guidelines and principles were established to bound the study and set parameters for developing the approaches. Next, existing and projected environmental laws and regulations affecting petroleum refineries were examined to identify areas needing change. Then, to understand future challenges and opportunities, the projected refinery operating environment was described in terms of feedstock, product, technology, and economics. Finally several goals and indicators for assessing and comparing the alternatives were identified. On the basis of this background information, more than 60 options that could efficiently and effectively protect human health and the environment were identified. These options ranged from fundamental changes in program philosophy to procedural improvements. After the options were evaluated against the goals and indicators, many of them were integrated into two separate thematic paradigms: a risk-based paradigm and a goal-based paradigm. Elements common to both approaches include the following: (1) Establish the baseline--In establishing the baseline, the refinery and the regulator jointly identify residuals for which release limits must be established; (2) Set residual release limits--The refinery and the regulator jointly specify release limits on a facility-wide rather than a source-specific basis. A facility-wide permit documents the release limits; and (3) Assure compliance--Incentives provide the basis for assuring compliance, and flexibility in the compliance method is encouraged. Penalties apply if releases exceed the limits, and reporting requirements are streamlined relative to current practices.

  9. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 6,345,372 6,422,710 6,406,693 6,577,077 6,779,342 6,882,105 1981-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 ...

  10. U.S. Refinery & Blender Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 609,275 602,963 570,498 577,057 563,621 580,680 1981-2015 Crude Oil 523,409 516,507 485,221 479,416 494,682 519,726 ...

  11. U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Refinery Gas (Million Cubic Feet) U.S. Natural Gas Supplemental Gas - Refinery Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  12. Monitoring near refineries or airborne chemicals on the SARA Title 3 section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    In this volume, detailed procedures recommended for the measurement of selected petroleum refinery emissions in ambient air are presented.

  13. Monitoring near refineries or airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    This volume identifies publications and databases that address ambient air concentrations measured near petroleum refineries for the selected target chemicals.

  14. Monitoring near refineries for airborne chemicals on the SARA Title 3 Section 313 list

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This study provides an ambient air concentration perspective to the engineering estimates of petroleum refinery emissions required under SARA Title III Section 313. It presents and discusses ambient air concentrations of 25 selected target chemicals measured at and near the perimeter (fenceline) of three refineries. Measurements were made over three consecutive 24-hour sampling periods at each refinery. The extent to which the concentrations of the target chemicals were due to fugitive emissions from the refineries is estimated.

  15. DOE - Office of Legacy Management -- International Rare Metals Refinery Inc

    Office of Legacy Management (LM)

    - NY 38 Rare Metals Refinery Inc - NY 38 FUSRAP Considered Sites Site: International Rare Metals Refinery, Inc. (NY.38 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Canadian Radium and Uranium Corporation NY.38-1 Location: 69 Kisko Avenue , Mt. Kisko , New York NY.38-1 NY.38-3 Evaluation Year: 1987 NY.38-4 Site Operations: Manufactured and distributed radium and polonium products. NY.38-5 Site Disposition: Eliminated - No Authority - Site was a

  16. Acquisition Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Guide ------------------------ Chapter 71.1 (Dec 2014) HEADQUARTERS BUSINESS CLEARANCE PROCESS Guiding Principles  Timely acquisition planning is critical  Effective oversight control systems are essential to ensuring the high quality/integrity of procurement transactions  Collaboration and cooperation are required for timely, effective procurement processes Overview This chapter provides guidance regarding the policies and procedures governing the Field Assistance and

  17. ACQUISITION PLANNING | Department of Energy

    Office of Environmental Management (EM)

    PDF icon ACQUISITION

  18. Energy Efficiency Roadmap for Petroleum Refineries in California

    SciTech Connect (OSTI)

    none,

    2004-04-01

    Through the California State IOF initiative, the California Energy Commission PIER Program developed a petroleum refining roadmap to identify energy issues and priorities unique to the refining industry in California and create a plan for future R&D that could help California refineries implement energy efficient technologies.

  19. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    18,452 18,673 18,564 19,106 19,654 19,893 1983-2015 Liquefied Refinery Gases 659 619 630 623 653 612 1984-2015 EthaneEthylene 20 20 18 7 6 6 1985-2015 Ethane 14 14 13 7 5 5 ...

  20. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 641,908 639,034 600,775 608,595 595,141 614,837 1981-2015 Liquefied Refinery Gases 26,335 25,920 17,388 13,536 9,912 ...

  1. U.S. Refinery and Blender Net Production

    U.S. Energy Information Administration (EIA) Indexed Site

    6,735,067 6,815,590 6,794,407 6,973,710 7,173,730 7,260,943 1981-2015 Liquefied Refinery Gases 240,454 225,992 230,413 227,349 238,485 223,448 1981-2015 EthaneEthylene 7,228 7,148 ...

  2. Aspects of Western Refining, Inc.'s Proposed Acquisition of Giant Industries, Inc.

    Reports and Publications (EIA)

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for U.S. refinery capacity and gasoline marketing of Western Refining and Giant Industries to inform discussions of Western Refining Inc.'s proposed acquisition of Giant Industries Inc. for a total of $1.5 billion, which was announced August 28, 2006.

  3. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the petroleum refining industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to individual refineries, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  4. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-03-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1996-08-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-10-01

    The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons Session 2-D: Working Together: Conventional Refineries and Bio-Oil R&D Technologies E. Thomas (Tom) Habib, Jr., Director, Customer Research Partnerships, W.R. Grace & Co. PDF icon biomass13_habib_2-d.pdf More Documents & Publications Opportunities for Biomass-Based Fuels and Products

  8. U.S. Refinery Utilization and Capacity

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Gross Input to Atmospheric Crude Oil Distillation Units 17,178 16,963 16,394 15,690 16,673 16,848 1985-2015 Operable Capacity (Calendar Day) 18,058 18,059 18,125 18,125 18,172 18,186 1985-2015 Operating 17,923 17,939 18,015 17,932 17,846 18,044 1985-2015 Idle 135 121 110 194 326 142 1985-2015 Operable Utilization Rate (%) 95.1 93.9 90.5 86.6 91.8 92.6 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. U.S. Refinery Net Input

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,178,588 4,091,601 4,007,375 4,037,265 3,954,862 3,894,471 2005-2015 Crude Oil 5,374,094 5,404,347 5,489,516 5,589,006 5,784,637 5,915,532 2005-2015 Natural Gas Plant Liquids 154,941 171,074 175,607 168,808 172,563 171,936 2005-2015 Pentanes Plus 54,697 61,059 59,432 56,153 52,853 50,850 2005-2015 Liquefied Petroleum Gases 100,244 110,015 116,175 112,655 119,710 121,086 2005-2015 Normal Butane 39,253 42,087 45,747 42,461 45,916 47,870 2005-2015

  10. U.S. Refinery Utilization and Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,177 15,289 15,373 15,724 16,156 16,433 1985-2015 Operable Capacity (Calendar Day) 17,575 17,736 17,328 17,818 17,873 18,026 1985-2015 Operating 16,911 16,991 16,656 17,282 17,626 17,792 1985-2015 Idle 663 745 672 536 247 234 1985-2015 Operable Utilization Rate (%) 86.4 86.2 88.7 88.3 90.4 91.2 1985-2015 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  11. Refining Bio-Oil alongside Petroleum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refining Bio-Oil alongside Petroleum Refining Bio-Oil alongside Petroleum April 9, 2013 - 12:00am Addthis W.R. Grace, a leading provider of refining technologies, and Pacific Northwest National Laboratory (PNNL) are co-leading an effort to accelerate the development of technologies that enable the processing of bio-oils in petroleum refineries. The ability to leverage existing petroleum-refining infrastructure to produce "drop-in" biofuels (biofuels that can substitute readily for

  12. ACQUISITION PLANNING

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PLANNING REFERENCES 1. FAR 4.803(a)(1) Contents of Contract Files 2. FAR 5.405(a) Exchange of Acquisition Information 3. FAR Part 6 Competition Requirements 4. FAR Part 7 Acquisition Planning 5. FAR Part 8 Required Sources of Supply 6. FAR Part 9 Contractor Qualifications 7. FAR Part 10 Market Research 8. FAR Part 11 Describing Agency Needs 9. FAR 15.201(c) Exchanges with Industry Before Receipt of Proposals 10. FAR Subpart 16.1 Selecting Contract Types 11. FAR 16.504(c) Indefinite-Quantity

  13. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  14. U.S. Refinery Net Input

    Gasoline and Diesel Fuel Update (EIA)

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Total 346,773 340,480 321,878 318,765 321,561 328,213 2005-2015 Crude Oil 523,409 516,507 485,221 479,416 494,682 519,726 2005-2015 Natural Gas Plant Liquids 13,079 13,240 14,690 15,903 17,686 18,057 2005-2015 Pentanes Plus 4,606 4,453 4,693 4,431 3,897 3,932 2005-2015 Liquefied Petroleum Gases 8,473 8,787 9,997 11,472 13,789 14,125 2005-2015 Normal Butane 2,137 1,869 3,144 5,323 7,093 7,560 2005-2015 Isobutane 6,336 6,918 6,853 6,149 6,696

  15. Alternative future environmental regulatory approaches for petroleum refineries.

    SciTech Connect (OSTI)

    Elcock, D.; Gasper, J.; Moses, D. O.; Emerson, D.; Arguerro, R.; Environmental Assessment; DOE; Analytical Services, Inc.

    2000-01-01

    Recently, many industrial, regulatory, and community leaders have expressed concern that the current environmental regulatory structure disregards multimedia environmental impacts, provides few incentives to develop and use new technologies, and fails to consider site-specific conditions. For the US petroleum refining industry, faced with the need to produce higher-quality fuels from poorer-quality feedstocks, such criticisms are expected to increase. This article offers two alternative environmental regulatory approaches for existing petroleum refineries to use in the future. These alternative approaches are multimedia in scope, provide for new technology development and use, and allow flexibility in the means for meeting environmental goals. They have been reviewed and critiqued by various stakeholders, including industry representatives, regulators, and local and national community and environmental organizations. The integration of stakeholder comments and findings of ongoing national and international regulatory reinvention efforts in the development of these approaches positions them for potential use by other industries in addition to petroleum refineries.

  16. Congested site challenges designers of refinery IPP plant

    SciTech Connect (OSTI)

    Collins, S.

    1993-09-01

    This article describes a new IPP plant which has successfully met the challenges of an extremely congested site--including overcoming physical space constraints, meeting low air-emissions regulations, and minimizing water consumption--located next to a busy highway and near a major airport. The 650-MW Linden cogeneration plant is located on a 13.5-acre plot within the confines of Bayway Refinery Co's facility near Newark, NJ. Since starting operation one year ago, the plant has been reliably supplying steam for the refinery's process heating and mechanical drive needs and efficiently generating steam and electricity with minimal environmental impact. To achieve these goals, designers chose a combined-cycle configuration/generators, five supplementary-fired heat-recovery steam generators (HRSGs), and three 90-MW steam turbine/generators. Thus far, the facility has operated with an average availability above 90%.

  17. Refinery Net Production of Total Finished Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55

  18. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  19. Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets

    Reports and Publications (EIA)

    2012-01-01

    Potential Impacts of Reductions in Refinery Activity on Northeast Petroleum Product Markets is an update to a previous Energy Information Administration (EIA) report, Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets, released in December 2011. This update analyzes possible market responses and impacts in the event Sunoco's Philadelphia refinery closes this summer, in addition to the recently idled refineries on the East Coast and in the U.S. Virgin Islands.

  20. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters - Fact Sheet 2014 | Department of Energy Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 The goal of this research effort was to develop and demonstrate a combustion system capable of automatic, safe, reliable, efficient, and low-emission operation across a broad range of fuel compositions, including syngas, biogas, natural gas, and refinery

  1. SPR Acquisition Procedures - Final Rulemaking | Department of Energy

    Energy Savers [EERE]

    Acquisition Procedures - Final Rulemaking SPR Acquisition Procedures - Final Rulemaking Point of Contact: Nathan Harvey, Director of Operatons and Readiness, Strategic Petroleum Reserve, (202) 586-4691 PDF icon SPR Crude Oil Acquisition Procedures - Final Rulemaking More Documents & Publications 2009 SPR Report to Congress Historical SPR Annual Reports to Congress Price Competitive Sale of Strategic Petroleum Reserve Petroleum; Standard Sales Provisions; Final Rule

  2. Updated estimation of energy efficiencies of U.S. petroleum refineries.

    SciTech Connect (OSTI)

    Palou-Rivera, I.; Wang, M. Q.

    2010-12-08

    Evaluation of life-cycle (or well-to-wheels, WTW) energy and emission impacts of vehicle/fuel systems requires energy use (or energy efficiencies) of energy processing or conversion activities. In most such studies, petroleum fuels are included. Thus, determination of energy efficiencies of petroleum refineries becomes a necessary step for life-cycle analyses of vehicle/fuel systems. Petroleum refinery energy efficiencies can then be used to determine the total amount of process energy use for refinery operation. Furthermore, since refineries produce multiple products, allocation of energy use and emissions associated with petroleum refineries to various petroleum products is needed for WTW analysis of individual fuels such as gasoline and diesel. In particular, GREET, the life-cycle model developed at Argonne National Laboratory with DOE sponsorship, compares energy use and emissions of various transportation fuels including gasoline and diesel. Energy use in petroleum refineries is key components of well-to-pump (WTP) energy use and emissions of gasoline and diesel. In GREET, petroleum refinery overall energy efficiencies are used to determine petroleum product specific energy efficiencies. Argonne has developed petroleum refining efficiencies from LP simulations of petroleum refineries and EIA survey data of petroleum refineries up to 2006 (see Wang, 2008). This memo documents Argonne's most recent update of petroleum refining efficiencies.

  3. Test Acquisition Guide

    Broader source: Energy.gov [DOE]

    Regulatory requirements for the acquisition process are set forth in the Federal Acquisition Regulation (FAR) and are supplemented in the Department of Energy Acquisition Regulation (DEAR). FAR 1...

  4. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  5. War curbs oil exports by Iran and Iraq

    SciTech Connect (OSTI)

    Not Available

    1980-09-29

    A discussion of the effects of the war between Iran and Iraq on oil exports from the area covers damage (extent unknown) to the Abadan, Iran, and Basra, Iraq, oil refineries, to the Iraqi petrochemical complex under construction at Basra, to oil export terminals at Kharg Island and Mina-al-Bakr, and to other oil facilities; war-caused reductions in oil production, refining, shipping, and export, estimated at 2.05-3.35 million bbl/day; the possible effects of the war on OPEC's decisions concerning oil production and pricing; the significance of the Strait of Hormuz for the export of oil by several countries in addition to the belligerents; the U.S. and non-Communist oil stocks which might enable the world to avoid an oil shortage if the war is ended in the near future; and the long-term effects of the war on Iran's and Iraq's oil industries.

  6. Clean air amendments put big burden on refinery planners

    SciTech Connect (OSTI)

    Scherr, R.C.; Smalley, G.A. Jr.; Norman, M.E. )

    1991-06-10

    The Clean Air Act Amendments of 1990 will not only require the production of reformulated gasoline but also have significant impact on other refinery-related construction. This must be considered when developing sound planning strategy. The three titles of the Clean Air Act Amendments that will have the greatest effect on refining are: Title I: Nonattainment; Title III: Air toxics; Title V: Permitting. To understand the ramifications of these amendments, it is necessary to review the interactions of new requirements with the permitting and construction schedule shown.

  7. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  8. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  9. Page 1 EIA-810, Monthly Refinery Report U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    EIA-810, Monthly Refinery Report U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-810 MONTHLY REFINERY REPORT INSTRUCTIONS ................................................................................................................................................................ QUESTIONS If you have any questions about Form EIA-810 after reading the instructions, please contact the Survey

  10. EIA-800, Weekly Refinery and Fractionator Report Page 1 U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    00, Weekly Refinery and Fractionator Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/2016 (Revised 2013) EIA-800 WEEKLY REFINERY AND FRACTIONATOR REPORT INSTRUCTIONS ............................................................................................................................................................................................................ QUESTIONS If you have any questions

  11. EIA-820, Annual Refinery Report Page 1 U. S. DEPARTMENT OF ENERGY

    Gasoline and Diesel Fuel Update (EIA)

    20, Annual Refinery Report Page 1 U. S. DEPARTMENT OF ENERGY ENERGY INFORMATION ADMINISTRATION Washington, D. C. 20585 OMB No. 1905-0165 Expiration Date: 05/31/16 (Revised 2013) EIA-820 ANNUAL REFINERY REPORT INSTRUCTIONS .................................................................................................................................................................................... QUESTIONS If you have any questions about Form EIA-820 after reading the instructions, please

  12. Deepwater seismic acquisition technology

    SciTech Connect (OSTI)

    Caldwell, J.

