Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Enhanced oil recovery. DOE (U. S. Department of Energy) develops computer models for three enhanced oil recovery techniques  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE) is developing computer models that eventually will aid operators in deciding whether to go ahead with enhanced oil recovery projects in particular fields. At its Bartlesville Energy Technology Center in Oklahoma, DOE has developed models for 3 enhanced oil recovery (EOR) techniques. Operators can feed reservoir data into these models to determine what methods are amenable to a particular reservoir and to estimate whether a full-scale EOR project would be economically feasible. So far, DOE has developed models for CO/sub 2/ miscible flooding, chemical injection, and steamflooding.

Wash, R.

1983-04-01T23:59:59.000Z

2

NETL-RUA Scans for Improved Enhanced Oil Recovery Technique | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scans for Improved Enhanced Oil Recovery Technique Scans for Improved Enhanced Oil Recovery Technique NETL-RUA Scans for Improved Enhanced Oil Recovery Technique April 4, 2012 - 1:00pm Addthis Washington, DC - Researchers participating in the National Energy Technology Laboratory Regional University Alliance (NETL-RUA) are using a familiar piece of medical equipment - a CT scanner - to evaluate cutting-edge improvements to enhanced oil recovery (EOR) techniques. Results from these studies could be used to help increase domestic oil supplies from EOR while helping to reduce the amount of carbon dioxide (CO2) emitted to the atmosphere. Scientists from the University of Pittsburgh, University of Bristol, Rutherford Appleton Laboratory, URS, and NETL are using the scanner and surfactants (fluids added to injected CO2 that change its flow properties)

3

Transformation of Resources to Reserves: Next Generation Heavy-Oil Recovery Techniques  

Science Conference Proceedings (OSTI)

This final report and technical progress report describes work performed from October 1, 2004 through September 30, 2007 for the project 'Transformation of Resources to Reserves: Next Generation Heavy Oil Recovery Techniques', DE-FC26-04NT15526. Critical year 3 activities of this project were not undertaken because of reduced funding to the DOE Oil Program despite timely submission of a continuation package and progress on year 1 and 2 subtasks. A small amount of carried-over funds were used during June-August 2007 to complete some work in the area of foamed-gas mobility control. Completion of Year 3 activities and tasks would have led to a more thorough completion of the project and attainment of project goals. This progress report serves as a summary of activities and accomplishments for years 1 and 2. Experiments, theory development, and numerical modeling were employed to elucidate heavy-oil production mechanisms that provide the technical foundations for producing efficiently the abundant, discovered heavy-oil resources of the U.S. that are not accessible with current technology and recovery techniques. Work fell into two task areas: cold production of heavy oils and thermal recovery. Despite the emerging critical importance of the waterflooding of viscous oil in cold environments, work in this area was never sanctioned under this project. It is envisioned that heavy oil production is impacted by development of an understanding of the reservoir and reservoir fluid conditions leading to so-called foamy oil behavior, i.e, heavy-oil solution gas drive. This understanding should allow primary, cold production of heavy and viscous oils to be optimized. Accordingly, we evaluated the oil-phase chemistry of crude oil samples from Venezuela that give effective production by the heavy-oil solution gas drive mechanism. Laboratory-scale experiments show that recovery correlates with asphaltene contents as well as the so-called acid number (AN) and base number (BN) of the crude oil. A significant number of laboratory-scale tests were made to evaluate the solution gas drive potential of West Sak (AK) viscous oil. The West Sak sample has a low acid number, low asphaltene content, and does not appear foamy under laboratory conditions. Tests show primary recovery of about 22% of the original oil in place under a variety of conditions. The acid number of other Alaskan North Slope samples tests is greater, indicating a greater potential for recovery by heavy-oil solution gas drive. Effective cold production leads to reservoir pressure depletion that eases the implementation of thermal recovery processes. When viewed from a reservoir perspective, thermal recovery is the enhanced recovery method of choice for viscous and heavy oils because of the significant viscosity reduction that accompanies the heating of oil. One significant issue accompanying thermal recovery in cold environments is wellbore heat losses. Initial work on thermal recovery found that a technology base for delivering steam, other hot fluids, and electrical heat through cold subsurface environments, such as permafrost, was in place. No commercially available technologies are available, however. Nevertheless, the enabling technology of superinsulated wells appears to be realized. Thermal subtasks focused on a suite of enhanced recovery options tailored to various reservoir conditions. Generally, electrothermal, conventional steam-based, and thermal gravity drainage enhanced oil recovery techniques appear to be applicable to 'prime' Ugnu reservoir conditions to the extent that reservoir architecture and fluid conditions are modeled faithfully here. The extent of reservoir layering, vertical communication, and subsurface steam distribution are important factors affecting recovery. Distribution of steam throughout reservoir volume is a significant issue facing thermal recovery. Various activities addressed aspects of steam emplacement. Notably, hydraulic fracturing of horizontal steam injection wells and implementation of steam trap control that limits steam entry into hor

Stanford University; Department of Energy Resources Engineering Green Earth Sciences

2007-09-30T23:59:59.000Z

4

Improved techniques for fluid diversion in oil recovery. Final report  

Science Conference Proceedings (OSTI)

This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

Seright, R.

1996-01-01T23:59:59.000Z

5

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect

In the interval since the publication in September 1980 of the technical constraints that inhibit the application of enhanced oil recovery techniques in the United States, there has been a large number of successful field trials of enhanced oil recovery (EOR) techniques. The Department of Energy has shared the costs of 28 field demonstrations of EOR with industry, and the results have been made available to the public through DOE documents, symposiums and the technical literature. This report reexamines the constraints listed in 1980, evaluates the state-of-the-art and outlines the areas where more research is needed. Comparison of the 1980 constraints with the present state-of-the-art indicates that most of the constraints have remained the same; however, the constraints have become more specific. 26 references, 6 tables.

Not Available

1984-01-01T23:59:59.000Z

6

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

7

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

Science Conference Proceedings (OSTI)

A critical examination of the potential and the technical constraint that inhibit the application of enhanced oil recovery techniques in the United States has been initiated and is expected to continue. The examination is based on the results of extensive laboratory and field applications now underway under various forms of Department of Energy support. This interim report will be amplified as data become available and as progress is made toward resolving technical constraints. Comments on the approach and substance of the information contained herein are welcome.

Not Available

1980-05-01T23:59:59.000Z

8

Enhanced Oil Recovery | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

(or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as...

9

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

10

Tenth oil recovery conference  

SciTech Connect

The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base.

Sleeper, R. (ed.)

1993-01-01T23:59:59.000Z

11

Technical constraints limiting application of enhanced oil recovery techniques to petroleum production in the United States  

SciTech Connect

A cost-shared program was initiated in 1974 to accelerate the application of advanced EOR processes. An incentive program was also announced in 1979 for the commercialization of EOR techniques. This report provides a summary of the EOR state-of-the-art and draws upon the data base developed thus far. A critical review of four major cost-shared chemical projects is included. Chemical recovery, miscible recovery, and thermal recovery techniques are covered. The FY 1979 DOE EOR program is summarized in a table. (DLC)

Not Available

1980-09-01T23:59:59.000Z

12

Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah  

SciTech Connect

The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

Jr., Chidsey, Thomas C.; Allison, M. Lee

1999-11-02T23:59:59.000Z

13

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

14

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

15

Symposium on enhanced oil recovery  

SciTech Connect

The Second Joint Symposium on Enhanced Oil Recovery was held in Tulsa, Oklahoma on April 5 to 8, 1981. Forty-four technical papers were presented which covered all phases of enhanced oil recovery. Field tests, laboratory investigations, and mathematical analyses of tertiary recovery methods such as microemulsion flooding, carbon dioxide injection, in-situ combustion, steam injection, and gas injection are presented.

Not Available

1981-01-01T23:59:59.000Z

16

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

17

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

18

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from April 1 through June 30, 2002, for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' We investigate a broad spectrum of topics related to thermal and heavy-oil recovery. Significant results were obtained in the areas of multiphase flow and rock properties, hot-fluid injection, improved primary heavy oil recovery, and reservoir definition. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. Briefly, experiments were conducted to image at the pore level matrix-to-fracture production of oil from a fractured porous medium. This project is ongoing. A simulation studied was completed in the area of recovery processes during steam injection into fractured porous media. We continued to study experimentally heavy-oil production mechanisms from relatively low permeability rocks under conditions of high pressure and high temperature. High temperature significantly increased oil recovery rate and decreased residual oil saturation. Also in the area of imaging production processes in laboratory-scale cores, we use CT to study the process of gas-phase formation during solution gas drive in viscous oils. Results from recent experiments are reported here. Finally, a project was completed that uses the producing water-oil ratio to define reservoir heterogeneity and integrate production history into a reservoir model using streamline properties.

Anthony R. Kovscek

2002-07-01T23:59:59.000Z

19

Current status of nonthermal heavy oil recovery  

Science Conference Proceedings (OSTI)

Heavy oils are an important resource worldwide, and yet two-thirds of the heavy oil deposits cannot be exploited by means of thermal recovery methods, because the effective energy production approaches energy input for reasons of formation thickness, depth, oil saturation and/or porosity. In such instances, especially if the heavy oil is not too viscous (below ca 1000 cp), it may be economical to employ nonthermal recovery methods. These include polymer flooding, alkaline flooding, CO/sub 2/ (gaseous) floods, solvent floods, and other more specialized recovery methods, such as emulsion flooding, and combination techniques. This work discusses nonthermal heavy oil recovery methods, based upon their application in the field. The processes and their mechanistic features are discussed in the light of laboratory observations, which tend to be more optimistic than field results. 48 references.

Alikhan, A.A.; Farouq Ali, S.M.

1983-01-01T23:59:59.000Z

20

Enhanced oil recovery system  

DOE Patents (OSTI)

All energy resources available from a geopressured geothermal reservoir are used for the production of pipeline quality gas using a high pressure separator/heat exchanger and a membrane separator, and recovering waste gas from both the membrane separator and a low pressure separator in tandem with the high pressure separator for use in enhanced oil recovery, or in powering a gas engine and turbine set. Liquid hydrocarbons are skimmed off the top of geothermal brine in the low pressure separator. High pressure brine from the geothermal well is used to drive a turbine/generator set before recovering waste gas in the first separator. Another turbine/generator set is provided in a supercritical binary power plant that uses propane as a working fluid in a closed cycle, and uses exhaust heat from the combustion engine and geothermal energy of the brine in the separator/heat exchanger to heat the propane.

Goldsberry, Fred L. (Spring, TX)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

4 January Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important...

22

Optimize carbon dioxide sequestration, enhance oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

23

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory over the past 30 years,...

24

Microbiology for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The U. S. Department of Energy has sponsored several projects to investigate the feasibility of using microorganisms to enhance oil recovery. Microbes from the Wilmington oilfield, California, were found to be stimulated in growth by polyacrylamide mobility-control polymers and the microbes also can reduce the viscosity of the polyacrylamide solutions. Microbes have been discovered that produce surface active molecules, and several mixed cultures have been developed that make low viscosity, non-wetting, emulsions of heavy oils (/sup 0/API oil deposits, in China for enhanced recovery of light oils and successful field tests have been conducted in Romania and Arkansas.

Donaldson, E.C.

1983-06-01T23:59:59.000Z

25

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

26

Outlook for enhanced oil recovery  

Science Conference Proceedings (OSTI)

This paper reviews the potential for enhanced oil recovery, the evolutionary nature of the recovery processes being applied in oilfields today, key parameters that describe the technology state-of-the-art for each of the major oil recovery processes, and the nature and key outputs from the current Department of Energy research program on enhanced oil recovery. From this overview, it will be seen that the DOE program is focused on the analysis of ongoing tests and on long-range, basic research to support a more thorough understanding of process performance. Data from the program will be made available through reports, symposia, and on-line computer access; the outputs are designed to allow an independent producer to evaluate his own project as an effort to transfer rapidly the technology now being developed.

Johnson, H.R.

1982-01-01T23:59:59.000Z

27

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from January 1 through March 31, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history matching techniques. During this period, previous analysis of experimental data regarding multidimensional imbibition to obtain shape factors appropriate for dual-porosity simulation was verified by comparison among analytic, dual-porosity simulation, and fine-grid simulation. We continued to study the mechanisms by which oil is produced from fractured porous media at high pressure and high temperature. Temperature has a beneficial effect on recovery and reduces residual oil saturation. A new experiment was conducted on diatomite core. Significantly, we show that elevated temperature induces fines release in sandstone cores and this behavior may be linked to wettability. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-04-01T23:59:59.000Z

28

INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH  

Science Conference Proceedings (OSTI)

The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

Thomas C. Chidsey, Jr.

2002-11-01T23:59:59.000Z

29

Effects of Microwave Radiation on Oil Recovery  

Science Conference Proceedings (OSTI)

A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co?mingled with suspended solids and water. To increase oil recovery

2011-01-01T23:59:59.000Z

30

Oil recovery process  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system is claimed for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P.A.; Rhudy, J.S.

1984-02-28T23:59:59.000Z

31

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

The Stanford University Petroleum Research Institute (SUPRI-A) studies oil recovery mechanisms relevant to thermal and heavy-oil production. The scope of work is relevant across near-, mid-, and long-term time frames. In August of 2000 we received funding from the U. S. DOE under Award No. DE-FC26-00BC15311 that completed December 1, 2003. The project was cost shared with industry. Heavy oil (10 to 20{sup o} API) is an underutilized energy resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods. Heating reduces oil viscosity dramatically. Hence, thermal recovery is especially important because adding heat, usually via steam injection generally improves displacement efficiency. The objectives of this work were to improve our understanding of the production mechanisms of heavy oil under both primary and enhanced modes of operation. The research described spanned a spectrum of topics related to heavy and thermal oil recovery and is categorized into: (1) multiphase flow and rock properties, (2) hot fluid injection, (3) improved primary heavy-oil recovery, (4) in-situ combustion, and (5) reservoir definition. Technology transfer efforts and industrial outreach were also important to project effort. The research tools and techniques used were quite varied. In the area of experiments, we developed a novel apparatus that improved imaging with X-ray computed tomography (CT) and high-pressure micromodels etched with realistic sandstone roughness and pore networks that improved visualization of oil-recovery mechanisms. The CT-compatible apparatus was invaluable for investigating primary heavy-oil production, multiphase flow in fractured and unfractured media, as well as imbibition. Imbibition and the flow of condensed steam are important parts of the thermal recovery process. The high-pressure micromodels were used to develop a conceptual and mechanistic picture of primary heavy-oil production by solution gas drive. They allowed for direct visualization of gas bubble formation, bubble growth, and oil displacement. Companion experiments in representative sands and sandstones were also conducted to understand the mechanisms of cold production. The evolution of in-situ gas and oil saturation was monitored with CT scanning and pressure drop data. These experiments highlighted the importance of depletion rate, overburden pressure, and oil-phase chemistry on the cold production process. From the information provided by the experiments, a conceptual and numerical model was formulated and validated for the heavy-oil solution gas drive recovery process. Also in the area of mechanisms, steamdrive for fractured, low permeability porous media was studied. Field tests have shown that heat injected in the form of steam is effective at unlocking oil from such reservoir media. The research reported here elucidated how the basic mechanisms differ from conventional steamdrive and how these differences are used to an advantage. Using simulations of single and multiple matrix blocks that account for details of heat transfer, capillarity, and fluid exchange between matrix and fracture, the importance of factors such as permeability contrast between matrix and fracture and oil composition were quantified. Experimentally, we examined the speed and extent to which steam injection alters the permeability and wettability of low permeability, siliceous rocks during thermal recovery. Rock dissolution tends to increase permeability moderately aiding in heat delivery, whereas downstream the cooled fluid deposits silica reducing permeability. Permeability reduction is not catastrophic. With respect to wettability, heat shifts rock wettability toward more water wet conditions. This effect is beneficial for the production of heavy and medium gravity oils as it improves displacement efficiency. A combination of analytical and numerical studies was used to examine the efficiency of reservoir heating using nonconventional wells such as horizontal and multi

Anthony R. Kovscek; Louis M. Castanier

2003-12-31T23:59:59.000Z

32

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from July 1 through September, 2003 for the project ''Heavy and Thermal Oil Recovery Production Mechanisms,'' DE-FC26-00BC15311. In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, work focused on completing project tasks in the area of multiphase flow and rock properties. The area of interest is the production mechanisms of oil from porous media at high temperature. Temperature has a beneficial effect on oil recovery and reduces residual oil saturation. Work continued to delineate how the wettability of reservoir rock shifts from mixed and intermediate wet conditions to more water-wet conditions as temperature increases. One mechanism for the shift toward water-wet conditions is the release of fines coated with oil-wet material from pore walls. New experiments and theory illustrate the role of temperature on fines release.

Anthony R. Kovscek; Louis M. Castanier

2004-03-01T23:59:59.000Z

33

Biosurfactant and enhanced oil recovery  

DOE Patents (OSTI)

A pure culture of Bacillus licheniformis strain JF-2 (ATCC No. 39307) and a process for using said culture and the surfactant lichenysin produced thereby for the enhancement of oil recovery from subterranean formations. Lichenysin is an effective surfactant over a wide range of temperatures, pH's, salt and calcium concentrations.

McInerney, Michael J. (Norman, OK); Jenneman, Gary E. (Norman, OK); Knapp, Roy M. (Norman, OK); Menzie, Donald E. (Norman, OK)

1985-06-11T23:59:59.000Z

34

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

35

Successful Sequestration and Enhanced Oil Recovery Project Could...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil...

36

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

SciTech Connect

This paper analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following six major enhanced oil recovery techniques are analyzed: Steam Drive, In-Situ Combustion, Carbon Dioxide Flooding, Polymer Flooding, Surfactant/Polymer Flooding, and Alkaline Flooding. The analysis includes, by technique and geographical area: the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; a comparison between predicted performance and actual oil recovery; an examination of the performance of different EOR processes within each of the six techniques; and an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-10-01T23:59:59.000Z

37

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

Science Conference Proceedings (OSTI)

This study analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following 6 major enhanced oil recovery techniques are analyzed: steam drive, in situ combustion, carbon dioxide flooding, polymer flooding, surfactant/polymer flooding, and alkaline flooding. The analysis includes, by technique and geographic area, (1) the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; (2) a comparison between predicted performance and actual oil recovery; (3) an examination of the performance of different EOR processes within each of the 6 techniques; and (4) an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-01-01T23:59:59.000Z

38

Method for enhanced oil recovery  

DOE Patents (OSTI)

The present invention is directed to an improved method for enhanced recovery of oil from relatively "cold" reservoirs by carbon dioxide flooding. In oil reservoirs at a temperature less than the critical temperature of 87.7.degree. F. and at a pore pressure greater than the saturation pressure of carbon dioxide at the temperature of the reservoir, the carbon dioxide remains in the liquid state which does not satisfactorily mix with the oil. However, applicants have found that carbon dioxide can be vaporized in situ in the reservoir by selectively reducing the pore pressure in the reservoir to a value less than the particular saturated vapor pressure so as to greatly enhance the mixing of the carbon dioxide with the oil.

Comberiati, Joseph R. (Morgantown, WV); Locke, Charles D. (Morgantown, WV); Kamath, Krishna I. (Chicago, IL)

1980-01-01T23:59:59.000Z

39

Improved techniques for fluid diversion in oil recovery. Second annual report, October 1, 1993--September 30, 1994  

SciTech Connect

This project is directed at reducing water production and increasing oil recovery efficiency. Today, the cost of water disposal is typically between $0.25 and $0.50 per bbl. Therefore, there is a tremendous economic incentive to reduce water production if that can be accomplished without sacrificing hydrocarbon production. Environmental considerations also provide a significant incentive to reduce water production during oilfield operations. This three-year project has two technical objectives. The first objective is to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. Topics covered in this report include (1) comparisons of the use of gels, foams, emulsions, and particulates as blocking agents; (2) propagation of aluminum-citrate-HPAM gels through porous rock; (3) gel properties in fractured systems; (4) gel placement in unfractured anisotropic flow systems; and (5) an investigation of why some gels can reduce water permeability more than oil permeability.

Seright, R.S.

1995-03-01T23:59:59.000Z

40

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

Science Conference Proceedings (OSTI)

This technical progress report describes work performed from October 1 through December 31, 2002 , for the project ''Heavy and Thermal Oil Recovery Production Mechanisms.'' In this project, a broad spectrum of research is undertaken related to thermal and heavy-oil recovery. The research tools and techniques used are varied and span from pore-level imaging of multiphase fluid flow to definition of reservoir-scale features through streamline-based history-matching techniques. During this period, experimental data regarding multidimensional imbibition was analyzed to obtain shape factors appropriate for dual-porosity simulation. It is shown that the usual assumption of constant, time-independent shape factors is incorrect. In other work, we continued to study the mechanisms by which oil is produced from fractured media at high pressure and high temperature. High temperature significantly increased the apparent wettability and affected water relative permeability of cores used in previous experiments. A phenomenological and mechanistic cause for this behavior is sought. Our work in the area of primary production of heavy oil continues with field cores and crude oil. On the topic of reservoir definition, work continued on developing techniques that integrate production history into reservoir models using streamline-based properties.

Anthony R. Kovscek

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft[sup 2]/[degrees]F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000[degrees]F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

42

Thermal processes for heavy oil recovery  

Science Conference Proceedings (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

43

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-01-01T23:59:59.000Z

44

HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS  

SciTech Connect

The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

Anthony R. Kovscek; Louis M. Castanier

2002-09-30T23:59:59.000Z

45

Enhanced oil recovery water requirements  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are evaluated using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 major oil companies. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and CO/sub 2/, micellar-polymer, polymer, and caustic flooding) in those states and specific geographic locations where these processes will play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources. A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can reduce significantly the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality surface water and ground water could be impediments to certain projects in the near future.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1983-03-01T23:59:59.000Z

46

Enhanced Oil Recovery: Aqueous Flow Tracer Measurement  

SciTech Connect

A low detection limit analytical method was developed to measure a suite of benzoic acid and fluorinated benzoic acid compounds intended for use as tracers for enhanced oil recovery operations. Although the new high performance liquid chromatography separation successfully measured the tracers in an aqueous matrix at low part per billion levels, the low detection limits could not be achieved in oil field water due to interference problems with the hydrocarbon-saturated water using the system's UV detector. Commercial instrument vendors were contacted in an effort to determine if mass spectrometry could be used as an alternate detection technique. The results of their work demonstrate that low part per billion analysis of the tracer compounds in oil field water could be achieved using ultra performance liquid chromatography mass spectrometry.

Joseph Rovani; John Schabron

2009-02-01T23:59:59.000Z

47

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

48

Parabolic trough collector systems for thermal enhanced oil recovery  

SciTech Connect

Enhanced Oil Recovery (EOR) techniques offer a means of increasing US oil production by recovering oil otherwise unavailable when using primary or secondary production methods. The use of parabolic trough collector solar energy systems can expand the production of oil recovered by the most prevalent of these techniques, thermal EOR, by improving the economics and lessening the environmental impacts. These collector systems, their state of development, their application to EOR, and their capacity for expanding oil production are reviewed. An economic analysis which shows that these systems will meet investment hurdle rates today is also presented.

Niemeyer, W.A.; Youngblood, S.B.; Price, A.L.

1981-01-01T23:59:59.000Z

49

Bleaching and Purifying Fats and Oils: Theory and PracticeChapter 7 Oil Recovery  

Science Conference Proceedings (OSTI)

Bleaching and Purifying Fats and Oils: Theory and Practice Chapter 7 Oil Recovery Processing eChapters Processing Press   Downloadable pdf of Chapter 7 Oil Recovery from ...

50

Fossil Energy Research Benefits Enhanced Oil Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Research Benefits Energy Research Benefits Enhanced Oil Recovery EOR helps increase domestic oil supplies while also providing a way to safely and permanently store CO 2 underground. Enhanced Oil Recovery (EOR) is a way to squeeze out additional, hard- to-recover barrels of oil remaining in older fields following conventional production operations. It can also be used to permanently store carbon dioxide (CO 2 ) underground. Thanks in part to innovations supported by the Office of Fossil Energy's National Energy Technology Laboratory (NETL) over the past 30 years, the United States is a world leader in the number of EOR projects (200) and volume of oil production (over

51

Enhanced Oil Recovery and Other Oil Resources projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Oil Projects Project Number Project Name Primary Performer DE-FE0013723 Development of Nanoparticle-Stabilized Foams To Improve Performance of Water-less Hydraulic Fracturing The University of Texas at Austin DE-FE0010799 Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control University of Pittsburgh DE-FE0006011 Development of Real Time Semi-autonomous Geophysical Data Acquisition and Processing System to Monitor Flood Performance White River Technologies DE-FE0005979 Nanoparticle-stabilized CO2 Foam for CO2 EOR Application New Mexico Institute of Mining and Technology

52

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important Geologic CO2 Storage Alabama Injection Project Aimed at Enhanced Oil Recovery, Testing Important...

53

Microbial enhanced oil recovery and compositions therefor  

DOE Patents (OSTI)

A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

Bryant, Rebecca S. (Bartlesville, OK)

1990-01-01T23:59:59.000Z

54

NETL: News Release - DOE Oil Recovery Project Extends Success through  

NLE Websites -- All DOE Office Websites (Extended Search)

5 , 2007 5 , 2007 DOE Oil Recovery Project Extends Success through Technology Transfer New Technologies & Techniques Boost U.S. Proved Oil Reserves, Travel the Globe WASHINGTON, DC - A groundbreaking oil-recovery project funded by the U.S. Department of Energy (DOE) is coming to a close, but its success will continue to be felt throughout the United States and the world. MORE INFO Read 03.10.06 Techline: DOE-Funded Project Revives Aging California Oilfield The project, titled "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterizations and Thermal Production Technologies," began in 1995 with the goal of increasing recoverable heavy oil reserves in those sections of the Wilmington oilfield operated by Long

55

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding, where soap-like surfactants are injected into the reservoir to wash out the oil; 2 carbon dioxide miscible flooding, where carbon dioxide mixes with the lighter hydrocarbons making the oil easier to displace; 3 in-situ combustion, which uses the heat from burning some of the underground oil to thin the product; 4 polymer flooding, where thick, cohesive material is pumped into a reservoir to push the oil through the underground rock; and 5 steamflood, where pressurized steam is injected underground to thin the oil. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes.

Ray, R.M. [DOE Bartlesville Energy Technology Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

56

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

57

Aqueous flooding methods for tertiary oil recovery  

DOE Patents (OSTI)

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

58

Oil recovery by imbibition from polymer solutions  

SciTech Connect

The success of a polymer flood in a water-wet fractured reservoir is dependent on the recovery of oil from the matrix blocks by the polymer solution imbibition. This thesis presents the results of an experimental and theoretical study investigating this problem. Two sets of experiments were performed, static and dynamic. The results of the static experiments, in which a matrix block was surrounded by the imbibing fluid, showed that the amounts of oil that ultimately could be recovered by the water and polymer solutions are practically equal. However, the rate of oil recovery by the polymer solutions is always less than that of the water. This delay in the oil recovery was found to be a function of the polymer solutions molecular weight, concentration, and salt content. The theoretical investigation of the experimental data found that the polymer retention and the high apparent viscosity were the causes for the delay. The dynamic experiments consisted of flooding oil-saturated fractured cores through the fracture by water and different polymer solutions. The oil recovery behavior in these experiments was found to be dependent not only on the rate of injected fluid imbibition from the fracture into the matrix blocks, but also on the operating injection rate and the displacement efficiency of the oil in the fracture by the injected fluid. It is also dependent on the amount of viscous forces that are generated by the injected fluid flow through the fracture. Under certain conditions, polymer flooding of the fractures gave greater oil recovery than water flooding, whereas under others it did not.

Ghedan, S.G.

1989-01-01T23:59:59.000Z

59

Oil recovery process and system  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P. A.; Rhudy, J. S.

1985-03-12T23:59:59.000Z

60

Increasing CO2 Storage in Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing CO Increasing CO 2 Storage in Oil Recovery Kristian Jessen (krisj@pangea.stanford.edu, 650-723-6348) Linda C. Sam-Olibale (chizoba@pangea.stanford.edu, 650-725-0831) Anthony R. Kovscek (kovscek@pangea.stanford.edu, 650-723-1218) Franklin M. Orr, Jr. (fmorr@pangea.stanford.edu, 650-723-2750) Department of Petroleum Engineering, Stanford University 65 Green Earth Sciences Building 367 Panama Street Stanford, CA 94305-2220 Introduction Carbon dioxide (CO 2 ) injection has been used as a commercial process for enhanced oil recovery (EOR) since the 1970's. Because the cost of oil recovered is closely linked to the purchase cost of the CO 2 injected, considerable reservoir engineering design effort has gone into reducing the total amount of CO 2 required to recover each barrel of oil. If,

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Impact of geologic parameters on enhanced oil recovery - workshop proceedings  

SciTech Connect

The purpose of this workshop is to identify and develop objectives for future geologic research needed to increase light oil production with the enhanced oil recovery processes and to identify quantitative studies with potential to predict the impact reservoir heterogeneities on the light oil recovery processes. With these goals in mind, four workshop groups were organized to discuss and develop a conceptual R and D program to minimize the geologic constraints to E.O.R. These workshop groups will provide guidance and input into DOE's light oil research program and will help decide where time and resources are most effectively utilized. Working groups studied: (1) rock-fluid interactions; (2) reservoir heterogeneity; (3) reservoir description; and (4) geologic imput into EOR simulation studies. The question addressed is whether the present technology is adequate to quantitatively define each of these areas for predictive uses. If it is not, what techniques and instrumentation is necessary to define these for each EOR process.

Peterson, M.

