Sample records for oil profile mississippi

  1. Overview of oil and gas potential in Mississippi

    SciTech Connect (OSTI)

    Devery, D.M.

    1982-12-01T23:59:59.000Z

    Today, 2 geologic provinces in Mississippi are actively explored for hydrocarbons. These are the Mississippi Interior Salt Basin and the Black Warrior Basin. Of these 2 basins, the Interior Salt Basin is by far the more productive. The Salt Basin is situated in central and S. Mississippi and is bounded to the north by the buried Ouachita Mountains and by the Wiggins Anticline to the south. There are 61 identified salt domes in this basin as well as countless unidentified deep-seated salt diapirs; the latter are marked by deformation of surrounding and overlying strata. Salt tectonics are closely related to formation of structural traps for hydrocarbon accumulation within the Salt Basin. The second exploration province is the Black Warrior Basin, a Paleozoic structural feature bounded by the buried Ouachita Mountains to the southwest and the buried Appalachian Mountains to the southeast.

  2. Potential Mississippi oil recovery and economic impact from CO sub 2 miscible flooding

    SciTech Connect (OSTI)

    Moring, J.A.; Rogers, R.E. (Petroleum Engineering Dept., Mississippi State Univ., MS (US))

    1991-01-01T23:59:59.000Z

    Maturing of Mississippi oil reservoirs has resulted in a steady decline in crude oil production in the state. This paper reports that, to evaluate the potential of enhanced recovery processes, particularly in the use of the state's large CO{sub 2} reserves, for arresting this trend, the subject study was performed. A computer data base of over 1315 Mississippi reservoirs was established. All reservoirs were screened for applicability of the carbon dioxide miscible process. With models developed by the National Petroleum Council and DOE, incremental oil that could be produced from the carbon dioxide miscible process was calculated. Under selected economic conditions, carbon dioxide miscible flooding with utilization of carbon dioxide from the state's Norphlet formation (3-7 tcf reserves of high-purity CO{sub 2}) could produce 120 million barrels of incremental oil in Mississippi. Incremental state revenues as a consequence of this production were calculated to be $45 million of severance taxes, $50 million of corporate income taxes, and $60 million of royalty payments, expressed as present values.

  3. Geochemical studies of crude oil generation, migration, and destruction in Mississippi salt basin

    SciTech Connect (OSTI)

    Sassen, R.; Moore, C.H.; Nunn, J.A.; Meendsen, F.C.; Heydari, E.

    1987-09-01T23:59:59.000Z

    The main source for crude oil in the Mississippi salt basin is the laminated lime mudstone facies of the lower Smackover. Crude oil generation and migration commenced at a level of thermal maturity equivalent to about 0.55% vitrinite reflectance. Short-range lateral migration of crude oil was focused on upper Smackover and Norphlet reservoirs, but vertical migration also charged some overlying Cotton Valley, Rodessa, lower Tuscaloosa, and Eutaw reservoirs. Following migration from the lower Smackover, thermal maturity history of reservoir rocks controls the preservation of crude oil, gas condensate, and methane. Slow thermal cracking of crude oil occurred in deep upper Smackover reservoirs, resulting in formation of gas condensate and precipitation of solid bitumen. The maximum thermal maturity for preservation of condensate is equivalent to about 1.3% vitrinite reflectance. Only methane, pyrobitumen, and nonhydrocarbon gases, including hydrogen sulfide, persist at higher levels of thermal maturity. Early destruction of methane in deep upper Smackover reservoirs near the Wiggins arch is driven by thermochemical sulfate reduction. Lesser availability of sulfate in Norphlet reservoirs could account for methane preservation at higher levels of thermal maturity. One basic geochemical strategy for further exploration of the Mississippi salt basin is to focus exploration effort on traps with reservoirs in the thermal maturity window for hydrocarbon preservation. Another strategy is to avoid drilling traps with overmature reservoir rocks.

  4. Pathways of migration of oil and gas in south Mississippi salt basin

    SciTech Connect (OSTI)

    Evans, R.