    1996-09-01

    Although truly new technology is not required for successful acquisition of seismic data in deep Gulf of Mexico waters, it is helpful to review some basic aspects of these seismic surveys. Additionally, such surveys are likely to see early use of some emerging new technology which can improve data quality. Because such items as depth imaging, borehole seismic, 4-D and marine 3-component recording were mentioned in the May 1996 issue of World Oil, they are not discussed again here. However, these technologies will also play some role in the deepwater seismic activities. What is covered in this paper are some new considerations for: (1) longer data records needed in deeper water, (2) some pros and cons of very long steamer use, and (3) two new commercial systems for quantifying data quality.

  13. Jordan ships oil shale to China

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    Jordan and China have signed an agreement to develop oil shale processing technology that could lead to a 200 ton/day oil shale plant in Jordan. China will process 1200 tons of Jordanian oil shale at its Fu Shun refinery. If tests are successful, China could build the demonstration plant in Jordan's Lajjun region, where the oil shale resource is estimated at 1.3 billion tons. China plans to send a team to Jordan to conduct a plant design study. A Lajjun oil shale complex could produce as much as 50,000 b/d of shale oil. An earlier 500 ton shipment of shale is said to have yielded promising results.

  14. The impact of corrosion on the oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1996-08-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety, and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation, and refinery activities.

  15. The impact of corrosion on oil and gas industry

    SciTech Connect (OSTI)

    Kermani, M.B.; Harrop, D.

    1995-11-01

    The impact of corrosion on the oil industry has been viewed in terms of its effect on both capital and operational expenditures (CAPEX and OPEX) and health, safety and the environment (HSE). To fight against the high cost and the impact of corrosion within the oil industry, an overview of topical research and engineering activities is presented. This covers corrosion and metallurgy issues related to drilling, production, transportation and refinery activities.

  16. House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act |

    Energy Savers [EERE]

    Department of Energy Passage of H.R. 5254 - The Refinery Permit Process Schedule Act House Passage of H.R. 5254 - The Refinery Permit Process Schedule Act June 8, 2006 - 2:17pm Addthis Statement from Secretary Bodman WASHINGTON, DC - The following is a statement from the Secretary Samuel W. Bodman of the Department of Energy on the passage of House Resolution 5254, The Refinery Permit Process Schedule Act: "I commend the House of Representatives for their passage of this important piece

  17. ACQUISITION PLANNING | Department of Energy

    Energy Savers [EERE]

    ACQUISITION PLANNING ACQUISITION PLANNING ACQUISITION PLANNING More Documents & Publications ACQUISITION PLANNING Attachment FY2011-13 Attachment FY2011-40(3)...

  18. ACQUISITION PLANNING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACQUISITION PLANNING ACQUISITION PLANNING PDF icon ACQUISITION PLANNING More Documents & Publications ACQUISITION PLANNING Policy Flash 2013-09 Policy Flash 2015-13

  19. Refiner Acquisition Cost of Crude Oil - Composite

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History U.S. 76.69 101.87 100.93 100.49 92.02 48.40 1968-2015 East Coast (PADD 1) 79.91 111.01 111.50 106.80 96.70 51.45 2004-2015 Midwest (PADD 2) 75.92 93.18 89.44 93.26 87.51 46.13 2004-2015 Gulf Coast (PADD 3) 76.65 104.24 104.83 103.02 93.06 48.75 2004-2015 Rocky Mountain (PADD 4) 72.37 87.61 84.63 85.21 81.93 42.28 2004-2015 West Coast (PADD 5) 77.34 104.73 104.69 104.40 95.22 50.61

  20. Refiner Acquisition Cost of Crude Oil - Composite

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History U.S. 53.41 44.97 44.38 44.78 41.47 36.14 1974-2015 East Coast (PADD 1) 56.49 48.17 46.66 46.53 45.22 2004-2015 Midwest (PADD...

  1. Assuring Mechanical Integrity of Refinery Equipment Through Global ON-Stream Inspection

    SciTech Connect (OSTI)

    John W. Berthold

    2006-02-22

    The development of global on-stream inspection technology will have a dramatic effect on how refinery operations are managed in the U.S. in the future. Global on-stream inspection will provide assurance of the mechanical integrity of critical plant equipment and will allow refineries to operate more efficiently with less impact on our environment and with an increased margin of safety.

  2. US DOE Refinery Water Study 01-19-16 PublicE_docx

    Energy Savers [EERE]

    Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Executive Summary of Final Report Prepared for US Department of Energy January 2016 For Jacobs Consultancy Laura E. Weaver Rob Henderson John Blieszner January 2016 Potential Vulnerability of US Petroleum Refineries to Increasing Water Temperature and/or Reduced Water Availability Prepared For US Department of Energy 525 West Monroe Chicago, Illinois 60661 Phone: +312.655.9207

  3. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    SciTech Connect (OSTI)

    Goldberg, M.

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  4. Emission factors for leaks in refinery components in heavy liquid service

    SciTech Connect (OSTI)

    Taback, H.; Godec, M.

    1996-12-31

    The objective of this program was to provide sufficient screening data so that EPA can develop an official set of emission factors (expressed in lb/hr/component) for refinery components (valves, flanged connectors, non-flanged connectors, pumps, open-ended lines, and other) in heavy liquid (BL) service. To accomplish this, 211,000 existing HL screening values from Southern California refineries were compiled and compared with 2,500 new HL screening measurements taken at two refineries in the state of Washington. Since Southern California is an area in extreme non-attainment of the National Ambient Air Quality Standards (NAAQS) and therefore has tight emission control regulations, it was felt that its screening data may not be representative of refineries without tight emission controls. Thus, the Southern California screening data were compared to screening measurements at refineries in an area that is in attainment of the NAAQS and without emissions control, which is the case for those refineries in Washington. It was found that statistically there was no significant difference in emission factors between the two areas and, therefore, there appears to be no difference in emissions from heavy liquid components in areas with and without leak detection and repair (LDAR) programs. The new emission factors range from 1/7 to 1/3 times the current EPA emission factors. This program was sponsored by the American Petroleum Institute (API) and an API report will soon be released providing complete details.

  5. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  6. Market Assessment of Refinery Outages Planned for March 2011...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fluctuating between 70 and 85 per barrel, but by the beginning of 2011, Brent crude oil was at 95 per barrel. Recent instability in the Middle East and North Africa added...

  7. The Oil and Gas Journal databook, 1986 edition

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    This annual contains the following: Foreword by Gene Kinney; OGJ 400; Crude Oil Assays; Worldwide Petrochemical Survey; Midyear Forecast and Review; Worldwide Gas Processing Report; Ethylene Report; Sulfur Survey; International Refining; Catalyst Compilation; Pipeline Economics Report; Worldwide Production and Refining Report; Annual Refining Survey; Morgan Pipeline Cost Index, Oil and Gas; Nelson Cost Index; Hughes Rig Count; Smith Rig Count; OGJ Production Report and the API Refinery Reports. Also featured is the Oil and Gas Journal Index, which lists every article published in the Journal in 1985, referenced by article title or subject.

  8. Genealogy of Major U.S. Oil and Gas Producers

    Reports and Publications (EIA)

    2007-01-01

    Summarizes the mergers and acquisitions of the U.S. major oil companies that have occurred, in some cases, over approximately the last 20 years.

  9. Oil and gas journal databook, 1987 edition

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    This book is an annual compendium of surveys and special reports reviewed by experts. The 1987 edition opens with a forward by Gene Kinney, co-publisher of the Oil and Gas Journal and includes the OGJ 400 Report, Crude Oil Assays, Worldwide Petrochemical Survey, the Midyear Forecast and Reviews, the Worldwide Gas Processing Report, the Ethylene Report, Sulfur Survey, the International Refining, Catalyst Compilation, Annual Refining Survey, Worldwide Construction Report, Pipeline Economics Report, Worldwide Production and Refining Report, the Morgan Pipeline Cost Index for Oil and Gas, the Nelson Cost Index, the Hughes Rig Count, the Smith Rig Count, the OGJ Production Report, the API Refinery Report, API Crude and Product Stocks, APU Imports of Crude and Products, and the complete Oil and Gas Journal 1986 Index of articles.

  10. Production of coal-based fuels and value-added products: coal to liquids using petroleum refinery streams

    SciTech Connect (OSTI)

    Clifford, C.E.B.; Schobert, H.H.

    2008-07-01

    We are studying several processes that utilize coal, coal-derived materials, or biomass in existing refining facilities. A major emphasis is the production of a coal-based replacement for JP-8 jet fuel. This fuel is very similar to Jet A and jet A-1 in commercial variation, so this work has significant carry-over into the private sector. We have been focusing on three processes that would be retrofitted into a refinery: (1) coal tar/refinery stream blending and hydro-treatment; (2) coal extraction using refinery streams followed by hydro-treatment; and (3) co-coking of coal blended with refinery streams. 4 figs., 5 tabs.

  11. Study of the Neutralization and Stabilization of a Mixed Hardwood Bio-Oil

    SciTech Connect (OSTI)

    Moens, L.; Black, S. K.; Myers, M. D.; Czernik, S.

    2009-01-01

    Fast-pyrolysis bio-oil that is currently produced from lignocellulosic biomass in demonstration and semicommercial plants requires significant modification to become an acceptable transportation fuel. The high acidity and chemical instability of bio-oils render them incompatible with existing petroleum refinery processes that produce gasoline and diesel fuels. To facilitate the use of bio-oil as a feedstock in a traditional refinery infrastructure, there is considerable interest in upgrading bio-oils through chemical pathways that include converting the carboxylic acids and reactive carbonyl compounds into esters and acetals using low-cost alcohols. In this article, we discuss our observations with different approaches to esterification and etherification chemistry using a crude bio-oil derived from mixed hardwoods. The high water content in crude bio-oils (ca. 20?30%) creates equilibrium limitations in the condensation reactions that hamper the upgrading process in that the neutralization and stabilization steps cannot easily be driven to completion. The lowest acid number that we were able to obtain without causing serious degradation of the flow properties of the bio-oil had a total acid number of about 20, a value that is still too high for use in a traditional petroleum refinery.

  12. Acquisition Guide Chapter 1.1 - Acquisition Regulations System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Acquisition Guide Chapter 1.0 - Acquisition Regulations System Acquisition Guide Chapter 1.2 - Balanced Scorecard Performance Assessment Program - (March...

  13. Acquisition Letter Archive Listing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter Archive Listing 1 Acquisition Letter Title 1984-1R Rev. 1292 Acquisition Letters 1987-3R Rev. 1287 Prescreening Policies and Procedures 1987-5 090487 Patents and ...

  14. Bio-Oil Co-Processing: Expanding the Refinery Supply System

    Broader source: Energy.gov [DOE]

    The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) is hosting a workshop on Thursday, April 3, 2014, at the Renaissance New Orleans Arts Hotel in New Orleans, Louisiana. This...

  15. U.S. Refinery Receipts of Crude Oil by Method of Transportation

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History Total 5,261,068 5,396,958 5,454,772 5,580,035 5,709,293 5,918,915 1981-2014 Domestic 2,088,247 2,171,970 2,251,664 2,494,536 2,879,801 3,243,096 1981-2014 Foreign 3,172,821 3,224,988

  16. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    3 - Simplified Acquisition Procedures OPAM Policy Acquisition Guides Chapter 18 - Emergency Acquisitions

  17. Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Melissa Klembara Office of the Biomass Program U.S. Department of Energy Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils Report-Out Webinar February 9, 2012 2 Energy Efficiency & Renewable Energy eere.energy.gov Focus of 2007 Roadmap 2007 Roadmap "Thrust" Areas * Selective thermal processing * Syngas conversion * Utilization of conventional refinery technologies * Liquid-phase catalytic processing * Process engineering & design * Crosscutting issues 3

  18. Table 5.9 Refinery Capacity and Utilization, 1949-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Refinery Capacity and Utilization, 1949-2011 Year Operable Refineries 1 Operable Refineries Capacity Gross Input to Distillation Units 3 Utilization 4 On January 1 Annual Average 2 Number Thousand Barrels per Calendar Day Thousand Barrels Percent 1949 336 6,231 NA 2,027,928 89.2 1950 320 6,223 NA 2,182,828 92.5 1951 325 6,702 NA 2,467,445 97.5 1952 327 7,161 NA 2,536,142 93.8 1953 315 7,620 NA 2,651,068 93.1 1954 308 7,984 NA 2,651,992 88.8 1955 296 8,386 NA 2,854,137 92.2 1956 317 8,583 NA

  19. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-04-19

    This Order establishes training and certification requirements and career development programs under the Acquisition Career Development (ACD) Program for DOE and NNSA acquisition workforce. The acquisition workforce includes contracting, purchasing, personal property management, program management, Contracting Officers and Contracting Officer Representatives. The ACD Program implements the Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the objectives of Executive Order (E.O.) 129231, Federal Procurement Reform, dated 10-13-1994. This order cancels DOE O 361.1, Acquisition Career Development Program, dated 11-10-99, AND Acquisition Letter 2003-05, Personal Property Management Career Development, Training, and Certification Program, dated 9-10-03. Cancels DOE O 361.1 Chg 2. Canceled by DOE O 361.1B.

  20. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    2010-06-01

    Funded by the American Recovery and Reinvestment Act of 2009 ENVIRON International Corporation, in collaboration with Callidus Technologies by Honeywell and Shell Global Solutions, Inc., will develop and demonstrate a full-scale fuel blending and combustion system. This system will allow a broad range of opportunity fuel compositions, including syngas, biogas, natural gas, and refinery fuel gas, to be safely, cost-effectively, and efficiently utilized while generating minimal emissions of criteria pollutants. The project will develop a commercial technology for application in refinery and chemical plant process heaters where opportunity fuels are used.

  1. ,"U.S. Downstream Charge Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Charge Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Downstream Charge Capacity of Operable Petroleum Refineries",32,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016"

  2. ,"U.S. Production Capacity of Operable Petroleum Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production Capacity of Operable Petroleum Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Production Capacity of Operable Petroleum Refineries",11,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel

  3. ,"U.S. Total Shell Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shell Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Total Shell Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  4. ,"U.S. Working Storage Capacity at Operable Refineries"

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Storage Capacity at Operable Refineries" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Storage Capacity at Operable Refineries",28,"Annual",2015,"6/30/1982" ,"Release Date:","6/19/2015" ,"Next Release Date:","6/30/2016" ,"Excel File

  5. Recent hydrocarbon developments in Latin America: Key issues in the downstream oil sector

    SciTech Connect (OSTI)

    Wu, K.; Pezeshki, S.

    1995-03-01

    This report discusses the following: (1) An overview of major issues in the downstream oil sector, including oil demand and product export availability, the changing product consumption pattern, and refineries being due for major investment; (2) Recent upstream developments in the oil and gas sector in Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Mexico, Peru, Trinidad and Tobago, and Venezuela; (3) Recent downstream developments in the oil and gas sector in Argentina, Chile, Colombia, Ecuador, Mexico, Peru, Cuba, and Venezuela; (4) Pipelines in Argentina, Bolivia, Brazil, Chile, and Mexico; and (5) Regional energy balance. 4 figs., 5 tabs.

  6. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-10

    The Order implements the Department's Acquisition Career Development program, mandatory for professionals in the GS-1102 and 1105 occupational procurement series, as well as others with significant procurement responsibilities. The Order also ensures that members of the acquisition workforce are aware of and adhere to the mandatory training and certification requirements. Cancels Acquisition Letter 98-06. Canceled by DOE O 361.1 Chg 1.

  7. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Cancels DOE O 361.1. Canceled by DOE O 361.1 Chg 2.