1982-05-01T23:59:59.000Z

62

Enhanced oil recovery data base and simplified process models  

SciTech Connect

In 1980, the U.S. Department of Energy Bartlesville Energy Technology Center initiated a program to estimate the enhanced oil recovery (EOR) potential in the continental U.S. The prime objectives for this program are to estimate the technically recoverable oil through utilization of current EOR technologies, to estimate the economically recoverable oil for those technologies, and to estimate the risks associated with the various EOR recovery techniques. These estimates provide the basis for studies to measure the effects of improving technologies, improved economic scenarios, reduction of risks on future levels of EOR production, and aid in determining research needs. The interaction between the databases and models is discussed. Because this database contains comprehensive information on active EOR projects nationwide, it is used as a calibration source for the models. The reservoir database, used as the data source for estimates of technically and economically recoverable oil, contains basic information on reservoirs located throughout the U.S.

Wesson, T.C.

1982-12-01T23:59:59.000Z

63

Handbook for personal computer versions enhanced oil recovery predictive models: Supporting technology for enhanced oil recovery  

SciTech Connect

The personal computer (PC) programs described in this handbook were adapted from the Tertiary Oil Recovery Information System (TORIS) enhanced oil recovery (EOR) predictive models. The models, both those developed for the Department of Energy and those developed for the National Petroleum Council (NPC), were designed by Scientific Software-Intercomp and were used in the 1984 NPC study on the national potential for enhanced oil recovery. The Department of Energy, Bartlesville Project Office, supported the NPC study and has maintained the models since the study was completed. 10 refs.

Allison, E.; Waldrop, R.; Ray, R.M.

1988-02-01T23:59:59.000Z

64

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

65

EOR boosts Twofreds oil production. [Enhanced oil recovery  

SciTech Connect

Higher crude oil prices have spurred enhanced oil recovery action in Twofreds field in west Texas. Houston Natural Gas Corporation's (HNG) Fossil Fuels Corporation has a fieldwide waterflood and miscible CO/sub 2/ enhanced recovery program under way. HNG is alternating water injection with injection of CO/sub 2/ and inert gases to boost oil yield from ca. 4392 productive acres. Cumulative production since tertiary recovery began is 1.4 million bbl. HNG is injecting an average of 8 to 10 MMCFD of CO/sub 2/. CO/sub 2/ source is Oasis Pipeline Company's Mi Vida treating plant near Pecos, Texas. The CO/sub 2/ is extracted from gas produced by wells that tap the deep Ordovician Ellenburger in the area.

Not Available

1982-03-15T23:59:59.000Z

66

Development of More Effective Biosurfactants for Enhanced Oil Recovery  

SciTech Connect

The overall goal of this research was to develop effective biosurfactant production for enhanced oil recovery in the United States.

McInerney, M.J.; Mouttaki, H.; Folmsbee, M.; Knapp, R.; Nagle, D.

2003-01-24T23:59:59.000Z

67

Research on oil recovery mechanisms in heavy oil reservoirs  

Science Conference Proceedings (OSTI)

The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties, (2) in-situ combustion, (3) additives to improve mobility control, (4) reservoir definition, and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx.

Kovscek, Anthony R.; Brigham, William E., Castanier, Louis M.

2000-03-16T23:59:59.000Z

68

Process for tertiary oil recovery using tall oil pitch  

DOE Patents (OSTI)

A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

Radke, C.J.

1983-07-25T23:59:59.000Z

69

Status of enhanced oil recovery technology  

SciTech Connect

The various enhanced oil recovery processes are discussed and classified into the following categories: (1) polymer waterflooding; (2) steam processes; (3) miscible gas (CO/sub 2/) processes; (4) surfactant flooding; and (5) in-situ combustion. Polymer flooding alone is of limited applicability and production from polymer projects is unlikely to become highly significant. Steam processes are now economic for favorable prospects, and recovery levels range from 5 to 35%. Miscible gas processes are particularly applicable to those reservoirs with favorable geology located near sources of CO/sub 2/, and production could become significant in the next five years, but not sooner due to the time necessary to develop CO/sub 2/ sources and construct distribution systems. Recovery levels for the miscible gas processes are in the 5 to 15% range. Most surfactant processes are still in the research stage, and will not yield significant production for at least ten years. Ten to fifteen % of the original oil-in-place can be recovered through these processes. In Situ combustion processes are currently economic in some cases, but the ultimate potential is presently very limited unless significant technical breakthroughs are made in the future. It is estimated that the ultimate potential for present enhanced oil recovery processes in the conterminous United States is up to 20 billion barrels of petroleum.

Mattax, C.C.

1980-06-01T23:59:59.000Z

70

Enhanced oil recovery projects data base  

Science Conference Proceedings (OSTI)

A comprehensive enhanced oil recovery (EOR) project data base is maintained and updated at the Bartlesville Project Office of the Department of Energy. This data base provides an information resource that is used to analyze the advancement and application of EOR technology. The data base has extensive information on 1,388 EOR projects in 569 different oil fields from 1949 until the present, and over 90% of that information is contained in tables and graphs of this report. The projects are presented by EOR process, and an index by location is provided.

Pautz, J.F.; Sellers, C.A.; Nautiyal, C.; Allison, E.

1992-04-01T23:59:59.000Z

71

An evaluation of known remaining oil resources in the United States. Appendix, Project on Advanced Oil Recovery and the States  

SciTech Connect

This volume contains appendices for the following: Overview of improved oil recovery methods (enhanced oil recovery methods and advanced secondary recovery methods); Benefits of improved oil recovery, selected data for the analyzed states; and List of TORIS fields and reservoirs.

Not Available

1994-10-01T23:59:59.000Z

72

Microbial enhancement of oil recovery: Recent advances  

Science Conference Proceedings (OSTI)

During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

1992-01-01T23:59:59.000Z

73

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2004-01-31T23:59:59.000Z

74

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-10-31T23:59:59.000Z

75

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2002-12-31T23:59:59.000Z

76

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

Science Conference Proceedings (OSTI)

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Mark B. Murphy

2003-07-30T23:59:59.000Z

77

New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil New CO2 Enhanced Recovery Technology Could Greatly Boost U.S. Oil March 3, 2006 - 11:40am Addthis WASHINGTON , D.C. - The Department of Energy (DOE) released today reports indicating that state-of-the-art enhanced oil recovery techniques could significantly increase recoverable oil resources of the United States in the future. According to the findings, 89 billion barrels or more could eventually be added to the current U.S. proven reserves of 21.4 billion barrels. "These promising new technologies could further help us reduce our reliance on foreign sources of oil," Energy Secretary Samuel W. Bodman said. "By using the proven technique of carbon sequestration, we get the double

78

"Smart" Multifunctional Polymers for Enhanced Oil Recovery  

SciTech Connect

Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

Charles McCormick; Andrew Lowe

2007-03-20T23:59:59.000Z

79

Chemical systems for improved oil recovery: Phase behavior, oil recovery, and mobility control studies  

SciTech Connect

Selected surfactant systems containing a series of ethoxylated nonionic surfactants in combination with an anionic surfactant system have been studied to evaluate phase behavior as well as oil recovery potential. These experiments were conducted to evaluate possible improved phase behavior and overall oil recovery potential of mixed surfactant systems over a broad range of conditions. Both polyacrylamide polymers and Xanthan biopolymers were evaluated. Studies were initiated to use a chemical flooding simulation program, UTCHEM, to simulate oil recovery for laboratory and field applications and evaluate its use to simulate oil saturation distributions obtained in CT-monitoring of oil recovery experiments. The phase behavior studies focused on evaluating the effect of anionic-nonionic surfactant proportion on overall phase behavior. Two distinct transition behaviors were observed, depending on the dominant surfactant in the overall system. The first type of transition corresponded to more conventional behavior attributed to nonionic-dominant surfactant systems. This behavior is manifested by an oil-water-surfactant system that inverts from a water-external (highly conducting) microemulsion to an oil-external (nonconducting) one, as a function of temperature. The latter type which inverts in an opposite manner can be attributed to the separation of the anionic-nonionic mixtures into water- and oil-soluble surfactants. Both types of transition behavior can still be used to identify relative proximity to optimal areas. Determining these transition ranges provided more insight on how the behavior of these surfactant mixtures was affected by altering component proportions. Efforts to optimize the chemical system for oil displacement experiments were also undertaken. Phase behavior studies with systems formulated with biopolymer in solution were conducted.

Llave, F.; Gall, B.; Gao, H., Scott, L., Cook, I.

1995-09-01T23:59:59.000Z

80

Process for tertiary oil recovery using tall oil pitch  

DOE Patents (OSTI)

Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

Radke, Clayton J. (El Cerrito, CA)

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Successful Sequestration and Enhanced Oil Recovery Project Could Mean More  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Successful Sequestration and Enhanced Oil Recovery Project Could Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions November 15, 2005 - 2:45pm Addthis "Weyburn Project" Breaks New Ground in Enhanced Oil Recovery Efforts WASHINGTON, DC - Secretary Samuel W. Bodman today announced that the Department of Energy (DOE)-funded "Weyburn Project" successfully sequestered five million tons of carbon dioxide (CO2) into the Weyburn Oilfield in Saskatchewan, Canada, while doubling the field's oil recovery rate. If the methodology used in the Weyburn Project was successfully applied on a worldwide scale, one-third to one-half of CO2 emissions could be eliminated in the next 100 years and billions of barrels of oil could be

82

Advanced Oil Recovery Technologies for Improved Recovery From Slope Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

Science Conference Proceedings (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-01-30T23:59:59.000Z

83

Solar technology applications to enhanced oil recovery  

SciTech Connect

One possible near-term application for solar thermal technologies is the production of steam which could be pumped underground to increase the amount of petroleum which could be recovered from an oil field. This work compares 2 types of solar thermal technologies - solar troughs and central receivers - with conventional means of enhanced oil recovery (EOR) to determine, first, if solar technologies offer a viable EOR option and, second, how they compare with other steam-drive EOR alternatives. It analyzes these options from the technical, economic, institutional, and environmental perspectives. The work concludes that solar EOR is not an economically attractive alternative, largely due to existing technical uncertainties; possible environmental benefits do not appear to be a driving consideration; finally, tax incentives rather than government demonstration programs would seem to be the most effective means of encouraging solar EOR technology. 44 references.

Deleon, P.; Brown, K.C.

1982-01-01T23:59:59.000Z

84

Environmental regulations handbook for enhanced oil recovery  

SciTech Connect

This handbook is intended to assist owners and operators of enhanced oil recovery (EOR) operations in acquiring some introductory knowledge of the various state agencies, the US Environmental Protection Agency, and the many environmental laws, rules and regulations which can have jurisdiction over their permitting and compliance activities. It is a compendium of summarizations of environmental rules. It is not intended to give readers specific working details of what is required from them, nor can it be used in that manner. Readers of this handbook are encouraged to contact environmental control offices nearest to locations of interest for current regulations affecting them.

Madden, M.P. (National Inst. for Petroleum and Energy Research, Bartlesville, OK (United States)); Blatchford, R.P.; Spears, R.B. (Spears and Associates, Inc., Tulsa, OK (United States))

1991-12-01T23:59:59.000Z

85

The impact of bioprocessing on enhanced oil recovery. [104 references  

SciTech Connect

Biotechnology can, and is likely to, play an important role in many aspects of microbial-enhanced oil recovery (MEOR). This report reviews current MEOR studies and assesses the additional roles which biotechnology is likely to have in future oil recovery operations. For example, the use of microbial action to reduce environmental problems from release or reinjection of floodwaters could become very important if current exemptions of oil recovery operations from environmental regulations are not extended. 104 refs.

Watson, J.S.; Scott, C.D.

1988-03-01T23:59:59.000Z

86

Optical Fiber Sensors for Efficient and Economical Oil Recovery...  

NLE Websites -- All DOE Office Websites (Extended Search)

.0 Pressure Sensors Optical Fiber Sensors for Efficient and Economical Oil Recovery 104 7.0 Pressure Sensors Monitoring of high pressures with high accuracy in oil reservoirs is...

87

NETL: News Release - NETL Aids Enhanced Oil Recovery Efforts...  

NLE Websites -- All DOE Office Websites (Extended Search)

15, 2008 NETL Aids Enhanced Oil Recovery Efforts with Release of Historic Archives DVDs Present Collected History of Research Data Morgantown, W. Va. - The National Energy...

88

Experimental study of mechanisms of improving oil recovery in Shale.  

E-Print Network (OSTI)

??ABSTRACT Extensive laboratory work was done to investigate some of the important mechanisms of improving oil recovery in Shale formations. The objective of this research… (more)

Onyenwere, Emmanuel

2012-01-01T23:59:59.000Z

89

"Smart" Multifunctional Polymers for Enhanced Oil Recovery  

Science Conference Proceedings (OSTI)

Herein we report the synthesis and solution characterization of a novel series of AB diblock copolymers with neutral, water-soluble A blocks comprised of N,N-dimethylacrylamide (DMA) and pH-responsive B blocks of N,N-dimethylvinylbenzylamine (DMVBA). To our knowledge, this represents the first example of an acrylamido-styrenic block copolymer prepared directly in homogeneous aqueous solution. The best blocking order (using polyDMA as a macro-CTA) was shown to yield well-defined block copolymers with minimal homopolymer impurity. Reversible aggregation of these block copolymers in aqueous media was studied by {sup 1}H NMR spectroscopy and dynamic light scattering. Finally, an example of core-crosslinked micelles was demonstrated by the addition of a difunctional crosslinking agent to a micellar solution of the parent block copolymer. Our ability to form micelles directly in water that are responsive to pH represents an important milestone in developing ''smart'' multifunctional polymers that have potential for oil mobilization in Enhanced Oil Recovery Processes.

Charles McCormick; Andrew Lowe

2005-10-15T23:59:59.000Z

90

Simplified economic screening models for enhanced oil recovery processes  

Science Conference Proceedings (OSTI)

The effective screening of reservoirs for implementation of enhanced oil recovery processes is critical to the financial success of a proposed project. Screening techniques that have been used in the past normally consisted of comparing individual reservoir and fluid properties with tables of the preferred values of these properties. The shortcoming of this procedure is that it does not account for interactions among the technical parameters, nor does it provide a measure of the economic attractiveness of the project. Intercomp has developed, under the sponsorship of the Bartlesville Energy Technology Center of DOE, a set of economic screening models for micellar-polymer, steam drive and CO/sub 2/ miscible EOR processes. These models include accurate oil production predictive algorithms and routines which provide measures of economic attractiveness based on time value of money economics. The formulation of these models is presented with examples of their use.

Paul, G.W.; Ford, M.

1982-08-01T23:59:59.000Z

91

Development of Extraction Techniques for the Detection of Signature Lipids from Oil  

Science Conference Proceedings (OSTI)

Pure cultures, including Desulfovibrio vulgaris and Methanococcus maripaludus, were combined with model oil samples and oil/diesel mixtures to optimize extraction techniques of signature lipids from oil in support of investigation of microbial communities in oil deposit samples targets for microbial enhanced hydrocarbon recovery. Several techniques were evaluated, including standard phospholipid extraction, ether linked lipid for Archaeal bacterial detection, and high pressure extractiontechniques. Recovery of lipids ranged from 50-80percent as compared to extraction of the pure culture. Extraction efficiency was evaluated by the use of internal standards. Field samples will also be tested for recovery of signature lipids with optimized extraction techniques.

Borglin, Sharon; Geller, Jil; Chakraborty, Romy; Hazen, Terry; Mason, Olivia

2010-05-17T23:59:59.000Z

92

Evaluation of Reservoir Wettability and its Effect on Oil Recovery  

Science Conference Proceedings (OSTI)

The objectives of this five-year project were: (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding.

Buckley, Jill S.

2002-01-29T23:59:59.000Z

93

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

SciTech Connect

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-02-01T23:59:59.000Z

94

Oil recovery enhancement from fractured, low permeability reservoirs. Annual report 1990--1991, Part 1  

SciTech Connect

Joint funding by the Department of Energy and the State of Texas has Permitted a three year, multi-disciplinary investigation to enhance oil recovery from a dual porosity, fractured, low matrix permeability oil reservoir to be initiated. The Austin Chalk producing horizon trending thru the median of Texas has been identified as the candidate for analysis. Ultimate primary recovery of oil from the Austin Chalk is very low because of two major technological problems. The commercial oil producing rate is based on the wellbore encountering a significant number of natural fractures. The prediction of the location and frequency of natural fractures at any particular region in the subsurface is problematical at this time, unless extensive and expensive seismic work is conducted. A major portion of the oil remains in the low permeability matrix blocks after depletion because there are no methods currently available to the industry to mobilize this bypassed oil. The following multi-faceted study is aimed to develop new methods to increase oil and gas recovery from the Austin Chalk producing trend. These methods may involve new geological and geophysical interpretation methods, improved ways to study production decline curves or the application of a new enhanced oil recovery technique. The efforts for the second year may be summarized as one of coalescing the initial concepts developed during the initial phase to more in depth analyses. Accomplishments are predicting natural fractures; relating recovery to well-log signatures; development of the EOR imbibition process; mathematical modeling; and field test.

Poston, S.W.

1991-12-31T23:59:59.000Z

95

Seismic stimulation for enhanced oil recovery  

E-Print Network (OSTI)

Elastic-wave stimulation of oil produc- tion: A review ofCapillary-induced resonance of oil blobs in capillary tubesCapillary-induced resonance of oil blobs in porous media:

Pride, S.R.

2008-01-01T23:59:59.000Z

96

Environmental regulations handbook for enhanced oil recovery. 1983 update  

SciTech Connect

This handbook is intended to serve owners and operators of enhanced oil recovery operations as a guidebook to the environmental laws and regulations which have special significance for enhanced oil recovery (EOR). EOR, as used in this handbook, refers to what is also called tertiary recovery. There are three major categories of EOR processes - thermal (including both steam injection and in-situ combustion), miscible gas, and chemical. These processes are used only after a well or reservoir has ceased to produce oil economically through primary or secondary methods. The primary emphasis in the handbook is on laws and regulations for the control or prevention of pollution. 3 figures, 14 tables.

Wilson, T.D.

1983-10-01T23:59:59.000Z

97

ADVANCED OIL RECOVERY TECHNOLOGIES FOR IMPROVED RECOVERY FROM SLOPE BASIN CLASTIC RESERVOIRS, NASH DRAW BRUSHY CANYON POOL, EDDY COUNTY, NM  

SciTech Connect

The overall objective of this project is to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry. This is the twenty-eighth quarterly progress report on the project. Results obtained to date are summarized.

Mark B. Murphy

2002-09-30T23:59:59.000Z

98

Solar technology application to enhanced oil recovery  

SciTech Connect

One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

1979-12-01T23:59:59.000Z

99

Solar technology application to enhanced oil recovery  

DOE Green Energy (OSTI)

One proposed near-term commercial application for solar energy technology is the use of solar energy systems to generate steam for thermal enhanced oil recovery (EOR). This report examines four aspects of solar energy employed for steam EOR. First, six solar technologies are evaluated and two - parabolic troughs and central receivers - are selected for closer study; typical systems that would meet current production requirements are proposed and costed. Second, the legal and environmental issues attending solar EOR are analyzed. Third, the petroleum producing companies' preferences and requirements are discussed. Finally, alternative means of financing solar EOR are addressed. The study concludes that within the next four to five years, conventional (fossil-fueled) thermal EOR means are much less expensive and more available than solar EOR systems, even given environmental requirements. Within 10 to 15 years, assuming specified advances in solar technologies, central receiver EOR systems will be significantly more cost-effective than parabolic trough EOR systems and will be price competitive with conventional thermal EOR systems. Important uncertainties remain (both in solar energy technologies and in how they affect the operating characteristics of petroleum reservoirs) that need resolution before definitive projections can be made.

de Leon, P.; Brown, K.C.; Margolis, J.W.; Nasr, L.H.

1979-12-01T23:59:59.000Z

100

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents (OSTI)

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, David O. (Albuquerque, NM); Montoya, Paul C. (Albuquerque, NM); Wayland, Jr., James R. (Albuquerque, NM)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Methods for enhancing mapping of thermal fronts in oil recovery  

DOE Patents (OSTI)

A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

1984-03-30T23:59:59.000Z

102

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

103

Chemically assisted in situ recovery of oil shale  

SciTech Connect

The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

Ramierz, W.F.

1993-12-31T23:59:59.000Z

104

A Mechanism of Improved Oil Recovery by Low-Salinity Waterflooding in Sandstone Rock  

E-Print Network (OSTI)

Injection of low-salinity water showed high potentials in improving oil recovery when compared to high-salinity water. However, the optimum water salinity and conditions are uncertain, due to the lack of understanding the mechanisms of fluid-rock interactions. The main objective of this study is to examine the potential and efficiency of low-salinity water in secondary and tertiary oil recovery for sandstone reservoirs. Similarly, this study aims to help in understanding the dominant mechanisms that aid in improving oil recovery by low-salinity waterflooding. Furthermore, the impact of cation type in injected brines on oil recovery was investigated. Coreflood experiments were conducted to determine the effect of water salinity and chemistry on oil recovery in the secondary and tertiary modes. The contact angle technique was used to study the impact of water salinity and composition on rock wettability. Moreover, the zeta potential at oil/brine and brine/rock interfaces was measured to explain the mechanism causing rock wettability alteration and improving oil recovery. Deionized water and different brines (from 500 to 174,000 mg/l), as well as single cation solutions were tested. Two types of crude oil with different properties and composition were used. Berea sandstone cores were utilized in the coreflood experiments. Coreflood tests indicated that injection of deionized water in the secondary mode resulted in significant oil recovery, up to 22% improvement, compared to seawater flooding. However, no more oil was recovered in the tertiary mode. In addition, injection of NaCl solution increased the oil recovery compared to injection of CaCl2 or MgCl2 at the same concentration. Contact angle results demonstrated that low-salinity water has an impact on the rock wettability; the more reduction in water salinity, the more a water-wet rock surface is produced. In addition, NaCl solutions made the rock more water-wet compared to CaCl2 or MgCl2 at the same concentration. Low-salinity water and NaCl solutions showed a highly negative charge at rock/brine and oil/brine interfaces by zeta potential measurements, which results in greater repulsive forces between the oil and rock surface. This leads to double-layer expansion and water-wet systems. These results demonstrate that the double-layer expansion is a primary mechanism of improving oil recovery when water chemical composition is manipulated.

Nasralla, Ramez

2013-05-01T23:59:59.000Z

105

Thermal numerical simulator for laboratory evaluation of steamflood oil recovery  

Science Conference Proceedings (OSTI)

A thermal numerical simulator running on an IBM AT compatible personal computer is described. The simulator was designed to assist laboratory design and evaluation of steamflood oil recovery. An overview of the historical evolution of numerical thermal simulation, NIPER's approach to solving these problems with a desk top computer, the derivation of equations and a description of approaches used to solve these equations, and verification of the simulator using published data sets and sensitivity analysis are presented. The developed model is a three-phase, two-dimensional multicomponent simulator capable of being run in one or two dimensions. Mass transfer among the phases and components is dictated by pressure- and temperature-dependent vapor-liquid equilibria. Gravity and capillary pressure phenomena were included. Energy is transferred by conduction, convection, vaporization and condensation. The model employs a block centered grid system with a five-point discretization scheme. Both areal and vertical cross-sectional simulations are possible. A sequential solution technique is employed to solve the finite difference equations. The study clearly indicated the importance of heat loss, injected steam quality, and injection rate to the process. Dependence of overall recovery on oil volatility and viscosity is emphasized. The process is very sensitive to relative permeability values. Time-step sensitivity runs indicted that the current version is time-step sensitive and exhibits conditional stability. 75 refs., 19 figs., 19 tabs.

Sarathi, P.

1991-04-01T23:59:59.000Z

106

Surfactants based on monounsaturated fatty acids for enhanced oil recovery  

Science Conference Proceedings (OSTI)

Recent estimates for the amount of surfactant necessary to meet projected enhanced oil recovery demand indicate that this volume would rival the current use of surfactants in detergents. In part one of a series, Paul Berger details how monounsaturated fatt

107

Performance evaluation of starch based polymer for enhanced oil recovery  

E-Print Network (OSTI)

Ever since the first petroleum well was drilled, water production has been a deterring force in maximizing an oilfield's hydrocarbon reserves. To satisfy the ever increasing global demand for petroleum, many different techniques for enhancing oil recovery have been investigated. One such technique is the application of a polymer solution to the near-wellbore area. The polymer solution lowers the relative permeability of the reservoir water thus increasing the amount of water left in formation. Although polymers can be beneficial, many environmental and economical concerns are also associated with their use. A starch based polymer would provide an environmentally harmless solution while using readily available and inexpensive agricultural products such as grains and cereals. This study uses numerical simulation to analyze the starch based polymer's performance in the near-wellbore area. Simulations are performed on two separate single-well, radial models. The first model covers a water influx at the circumferential edge of a reservoir, the second covers water influx from the bottom of a reservoir. Two different rock samples are adapted to each single-well model. The two rock samples are the Elgin and Okesa Sandstones. Within the models, a multitude of reservoir conditions are investigated to better evaluate the polymer's ability to enhance oil recovery. The Western Atlas' VIP simulator is used for this study. Application of the starch based polymer treatment to the near-wellbore is shown to be an effective agent in enhancing a well's oil recovery. For the edge water influx model, the polymer performed well for a wide range of variables, including penetration depth, production rate, radial permeability, application time, reservoir temperature, perforation interval, aquifer strength, porosity, and bottomhole pressure constraints. The bottom water influx model also produced good results for many of the simulation runs however, the effects of the penetration depth and production rate proved to be the most important factors in a successful polymer treatment. The variables investigated in the bottom water influx model are polymer penetration depth, production rate, permeability ratio, application time, reservoir temperature, aquifer strength, perforation height above the oil/water contact, porosity, and bottomhole pressure constraints.

Skurner, James Andrew

1997-01-01T23:59:59.000Z

108

NETL: Oil and Natural Gas: Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

that have unconventional characteristics (e.g., oil in fractured shales, kerogen in oil shale, bitumen in tar sands) constitute an enormous potential domestic supply of energy....

109

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 22, quarter ending March 31, 1980  

Science Conference Proceedings (OSTI)

This report contains statements of objectives and summaries of technical progress on all DOE contracts pertaining to enhanced oil recovery and improved drilling techniques. Subject categories include chemical flooding; carbon dioxide injection; thermal recovery of heavy oil; resource assessment; improved drilling technology; residual oil; environmental; petroleum technology; and microbial enhanced oil recovery. An index containing the names of the companies and institutions involved is included. Current publications resulting from the DOE contractual program are listed. (DMC)

Linville, B. (ed.)

1980-07-01T23:59:59.000Z

110

Shale beneficiation and oil recovery from the concentrate  

SciTech Connect

A flow sheet and economic feasibility study of oil shale beneficiation and recovery shows that conceivable improvements in grinding, separation, and recovery could make a beneficiationbased system more attractive than conventional ore retorting, although current technology (based on ball milling, froth flotation, and retorting) is less attractive.

Weiss, M.A.; Klumpar, I.V.

1984-08-01T23:59:59.000Z

111

Seismic stimulation for enhanced oil recovery  

E-Print Network (OSTI)

The plotted quantity is the speci?c oil volume that we de?nequantity ? int , which is the volume of ?uid that passes from pores initially occupied by oil

Pride, S.R.

2008-01-01T23:59:59.000Z

112

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

113

Oil and Gas Recovery Data from the Riser Insertion Tub - ODS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Data from the Riser Insertion Tub - ODS Oil and Gas Recovery Data from the Riser Insertion Tub - ODS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17...

114

Oil and Gas Recovery Data from the Riser Insertion Tub - XLS...  

NLE Websites -- All DOE Office Websites (Extended Search)

Recovery Data from the Riser Insertion Tub - XLS Oil and Gas Recovery Data from the Riser Insertion Tub - XLS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17...

115

Shale oil recovery systems incorporating ore beneficiation : final report, October 1982  

E-Print Network (OSTI)

This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is, concentration of the kerogen) before the oil-recovery step. The objective was to ...

Weiss, M. A.

1982-01-01T23:59:59.000Z

116

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project was to demonstrate that a development program-based on advanced reservoir management methods-can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Mark B.

2002-01-16T23:59:59.000Z

117

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico, Class III  

SciTech Connect

The overall objective of this project is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery at the Nash Draw Pool (NDP). The plan includes developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced reservoir management methods. Specific goals are (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to oil and gas producers in the Permian Basin and elsewhere throughout the U.S. oil and gas industry.

Murphy, Michael B.

2002-02-21T23:59:59.000Z

118

Enhanced oil-recovery operatiohs in Kansas 1979  

SciTech Connect

Data for 1552 enhanced oil-recovery (EDR) projects are listed in this report and a map shows their distribution. The majority of the EOR projects fall into the categories of pressure maintenance, dump floods, and controlled waterfloods, which are secondary recovery projects. There are several active tertiary projects and a few inactive projects. Active EOR projects are listed alphebetically by county and field. Data on thickness and depth of oil-producing zones or injection horizons, sources of water, and cumulative figures on oil produced and water injected are included. (DMC)

Paul, S.E.; Bahnmaier, E.L.

1981-01-01T23:59:59.000Z

119

Oil recovery from condensed corn distillers solubles.  

E-Print Network (OSTI)

??Condensed corn distillers solubles (CCDS) contains more oil than dried distillers grains with solubles (DDGS), 20 vs. 12% (dry weight basis). Therefore, significant amount of… (more)

Majoni, Sandra

2009-01-01T23:59:59.000Z

120

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

Advanced reservoir characterization techniques are being used at the Nash Draw Brushy Canyon Pool project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The reservoir characterization, geologic modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir.

Murphy, M.B.