    1987-09-01T23:59:59.000Z

    The South Mississippi salt basin is one of three interior basins characterized by structures formed by movement of the Late Jurassic Louann Salt. An analysis of pathways of migration within the basin has revealed that it is possible to explain why hydrocarbons have accumulated in some structures, yet are absent from others that would appear to be favorable. Seventy-four of the more than 840 fields within the basin, including the largest known accumulations, have hydrocarbons in stacked reservoirs belonging in more than one formation. These stacked reservoirs result from vertical migration facilitated by faulting. In more than 750 fields, hydrocarbons are confined to a single formation in traps associated with four distinct trends of production that decrease in age systematically from the margin of the basin into the interior. The hydrocarbons in these trends have accumulated by intrastratal migration (without the agency of faulting) from a nearby source in the same unit as the reservoir. On the northwest side of the basin, migration between units brought into contact along unconformities has resulted in 10 fields. Vertical migration brought about by faulting around shallow salt diapirs has allowed hydrocarbons to escape, so that only 5 of 56 such structures have produced oil or gas. These conclusions, derived from geologic deductions, are supported by preliminary geochemical data; more extensive and detailed geochemical analyses of oils from the various sources are under way.

  5. Mississippi Loan Guaranty Program (Mississippi)

    Broader source: Energy.gov [DOE]

    The Mississippi Loan Guaranty Program, administered by the Mississippi Business Finance Corporation ("MBFC"), enables small businesses to obtain term financing through the use of loan guarantees....

  6. An MBendi Profile: World: Oil And Gas Industry -Peak Oil: an Outlook on Crude Oil Depletion -C.J.Campbell -Revised February 2002 Search for

    E-Print Network [OSTI]

    An MBendi Profile: World: Oil And Gas Industry - Peak Oil: an Outlook on Crude Oil Depletion - C - Contact Us - Newsletter Register subscribe to our FREE newsletter World: Oil And Gas Industry - Peak Oil the subsequent decline. q Gas, which is less depleted than oil, will likely peak around 2020. q Capacity limits

  7. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil + Lease

  8. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30T23:59:59.000Z

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  9. Heterogeneity in Mississippi oil reservoirs, Black Warrior basin, Alabama: An overview

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Irvin, G.D. (Geological Survey of Alabama, Tuscaloosa, AL (United States))

    1993-09-01T23:59:59.000Z

    Four Mississippian sandstone units produce oil in the Black Warrior basin of Alabama: (1) Lewis; (2) Carter; (3) Millerella, and (4) Gilmer. Reservoir geometries differ for each producing interval, reflecting variation in depositional style during the evolution of a foreland basin. Widespread strike-elongate bodies of Lewis sandstone with complex internal geometry were deposited during destruction of the Fort Payne-Tuscumbia carbonate ramp and represent inception of the foreland basin and initial forebulge migration. Synorogenic Carter sandstone is part of the first major deltaic foreland basin fill and accounts for more than 80% of oil production in the basin. Millerella sandstone was deposited as transgressive sand patches during the final stages of delta destruction. Gilmer sandstone occurs as imbricate sandstone lenses deposited in a constructive shoal-water delta and is part of the late relaxational basin fill. Interaction of siliciclastic sediment with ancestral and active carbonate ramps was a primary control on facies architecture and reservoir heterogeneity. Patterns of injection and reservoir fluid production, as well as field- to basin-scale depositional, petrological, petrophysical and geostatistical modeling reveal microscopic to megascopic controls on reservoir heterogeneity and hydrocarbon producibility. At a megascopic scale, isolation or continuity of reservoir bodies is a function of depositional topography and the degree of marine reworking of genetically coherent sandstone bodies. These factors result in amalgamated reservoir bodies or in compartments that may remain uncontacted or unconnected during field development. Within producing fields, segmentation of amalgamated sandstone bodies into individual lenses, grain size variations, depositional barriers, and diagenetic baffles further compartmentalize reservoirs, increase tortuosity of fluid flow, and affect sweep efficiency during improved recovery operations.