  8. Acquisition Career Development Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-06-13

    To set forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Development (ACD) Program, which implements Office of Federal Procurement Policy (OFPP) requirements, Federal Acquisition Regulation (FAR) requirements, Federal Acquisition Reform Act (FARA) requirements, and the career development objectives of Executive Order (E.O.) 12931. Change 1 approved 12-20-2001. Change 2 approved 06-13-03. Cancels DOE O 361.1 Chg 1. Canceled by DOE O 361.1A.

  9. Acquisition Career Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-14

    The order sets forth requirements and responsibilities for the Department of Energy (DOE) Acquisition Career Management Program. Supersedes DOE O 361.1B.

  10. Acquisition Career Management Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-01-24

    The order defines requirements and responsibilities for training, certification, and career development programs for the DOE acquisition workforce. Cancels DOE O 361.1A.

  11. Allocation of energy use in petroleum refineries to petroleum products : implications for life-cycle energy use and emission inventory of petroleum transportation fuels.

    SciTech Connect (OSTI)

    Wang, M.; Lee, H.; Molburg, J.

    2004-01-01

    Studies to evaluate the energy and emission impacts of vehicle/fuel systems have to address allocation of the energy use and emissions associated with petroleum refineries to various petroleum products because refineries produce multiple products. The allocation is needed in evaluating energy and emission effects of individual transportation fuels. Allocation methods used so far for petroleum-based fuels (e.g., gasoline, diesel, and liquefied petroleum gas [LPG]) are based primarily on mass, energy content, or market value shares of individual fuels from a given refinery. The aggregate approach at the refinery level is unable to account for the energy use and emission differences associated with producing individual fuels at the next sub-level: individual refining processes within a refinery. The approach ignores the fact that different refinery products go through different processes within a refinery. Allocation at the subprocess level (i.e., the refining process level) instead of at the aggregate process level (i.e., the refinery level) is advocated by the International Standard Organization. In this study, we seek a means of allocating total refinery energy use among various refinery products at the level of individual refinery processes. We present a petroleum refinery-process-based approach to allocating energy use in a petroleum refinery to petroleum refinery products according to mass, energy content, and market value share of final and intermediate petroleum products as they flow through refining processes within a refinery. The results from this study reveal that product-specific energy use based on the refinery process-level allocation differs considerably from that based on the refinery-level allocation. We calculated well-to-pump total energy use and greenhouse gas (GHG) emissions for gasoline, diesel, LPG, and naphtha with the refinery process-based allocation approach. For gasoline, the efficiency estimated from the refinery-level allocation underestimates gasoline energy use, relative to the process-level based gasoline efficiency. For diesel fuel, the well-to-pump energy use for the process-level allocations with the mass- and energy-content-based weighting factors is smaller than that predicted with the refinery-level allocations. However, the process-level allocation with the market-value-based weighting factors has results very close to those obtained by using the refinery-level allocations. For LPG, the refinery-level allocation significantly overestimates LPG energy use. For naphtha, the refinery-level allocation overestimates naphtha energy use. The GHG emission patterns for each of the fuels are similar to those of energy use.We presented a refining-process-level-based method that can be used to allocate energy use of individual refining processes to refinery products. The process-level-based method captures process-dependent characteristics of fuel production within a petroleum refinery. The method starts with the mass and energy flow chart of a refinery, tracks energy use by individual refining processes, and distributes energy use of a given refining process to products from the process. In allocating energy use to refinery products, the allocation method could rely on product mass, product energy contents, or product market values as weighting factors. While the mass- and energy-content-based allocation methods provide an engineering perspective of energy allocation within a refinery, the market-value-ased allocation method provides an economic perspective. The results from this study show that energy allocations at the aggregate refinery level and at the refining process level could make a difference in evaluating the energy use and emissions associated with individual petroleum products. Furthermore, for the refining-process-level allocation method, use of mass -- energy content- or market value share-based weighting factors could lead to different results for diesel fuels, LPG, and naphtha. We suggest that, when possible, energy use allocations should be made at the lowest subprocess level

  12. Acquisition Letters | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement and Acquisition » Acquisition Letters Acquisition Letters September 23, 2015 Acquisition Letter No. AL 2015-09 Updated Guidance on Conference-Related Activities and Spending. August 26, 2015 Acquisition Letters No. AL 2015-08 Implementation of the Management & Operating Subcontract Reporting Capability (MOSRC) and Special H Clause July 16, 2015 Acquisition Letter No. AL 2015-07 Performance of Inherently Governmental and Critical Functions June 11, 2015 Acquisition Letter No. Al

  13. U.S. Total Shell Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History Total 710,413 -- -- -- -- -- 1982-2015 Crude Oil 180,846 -- -- -- -- -- 1985-2015 Liquefied Petroleum Gases 33,842 -- -- -- -- -- 1982-2015 Propane/Propylene 8,513 -- --

  14. U.S. Working Storage Capacity at Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual (as of January 1) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History Total 617,513 -- -- -- -- -- 1982-2015 Crude Oil 153,181 -- -- -- -- -- 1982-2015 Liquefied Petroleum Gases 30,852 -- -- -- -- -- 1982-2015 Propane/Propylene 8,150 -- --

  15. Aspects of Exxon Mobil Corporation's Acquisition of XTO Energy Inc

    Reports and Publications (EIA)

    2009-01-01

    A summary presentation to inform discussion of the recently announced acquisition of XTO Energy Inc. by Exxon Mobil Corporation, a transaction which is reportedly $41 billion in value. "Aspects of Exxon Mobil Corporation's Acquisition of XTO Energy Inc" presents non-proprietary company-level oil and gas production and reserve data and the relevant U.S. aggregate data published by the Energy Information Administration.

  16. Policy Flash 2013-30 Acquisition Letter on Acquisition Planning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Considerations for Management and Operating Contracts | Department of Energy 0 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts Attached is Policy Flash 2013-30 Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts Questions concerning this policy flash should be directed to Jason

  17. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    Monthly","12/2015","1/15/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Monthly","12/2015","1/15/1986" ,"Release Date:","2/29/2016" ,"Next Release Date:","3/31/2016" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_m.htm" ,"Source:","Energy

  18. ,"U.S. Refinery Net Input"

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual",2015,"6/30/2005" ,"Data 2","Alaskan Crude Oil Receipts",1,"Annual",2015,"6/30/1986" ,"Release Date:","3/11/2016" ,"Next Release Date:","8/31/2016" ,"Excel File Name:","pet_pnp_inpt2_dc_nus_mbbl_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_inpt2_dc_nus_mbbl_a.htm" ,"Source:","Energy Information Administration"

  19. East Coast (PADD 1) Number and Capacity of Petroleum Refineries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 14 11 11 10 9 1982-2015 Operating 10 10 8 10 9 9 1982-2015 Idle 3 4 3 1 1 0 1982-2015 Atmospheric Crude Oil Distillation Capacity Operable (Barrels per Calendar Day) 1,397,300 1,617,500 1,188,200 1,293,200 1,296,500 1,268,500 1982-2015 Operating 1,257,300 1,205,000 1,010,200 1,265,200 1,268,500 1,236,500 1982-2015 Idle 140,000 412,500 178,000 28,000 28,000 32,000 1982-2015 Operable (Barrels per Stream Day) 1,478,300 1,708,500 1,254,700 1,361,700 1,364,000 1,332,000 1982-2015 Operating

  20. U.S. Number and Capacity of Petroleum Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    48 148 144 143 142 140 1982-2015 Operating 137 137 134 139 139 137 1982-2015 Idle 11 11 10 4 3 3 1982-2015 Atmospheric Crude Oil Distillation Capacity Operable (Barrels per Calendar Day) 17,583,790 17,736,370 17,322,178 17,823,659 17,924,630 17,967,088 1982-2015 Operating 16,850,194 16,937,024 16,744,291 16,775,658 17,730,200 17,767,588 1982-2015 Idle 733,596 799,346 577,887 1,048,001 194,430 199,500 1982-2015 Operable (Barrels per Stream Day) 18,581,089 18,953,189 18,560,350 18,971,643

  1. OPAM Policy Acquisition Guides

    Energy Savers [EERE]

    Chapter 17.3 (February 2004) Acquisition, Use, and Disposal of Real Estate [Reference: DEAR 917.74, 970.5244-1] Overview This section provides internal Departmental information and a DOE point of contact for issues dealing with real estate acquisition, use, and disposal. Background DEAR 917.74 provides the policy and procedures to be followed in the acquisition, use, and disposal of real estate. In accordance with DEAR clause 970.5244-1, Management and Operating contractors also follow the DEAR

  2. Customer Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Soft Costs Customer Acquisition Customer Acquisition Photo of a woman, man, and child looking at a silver box on the outside of a home. Customer acquisition costs in the solar ...

  3. Acquisition Workforce Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certifications and Professional Development Acquisition Workforce Information Acquisition Workforce Information All Acquisition Workforce information has been moved to...

  4. Acquisition & Financial Assistance Rules Status | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition & Financial Assistance Rules Status Acquisition & Financial Assistance Rules Status Subscribe to Acquisition & Financial Assistance Rules Status Updates PDF icon ...

  5. Acquisition Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Program Acquisition Program Southeastern's acquisition initiatives are met as a result of requirements from our programs and projects that accomplish our agency's mission. In order to follow the Federal Acquisition Regulations regarding announcement of acquisition opportunities, all acquisitions that exceed $25,000 will be published electronically by Southeastern Power Administration. Contact Information For more information, please contact Ann Craft Phone: 706.213.3823

  6. IT Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition IT Acquisition computer-957001_960_720.jpg Acquisition The Chief Information Officer (CIO) guides and manages the Department's effective use of information technology (IT) and IT resources. When acquiring IT solutions, the CIO seeks to integrate project, financial, and acquisition management, and quality oversight methods into a cohesive process to achieve program goals. The Acquisition Management Division uses a variety of IT acquisition solutions, managed in an integrated fashion

  7. Data acquisition system

    DOE Patents [OSTI]

    Shapiro, Stephen L. (14228 Amherst Ct., Los Altos Hills, CA 94022); Mani, Sudhindra (1618 17th St., Sacramento, CA 95814); Atlas, Eugene L. (440 De Anza Ct., Oceanside, CA 92057); Cords, Dieter H. W. (526 Cuesta Real, La Honda, CA 94020); Holbrook, Britt (4540 Varsity Ct., Sacramento, CA 95841)

    1997-01-01

    A data acquisition circuit for a particle detection system that allows for time tagging of particles detected by the system. The particle detection system screens out background noise and discriminate between hits from scattered and unscattered particles. The detection system can also be adapted to detect a wide variety of particle types. The detection system utilizes a particle detection pixel array, each pixel containing a back-biased PIN diode, and a data acquisition pixel array. Each pixel in the particle detection pixel array is in electrical contact with a pixel in the data acquisition pixel array. In response to a particle hit, the affected PIN diodes generate a current, which is detected by the corresponding data acquisition pixels. This current is integrated to produce a voltage across a capacitor, the voltage being related to the amount of energy deposited in the pixel by the particle. The current is also used to trigger a read of the pixel hit by the particle.

  8. Acquisition and Project Management

    National Nuclear Security Administration (NNSA)

    4%2A en Acquisition and Project Management Office volunteers get up-close look at Office of Secure Transportation exercise http:nnsa.energy.govblogacquisition-and-project-mana...

  9. EERE Success Story-Refining Bio-Oil alongside Petroleum | Department of

    Office of Environmental Management (EM)

    Energy Refining Bio-Oil alongside Petroleum EERE Success Story-Refining Bio-Oil alongside Petroleum April 9, 2013 - 12:00am Addthis W.R. Grace, a leading provider of refining technologies, and Pacific Northwest National Laboratory (PNNL) are co-leading an effort to accelerate the development of technologies that enable the processing of bio-oils in petroleum refineries. The ability to leverage existing petroleum-refining infrastructure to produce "drop-in" biofuels (biofuels that

  10. Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Acquisition Workers install a process vessel ventilation system in a facility that houses two tanks for processing decontaminated salt solution at the Saltstone Production Facility at EM’s Savannah River Site. Workers install a process vessel ventilation system in a facility that houses two tanks for processing decontaminated salt solution at the Saltstone Production Facility at EM's Savannah River Site. The Office of Environmental Management (EM) is responsible for

  11. LPG recovery from refinery flare by waste heat powered absorption refrigeration

    SciTech Connect (OSTI)

    Erickson, D.C.; Kelly, F.

    1998-07-01

    A waste heat powered ammonia Absorption Refrigeration Unit (ARU) has commenced operation at the Colorado Refining Company in Commerce City, Colorado. The ARU provides 85 tons of refrigeration at 30 F to refrigerate the net gas/treat gas stream, thereby recovering 65,000 barrels per year of LPG which formerly was flared or burned as fuel. The ARU is powered by the 290 F waste heat content of the reform reactor effluent. An additional 180 tons of refrigeration is available at the ARU to debottleneck the FCC plant wet gas compressors by cooling their inlet vapor. The ARU is directly integrated into the refinery processes, and uses enhanced, highly compact heat and mass exchange components. The refinery's investment will pay back in less than two years from increased recovery of salable product, and CO{sub 2} emissions are decreased by 10,000 tons per year in the Denver area.

  12. Evaluating electric-resistance-welded tubing for refinery and chemical plant applications

    SciTech Connect (OSTI)

    Polk, C.J.; Hotaling, A.C. )

    1993-02-01

    A laboratory technique was developed to assess the potential for preferential attack along the longitudinal seam of electric-resistance-welded (ERW) carbon steel tubing exposed to refinery and chemical plant process streams. Used in conjunction with an evaluation of mill fabrication practices, the test procedure can identify high-quality ERW products that can be used in many applications in place of seamless components at significant cost savings.

  13. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  14. Acquisition Guide Chapter 1.1 - Acquisition Regulations System - (March

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004) | Department of Energy Guide Chapter 1.1 - Acquisition Regulations System - (March 2004) Acquisition Guide Chapter 1.1 - Acquisition Regulations System - (March 2004) Guiding Principles * Authority is delegated to the maximum practical extent. * Reviews and approvals are minimized and the layering of review is avoided. * Participants in the acquisition process work together as a team and are empowered to make decisions in the areas of responsibility. PDF icon OPAM Policy Acquisition

  15. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Protests, Disputes and Appeals ACQUISITION LETTER DEAR Part 933 Microsoft Word - ACQUISITION LETTER

  16. Acquisitions___Communications.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisitions___Communications.pdf Acquisitions___Communications.pdf PDF icon Acquisitions___Communications.pdf More Documents & Publications 7pt1AcquisitionPlanning.pdf 37pt.2PerformanceBasedServiceAcquisition.pdf DOE Vendor Communications Plan

  17. FAR Acquisition Strategy Team | Department of Energy

    Office of Environmental Management (EM)

    FAR Acquisition Strategy Team FAR Acquisition Strategy Team PDF icon FAR Acquisition Strategy Team More Documents & Publications FAR Acquisition Strategy Team Microsoft Word - Section 311 AL FAL Feb 17 2010 Acquisition Letters No. AL 2013-05

  18. POLICY FLASH 2014-23 Acquisition Guide 13.3 Simplified Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    23 Acquisition Guide 13.3 Simplified Acquisition Procedures POLICY FLASH 2014-23 Acquisition Guide 13.3 Simplified Acquisition Procedures Questions concerning this policy flash...

  19. The oil and gas journal databook, 1991 edition

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book provides the statistical year in review plus selected articles that cover significant events of the past year. In addition, the Data Book features the popular surveys and special reports that quantify industry activity throughout the year. This book contains information on Midyear forecast and review; Worldwide gas processing report; Ethylene report; Sulfur survey; International refining survey; Nelson cost index; Smith rig count; API refinery report; API imports of crude and products; The catalyst compilation; Annual refining survey; Worldwide construction report; Pipeline economics report; Worldwide production and refining report; Morgan pipeline cost index for oil and gas; Hughes rig count; OBJ production report.