1999-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Advanced Oil Recovery Technologies for Improved Recovery From Slope Basin Clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, New Mexico  

Science Conference Proceedings (OSTI)

The overall goal of this project is to demonstrate that an advanced development drilling and pressure maintenance program based on advanced reservoir management methods can significantly improve oil recovery. The plan included developing a control area using standard reservoir management techniques and comparing its performance to an area developed using advanced methods. A key goal is to transfer advanced methodologies to oil and gas producers in the Permian Basin and elsewhere, and throughout the US oil and gas industry.

Mark B. Murphy

1998-04-30T23:59:59.000Z

122

Seismic stimulation for enhanced oil recovery  

Science Conference Proceedings (OSTI)

The pore-scale effects of seismic stimulation on two-phase flow are modeled numerically in random 2D grain0pack geometries. Seismic stimulation aims to enhance oil production by sending seismic waves across a reservoir to liberate immobile patches of oil. For seismic amplitudes above a well-defined (analytically expressed) dimensionless criterion, the force perturbation associated with the waves indeed can liberate oil trapped on capillary barriers and get it flowing again under the background pressure gradient. Subsequent coalescence of the freed oil droplets acts to enhance oil movement further because longer bubbles overcome capillary barriers more efficiently than shorter bubbles do. Poroelasticity theory defines the effective force that a seismic wave adds to the background fluid-pressure gradient. The lattice-Boltzmann model in two dimensions is used to perform pore-scale numerical simulations. Dimensionless numbers (groups of material and force parameters) involved in seismic stimulation are defined carefully so that numerical simulations can be applied to field-scale conditions. Using the analytical criteria defined in the paper, there is a significant range of reservoir conditions over which seismic stimulation can be expected to enhance oil production.

Pride, S.R.; Flekkoy, E.G.; Aursjo, O.

2008-07-22T23:59:59.000Z

123

SURFACTANT BASED ENHANCED OIL RECOVERY AND FOAM MOBILITY CONTROL  

Science Conference Proceedings (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactants makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. Also, the addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluted to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. A dual-porosity version is demonstrated as a potential scale-up tool for fractured reservoirs.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope; Richard E. Jackson

2004-07-01T23:59:59.000Z

124

Potential roles for bioprocessing in enhanced oil recovery  

SciTech Connect

Biotechnology can and is likely to play an important role in many aspects of microbial enhanced oil recovery (MEOR). Most current research is directed at in-situ production of surfactants, polymers, and other materials which can enhance the recovery of oil by altering interfacial properties, water (or oil) viscosity, or bulk flow patterns in the field. The mechanisms of MEOR are still not well understood, and better evaluations of the relative merits of in-situ and surface production of these materials are needed. Great care is needed to insure that field tests of MEOR are planned and executed so they answer specific questions and increase our understanding and predictions of MEOR results. There are also other potential uses of biotechnology in enhanced oil recovery which should be explored. The use of microbial action to reduce environmental problems from release or reinjection of flood waters could become very important if current exemptions of oil recovery operations from environmental regulations are not extended. 11 refs., 1 tab.

Watson, J.S.; Scott, C.D.

1987-01-01T23:59:59.000Z

125

Enhanced oil recovery techniques helped Oman reverse ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

126

International Energy Agency workshop on enhanced oil recovery  

Science Conference Proceedings (OSTI)

Twelve papers were presented at the International Energy Agency Workshop on enhanced oil recovery. These papers covered the areas of waterflooding which included carbon dioxide injection, role of surfactants, wettability studies of reservoir rock and porous materials, and vapor-liquid equilibrium studies of carbon dioxide and alkanes. Besides these papers, this Proceedings includes two papers, one on phase behavior of carbon dioxide and oil, and the other on microemulsion flooding.

Not Available

1981-02-01T23:59:59.000Z

127

Optimization of Surfactant Mixtures and Their Interfacial Behavior for Advanced Oil Recovery, Annual Report, September 30, 1999-September 30, 2000  

SciTech Connect

The goal of this report is to develop improved extraction processes to mobilize and produce the oil left untapped using conventional techniques. Current chemical schemes for recovering the residual oil have been in general less than satisfactory. High cost of the processes as well as significant loss of chemicals by adsorption on reservoir materials and precipitation has limited the utility of chemical-flooding operations. There is a need to develop cost-effective, improved reagent schemes to increase recovery from domestic oil reservoirs. The goal of the report was to develop and evaluate novel mixtures of surfactants for improved oil recovery.

Somasundaran, Prof. P.

2001-04-04T23:59:59.000Z

128

Surfactant Based Enhanced Oil Recovery and Foam Mobility Control  

Science Conference Proceedings (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A combination of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. A formulation has been designed for a particular field application. The addition of an alkali such as sodium carbonate makes possible in situ generation of surfactant and significant reduction of surfactant adsorption. In addition to reduction of interfacial tension to ultra-low values, surfactants and alkali can be designed to alter wettability to enhance oil recovery. The design of the process to maximize the region of ultra-low IFT is more challenging since the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Compositional simulation of the displacement process demonstrates the interdependence of the various components for oil recovery. An alkaline surfactant process is designed to enhance spontaneous imbibition in fractured, oil-wet, carbonate formations. It is able to recover oil from dolomite core samples from which there was no oil recovery when placed in formation brine. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability. Simulated case studies demonstrate the effects of wettability.

George J. Hirasaki; Clarence A. Miller; Gary A. Pope

2005-07-01T23:59:59.000Z

129

In situ recovery of shale oil  

SciTech Connect

An in situ oil shale retort is formed in a subterranean oil shale deposit by excavating a columnar void having a vertically extending free face, drilling blasting holes adjacent to the columnar void and parallel to the free face, loading the blasting holes with explosive, and detonating the explosive in a single round to expand the shale adjacent to the columnar void toward the free face in layers severed in a sequence progressing away from the free face and to fill with fragmented oil shale the columnar void and the space in the in situ retort originally occupied by the expanded shale prior to the expansion. A room having a horizontal floor plan that coincides approximately with the horizontal cross section of the retort to be formed is excavated so as to intersect the columnar void. The blasting holes are drilled and loaded with explosive from the room. The room can lie above the columnar void, below the columnar void, or intermediate the ends of the columnar void. In one embodiment, the columnar void is cylindrical and the blasting holes are arranged in concentric rings around the columnar void. In another embodiment, the columnar void is a slot having one or more large parallel, planar vertical free faces, toward which the oil shale in the retort under construction can be explosively expanded. The blasting holes are arranged in planes parallel to these faces. The resulting retort generally has a cross section coinciding with the placement of the blasting holes and a height determined for the greater part by the vertical height of the columnar void. To form a retort having a large cross-sectional area, a plurality of columnar voids can be excavated and the shale in the retort expanded toward the respective columnar voids to form a continuous fragmented permeable mass of oil shale.

French, G.B.

1977-08-23T23:59:59.000Z

130

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-Print Network (OSTI)

Solids-stabilized water-in-oil emulsions have been suggested as a drive fluid to recover viscous oil through a piston-like displacement pattern. While crude heavy oil was initially suggested as the base oil, an alternative oil ? used engine oil was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively large supply, and potential solution of used engine oil disposal. In this research, different types of used engine oil (mineral based, synthetic) were tested to make W/O emulsions simply by blending in brine. A series of stable emulsions was prepared with varied water contents from 40~70%. Viscosities of these emulsions were measured, ranging from 102~104 cp at low shear rates and ambient temperature. Then an emulsion made of 40% used engine oil and 60% brine was chosen for a series of coreflood experiments, to test the stability of this emulsion while flowing through porous media. Limited breakdown of the effluent was observed at ambient injection rates, indicating a stability of the emulsion in porous media. Pressure drops leveled off and remained constant at constant rate of injection, indicating steady-state flows under the experimental conditions. No plug off effect was observed after a large volume of emulsion passed through the cores. Reservoir scale simulations were conducted for the emulsion flooding process based on the emulsion properties tested from the experiments. Results showed significant improvement in both displacement pattern and oil recovery especially compared to water flooding. Economics calculations of emulsion flooding were also performed, suggesting this process to be highly profitable.

Fu, Xuebing

2012-12-01T23:59:59.000Z

131

Electrotechnology Opportunities in Enhanced Oil Recovery Operations: Scoping Study  

Science Conference Proceedings (OSTI)

This scoping study provides an overview of enhanced oil recovery (EOR) in the United States. It is a comprehensive reference developed to help utilities and energy service providers focus their efforts on good business opportunities in this energy intensive business segment.

1999-10-22T23:59:59.000Z

132

EOR (enhanced oil recovery): the reservoir and its contents  

SciTech Connect

Factors in commitment to enhanced oil recovery of any type are discussed with relation to reservoir characteristics. Core analysis, well logging, reservoir engineering studies, well transient testing, and chemical tracer testing are recommended in order to ascertain the dimensions and conditions of the potentially hydrocarbon bearing reservoir. The calculated risk that is necessary even after conducting the recommended practices is emphasized.

Frederick, R.O.

1982-08-01T23:59:59.000Z

133

Energy supply strategy: getting technology commercialized, shale oil and enhanced oil recovery  

DOE Green Energy (OSTI)

Purpose is to identify factors inhibiting the near-term investment of industrial funds for producing oil from shale and through enhanced oil recovery, and to estimate the investment and production which would result if these deterrents were removed and suitable incentives provided. The barriers are discussed under the following categories: economic, environmental, institutional/regulatory, and technical. (DLC)

Steger, J.E.; Sullo, P.; Michaelis, M.; Nason, H.K.

1979-12-01T23:59:59.000Z

134

Oil and Gas Recovery Data from the Riser Insertion Tub - ODS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ODS Oil and Gas Recovery Data from the Riser Insertion Tub - ODS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected...

135

Oil and Gas Recovery Data from the Riser Insertion Tub - XLS...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

XLS Oil and Gas Recovery Data from the Riser Insertion Tub - XLS Oil and Gas Recovery Data from the Riser Insertion Tube from May 17 until the Riser Insertion Tube was disconnected...

136

HTGR application for shale-oil recovery  

SciTech Connect

The High-Temperature Gas-Cooled Reactor (HTGR) utilizes a graphite-moderated core and helium as primary coolant. Developed for electric power production, the 842-MW(t) (330-MW(e)) Fort St. Vrain plant is currently operating at Platteville, Colorado. Studies have been performed that couple steam produced at 540/sup 0/C (1000/sup 0/F) and 17 MPa (2500 psia) to two oil shale processes: the Paraho indirect retorting and the Marathon direct steam retorting. The plant, consisting of two 1170-MW(t) HTGR's, would also produce electric power for other shale operations. Results show economic and environmental advantages for the coupling.

Quade, R.N.; Rao, R.

1983-04-01T23:59:59.000Z

137

HTGR application for shale oil recovery  

SciTech Connect

The High-Temperature Gas-Cooled Reactor (HTGR) utilizes a graphite-moderated core and helium as primary coolant. Developed for electric power production, the 842-MW(t) (330-MW(e)) Fort St. Vrain plant is currently operating at Platteville, Colorado. Studies have been performed that couple steam produced at 540/sup 0/C (1000/sup 0/F) and 17 MPa (2500 psia) to two oil shale processes: the Paraho indirect retorting and the Marathon direct steam retorting. The plant, consisting of two 1170-MW(t) HTGR's, would also produce electric power for other shale operations. Results show economic and environmental advantages for the coupling.

Quade, R.N.; Rao, R.

1983-04-01T23:59:59.000Z

138

Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-situ Recovery  

E-Print Network (OSTI)

High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil (SCO) produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil from Canadian bitumen deposits. The results show the uncertainties associated with the future costs of synthetic crude oil. Carbon costs have a large impact of the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon-intensity of the recovery techniques. The influence of each parameter on the supply costs is examined. In the case of mined SCO, the maximum production rate, the ultimate recovery rate and the depletion parameters show the largest influence on the results, while learning parameters dominate in the case of in-situ SCO.

Aurélie Méjean; Chris Hope; Aurélie Méjean; Chris Hope; Aurélie Méjean; Chris Hope

2010-01-01T23:59:59.000Z

139

EPRG WORKING PAPER Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-situ Recovery  

E-Print Network (OSTI)

High crude oil prices and the eventual decline of conventional oil production raise the issue of alternative fuels such as non-conventional oil. The paper describes a simple probabilistic model of the costs of synthetic crude oil (SCO) produced from Canadian oil sands. Synthetic crude oil is obtained by upgrading bitumen that is first produced through mining or in-situ recovery techniques. This forward-looking analysis quantifies the effects of learning and production constraints on the costs of supplying synthetic crude oil from Canadian bitumen deposits. The results show the uncertainties associated with the future costs of synthetic crude oil. Carbon costs have a large impact of the total costs of synthetic crude oil, in particular in the case of synthetic crude oil from in-situ bitumen, due to the carbon-intensity of the recovery techniques. The influence of each parameter on the supply costs is examined. In the case of mined SCO, the maximum production rate, the ultimate recovery rate and the depletion parameters show the largest influence on the results, while learning parameters dominate in the case of in-situ SCO.

Aurélie Méjean; Chris Hope; Aurélie Méjean; Chris Hope

2010-01-01T23:59:59.000Z

140

Screening criteria for enhanced recovery of Saudi crude oils  

SciTech Connect

This investigation studies and analyzes the screening guides that can be used to select the applicable enhanced oil recovery (EOR) method under Saudi oil field conditions. Based on the analysis of data obtained from 186 Saudi formations, the crude oils are produced from low to intermediate permeability formations in the range of 1-1500 millidarcies. The original reservoirs' pressure and temperature range from 2000 to 5500 psi and from 140 to 240{degrees}F, respectively. The porosity of the formations varies from 10 to 30% and the formations thickness ranges from 10 to 300 feet. The reservoirs of Saudi Arabia are characterized by high formation water salinity, which can be as high as 30% by weight. Saudi oil formations are characterized by connate water in the range of 10-50%. Thus residual oil saturation is expected to be high. The viscosity of most Saudi crude oils ranges from 0.10 to 10 centipoise. The API gravity ranges from 15 to 45. The basic parameters studied include formation permeability, porosity, and thickness; reservoir pressure and temperature; crude oil viscosity and API gravity, formation connate water saturation and its salinity, and formation type and heterogeneity. Based on the screening analysis the most suitable technical methods applicable to Saudi oil fields are the miscible processes using gases.

Sayyouh, M.H.; Al-Blehed (Petroleum Engineering Dept., King Saud Univ., Riyadh (SA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery  

SciTech Connect

This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

2006-09-30T23:59:59.000Z

142

Foam and emulsion effects on gas driven oil recovery  

SciTech Connect

The aim of this research was to investigate the gas mobility reducing effects that a gas driven surfactant slug has on enhanced oil recovery (EOR). Three chemically similar surfactants whose properties graded from foaming agent to emulsifying agent were used to study the effects that foam and emulsion formation have on enhanced oil recovery in an unconsolidated Ottawa sand model at room temperature. Both the foam lamellae and the emulsion droplets act to reduce the mobility of the injected gas in the swept zone, thus increasing the vertical sweep efficiency. Shell's Enordet series of alcohol ethoxylate surfactants were used in the study at three different concentrations of, 0.01%, 0.03% and 0.100% (wt.). The experimental procedure consisted of displacing oil from a porous medium at residual water saturation by injecting carbon dioxide, followed first by the injection of a 0.20 pore volume slug of surfactant solution, then by carbon dioxide gas at low pressure. Measurements were made of the cumulative produced gas and liquids. Performance differences between different surfactants are small but consistent. Combining the foam and emulsion mechanisms seems to lead to more efficient oil recovery than either mechanism alone. 33 refs., 14 figs., 3 tabs.

Farrell. J.; Marsden, S.S. Jr.

1988-11-01T23:59:59.000Z

143

Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Electromagnetic Imaging of CO Electromagnetic Imaging of CO 2 Sequestration at an Enhanced Oil Recovery Site Barry Kirkendall (Kirkendall1@llnl.gov ; 925-423-1513) Jeff Roberts (Roberts17@llnl.gov ; 925-422-7108) Lawrence Livermore National Laboratory 7000 East Avenue Livermore, CA 94550 1.1 Introduction Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO 2 sequestration at an EOR site also operated by Chevron. The impetus for this study is

144

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

Science Conference Proceedings (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

145

High-Temperature Nuclear Reactors for In-Situ Recovery of Oil from Oil Shale  

Science Conference Proceedings (OSTI)

The world is exhausting its supply of crude oil for the production of liquid fuels (gasoline, jet fuel, and diesel). However, the United States has sufficient oil shale deposits to meet our current oil demands for {approx}100 years. Shell Oil Corporation is developing a new potentially cost-effective in-situ process for oil recovery that involves drilling wells into oil shale, using electric heaters to raise the bulk temperature of the oil shale deposit to {approx}370 deg C to initiate chemical reactions that produce light crude oil, and then pumping the oil to the surface. The primary production cost is the cost of high-temperature electrical heating. Because of the low thermal conductivity of oil shale, high-temperature heat is required at the heater wells to obtain the required medium temperatures in the bulk oil shale within an economically practical two to three years. It is proposed to use high-temperature nuclear reactors to provide high-temperature heat to replace the electricity and avoid the factor-of-2 loss in converting high-temperature heat to electricity that is then used to heat oil shale. Nuclear heat is potentially viable because many oil shale deposits are thick (200 to 700 m) and can yield up to 2.5 million barrels of oil per acre, or about 125 million dollars/acre of oil at $50/barrel. The concentrated characteristics of oil-shale deposits make it practical to transfer high-temperature heat over limited distances from a reactor to the oil shale deposits. (author)

Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6165 (United States)

2006-07-01T23:59:59.000Z

146

Microbial enhancement of oil recovery: Recent advances. Proceedings  

Science Conference Proceedings (OSTI)

During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

1992-12-31T23:59:59.000Z

147

Environmental regulations handbook for enhanced oil recovery. Final report  

SciTech Connect

A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)

Wilson, T.D.

1980-08-01T23:59:59.000Z

148

Evaluation of Reservoir Wettability and its Effect on Oil Recovery.  

SciTech Connect

We report on the first year of the project, `Evaluation of Reservoir Wettability and its Effect on Oil Recovery.` The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. As background, mixed-wetting and our current understanding of the influence of stable and unstable brine films are reviewed. The components that are likely to adsorb and alter wetting are divided into two groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. Finally, the test procedures used to assess the extent of wetting alteration-tests of adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media are introduced. In Part 1, we report on studies aimed at characterizing both the acid/base and asphaltene components. Standard acid and base number procedures were modified and 22 crude oil samples were tested. Our approach to characterizing the asphaltenes is to focus on their solvent environment. We quantify solvent properties by refractive index measurements and report the onset of asphaltene precipitation at ambient conditions for nine oil samples. Four distinct categories of interaction mechanisms have been identified that can be demonstrated to occur when crude oils contact solid surfaces: polar interactions can occur on dry surfaces, surface precipitation is important if the oil is a poor solvent for its asphaltenes, and acid/base and ion-binding interactions occur in the presence of water. Specific instances when each of these mechanisms is dominant can be identified using crude oils of different acid number, base number, and solvent quality. Part 2 of this project is devoted to improved assessment of wetting. We report on a baseline study of crude oil interactions with mica surfaces that shows wettability alteration characteristics that are comparable to those reported previously for glass surfaces. Mica has advantages over amorphous glass that make it a better choice as a standard surface for wettability testing, especially for tests at high temperatures.

Buckley, J.S.

1998-01-15T23:59:59.000Z

149

Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

NONE

1995-03-01T23:59:59.000Z

150

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

Science Conference Proceedings (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

151

Aerobic enhanced oil recovery: analysis of the mechanisms and a pilot study  

E-Print Network (OSTI)

The technique that uses microorganisms to improve oil production in petroleum reservoirs is known as microbial enhanced oil recovery (MEOR). Aerobic microbial enhanced oil recovery is a method which is based on stimulating indigenous oil degrading bacteria by introducing oxygen (air) and nutrients into the injection water in an existing water flood. The primary emphasis is to promote biological growth in the oil/ water interface, which reduces the interfacial tension and mobilizes the oil. This process is proven to work in laboratory studies, and successful field tests have been reported in USSR. A pilot test on AMEOR has been initiated in the North Brock field in Oklahoma. The treatment, which consists of a continuous injection of air together with an appropriate nutrient supply, has been going on for seven months. So far no increase in oil production has been observed in the full field scale. However, well tests performed on each production well show an increase in oil production from two wells. This increase does not have any effect on the total oil production due to decline periods in the other wells. The most positive observation in the field test is an increase in the differential pressure observed right after the start of oxygen injection. This may be a result of reduced permeability to water in the oil bank, indicating an oil mobilization process in the reservoir. The same effect has also been observed in the laboratory core studies. The process is also proven to be time dependent and independent of the number of pore volumes flooded. It is concluded that it is too early in the process to experience any incremental oil production. The pressure increase may indicate that a mobilization process is going on and that it will only be a matter of time before any additional oil will be experienced in the field. This research involves an analysis of the pilot study in the North Brock field, in addition to a description of the AMEOR technique, effects and limitations. A comparison to other conventional MEOR techniques is also given.

Eide, Karen

1998-01-01T23:59:59.000Z

152

New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential  

E-Print Network (OSTI)

conditioned to residual waterflood oil saturation prior to surfactant slug injection. This was followed for more than 35 years, in particular in the USA in depleted oil reservoirs after waterflooding (Garrett., 2000; Jayanti et al., 2001; Berger and Lee, 2002; Endo et al., 2002). During a waterflood (which can

Goddard III, William A.

153

Shale-oil-recovery systems incorporating ore beneficiation. Final report.  

SciTech Connect

This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.

Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

1982-10-01T23:59:59.000Z

154

Identification of water requirements for selected enhanced oil recovery methods  

SciTech Connect

Water requirements for enhanced oil recovery (EOR) are thoroughly evaluated by using publicly available information, data from actual field applications, and information provided by knowledgeable EOR technologists in fourteen major oil companies. The different uses of water in selected EOR methods, as well as current research trends, are discussed. Water quantity and quality requirements are estimated for individual EOR processes (steam drive; in situ combustion; and carbon dioxide, micellar-polymer, polymer, and caustic flooding) in those states and specific geographical locations where these processes will likely play major roles in future petroleum production by the year 2000. The estimated quantity requirements represent the total water needed from all sources (e.g., aquifers, lakes, produced water). A reduction in these quantities can be achieved by reinjecting all of the produced water potentially available for recycle (e.g., some is lost in oil and water separation and water treatment processes) in the oil recovery method. For injection water quality requirements, it is noted that not all of the water used for EOR needs to be fresh. The use of treated produced water can significantly reduce the quantities of fresh water that would be sought from other sources. Although no major EOR project to date has been abandoned because of water supply problems, competing regional uses for water, drought situations, and scarcity of high quality (e.g., low total dissolved solids) surface water and ground water could be impediments to certain projects in the near future. 4 figures, 14 tables.

Royce, B.; Kaplan, E.; Garrell, M.; Geffen, T.M.

1982-09-01T23:59:59.000Z

155

Enhanced oil recovery: major equipment and its projected demand  

Science Conference Proceedings (OSTI)

After years of research and pilot tests, the enhanced oil recovery (EOR) industry is taking major leaps forward in 1981. With the launching of several hundred new EOR pilot tests, the announcement of major CO/sub 2/ pipelines into W. Texas, and a $3.6-billion purchase of South Belridge heavy oil by Shell, oil companies are showing their confidence in this technologically-emerging area. While much research remains to be done to make these processes more efficient and economic, the important commercial stage of the EOR industry's growth has clearly been reached. Along with the growth of the EOR industry will come a major demand for equipment and facilities. This demand will include traditional requirements for steam generators and compressors, although on a scale many times larger than at present, as well as new requirements for gas separation, chemical storage, and special tubulars.

Kuuskraa, V.A.; Hammershaimb, E.C.; Wicks, D.E.

1981-09-01T23:59:59.000Z

156

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 11 Oil Recovery from Palm Fruits and Palm Kernel  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 11 Oil Recovery from Palm Fruits and Palm Kernel Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Health - Nutrition - Biochem

157

Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993  

Science Conference Proceedings (OSTI)

In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

Wasan, D.T.

1994-08-01T23:59:59.000Z

158

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

159

First joint SPE/DOE symposium on enhanced oil recovery, proceedings supplement  

SciTech Connect

The First Joint Symposium on Enhanced Oil Recovery sponsored by the Society of Petroleum Engineers and the US Department of Energy was held in Tulsa, Oklahoma. Besides the thirty-three technical papers which covered all phases of enhanced oil recovery and were published in the Proceedings, the Symposium included a session on Enhanced Oil Recovery Incentives where ten papers were presented which discussed the status of enhanced oil recovery technology, and included papers on incentive programs of the United States, Canada and Venezuela. These papers are published in this Proceedings Supplement under the following titles: Federal Government Role in enhanced Oil Recovery; Financial Realities of an Adequate Petroleum Supply; Major Technology Constraints in Enhanced Oil Recovery; Decontrol-Opportunities and Dangers; Status of EOR Technology; Impact of Federal Incentives on US Production; Canadian Incentives Program; and Heavy Oil Incentives in Venezuela.

Not Available

1980-01-01T23:59:59.000Z

160

Sovent Based Enhanced Oil Recovery for In-Situ Upgrading of Heavy Oil Sands  

Science Conference Proceedings (OSTI)

With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO{sub 2}. The model also incorporated the characteristic of a highly varying CO{sub 2} density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the precipitate readily enables removal of asphaltenes. Thus, an upgraded crude low in heavy metal, sulfur and nitrogen is more conducive for further purification.

Norman Munroe

2009-01-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

DOE Green Energy (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

162

Advanced Oil Spill Recovery in Marine Environments Victoria Broje and Arturo A. Keller  

E-Print Network (OSTI)

Advanced Oil Spill Recovery in Marine Environments Victoria Broje and Arturo A. Keller Bren School of Environmental Science and Management, University of California, Santa Barbara Almost 14,000 oil spills research will help identifying parameters having major effect on oil adhesion to the recovery surface

Keller, Arturo A.

163

Disturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil Spill  

E-Print Network (OSTI)

.S. Gulf of Mexico is a hub of oil and gas exploration activities that historically have impacted and impede recovery of the system. There are over 3,000 active oil & gas production platforms in U.S. OuterDisturbance and Recovery of Salt Marsh Arthropod Communities following BP Deepwater Horizon Oil

Pennings, Steven C.

164

Electromagnetic Imaging of CO2 Sequestration at an Enhanced Oil Recovery Site  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California (Figure 1). The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

Kirkendall, B.; Roberts, J.

2001-02-28T23:59:59.000Z

165

Electromagnetic Imaging of C02 Sequestration at an Enhanced Oil Recovery Site  

Science Conference Proceedings (OSTI)

Lawrence Livermore National Laboratory (LLNL) is currently involved in a long term study using time-lapse multiple frequency electromagnetic (EM) characterization at a waterflood enhanced oil recovery (EOR) site in California operated by Chevron Heavy Oil Division in Lost Hills, California. The petroleum industry's interest and the successful imaging results from this project suggest that this technique be extended to monitor CO{sub 2} sequestration at an EOR site also operated by Chevron. The impetus for this study is to develop the ability to image subsurface injected CO{sub 2} during EOR processes while simultaneously discriminating between pre-existing petroleum and water deposits. The goals of this study are to combine laboratory and field methods to image a pilot CO{sub 2} sequestration EOR site using the cross-borehole EM technique, improve the inversion process in CO{sub 2} studies by coupling results with petrophysical laboratory measurements, and focus on new gas interpretation techniques. In this study we primarily focus on how joint field and laboratory results can provide information on subsurface CO{sub 2} detection, CO{sub 2} migration tracking, and displacement of petroleum and water over time. This study directly addresses national energy issues in two ways: (1) the development of field and laboratory techniques to improve in-situ analysis of oil and gas enhanced recovery operations and, (2) this research provides a tool for in-situ analysis of CO{sub 2} sequestration, an international technical issue of growing importance.

Kirkendall, B; Roberts, J

2001-02-28T23:59:59.000Z

166

Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field  

E-Print Network (OSTI)

Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.

Gaviria Garcia, Ricardo

2005-12-01T23:59:59.000Z

167

Enhanced oil recovery data base analysis by simplified predictive models  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy, Bartlesville Energy Technology Center (BETC), has been developing computerized data bases and simplified predictive models to be used to predict enhanced oil recovery (EOR) potential in the U.S. The development phase of this work is nearing completion whereupon the models and data bases will be made available to the public. This paper describes the overall development phase for the models and data bases with analyses of selected EOR projects using the predictive models. Examples of model outputs are discussed and brief descriptions of the predictive algorithms are given.

Ray, R.M.; Wesson, T.C.

1982-11-01T23:59:59.000Z

168

Alkaline injection for enhanced oil recovery: a status report  

SciTech Connect

In the past several years, there has been renewed interest in enhanced oil recovery (EOR) by alkaline injection. Alkaline solutions also are being used as preflushes in micellar/polymer projects. Several major field tests of alkaline flooding are planned, are in progress, or recently have been completed. Considerable basic research on alkaline injection has been published recently, and more is in progress. This paper summarizes known field tests and, where available, the amount of alkali injected and the performance results. Recent laboratory work, much sponsored by the U.S. DOE, and the findings are described. Alkaline flood field test plans for new projects are summarized.

Mayer, E.H.; Berg, R.L.; Carmichael, J.D.; Weinbrandt, R.M.

1983-01-01T23:59:59.000Z

169

DOE tallies Class III oil recovery field projects  

SciTech Connect

Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.

Not Available

1994-07-25T23:59:59.000Z

170

Microbial enhanced oil recovery research. Final report, Annex 5  

SciTech Connect

The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

Sharma, M.M.; Gerogiou, G.

1993-07-01T23:59:59.000Z

171

Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance.  