  10. An optimal viscosity profile in enhanced oil recovery by polymer flooding

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa a,*, G in oil reservoir is one of the effective methods of enhanced (tertiary) oil recovery. A classical model reserved. Keywords: Enhanced oil recovery; Polymer flooding; Linear stability 0020-7225/$ - see front

  11. Evaluations of Radionuclides of Uranium, Thorium, and Radium Associated with Produced Fluids, Precipitates, and Sludges from Oil, Gas, and Oilfield Brine Injection Wells in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L.

    1999-10-28T23:59:59.000Z

    There is an unsurpassed lack of scientific data with respect to the concentrations and isotopic compositions of uranium, thorium, and radium in the produced formation fluids (brine), precipitates, and sludges generated with the operation of oil and gas wells in Mississippi. These radioactive elements when contained in the formation fluids have been given the term NORM, which is an acronym for naturally occurring radioactive materials. When they are technologically enhanced during oil and gas production activities resulting in the formation of scale (precipitates) and sludges they are termed TENORM (technologically enhanced naturally occurring radioactive materials). As used in this document, NORM and TENORM will be considered equivalent terms and the occurrence of NORM in the oilfield will be considered the result of production operations. As a result of the lack of data no scientifically sound theses may be developed concerning the presence of these radionuclides in the fluid brine, precipitate (scale), or sludge phases. Over the period of just one year, 1997 for example, Mississippi produced over 39,372,963,584 liters (10,402,368,186 gallons or 247,675,433 barrels) of formation water associated with hydrocarbon production from 41 counties across the state.

  12. Mississippi Recovery Act State Memo | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on...

  13. Peak production in an oil depletion model with triangular field profiles

    E-Print Network [OSTI]

    Stark, Dudley

    Peak production in an oil depletion model with triangular field profiles Dudley Stark School.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been declining since then. Hubbert used a logistic curve to approximate the rate of oil production. Deffeyes [2

  14. An optimal viscosity profile in enhanced oil recovery by polymer Prabir Daripa1,

    E-Print Network [OSTI]

    Daripa, Prabir

    An optimal viscosity profile in enhanced oil recovery by polymer flooding Prabir Daripa1, and G. Pa is one of the effective methods of enhanced (tertiary) oil recovery. A classical model of this process channeling of flow through high permeable region in the heterogeneous case. Key words: enhanced oil recovery

  15. MISSISSIPPI ACADEMY OF SCIENCES

    E-Print Network [OSTI]

    Fernandez, Thomas

    MISSISSIPPI ACADEMY OF SCIENCES SEVENTY-SECOND ANNUAL MEETING February 20-22, 2008 Whispering Woods of the Mississippi Academy of Sciences Journal of the Mississippi Academy of Sciences Volume 53 January 2008 Number 1 Boyle Mississippi State University The Journal of the Mississippi Academy of Sciences (ISSN 0076

  16. MISSISSIPPI ACADEMY OF SCIENCES

    E-Print Network [OSTI]

    Elsherbeni, Atef Z.

    MISSISSIPPI ACADEMY OF SCIENCES SIXTY-SIXTH ANNUAL MEETING February 21 & 22, 2002 BILOXI Mississippi #12;Journal of the Mississippi Academy of Sciences Journal of the Mississippi Academy of Sciences-9436) is published in January (annual meeting abstracts), April, July, and October, by the Mississippi Academy

  17. Lower Tuscaloosa of southern Mississippi

    SciTech Connect (OSTI)

    Devery, D.M.

    1980-12-01T23:59:59.000Z

    The Lower Tuscaloosa Formation of the upper Cretaceous currently is producing primarily oil from more than 50 fields in the interior salt basin of Mississippi. These fields are located within an area extending from east Louisiana into SW and S.-central Mississippi (Jefferson, Adams, Franklin, Lincoln, Amite, Pike, Walthall, Lamar, Forrest, and Pearl River Counties). Stratigraphically, the Lower Tuscaloosa unconformably overlies lower Cretaceous sediments of the Dantzler Formation and underlies lower Cretaceous shales of the Middle Tuscaloosa. The formation consists of a transgressive sequence that grades upward from alluvial plain through delta to marine deposits. Prospecting for oil and gas as well as developing new fields in the Lower Tuscaloosa can be difficult. There is generally a lack of strong structural closure; accumulation of oil and gas is controlled largely by stratigraphy, with lenticular sands pinching out into shales.