  20. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    350 27 3,748 1,617 3,858 102 154 3,693 239 5,616 Crude Oil 48 - - - - 702 387 102 37 1,145 56 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 302 0 14 59 -21 - - -21 48 49 277 Pentanes Plus 35 0 - - - 0 - - 1 3 1 29 Liquefied Petroleum Gases 267 - - 14 59 -20 - - -22 45 48 248 Ethane/Ethylene 102 - - 1 - -104 - - 1 - - -2 Propane/Propylene 112 - - 39 51 84 - - -12 - 39 259 Normal Butane/Butylene 38 - - -26 3 0 - - -12 32 9 -15 Isobutane/Isobutylene 15 - - 0 5 0 - - 0 13 0 6 Other

  1. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    2,576 962 4,466 2,693 -646 -330 113 4,240 396 4,972 Crude Oil 1,802 - - - - 2,581 -260 -368 63 3,661 29 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 775 -20 24 76 -69 - - -181 122 238 607 Pentanes Plus 90 -20 - - 0 175 - - 41 11 163 30 Liquefied Petroleum Gases 684 - - 24 76 -244 - - -222 111 75 577 Ethane/Ethylene 239 - - - - -56 - - 7 - 64 112 Propane/Propylene 292 - - 117 61 -188 - - -122 - 2 402 Normal Butane/Butylene 98 - - -88 6 -5 - - -106 63 9 45 Isobutane/Isobutylene 55 - -

  2. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    1,035 14 648 320 -731 57 36 615 23 669 Crude Oil 715 - - - - 296 -423 50 21 600 16 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 320 0 5 22 -293 - - -19 27 6 39 Pentanes Plus 56 0 - - - -44 - - -1 5 5 2 Liquefied Petroleum Gases 264 - - 5 22 -249 - - -18 22 2 37 Ethane/Ethylene 70 - - - - -74 - - 0 - - -4 Propane/Propylene 124 - - 9 21 -110 - - -6 - 0 50 Normal Butane/Butylene 51 - - -5 0 -40 - - -13 13 1 5 Isobutane/Isobutylene 20 - - 1 1 -25 - - 1 9 - -13 Other Liquids - - 14 - - 1

  3. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    1,158 20 2,921 1,258 550 42 -236 2,766 460 2,958 Crude Oil 1,092 - - - - 1,042 166 3 -59 2,362 0 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 67 0 -4 11 0 - - -60 82 36 16 Pentanes Plus 31 0 - - - - - - 0 26 0 4 Liquefied Petroleum Gases 36 - - -4 11 0 - - -60 56 35 13 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 29 11 - - - -28 - 31 49 Normal Butane/Butylene 14 - - -33 0 - - - -31 39 4 -31 Isobutane/Isobutylene 10 - - 1 0 0 - - -1 17 0 -5 Other Liquids - - 21 - -

  4. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,070 15 662 340 -704 -26 10 637 18 693 Crude Oil 746 - - - - 326 -421 -32 9 602 8 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 323 0 13 10 -297 - - 1 20 7 21 Pentanes Plus 55 0 - - - -45 - - 0 6 5 -1 Liquefied Petroleum Gases 268 - - 13 10 -252 - - 1 14 2 22 Ethane/Ethylene 77 - - - - -76 - - 0 - - 1 Propane/Propylene 122 - - 9 9 -110 - - 0 - 0 29 Normal Butane/Butylene 50 - - 3 0 -40 - - 1 7 2 5 Isobutane/Isobutylene 19 - - 0 1 -25 - - 0 7 0 -13 Other Liquids - - 15 - - 1 16 -12 1

  5. Acquisition Letters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    August 11, 2006 Acquisition Letter No. AL 2006-10 Class Deviation for Certain DEAR Intellectual Property Clauses October 24, 1993 Acquisition Letter No. AL 1994-19 Basic...

  6. ACQUISITION LETTER DEAR Part 933

    Broader source: Energy.gov [DOE]

    This Acquisition Letter (AL) is issued by the Procurement Executive pursuant to a delegation from the Secretary and under the authority of the Department of Energy Acquisition Regulation (DEAR) subsection 901.301-70.

  7. Data acquisition instruments: Psychopharmacology

    SciTech Connect (OSTI)

    Hartley, D.S. III

    1998-01-01

    This report contains the results of a Direct Assistance Project performed by Lockheed Martin Energy Systems, Inc., for Dr. K. O. Jobson. The purpose of the project was to perform preliminary analysis of the data acquisition instruments used in the field of psychiatry, with the goal of identifying commonalities of data and strategies for handling and using the data in the most advantageous fashion. Data acquisition instruments from 12 sources were provided by Dr. Jobson. Several commonalities were identified and a potentially useful data strategy is reported here. Analysis of the information collected for utility in performing diagnoses is recommended. In addition, further work is recommended to refine the commonalities into a directly useful computer systems structure.

  8. new-software-acquisitions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Acquisitions The National Highway Traffic Safety Administration (NHTSA) plans to expand the use of the TRACC cluster. NHTSA's Human Injury Research Division (HIRD) does a lot of work related to real world crash reconstruction. For reconstruction purposes, HIRD uses two different software modules: MADYMO and modeFrontier. Optimization is performed using modeFrontier. Since optimization studies require a lot of simulations, HIRD will use TRACC's cluster with MADYMO and modeFrontier

  9. OPAM Policy Acquisition Guides

    Energy Savers [EERE]

    --Chapter 23.0 (June 2007) 1 Executive Order 13423 - Strengthening Federal Environmental, Energy, and Transportation Management in Acquisition Reference: FAR 23, 52.223, OFPP Policy Letter 07-01, DEAR 923, 952.223, 970.23, and 970.5223 Overview Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management, replaces the Greening the Government series of 4 Executive Orders intended to improve the Federal impact on environment, energy and transportation

  10. ESPC ENABLE ACQUISITION PLAN TEMPLATE

    Broader source: Energy.gov [DOE]

    Template serves as a tool to help agencies develop an acquisition plan. The acquisition plan is the first formal step in the Energy Savings Performance Contract (ESPC) ENABLE procurement process. The completed acquisition plan will serve as a guide throughout the rest of the process.

  11. 7.0 - Integrated Acquisition Planning Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development and integration of associated acquisition planning documents and their influence on the establishment of the acquisition plan in order to improve the acquisition...

  12. Walnut Capital Acquisitions | Open Energy Information

    Open Energy Info (EERE)

    Walnut Capital Acquisitions Jump to: navigation, search Name: Walnut Capital Acquisitions Place: Pittsburgh, Pennsylvania Zip: 15232 Product: Walnut Capital Acquisitions is the...

  13. Acquisition and Project Management | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Acquisition and Project Management Acquisition and Project Management Acquisition and Project Management Office volunteers get up-close look at Office of Secure Transportation...

  14. Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01

    This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

  15. ,"U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products"

    U.S. Energy Information Administration (EIA) Indexed Site

    Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Refinery, Bulk Terminal, and Natural Gas Plant Stocks of Selected Petroleum Products",13,"Monthly","12/2015","1/15/1993" ,"Release

  16. CORROSIVITY AND COMPOSITION OF RAW AND TREATED PYROLYSIS OILS

    SciTech Connect (OSTI)

    Keiser, Jim; Howell, Michael; Connatser, Raynella M.; Lewis, Sam; Elliott, Douglas C.

    2012-10-14

    Fast pyrolysis offers a relatively low cost method of processing biomass to produce a liquid product that has the potential for conversion to several types of liquid fuels. The liquid product of fast pyrolysis, known as pyrolysis oil or bio-oil, contains a high oxygen content primarily in the form of water, carboxylic acids, phenols, ketones and aldehydes. These oils are typically very acidic with a Total Acid Number that is often in the range of 50 to 100, and previous studies have shown this material to be quite corrosive to common structural materials. Removal of at least some of the oxygen and conversion of this oil to a more useful product that is considerably less corrosive can be accomplished through a hydrogenation process. The product of such a treatment is considered to have the potential for blending with crude oil for processing in petroleum refineries. Corrosion studies and chemical analyses have been conducted using as produced bio-oil samples as well as samples that have been subjected to different levels of oxygen removal. Chemical analyses show treatment affected the concentrations of carboxylic acids contained in the oil, and corrosion studies showed a positive benefit of the oxygen removal. Results of these studies will be presented in this paper.

  17. Refinery Integration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and to illustrate the economics and sustainability of ... agencies, and the general public" (Analysis and ... Milestone: Complete draft journal manuscript of ...

  18. Chapter 18 - Emergency Acquisitions | Department of Energy

    Energy Savers [EERE]

    8 - Emergency Acquisitions Chapter 18 - Emergency Acquisitions PDF icon 18.0_Emergency_Acquisitions_0.pdf More Documents & Publications Acqguide18pt0 March 2011 final OPAM Policy Acquisition Guides Microsoft Word - acqguide18pt0 Nov 2010

  19. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  20. Federal Acquisition Regulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 & 2005-74 Summary of Rules FAC 2005-73 Item Subject FAR Case I Positive Law Codification of Title 41 2011-018 II Technical Amendments Item I--Positive Law Codification of Title 41 (FAR Case 2011-018) Title 41 of the United States Code, "Public Contracts" was enacted into positive law on January 4, 2011 (Pub.L 111-350). This codification reorganized and renumbered the statutes, but did not change their meaning or legal effect. This final rule amended the Federal Acquisition

  1. Status of Acquisition Letters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Letters As of 04/01/2014 No. Date Title Owner Status 1 2014-03 01/06/2014 Allowability of Contractor Litigation Defense and Settlement Costs Michael Righi Active 2 2014-02 10/29/2013 Provisional Payment of Fee Michael Righi Active 3 2014-01 10/16/2013 Management and Operating Contractors' Audit Coverage of Cost-Reimbursement Subcontracts Michael Righi Active 4 2013-11 08/05/2013 Non M&O Contractor Business Systems Clauses for Section H Barbara Binney Active 5 2013-10 06/19/2013

  2. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate Chapter 17 - Special Contracting Methods

  3. Acquisition and Project Management Continuous Improvement Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management...

  4. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  5. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  6. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  7. Acquisition Guide Chapter 1.0 - Acquisition Regulations System | Department

    Energy Savers [EERE]

    of Energy 0 - Acquisition Regulations System Acquisition Guide Chapter 1.0 - Acquisition Regulations System PDF icon 1.1_Acquisition_Regulation_System_0.pdf PDF icon 1.2_Head_of_Contracting_Activity_(HCA)_Authority,_Functions,_and_Responsibilities_0.pdf PDF icon 1.2_Attachment_Tables_I-IV_0.pdf PDF icon 1.3_Balanced_Scorecard_Assessment_Program_0.pdf PDF icon 1.4_Establishing_the_Position_of_Source_Evaluation_Board_(SEB)_Secretariat_and_Knowledge_Manager More Documents & Publications

  8. Sustainable Acquisition | Department of Energy

    Energy Savers [EERE]

    Sustainable Acquisition Sustainable Acquisition Federal agencies are required to give preference to products that are energy efficient, water efficient, made from biobased or recycled content, are non-toxic or less-toxic than conventional alternatives, and registered with the Electronic Product Environmental Assessment Tool (EPEAT). The U.S. Department of Energy's (DOE) Sustainable Acquisition Program serves to ensure the purchase of more sustainable products by working with DOE sites to help

  9. Sustaninable Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustaninable Acquisition Sustaninable Acquisition Federal agencies are required to give preference to products that are energy efficient, water efficient, made from biobased or recycled content, are non-toxic or less-toxic than conventional alternatives, and registered with the Electronic Product Environmental Assessment Tool (EPEAT). The U.S. Department of Energy's (DOE) Sustainable Acquisition Program serves to ensure the purchase of more sustainable products by working with DOE sites to help

  10. Acquisition Resources | Department of Energy

    Energy Savers [EERE]

    Acquisition » Acquisition Resources Acquisition Resources Doing Business with DOE/EM Doing Business with DOE/EM EM Procurement Offices Doing Business with EM Consolidated Business Center Guide for Submission of Unsolicated Proposals Federal Business Opportunities Small Business Opportunities Business Opportunity Forum Attendees EM Major Procurements EM Utility Contracts EM Partnering Initiative: Journey to Excellence Metric No. 3.5 Project Management Resources DOE Office of Environmental

  11. Reformulated Gasoline Foreign Refinery Rules (Released in the STEO January 1998)

    Reports and Publications (EIA)

    1998-01-01

    On August 27, 1997, the Environmental Protection Agency (EPA) promulgated revised the rules that allow foreign refiners to establish and use individual baselines, but it would not be mandatory (the optional use of an individual refinery baseline is not available to domestic refiners.) If a foreign refiner did not establish and use an individual baseline, the gasoline they export to the United States would be regulated through the importer, and subject to the importer's baseline (most likely the statutory baseline). Specific regulatory provisions are implemented to ensure that the option to use an individual baseline would not lead to adverse environmental impacts. This involves monitoring the average quality of imported gasoline, and if a specified benchmark is exceeded, remedial action would be taken by adjusting the requirements applicable to imported gasoline.

  12. Acquisition News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    all options). October 2, 2015 DOE Announces Acquisition Strategy for Post Fiscal Year 2016 Legacy Cleanup at Los Alamos Cincinnati - The U.S. Department of Energy (DOE)...

  13. Acquisition Savings Reporting Process Template

    Broader source: Energy.gov (indexed) [DOE]

    steps, then it is an Other Acquisition Savings process. 2 STEP 2 - Select Savings Methodology (In Order of Preference) Regardless if it is Strategic Sourcing or an Other...

  14. "Data Acquisition Systems"

    SciTech Connect (OSTI)

    Unterweger, Michael; Costrell, Louis deceased

    2009-07-07

    This project involved support for Lou Costrell and myself in the development of IEEE and IEC standards for nuclear counting and data acquisition systems. Over the years, as a result of this support, Lou and I were able to attend standards meetings of IEEE and IEC, which led directly to the publication of many standards for NIM systems, FastBus and CAMAC. We also chaired several writing committees as well as ANSI N42 (Nuclear instrumentation), IEEE NIM (NIM standard), IEEE NID (NPSS nuclear instruments and detector) and IEC TC45 WG9 (Nuclear instrumentation). Through this support we were able to assure that the interests of the US and DOE were expressed and implemented in the various standards.

  15. Method to upgrade bio-oils to fuel and bio-crude

    DOE Patents [OSTI]

    Steele, Philip H; Pittman, Jr., Charles U; Ingram, Jr., Leonard L; Gajjela, Sanjeev; Zhang, Zhijun; Bhattacharya, Priyanka

    2013-12-10

    This invention relates to a method and device to produce esterified, olefinated/esterified, or thermochemolytic reacted bio-oils as fuels. The olefinated/esterified product may be utilized as a biocrude for input to a refinery, either alone or in combination with petroleum crude oils. The bio-oil esterification reaction is catalyzed by addition of alcohol and acid catalyst. The olefination/esterification reaction is catalyzed by addition of resin acid or other heterogeneous catalyst to catalyze olefins added to previously etherified bio-oil; the olefins and alcohol may also be simultaneously combined and catalyzed by addition of resin acid or other heterogeneous catalyst to produce the olefinated/esterified product.

  16. Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions

    SciTech Connect (OSTI)

    Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

    2011-10-06

    Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (<260 C boiling point). Carboxylic acid content of all of the high oxygen content fractions was likely too high for these materials to be considered as fuel blendstocks although potential for blending with crude oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

  17. Options for U.S. Petroleum Refineries to Process Additional Light...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... at a minimal cost Operational inefficiencies, reduced crude oil input and production volumes 0 0 0 0 0 Debottlenecking Allows for additional LTO processing at a minimal cost ...

  18. U.S. Total Refiner Acquisition Cost of Crude Oil

    Gasoline and Diesel Fuel Update (EIA)

    2010 2011 2012 2013 2014 2015 View History Composite 76.69 101.87 100.93 100.49 92.02 48.40 1968-2015 Domestic 78.01 100.71 100.72 102.91 94.05 49.95 1968-2015 Imported 75.86 102.63 101.09 98.11 89.56 46.39 1968-2015

  19. U.S. Refiner Acquisition Cost of Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Jul-15 Aug-15 Sep-15 Oct-15 Nov-15 Dec-15 View History Composite 53.41 44.97 44.38 44.78 41.47 36.14 1974-2015 Domestic 54.15 46.30 46.68 47.02 43.37 38.71 1974-2015 Imported 52.42...