E-Print Network (OSTI)

??Conventional waterflooding methods of oil recovery are difficult to apply when reservoirs show evidence of natural fractures, because injected water advances through paths of high… (more)

Hervas Ordonez, Rafael Alejandro

2012-01-01T23:59:59.000Z

172

Experimental investigations in improving the VAPEX performance for recovery of heavy oil and bitumen.  

E-Print Network (OSTI)

??The process of vapor extraction (VAPEX) is a recovery process which targets the heavy oil and bitumen resources. Owing to high viscosity values for these… (more)

Rezaei, Nima

2010-01-01T23:59:59.000Z

173

Soybeans: Chemistry, Production, Processing, and UtilizationChapter 11 Oil Recovery from Soybeans  

Science Conference Proceedings (OSTI)

Soybeans: Chemistry, Production, Processing, and Utilization Chapter 11 Oil Recovery from Soybeans Food Science Health Nutrition Biochemistry Processing Soybeans eChapters Food Science & Technology Health - Nutrition - Biochemistry

174

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

This report contains information on contracts for field projects and supporting research on enhanced oil recovery. Brief descriptions of research programs are included. (CBS)

Not Available

1990-05-01T23:59:59.000Z

175

Monitoring of thermal enhanced oil recovery processes with electromagnetic methods  

SciTech Connect

Research in applying electromagnetic methods for imaging thermal enhanced oil recovery has progressed significantly during the past eighteen months. Working together with researchers at Lawrence Berkeley Laboratory (LBL) and supported by a group of industrial sponsors we have focused our effort on field system development and doing field surveys connected with EOR operations. Field surveys were recently completed at the Lost Hills No.3 oil field and at UC Richmond Field station. At Lost Hills, crosshole EM data sets were collected before a new phase of steam injection for EOR and again four months after the onset of steaming. The two data sets were nearly identical suggesting that very little steam had been injected into this borehole. This is in accord with the operators records which indicate injectivity problems with this particular well. At Richmond we conducted a salt water injection monitoring experiment where 50,000 gallons of salt water were injected in a shallow aquifer and crosshole EM data were collected using the injection well and several observation wells. We applied the imaging code to some of the collected data and produced an image showing that the salt water slug has propagated 8--10 m from the injector into the aquifer. This result is partially confirmed by prior calculations and well logging data. Applying the EM methods to the problem of oil field characterization essentially means extending the borehole resistivity log into the region between wells. Since the resistivity of a sedimentary environment is often directly dependent on the fluids in the rock the knowledge of the resistivity distribution within an oil field can be invaluable for finding missed or bypassed oil or for mapping the overall structure. With small modification the same methods used for mapping EOR process can be readily applied to determining the insitu resistivity structure.

Wilt, M.

1992-09-01T23:59:59.000Z

176

Economic Implementation and Optimization of Secondary Oil Recovery  

Science Conference Proceedings (OSTI)

The St Mary West Barker Sand Unit (SMWBSU or Unit) located in Lafayette County, Arkansas was unitized for secondary recovery operations in 2002 followed by installation of a pilot injection system in the fall of 2003. A second downdip water injection well was added to the pilot project in 2005 and 450,000 barrels of saltwater has been injected into the reservoir sand to date. Daily injection rates have been improved over initial volumes by hydraulic fracture stimulation of the reservoir sand in the injection wells. Modifications to the injection facilities are currently being designed to increase water injection rates for the pilot flood. A fracture treatment on one of the production wells resulted in a seven-fold increase of oil production. Recent water production and increased oil production in a producer closest to the pilot project indicates possible response to the water injection. The reservoir and wellbore injection performance data obtained during the pilot project will be important to the secondary recovery optimization study for which the DOE grant was awarded. The reservoir characterization portion of the modeling and simulation study is in progress by Strand Energy project staff under the guidance of University of Houston Department of Geosciences professor Dr. Janok Bhattacharya and University of Texas at Austin Department of Petroleum and Geosystems Engineering professor Dr. Larry W. Lake. A geologic and petrophysical model of the reservoir is being constructed from geophysical data acquired from core, well log and production performance histories. Possible use of an outcrop analog to aid in three dimensional, geostatistical distribution of the flow unit model developed from the wellbore data will be investigated. The reservoir model will be used for full-field history matching and subsequent fluid flow simulation based on various injection schemes including patterned water flooding, addition of alkaline surfactant-polymer (ASP) to the injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.

Cary D. Brock

2006-01-09T23:59:59.000Z

177

Waterflood and Enhanced Oil Recovery Studies using Saline Water and Dilute Surfactants in Carbonate Reservoirs  

E-Print Network (OSTI)

Water injection has been practiced to displace the hydrocarbons towards adjacent wells and to support the reservoir pressure at or above the bubble point. Recently, waterflooding in sandstone reservoirs, as secondary and tertiary modes, proved to decrease the residual oil saturation. In calcareous rocks, water from various resources (deep formation, seawater, shallow beds, lakes and rivers) is generally injected in different oil fields. The ions interactions between water molecules, salts ions, oil components, and carbonate minerals are still ambiguous. Various substances are usually added before or during water injection to enhance oil recovery such as dilute surfactant. Various methods were used including surface charge (zeta potential), static and dynamic contact angle, core flooding, inductively coupled plasma spectrometry, CAT scan, and geochemical simulation. Limestone and dolomite particles were prepared at different wettability conditions to mimic the actual carbonate reservoirs. In addition to seawater and dilute seawater (50, 20, 10, and 1 vol%), formation brine, shallow aquifer water, deionized water and different crude oil samples were used throughout this study. The crude oil/water/carbonates interactions were also investigated using short and long (50 cm) limestone and dolomite rocks at different wettability and temperature conditions. The aqueous ion interactions were extensively monitored via measuring their concentrations using advanced analytical techniques. The activity of the free ions, complexes, and ion pairs in aqueous solutions were simulated at high temperatures and pressures using OLI electrolyte simulation software. Dilute seawater decreased the residual oil saturation in some of the coreflood tests. Hydration and dehydration processes through decreasing and increasing salinity showed no impact on calcite wettability. Effect of individual ions (Ca, Mg, and Na) and dilute seawater injection on oil recovery was insignificant in compare to the dilute surfactant solutions (0.1 wt%). The reaction mechanisms were confirmed to be adsorption of hydroxide ions, complexes and ion pairs at the interface which subsequently altered the surface potential from positive to negative. Results in this study indicate multistage waterflooding can enhance oil recovery in the field under certain conditions. Mixed streams simulation results suggest unexpected ions interactions (NaCO3-1, HSO4-1, NaSO4-1 and SO4-2) with various activities trends especially at high temperatures.

Alotaibi, Mohammed

2011-12-01T23:59:59.000Z

178

Thermally-enhanced oil recovery method and apparatus  

DOE Patents (OSTI)

A thermally-enhanced oil recovery method and apparatus for exploiting deep well reservoirs utilizes electric downhole steam generators to provide supplemental heat to generate high quality steam from hot pressurized water which is heated at the surface. A downhole electric heater placed within a well bore for local heating of the pressurized liquid water into steam is powered by electricity from the above-ground gas turbine-driven electric generators fueled by any clean fuel such as natural gas, distillate or some crude oils, or may come from the field being stimulated. Heat recovered from the turbine exhaust is used to provide the hot pressurized water. Electrical power may be cogenerated and sold to an electric utility to provide immediate cash flow and improved economics. During the cogeneration period (no electrical power to some or all of the downhole units), the oil field can continue to be stimulated by injecting hot pressurized water, which will flash into lower quality steam at reservoir conditions. The heater includes electrical heating elements supplied with three-phase alternating current or direct current. The injection fluid flows through the heater elements to generate high quality steam to exit at the bottom of the heater assembly into the reservoir. The injection tube is closed at the bottom and has radial orifices for expanding the injection fluid to reservoir pressure.

Stahl, Charles R. (Scotia, NY); Gibson, Michael A. (Houston, TX); Knudsen, Christian W. (Houston, TX)

1987-01-01T23:59:59.000Z

179

Enhanced Oil Recovery Using the Alkaline-Surfactant-Polymer (ASP)  

E-Print Network (OSTI)

Alkaline Surfactant Polymer (ASP) process is a tertiary method of oil recovery that has promising results for future development. It has already been implemented in different areas of the United States such as Wyoming, west Texas, also in Canada and China. The success of this process depends on the proper combination of alkali, surfactant, and polymer and their compatibility with a reservoir. Therefore, the main objective of the proposed research is to identify chemical interactions between ASP chemicals and reservoir fluids and rock. I hypothesize that testing different alkalis, polymers and surfactants will result not only in getting different profiles of rheological properties of ASP system, but also analyzing compatibility degrees of chemicals with formation fluids and rock properties such as rock wettability, oil mobility and sweep efficiency which will be affected by the designed ASP system. In this paper the results of chemical interactions between ASP chemicals and reservoir fluids are presented and the phenomena occurred are described. The experiments conducted are considered to be unique for a selected oil sample with certain values of API gravity, viscosity, and chemical composition. Lab experiments conducted show the effect of polymer, alkali and surfactant addition to an aqueous solution. Polymers were tested with alkali as a function of shear rate for the purposes of the buildup water viscosity in EOR. Different types of alkali at different concentrations are tested for alkali optimal concentration determination. The effect of adding surfactant at different concentrations has been tested, and acidic number of tested oil sample was identified. Polymers tested with alkali result in non-Newtonian behavior of the testing solution and display a shear thinning beneficial effect for the buildup water viscosity in EOR. The results show that acidic number of crude oil is a critical parameter that affects the optimal concentration for mixing chemicals and interfacial tension profile. The alkali and surfactant added to crude oil result in a significant reduction of interfacial tension and lead to increase of oil mobilization which is a desired output after ASP injection in EOR process.

Musharova, Darya

2010-05-01T23:59:59.000Z

180

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 9 Filtration Techniques in Vegetable Oil Processing  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 9 Filtration Techniques in Vegetable Oil Processing Processing eChapters Processing Press Downloadable pdf of Chapter 9 Filtration Techniques in Veg

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Fiber Sensor Technologies for Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery Final Technical Report Reporting Period Start Date: 1 October 1998 Reporting Period End Date: 31 March 2003 Principal Investigator: Anbo Wang Principal Report Authors: Kristie L. Cooper, Gary R. Pickrell, Anbo Wang Report Issued: June 2003 DOE Award Number: DE-FT26-98BC15167 Submitted by: Center for Photonics Technology Bradley Department of Electrical and Computer Engineering Virginia Polytechnic Institute & State University Blacksburg, VA 24061-0111 ii Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

182

Biosurfactant Activity for Enhanced Oil Recovery Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of Microorganisms with Improved Transport and Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery Final Report Report Start Date: June 1, 2002 Report End Date: August 31, 2005 M. J. McInerney, K.E. Duncan, N. Youssef, T. Fincher, S. K. Maudgalya, M. J. Folmsbee, R. Knapp, Randy R. Simpson, N. Ravi, and D. Nagle Date of Report: August 15, 2005 DE-FC-02NT15321 R 02 Department of Botany and Microbiology and Department of Petroleum Engineering University of Oklahoma 770 Van Vleet Oval Norman, OK 73019-0245 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government not any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or

183

Waterflood control system for maximizing total oil recovery  

DOE Patents (OSTI)

A control system and method for determining optimal fluid injection pressure is based upon a model of a growing hydrofracture due to waterflood injection pressure. This model is used to develop a control system optimizing the injection pressure by using a prescribed injection goal coupled with the historical times, pressures, and volume of injected fluid at a single well. In this control method, the historical data is used to derive two major flow components: the transitional component, where cumulative injection volume is scaled as the square root of time, and a steady-state breakthrough component, which scales linearly with respect to time. These components provide diagnostic information and allow for the prevention of rapid fracture growth and associated massive water break through that is an important part of a successful waterflood, thereby extending the life of both injection and associated production wells in waterflood secondary oil recovery operations.

Patzek, Tadeusz Wiktor (Oakland, CA); Silin, Dimitriy Borisovich (Pleasant Hill, CA); De, Asoke Kumar (San Jose, CA)

2007-07-24T23:59:59.000Z

184

Bartlesville Energy Technology Center enhanced oil recovery project data base  

SciTech Connect

The BETC Enhanced Oil Recovery Data Base is currently being developed to provide an information resource to accelerate the advancement and applications of EOR technology. The primary initial sources of data have been the Incentive and Cost-Shared Programs. The data base presently contains information on 607 EOR projects. This includes 410 of the approximately 423 projects which operators originally applied for certification with the Incentive Program; 20 EOR projects under the Cost-Shared Program; and a data base relating to 177 projects developed by Gulf Universities Research Consortium. In addition, relevant data from all previous DOE-funded contractor EOR data bases will be integrated into the BETC data base. Data collection activities from publicly available information sources is continuing on an on-going basis to insure the accuracy and timeliness of the information within the data base. The BETC data base is being developed utilizing a commercial data base management system. The basic structure of the data base is presented as Appendix I. This data base includes information relating to reservoir characteristics, process-specific data, cost information, production data, and contact persons for each project. The preliminary list of data elements and the current density of occurrence is presented as Appendix II. A basic profile of the types of projects contained within the developmental data base is contained in Appendix III. Appendix IV presents a number of system output reports to illustrate potential data base applications. Plans to eventually place the data base in a computer system which would be publicly accessible are currently under active consideration. A list of Incentive projects processed to date by BETC is provided as Appendix V. Appendix VI gives a detailed report by EOR Process for all projects in the BETC's Enhanced Oil Recovery Data Base.

Not Available

1982-03-01T23:59:59.000Z

185

Enhanced oil recovery using flash-driven steamflooding  

DOE Patents (OSTI)

The present invention is directed to a novel steamflooding process which utilizes three specific stages of steam injection for enhanced oil recovery. The three stages are as follows: As steam is being injected into an oil-bearing reservoir through an injection well, the production rate of a production well located at a distance from the injection well is gradually restricted to a point that the pressure in the reservoir increases at a predetermined rate to a predetermined maximum value. After the maximum pressure has been reached, the production rate is increased to a value such that the predetermined maximum pressure value is maintained. Production at maximum pressure is continued for a length of time that will be unique for each individual reservoir. In some cases, this step of the steamflooding process of the invention may be omitted entirely. In the third stage of the steamflooding process of the invention, production rates at the producing well are increased gradually to allow the pressure to decrease down from the maximum pressure value to the original pressure value at the producing well. The rate of pressure reduction will be unique for each reservoir. After completing stage three, the three stages can be repeated or the steamflood may be terminated as considered desirable.

Roark, Steven D. (Bartlesville, OK)

1990-01-01T23:59:59.000Z

186

Horizontal well improves oil recovery from polymer flood--  

Science Conference Proceedings (OSTI)

Horizontal drilling associated with an injection scheme appears to be highly promising for obtaining additional oil recovery. Horizontal well CR 163H, in the Chateaurenard field is discussed. It demonstrated that a thin unconsolidated sand can be successfully drilled and cased. The productivity index (PI) of the well was much greater than vertical wells, and an unproduced oil bank was successfully intersected. On the negative side, it was necessary to pump low in a very deviated part of the well, and the drilling cost was high compared to an onshore vertical well. CR 163H was the fifth and probably most difficult horizontal well drilled by Elf Aquitaine. Located within a polymer-flood project, the target was a 7-m thick sand reservoir at a vertical depth of 590:0080 m. In this inverted seven-spot configuration with one injector in the center and six producers at a distance of 400 m, a polymer solution was injected from 1977 to 1983, followed by water injection.

Bruckert, L. (Elf Aquitaine, Boussens, (FR))

1989-12-18T23:59:59.000Z

187

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 39, quarter ending June 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1984-12-01T23:59:59.000Z

188

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 41, quarter ending December 31, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-07-01T23:59:59.000Z

189

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 42, quarter ending March 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-11-01T23:59:59.000Z

190

Surfactant Based Enhanced Oil Recovery and Foam Mobility Control  

Science Conference Proceedings (OSTI)

Surfactant flooding has the potential to significantly increase recovery over that of conventional waterflooding. The availability of a large number of surfactant structures makes it possible to conduct a systematic study of the relation between surfactant structure and its efficacy for oil recovery. A mixture of two surfactants was found to be particularly effective for application in carbonate formations at low temperature. The mixture is single phase for higher salinity or calcium concentrations than that for either surfactant used alone. This makes it possible to inject the surfactant slug with polymer close to optimal conditions and yet be single phase. A formulation has been designed for a particular field application. It uses partially hydrolyzed polyacrylamide for mobility control. The addition of an alkali such as sodium carbonate makes possible in situ generation of naphthenic soap and significant reduction of synthetic surfactant adsorption. The design of the process to maximize the region of ultra-low IFT takes advantage of the observation that the ratio of soap to synthetic surfactant is a parameter in the conditions for optimal salinity. Even for a fixed ratio of soap to surfactant, the range of salinity for low IFT was wider than that reported for surfactant systems in the literature. Low temperature, forced displacement experiments in dolomite and silica sandpacks demonstrate that greater than 95% recovery of the waterflood remaining oil is possible with 0.2% surfactant concentration, 0.5 PV surfactant slug, with no alcohol. Compositional simulation of the displacement process demonstrates the role of soap/surfactant ratio on passage of the profile through the ultralow IFT region, the importance of a wide salinity range of low IFT, and the importance of the viscosity of the surfactant slug. Mobility control is essential for surfactant EOR. Foam is evaluated to improve the sweep efficiency of surfactant injected into fractured reservoirs as well as a drive fluid for ASP flooding. UTCHEM is a reservoir simulator specially designed for surfactant EOR. It has been modified to represent the effects of a change in wettability produced by surfactant injection.

George J. Hirasaki; Clarence A. Miller

2006-09-09T23:59:59.000Z

191

Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations  

Science Conference Proceedings (OSTI)

Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.

Eric P. Robertson

2010-09-01T23:59:59.000Z

192

Horizontal oil well applications and oil recovery assessment. Technical progress report, April--June 1994  

SciTech Connect

Thousands of horizontal wells are being drilled each year in the U.S.A. and around the world. Horizontal wells have increased oil and gas production rates 3 to 8 times those of vertical wells in many areas and have converted non-economic oil reserves to economic reserves. However, the use of horizontal technology in various formation types and applications has not always yielded anticipated success. The primary objective of this project is to examine factors affecting technical and economic success of horizontal well applications. The project`s goals will be accomplished through six tasks designed to evaluate the technical and economic success of horizontal drilling, highlight current limitations, and outline technical needs to overcome these limitations. Data describing operators` experiences throughout the domestic oil and gas industry will be gathered and organized. Canadian horizontal technology will also be documented with an emphasis on lessons the US industry can learn from Canada`s experience. MEI databases containing detailed horizontal case histories will also be used. All these data will be categorized and analyzed to assess the status of horizontal well technology and estimate the impact of horizontal wells on present and future domestic oil recovery and reserves.

McDonald, W.J.

1993-06-03T23:59:59.000Z

193

Recovery Act: Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxid  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide-Water Carbon Dioxide-Water Emulsion for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide Background The U.S. Department of Energy (DOE) distributed a portion of American Recovery and Reinvestment Act (ARRA) funds to advance technologies for chemical conversion of carbon dioxide (CO 2 ) captured from industrial sources. The focus of the research projects is permanent sequestration of CO 2 through mineralization or development

194

Mass Transfer Mechanisms during the Solvent Recovery of Heavy Oil.  

E-Print Network (OSTI)

??Canada has the second largest proven oil reserves next to Saudi Arabia which is mostly located in Alberta and Saskatchewan but is unconventional heavy oil… (more)

James, Lesley

2009-01-01T23:59:59.000Z

195

Forecasting of isothermal enhanced oil recovery (EOR) and waterflood processes.  

E-Print Network (OSTI)

??Oil production from EOR and waterflood processes supplies a considerable amount of the world's oil production. Therefore, the screening and selection of the best EOR… (more)

Mollaei, Alireza

2012-01-01T23:59:59.000Z

196

Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates  

Science Conference Proceedings (OSTI)

About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the core scale. Formation evaluation and prediction is often subject to great uncertainty. This study addresses quantification of crude oil/brine/rock interactions and the impact of reservoir heterogeneity on oil recovery by spontaneous imbibition and viscous displacement from pore to field scale. Wettability-alteration characteristics of crude oils were measured at calcite and dolomite surfaces and related to the properties of the crude oils through asphaltene content, acid and base numbers, and refractive index. Oil recovery was investigated for a selection of limestones and dolomites that cover over three orders of magnitude in permeability and a factor of four variation in porosity. Wettability control was achieved by adsorption from crude oils obtained from producing carbonate reservoirs. The induced wettability states were compared with those measured for reservoir cores. The prepared cores were used to investigate oil recovery by spontaneous imbibition and viscous displacement. The results of imbibition tests were used in wettability characterization and to develop mass transfer functions for application in reservoir simulation of fractured carbonates. Studies of viscous displacement in carbonates focused on the unexpected but repeatedly observed sensitivity of oil recovery to injection rate. The main variables were pore structure, mobility ratio, and wettability. The potential for improved oil recovery from rate-sensitive carbonate reservoirs by increased injection pressure, increased injectivity, decreased well spacing or reduction of interfacial tension was evaluated.

Norman R. Morrow; Jill Buckley

2006-04-01T23:59:59.000Z

197

Environmental effects of microbial enhanced oil recovery processes  

SciTech Connect

This status report addresses key milestones 4 and 5 of the FY86 Annual Plan for BE3. These milestones are: Preliminary Design for Microbial Field Compatibility Test Developed; and Recommendation on Continuation of Field Testing. A consistent objective of BE3 has been to determine guidelines for performing microbial enhanced oil recovery (MEOR) processes in the field. Laboratory research has focused upon the compatibility and behavior of microorganisms used for MEOR in porous media. Information from these compatibility experiments, along with continual reviews of current MEOR literature, has been used to design a field MEOR compatibility test. This test has several objectives: (1) to determine the best available and scientifically accurate method for sampling and monitoring microorganisms in the oilfield; (2) to obtain information about what microorganisms are indigenous to that particular field; (3) to correlate a laboratory research effort with this field test so that some predictions can be made about the outcome; (4) to develop a set of guidelines for other field MEOR projects so that any environmental concerns could be addressed and satisfied; and (5) to provide recommendations for future MEOR field research. To perform and monitor a successful microbial field compatibility test, an important parameter is the preliminary design and planning. 2 refs.

Bryant, R.S.

1986-07-01T23:59:59.000Z

198

Engineering new oil recovery methods. [1800-3,000 psi  

SciTech Connect

In the LPG slug process, propane under normal pressures of a few hundred psi and temperatures in the order of 150/sup 0/F is a liquid. With the methane-LPG slugs, an LPG slug miscible displacement program may be operated at fairly shallow depths. Even if the reservoir depth is only 1,500 ft, it would be possible to carry out an LPG slug miscible displacement program. It is not difficult to maintain miscibility between methane and propane. A crude of very low viscosity should be selected to reduce solvent dispersion and costs of a miscible displacement project. It is necessary that the LPG slug be of sufficient size so that miscibility does not break down prematurely and result in a very low oil recovery. Enriched gas drives are designed to achieve miscible displacement at pressures ranging from about 1,800 to 3,000 psi. Miscibility may also be achieved at pressures outside this range.The cost of establishing a miscible zone in LPG or enriched gas drives can be quite expensive. In the case of an enriched gas drive, size of the zone becomes quite large. Although the size of the zone may be fairly small for the case of LPG slugs, the cost of acquiring the LPG can be prohibitive, in some cases.

Crawford, P.B.

1969-06-01T23:59:59.000Z

199

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments (OSTI)

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

200

Supporting technology for enhanced oil recovery for thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

Reid, T.B.; Bolivar, J.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Supporting technology for enhanced oil recovery: EOR thermal processes  

Science Conference Proceedings (OSTI)

This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

Reid, T.B. (USDOE Bartlesville Project Office, OK (United States)); Colonomos, P. (INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela))

1993-02-01T23:59:59.000Z

202

Carbon Dioxide Enhanced Oil Recovery and Sequestration Projects --Wellington Field,  

E-Print Network (OSTI)

and seismic contractors TBN Dawson-Markwell Exploration Co. #12;20 MM bbls oil produced ~40 MM bbls oil and deeply buried Arbuckle Aquifer ­ Overlying Mississippian carbonates contain large oil and gas reservoirs freshwater aquifers, and very limited oil and gas production. ­ Published estimates of CO2 sequestration

Peterson, Blake R.

203

Evaluation of Reservoir Wettability and its Effect on Oil Recovery,10/96,659,264  

Office of Scientific and Technical Information (OSTI)

EVALUATION OF RESERVOIR WETTABILITY AND ITS EFFECT ON OIL RECOVERY EVALUATION OF RESERVOIR WETTABILITY AND ITS EFFECT ON OIL RECOVERY First Annual Report by Jill S. Buckley Work Performed under Cooperative Agreement Number DE-FC22-96ID13421 Reporting Period: July 1, 1996 - June 30, 1997 Prepared for U.S. Department of Energy Assistant Secretary for Fossil Energy Jerry Casteel, Project Manager National Petroleum Technology Center P.O. Box 3628 Tulsa OK 74101 Prepared by Petroleum Recovery Research Center New Mexico Institute of Mining and Technology 801 Leroy Place Socorro, NM 87801 ii ABSTRACT We report on the first year of the project, "Evaluation of Reservoir Wettability and its Effect on Oil Recovery." The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with

204

Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil.  

E-Print Network (OSTI)

??In the past few years, research has been conducted at Texas A&M University on steam-propane injection to enhance oil recovery from the Morichal field, Venezuela,… (more)

Tinss, Judicael Christopher

2012-01-01T23:59:59.000Z

205

Supporting technology for enhanced oil recovery: Third ammendment and extension to Annex IV enhanced oil recovery thermal processes  

Science Conference Proceedings (OSTI)

This report contains the results of efforts under the seven tasks of the Third Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of effort under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 25 through 31. The first, second, and third reports on Annex IV, ((Venezuela-MEM/USA-DOE Fossil Energy Report IV-1, IV-2, and IV-3 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, and DOE/BC-86/2/SP)) contain the results from the first 24 tasks. Those reports are dated April 1983, August 1984, and March 1986. Selected papers have been processed for inclusion in the Energy Data Base.

Peterson, G.; Munoz, J.D.

1987-07-01T23:59:59.000Z

206

Analysis of potential used oil recovery from individuals. Final report  

SciTech Connect

To assist the Department of Energy in its investigation of methods for recycling used motor oil, Market Facts conducted a telephone survey of individuals who change their own motor oil. The study examined the amount of oil used, oil change practices, oil disposal methods, and perceptions and attitudes toward used motor oil disposal and oil recycling. The results of this survey are presented in this report. The findings of this study confirm the generally held view that about half the vehicle households in the United States now do their own oil changes and additions. These do-it-yourselfers (DIY) households account for almost two-thirds of the motor oil consumed by all US households and produce about one-third of one billion gallons of used motor oil annually. At least half of this used motor oil, more than 170 million gallons, is returned to the environment in a form that pollutes the ground and endangers the water supply. Measures such as requiring information about proper disposal and the need for recycling used oil to be printed on motor oil containers have been taken in many states. The need for reminder advertising and reinforcement education and information and practical measures to ease the burden of compliance is suggested. These results suggest that careful consideration be given to the logistics of these measures. The most appealing of the measures would appear to be making a special container available to DIY oil changers. Employing civic groups as collection agents would also seem to be attractive.

Gottlieb, M.

1981-07-01T23:59:59.000Z

207

Experimental study of Morichal heavy oil recovery using combined steam and propane injection  

E-Print Network (OSTI)

Considerable research and testing have been conducted for the improvement of basic thermal recovery processes and for the development and application of other methods of reservoir heating. Effects of various additives injected simultaneously with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela. The experiments were conducted using an injection cell packed with sandmix containing a mixture of sand, water, and Morichal oil. Experimental runs involved injection of steam, or propane, or a mixture of steam and propane into the cell at constant rate, temperature, and pressure. The injection was kept constant at 5 g/min for all runs. Five experiments were performed, namely, run 1 (50 wt.% steam and 50 wt.% propane), run 2 (100 wt.% steam), run 3 (75 wt.% steam and 25 wt.% propane), run 4 (100 wt.% propane), and run 5 (95 wt.% steam and 5 wt.% propane). Main findings for this study are as follows. First, it appears possible to accelerate recovery of Morichal oil using combined steam and propane injection. Oil recovery at 61% OOIP may be up to 0.23 pore volume faster than using steam injection alone, with gain in ultimate recovery of up to 5% OOIP. Second, with only propane injection, at temperature and pressure conditions tested, practically no oil is recovered. Steam is necessary to reduce interfacial tension and the oil viscosity, thus allowing propane to permeate through the oil. This increases propane miscibility with oil, further reducing the residual oil saturation, and enhances the displacement efficiency. It is recommended that further research be conducted to confirm the technical and economic feasibility of steam-propane injection, particularly for other crude oil types, and at pressure and temperature conditions encountered in the field.

Goite Marcano, Jose Gregorio

1999-01-01T23:59:59.000Z

208

Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, July 1, 1995--September 30, 1995  

SciTech Connect

This document presents brief descriptions of research programs concerned with enhanced oil recovery.

NONE

1996-10-01T23:59:59.000Z

209

Advanced oil recovery technologies for improved recovery from slope basin clastic reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM. Quarterly technical progress report, October 1--December 31, 1995  

SciTech Connect

Objective is to demonstrate that a development program based on advanced reservoir management methods can significantly improve oil recovery and to transfer this technology to oil and gas producers in the Permian Basin. The demonstration plan includes developing a control area using standard reservoir management techniques and comparing the performance of the control area with an area developed using advanced management methods. Specific goals are (1) to demonstrate that a development drilling program and pressure maintenance program, based on advanced reservoir management methods, can significantly improve oil recovery compared with existing technology applications, and (2) to transfer the advanced technologies to oil and gas producers in the Permian Basin and elswhere in the US oil and gas industry. This is the first quarterly progress report on the project; results to date are summarized.