  18. Forestry Policies (Mississippi)

    Broader source: Energy.gov [DOE]

    Mississippi's forests are managed by the Mississippi Forestry Commission. The Commission issued in 2010 its Statewide Assessment of Forest Resources and Forest Resource Strategy document:

  19. Mississippi Clean Energy Initiative

    Broader source: Energy.gov [DOE]

    In April 2010, the Mississippi Legislature enacted [http://billstatus.ls.state.ms.us/documents/2010/pdf/HB/1700-1799/HB1701S... HB 1701], establishing the Mississippi Clean Energy Initiative. This...

  20. EVALUATIONS OF RADIONUCLIDES OF URANIUM, THORIUM, AND RADIUM ASSOCIATED WITH PRODUCED FLUIDS, PRECIPITATES, AND SLUDGES FROM OIL, GAS, AND OILFIELD BRINE INJECTION WELLS IN MISSISSIPPI

    SciTech Connect (OSTI)

    Charles Swann; John Matthews; Rick Ericksen; Joel Kuszmaul

    2004-03-01T23:59:59.000Z

    Naturally occurring radioactive materials (NORM) are known to be produced as a byproduct of hydrocarbon production in Mississippi. The presence of NORM has resulted in financial losses to the industry and continues to be a liability as the NORM-enriched scales and scale encrusted equipment is typically stored rather than disposed of. Although the NORM problem is well known, there is little publically available data characterizing the hazard. This investigation has produced base line data to fill this informational gap. A total of 329 NORM-related samples were collected with 275 of these samples consisting of brine samples. The samples were derived from 37 oil and gas reservoirs from all major producing areas of the state. The analyses of these data indicate that two isotopes of radium ({sup 226}Ra and {sup 228}Ra) are the ultimate source of the radiation. The radium contained in these co-produced brines is low and so the radiation hazard posed by the brines is also low. Existing regulations dictate the manner in which these salt-enriched brines may be disposed of and proper implementation of the rules will also protect the environment from the brine radiation hazard. Geostatistical analyses of the brine components suggest relationships between the concentrations of {sup 226}Ra and {sup 228}Ra, between the Cl concentration and {sup 226}Ra content, and relationships exist between total dissolved solids, BaSO{sub 4} saturation and concentration of the Cl ion. Principal component analysis points to geological controls on brine chemistry, but the nature of the geologic controls could not be determined. The NORM-enriched barite (BaSO{sub 4}) scales are significantly more radioactive than the brines. Leaching studies suggest that the barite scales, which were thought to be nearly insoluble in the natural environment, can be acted on by soil microorganisms and the enclosed radium can become bioavailable. This result suggests that the landspreading means of scale disposal should be reviewed. This investigation also suggests 23 specific components of best practice which are designed to provide a guide to safe handling of NORM in the hydrocarbon industry. The components of best practice include both worker safety and suggestions to maintain waste isolation from the environment.

  1. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"Syste...

  2. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    expiration date" 1,"1,251","9,643",88.0,"BWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR Boiling Water Reactor."...

  3. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind...

  4. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet) Decadetotal

  5. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet) DecadetotalGrand

  6. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office of Coal,CubicWithdrawals6,992 6,895Vehicle FuelFeet)

  7. South Mississippi's Hosston, Sligo formations

    SciTech Connect (OSTI)

    Not Available

    1981-08-24T23:59:59.000Z

    The Hosston and Sligo formations, of Early Cretaceous age, lie above the Cotton Valley group and below the Pine Island formation. The beds dip southwesterly and become thicker within the Mississippi Interior Salt basin, where virtually all of the Hosston/Sligo oil and gas production occurs. The 3500 ft of alternating sands and shales found at 10,000-17,000 ft depths have the attributes of fluvial deltaic sediments. The Newsom, Bowie Creek, and Seminary fields are representative of recent gas discoveries in the Hosston/Sligo.