  20. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  1. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  2. Policy Flash 2013-30 Acquisition Letter on Acquisition Planning...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jason Taylor of the Contract and Financial Assistance Policy Division, Office of Policy, Office of Acquisition and Project Management at (202) 287-1560 or at jason.taylor@hq.doe....

  3. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    Chapter 33 - Protests, Disputes and Appeals Acquisition Guide Chapter 1.2 - Attachment - Non-Delegable HCA Functions and Responsibilities Acquisition Guide Chapter 1.0 - Acquisition Regulations System

  4. Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters

    SciTech Connect (OSTI)

    Benson, Charles; Wilson, Robert

    2014-04-30

    This project culminated in the demonstration of a full-scale industrial burner which allows a broad range of “opportunity” gaseous fuels to be cost-effectively and efficiently utilized while generating minimal emissions of criteria air pollutants. The burner is capable of maintaining a stable flame when the fuel composition changes rapidly. This enhanced stability will contribute significantly to improving the safety and reliability of burner operation in manufacturing sites. Process heating in the refining and chemicals sectors is the primary application for this burner. The refining and chemical sectors account for more than 40% of total industrial natural gas use. Prior to the completion of this project, an enabling technology did not exist that would allow these energy-intensive industries to take full advantage of opportunity fuels and thereby reduce their natural gas consumption. Opportunity gaseous fuels include biogas (from animal and agricultural wastes, wastewater plants, and landfills) as well as syngas (from the gasification of biomass, municipal solid wastes, construction wastes, and refinery residuals). The primary challenge to using gaseous opportunity fuels is that their composition and combustion performance differ significantly from those of conventional fuels such as natural gas and refinery fuel gas. An effective fuel-flexible burner must accept fuels that range widely in quality and change in composition over time, often rapidly. In Phase 1 of this project, the team applied computational fluid dynamics analysis to optimize the prototype burner’s aerodynamic, combustion, heat transfer, and emissions performance. In Phase 2, full-scale testing and refinement of two prototype burners were conducted in test furnaces at Zeeco’s offices in Broken Arrow, OK. These tests demonstrated that the full range of conventional and opportunity fuels could be utilized by the project’s burner while achieving robust flame stability and very low levels of air pollutant emissions. In Phase 3, the team retrofitted three fuel-flexible burners into a fired heater at a Shell plant and demonstrated the project’s technology over a 6-month period. The project burners performed well during this period. They remain in commercial service at the Shell plant. Through this work, an improved understanding of flame stabilization mechanisms was gained. Also, methods for accommodating a wide range of fuel compositions were developed. This knowledge facilitated the commercialization of a new generation of burners that are suitable for the fuels of the future.

  5. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  6. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  7. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  9. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  10. Perspective & Acquisition Fellows Program - David Klaus, Deputy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Perspective & Acquisition Fellows Program - David Klaus, Deputy Under Secretary for Management and Performance Perspective & Acquisition Fellows Program - David Klaus, Deputy Under...

  11. 2015 DOE Acquisition and Project Management Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Break Acquisition and Project Management Awards Presentations Welcome & Workshop Logistics Welcome & Workshop Logistics No Host Reception at Hotel 2015 DOE Acquisition and...

  12. Port Asset Acquisition LLC | Open Energy Information

    Open Energy Info (EERE)

    Acquisition LLC Jump to: navigation, search Name: Port Asset Acquisition LLC Place: Louisiana Product: PAA was formed to acquire a fuel terminal, tanks and land in Alexandria,...

  13. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    30 - Cost Accounting Standards Administration Policy Flash 2015-05 - Acquisition Letter 2015-02 Acquisition Letter No. AL 2015-02

  14. Trans India Acquisition Corporation | Open Energy Information

    Open Energy Info (EERE)

    India Acquisition Corporation Jump to: navigation, search Name: Trans-India Acquisition Corporation Place: Delaware Sector: Solar Product: Blank check company to be merged with...

  15. Acquisition Letters | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2005 June 22, 2012 Acquisition Letter No. AL 2012-09 Guidance for Fast-Track Cooperative Research And Development Agreement (CRADA) Programs at DOE Facilities. previous 1 2 next...

  16. Sustainable Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Sustainable Acquisition Mission The team establishes a national approach to expand purchases of sustainable goods and services, including biobased products, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates implementation of a sustainable procurement process. Scope The team has established a process to

  17. Acquisition News | Department of Energy

    Energy Savers [EERE]

    Acquisition News Acquisition News RSS March 16, 2016 DOE Selects Carnegie Mellon to Run Traineeship in Robotics Washington D.C.-The Department of Energy (DOE) Office of Environmental Management (EM) has selected Carnegie Mellon University (CMU) in Pittsburgh, PA for award consideration of a cooperative agreement to run a university traineeship in Robotics. March 16, 2016 EM headquarters and field office leaders gathered for a one-day workshop to examine the various contractor oversight programs

  18. Summary of the proceedings of the workshop on the refinery of the future

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report on the Workshop on the Refinery of the Future has been prepared for participants to provide them with a succinct summary of the presentations, deliberations, and discussions. In preparing the summary, we have striven to capture the key findings (conclusions) and highlight the issues and concerns raised during the plenary and breakout sessions. The presentation of the summary of the proceedings follows the final workshop agenda, which is given in Section I; each section is tabbed to facilitate access to specific workshop topics. The material presented relies heavily on the outline summaries prepared and presented by the Plenary Session Chairman and the Facilitators for each breakout group. These summaries are included essentially as presented. In addition, individuals were assigned to take notes during each session; these notes were used to reconstruct critical issues that were discussed in more detail. The key comments made by the participants, which tended to represent the range of views expressed relative to the issues, are presented immediately following the facilitator`s summary outline in order to convey the flavor of the discussions. The comments are not attributed to individuals, since in many instances they represent a composite of several similar views expressed during the discussion. The facilitators were asked to review the writeups describing the outcomes of their sessions for accuracy and content; their suggested changes were incorporated. Every effort has thus been made to reconstruct the views expressed as accurately as possible; however, errors and/or misinterpretations undoubtedly have occurred.

  19. OIl Speculation

    Gasoline and Diesel Fuel Update (EIA)

    Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil

  20. Deep Trek Re-configurable Processor for Data Acquisition (RPDA)

    SciTech Connect (OSTI)

    Bruce Ohme; Michael Johnson

    2009-06-30

    This report summarizes technical progress achieved during the cooperative research agreement between Honeywell and U.S. Department of Energy to develop a high-temperature Re-configurable Processor for Data Acquisition (RPDA). The RPDA development has incorporated multiple high-temperature (225C) electronic components within a compact co-fired ceramic Multi-Chip-Module (MCM) package. This assembly is suitable for use in down-hole oil and gas applications. The RPDA module is programmable to support a wide range of functionality. Specifically this project has demonstrated functional integrity of the RPDA package and internal components, as well as functional integrity of the RPDA configured to operate as a Multi-Channel Data Acquisition Controller. This report reviews the design considerations, electrical hardware design, MCM package design, considerations for manufacturing assembly, test and screening, and results from prototype assembly and characterization testing.

  1. Acquisition and Project Management Continuous Improvement Presentation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management Continuous Improvement. PDF icon Acquisition and Project Management Continuous Improvement presentation More Documents & Publications Occupational Safety Performance Voluntary Protection Program Onsite Review, Safeguards and Security - August 2012 Report on Acquisition and Project

  2. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    32 - Contract Financing OPAM Policy Acquisition Guides Microsoft Word - AcqGuide71pt1.doc

  3. Small Business Issues for Environmental Restoration Acquisitions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Issues for Environmental Restoration Acquisitions Small Business Issues for Environmental Restoration Acquisitions Small Business Issues for Environmental Restoration Acquisitions The Department of Energy's best practices to reduce and eliminate barriers to small businesses entering into prime contracts for major environmental remediation acquisitions are as follows: Withholding of Payments Billing Cycles Allowability of Insurance Bonding Requirements PDF icon Small

  4. Acquisition Workforce Information | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certifications and Professional Development » Acquisition Workforce Information Acquisition Workforce Information All Acquisition Workforce information has been moved to Powerpedia - Acquisition Workforce. Aviation Management Green Leases Executive Secretariat Energy Reduction at HQ Real Estate Approvals Documents and Publications Facilities and Infrastructure Federal Advisory Committee Management Freedom of Information Act Financial Assistance Information Systems Property Procurement and

  5. Oil supply increase due in 1996`s second half

    SciTech Connect (OSTI)

    Beck, R.J.

    1996-07-29

    The crucial oil-market issue for this year`s second half is new supply. Production will increase again outside the Organization of Petroleum Exporting Countries. And Iraq has general approval to resume exports under limits set by the United Nations, although start of the exports has been delayed by at least 60 days. The big question is the market`s ability to absorb the supply gains. As usual, the market`s need for oil in the second half will depend on economies. So far in 1996, economic growth has pushed consumption to levels unexpected a year ago. Demand the rest of the year depends heavily on economic performances of the industrialized nations that make up the organization for Economic Cooperation and Development (OECD) and the rapidly growing nations of the Asia-Pacific region. Growth in countries elsewhere in the developing world, especially Latin America, remains a wild card. The paper discusses the worldwide outlook, crude oil prices, US product prices, natural gas prices, US economy, US energy demand, natural gas in the US, US oil demand, gasoline prices, distillate gains, resid slumps, LPG, ethane, US supply, production patterns, rise in refinery capacity, imports, stocks, and stock coverage.

  6. This Week In Petroleum Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    This may describe the feeling oil market analysts have regarding the refinery maintenance still taking place in numerous refineries. Refinery utilization reached nearly 96...

  7. Microsoft Word - ACQUISITION LETTER.doc | Department of Energy

    Office of Environmental Management (EM)

    ACQUISITION LETTER.doc Microsoft Word - ACQUISITION LETTER.doc PDF icon Microsoft Word - ACQUISITION LETTER.doc More Documents & Publications ACQUISITION LETTER DEAR Part 933 OPAM Policy Acquisition Guides Chapter 33 - Protests, Disputes and Appeals

  8. Word Pro - S9

    Gasoline and Diesel Fuel Update (EIA)

    Note 1. Crude Oil Refinery Acquisition Costs. Begin- ning with January 1981, refiner acquisition costs of crude oil are from data collected on U.S. Energy Information Administration (EIA) Form EIA-14, "Refiners' Monthly Cost Report." Those costs were previously published from data collected on Economic Regulatory Administration (ERA) Form ERA-49, "Domestic Crude Oil Entitlements Program Refiners Monthly Report." Form ERA-49 was discontinued with the decontrol of crude oil on

  9. International oil companies in the Far East

    SciTech Connect (OSTI)

    Mlotok, P.

    1984-10-01

    All of the major international oil companies have extensive operations in the Far East, and in most cases, these operations account for a significant part of their worldwide earnings. In the refining and marketing end of the business, near-term profitability could be hampered by problems in the Singapore refining center. An expansion of Indonesian refining capacity has reduced profits from processing arrangements, and new Saudi product exports will enter Singapore starting this year. Longer term, however, the strong economic growth in the region renders it a highly attractive area in which to operate. On the producing end, rising output will boost profits for the international oil companies in Indonesia and Malaysia. Caltex (a 50/50 joint venture between Chevron and Texaco) is one of the largest marketers in the Far East. It will not initially be affected greatly by the Singapore refinery problem, as its production from this area goes directly into its own marketing system rather than into the open market. Exxon is a medium-size marketer with especially strong positions in Japan, Malaysia and Thailand. However, the company could be vulnerable to near-term problems in Singapore. Mobil, another medium-size marketer, has a very strong position in Japan but problems in Australia. As those problems are corrected, earnings should grow over time. The Royal Dutch Shell Group is one of the largest marketers in the Far East, with good positions in Singapore, Malaysia and Australia. Shell will have difficulty adjusting to the changing conditions in Singapore, but once this is complete, downstream earnings growth should resume. British Petroleum (BP) has a smaller upstream and downstream presence than the other international oils. Estimated 1983 Far East earnings are tabulated for these five companies. 5 figures.

  10. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    2,637 1,124 19,833 9,726 12 -218 18,732 5,275 19,544 Crude Oil 9,262 - - - - 7,900 -200 -195 16,765 392 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,375 -22 330 180 - - -619 649 1,067 2,765 Pentanes Plus 409 -22 - - 10 - - 13 134 170 80 Liquefied Petroleum Gases 2,967 - - 330 170 - - -632 515 898 2,685 Ethane/Ethylene 1,210 - - 7 - - - 12 - 64 1,141 Propane/Propylene 1,134 - - 578 144 - - -251 - 751 1,356 Normal Butane/Butylene 314 - - -243 11 - - -379 304 78 79

  11. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    0,841 851 116,203 50,123 119,592 3,155 4,776 114,478 7,424 174,087 192,970 Crude Oil 1,479 - - - - 21,756 11,999 3,151 1,162 35,500 1,723 0 16,298 Natural Gas Plant Liquids and Liquefied Refinery Gases 9,362 -13 436 1,822 -645 - - -645 1,503 1,519 8,585 8,270 Pentanes Plus 1,085 -13 - - - -11 - - 40 95 30 896 209 Liquefied Petroleum Gases 8,277 - - 436 1,822 -634 - - -685 1,408 1,489 7,689 8,061 Ethane/Ethylene 3,174 - - 19 - -3,224 - - 31 - - -62 118 Propane/Propylene 3,478 - - 1,217 1,571

  12. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    79,865 29,815 138,431 83,487 -20,012 -10,222 3,510 131,448 12,261 154,146 334,507 Crude Oil 55,847 - - - - 80,007 -8,074 -11,409 1,967 113,496 908 0 150,472 Natural Gas Plant Liquids and Liquefied Refinery Gases 24,018 -627 734 2,364 -2,137 - - -5,617 3,788 7,366 18,815 54,687 Pentanes Plus 2,800 -627 - - 3 5,421 - - 1,269 352 5,048 928 9,997 Liquefied Petroleum Gases 21,218 - - 734 2,361 -7,558 - - -6,886 3,436 2,318 17,887 44,690 Ethane/Ethylene 7,423 - - - - -1,744 - - 207 - 1,985 3,487 5,180

  13. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    33,058 3,095 249,583 119,013 -93,957 4,343 -8,851 229,949 128,849 165,188 1,297,642 Crude Oil 173,801 - - - - 101,693 4,040 386 -8,031 278,900 9,051 0 931,007 Natural Gas Plant Liquids and Liquefied Refinery Gases 59,257 -18 9,027 368 11,884 - - -10,473 11,472 22,900 56,619 125,761 Pentanes Plus 6,105 -18 - - 315 -4,043 - - -893 2,739 28 485 9,983 Liquefied Petroleum Gases 53,152 - - 9,027 53 15,927 - - -9,580 8,733 22,872 56,134 115,778 Ethane/Ethylene 24,730 - - 207 - 7,276 - - 141 - - 32,072

  14. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    7,518 100 8,051 3,839 -3,031 140 -286 7,418 4,156 5,329 Crude Oil 5,606 - - - - 3,280 130 12 -259 8,997 292 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,912 -1 291 12 383 - - -338 370 739 1,826 Pentanes Plus 197 -1 - - 10 -130 - - -29 88 1 16 Liquefied Petroleum Gases 1,715 - - 291 2 514 - - -309 282 738 1,811 Ethane/Ethylene 798 - - 7 - 235 - - 5 - - 1,035 Propane/Propylene 593 - - 384 - 214 - - -83 - 678 596 Normal Butane/Butylene 114 - - -92 2 46 - - -218 157 54 76

  15. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    32,086 435 20,083 9,909 -22,661 1,779 1,127 19,054 723 20,728 45,547 Crude Oil 22,162 - - - - 9,162 -13,121 1,559 662 18,615 486 0 23,545 Natural Gas Plant Liquids and Liquefied Refinery Gases 9,924 -11 162 670 -9,094 - - -592 835 196 1,212 3,622 Pentanes Plus 1,725 -11 - - - -1,367 - - -21 159 143 66 310 Liquefied Petroleum Gases 8,199 - - 162 670 -7,727 - - -571 676 53 1,146 3,312 Ethane/Ethylene 2,176 - - - - -2,308 - - 2 - - -134 432 Propane/Propylene 3,830 - - 281 647 -3,411 - - -199 - 10