NONE

1996-01-22T23:59:59.000Z

210

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 13 Low-Cost Oil-Processing Techniques  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 13 Low-Cost Oil-Processing Techniques Processing eChapters Processing Press Downloadable pdf of Chapter 13 Low-Cost Oil-Processing Techniques from t

211

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect

This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and formulated aiming to reveal the interplay of the viscous, interfacial and gravity forces and to predict the gravity drainage performance. Scaling criteria for the scaled physical model design have been proposed based on an inspectional analysis. In Section II, equation of state (EOS) calculations were extended to study the effect of different tuning parameters on MMP for two reservoir crude oils of Rainbow Keg River and Terra Nova. This study indicates that tuning of EOS may not always be advisable for miscibility determination. Comparison of IFT measurements for benzene in water, ethanol mixtures with the solubility data from the literature showed that a strong mutual relationship between these two thermodynamic properties exists. These preliminary experiments indicate applicability of the new vanishing interfacial tension (VIT) technique to determine miscibility of ternary liquid systems. The VIT experimental apparatus is under construction with considerations of expanded capacity of using equilibrated fluids and a new provision for low IFT measurement in gas-oil systems. In Section III, recommendations in the previous progress reports have been investigated in this reporting period. WAG coreflood experiments suggest the use of ''Hybrid''-WAG type floods for improved CO{sub 2} utilization factors and recoveries. The effect of saturating the injection water with CO{sub 2} for core-floods has been investigated further in this quarter. Miscible WAG floods using CO{sub 2} saturated brine showed higher recoveries (89.2% ROIP) compared to miscible WAG floods using normal brine (72.5%). Higher tertiary recovery factors (TRF) were also observed for WAG floods using CO{sub 2} saturated brine due to improved mobility ratio and availability of CO{sub 2}. Continued experimentation for evaluation of both, ''Hybrid''-WAG and gravity stable type displacements, in Berea sandstone cores using synthetic as well as real reservoir fluids are planned for the next quarter.

Dandina N. Rao

2003-10-01T23:59:59.000Z

212

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect

This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and formulated aiming to reveal the interplay of the viscous, interfacial and gravity forces and to predict the gravity drainage performance. Scaling criteria for the scaled physical model design have been proposed based on an inspectional analysis. In Section II, equation of state (EOS) calculations were extended to study the effect of different tuning parameters on MMP for two reservoir crude oils of Rainbow Keg River and Terra Nova. This study indicates that tuning of EOS may not always be advisable for miscibility determination. Comparison of IFT measurements for benzene in water, ethanol mixtures with the solubility data from the literature showed that a strong mutual relationship between these two thermodynamic properties exists. These preliminary experiments indicate applicability of the new vanishing interfacial tension (VIT) technique to determine miscibility of ternary liquid systems. The VIT experimental apparatus is under construction with considerations of expanded capacity of using equilibrated fluids and a new provision for low IFT measurement in gas-oil systems. In Section III, recommendations in the previous progress reports have been investigated in this reporting period. WAG coreflood experiments suggest the use of ''Hybrid''-WAG type floods for improved CO{sub 2} utilization factors and recoveries. The effect of saturating the injection water with CO{sub 2} for core-floods has been investigated further in this quarter. Miscible WAG floods using CO{sub 2} saturated brine showed higher recoveries (89.2% ROIP) compared to miscible WAG floods using normal brine (72.5%). Higher tertiary recovery factors (TRF) were also observed for WAG floods using CO{sub 2} saturated brine due to improved mobility ratio and availability of CO{sub 2}. Continued experimentation for evaluation of both, ''Hybrid''-WAG and gravity stable type displacements, in Berea sandstone cores using synthetic as well as real reservoir fluids are planned for the next quarter.

Dandina N. Rao

2003-10-01T23:59:59.000Z

213

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

SciTech Connect

The objective of this study is to study waterflood problems of the type found in Morrow sandstone. The major tasks undertaken are reservoir characterization and the development of a reservoir database; volumetric analysis to evaluate production performance; reservoir modeling; identification of operational problems; identification of unrecovered mobile oil and estimation of recovery factors; and identification of the most efficient and economical recovery process.

A. Walton; D. McCune; D.W. Green; G.P. Willhite; L. Watney; R. Reynolds; m. Michnick

1998-04-15T23:59:59.000Z

214

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87  

SciTech Connect

Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

NONE

1997-10-01T23:59:59.000Z

215

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report  

SciTech Connect

The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

NONE

1995-11-01T23:59:59.000Z

216

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

217

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of biodegraded'' vs. biotreated'' crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

218

Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)  

Science Conference Proceedings (OSTI)

Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of ``biodegraded`` vs. ``biotreated`` crude oil in MEOR also discussed.

Premuzic, E.T.; Lin, M.S.; Manowitz, B.

1992-11-01T23:59:59.000Z

219

Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas -- Near-Term -- Class 2  

SciTech Connect

This report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

1999-07-08T23:59:59.000Z

220

Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation  

Science Conference Proceedings (OSTI)

Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

Armstrong, Ryan T.; Wildenschild, Dorthe (Oregon State U.)

2012-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Engineered Nanoparticles as Improved Oil Recovery and Flow ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Advanced Materials and Reservoir Engineering for Extreme Oil & Gas ...

222

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect

This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

2004-10-01T23:59:59.000Z

223

Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs  

Science Conference Proceedings (OSTI)

This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

2009-01-07T23:59:59.000Z

224

Modification of chemical and physical factors in steamflood to increase heavy oil recovery  

Science Conference Proceedings (OSTI)

This report covers the work performed in the various physicochemical factors for the improvement of oil recovery efficiency. In this context the following general areas were studied: (1) The understanding of vapor-liquid flows in porous media, including processes in steam injection; (2) The effect of reservoir heterogeneity in a variety of foams, from pore scale to macroscopic scale; (3) The flow properties of additives for improvement of recovery efficiency, particularly foams and other non-Newtonian fluids; and (4) The development of optimization methods to maximize various measures of oil recovery.

Yortsos, Yanis C.

2000-01-19T23:59:59.000Z

225

Enhanced oil-recovery operations in Kansas, 1979. Energy Resources Series 17  

SciTech Connect

Data for 1552 enhanced oil-recovery (EOR) projects are listed in this report and a map shows their distribution. The majority of the EOR projects fall into the categories of pressure maintenance, dump floods, and controlled waterfloods, which are secondary recovery projects. There are several active tertiary projects and a few inactive projects. Active EOR projects are listed alphabetically by county and field. Data on thickness and depth of oil-producing zones or injection horizons, sources of water, and cumulative figures on oil produced and water injected are included. (DMC)

Paul, S.E.; Bahnmaier, E.L.

1981-01-01T23:59:59.000Z

226

Effects of oil spills on coastal wetlands and their recovery: Year 4, final report  

Science Conference Proceedings (OSTI)

Oil spills can have a significant short-term impact on coastal marshes, but the long term effects and perhaps eventual recovery are not well documented. The overall goal of the investigation is to document the long-term recovery rate of a Louisiana brackish marsh impacted by an oil spill on 23 April 1985, to separate the effect of the oil spill on marsh deterioration from ambient rates of marsh degradation, and to test means by which recovery can be accelerated and the damage mitigated. These goals have been accomplished through both remote sensing and ground truth assessments, ground based vegetation stress measurements, and manipulative field experiments. A total of 68 permanent plots that were established in the oiled and control marshes at the study site in 1985 were re-surveyed for plant and soil recovery in the fall of 1989 and assessed for species composition, live and dead percentage cover, and residual oil impact. Significant vegetative recovery of the oil-impacted marsh four years after the spill was evident as indicated by significant increases in vegetative cover.

Mendelssohn, I.A.; Hester, M.W.; Hill, J.M.

1993-09-01T23:59:59.000Z

227

Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)  

SciTech Connect

This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

Olsen, D.K.; Johnson, W.I.

1993-08-01T23:59:59.000Z

228

Enhanced oil recovery. Progress review, October--December 1993  

SciTech Connect

This document details current research in the area of enhanced recovery of petroleum as sponsored by the DOE. Progress reports are provided for over thirty projects.

Not Available

1993-12-31T23:59:59.000Z

229

Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery  

SciTech Connect

A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work should focus on lab and field-scale testing of ex situ MEOR using Bacillus licheniformis as well as the biosurfactant-producing strains we have newly isolated from the Milne Point reservoir and the EVOS environment.

Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

2008-12-31T23:59:59.000Z

230

Modeling the Mobile Oil Recovery Problem as a Multiobjective ...  

E-Print Network (OSTI)

blem (MORP) is to optimize both the oil extraction and the travel costs. We describe several formulations for the MORP using a single vehicle or a fleet of ...

231

Optimization Online - Modeling the Mobile Oil Recovery Problem as ...  

E-Print Network (OSTI)

Feb 6, 2009 ... The goal of the MOR optimization Problem (MORP) is to optimize both the oil extraction and the travel costs. We describe several formulations ...

232

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

233

Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990  

Science Conference Proceedings (OSTI)

The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-03-01T23:59:59.000Z

234

Review of statistical methods used in enhanced-oil-recovery research and performance prediction. [131 references  

SciTech Connect

Recent literature in the field of enhanced oil recovery (EOR) was surveyed to determine the extent to which researchers in EOR take advantage of statistical techniques in analyzing their data. In addition to determining the current level of reliance on statistical tools, another objective of this study is to promote by example the greater use of these tools. To serve this objective, the discussion of the techniques highlights the observed trend toward the use of increasingly more sophisticated methods and points out the strengths and pitfalls of different approaches. Several examples are also given of opportunities for extending EOR research findings by additional statistical manipulation. The search of the EOR literature, conducted mainly through computerized data bases, yielded nearly 200 articles containing mathematical analysis of the research. Of these, 21 were found to include examples of statistical approaches to data analysis and are discussed in detail in this review. The use of statistical techniques, as might be expected from their general purpose nature, extends across nearly all types of EOR research covering thermal methods of recovery, miscible processes, and micellar polymer floods. Data come from field tests, the laboratory, and computer simulation. The statistical methods range from simple comparisons of mean values to multiple non-linear regression equations and to probabilistic decision functions. The methods are applied to both engineering and economic data. The results of the survey are grouped by statistical technique and include brief descriptions of each of the 21 relevant papers. Complete abstracts of the papers are included in the bibliography. Brief bibliographic information (without abstracts) is also given for the articles identified in the initial search as containing mathematical analyses using other than statistical methods.

Selvidge, J.E.

1982-06-01T23:59:59.000Z

235

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 52 quarter ending September 30, 1987  

Science Conference Proceedings (OSTI)

This progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience Technology; Environmental Technology; Microbial Technology.

Not Available

1988-07-01T23:59:59.000Z

236

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 51 quarter ending June 30, 1987  

Science Conference Proceedings (OSTI)

This Progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Field Projects; Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience; Environmental Technology; Microbial Technology.

Not Available

1988-05-01T23:59:59.000Z

237

Phase Behavior, Solid Organic Precipitation, and Mobility Characterization Studies in Support of Enhanced Heavy Oil Recovery on the Alaska North Slope  

Science Conference Proceedings (OSTI)

The medium-heavy oil (viscous oil) resources in the Alaska North Slope are estimated at 20 to 25 billion barrels. These oils are viscous, flow sluggishly in the formations, and are difficult to recover. Recovery of this viscous oil requires carefully designed enhanced oil recovery processes. Success of these recovery processes is critically dependent on accurate knowledge of the phase behavior and fluid properties, especially viscosity, of these oils under variety of pressure and temperature conditions. This project focused on predicting phase behavior and viscosity of viscous oils using equations of state and semi-empirical correlations. An experimental study was conducted to quantify the phase behavior and physical properties of viscous oils from the Alaska North Slope oil field. The oil samples were compositionally characterized by the simulated distillation technique. Constant composition expansion and differential liberation tests were conducted on viscous oil samples. Experiment results for phase behavior and reservoir fluid properties were used to tune the Peng-Robinson equation of state and predict the phase behavior accurately. A comprehensive literature search was carried out to compile available compositional viscosity models and their modifications, for application to heavy or viscous oils. With the help of meticulously amassed new medium-heavy oil viscosity data from experiments, a comparative study was conducted to evaluate the potential of various models. The widely used corresponding state viscosity model predictions deteriorate when applied to heavy oil systems. Hence, a semi-empirical approach (the Lindeloff model) was adopted for modeling the viscosity behavior. Based on the analysis, appropriate adjustments have been suggested: the major one is the division of the pressure-viscosity profile into three distinct regions. New modifications have improved the overall fit, including the saturated viscosities at low pressures. However, with the limited amount of geographically diverse data, it is not possible to develop a comprehensive predictive model. Based on the comprehensive phase behavior analysis of Alaska North Slope crude oil, a reservoir simulation study was carried out to evaluate the performance of a gas injection enhanced oil recovery technique for the West Sak reservoir. It was found that a definite increase in viscous oil production can be obtained by selecting the proper injectant gas and by optimizing reservoir operating parameters. A comparative analysis is provided, which helps in the decision-making process.

Shirish Patil; Abhijit Dandekar; Santanu Khataniar

2008-12-31T23:59:59.000Z

238

Experimental Study of Solvent Based Emulsion Injection to Enhance Heavy Oil Recovery  

E-Print Network (OSTI)

This study presents the results of nano-particle and surfactant-stabilized solvent-based emulsion core flooding studies under laboratory conditions that investigate the recovery mechanisms of chemical flooding in a heavy oil reservoir. In the study, bench tests, including the phase behavior test, rheology studies and interfacial tension measurement are performed and reported for the optimum selecting method for the nano-emulsion. Specifically, nano-emulsion systems with high viscosity have been injected into sandstone cores containing Alaska North Slope West Sak heavy oil with 16 API, which was dewatered in the laboratory condition. The experiment results suggest that the potential application of this kind of emulsion flooding is a promising EOR (enhanced oil recovery) process for some heavy oil reservoirs in Alaska, Canada and Venezuela after primary production. Heavy oil lacks mobility under reservoir conditions and is not suitable for the application of the thermal recovery method because of environmental issues or technical problems. Core flooding experiments were performed on cores with varied permeabilities. Comparisons between direct injection of nano-emulsion systems and nano-emulsion injections after water flooding were conducted. Oil recovery information is obtained by material balance calculation. In this study, we try to combine the advantages of solvent, surfactant, and nano-particles together. As we know, pure miscible solvent used as an injection fluid in developing the heavy oil reservoir does have the desirable recovery feature, however it is not economical. The idea of nano-particle application in an EOR area has been recently raised by researchers who are interested in its feature-reaction catalysis-which could reduce in situ oil viscosity and generate emulsion without surfactant. Also, the nano-particle stabilized emulsions can long-distance drive oil in the reservoir, since the nano-particle size is 2-4 times smaller than the pore throat. In conclusion, the nano-emulsion flooding can be an effective enhancement for an oil recovery method for a heavy oil reservoir which is technically sensitive to the thermal recovery method.

Qiu, Fangda

2010-05-01T23:59:59.000Z

239

Behavioral constraints on harlequin duck population recovery from the Exxon Valdez oil spill in Prince William Sound, Alaska.  

E-Print Network (OSTI)

??I investigated the relationship between harlequin duck (Histrionicus histrionicus) behavior and lack of recovery from the Exxon Valdez oil spill in Prince William Sound, Alaska.… (more)

[No author

2004-01-01T23:59:59.000Z

240

Biobased Surfactants and Detergents Synthesis, Properties, and ApplicationsChapter 6 Lipopeptide Biosurfactants and Their Use in Oil Recovery  

Science Conference Proceedings (OSTI)

Biobased Surfactants and Detergents Synthesis, Properties, and Applications Chapter 6 Lipopeptide Biosurfactants and Their Use in Oil Recovery Surfactants and Detergents eChapters Surfactants - Detergents Press   ...

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Contracts for field projects and supporting research on enhanced oil recovery. Reporting period July--September 1996  

SciTech Connect

This report contains information on accomplishments completed during July through September 1997 on contracts for field projects and supporting research on Enhanced Oil Recovery.

NONE

1997-12-01T23:59:59.000Z

242

MINERAL-SURFACTANT INTERACTIONS FOR MINIMUM REAGENTS PRECIPITATION AND ADSORPTION FOR IMPROVED OIL RECOVERY  

SciTech Connect

The aim of this project is to delineate the role of mineralogy of reservoir rocks in determining interactions between reservoir minerals and externally added reagents (surfactants/polymers) and its effect on critical solid-liquid and liquid-liquid interfacial properties such as adsorption, wettability and interfacial tension in systems relevant to reservoir conditions. Previous studies have suggested that significant surfactant loss by precipitation or adsorption on reservoir minerals can cause chemical schemes to be less than satisfactory for enhanced oil recovery. Both macroscopic adsorption, wettability and microscopic orientation and conformation studies for various surfactant/polymer mixtures/reservoir rocks systems were conducted to explore the cause of chemical loss by means of precipitation or adsorption, and the effect of rock mineralogy on the chemical loss. During this period, the adsorption of mixed system of n-dodecyl-{beta}-D-maltoside (DM) and dodecyl sulfonate (C{sub 12}SO{sub 3}Na) has been studied. The effects of solution pH, surfactant mixing ratio and different salts on surfactant adsorption on alumina have been investigated in detail. Along with these adsorption studies, changes in mineral wettability due to the adsorption of the mixtures were determined under relevant conditions to identify the nano-structure of the adsorbed layers. Solution properties of C{sub 12}SO{sub 3}Na/DM mixtures were also studied to identify surfactant interactions that affect the mixed aggregate formation in solution. Adsorption of SDS on gypsum and limestone suggested stronger surfactant/mineral interaction than on alumina, due to the precipitation of surfactant by dissolved calcium ions. The effects of different salts such as sodium nitrate, sodium sulfite and sodium chloride on DM adsorption on alumina have also been determined. As surfactant hemimicelles at interface and micelles in solution have drastic effects on oil recovery processes, their microstructures in solutions and at mineral/solution interfaces were investigated by monitoring micropolarity of the aggregates using fluorescence technique. Compositional changes of the aggregates in solution were observed with the increase in surfactant concentration. The importance of this lies in that the resulting polarity/hydrophobicity change of the mixed micelles will affect the adsorption of surfactant mixtures on reservoir minerals, surfactant/oil emulsion formation and wettability, as a result, the oil release efficiency of the chemical flooding processes in EOR.

P. Somasundaran

2005-04-30T23:59:59.000Z

243

Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report  

SciTech Connect

Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1996-11-01T23:59:59.000Z

244

Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term  

SciTech Connect

Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

1999-01-14T23:59:59.000Z

245

Technological overview reports for eight shale oil recovery processes  

SciTech Connect

The purpose of the document is to supply background information for evaluation of environmental impacts and pollution control technologies in connection with oil shale development. Six surface retorting processes selected for characterization were: (1) Union Oil Retort B, (2) Paraho, (3) TOSCO II, (4) Lurgi Ruhrgas, (5) Superior Oil, and (6) USBM Gas Combustion. In addition, two in-situ retorting activities were selected: (1) the Occidental modified in-situ retort, and (2) the true in-situ development programs of Laramie Energy Technology Center (DOE). Each overview report contains information on oil shale processing. General process descriptions, shale preparation requirements, equipment types, operating conditions, process products and by-products, physical and chemical characteristics, energy and water requirements, process stream characteristics, processed shale disposal requirements, and site-specific environmental aspects are included.

Shih, C.C.; Cotter, J.E.; Prien, C.H.; Nevens, T.D.

1979-03-01T23:59:59.000Z

246

Ethanol Oil Recovery Systems EORS | Open Energy Information  

Open Energy Info (EERE)

and Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View form View...

247

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

248

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

SciTech Connect

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

249

State-of-the-art of microbial enhanced oil recovery: a review of the literature  

SciTech Connect

This report is an overview of the literature on enhanced oil recovery (EOR) using microorganisms. Microorganisms can contribute to four major areas of oil technology, three of which relate to EOR: (1) microorganisms, because of their ability to grow rapidly and excrete several types of by-products, are used to manufacture biosurfactants and biopolymers for EOR; (2) microorganisms can be injected in situ to recover residual oil; (3) microorganisms can be used to selectively plug high permeability channels in reservoirs; and (4) microorganisms can be used to remove sulfur or nitrogen from crude oils, to reduce the viscosity of crude oils, and to clean up oil spills. Before either chemical or microbial technology is established, their environmental impacts should be defined. Environmental concerns of microbial EOR (MEOR) technology are presented in this report. The adverse effects of bacteria indigenous to some reservoirs, e.g., the sulfate reducers and certain aerobic bacteria, also are discussed with respect to MEOR processes. 64 references.

Smith, R.J.; Collins, A.G.

1984-10-01T23:59:59.000Z

250

1170-MW(t) HTGR-PS/C plant application study report: shale oil recovery application  

SciTech Connect

The US has large shale oil energy resources, and many companies have undertaken considerable effort to develop economical means to extract this oil within environmental constraints. The recoverable shale oil reserves in the US amount to 160 x 10/sup 9/ m/sup 3/ (1000 x 10/sup 9/ bbl) and are second in quantity only to coal. This report summarizes a study to apply an 1170-MW(t) high-temperature gas-cooled reactor - process steam/cogeneration (HTGR-PS/C) to a shale oil recovery process. Since the highest potential shale oil reserves lie in th Piceance Basin of Western Colorado, the study centers on exploiting shale oil in this region.

Rao, R.; McMain, A.T. Jr.

1981-05-01T23:59:59.000Z

251

IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2  

SciTech Connect

This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

Timothy R. Carr; Don W. Green; G. Paul Willhite

2000-04-30T23:59:59.000Z

252

Assessment of Long-Term Research Needs for Shale-Oil Recovery (FERWG-III)  

SciTech Connect

The Fossil Energy Research Working Group (FERWG), at the request of E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has reviewed and evaluated the U.S. programs on shale-oil recovery. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term prospects for shale-oil availability. This report summarizes the findings and research recommendations of FERWG.

Penner, S.S.

1981-03-01T23:59:59.000Z

253

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

Science Conference Proceedings (OSTI)

This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed mechanistic Parachor models. In the decane-CO{sub 2} binary system, Parachor model was found to be sufficient for interfacial tension calculations. The predicted miscibility from the Parachor model deviated only by about 2.5% from the measured VIT miscibility. However, in multicomponent live decane-CO{sub 2} system, the performance of the Parachor model was poor, while good match of interfacial tension predictions has been obtained experimentally using the proposed mechanistic Parachor model. The predicted miscibility from the mechanistic Parachor model accurately matched with the measured VIT miscibility in live decane-CO2 system, which indicates the suitability of this model to predict miscibility in complex multicomponent hydrocarbon systems. In the previous reports to the DOE (15323R07, Oct 2004; 15323R08, Jan 2005; 15323R09, Apr 2005; 15323R10, July 2005 and 154323, Oct 2005), the 1-D experimental results from dimensionally scaled GAGD and WAG corefloods were reported for Section III. Additionally, since Section I reports the experimental results from 2-D physical model experiments; this section attempts to extend this 2-D GAGD study to 3-D (4-phase) flow through porous media and evaluate the performance of these processes using reservoir simulation. Section IV includes the technology transfer efforts undertaken during the quarter. This research work resulted in one international paper presentation in Tulsa, OK; one journal publication; three pending abstracts for SCA 2006 Annual Conference and an invitation to present at the Independents Day session at the IOR Symposium 2006.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

2006-01-01T23:59:59.000Z

254

Nondestructive analysis of oil shales with PGNAA technique  

DOE Green Energy (OSTI)

The feasibility of nondestructive analysis of oil shales using the prompt gamma neutron activation analysis (PGNAA) technique was studied. The PGNAA technique, developed originally for continuous analysis of coal on the belt, was applied to the analysis of eight oil-shale samples, containing between 9 and 60 gallons of oil per ton and 0.8% to 3.4% hydrogen. The PGNAA technique was modified using four neutron moderation conditions: non-moderated neutrons; non-moderated and partially moderated neutrons reflected from a water box behind the source; neutrons moderated in a water box behind and in front of the source; and neutrons strongly moderated in a polyethylene block placed in front of the source and with reflected neutrons from a water box behind the source. The studied oil shales were measured in their aluminum or wooden (masonite) boxes. The obtained Ge-Li spectra were processed by LSI-11/23 computer, using the modified programs previously developed by SAI for continuous coal analysis. The results of such processing (the peak areas for several gamma lines) were corrected and plotted against the weight percent of each analyzed element (from the chemical analysis). Response curves developed for H, C, N, S, Na, Mg, Al, Si, Ti, Ca, Fe and K show generally good linear proportions of peak area to the weight percent of the element. For hydrogen determination, NMD conditions had to be used where the response curve was not linear, but followed a curve whose slope rose with hydrogen concentration. This effect is caused by improving neutron self-moderation in sample boxes of rich oil shales, as compared to poor self-moderation of neutrons in very lean oil shales. The moisture in oil shales was measured by microwave absorption technique in small masonite boxes. This method was calibrated four times using oil-shale samples mixed gradually with larger and larger amounts of water.

Maly, J.; Bozorgmanesh, H.

1984-02-01T23:59:59.000Z

255

Enhanced oil recovery and applied geoscience research program. [Quarterly] report, April 1--June 30, 1993  

Science Conference Proceedings (OSTI)

The objectives of this research program are to develop microbial enhanced oil recovery (MEOR) systems for application to reservoirs containing medium to heavy oils and to evaluate reservoir wettability and its effects on oil recovery. The MEOR research goals include: (a) development of bacterial cultures that are effective for oil displacement under a broad range of reservoir conditions, (b) improved understanding of the mechanisms by which microbial systems displace oil under reservoir conditions, (c) determination of the feasibility of combining microbial systems with or following conventional enhanced oil recovery (EOR) processes, (d) development and implementation of industry cost-shared field demonstration projects for MEOR technology. The goals of the reservoir wettability project are to develop: (a) better methods for assessment of reservoir core wettability, (b) more certainty in relating laboratory core analysis procedures to field conditions, (c) a better understanding of the effects of reservoir matrix properties and heterogeneity on wettability, and (d) improved ability to predict and influence waterflood and EOR response through control of wettability in reservoirs.

Thomas, C.P.

1993-12-31T23:59:59.000Z

256

BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.  

SciTech Connect

BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

2008-05-27T23:59:59.000Z

257

High efficiency shale oil recovery. Final report, January 1, 1992--June 30, 1993  

SciTech Connect

The Adams Counter-current shale oil recovery process is an improved retorting technology enabling highly efficient oil recovery from oil shale. The high efficiency results primarily from the following facts: it (1) recovers the ash heat to preheat the feed ore; (2) burns and uses the coke energy and (3) operates without using hot ash recycling as a heat carrier. This latter feature is doubly important, contributing to high oil yield and to the generation of highly reactive coke which can be burned below 1000{degree}F, avoiding the endothermal calcination of the mineral carbonates and helping to clean the ash of contaminants. This project demonstrates that oil shale can be retorted under the specified conditions and achieve the objectives of very high efficiency. The project accomplished the following: 51 quartz sand rotary kiln runs provided significant engineering data. A heat transfer value of 107 Btu/hr/ft{sup 2}/{degree}F was obtained at optimum RPM; eight oil shale samples were obtained and preliminary shakedown runs were made. Five of the samples were selected for kiln processing and twelve pyrolysis runs were made on the five different oil shales;average off recovery was 109% of Fisher Assay; retorted residue from all five samples was oxidized at approximately 1000{degree}F. The ash from these runs was oxidized to varying extents, depending on the oil shale and oxidizing temperatures. While 1000{degree}F is adequately hot to provide process heat from coke combustion for these ores, some Eastern oil shales, without mineral carbonates, may be oxidized at higher temperatures, perhaps 100--300 degrees hotter, to obtain a more complete oxidation and utilization of the coke.

Adams, D.C.

1993-09-29T23:59:59.000Z

258

The Effects of Macroscopic Heterogeneities of Pore Structure and Wettability on Residual Oil Recovery Using the Gravity-Assisted Inert Gas Injection (GAIGI) Process.  

E-Print Network (OSTI)

??To recover oil remaining in petroleum reservoirs after waterflooding, the gravitationally stable mode of gas injection is recognized as a promising tertiary oil recovery process.… (more)

Parsaei, Rafat

2012-01-01T23:59:59.000Z

259

Wyoming chemical flood test for oil recovery shows promise  

Science Conference Proceedings (OSTI)

This project was begun in 1978 to provide data to promote surfactant chemical flooding on a commercial scale in the low-permeability reservoirs of eastern Wyoming and Colorado. The Big Muddy Field in Wyoming was selected because of the large resource, potential net pay, and high oil saturation. Injection began on February 20, 1980 with a surfactant flooding process. Water mixed with salt (brine) was injected as a preflush which was completed on January 20, 1981. This produced 12,122 bbl of oil. The next step involves injecting a surfactant, co-surfactant (alcohol), and polymer. When the injection of the surfactant is completed in the summer of 1982, polymer alone will be injected. Polymer injection will be completed sometime in 1984. The final phase will be a followup water drive scheduled for 1984-1987. As of February 1, 1982, 36,683 bbl of oil had been produced. About 88 bbl of oil per day is being produced, compared to only about 41 bbl per day in February 1981. (ATT)

Not Available

1981-01-01T23:59:59.000Z

260

Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery  

Science Conference Proceedings (OSTI)

The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

2007-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-Situ Recovery  

E-Print Network (OSTI)

, and of unconventional deposits such as heavy oils, tar sands and oil shales.” As conventional oil becomes scarcer, the transport sector will remain dependent on petroleum resources, if no oil substitute is available. Fuels from non-conventional oil resources... www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R Abstract Supplying Synthetic Crude Oil from Canadian Oil Sands: A Comparative Study of the Costs and CO2 Emissions of Mining and In-situ Recovery EPRG Working Paper 1005...