  16. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    35,912 633 90,537 38,985 17,037 1,301 -7,327 85,751 14,270 91,713 144,121 Crude Oil 33,844 - - - - 32,297 5,156 104 -1,814 73,215 0 0 55,165 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,068 -13 -116 356 -8 - - -1,851 2,532 1,108 498 4,933 Pentanes Plus 951 -13 - - - - - - 5 810 13 110 44 Liquefied Petroleum Gases 1,117 - - -116 356 -8 - - -1,856 1,722 1,095 388 4,889 Ethane/Ethylene 3 - - - - - - - - - - 3 - Propane/Propylene 376 - - 890 346 - - - -862 - 961 1,513 1,492 Normal

  17. Supply and Disposition of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    391,762 34,830 614,837 301,517 358 -6,765 580,680 163,526 605,862 2,014,788 Crude Oil 287,133 - - - - 244,915 -6,209 -6,054 519,726 12,167 0 1,176,487 Natural Gas Plant Liquids and Liquefied Refinery Gases 104,629 -682 10,243 5,580 - - -19,178 20,130 33,089 85,729 197,273 Pentanes Plus 12,666 -682 - - 318 - - 400 4,155 5,261 2,486 20,543 Liquefied Petroleum Gases 91,963 - - 10,243 5,262 - - -19,578 15,975 27,827 83,244 176,730 Ethane/Ethylene 37,506 - - 226 - - - 381 - 1,985 35,366 33,928

  18. U.S. Exports of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    4,967 4,564 4,884 4,628 4,817 5,275 1973-2015 Crude Oil 526 461 409 500 320 392 1920-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,021 991 1,136 970 1,058 1,067 1981-2015 Pentanes Plus 200 197 234 153 201 170 1984-2015 Liquefied Petroleum Gases 821 794 903 817 857 898 1973-2015 Ethane/Ethylene 65 60 51 68 66 64 1981-2015 Propane/Propylene 624 597 739 622 676 751 1973-2015 Normal Butane/Butylene 125 128 107 116 109 78 1981-2015 Isobutane/Isobutylene 6 10 5 10 7 5 1984-2015 Other

  19. U.S. Imports of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    294,833 302,821 280,042 272,798 273,770 301,517 1981-2015 Crude Oil 227,255 236,785 216,669 220,747 221,117 244,915 1920-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,621 4,126 3,046 4,026 4,880 5,580 1981-2015 Pentanes Plus 4 325 2 316 647 318 1981-2015 Liquefied Petroleum Gases 3,617 3,801 3,044 3,710 4,233 5,262 1981-2015 Ethane 1993-2006 Ethylene 1993-2015 Propane 2,284 2,486 1,935 2,476 3,127 3,853 1995-2015 Propylene 668 724 433 344 383 608 1993-2015 Normal Butane 140 76

  20. U.S. Imports of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    9,511 9,768 9,335 8,800 9,126 9,726 1973-2015 Crude Oil 7,331 7,638 7,222 7,121 7,371 7,900 1920-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 117 133 102 130 163 180 1981-2015 Pentanes Plus 0 10 0 10 22 10 1981-2015 Liquefied Petroleum Gases 117 123 101 120 141 170 1973-2015 Ethane 1993-2006 Ethylene 1993-2015 Propane 74 80 65 80 104 124 1995-2015 Propylene 22 23 14 11 13 20 1993-2015 Normal Butane 5 2 6 17 10 7 1995-2015 Butylene 4 4 5 3 2 4 1993-2015 Isobutane 12 13 11 8 12 15

  1. U.S. Exports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 858,685 1,089,848 1,172,965 1,321,787 1,524,170 1,733,771 1981-2015 Crude Oil 15,198 17,158 24,693 48,968 128,233 167,258 1870-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 59,842 90,968 115,054 170,941 256,587 353,016 1981-2015 Pentanes Plus 11,792 36,837 43,136 49,883 60,533 66,494 1984-2015 Liquefied Petroleum Gases 48,050 54,131 71,918 121,058 196,054 286,522 1981-2015 Ethane/Ethylene 0 0 0 13,820 23,655 1983-2015

  2. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Crude Oil 3,362,856 3,261,422 3,120,755 2,821,480 2,680,626 2,682,946 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 65,314 66,851 62,192 66,290 52,031 52,563 1981-2015 Pentanes Plus 9,498 17,681 10,680 12,241 5,186 4,027 1981-2015 Liquefied Petroleum Gases 55,816 49,170 51,512 54,049 46,845 48,536 1981-2015 Ethane 1993-2007 Ethylene 135 119 115 123 129 36

  3. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    4,636,597 399,635 7,260,943 3,431,210 125,155 158,333 6,882,105 1,733,771 7,079,331 2,014,788 Crude Oil 3,441,967 - - - - 2,682,946 49,690 91,814 5,915,532 167,258 0 1,176,487 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,194,630 -7,655 223,448 52,563 - - 21,920 188,270 353,016 899,780 197,273 Pentanes Plus 156,568 -7,655 - - 4,027 - - -45 53,404 66,494 33,087 20,543 Liquefied Petroleum Gases 1,038,062 - - 223,448 48,536 - - 21,965 134,866 286,522 866,693 176,730 Ethane/Ethylene

  4. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    12,703 1,095 19,893 9,401 343 434 18,855 4,750 19,395 Crude Oil 9,430 - - - - 7,351 136 252 16,207 458 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,273 -21 612 144 - - 60 516 967 2,465 Pentanes Plus 429 -21 - - 11 - - 0 146 182 91 Liquefied Petroleum Gases 2,844 - - 612 133 - - 60 369 785 2,375 Ethane/Ethylene 1,108 - - 6 0 - - -3 - 65 1,051 Propane/Propylene 1,117 - - 559 112 - - 51 - 615 1,121 Normal Butane/Butylene 324 - - 55 10 - - 12 169 98 110 Isobutane/Isobutylene 296 - - -7

  5. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    19,253 10,299 1,386,705 615,305 1,360,603 35,684 35,012 1,368,120 90,331 2,034,387 192,970 Crude Oil 18,221 - - - - 227,582 159,200 34,394 1,159 409,330 28,908 0 16,298 Natural Gas Plant Liquids and Liquefied Refinery Gases 101,032 -191 14,223 16,761 -4,395 - - 937 12,599 16,573 97,321 8,270 Pentanes Plus 11,667 -191 - - 9 4 - - 99 583 706 10,101 209 Liquefied Petroleum Gases 89,365 - - 14,223 16,752 -4,399 - - 838 12,016 15,867 87,220 8,061 Ethane/Ethylene 30,795 - - 170 - -31,804 - - 30 - -

  6. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    327 28 3,799 1,686 3,728 98 96 3,748 247 5,574 Crude Oil 50 - - - - 624 436 94 3 1,121 79 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 277 -1 39 46 -12 - - 3 35 45 267 Pentanes Plus 32 -1 - - 0 0 - - 0 2 2 28 Liquefied Petroleum Gases 245 - - 39 46 -12 - - 2 33 43 239 Ethane/Ethylene 84 - - 0 - -87 - - 0 - - -2 Propane/Propylene 110 - - 37 41 76 - - 3 - 38 223 Normal Butane/Butylene 36 - - 2 1 0 - - -1 23 6 11 Isobutane/Isobutylene 14 - - -1 4 0 - - 0 10 0 7 Other Liquids - - 29 - -

  7. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    937,827 337,875 1,648,603 880,978 -208,936 11,625 45,559 1,573,850 158,221 1,830,342 334,507 Crude Oil 683,678 - - - - 841,415 -155,543 -908 39,872 1,299,921 28,849 0 150,472 Natural Gas Plant Liquids and Liquefied Refinery Gases 254,149 -6,980 40,909 25,611 -16,520 - - 2,143 33,456 92,412 169,158 54,687 Pentanes Plus 32,237 -6,980 - - 45 46,186 - - 857 6,692 62,712 1,227 9,997 Liquefied Petroleum Gases 221,912 - - 40,909 25,566 -62,706 - - 1,286 26,764 29,700 167,931 44,690 Ethane/Ethylene

  8. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    569 926 4,517 2,414 -572 32 125 4,312 433 5,015 Crude Oil 1,873 - - - - 2,305 -426 -2 109 3,561 79 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 696 -19 112 70 -45 - - 6 92 253 463 Pentanes Plus 88 -19 - - 0 127 - - 2 18 172 3 Liquefied Petroleum Gases 608 - - 112 70 -172 - - 4 73 81 460 Ethane/Ethylene 191 - - 0 0 -27 - - 2 - 65 98 Propane/Propylene 274 - - 112 57 -122 - - -2 - 4 318 Normal Butane/Butylene 94 - - 2 7 -26 - - 4 27 12 33 Isobutane/Isobutylene 48 - - -1 6 4 - - 0 46 0

  9. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    775,061 37,360 2,865,360 1,309,259 -1,085,305 47,996 70,483 2,650,249 1,331,308 1,897,691 1,297,642 Crude Oil 2,077,791 - - - - 1,085,333 93,174 2,762 41,650 3,113,888 103,522 0 931,007 Natural Gas Plant Liquids and Liquefied Refinery Gases 697,270 -207 145,337 4,588 129,222 - - 18,599 109,314 228,253 620,044 125,761 Pentanes Plus 81,397 -207 - - 3,955 -29,697 - - -991 34,994 439 21,006 9,983 Liquefied Petroleum Gases 615,873 - - 145,337 633 158,919 - - 19,590 74,320 227,814 599,038 115,778

  10. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    7,603 102 7,850 3,587 -2,973 131 193 7,261 3,647 5,199 Crude Oil 5,693 - - - - 2,974 255 8 114 8,531 284 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,910 -1 398 13 354 - - 51 299 625 1,699 Pentanes Plus 223 -1 - - 11 -81 - - -3 96 1 58 Liquefied Petroleum Gases 1,687 - - 398 2 435 - - 54 204 624 1,641 Ethane/Ethylene 755 - - 5 - 190 - - -4 - - 955 Propane/Propylene 599 - - 360 0 156 - - 52 - 551 512 Normal Butane/Butylene 131 - - 40 2 67 - - 6 86 66 81 Isobutane/Isobutylene 202 - -

  11. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    390,462 5,367 241,768 124,089 -256,827 -9,477 3,558 232,453 6,470 252,901 45,547 Crude Oil 272,469 - - - - 119,074 -153,672 -11,771 3,234 219,796 3,070 0 23,545 Natural Gas Plant Liquids and Liquefied Refinery Gases 117,993 -123 4,589 3,561 -108,299 - - 387 7,148 2,691 7,495 3,622 Pentanes Plus 20,168 -123 - - - -16,493 - - 20 2,045 1,914 -427 310 Liquefied Petroleum Gases 97,825 - - 4,589 3,561 -91,806 - - 367 5,103 777 7,922 3,312 Ethane/Ethylene 27,979 - - - - -27,855 - - -86 - - 210 432

  12. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    413,995 8,734 1,118,507 501,579 190,464 39,327 3,721 1,057,433 147,442 1,064,010 144,121 Crude Oil 389,809 - - - - 409,542 56,842 25,213 5,899 872,597 2,909 0 55,165 Natural Gas Plant Liquids and Liquefied Refinery Gases 24,186 -154 18,390 2,042 -8 - - -146 25,753 13,086 5,763 4,933 Pentanes Plus 11,099 -154 - - 18 - - - -30 9,090 723 1,180 44 Liquefied Petroleum Gases 13,087 - - 18,390 2,024 -8 - - -116 16,663 12,363 4,583 4,889 Ethane/Ethylene 35 - - - - - - - - - - 35 - Propane/Propylene

  13. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,134 24 3,064 1,374 522 108 10 2,897 404 2,915 Crude Oil 1,068 - - - - 1,122 156 69 16 2,391 8 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 66 0 50 6 0 - - 0 71 36 16 Pentanes Plus 30 0 - - 0 - - - 0 25 2 3 Liquefied Petroleum Gases 36 - - 50 6 0 - - 0 46 34 13 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 41 5 - - - -2 - 22 39 Normal Butane/Butylene 12 - - 7 0 - - - 2 25 12 -20 Isobutane/Isobutylene 11 - - 3 0 0 - - 0 21 0 -6 Other Liquids - - 24 - - 114 314 15 3

  14. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  15. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  16. Chapter 13 - Simplified Acquisition Procedures | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Simplified Acquisition Procedures Chapter 13 - Simplified Acquisition Procedures 13.1 - Purchase Card Policy and Operating Procedures PDF icon 13.2PurchaseOrders0.pdf PDF...

  17. Chapter 39 - Acquisition of Information Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 - Acquisition of Information Technology Chapter 39 - Acquisition of Information Technology PDF icon 39.1AcquisitionofInformationResources0.pdf PDF icon 39.2GuidanceonElec...

  18. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    Guide Chapter 1.0 - Acquisition Regulations System Acquisition Guide Chapter 1.2 - Attachment - Non-Delegable HCA Functions and Responsibilities Microsoft Word - AcqGuide71pt1.doc

  19. Acquisition Letter Archive listing | Department of Energy

    Energy Savers [EERE]

    Archive listing Acquisition Letter Archive listing PDF icon Acquisition Letter Archive listing More Documents & Publications Microsoft Word - LibraryofPriorRulemakings.doc Policy Flash Search Listing (2001-2014) AL2007-02.doc&#0;

  20. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  1. Report: EM Acquisition and Project Management

    Office of Environmental Management (EM)

    ACQUISITION AND PROJECT MANAGEMENT September 25, 2008 Submitted by the EMAB Acquisition and Project Management Subcommittee Background: In Fiscal Year (FY) 2008, EMAB was tasked to continue a review of the Office of Environmental Management's (EM) acquisition and project management practices in terms of its members' own industry standards, and to continue to work with Office of Acquisition and Project Management (EM-50) on its initiatives, providing advice and consultation as appropriate. The

  2. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Letter: AL2005-08 Microsoft Word - al2004-03.doc Chapter 19 - Small Business Programs

  3. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    15 - Contracting by Negotiation OPAM Policy Acquisition Guides DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request for Proposal

  4. Acquisition Career Management Program Handbook, Partial Revision...

    Broader source: Energy.gov (indexed) [DOE]

    Procurement and Assistance Management SUBJECT: Acquisition Career Management Program Handbook, Partial Revision of Chapter 11, Contracting Officer's Representative SUMMARY: The...

  5. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    18 - Emergency Acquisitions Acqguide18pt0 March 2011 final Microsoft Word - acqguide18pt0 Nov 2010

  6. Intellectual Property (IP) Service Providers for Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intellectual Property (IP) Service Providers for Acquisition and Assistance Transactions WA05056IBMWATSONRESEARCHCENTERWaiverofDomesticand.pdf Need to Consider ...

  7. Acquisition and the Environment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition » Guidance » Acquisition and the Environment Acquisition and the Environment The information provide on these pages are meant to be resource and tool for the DOE acquisition community. Please share suggestions for its further development and improvement. Provide your comments to Richard Langston at (202) 287-1339, or e-mail them to richard.langston@hq.doe.gov GREEN PURCHASING OVERVIEW The White House Task Force on Recycling along with the US Army Center for Health Promotion and

  8. Procurement and Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Procurement and Acquisition Doing Business With the U.S. Department of Energy Welcome to the Department of Energy's Acquisition homepage. The Office of Acquisition Management (OAM) is responsible for all contracting, financial assistance and related activities to fulfill the Department's multitude of missions through its business relationships. As the business organization of the Department, OAM develops and supports the policies, procedures and procurement operational elements. OAM

  9. Enabling Sustainable Acquisition by Improving Procurement Systems |

    Office of Environmental Management (EM)

    Department of Energy Enabling Sustainable Acquisition by Improving Procurement Systems Enabling Sustainable Acquisition by Improving Procurement Systems Enabling Sustainable Acquisition by Improving Procurement Systems Fact sheet describes a case study of the Department of Energy Waste Pilot Plant (WIPP) enabling a sustainable acquisition by improving the procurement systems. The periodic review of the Environmental Management System (EMS) sub-systems is necessary to ensure that desired

  10. Aerial robotic data acquisition system

    SciTech Connect (OSTI)

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  11. acquisition

    National Nuclear Security Administration (NNSA)

    0%2A en Small Business http:nnsa.energy.govaboutusouroperationsapmsmallbusiness

    Page...

  12. Jefferson Lab's Distributed Data Acquisition

    SciTech Connect (OSTI)

    Trent Allison; Thomas Powers

    2006-05-01

    Jefferson Lab's Continuous Electron Beam Accelerator Facility (CEBAF) occasionally experiences fast intermittent beam instabilities that are difficult to isolate and result in downtime. The Distributed Data Acquisition (Dist DAQ) system is being developed to detect and quickly locate such instabilities. It will consist of multiple Ethernet based data acquisition chassis distributed throughout the seven-eights of a mile CEBAF site. Each chassis will monitor various control system signals that are only available locally and/or monitored by systems with small bandwidths that cannot identify fast transients. The chassis will collect data at rates up to 40 Msps in circular buffers that can be frozen and unrolled after an event trigger. These triggers will be derived from signals such as periodic timers or accelerator faults and be distributed via a custom fiber optic event trigger network. This triggering scheme will allow all the data acquisition chassis to be triggered simultaneously and provide a snapshot of relevant CEBAF control signals. The data will then be automatically analyzed for frequency content and transients to determine if and where instabilities exist.

  13. National Geothermal Data Systems Data Acquisition and Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and legacy data from...

  14. Office of Acquisition and Financial Assessment PIA, Golden Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acquisition and Financial Assessment PIA, Golden Field Office Office of Acquisition and Financial Assessment PIA, Golden Field Office Office of Acquisition and Financial Assessment ...

  15. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  16. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  17. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  18. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  19. ADR Provisions in Federal Acquisition Regulation (FAR) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy ADR Provisions in Federal Acquisition Regulation (FAR) » ADR Provisions in Federal Acquisition Regulation (FAR) ADR Provisions in Federal Acquisition Regulation (FAR) ADR Provisions in Federal Acquisition Regulation (FAR) PDF icon ADR Provisions in Federal Acquisition Regulation (FAR) More Documents & Publications Microsoft Word - ADR-Provisions-FederalAcquisitionReg.doc ACQUISITION LETTER DEAR Part 933 Microsoft Word - ACQUISITION LETTER.doc

  20. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  1. World Crude Oil Prices

    Gasoline and Diesel Fuel Update (EIA)

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  2. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  3. Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources

    Reports and Publications (EIA)

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.

  4. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  5. Department of Energy (DOE) Acquisition Guide

    Broader source: Energy.gov [DOE]

    Regulatory requirements for the acquisition process are set forth in the Federal Acquisition Regulation (FAR) and are supplemented in the Department of Energy Acquisition Regulation (DEAR). FAR 1.301 provides for the issuance of additional internal agency guidance, including designations and delegations of authority, assignments of responsibilities, work-flow procedures, and internal reporting requirements. The DOE Acquisition Guide serves this purpose by identifying relevant internal standard operating procedures to be followed by both procurement and program personnel who are involved in various aspects of the acquisition process. The Guide also is intended to be a repository of best practices found throughout the agency that reflect specific illustrations of techniques which ' might be helpful to all readers. Additionally, the Guide includes subject matter that was issued previously through other media, such as Acquisition Letters.

  6. Report: Small Business, Acquisition, and Project Management

    Office of Environmental Management (EM)

    SMALL BUSINESS, ACQUISITION, AND PROJECT MANAGEMENT Background In FY 2007 EMAB was tasked to dialogue with the Office of Acquisition and Project Management (EM-50) on the topic of Small Business and provide advice and recommendations drawn from EMAB members' experience in commercial industry. Additionally, EMAB continued to review and discuss the topics of Acquisition and Project Management during its public meetings and in exchanges with EM senior personnel. Discussion In FY 2006, EM's small

  7. Acquisition Guide Chapter 42.5

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 42.5 (February 2012) 1 CONTRACT MANAGEMENT PLANNING Applicability: This section is applicable to the contracting activities of the Department of Energy (DOE). References:  FAR 46.4, "Government Contract Quality Assurance"  FAR 42, Contract Administration and Auditing Services  FAR 43, Contract Modifications  DEAR 970.1100-1, "Performance-based Contracting"  DOE Acquisition Guide, Chapter 7.1, "Acquisition Planning"  DOE Acquisition Guide,

  8. AVLIS Laser Data Acquisition and Control System

    SciTech Connect (OSTI)

    Gill, T.E.

    1986-01-01

    The AVLIS Laser Data Acquisition and Control System provides an integrated hardware and software package which controls up to five diagnostic lasers and automatic and manual data acquisition and reduction subsystems being used to analyze uranium vapor density in the Atomic Vapor Laser Isotope Separation (AVLIS) separation vessel in Oak Ridge, Tennessee. This paper discusses acquisition of critical real-time and post-run vapor density data.

  9. Planning, Budget, and Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Planning, Budget, and Acquisition Planning, Budget, and Acquisition The Office of Legacy Management's (LM) Planning, Budget, and Acquisition (PBA) Team performs the following management functions: Plans, develops, and implements improvements in efficiencies of business processes and identifies opportunities for reengineering or restructuring. Plans, develops, and implements strategic planning efforts, which include analyzing the organization's annual and long-term goals and the best approach for

  10. Searchable Electronic Department of Energy Acquisition Regulation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Searchable Electronic Department of Energy Acquisition Regulation Searchable Electronic Department of Energy Acquisition Regulation Updated July 2, 2013. The EDEAR is current through the Final Rule published May 3, 2013 at 78 FR 25817 If you have any questions concerning this page, please contact Barbara Binney in the Contract and Financial Assistance Policy Division, Office of Acquisition and Project Management. PDF icon EDEAR July 2 2013 final.pdf More Documents &

  11. Going Global: Tight Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    oil and unconventional techniques Global tight oil production has significant energy security implications 2 GOING GLOBAL: TIGHT OIL PRODUCTION Top Ten Countries with Largest ...

  12. Intellectual Property (IP) Service Providers for Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assistance More Documents & Publications Intellectual Property (IP) Service Providers for Acquisition and Assistance Transactions Microsoft Word - FAL2004-03.doc Microsoft Word -...

  13. Searchable Electronic Department of Energy Acquisition Regulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barbara Binney in the Contract and Financial Assistance Policy Division, Office of Acquisition and Project Management. PDF icon EDEAR July 2 2013 final.pdf More Documents &...

  14. BCDA - Beamline Controls and Data Acquisition Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Data Acquisition * ebrick * Hardware * Software * Group Info * Sector Contacts * Knowledge Base * Meetings * Mailing list * APS PV Information * EPICS Naming Convention Print...

  15. Chapter 7 - Acquisition Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sourcing Requirements - Update May 2014 PDF icon 7.3 - Acuqisition Planning in the M&O Environment More Documents & Publications Policy Flash 2015-13 ACQUISITION PLANNING ...

  16. Acquisition, Use, and Disposal of Real Estate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition of Capital Assets, or current version DOE Order 430.1B, Real Property Asset Management, or current version Overview This section provides internal Departmental ...

  17. Data Acquisition-Manipulation | Open Energy Information

    Open Energy Info (EERE)

    signals and numeric values that can be stored and manipulated in a useful manner by a computer program. Other definitions:Wikipedia Reegle Introduction Data acquisition and...

  18. Alternative Financing - New Acquisition Guide Subchapter | Department...

    Broader source: Energy.gov (indexed) [DOE]

    policy flash Alternative Financing - New Acquisition Guide Subchapter More Documents & Publications Policy Flash 2010-83 Policy Flash 2012-30 Flash2011-77 OPAM...

  19. OPAM Policy Acquisition Guides | Department of Energy

    Energy Savers [EERE]

    31 - Contract Cost Principles and Procedures Table 10 Costs of Foreign Travel, IG-0397 Acquisition Letter No. AL 2012-05

  20. Active Acquisition Letters | Department of Energy

    Energy Savers [EERE]

    Procurement and Acquisition » Active Acquisition Letters Active Acquisition Letters Please remember that you can use your browser's EDIT/FIND function to perform a key-word or key-phase search for each browser page. Once you have entered the search value, click the NEXT button. When you advance to the next page, simply click the NEXT button again without re-entering the search value. March 18, 2016 Acquisiton Letter No. AL 2016-04 Acquisition letter 2016-04 lists ALs currently in effect and

  1. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  2. Career Map: Land Acquisition Specialist | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Land Acquisition Specialist Career Map: Land Acquisition Specialist a male land acquisition specialist takes notes while surveying a piece of land. Land Acquisition Specialist Position Title Land Acquisition Specialist Alternate Title(s) Land Agent, Land Acquisition Associate Education & Training Level Bachelor degree required, prefer graduate degree Education & Training Level Description Land acquisition specialists are expected to have a bachelor's degree or higher in business, real

  3. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R.; Guariguata, G.; Salmen, F.G.

    1994-12-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Mountain (PADD 4) Refinery and Blender Net Production of Crude Oil and Petroleum ... Mountain (PADD 4) Refinery and Blender Net Input of Crude Oil and Petroleum ...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Coast (PADD 3) Refinery and Blender Net Production of Crude Oil and Petroleum ... Coast (PADD 3) Refinery and Blender Net Input of Crude Oil and Petroleum ...

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Date","U.S. Refinery and Blender Net Input of Crude Oil (Thousand Barrels)","East Coast (PADD 1) Refinery and Blender Net Input of Crude Oil (Thousand ...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Coast (PADD 1) Refinery and Blender Net Production of Crude Oil and Petroleum ... Coast (PADD 1) Refinery and Blender Net Input of Crude Oil and Petroleum ...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Coast (PADD 5) Refinery and Blender Net Production of Crude Oil and Petroleum ... Coast (PADD 5) Refinery and Blender Net Input of Crude Oil and Petroleum ...

  9. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  10. Unusual refinery boiler tube failures due to corrosion by sulfuric acid induced by steam leaks

    SciTech Connect (OSTI)

    Lopez-Lopez, D.; Wong-Moreno, A.

    1998-12-31

    Corrosion by sulfuric acid in boilers is a low probability event because gas temperature and metal temperature of boiler tubes are high enough to avoid the condensation of sulfuric acid from flue gases. This degradation mechanism is frequently considered as an important cause of air preheaters materials degradation, where flue gases are cooled by heat transfer to the combustion air. Corrosion is associated to the presence of sulfuric acid, which condensates if metal temperature (or gas temperature) is below of the acid dew point. In economizer tubes, sulfuric acid corrosion is an unlikely event because flue gas and tube temperatures are normally over the acid dewpoint. In this paper, the failure analysis of generator tubes (similar to the economizer of bigger boilers) of two small oil-fired subcritical boilers is reported. It is concluded that sulfuric acid corrosion was the cause of the failure. The sulfuric acid condensation was due to the contact of flue gases containing SO{sub 3} with water-steam spray coming from leaks at the interface of rolled tube to the drum. Considering the information gathered from these two cases studied, an analysis of this failure mechanism is presented including a description of the thermodynamics condition of water leaking from the drum, and an analysis of the factors favoring it.

  11. OPAM Policy Acquisition Guides | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chapter 34 - Major Systems Acquisition Policy Flash 2014-37 Update to the Department of Energy Acquisition Guide Chapter 16.2, Performance Evaluation and Measurement Plans for Cost-Reimbursement, Non-Management and Operating Contracts Chapter 16 - Types of Contracts

  12. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the...

  13. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the...

  14. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the...

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the...

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to 2.89 per gallon, based on the residential heating fuel survey by the...

  17. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  18. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  19. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  20. Policy Flash 2013-78 Acquisition Guide Chapter 7.3 Acquisition Planning in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the M&O Environment | Department of Energy 8 Acquisition Guide Chapter 7.3 Acquisition Planning in the M&O Environment Policy Flash 2013-78 Acquisition Guide Chapter 7.3 Acquisition Planning in the M&O Environment Questions concerning this policy flash should be directed to Jason Taylor of the Contract and Financial Assistance Policy Division, Office of Policy, Office of Acquisition and Project Management at (202) 287-1560 or at jason.taylor@hq.doe.gov. PDF icon Policy Flash_AG7

  1. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  2. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  3. Acquisition, Use, and Disposal of Real Estate | Department of Energy

    Energy Savers [EERE]

    Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate PDF icon Acquisition, Use, and Disposal of Real Estate More Documents & Publications Acquisition, Use, and Disposal of Real Estate OPAM Policy Acquisition Guides Chapter 17 - Special Contracting Methods

  4. Acquisition, Use, and Disposal of Real Estate | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition, Use, and Disposal of Real Estate Acquisition, Use, and Disposal of Real Estate PDF icon Acquisition, Use, and Disposal of Real Estate More Documents & Publications Acquisition, Use, and Disposal of Real Estate OPAM Policy Acquisition Guides Chapter 17 - Special Contracting Methods

  5. 7pt1AcquisitionPlanning.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7pt1AcquisitionPlanning.pdf 7pt1AcquisitionPlanning.pdf PDF icon 7pt1AcquisitionPlanning.pdf More Documents & Publications Acquisitions___Communications.pdf Source Selection 37pt.2PerformanceBasedServiceAcquisition.pdf

  6. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H. Bert (Ames, IA); Rosenberg, Eli I. (Ames, IA); Meyer, W. Thomas (Ames, IA); Gorbics, Mark S. (Ames, IA); Thomas, William D. (Boone, IA); McKay, Roy L. (Ames, IA); Homer, Jr., John F. (Ames, IA)

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  7. Multiple channel data acquisition system

    DOE Patents [OSTI]

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  8. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  9. Bioremediation in oil-contaminated sites: Bacteria and surfactant accelerated remediation

    SciTech Connect (OSTI)

    Strong-Gunderson, J.M.; Guzman, F.

    1996-12-31

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One of the important issues is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These site areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltenes, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost-effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  10. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  11. The Impact of Ethanol Production on U.S. and Regional Gasoline Prices and on the Profitability of the U.S. Oil Refinery Industry

    SciTech Connect (OSTI)

    Du, Xiaodong; Hayes, Dermot J.

    2008-04-01

    This report details pooled regional time-series data and panel data estimation used to quantify the impact of monthly ethanol production on monthly retail regular gasoline prices.

  12. Methanol production from eucalyptus wood chips. Attachment III. Florida's eucalyptus energy farm and methanol refinery: the background environment

    SciTech Connect (OSTI)

    Fishkind, H.H.

    1982-04-01

    A wide array of general background information is presented on the Central Florida area in which the eucalyptus energy plantation and methanol refinery will be located. Five counties in Central Florida may be affected by the project, DeSoto, Hardee, Hillsborough, Manatee, and Polk. The human resources of the area are reviewed. Included are overviews of population demographic and economic trends. Land use patterns and the transportation are system described, and the region's archeological and recreational resources are evaluated. The region's air quality is emphasized. The overall climate is described along with noise and air shed properties. An analysis of the region's water resources is included. Ground water is discussed first followed by an analysis of surface water. Then the overall quality and water supply/demand balance for the area is evaluated. An overview of the region's biota is presented. Included here are discussions of the general ecosystems in Central Florida, and an analysis of areas with important biological significance. Finally, land resources are examined.

  13. Influence of a combustion-driven oscillation on global mixing in the flame from a refinery flare

    SciTech Connect (OSTI)

    Langman, A.S.; Nathan, G.J.

    2011-01-15

    An assessment of the influence of strong combustion-driven oscillations on mixing rates and visible radiation in the flame from a full-scale refinery flare is reported. Importantly, the oscillations were generated naturally, with no external forcing, and at a high Reynolds number of 4 x 10{sup 6}. These conditions differentiate this study from those of previous investigations, which all involved some external forcing and were at a Re too low to ensure fully turbulent flow within the flame. A frame-by-frame analysis of video footage, providing good resolution of the instantaneous edge of each flame, was used to assess flame dimensions, and so to determine a global residence time. Since the flames are in the fast-chemistry regime, the visual imagers can be used to determine a global mixing rate. The analysis reveals a consistent picture that the combustion-driven oscillations do not result in a significant change to the global mixing rate, but do increase the visible radiation. This is in contrast to previous investigations, using externally forced jets, where forcing at the preferred mode has been found to increase mixing rates and reduce radiation. (author)

  14. Strategic planning for and implementation of reclaimed municipal waste water as make-up to a refinery cooling system

    SciTech Connect (OSTI)

    Francis, W.R.; Mazur, J.J.; Rao, N.M.