Méjean, A; Hope, Chris

262

Assist in the recovery of bypassed oil from reservoirs in the Gulf of Mexico. Quarterly status report, April 1, 1993--June 30, 1993  

Science Conference Proceedings (OSTI)

Much of the remaining oil offshore is trapped in formations that are extremely complex due to intrusions of salt domes. Conventional seismic processing techniques cannot clearly image either these traps or the full extent of oil-bearing segments near the salt domes; therefore, substantial volumes of oil may have remained uncontacted by previous drilling. Recently, however, significant innovations have been made in seismic processing and mathematical migration of seismic signal. In addition, significant advances have been made in deviated and horizontal drilling technologies and applications. These technology advances make it possible to reprocess existing seismic data to identify non-contacted portions of the reservoirs, which can then be contacted using advanced drilling technologies to kick out new wells from existing wells. Effective application of these technologies, along with improved recovery methods, offers opportunities to significantly increase Gulf of Mexico production, delay platform abandonments, and preserve access to a substantial remaining oil target for enhanced recovery and other advanced recovery processes. During this reporting period, data collection continued from the Minerals Management Service (MMS) and several operators. Modifications to BOAST II and MASTER reservoir simulators for the integration of radial grid systems and for use in simulating miscible gas injection processes in steeply dipping reservoirs continued. The testing of the experimental apparatus designed for studying the recovery of attic oil began. Analysis of data obtained from Taylor Energy in South Marsh 73 field continued.

Schenewerk, P.A.

1993-07-30T23:59:59.000Z

263

Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence  

Science Conference Proceedings (OSTI)

Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

Eric P. Robertson

2007-11-01T23:59:59.000Z

264

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines  

E-Print Network (OSTI)

Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: · Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. · Capture a sample from the draining oil while the oil is still hot

265

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

266

Trona-enhanced steam foam oil recovery process  

SciTech Connect

In a process in which steam and steam-foaming surfactant are injected into a subterranean reservoir for displacing a relatively acidic oil toward a production location, which process includes injecting into the reservoir, at least as soon as at least some portion of the steam is injected, (a) a kind and amount of water soluble, alkaline material effective for ion-exchanging multivalent ions from the reservoir rocks and precipitating compounds containing those ions and for causing the aqueous liquid phase of the injected fluid to form soaps of substantially all of the petroleum acids in the reservoir oil, and (b) at least one surfactant arranged for foaming the steam and providing a preformed cosurfactant material capable of increasing the salinity requirement of an aqueous surfactant system in which soaps derived from the reservoir oil comprise a primary surfactant, an improvement is described comprising: using as the water soluble alkaline material, a material consisting essentially of a substantially equal molar mixture of alkali metal carbonates and bicarbonates which is, or is substantially equivalent to, trona.

Lau, H.C.

1988-03-01T23:59:59.000Z

267

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network (OSTI)

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

268

Role of Enhanced Oil Recovery in Carbon Sequestration, The Weyburn Monitoring Project, a case study  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery in Carbon Sequestration Enhanced Oil Recovery in Carbon Sequestration The Weyburn Monitoring Project, a case study K. Brown (ken_brown@pcp.ca), PanCanadian Petroleum Limited) 150 - 9 th Avenue S.W., P.O. Box 2850, Calgary, Alberta T2P 2S5 W. Jazrawi (Waleed_Jazrawi@pancanadian.ca) Petroleum Technology Research Centre 6 Research Drive, Regina, Saskatchewan S4S 7J7 R. Moberg (Moberg@src.sk.ca) Petroleum Technology Research Centre 6 Research Drive, Regina, Saskatchewan S4S 7J7 M. Wilson (Mwilson@sem.gov.sk.ca) Petroleum Technology Research Centre 6 Research Drive, Regina, Saskatchewan S4S 7J7 Abstract: Injection of CO 2 into a carbonate oil reservoir in southeastern Saskatchewan, Canada, began on September 22, 2000. Prior to the start of injection, substantial baseline data were obtained from the field. This baseline data include extensive seismic work

269

Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991  

Science Conference Proceedings (OSTI)

This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

1993-09-01T23:59:59.000Z

270

SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES  

SciTech Connect

A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

David O. Ogbe; Tao Zhu

2004-01-01T23:59:59.000Z

271

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal additives mixed with oil and their influence on oil properties such as viscosity and API gravity. The main objective of my research is to determine if a catalyst mixed with a hydrogen donor (tetralin) is going to affect the Jobo crude oil properties while undergoing in-situ combustion. Six runs were performed with Jobo crude oil (9-11ºAPI) from the Orinoco Belt in Venezuela. Four of the runs were successful. Two of them are base runs; the remaining ones are with tetralin with concentration of 5 wt% (of oil) and catalyst with concentration of 750 ppm. For all runs, the following were kept constant: the air injection rate (3 std. L/min) and production (combustion tube outlet) pressure, 300 psig. Concentration by weight of oil, water, and sand in the samples were approximately 4.8%, 4.2%, and 91% respectively. Oil viscosity at the end of combustion at 40oC decreased from 42.3 and 73.6 to 16.6 and 25.2; API gravity at the end of combustion increased from 18.4 and 16.8 to 20 and 18.8. Oil recovery is higher; combustion front velocity is faster in the case of additives, water production decreased. Since oil viscosity decreased and API gravity increased oil moves faster and consequently combustion time is lower.

Huseynzade, Samir

2007-12-01T23:59:59.000Z

272

Upgrading and enhanced recovery of Jobo heavy oil using hydrogen donor under in-situ combustion  

E-Print Network (OSTI)

In-situ upgrading of oil using hydrogen donors is a new process. In particular, very little research has been conducted with respect to in-situ oil upgrading using hydrogen donor under in-situ combustion. Several papers describe the use of metal additives mixed with oil and their influence on oil properties such as viscosity and API gravity. The main objective of my research is to determine if a catalyst mixed with a hydrogen donor (tetralin) is going to affect the Jobo crude oil properties while undergoing in-situ combustion. Six runs were performed with Jobo crude oil (9-11ºAPI) from the Orinoco Belt in Venezuela. Four of the runs were successful. Two of them are base runs; the remaining ones are with tetralin with concentration of 5 wt% (of oil) and catalyst with concentration of 750 ppm. For all runs, the following were kept constant: the air injection rate (3 std. L/min) and production (combustion tube outlet) pressure, 300 psig. Concentration by weight of oil, water, and sand in the samples were approximately 4.8%, 4.2%, and 91% respectively. Oil viscosity at the end of combustion at 40°C decreased from 42.3 and 73.6 to 16.6 and 25.2; API gravity at the end of combustion increased from 18.4 and 16.8 to 20 and 18.8. Oil recovery is higher; combustion front velocity is faster in the case of additives, water production decreased. Since oil viscosity decreased and API gravity increased oil moves faster and consequently combustion time is lower.

Huseynzade, Samir

2007-12-01T23:59:59.000Z

273

North and west central Texas. Mitchell EOR (enhanced oil recovery) projects yield tertiary oil in Wise and Jack counties  

SciTech Connect

An enhanced oil recovery project utilizing a miscible LPG process provides Mitchell Energy and Development Corp. engineers with a springboard for other miscible flood projects while yielding incremental tertiary oil that otherwise would remain in the ground. The LPG flood project is in the Alvord (3,000-ft Strawn) Unit in Wise County, Texas. The field had been waterflooded for 14 yr, and was producing near its economic limit under waterflood, the alternative to starting a tertiary project would have been to abandon the field. The LPG flood process was chosen because liquefied petroleum gases are miscible with oil at the low pressures that must be maintained in shallow reservoirs such as the Alvord Strawn. Propane was determined to be the suitable LPG for the project because of its availability and ease of handling.

Mickey, V.

1982-09-01T23:59:59.000Z

274

An evaluation of known remaining oil resources in the state of Louisiana and Texas. Volume 3, Project on Advanced Oil Recovery and the States  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Louisiana and Texas. Individual reports for six other oil producing states and a national report have been separately published. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS).

Not Available

1994-11-01T23:59:59.000Z

275

Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990  

SciTech Connect

The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-05-01T23:59:59.000Z

276

Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990  

SciTech Connect

The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-05-01T23:59:59.000Z

277

Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report  

Science Conference Proceedings (OSTI)

A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

Zhang, X.; Knapp, R.M.; McInerney, M.J.

1995-02-01T23:59:59.000Z

278

Generalized Correlations to Estimate Oil Recovery and Pore Volumes Injected in Waterflooding Projects  

E-Print Network (OSTI)

When estimating a waterflood performance and ultimate recovery, practitioners usually prepare a plot of log of water-oil ratio vs. cumulative production or recovery factor and extrapolate the linear section of the curve to a pre-established economic limit of water production. Following this practice, engineers take the risk of overestimating oil production and/or underestimating water production if the economic limit is optimistic. Engineers would be able to avoid that risk if they knew where the linear portion of the curve finishes. We called this linear portion the "straight-line zone" of simply SLZ. In this research, we studied that ?straight-line zone? and determined its boundaries (beginning and end) numerically using mathematics rules. We developed a new procedure and empirical correlations to predict oil recovery factor at any water/oil ratio. The approach uses the fundamental concepts of fluid displacement under Buckley-Leverett fractional flow theory, reservoir simulation, and statistical analysis from multivariate linear regression. We used commercial spreadsheet software, the Statistical Analysis Software, a commercial numerical reservoir simulator, and Visual Basic Application software. We determined generalized correlations to determine the beginning, end, slope, and intercept of this line as a function of rock and fluid properties, such as endpoints of relative permeability curves, connate water saturation, residual oil saturation, mobility ratio, and the Dykstra-Parsons coefficient. Characterizing the SLZ allows us to estimate the corresponding recovery factor and pore volumes injected at any water-oil ratio through the length of the SLZ . The SLZ is always present in the plot of log of water-oil ratio vs. cumulative production or recovery factor, and its properties can be predicted. Results were correlated in terms of the Dykstra-Parsons coefficient and mobility ratio. Using our correlations, practitioners can estimate the end of the SLZ without the risk of overestimating reserves and underestimating water production. Our procedure is also a helpful tool for forecasting and diagnosing waterfloods when a detailed reservoir simulation model is not available.

Espinel Diaz, Arnaldo Leopoldo

2010-12-01T23:59:59.000Z

279

NETL: News Release - Four New Projects Seek to Improve Oil Recovery on  

NLE Websites -- All DOE Office Websites (Extended Search)

August 12, 2002 August 12, 2002 Four New Projects Seek to Improve Oil Recovery on Native American Lands Goal is Return Economic Dividends to Tribes, Strengthen Oil Security for America TULSA, OK - An estimated 890 million barrels of oil and natural gas liquids and six trillion cubic feet of natural gas are thought to exist beneath Native American lands in the lower 48 States and Alaska. Since 1999, the Department of Energy has sponsored a program to help Tribes develop and manage these resources in an environmentally sound manner. Now, following the 3rd and latest round of competition, four new projects have been added to the department's Native American Initiative. The projects were judged the best of 14 proposals by the National Energy Technology Laboratory's petroleum office in Tulsa, Oklahoma. Each teams Native American tribes with oil producers and service companies to apply the latest technological innovations to increase recovery of oil from tribal lands. Negotiations are now underway to finalize terms of the projects.

280

WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS  

Science Conference Proceedings (OSTI)

Contamination of crude oils by surface-active agents from drilling fluids or other oil-field chemicals is more difficult to detect and quantify than bulk contamination with, for example, base fluids from oil-based muds. Bulk contamination can be detected by gas chromatography or other common analytical techniques, but surface-active contaminants can be influential at much lower concentrations that are more difficult to detect analytically, especially in the context of a mixture as complex as a crude oil. In this report we present a baseline study of interfacial tensions of 39 well-characterized crude oil samples with aqueous phases that vary in pH and ionic composition. This extensive study will provide the basis for assessing the effects of surface-active contaminant on interfacial tension and other surface properties of crude oil/brine/rock ensembles.

Jill S. Buckley; Norman R. Morrow

2004-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Evaluation of Energy Recovery from Municipal Solid Waste in Oil-Fired Power Plants  

Science Conference Proceedings (OSTI)

Five methods of energy recovery from municipal solid waste (MSW) in oil-fired power plants are evaluated: preparation and supplemental firing of refuse-derived fuel (RDF) with oil in a utility boiler originally designed for coal firing; 100% firing of either RDF or MSW in a dedicated water-wall incinerator and use of the steam to drive a dedicated turbine generator unit; and 100% firing of RDF or MSW in a dedicated water-wall incinerator and integration of the steam into the power plant steam cycle.

1982-02-01T23:59:59.000Z

282

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

283

Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes  

Science Conference Proceedings (OSTI)

This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

Seright, R.S.; Martin, F.D.

1991-11-01T23:59:59.000Z

284

Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations  

DOE Patents (OSTI)

The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

Johnson, Jr., James S. (Oak Ridge, TN); Westmoreland, Clyde G. (Rockwood, TN)

1982-01-01T23:59:59.000Z

285

Sacrificial adsorbate for surfactants utilized in chemical floods of enhanced oil recovery operations  

DOE Patents (OSTI)

The present invention is directed to a sacrificial or competitive adsorbate for surfactants contained in chemical flooding emulsions for enhanced oil recovery operations. The adsorbate to be utilized in the method of the present invention is a caustic effluent from the bleach stage or the weak black liquor from the digesters and pulp washers of the kraft pulping process. This effluent or weak black liquor is injected into an oil-bearing subterranean earth formation prior to or concurrent with the chemical flood emulsion and is adsorbed on the active mineral surfaces of the formation matrix so as to effectively reduce adsorption of surfactant in the chemical flood. Alternatively, the effluent or liquor can be injected into the subterranean earth formation subsequent to a chemical flood to displace the surfactant from the mineral surfaces for the recovery thereof.

Johnson, J.S. Jr.; Westmoreland, C.G.

1980-08-20T23:59:59.000Z

286

DEVELOPMENT OF MICROORGANISMS WITH IMPROVED TRANSPORT AND BIOSURFACTANT ACTIVITY FOR ENHANCED OIL RECOVERY  

Science Conference Proceedings (OSTI)

Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were re-grown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. When PHPA was used alone, about 10% of the residual oil was recovered. Interfacial tension (IFT) decreased in a stepwise manner as biosurfactant concentration increased with marked reductions in IFT occurring at biosurfactant concentrations of 10 and 40 mg/l. When the biosurfactant concentration was greater than 10 mg/l, residual oil recovery linearly increased with biosurfactant concentration. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Our work shows that (1) diverse microorganisms produce biosurfactants, (2) nutrient manipulation may provide a mechanism to increase biosurfactant activity, (3) biosurfactant concentrations in excess of the critical micelle concentration recover substantial amounts of residual oil, and (4) equations that describe the effect of the biosurfactant on IFT adequately predict residual oil recovery in sandstone cores.

M.J. McInerney; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; D. Nagle

2004-05-31T23:59:59.000Z

287

High efficiency shale oil recovery. Fifth quarterly report, January 1, 1993--March 31, 1993  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical conditions (heating, mixing, pyrolysis, oxidation) exist in both systems.The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed this quarter. (1) Twelve pyrolysis runs were made on five different oil shales. All of the runs exhibited a complete absence of any plugging, tendency. Heat transfer for Green River oil shale in the rotary kiln was 84.6 Btu/hr/ft{sup 2}/{degrees}F, and this will provide for ample heat exchange in the Adams kiln. (2) One retorted residue sample was oxidized at 1000{degrees}F. Preliminary indications are that the ash of this run appears to have been completely oxidized. (3) Further minor equipment repairs and improvements were required during the course of the several runs.

Adams, D.C.

1993-04-22T23:59:59.000Z

288

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

SciTech Connect

Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

Castle, J.W.; Molz, F.J.; Brame, S.E.; Falta, R.W.

2003-02-07T23:59:59.000Z

289

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

Science Conference Proceedings (OSTI)

Improved prediction of interwell reservoir heterogeneity is needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contain approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley. This investigation involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation.

Castle, James W.; Molz, Fred J.

2003-02-07T23:59:59.000Z

290

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 45, Quarter ending December 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal methods; resource assessment; environmental technology; and microbial enhanced oil recovery. (AT)

Not Available

1986-12-01T23:59:59.000Z

291

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 40, quarter ending September 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial technology.

Linville, B. (ed.)

1985-05-01T23:59:59.000Z

292

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 43, quarter ending June 30, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: (1) chemical flooding; gas displacement thermal recovery/heavy oil; resource assessment technology; extraction technology;environmental technology; and microbial technology. (AT)

Not Available

1986-05-01T23:59:59.000Z

293

An evaluation of known remaining oil resources in the state of California. Volume 2, Project on Advanced Oil Recovery and the States  

Science Conference Proceedings (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As a part of this larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the state of California. Individual reports for seven other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to California`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, California oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of California and the nation as a whole.

Not Available

1994-10-01T23:59:59.000Z

294

An evaluation of known remaining oil resources in the state of Kansas and Oklahoma. Volume 5, Project on Advanced Oil Recovery and the States  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of Kansas, Illinois and Oklahoma for five other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to Kansas` known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the state of Kansas, Illinois and Oklahoma and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

295

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

296

Development of Microorganisms with Improved Transport and Biosurfactant Activity for Enhanced Oil Recovery  

Science Conference Proceedings (OSTI)

The project had three objectives: (1) to develop microbial strains with improved biosurfactant properties that use cost-effective nutrients, (2) to obtain biosurfactant strains with improved transport properties through sandstones, and (3) to determine the empirical relationship between surfactant concentration and interfacial tension and whether in situ reactions kinetics and biosurfactant concentration meets appropriate engineering design criteria. Here, we show that a lipopeptide biosurfactant produced by Bacillus mojavensis strain JF-2 mobilized substantial amounts of residual hydrocarbon from sand-packed columns and Berea sandstone cores when a viscosifying agent and a low molecular weight alcohol were present. The amount of residual hydrocarbon mobilized depended on the biosurfactant concentration. Tertiary oil recovery experiments showed that 10 to 40 mg/l of JF-2 biosurfactant in the presence of 0.1 mM 2,3-butanediol and 1 g/l of partially hydrolyzed polyacrylamide (PHPA) recovered 10-40% of residual oil from Berea sandstone cores. Even low biosurfactant concentrations (16 mg/l) mobilized substantial amounts of residual hydrocarbon (29%). The bio-surfactant lowered IFT by nearly 2 orders of magnitude compared to typical IFT values of 28-29 mN/m. Increasing the salinity increased the IFT with or without 2,3-butanediol present. The lowest interfacial tension observed was 0.1 mN/m. A mathematical model that relates oil recovery to biosurfactant concentration was modified to include the stepwise changes in IFT as biosurfactant concentrations changes. This model adequately predicted the experimentally observed changes in IFT as a function of biosurfactant concentration. Theses data show that lipopeptide biosurfactant systems may be effective in removing hydrocarbon contamination sources in soils and aquifers and for the recovery of entrapped oil from low production oil reservoirs. Diverse microorganisms were screened for biosurfactant production and anaerobic growth at elevated salt concentrations to obtain candidates most suitable for microbial oil recovery. Seventy percent of the 205 strains tested, mostly strains of Bacillus mojavensis, Bacillus subtilis, Bacillus licheniformis, and Bacillus sonorensis, produced biosurfactants aerobically and 41% of the strains had biosurfactant activity greater than Bacillus mojavensis JF-2, the current candidate for oil recovery. Biosurfactant activity varied with the percentage of the 3-hydroxy-tetradecanoate isomers in the fatty acid portion of the biosurfactant. Changing the medium composition by incorporation of different precursors of 3-hydroxy tetradecanoate increased the activity of biosurfactant. The surface tension and critical micelle concentration of 15 different, biosurfactant-producing Bacillus strains was determined individually and in combination with other biosurfactants. Some biosurfactant mixtures were found to have synergistic effect on surface tension (e.g. surface tension was lowered from 41 to 31 mN/m in some cases) while others had a synergistic effect on CMD-1 values. We compared the transport abilities of spores from three Bacillus strains using a model porous system to study spore recovery and transport. Sand-packed columns were used to select for spores or cells with the best transport abilities through brine-saturated sand. Spores of Bacillus mojavensis strains JF-2 and ROB-2 and a natural recombinant, strain C-9, transported through sand at very high efficiencies. The earliest cells/spores that emerged from the column were regrown, allowed to sporulate, and applied to a second column. This procedure greatly enhanced the transport of strain C-9. Spores with enhanced transport abilities can be easily obtained and that the preparation of inocula for use in MEOR is feasible. We conducted a push-pull test to study in-situ biosurfactant production by exogenous biosurfactant producers to aid in oil recovery from depleted reservoirs. Five wells from the same formation were used. Two wells received cells and nutrients, two wells were treated with nutrients onl

M.J. McInerney; K.E. Duncan; N. Youssef; T. Fincher; S.K. Maudgalya; M.J. Folmsbee; R. Knapp; Randy R. Simpson; N.Ravi; D. Nagle

2005-08-15T23:59:59.000Z

297

Investigations of mechanisms of microbial enhanced oil recovery by microbes and their metabolic products  

SciTech Connect

Experiments at NIPER have demonstrated that oil mobilization by microbial formulations is not merely the result of the effects of the metabolic products from the in situ fermentation of nutrient. A combination of two microorganisms, Bacillus licheniformis, NIPER and a Clostridium species (NIPER 6) was determined to be an effective microbial formulation for the recovery of residual crude oil in porous media. Flask tests with various nutrients and environmental conditions were used to evaluate the growth and metabolite production of NIPER 1 and 6. Several interfacial tension (IFT) measurements were conducted using certain metabolic products from the combined microbial cultures NIPER 1 and NIPER 6. Nonane was used as the oil for these experiments, since crude oil from Delaware-Childers field emulsifies very easily. The IFT of a selected microbial formulation were measured with two different crude oils using brines of varying salinities. Comparisons were made with saline brines containing only the nutrient and with microbial metabolite solutions from which the active cells have been removed by filtration to isolate the specific effects of the microbial cells. Etched-glass micromodel studies showed that the microbial formulation effectively mobilized crude oil trapped after waterflooding. Wettability alteration and unsteady-state relative permeability tests were performed in Berea Sandstone cores. 16 refs., 17 figs., 12 tabs.

Chase, K.L.; Bryant, R.S.; Bertus, K.M.; Stepp, A.K.

1990-12-01T23:59:59.000Z

298

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, December 1, 1992--December 31, 1993  

SciTech Connect

The shallow Cretaceous sands of the Schrader Bluff Reservoir occur between depths of 4,000 and 4,800 feet below surface and are estimated to contain up to 1.5 billion barrels of oil in place. The field is currently under production by primary depletion. Initial production indicated that primary recovery will fall short of earlier estimates and waterflooding will have to be employed much earlier than expected. A large portion of the oil-in-place thus would still be left behind in this reservoir after primary and secondary recovery methods have been applied. Enhanced oil recovery (EOR) techniques will be needed to recover the additional portion of remaining oil in this huge reservoir and to add significant additional reserves. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader Bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Such studies are essential because the API gravity of the crude in Schrader Bluff reservoir varies significantly from well to well. Coreflood experiments are also needed to determine effect of solvent slug size, WAG ratio and solvent composition on the oil recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This report contains the following: reservoir description; slim tube displacement studies; and coreflood experiments.

Sharma, G.D.

1994-01-01T23:59:59.000Z

299

Evaluation of the EOR Potential in Shale Oil Reservoirs by Cyclic Gas Injection.  

E-Print Network (OSTI)

??Abstract The current available technique to produce shale oil is through primary depletion using horizontal wells with multiple transverse fractures. The oil recovery factor is… (more)

Wan, Tao

2013-01-01T23:59:59.000Z

300

Evaluation of the EOR potential in shale oil reservoirs by cyclic gas injection.  

E-Print Network (OSTI)

??Abstract The current available technique to produce shale oil is through primary depletion using horizontal wells with multiple transverse fractures. The oil recovery factor is… (more)

Wan, Tao

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

Science Conference Proceedings (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

302

High efficiency shale oil recovery. Fourth quarterly report, October 1, 1992--December 31, 1992  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated on a small scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although an oil shale batch sample is sealed in the batch kiln from the start until the end of the run, the process conditions for the batch are the same as the conditions that an element of oil shale would encounter in a continuous process kiln. Similar chemical and physical (heating, mixing) conditions exist in both systems. The two most important data objectives in this phase of the project are to demonstrate (1) that the heat recovery projected for this project is reasonable and (2) that an oil shale kiln will run well and not plug up due to sticking and agglomeration. The following was completed and is reported on this quarter: (1) A software routine was written to eliminate intermittently inaccurate temperature readings. (2) We completed the quartz sand calibration runs, resolving calibration questions from the 3rd quarter. (3) We also made low temperature retorting runs to identify the need for certain kiln modifications and kiln modifications were completed. (4) Heat Conductance data on two Pyrolysis runs were completed on two samples of Occidental oil shale.

Adams, D.C.

1992-12-31T23:59:59.000Z

303

Contracts for field projects and supporting research on enhanced oil recovery, reporting period January--March 1991  

SciTech Connect

Contracts for field projects and supporting research on Enhanced Oil Recovery for the quarter ending March 31, 1991 are reviewed. A list of available publications is listed. Research topics include microbial EOR, foam injection, thermal recovery, surfactant flooding, reservoir rock characterization, and more.

Not Available

1992-03-01T23:59:59.000Z

304

Enhanced Oil Recovery in High Salinity High Temperature Reservoir by Chemical Flooding  

E-Print Network (OSTI)

Studying chemical enhanced oil recovery (EOR) in a high-temperature/high-salinity (HT/HS) reservoir will help expand the application of chemical EOR to more challenging environments. Until recently, chemical EOR was not recommended at reservoirs that contain high concentrations of divalent cations without the need to recondition the reservoir by flooding it with less saline/ less hardness brines. This strategy was found ineffective in preparing the reservoir for chemical flooding. Surfactants used for chemical flooding operating in high temperatures tend to precipitate when exposed to high concentrations of divalent cations and will partition to the oil phase at high salinities. In this study amphoteric surfactant was used to replace the traditionally used anionic surfactants. Amphoteric surfactants show higher multivalent cations tolerance with better thermal stability. A modified amphoteric surfactant with lower adsorption properties was evaluated for oil recovery. Organic alkali was used to eliminate the water softening process when preparing the chemical solution and reduce potential scale problems caused by precipitation due to incompatibility between chemical slug containing alkali and formation brine. Using organic alkali helped in minimizing softening required when preparing an alkali-surfactant-polymer (ASP) solution using seawater. Solution prepared with organic alkali showed the least injectivity decline when compared to traditional alkalis (NaOH and Na2CO3) and sodium metaborate. Adding organic alkali helped further reduce IFT values when added to surfactant solution. Amphoteric surfactant was found to produce low IFT values at low concentrations and can operate at high salinity / high hardness conditions. When mixed with polymer it improved the viscosity of the surfactant-polymer (SP) solution when prepared in high salinity mixing water (6% NaCl). When prepared in seawater and tested in reservoir temperature (95°C) no reduction in viscosity was found. Unlike the anionic surfactant that causes reduction in viscosity of the SP solution at reservoir temperature. This will not require increasing the polymer concentration in the chemical slug. Unlike the case when anionic surfactant was used and more polymer need to be added to compensate the reduction in viscosity. Berea sandstone cores show lower recovery compared to dolomite cores. It was also found that Berea cores were more sensitive to polymer concentration and type and injectivity decline can be a serious issue during chemical and polymer injection. Dolomite did not show injectivity decline during chemical and polymer flooding and was not sensitive to the polymer concentration when a polymer with low molecular weight was used. CT scan was employed to study the displacement of oil during ASP, SP, polymer and surfactant flooding. The formation and propagation oil bank was observed during these core flood experiments. ASP and SP flooding showed the highest recovery, and formation and propagation of oil bank was clearer in these experiments compared to surfactant flooding. It was found that in Berea sandstone with a permeability range of 50 to 80 md that the recovery and fluid flow was through some dominating and some smaller channels. This explained the deviation from piston-like displacement, where a sharp change in saturation in part of the flood related to the dominated channels and tapered front with late arrival when oil is recovered from the smaller channels. It was concluded that the recovery in the case of sandstone was dominated by the fluid flow and chemical propagation in the porous media not by the effectiveness of the chemical slug to lower the IFT between the displacing fluid and oil.

Bataweel, Mohammed Abdullah

2011-12-01T23:59:59.000Z

305

CHARACTERIZATION OF MIXED WETTABILITY AT DIFFERENT SCALES AND ITS IMPACT ON OIL RECOVERY EFFICIENCY  

Science Conference Proceedings (OSTI)

The objectives of the this research project were to: (1) Quantify the pore scale mechanisms that determine the wettability state of a reservoir; (2) Study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states; (3) Clarify the effect of mixed-wettability on oil displacement efficiency in waterfloods; and (4) Develop a new tracer technique to measure wettability, fluid distributions, residual saturations and relative permeabilities.

Mukul M. Sharma; George J. Hirasaki

2003-09-01T23:59:59.000Z

306

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas Near Term  

SciTech Connect

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period I involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were (1) design and construction of a waterflood plant, (2) design and construction of a water injection system, (3) design and construction of tank battery consolidation and gathering system, (4) initiation of waterflood operations and reservoir management, and (5) technology transfer. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included (1) reservoir characterization and the development of a reservoir database, (2) identification of operational problems, (3) identification of near wellbore problems such as plugging caused from poor water quality, (4) identification of unrecovered mobile oil and estimation of recovery factors, and (5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included (1) geological and engineering analysis, (2) waterplant optimization, (3) wellbore cleanup and pattern changes, and (4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period was subdivided into six major tasks. The tasks were (1) waterplant development, (2) profile modification treatments, (3) pattern changes, new wells and wellbore cleanups, (4) reservoir development (polymer flooding), (5) field operations, and (6) technology transfer.

Green, D.W.; Willhlte, C.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

1997-04-15T23:59:59.000Z

307

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

Science Conference Proceedings (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. The Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are 1) reservoir management and performance evaluation, 2) waterflood optimization, and 3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included 1) reservoir characterization and the development of a reservoir database, 2) volumetric analysis to evaluate production performance, 3) reservoir modeling, 4) laboratory work, 5) identification of operational problems, 6) identification of unrecovered mobile oil and estimation of recovery factors, and 7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were 1) geological and engineering analysis, 2) laboratory testing, and 3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2. Budget Period 2 objectives consisted of the design, construction, and operation of a field-wide waterflood utilizing state-of-the-art, off-the-shelf technologies in an attempt to optimize secondary oil recovery. To accomplish these objectives the second budget period was subdivided into five major tasks. The tasks were 1) design and construction of a waterflood plant, 2) design and construction of a water injection system, 3) design and construction of tank battery consolidation and gathering system, 4) initiation of waterflood operations and reservoir management, and 5) technology transfer. Tasks 1-3 have been completed and water injection began in October 1995. In the Savonburg Project, the reservoir management portion involves performance evaluation. This work included 1) reservoir characterization and the development of a reservoir database, 2) identification of operational problems, 3) identification of near wellbore problems such as plugging caused from poor water quality, 4) identification of unrecovered mobile oil and estimation of recovery factors, and 5) preliminary identification of the most efficient and economical recovery process i.e., polymer augmented waterflooding or infill drilling (vertical or horizontal wells). To accomplish this work the initial budget period was subdivided into four major tasks. The tasks included 1) geological and engineering analysis, 2) waterplant optimization, 3) wellbore cleanup and pattern changes, and 4) field operations. This work was completed and the project has moved into Budget Period 2. The Budget Period 2 objectives consisted of continual optimization of this mature waterflood in an attempt to optimize secondary and tertiary oil recovery. To accomplish these objectives the second budget period is subdivided into six major tasks. The tasks were 1) waterplant development, 2) profile modification treatments, 3) pattern changes, new wells and wellbore cleanups, 4) reservoir development (polymer flooding), 5) field operations, and 6) technology transfer.

A. Walton; Don W. Green; G. Paul Whillhite; L. Schoeling; L. Watney; M. Michnick; R. Reynolds

1997-07-15T23:59:59.000Z

308

Experimental Study of Steam Surfactant Flood for Enhancing Heavy Oil Recovery After Waterflooding  

E-Print Network (OSTI)

Steam injection with added surface active chemicals is one of general EOR processes aimed to recover residual oil after primary production processes. It has been demonstrated that, after waterflooding, an oil swept area can be increased by steam surfactant flow due to the reduced steam override effect as well as reduced interfacial tension between oil and water in the formation. To investigate the ability to improve recovery of 20.5oAPI California heavy oil with steam surfactant injection, several experiments with a one-dimensional model were performed. Two experimental models with similar porous media, fluids, chemicals, as well as injection and production conditions, were applied. The first series of experiments were carried out in a vertical cylindrical injection cell with dimensions of 7.4 cm x 67 cm. The second part of experiment was conducted using a horizontal tube model with dimensions of 3.5 cm x 110.5 cm. The horizontal model with a smaller diameter than the vertical injection cell is less subject to channel formation and is therefore more applicable for the laboratory scale modeling of the one-dimensional steam injection process. Nonionic surfactant Triton X-100 was coinjected into the steam flow. For both series of experimental work with vertical and horizontal injection cells, the concentration of Triton X-100 surfactant solution used was chosen 3.0 wt%. The injection rates were set to inject the same 0.8 pore volumes of steam for the vertical model and 1.8 pore volumes of steam for horizontal model. The steam was injected at superheated conditions of 200oC and pressure of 100 psig. The liquid produced from the separator was sampled periodically and treated to determine oilcut and produced oil properties. The interfacial tension (IFT) of the produced oil and water were measured with an IFT meter and compared to that for the original oil. The experimental study demonstrated that the average incremental oil recovery with steam surfactant flood is 7 % of the original oil-in-place above that with pure steam injection.

Sunnatov, Dinmukhamed

2010-05-01T23:59:59.000Z

309

Nutritionally Enhanced Edible Oil and Oilseed ProcessingChapter 12 Hydrogenation Techniques  

Science Conference Proceedings (OSTI)

Nutritionally Enhanced Edible Oil and Oilseed Processing Chapter 12 Hydrogenation Techniques Processing eChapters Processing Press Downloadable pdf of Chapter 12 Hydrogenation Techniques from the book ...

310

Condition monitoring of biodegradable oil-filled transformers using DGA, PD and PDC measurement techniques.  

E-Print Network (OSTI)

??The three most common condition monitoring techniques were applied to laboratory test configurations that simulate biodegradable oil-filled transformer insulation system. The tested techniques were Dissolved… (more)

Muhamad, Nor Asiah

2009-01-01T23:59:59.000Z

311

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994  

SciTech Connect

Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

Sharma, G.D.

1995-07-01T23:59:59.000Z

312

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

Science Conference Proceedings (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, D.W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite G.P.

1999-10-29T23:59:59.000Z

313

Improved Oil Recovery in Fluvial Dominated Deltaic Reservoirs of Kansas - Near-Term  

Science Conference Proceedings (OSTI)

The objective of this project is to address waterflood problems of the type found in Morrow sandstone reservoirs in southwestern Kansas and in Cherokee Group reservoirs in southeastern Kansas. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. Te Nelson Lease is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. General topics to be addressed are (1) reservoir management and performance evaluation, (2) waterflood optimization, and (3) the demonstration of recovery processes involving off-the-shelf technologies which can be used to enhance waterflood recovery, increase reserves, and reduce the abandonment rate of these reservoir types. In the Stewart Project, the reservoir management portion of the project conducted during Budget Period 1 involved performance evaluation. This included (1) reservoir characterization and the development of a reservoir database, (2) volumetric analysis to evaluate production performance, (3) reservoir modeling, (4) laboratory work, (5) identification of operational problems, (6) identification of unrecovered mobile oil and estimation of recovery factors, and (7) Identification of the most efficient and economical recovery process. To accomplish these objectives the initial budget period was subdivided into three major tasks. The tasks were (1) geological and engineering analysis, (2) laboratory testing, and (3) unitization. Due to the presence of different operators within the field, it was necessary to unitize the field in order to demonstrate a field-wide improved recovery process. This work was completed and the project moved into Budget Period 2.

Green, Don W.; McCune, A.D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

1999-11-03T23:59:59.000Z

314

Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs  

Science Conference Proceedings (OSTI)

This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite power is pre-treated to make the surface oil-wet. The next step is to add the pre-treated powder to a test tube and add a candidate aqueous surfactant formulation; the greater the percentage of the calcite that now sinks to the bottom rather than floats, the more effective the surfactant is in changing the solids to become now preferentially water-wet. Results from the screening test generally are consistent with surfactant oil recovery performance reported in the literature. The second effort is a more fundamental study. It considers the effect of chemical structures of different naphthenic acids (NA) dissolved in decane as model oils that render calcite surfaces oil-wet to a different degree. NAs are common to crude oil and are at least partially responsible for the frequent observation that carbonate reservoirs are oil-wet. Because pure NA compounds are used, trends in wetting behavior can be related to NA molecular structure as measured by solid adsorption, contact angle and our novel, simple flotation test with calcite. Experiments with different surfactants and NA-treated calcite powder provide information about mechanisms responsible for sought after reversal to a water-wet state. Key findings include: (1) more hydrophobic NA's are more prone to induce oil-wetting, and (2) recovery of the model oil from limestone core was better with cationic surfactants, but one nonionic surfactant, Igepal CO-530, also had favorable results. This portion of the project included theoretical calculations to investigate key basic properties of several NAs such as their acidic strength and their relative water/oil solubility, and relate this to their chemical structure. The third category of this project focused on the recovery of a light crude oil from West Texas (McElroy Field) from a carbonate rock (limestone outcrop). For this effort, the first item was to establish a suite of surfactants that would be compatible with the McElroy Field brine. Those were examined further for their ability to recover oil by imbibition. Results demonstrate several types of promising candida

William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu

2007-09-30T23:59:59.000Z

315

Visual display of reservoir parameters affecting enhanced oil recovery. FY 1994 annual report  

SciTech Connect

Evaluation of oil and gas properties for enhanced oil recovery (EOR) involves a high degree of risk, especially when the fields are old and well past their prime. The purpose of this project is to provide the small-to-medium size oil field operator with the tools necessary to do an EOR evaluation of the same quality and sophistication that only large international oil companies have been able to afford to date. This approach utilizes readily available, affordable computer software and analytical services. This project will provide a detailed example, based on a field trial, of how to evaluate a field for EOR operations utilizing data typically available in a field which has undergone primary development. After reviewing PC-based software from most major vendors, the authors decided that the most effective way to provide a user-friendly, state-of-the-art package to the independent producers who are primary clients is to link the best modules from four different systems: a commercial database, a wireline log analysis program, a mapping program, and a 2D and 3D visualization program, into a flexible, user-friendly unit. This would result in a product that could be used by small oil and gas companies to perform computerized reservoir studies. Progress to date is described.

Wood, J.R.

1995-06-01T23:59:59.000Z

316

Halotolerant, biosurfactant-producing Bacillus species potentially useful for enhanced oil recovery  

SciTech Connect

A biosurfactant-producing Bacillus licheniformis was isolated from oil-field injection water with properties potentially useful for in situ enhanced oil recovery. Conventional miscible flooding procedures use expensive synthetic detergents such as petroleum sulfonates that precipitate in high NaCl brines and adsorb to rock surfaces. The Bacillus sp. produced a biosurfactant when grown at 40 C in a sucrose mineral salts medium containing 5% NaCl. The biosurfactant was produced during the log phase of growth in the presence or absence of either crude oil or hexadecane. The surface tension of a 5% NaCl solution decreased from 74.0 mN/m to 27 mN/m when the surfactant was added. Interfacial tension of a 5% NaCl brine/octane mixture was as low as 0.43 mN/m when measured by a spinning drop tensiometer. The surfactant was extracted by acid precipitation at a pH of 2.0. The extracted surfactant exhibited optimal surface tension-lowering ability in 4-5% NaCl solutions between pH's of 6.0 to 10.0. The addition of calcium up to 340 mg/liter and incubation temperatures up to 100 C did not alter appreciably the surfactant activity. Mobilization of crude oil and oil bank formation occurred in a sandpack column after addition of the biosurfactant. 16 references, 1 figure, 2 tables.

Jenneman, G.E.; McInerney, M.J.; Knapp, R.M.; Clark, J.B.; Feero, J.M.; Revus, D.E.; Menzie, D.E.

1983-01-01T23:59:59.000Z

317

Copyright 2000, Society of Petroleum Engineers Inc. This paper was prepared for presentation at the 2000 SPE/DOE Improved Oil Recovery  

E-Print Network (OSTI)

at the 2000 SPE/DOE Improved Oil Recovery Symposium held in Tulsa, Oklahoma, 3­5 April 2000. This paper-972-952-9435. Abstract. Relative permeability and capillary pressure functions define how much oil can be recovered into the mechanisms that control field- scale oil recovery. The fundamental equations of immiscible flow in the imaged

Patzek, Tadeusz W.

318

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

319

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

Science Conference Proceedings (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

320

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

322

Horizontal oil well applications and oil recovery assessment. Volume 2: Applications overview, Final report  

Science Conference Proceedings (OSTI)

Horizontal technology has been applied in over 110 formations in the USA. Volume 1 of this study addresses the overall success of horizontal technology, especially in less-publicized formations, i.e., other than the Austin Chalk, Bakken, and Niobrara. Operators in the USA and Canada were surveyed on a formation-by-formation basis by means of a questionnaire. Response data were received describing horizontal well projects in 58 formations in the USA and 88 in Canada. Operators` responses were analyzed for trends in technical and economic success based on lithology (clastics and carbonates) and resource type (light oil, heavy oil, and gas). The potential impact of horizontal technology on reserves was also estimated. A forecast of horizontal drilling activity over the next decade was developed.

Deskins, W.G.; McDonald, W.J.; Knoll, R.G.; Springer, S.J.

1995-03-01T23:59:59.000Z

323

Integrated Mid-Continent Carbon Capture, Sequestration & Enhanced Oil Recovery Project  

SciTech Connect

A consortium of research partners led by the Southwest Regional Partnership on Carbon Sequestration and industry partners, including CAP CO2 LLC, Blue Source LLC, Coffeyville Resources, Nitrogen Fertilizers LLC, Ash Grove Cement Company, Kansas Ethanol LLC, Headwaters Clean Carbon Services, Black & Veatch, and Schlumberger Carbon Services, conducted a feasibility study of a large-scale CCS commercialization project that included large-scale CO{sub 2} sources. The overall objective of this project, entitled the 'Integrated Mid-Continent Carbon Capture, Sequestration and Enhanced Oil Recovery Project' was to design an integrated system of US mid-continent industrial CO{sub 2} sources with CO{sub 2} capture, and geologic sequestration in deep saline formations and in oil field reservoirs with concomitant EOR. Findings of this project suggest that deep saline sequestration in the mid-continent region is not feasible without major financial incentives, such as tax credits or otherwise, that do not exist at this time. However, results of the analysis suggest that enhanced oil recovery with carbon sequestration is indeed feasible and practical for specific types of geologic settings in the Midwestern U.S.

Brian McPherson

2010-08-31T23:59:59.000Z

324

Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report  

DOE Green Energy (OSTI)

This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

Not Available

1989-08-01T23:59:59.000Z

325

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network (OSTI)

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

326

Further experimental studies of steam-propane injection to enhance recovery of Morichal oil  

E-Print Network (OSTI)

In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane injection accelerated oil production by as much as 23 % pore volume of steam injected (cold-water equivalent). The apparatus and procedure used in this study have been improved. Steam injection rate was kept constant at 5 cc/min (cold-water equivalent) for all runs. Four thermocouples were placed along the longitudinal axis of the cell to measure temperature profiles during injection. A new, more efficient method was developed to break emulsion in the produced sample. For four of the eight runs, consistent operating conditions were obtained by use of superheated steam, cell pressure of 50 psig, and identical insulation. Eight experimental runs were made in which the propane:steam mass ratios used were 0:100 (steam only), 1:100, 2.5:100, and 5:100. A run using 5:100 nitrogen: steam mass ratio was also made. The main findings of this research (derived from four runs with consistent operating conditions) are as follows. First, the propane:steam mass ratio of 5:100 accelerated the start and peak of oil production by 20 % and 13 % pore volume steam injected (cold-water equivalent), compared to steam injection alone. Second, oil recoveries for practical purposes are similar in all cases, 63 % - 70 % OOIP if average high and low values are taken. Third, the start of production is practically the same for 0:100 and 1:100 propane:steam ratio and for 5:100 nitrogen: steam ratio. In the latter case, the production peak is higher due to additional drive from nitrogen injection. Fourth, oil production acceleration in the 5:100 propane:steam case is probably caused by dry distillation in which light fractions of the oil partition into and are carried by the injected propane to lower the viscosity of the oil ahead of the steam front. Last, convective heat transfer at any of these low (5:100) ratios appears to be of secondary importance.

Ferguson,Mark Anthony

2000-01-01T23:59:59.000Z

327

Monitoring to detect groundwater problems resulting from enhanced oil recovery. Final report  

SciTech Connect

This report develops a four-stage monitoring program to detect groundwater contamination events that may potentially result from enhanced oil recovery (EOR) projects. The monitoring system design is based on a statistical analysis evolving from a series of equations that model subsurface transport of EOR spills. Results of the design include both spatial and frequency monitoring intervals that depend on properties of the local geology and dispersion characteristics of the potential contaminants. Sample results are provided for typical reservoir characteristics. The number of independent variables in the analysis dictate that EOR monitoring systems be designed on a site-specific basis. Sampling designs can be easily formulated to conform to the peculiarities of chosen EOR sites based on data already available from federal and state geological surveys and from oil company statistics.

Beck, R.; Aboba, B.; Miller, D.; Kaklins, I.

1981-10-01T23:59:59.000Z

328

Quantitative Methods for Reservoir Characterization and Improved Recovery: Application to Heavy Oil Sands  

Science Conference Proceedings (OSTI)

This project involved application of advanced analytical property-distribution methods conditioned to continuous outcrop control for improved reservoir characterization and simulation. The investigation was performed in collaboration with Chevron Production Company U.S.A. as an industrial partner, and incorporates data from the Temblor Formation in Chevron's West Coalinga Field, California. Improved prediction of interwell reservoir heterogeneity was needed to increase productivity and to reduce recovery cost for California's heavy oil sands, which contained approximately 2.3 billion barrels of remaining reserves in the Temblor Formation and in other formations of the San Joaquin Valley.

Castle, James W.; Molz, Fred W.; Bridges, Robert A.; Dinwiddie, Cynthia L.; Lorinovich, Caitlin J.; Lu, Silong

2003-02-07T23:59:59.000Z

329

In situ generation of steam and alkaline surfactant for enhanced oil recovery using an exothermic water reactant (EWR)  

DOE Patents (OSTI)

A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.

Robertson, Eric P

2011-05-24T23:59:59.000Z

330

Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Using an Innovative Technique to Retrieve Oil in Lawrence County, Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois Using an Innovative Technique to Retrieve Oil in Lawrence County, Illinois April 25, 2012 - 5:07pm Addthis The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16 barrels a day. | Image by Hantz Leger. The ASP flooding technique is helping to retrieve 65-75 barrels of oil a day, an increase from the previous retrieval of 16 barrels a day. | Image by Hantz Leger. Amanda Scott Amanda Scott Former Managing Editor, Energy.gov How does it work? This three part flooding technique uses alkaline, surfactant, and polymers. Alkaline works to help lower the bond attachment between the oil and the field. Then surfactant works as a soap to break the oil free.

331

INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

G.P. Willhite; D.W. Green; C.S. McCool

2003-05-01T23:59:59.000Z

332

Contracts for field projects and supporting research on enhanced oil recovery. Quarterly progress review No. 85, October 1, 1995--December 31, 1995  

SciTech Connect

This documents presents progress on enhanced oil recovery programs and reservoir characterization programs. Information is presented on contract numbers, awards, investigators, and project managers.

Godley, P.; Waisley, S.

1996-12-01T23:59:59.000Z

333

An evaluation of the Robinson M-1 commercial scale demonstration of enhanced oil recovery by micellar-polymer flood  

SciTech Connect

A commercial scale micellar-polymer project was conducted in the Robinson Sand of the M-1 project in southwestern Illinois. The project utilized a crude oil sulfonate surfactant system to flood the reservoir which, at the time of the project, was in an advanced stage of waterflood depletion. Injected fluids consisted of a 0.10 pore volume crude oil sulfonate slug, a 1.05 pore volume graded mobility slug using Dow Pusher 700, and a drive water slug to depletion. Micellar injection started in 1977. By December, 1986, overall operations in the 2.5-acre pattern area were uneconomical while polymer injection was continuing in the 5.0-acre pattern area. Depletion of the 5.0-acre pattern area is forecast for 1991 or sooner. Ultimate oil recovery is estimated at 1,397,000 barrels with cumulative oil recovery at December, 1986, of 1,299,000 barrels. Although the crude oil sulfonate system successfully mobilized and produced waterflood residual oil, the project was not economic because of both lower than anticipated recovery and higher than expected operating costs. The lower than anticipated recovery is attributed to poor volumetric sweep efficiency and salinity/hardness effects. 7 refs., 54 figs., 25 tabs.

Cole, E.L.

1988-12-01T23:59:59.000Z

334

Use of amine oxide surfactants for chemical flooding EOR (enhanced oil recovery)  

Science Conference Proceedings (OSTI)

The use of amine oxides with and without alcohols as cosolvents, and in combination with other surfactants as mixed micellar formulations for enhanced oil recovery by surfactant flooding was investigated. Amine oxides are a salt-tolerant class of surfactants that produce low interfacial tension and can develop viscosity without the addition of polymers. These salt-tolerant formulations generate three-phase regions with hydrocarbons over a broad salinity range, develop moderate solubilization, and produce low interfacial tensions, however oil recovery from amine oxide-alcohol phase behavior optimized formulations was directly dependent upon the quantity of surfactant injected. The large pore volume and high concentration of surfactant required prohibits their economic use as the primary surfactant in chemical flooding EOR. Dimethylalkylamine oxides are useful as cosurfactants and viscosifiers in formulations with other surfactants for chemical flooding EOR but the use of ethoxylated and propoxylated amine oxides should be avoided due to the decomposition of these amine oxides under reservoir conditions. Phase behavior, phase inversion temperatures, and viscosity scans have been correlated with surfactant structures to provide a guide for amine oxide applications in chemical flooding. 36 refs., 5 figs., 6 tabs.

Olsen, D.K.

1989-11-01T23:59:59.000Z

335

Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)  

SciTech Connect

Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

Abhijit Dandekar; Shirish Patil; Santanu Khataniar

2008-12-31T23:59:59.000Z

336

Economic Recovery of Oil Trapped at Fan Margins Using Hig Angle Wells Multiple Hydraulic Fractures  

Science Conference Proceedings (OSTI)

The Yowlumne field is a giant field in the southern San Joaquin basin, Kern County, California. It is a deep (13,000 ft) waterflood operation that produces from the Miocene- aged Stevens Sand. The reservoir is interpreted as a layered, fan-shaped, prograding turbidite complex containing several lobe-shaped sand bodies that represent distinct flow units. A high ultimate recovery factor is expected, yet significant quantities of undrained oil remain at the fan margins. The fan margins are not economic to develop using vertical wells because of thinning pay, deteriorating rock quality, and depth. This project attempts to demonstrate the effectiveness of exploiting the northeast distal fan margin through the use of a high- angle well completed with multiple hydraulic- fracture treatments. A high-angle well offers greater pay exposure than can be achieved with a vertical well. Hydraulic-fracture treatments will establish vertical communication between thin interbedded layers and the wellbore. The equivalent production rate and reserves of three vertical wells are anticipated at a cost of approximately two vertical wells. The near-horizontal well penetrated the Yowlumne sand; a Stevens sand equivalent, in the distal fan margin in the northeast area of the field. The well was drilled in a predominately westerly direction towards the interior of the field, in the direction of improving rock quality. Drilling and completion operations proved to be very challenging, leading to a number of adjustments to original plans. Hole conditions resulted in obtaining less core material than desired and setting intermediate casing 1200 ft too high. The 7 in. production liner stuck 1000 ft off bottom, requiring a 5 in. liner to be run the rest of the way. The cement job on the 5 in. liner resulted in a very poor bond, which precluded one of three hydraulic fracture treatments originally planned for the well. Openhole logs confirmed most expectations going into the project about basic rock properties: the formation was shaly with low porosities, and water saturations were in line with expectations, including the presence of some intervals swept out by the waterflood. High water saturations at the bottom of the well eliminated one of the originally planned hydraulic fracture treatments. Although porosities proved to be low, they were more uniform across the formation than expected. Permeabilities of the various intervals continue to be evaluated, but appear to be better than expected from the porosity log model derived in Budget Period One. The well was perforated in all pay sections behind the 5 in. liner. Production rates and phases agree nicely with log calculations, fractional flow calculations, and an analytical technique used to predict the rate performance of the well.

Laue, M.L.

1997-11-21T23:59:59.000Z

337

Characterization of Mixed Wettability at Different Scales and its Impact on Oil Recovery Efficiency  

Science Conference Proceedings (OSTI)

The objectives of this project was to: (1) quantify the pore scale mechanisms that determine the wettability state of a reservoir, (2) study the effect of crude oil, brine and mineral compositions in the establishment of mixed wet states, (3) clarify the effect of mixed - wettability on oil displacement efficiency in waterfloods, (4) develop a new tracer technique to measure wettability, fluid distributions, residual saturation's and relative permeabilities, and (5) develop methods for properly incorporating wettability in up-scaling from pore to core to reservoir scales.

Sharma, Mukul M.; Hirasaki, George J.

2002-01-28T23:59:59.000Z

338

Teapot Dome: Site Characterization of a CO2- Enhanced Oil Recovery Site in Eastern Wyoming  

Science Conference Proceedings (OSTI)

Naval Petroleum Reserve No. 3 (NPR-3), better known as the Teapot Dome oil field, is the last U.S. federally-owned and -operated oil field. This provides a unique opportunity for experiments to provide scientific and technical insight into CO{sub 2}-enhanced oil recovery (EOR) and other topics involving subsurface fluid behavior. Towards that end, a combination of federal, academic, and industrial support has produced outstanding characterizations of important oil- and brine-bearing reservoirs there. This effort provides an unparalleled opportunity for industry and others to use the site. Data sets include geological, geophysical, geochemical, geomechanical, and operational data over a wide range of geological boundary conditions. Importantly, these data, many in digital form, are available in the public domain due to NPR-3's federal status. Many institutions are already using portions of the Teapot Dome data set as the basis for a variety of geoscience, modeling, and other research efforts. Fifteen units, 9 oil-bearing and 6 brine-bearing, have been studied to varying degrees. Over 1200 wells in the field are active or accessible, and over 400 of these penetrate 11 formations located below the depth that corresponds to the supercritical point for CO{sub 2}. Studies include siliciclastic and carbonate reservoirs; shale, carbonate, and anhydrite cap rocks; fractured and unfractured units; and over-pressured and under-pressured zones. Geophysical data include 3D seismic and vertical seismic profiles. Reservoir data include stratigraphic, sedimentological, petrologic, petrographic, porosity, and permeability data. These have served as the basis for preliminary 3D flow simulations. Geomechanical data include fractures (natural and drilling induced), in-situ stress determination, pressure, and production history. Geochemical data include soil gas, noble gas, organic, and other measures. The conditions of these reservoirs directly or indirectly represent many reservoirs in the U.S., Canada, and overseas.

Friedmann, S J; Stamp, V

2005-11-01T23:59:59.000Z

339

High efficiency shale oil recovery. First quarter report, January 1, 1992--March 31, 1992  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-12-01T23:59:59.000Z

340

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations  

SciTech Connect

This project, 'Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations', investigated the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This primarily involved the use of 4D seismic (time lapse seismic) in an attempt to observe and map the movement of the injected CO{sub 2} through a carbonate reservoir. The differences between certain seismic attributes, such as amplitude, were used for this purpose. This technique has recently been shown to be effective in CO{sub 2} monitoring in Enhanced Oil Recovery (EOR) projects, such as Weyborne. This study was conducted in the Charlton 30/31 field in the northern Michigan Basin, which is a Silurian pinnacle reef that completed its primary production in 1997 and was scheduled for enhanced oil recovery using injected CO{sub 2}. Prior to injection an initial 'Base' 3D survey was obtained over the field and was then processed and interpreted. CO{sub 2} injection within the main portion of the reef was conducted intermittently during 13 months starting in August 2005. During this time, 29,000 tons of CO{sub 2} was injected into the Guelph formation, historically known as the Niagaran Brown formation. By September 2006, the reservoir pressure within the reef had risen to approximately 2000 lbs and oil and water production from the one producing well within the field had increased significantly. The determination of the reservoir's porosity distribution, a critical aspect of reservoir characterization and simulation, proved to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple 3D seismic surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model was developed based on seismic attributes obtained from the base 3D seismic survey and available well data. This simulation predicted that the CO{sub 2} injected into the reef would remain in the northern portion of the field. Two new wells, the State Charlton 4-30 and the Larsen 3-31, were drilled into the field in 2006 and 2008 respectively and supported this assessment. A second (or 'Monitor') 3D seismic survey was acquired during September 2007 over most of the field and duplicated the first (Base) survey, as much as possible. However, as the simulation and new well data available at that time indicated that the CO{sub 2} was concentrated in the northern portion of the field, the second seismic survey was not acquired over the extreme southern end of the area covered by the original (or Base) 3D survey. Basic processing was performed on the second 3D seismic survey and, finally, 4D processing methods were applied to both the Base and the Monitor surveys. In addition to this 3D data, a shear wave seismic data set was obtained at the same time. Interpretation of the 4D seismic data indicated that a significant amplitude change, not attributable to differences in acquisition or processing, existed at the locations within the reef predicted by the reservoir simulation. The reservoir simulation was based on the porosity distribution obtained from seismic attributes from the Base 3D survey. Using this validated reservoir simulation the location of oil within the reef at the time the Monitor survey was obtained and recommendations made for the drilling of additional EOR wells. The economic impact of this project has been estimated in terms of both enhanced oil recovery and CO{sub 2} sequestration potential. In the northern Michigan Basin alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. Potentially there is over 1 billion bbls of oil (original oil in place minus primary recovery) remains in the reefs in Michigan, much of which could be more efficiently mobilized utilizing techniques similar to those employed in this study.

Brian Toelle

2008-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

An evaluation of known remaining oil resources in the United States: Project on advanced oil recovery and the states. Volume 1  

SciTech Connect

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic, social, and political benefits of improved oil recovery to the nation as a whole. Individual reports for major oil producing states have been separately published. The individual state reports include California, Illinois, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and Wyoming. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). TORIS is a tested and verified system maintained and operated by the Department of Energy`s Bartlesville Project Office. The TORTS system was used to evaluate over 2,300 major reservoirs in a consistent manner and on an individual basis, the results of which have been aggregated to arrive at the national total.