    1996-08-01

    This paper discusses the successful use of treated municipal plant waste water effluent (Title 22) in a refinery cooling water system. Conversion from well water to this make-up water source was preceded by developing a carefully crafted transition plan. Steps were taken to identify key system performance indicators, establish desired performance goals, and implement stringent monitoring and control protocols. In addition, all possible contingencies were considered and solutions developed. Treating Title 22 waters is very challenging and entails risks not associated with normal makeup waters. Several novel on-line monitoring and control tools are available which help minimize these risks while enhancing tower operation. Performance monitoring of critical system parameters is essential in order to provide early warning of problems so that corrective measures can be implemented. In addition, a high level of system automation enhances reliable operation. Corrosion, scaling and microbiological performance of the system with Title 22 water is discussed in comparison to previous well water make-up.

  15. Assessment of the potential for refinery applications of inorganic membrane technology: An identification and screening analysis. Final report

    SciTech Connect (OSTI)

    Johnson, H.E.; Schulman, B.L.

    1993-05-01

    Commercial application of membrane technology in the separation of gas, liquid, and solid streams has grown to a business with worldwide revenues exceeding $1 billion annually. Use of organic membranes for industrial gas separation, particularly in the refining industry, is one of the major growth areas. However, organic membranes based on polymeric separation barriers, are susceptible to damage by liquids, and careful precautions must be taken to retain the system integrity. Researchers are currently developing small pore sized inorganic membranes which may substantially increase the efficiency and economics in selected refinery separation applications. Expected advantages of these advanced inorganic membranes include high permeability, high selectivity, and low manufacturing cost. SFA Pacific conducted a screening analysis to identify applications for inorganic membrane technology in the petroleum refining industry and their potential cost advantages over competing separation systems. Two meetings were held in connection with this project. Copies of Viewgraphs presented by SFA Pacific at these meetings are attached in Appendices A and C. Potential high priority applications and market impacts of advanced inorganic membrane technology in the refining industry are addressed in this report, and include the following areas: Competitive separation technologies; application of those technologies; incentives for inorganic membranes; market benefits and impacts of inorganic membranes.

  16. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  17. Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oil Oil For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our <a href="node/770751">interactive chart</a>. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence

  18. A data acquisition architecture for the SSC

    SciTech Connect (OSTI)

    Partridge, R.

    1990-01-01

    An SSC data acquisition architecture applicable to high-p{sub T} detectors is described. The architecture is based upon a small set of design principles that were chosen to simplify communication between data acquisition elements while providing the required level of flexibility and performance. The architecture features an integrated system for data collection, event building, and communication with a large processing farm. The interface to the front end electronics system is also discussed. A set of design parameters is given for a data acquisition system that should meet the needs of high-p{sub T} detectors at the SSC.

  19. Acquisition Letter No. AL 2013-07 | Department of Energy

    Energy Savers [EERE]

    7 Acquisition Letter No. AL 2013-07 PDF icon AL 2013-07.pdf More Documents & Publications Policy Flash 2015-05 - Acquisition Letter 2015-02 Acquisition Letter No. AL 2015-02

  20. DOJ Title Standards for Acquisition | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOJ Title Standards for Acquisition DOJ Title Standards for Acquisition PDF icon Title Standards 2001 More Documents & Publications Acquisition Guide for Federal Agencies REAL ESTATE PROPERTY GUIDE 2014 REAL ESTATE PROPERTY GUIDE 2013

  1. EIA Report 9/2/08 - Hurricane Impacts on U.S. Oil & Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    that 13 refineries in the Gulf of Mexico region were shutdown, representing 2.5 ... Even without damage, shut-down refineries can take a week or more to return to normal ...

  2. EIA Report 9/4/08 - Hurricane Impacts on U.S. Oil & Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    that 12 refineries in the Gulf of Mexico region remain shutdown, representing 2.4 ... Even without damage, shut-down refineries can take a week or more to return to normal ...

  3. EIA Report 9/5/08 - Hurricane Impacts on U.S. Oil & Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    reported that 6 refineries in the Gulf of Mexico region remain shutdown, representing ... Even without damage, shut-down refineries can take a week or more to return to normal ...

  4. EIA Report 9/3/08 - Hurricane Impacts on U.S. Oil & Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    that 13 refineries in the Gulf of Mexico region remain shutdown, representing 2.5 ... Even without damage, shut-down refineries can take a week or more to return to normal ...

  5. EIA - Daily Report 9/26/05 - Hurricane Impacts on U.S. Oil &...

    U.S. Energy Information Administration (EIA) Indexed Site

    Three other refineries in the Houston area are expecting to restart soon, while other refineries have reported minimal damage and may also not be too far away from restarting. The ...

  6. Acquisition Letter No. AL 2013-03 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Letter No. AL 2013-03 Acquisition Letter No. AL 2013-03 DATE: February 21, 2013 TO: Procurement Directors/Contracting Officers FROM: Director Contract and Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Acquisition Letter on Acquisition Planning Considerations for Management and Operating Contracts SUMMARY: The attached Acquisition Letter is issued to provide updated guidance on the unique acquisition planning procedures associated with

  7. Department of Energy (DOE) Acquisition Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DOE) Acquisition Guide Department of Energy (DOE) Acquisition Guide Regulatory requirements for the acquisition process are set forth in the Federal Acquisition Regulation (FAR) and are supplemented in the Department of Energy Acquisition Regulation (DEAR). FAR 1.301 provides for the issuance of additional internal agency guidance, including designations and delegations of authority, assignments of responsibilities, work-flow procedures, and internal reporting requirements. The DOE Acquisition

  8. Performance Based Service Acquisition Toolkit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procurement and Acquisition » Guidance » Contracting for Support Services » Performance Based Service Acquisition Toolkit Performance Based Service Acquisition Toolkit Performance-based Service Acquisition (PBA) means an acquisition structured around the results to be achieved as opposed to the manner by which the work is to be performed. Performance-based Work Statement (PWS) means that a statement of work for performance-based acquisitions that describes the required results in clear,

  9. ACQUISITION LETTER DEAR Part 933 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ACQUISITION LETTER DEAR Part 933 » ACQUISITION LETTER DEAR Part 933 ACQUISITION LETTER DEAR Part 933 This AL establishes policy and provides guidance for the use of alternative dispute resolution techniques in connection with disputes that arise under the Contract Disputes Act (CDA) of 1978, 41 U.S.C. sections 601-613. PDF icon ACQUISITION LETTER More Documents & Publications Microsoft Word - ACQUISITION LETTER.doc OPAM Policy Acquisition Guides Chapter 33 - Protests, Disput

  10. One Acquisition Solution for Integrated Services (OASIS) - Brad...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Solution for Integrated Services (OASIS) - Brad DeMers, General Services Administration (GSA) One Acquisition Solution for Integrated Services (OASIS) - Brad DeMers,...

  11. Acquisition Guide Chapter 1.3 - Balanced Scorecard Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 - Balanced Scorecard Assessment Program - (March 2004) Acquisition Guide Chapter 1.3 - Balanced Scorecard Assessment Program - (March 2004) Acquisition Guide...

  12. Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions (January 2009) Acquisition Guide Chapter 50.1- Extraordinary Contractual Actions (January 2009) The purpose of...

  13. Carbon Compliance Acquisition 16 Limited | Open Energy Information

    Open Energy Info (EERE)

    Compliance Acquisition 16 Limited Jump to: navigation, search Name: Carbon Compliance Acquisition 16 Limited Place: United Kingdom Zip: LS12DS Product: Security broking and fund...

  14. POLICY GUIDANCE MEMORANDUM #09A Direct Hire Authority for Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09A Direct Hire Authority for Acquisition Positions (Expired) POLICY GUIDANCE MEMORANDUM 09A Direct Hire Authority for Acquisition Positions (Expired) THIS GUIDANCE HAS EXPIRED...

  15. Microsoft PowerPoint - Surash.AcquisitionProjectMgmt.042909

    Office of Environmental Management (EM)

    Management Advisory Board J. E. Surash, P. E. Deputy Assistant Secretary Acquisition and Project Management April 29, 2009 2 Agenda Update on FY09 Plan for Acquisition &...

  16. Green Lease Policies and Procedures for Lease Acquisition | Department...

    Energy Savers [EERE]

    Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures for Lease Acquisition PDF icon RSL-2007-12 More Documents & Publications Attachment 1:...

  17. Acquisition Letter No. 2012-06 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Financial Assistance Policy Division Office of Policy Office of Acquisition and Project Management SUBJECT: Acquisition Letter on the Implications of Time-Limited Funds SUMMARY:...

  18. Acquisition Letter No. AL 2014-07 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Letter 07 - Benchmark Compensation Amount for Individual Executive Salary Actions SUMMARY: The purpose of Acquisition Letter (AL) 2014-07 is to establish the...

  19. Attached is Policy Flash 2013-44 Acquisition Guide- Allowability...

    Energy Savers [EERE]

    Attached is Policy Flash 2013-44 Acquisition Guide- Allowability of Incurred Costs Attached is Policy Flash 2013-44 Acquisition Guide- Allowability of Incurred Costs Attached is...

  20. DOE Announces Acquisition Strategy for Post Fiscal Year 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Acquisition Strategy for Post Fiscal Year 2016 Legacy Cleanup at Los Alamos DOE Announces Acquisition Strategy for Post Fiscal Year 2016 Legacy Cleanup at Los Alamos...

  1. Program & Project Management For The Acquisition Of Capital Assets...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Program & Project Management For The Acquisition Of Capital Assets Program & Project Management For The Acquisition Of Capital Assets PARS II...

  2. Program and Project Management for the Acquisition of Capital...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.3B, Program and Project Management for the Acquisition of Capital Assets by Jay Glascock Functional areas: Acquisition, Defense Nuclear Facility Safety and Health Requirement,...

  3. Carbon Compliance Acquisition 5 Limited | Open Energy Information

    Open Energy Info (EERE)

    Compliance Acquisition 5 Limited Jump to: navigation, search Name: Carbon Compliance Acquisition 5 Limited Place: Greater London, United Kingdom Zip: EC2M 2TD Sector: Carbon...

  4. "Supervisory Control and Data Acquisition (SCADA) Systems." The...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Supervisory Control and Data Acquisition (SCADA) Systems." The CIP Report. Vol 7 No 8 "Supervisory Control and Data Acquisition (SCADA) Systems." The CIP Report. Vol 7 No 8 ...

  5. 2015 DOE Acquisition and Project Management Workshop Agenda ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Acquisition and Project Management Workshop Agenda 2015 DOE Acquisition and Project Management Workshop Agenda This year's theme is "Federal Stewardship-- Providing the Value...

  6. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  7. Acquisition and Project Management Office volunteers get up-close...

    National Nuclear Security Administration (NNSA)

    Our Jobs Our Jobs Working at NNSA Blog Home NNSA Blog Acquisition and Project Management Office volunteers get ... Acquisition and Project Management Office volunteers get...

  8. MDS-Plus data acquisition engine

    SciTech Connect (OSTI)

    Flor, G. ); Cazzaro, F.; Fregonese, G.; Stangherlin, S. )

    1990-10-01

    MDS-Plus, a model driven data acquisition system being jointly developed at Istituto Gas Ionizzati, MIT Plasma Fusion Center, and Los Alamos National Laboratory, is based on the concept of an experiment model. The model contains descriptions of experiment data, devices, and actions to be performed. The data acquisition engine, i.e., the part of the system which actually executes the acquisition process, is driven by the contents of the model itself and implemented as a set of independent processes. A scheduler keeps the data acquisition engine in step with a state machine reflecting the operation of the actual experiment; a dispatcher takes care of the appropriate sequencing of the operations associated with each state of the experiment; various servers actually execute actions on behalf of the dispatcher.

  9. Performance Based Service Acquisition Toolkit | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FAR 7.105 - Contents of Written Acquisition Plans FAR Subpart 16.505 - Ordering (Performance Based Task Orders) FAR Subpart 36.102 - Policy (PBC Preference) FAR Subpart 37.6 - ...

  10. Sandia Energy - Sandia Science & Technology Park: Acquisition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commitment to the Albuquerque market, and hopes to be staying much longer. Capital investment since the acquisition has been over 200,000 in the 72,000-square-foot SS&TP...

  11. Energy Systems Acquisitions Advisory Board Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-10-28

    The Notice streamlines the Energy Systems Acquisition Advisory Board (ESAAB) process to ensure informed, objective, and documented Strategic and Major System Critical Decision, Baseline Change Proposal, and site selection final decisions. Does not cancel other directives.

  12. Grant Acquisition and Other Funding Opportunities Webinar

    Broader source: Energy.gov [DOE]

    Kerretv Online is hosting a free webinar on grant acquisition and other funding opportunities. The training will cover developing relationships with funders, finding the right funder, writing the proposal, and understanding how to report back to the funder.

  13. Updated NGNP Fuel Acquisition Strategy

    SciTech Connect (OSTI)

    David Petti; Tim Abram; Richard Hobbins; Jim Kendall

    2010-12-01

    A Next Generation Nuclear Plant (NGNP) fuel acquisition strategy was first established in 2007. In that report, a detailed technical assessment of potential fuel vendors for the first core of NGNP was conducted by an independent group of international experts based on input from the three major reactor vendor teams. Part of the assessment included an evaluation of the credibility of each option, along with a cost and schedule to implement each strategy compared with the schedule and throughput needs of the NGNP project. While credible options were identified based on the conditions in place at the time, many changes in the assumptions underlying the strategy and in externalities that have occurred in the interim requiring that the options be re-evaluated. This document presents an update to that strategy based on current capabilities for fuel fabrication as well as fuel performance and qualification testing worldwide. In light of the recent Pebble Bed Modular Reactor (PBMR) project closure, the Advanced Gas Reactor (AGR) fuel development and qualification program needs to support both pebble and prismatic options under the NGNP project. A number of assumptions were established that formed a context for the evaluation. Of these, the most important are: Based on logistics associated with the on-going engineering design activities, vendor teams would start preliminary design in October 2012 and complete in May 2014. A decision on reactor type will be made following preliminary design, with the decision process assumed to be completed in January 2015. Thus, no fuel decision (pebble or prismatic) will be made in the near term. Activities necessary for both pebble and prismatic fuel qualification will be conducted in parallel until a fuel form selection is made. As such, process development, fuel fabrication, irradiation, and testing for pebble and prismatic options should not negatively influence each other during the period prior to a decision on reactor type. Additional funding will be made available beginning in fiscal year (FY) 2012 to support pebble bed fuel fabrication process development and fuel testing while maintaining the prismatic fuel schedule. Options for fuel fabrication for prismatic and pebble bed were evaluated based on the credibility of each option, along with a cost and schedule to implement each strategy. The sole prismatic option is Babcock and Wilcox (B&W) producing uranium oxycarbide (UCO) tristructural-isotropic (TRISO) fuel particles in compacts. This option finishes in the middle of 2022 . Options for the pebble bed are Nuclear Fuel Industries (NFI) in Japan producing uranium dioxide (UO2) TRISO fuel particles, and/or B&W producing UCO or UO2 TRISO fuel particles. All pebble options finish in mid to late 2022.

  14. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  15. Small Business Issues for Environmental Restoration Acquisitions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues for Environmental Restoration Acquisitions The Department of Energy's best practices to reduce and eliminate barriers to small businesses entering into prime contracts for major environmental remediation acquisitions are as follows: Withholding of Payments Billing Cycles Allowability of Insurance Bonding Requirements WITHHOLDING OF PAYMENTS Under a cost reimbursement contract, the Federal Government makes payments conditionally, subject to a final audit. Typically, in a cost reimbursement

  16. Policy Flash 2013-78 Acquisition Guide Chapter 7.3 Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    Questions concerning this policy flash should be directed to Jason Taylor of the Contract and Financial Assistance Policy Division, Office of Policy, Office of Acquisition and...

  17. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  18. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  19. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  20. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...