Not Available

1994-10-01T23:59:59.000Z

342

Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO2 Enhanced Oil Recovery Operations  

SciTech Connect

The ''Application of Time-Lapse Seismic Monitoring for the Control and Optimization of CO{sub 2} Enhanced Oil Recovery Operations'' project is investigating the potential for monitoring CO{sub 2} floods in carbonate reservoirs through the use of standard p-wave seismic data. This project will involve the use of 4D seismic (time lapse seismic) to try to observe the movement of the injected CO{sub 2} through the reservoir. The differences between certain seismic attributes, such as amplitude, will be used to detect and map the movement of CO{sub 2} within the reservoir. This technique has recently been shown to be effective in CO{sub 2} monitoring in EOR projects such as Weyborne. The project is being conducted in the Charlton 30/31 field in northern Michigan Basin which is a Silurian pinnacle reef that has completed its primary production. This field is now undergoing enhanced oil recovery using CO{sub 2}. The CO{sub 2} flood was initiated the end of 2005 when the injection of small amounts of CO{sub 2} begin in the A1 Carbonate. This injection was conducted for 2 months before being temporarily halted in order for pressure measurements to be conducted. The determination of the reservoir's porosity distribution is proving to be a significant portion of this project. In order to relate the differences observed between the seismic attributes seen on the multiple surveys and the actual location of the CO{sub 2}, a predictive reservoir simulation model had to be developed. From this model, an accurate determination of porosity within the carbonate reservoir must be obtained. For this certain seismic attributes have been investigated. The study reservoirs in the Charlton 30/31 field range from 50 to 400 acres in size. The relatively small area to image makes 3-D seismic data acquisition reasonably cost effective. Permeability and porosity vary considerably throughout the reef, thus it is essential to perform significant reservoir characterization and modeling prior to implementing a CO{sub 2} flood to maximize recovery efficiency. Should this project prove successful, the same technique could be applied across a large spectrum of the industry. In Michigan alone, the Niagaran reef play is comprised of over 700 Niagaran reefs with reservoirs already depleted by primary production. These reservoirs range in thickness from 200 to 400 ft and are at depths of 2000 to 5000 ft. Approximately 113 of these Niagaran oil fields have produced over 1 million bbls each and the total cumulative production is in excess of 300 million bbls and 1.4 Tcf. There could potentially be over 1 billion bbls of oil remaining in reefs in Michigan much of which could be mobilized utilizing techniques similar to those employed in this study.

Brian E. Toelle

2006-02-28T23:59:59.000Z

343

Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes  

SciTech Connect

This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

Reid, T.B. [USDOE Bartlesville Project Office, OK (United States); Colonomos, P. [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

1993-02-01T23:59:59.000Z

344

Assessment of water issues associated with enhanced oil recovery: a user's guide  

SciTech Connect

This is a user's manual for effectively evaluating water issues associated with enhanced oil recovery (EOR) production. It is designed to provide ready reference and to assist EOR producers, energy planners, and decision-makers in assessing the impacts of water issues related to EOR production. An evaluation is made of EOR water requirements using public available information, data from actual field applications, and information provided by knowledgeable EOR technologists in 14 different major oil companies. Water quantity and quality requirements representing the total water needed from all sources (e.g., aquifers, lakes, etc.) are estimated for individual EOR processes in those states and specific geological locations where these processes will likely play major roles in future petroleum production by the year 2000. A reduction in these quantities can be achieved by reinjecting some or all of the produced water potentially available for recycle (i.e., some is lost in oil and water separation treatment processes) in the recovery method. Data and information for quantity and quality of surface and ground water availability and competing entities by four major user categories are presented on a qualitative and quantitative basis on a state-county basis from monitoring sites nearest existing EOR projects. Information regarding regulatory bodies responsible for the control of water supply and use is presented in tabular form by state only because of the volume and complexity of material. While no major EOR project to date has ever been abandoned because of water supply problems, factors such as competing regional uses for water, drought situations, and scarcity of high quality surface and ground water could be impediments to certain projects in the near future. 6 figures, 22 tables.

Shields, J.; Kaplan, E.; Royce, B.A.

1983-04-01T23:59:59.000Z

345

Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma  

Science Conference Proceedings (OSTI)

This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in Oklahoma City May 8,9 2001 has been submitted for publication to the OGS. A technical paper draft has been submitted for the ASME/ETCE conference (Feb 2002) Production Technology Symposium. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on Improved Oil Recovery in Tulsa, OK, April 13-17, 2002. Dan Maloney, Phillips and Bob Westermark, OGCI will be the instructors. In addition, a proposed technical paper has been submitted for this meeting.

J. Ford Brett; Robert V. Westermark

2001-09-30T23:59:59.000Z

346

Water Influx, and Its Effect on Oil Recovery: Part 1. Aquifer Flow, SUPRI TR-103  

SciTech Connect

Natural water encroachment is commonly seen in many oil and gas reservoirs. In fact, overall, there is more water than oil produced from oil reservoirs worldwide. Thus it is clear that an understanding of reservoir/aquifer interaction can be an important aspect of reservoir management to optimize recovery of hydrocarbons. Although the mathematics of these processes are difficult, they are often amenable to analytical solution and diagnosis. Thus this will be the ultimate goal of a series of reports on this subject. This first report deals only with aquifer behavior, so it does not address these important reservoir/aquifer issues. However, it is an important prelude to them, for the insight gained gives important clues on how to address reservoir/aquifer problems. In general when looking at aquifer flow, there are two convenient inner boundary conditions that can be considered; constant pressure or constant flow rate. There are three outer boundary conditions that are convenient to consider; infinite, closed and constant pressure. And there are three geometries that can be solved reasonably easily; linear, radial and spherical. Thus there are a total of eighteen different solutions that can be analyzed.

Brigham, William E.

1999-08-09T23:59:59.000Z

347

Wettability and Oil Recovery by Imbibition and Viscous Displacement from Fractured and Heterogeneous Carbonates  

E-Print Network (OSTI)

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. About one-half of U.S. oil reserves are held in carbonate formations. The remaining oil in carbonate reservoirs is regarded as the major domestic target for improved oil recovery. Carbonate reservoirs are often fractured and have great complexity even at the

Norman R. Morrow; Co-principle Investigator; Jill Buckley; Co-principle Investigator

2006-01-01T23:59:59.000Z

348

Determination of technology transfer requirements for enhanced oil recovery. Final report  

Science Conference Proceedings (OSTI)

A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

Wilson, T.D.; Scott, J.P.

1980-09-01T23:59:59.000Z

349

Development of Advanced Nondestructive Evaluation Techniques for Heat Recovery Steam Generators  

Science Conference Proceedings (OSTI)

Contemporary heat recovery steam generators (HRSGs) operate with multiple pressures and temperatures that can result in degradation and failure of key components such as HRSG drains. Periodic nondestructive evaluation (NDE) of HRSGs can mitigate catastrophic component failure as well as facilitate effective maintenance planning through early detection of system damage. This technical update describes HRSG drain damage mechanisms and related NDE techniques.

2009-03-27T23:59:59.000Z

350

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996  

SciTech Connect

Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

NONE

1997-05-01T23:59:59.000Z

351

Enhanced-oil-recovery thermal processes, annex IV. Venezuela-MEM/USA-DOE fossil-energy report IV-1  

Science Conference Proceedings (OSTI)

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex IV - Enhanced-Oil-Recovery Thermal Processes which was divided into seven tasks. This report will discuss the information developed within Task I related to the Department of Energy providing data on the performance of insulated oil-well tubulars. Surface generated steam has been traditionally used in thermal enhanced oil recovery processes. In past years the tubing through which the steam is injected into the reservoir has been bare with relatively high heat losses. In recent years however various materials and designs for insulating the tubing to reduce heat losses have been developed. Evaluation of several of these designs in an instrumented test tower and in an oil field test environment was undertaken. These tests and the resulting data are presented.

Peterson, G.; Schwartz, E.

1983-04-01T23:59:59.000Z

352

Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980  

DOE Green Energy (OSTI)

The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

1980-11-01T23:59:59.000Z

353

Solar thermal enhanced oil recovery (STEOR). Sections 2-8. Final report, October 1, 1979-June 30, 1980  

SciTech Connect

The program objectives were: (1) determine the technical, economic, operational, and environmental feasibility of solar thermal enhanced oil recovery using line focusing distributed collectors at Exxon's Edison Field, and (2) estimate the quantity of solar heat which might be applied to domestic enhanced oil recovery. This volume of the report summarizes all of the work done under the contract Statement of Work. Topics include the selection of the solar system, trade-off studies, preliminary design for steam raising, cost estimate for STEOR at Edison Field, the development plan, and a market and economics analysis. (WHK)

Elzinga, E.; Arnold, C.; Allen, D.; Garman, R.; Joy, P.; Mitchell, P. Shaw, H.

1980-11-01T23:59:59.000Z

354

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

355

A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery  

E-Print Network (OSTI)

A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short string (SS) is completed in the top quarter of the reservoir, while the long string (LS) is completed in the bottom quarter of the reservoir. The method requires an initial warm-up stage where steam is injected into both strings for 21 days; then the LS is opened to production while the SS continues to inject steam for 14 days. After the initial warm-up, the following schedule is repeated: the LS is closed and steam is injected in the SS for 21 days; then steam injection is stopped and the LS is opened to production for 180 days. There is no soak period. Simulations to compare the performance of the TINBOP method against that of a conventional cyclic steam injector (perforated across the whole reservoir) have been made. Three reservoir types were simulated using 2-D radial, black oil models: Hamaca (9�°API), San Ardo (12�°API) and the SPE fourth comparative solution project (14�°API). For the first two types, a 20x1x20 10-acre model was used that incorporated typical rock and fluid properties for these fields. Simulation results indicate oil recovery after 10 years was 5.7-27% OIIP with TINBOP, that is 57-93% higher than conventional cyclic steam injection (3.3-14% OIIP). Steam-oil ratios were also decreased with TINBOP (0.8-3.1%) compared to conventional (1.2-5.3%), resulting from the improved reservoir heating efficiency.

Matus, Eric Robert

2006-08-01T23:59:59.000Z

356

ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA  

SciTech Connect

This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine removal activity. The tool cannot operate in this condition and remains in the well. There was no response measured during or afterwards to either the produced fluids from the five production wells or in the injection characteristics of the two injection wells in the pilot test area. Monitoring the pilot area injection and production wells ceased when the field test was terminated March 14, 2003. Thus, a key goal of this project, which was to determine the effects of vibration stimulation on improving oil recovery from a mature waterflood, was not obtained. While there was no improved oil recovery effect measured, there was insufficient vibration stimulation time to expect a change to occur. No conclusion can be drawn about the effectiveness of vibration stimulation in this test.

Robert Westermark; J. Ford Brett

2003-11-01T23:59:59.000Z

357

LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING  

SciTech Connect

This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher salinity reservoirs. Alkylpropoxy sulfate surfactants are not yet available as large volume commercial products. The results presented herein can provide the needed industrial impetus for extending application (alkyl polyglycoside) or scaling up (alkylpropoxy sulfates) of these two promising surfactants for enhanced oil recovery. Furthermore, the advanced simulations tools presented here can be used to continue to uncover new types of surfactants with promising properties such as inherent low IFT and biodegradability.

William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

2004-09-01T23:59:59.000Z

358

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain  

SciTech Connect

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2006-05-31T23:59:59.000Z

359

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain  

Science Conference Proceedings (OSTI)

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2003-12-31T23:59:59.000Z

360

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DEVELOPMENT OF AN EXPERT SYSTEM TO IDENTIFY PHASE EQUILIBRIA AND ENHANCED OIL RECOVERY CHARACTERISTICS OF CRUDE OILS.  

E-Print Network (OSTI)

??With the increasing demand of oil and gas in the past decades, great endeavors in the oil industry have been devoted to develop and incorporate… (more)

Hua, Luoyi

2012-01-01T23:59:59.000Z

362

Enhanced oil recovery for thermal processes. First amendment and extension to Annex IV  

Science Conference Proceedings (OSTI)

This report contains the result of efforts under the several tasks of the First Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal processes. The report is presented in six sections (for each of the six tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each one of the tasks. Each section has been abstracted and processed for inclusion in the Energy Data Base. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 8-13. The first report on Annex IV, Venezuela-MEM/USE-DOE Fossil Energy Report IV-1, (DOE/BETC/SP-83/15), contains the results from the first seven tasks. That report is dated April 1983, entitled, EOR Thermal Processes.

Peterson, G.; Schwartz, E.

1984-08-01T23:59:59.000Z

363

TIME-LAPSE SEISMIC MODELING & INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY  

SciTech Connect

Injection of carbon dioxide (CO2) into subsurface aquifers for geologic storage/sequestration, and into subsurface hydrocarbon reservoirs for enhanced oil recovery, has become an important topic to the nation because of growing concerns related to global warming and energy security. In this project we developed new ways to predict and quantify the effects of CO2 on seismic data recorded over porous reservoir/aquifer rock systems. This effort involved the research and development of new technology to: (1) Quantitatively model the rock physics effects of CO2 injection in porous saline and oil/brine reservoirs (both miscible and immiscible). (2) Quantitatively model the seismic response to CO2 injection (both miscible and immiscible) from well logs (1D). (3) Perform quantitative inversions of time-lapse 4D seismic data to estimate injected CO2 distributions within subsurface reservoirs and aquifers. This work has resulted in an improved ability to remotely monitor the injected CO2 for safe storage and enhanced hydrocarbon recovery, predict the effects of CO2 on time-lapse seismic data, and estimate injected CO2 saturation distributions in subsurface aquifers/reservoirs. We applied our inversion methodology to a 3D time-lapse seismic dataset from the Sleipner CO2 sequestration project, Norwegian North Sea. We measured changes in the seismic amplitude and traveltime at the top of the Sleipner sandstone reservoir and used these time-lapse seismic attributes in the inversion. Maps of CO2 thickness and its standard deviation were generated for the topmost layer. From this information, we estimated that 7.4% of the total CO2 injected over a five-year period had reached the top of the reservoir. This inversion approach could also be applied to the remaining levels within the anomalous zone to obtain an estimate of the total CO2 injected.

Mark A. Meadows

2006-03-31T23:59:59.000Z

364

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

365

Toxicity of chemical compounds used for enhanced oil recovery. Final report  

SciTech Connect

The intent of this report is to assess the toxicological nature of compounds used in Enhanced Oil Recovery (EOR) technologies so that the Department of Energy (DOE) can delineate the possible constraints to EOR commercialization that the toxicity of these substances could pose. In addition, research priorities are recommended to the DOE so that these constraints can be overcome in as safe and expedient manner as possible. In evaluating the toxicity of EOR chemicals, priority is given to the many chemicals which are now available commercially and are being used in a significant fashion in current EOR field tests. Specific attention has been paid to those chemicals which are used most extensively and to the human health effects data that are associated with them. These data are presented in Chapter Two. Information on toxicological concepts and a glossary of terms is presented in a separate appendix. Long-term environmental effects are not addressed in this document, but the possibility of impacts due to the toxic properties of certain chemicals is discussed briefly in the research recommendations. A table of aquatic toxicity data is included as Appendix C. The toxicity of EOR chemicals used is given for each of the following major secondary and tertiary recovery methods: micellar/polymer flooding technology; miscible carbon dioxide technology; in situ combustion technology; alkaline flooding and preflush technologies; and steam soak and steam drive technologies.

Silvestro, E.; Crocker, M.

1980-09-01T23:59:59.000Z

366

Hydrogenation of Fats and Oils: Theory and PracticeChapter 2 Hydrogenation Process Techniques  

Science Conference Proceedings (OSTI)

Hydrogenation of Fats and Oils: Theory and Practice Chapter 2 Hydrogenation Process Techniques Processing eChapters Processing Downloadable pdf of Chapter 2 Hydrogenation Process Techniques from the book ...

367

Polymer floods: A case study of nonlinear wave analysis and of instability control in tertiary oil recovery  

SciTech Connect

Polymer flooding in oil reservoir simulation is considered in two space dimensions. The wave structures associated with such a process give rise to interesting phenomena in the nonlinear regime which have direct bearing on the efficiency of oil recovery. These waves influence and can prevent surface instabilities of the fingering mode. In this paper we resolve these waves by a front tracking method. We consider the fingering problem and the issue of oil recovery for the polymer flood. The details of these two phenomena depend on the separation between the waves and upon the viscosity contrast between the oil, water and polymer. We identify a nonlinear transfer of instability between adjacent waves and a nonlinear enhancement of recovery due to successive waves. The conclusions produced by this work are also pertinent to tracer flooding. One interesting conclusion applies to polymer injection followed by pure water injection. In this case the instability is transferred to the polymer-water interface, and the pure water region can break through the polymer to achieve direct contact with the oil. The polymer is left in narrow ribbons parallel to the main flow field and is by-passed by pure water. The effect of narrow regions of by-passed polymer can be simulated by the front tracking method and is not equivalent to numerical or physical diffusion, which would distribute the polymer more uniformly and retard the breakthrough of water through the polymer layer. 45 refs., 15 figs.

Daripa, P.; Glimm, J.; Lindquist, B.; McBryan, O.

1986-11-01T23:59:59.000Z

368

Polymer floods: A case study of nonlinear wave analysis and of instability control in tertiary oil recovery  

Science Conference Proceedings (OSTI)

Polymer flooding in oil reservoir simulation is considered in two space dimensions. The wave structures associated with such a process give rise to interesting phenomena in the nonlinear regime which have direct bearing on the efficiency of oil recovery. These waves influence and can prevent surface instabilities of the fingering mode. In this paper the authors resolve these waves by a front tracking method. They consider the fingering problem and the issue of oil recovery for the polymer flood. The details of these two phenomena depend on the separation between the waves and upon the viscosity contrast between the oil, water and polymer. They identify a nonlinear transfer of instability between adjacent waves and a nonlinear enhancement of recovery due to successive waves. The conclusions produced by this work are also pertinent to tracer flooding. One interesting conclusion applies to polymer injection followed by pure water injection. In this case the instability is transferred to the polymer-water interface, and the pure water region can break through the polymer to achieve direct contact with the oil. The polymer is left in narrow ribbons parallel to the main flow field and is by-passed by pure water. The effect of narrow regions of by-passed polymer can be simulated by the front tracking method and is not equivalent to numerical or physical diffusion, which would distribute the polymer more uniformly and retard the breakthrough of water through the polymer layer.

Daripa, P.; Glimm, J.; Lindquist, B.; McBryan, O.

1988-04-01T23:59:59.000Z

369

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales  

SciTech Connect

The primary objective of this research is to conduct advanced reservoir characterization and modeling studies in the Antelope Shale reservoir. Characterization studies will be used to determine the technical feasibility of implementing a CO2 enhanced oil recovery project in the Antelope Shale in Buena Vista Hills Field. The Buena Vista Hills pilot CO2 project will demonstrate the economic viability and widespread applicability of CO2 flooding in fractured siliceous shale reservoirs of the San Joaquin Valley. The research consists of four primary work processes: (1) Reservoir Matrix and Fluid Characterization; (2) Fracture characterization; (3) reservoir Modeling and Simulation; and (4) CO2 Pilot Flood and Evaluation. Work done in these areas is subdivided into two phases or budget periods. The first phase of the project will focus on the application of a variety of advanced reservoir characterization techniques to determine the production characteristics of the Antelope Shale reservoir. Reservoir models based on the results of the characterization work will be used to evaluate how the reservoir will respond to secondary recovery and EOR processes. The second phase of the project will include the implementation and evaluation of an advanced enhanced oil recovery (EOR) pilot in the United Anticline (West Dome) of the Buena Vista Hills Field.

Morea, Michael F.

1999-11-01T23:59:59.000Z

370

Tactile robotic mapping of unknown surfaces: An application to oil well exploration  

E-Print Network (OSTI)

World oil demand and advanced oil recovery techniques have made it economically attractive to rehabilitate previously abandoned oil wells. This requires relatively fast mapping of the shape and location of the down-hole ...

Mazzini, Francesco

371

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

DOE Green Energy (OSTI)

The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zone of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique.

Brown, Lewis R.; Stephens, James O.; Vadie, Alex A.

1999-11-03T23:59:59.000Z

372

The Utilization of the Microflora Indigenous to and Present in Oil-Bearing Formations to Selectively Plug the More Porous Zones Thereby Increasing Oil Recovery During Waterflooding  

DOE Green Energy (OSTI)

The objective of this work is to demonstrate the use of indigenous microbes as a method of profile control in waterfloods. It is expected that as the microbial population is induced to increase, that the expanded biomass will selectively block the more permeable zones of the reservoir thereby forcing injection water to flow through the less permeable zones which will result in improved sweep efficiency. This increase in microbial population will be accomplished by injecting a nutrient solution into four injectors. Four other injectors will act as control wells. During Phase I, two wells will be cored through the zone of interest. The core will be subjected to special core analyses in order to arrive at the optimum nutrient formulation. During Phase II, nutrient injection will begin, the results monitored, and adjustments to the nutrient composition made, if necessary. Phase II also will include the drilling of three wells for post-mortem core analysis. Phase III will focus on technology transfer of the results. It should be pointed out that one expected outcome of this new technology will be a prolongation of economical waterflooding operations, i.e. economical oil recovery should continue for much longer periods in the producing wells subjected to this selective plugging technique. Results from work under DOE Contract No. DE-AC22-90BC14665 will be incorporated as appropriate.

Brown, Lewis R.; Vadie, Alex A.

1996-10-20T23:59:59.000Z

373

INEEL Biotechnology for Oilfield Application--Microbial Enhanced Oil Recovery FY-03 Report  

Science Conference Proceedings (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) Biotechnology for Oilfield Operations program supports development, engineering, and application of biotechnology for exploration and production. This continuing INEEL program also supports mitigation of detrimental field conditions. The program is consistent with the United States Department of Energy mission to ¡§promote activities and policies through its oil technology and natural gas supply programs to enhance the efficiency and environmental quality of domestic oil and natural gas exploration, recovery, processing, transport, and storage.¡¨ In addition, the program directly supports the focus areas of Reservoir Life Extension; Advanced Drilling, Completion and Stimulation Systems; Effective Environmental Protection; and Cross Cutting Areas. The program is enhanced by collaborative relationships with industry and academia. For fiscal year 2003, the program focused on production and characterization of biological surfactants from agricultural residuals and the production and application of reactive microbial polymers. This report specifically details: 1. Use of a chemostat reactor operated in batch mode for producing surfactin, with concomitant use of an antifoam to prevent surfactant loss. The program achieved production and recovery of 0.6 g/L of surfactin per 12 hr. 2. Characterization of surfactin produced from agricultural residuals with respect to its ability to mediate changes in surface tension. Conditions evaluated were salt (as NaCl) from 0 to 10% (w/v), pH from 3 to 10, temperature from 21 to 70¢XC, and combinations of these conditions. When evaluated singularly, pH below 6 and salt concentrations above 30 g/L were found to have an adverse impact on surfactin. Temperatures of 70¢XC for 95 days had no effect. When the effect of temperature was added to the pH experiment, there were no significant changes, and, again, surface tension, at any temperature, increased at pH below 6. When temperature (70¢XC) was added to the experiments with salt, the impacts of salt up to 30 g/L were negligible. When all three parameters were combined in one experiment, no increase in surface tension was observed at 80 g/L NaCl, pH 10, and 70¢XƒnC. The upper temperature limit of the surfactin was not determined in these experiments. 3. Impact of alkaline soluble, pH reactive biopolymers to alter permeability in Berea sandstone cores. The contributing effect of salt (as NaCl to 2%, w/v), temperatures to 60¢XC, and crude oil were evaluated. Residual resistance factors were increased 800 fold, compared to cores without biopolymer. This could lead to alternate technology for permeability modification, thus extending the life of a reservoir and preventing premature abandonment.

G. A. Bala; D. F. Bruhn; S. L. Fox; K. S. Noah; K. D. Schaller; E. P. Robertson; X. Xie

2003-11-01T23:59:59.000Z

374

Evaluate past and ongoing enhanced oil-recovery projects in the United States and Venezuela, annex III. Venezuela-MEM/USA-DOE fossil-energy report III-1  

SciTech Connect

The Agreement between the United States and Venezuela was designed to further energy research and development in six areas. This report focuses on Annex III - Evaluate Past and Ongoing Enhanced Oil Recovery Projects in the United States and Venezuela. Annex III has separated this portion of the coopertive energy research and development effort into four tasks for study. Energy research and development in the area of Enhanced Oil Recovery has as its goal the more efficient and complete production of the third crop of oil. Methods and techniques must be developed to assist the decision maker in the best timing and method for his EOR project. If a method can be developed to predict production based on certain known reservoir parameters, the producer will be able to make more accurate decisions. Accurate predictive models can be developed if a larger data base with enough data on varied reservoirs and processes is compiled. Statistical algorithms can be developed, tested, and verified with actual production data. New data can be used to recalibrate the models for improved accuracy. The developed models can then be used to evaluate current or anticipated EOR projects.

Ward, D.C.; Garcia, J.

1983-04-01T23:59:59.000Z

375

Impact of excavation technique on strength of oil shale pillars  

SciTech Connect

The load carrying capacity of oil shale pillars excavated by conventional blasting, presplit blasting, and mechanical mining is evaluated. The study was based on a comparison of in-situ vertical stresses and fractures obtained from overcoring horizontal holes in the Colony Mine, Piceance Creek Basin, Colorado. Results indicate that conventional blasting causes a zone of damage approximately 3 m (10 ft) thick with low stress distributions. Presplit blasting reduces damage significantly, and increases the load carrying capacity in the 3 m (10 ft) thick zone by 5.93 MPa (860 psi). Mechanical mining causes little or no rock damage, and an increase of 9.83 MPa (1425 psi) in strength in the same 3 m (10 ft) thick zone. An example of pillar design is given showing that the use of presplit blasting and mechanical mining techniques can increase the extraction ratio by at least three and five percent, respectively, as compared to conventional blasting. It is speculated that comparable increases in extraction should also occur due to increases in span dimensions.

Agapito, J.F.T.; Aggson, J.R.; Maleki, H.N.

1984-02-01T23:59:59.000Z

376

Enhanced oil recovery. Byron Field polymer waterflood will achieve two important firsts  

SciTech Connect

When Marathon Oil Co. starts up its long-awaited, Byron Field Tensleep-Embar Unit polymer waterflood this December 2, firsts will have been achieved: the Big-Horn basin will see its first full-field commercial tertiary flood, and Marathon also will see its first full-field commercial tertiary flood. Marathon's flood will use a massive amount of polymer. Seventy percent of pore volume will be injected. Big Horn basin fields usually have been subjected only to infill drilling and waterflood because the thicker than average crude lies in heterogeneous formations, yielding a situation whereby, even 60 to 70 yr after discovery, simple infill drilling can cause virgin oil to flow to the well bore. In some cases, 20-, 10-, or 5-acre spacing might be required to drain a reservoir adequately, giving long effective lift to simple primary production techniques. In addition, a natural water drive often is present.

Gill, D.

1982-09-01T23:59:59.000Z

377

Contracts and grants for cooperative research on enhanced oil recovery and improved drilling technology. Progress review No. 20, quarter ending September 30, 1979  

SciTech Connect

The contracts and grants for field projects and supporting research on enhanced oil recovery and improved drilling technology are arranged according to: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; improved drilling technology; residual oil; environmental; and petroleum techology.

Linville, B. (ed.)

1980-01-01T23:59:59.000Z

378

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

379

Uncovering the Microbial Diversity of the Alberta Oil Sands through Metagenomics: A Stepping Stone for Enhanced Oil Recovery and  

E-Print Network (OSTI)

is directed at more traditional enhanced recovery projects such as waterflood or gas cycling projects and does

Voordouw, Gerrit

380

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

Research programs on enhanced recovery are briefly described. Major areas include: chemical flooding, gas displacement, thermal recovery processes, resource assessment technology, geoscience technology, microbial technology, and environmental technology.

Not Available

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil recovery techniques" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Carbon Dioxide-Water Emulsions for Enhanced Oil Recovery and Permanent Sequestration of Carbon Dioxide  

Science Conference Proceedings (OSTI)

This project involves the use of an innovative new invention ? Particle Stabilized Emulsions (PSEs) of Carbon Dioxide-in-Water and Water-in-Carbon Dioxide for Enhanced Oil Recovery (EOR) and Permanent Sequestration of Carbon Dioxide. The EOR emulsion would be injected into a semi-depleted oil reservoir such as Dover 33 in Otsego County, Michigan. It is expected that the emulsion would dislocate the stranded heavy crude oil from the rock granule surfaces, reduce its viscosity, and increase its mobility. The advancing emulsion front should provide viscosity control which drives the reduced-viscosity oil toward the production wells. The make-up of the emulsion would be subsequently changed so it interacts with the surrounding rock minerals in order to enhance mineralization, thereby providing permanent sequestration of the injected CO{sub 2}. In Phase 1 of the project, the following tasks were accomplished: 1. Perform laboratory scale (mL/min) refinements on existing procedures for producing liquid carbon dioxide-in-water (C/W) and water-in-liquid carbon dioxide (W/C) emulsion stabilized by hydrophilic and hydrophobic fine particles, respectively, using a Kenics-type static mixer. 2. Design and cost evaluate scaled up (gal/min) C/W and W/C emulsification systems to be deployed in Phase 2 at the Otsego County semi-depleted oil field. 3. Design the modifications necessary to the present CO{sub 2} flooding system at Otsego County for emulsion injection. 4. Design monitoring and verification systems to be deployed in Phase 2 for measuring potential leakage of CO{sub 2} after emulsion injection. 5. Design production protocol to assess enhanced oil recovery with emulsion injection compared to present recovery with neat CO{sub 2} flooding. 6. Obtain Federal and State permits for emulsion injection. Initial research focused on creating particle stabilized emulsions with the smallest possible globule size so that the emulsion can penetrate even low-permeability crude oilcontaining formations or saline aquifers. T