  8. Antidegredation Implementation Methods (Mississippi)

    Broader source: Energy.gov [DOE]

    This environmental regulation is an addition to the Water Quality Criteria for Intrastate, Interstate, and Coastal Water regulations. It separates Mississippi's water into 3 tiers. Tier 1 waters...

  9. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  10. Dam Safety Regulation (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Dam Safety Regulation is to ensure that all dams constructed in the state of Mississippi are permitted and thus do not potentially harm wildlife, water supplies and property. ...

  11. Strategic Biomass Solutions (Mississippi)

    Broader source: Energy.gov [DOE]

    The Strategic Biomass Solutions (SBS) was formed by the Mississippi Technology Alliance in June 2009. The purpose of the SBS is to provide assistance to existing and potential companies, investors...

  12. Mississippi Public Utility Act

    Broader source: Energy.gov [DOE]

    The Mississippi Public Utility Act is relevant to any project that plans to generate energy. It requires that a utility must first obtain a Certificate of Public Convenience and Necessity (CPCN)...

  13. Trapping styles in Mississippi, Alabama Haynesville reservoirs

    SciTech Connect (OSTI)

    Sticker, E.E. (Office of Geology, Jackson, MI (United States))

    1994-04-11T23:59:59.000Z

    The Jurassic Haynesville formation of Mississippi and Alabama has historically been just another stratigraphic unit to be penetrated before the underlying Smackover-Norphlet potential could be evaluated. But with recent production tests at rates in excess of 3,000 b/d of oil and individual wells that have produced more than 3 million bbl of oil equivalent, assuming a 6 Mcf/bbl ratio, many operators have reclassified the objectives status of the Haynesville from secondary to primary. The paper describes the structure and stratigraphy, the simple anticline, a complexly faulted anticline, a salt-breached anticline, depositional termination, and production projections.

  14. Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates...

  15. Mississippi: Mississippi's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01T23:59:59.000Z

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Mississippi.

  16. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31T23:59:59.000Z

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is geographically located to be able to service a regional market. Other states have active incentive programs to promote the industry. Mississippi has adopted an incentive program for ethanol and biodiesel; however, the State legislature has not funded this program, leaving Mississippi at a disadvantage when compared to other states in developing the bio-based liquid fuel industry. With all relevant factors being considered, Mississippi offers several advantages to developing the biodiesel industry. As a result of AgraPure's work and plan development, a private investor group has built a 7,000 gallon per day facility in central Mississippi with plans to build a 10 million gallon per year biodiesel facility. The development of a thermochemical conversion/generation facility requires a much larger financial commitment, making a longer operational time necessary to recover the capital invested. Without a renewable portfolio standard to put a floor under the price, or the existence of a suitable steam host, the venture is not economically viable. And so, it has not met with the success of the biodiesel plan. While the necessary components regarding feedstocks, location, permitting and technology are all favorable; the market is not currently favorable for the development of this type of project. In this region there is an abundance of energy generation capacity. Without subsidies or a Mississippi renewable portfolio standard requiring the renewable energy to be produced from Mississippi raw materials, which are not available for the alternative energy source selected by AgraPure, this facility is not economically viable.

  17. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  18. South Mississippi Electric Power Association Smart Grid Project (Mississippi)

    Broader source: Energy.gov [DOE]

    South Mississippi Electric Power Association’s (SMEPA) smart grid project involves the deployment of advanced metering infrastructure (AMI) and covers the Generation and Transmission (G&T)...

  19. On a three-layer Hele-Shaw model of enhanced oil recovery with a linear viscous profile

    E-Print Network [OSTI]

    Daripa, Prabir; Meneses, Rodrigo

    2015-01-01T23:59:59.000Z

    We present a non-standard eigenvalue problem that arises in the linear stability of a three-layer Hele-Shaw model of enhanced oil recovery. A nonlinear transformation is introduced which allows reformulation of the non-standard eigenvalue problem as a boundary value problem for Kummer's equation when the viscous profile of the middle layer is linear. Using the existing body of works on Kummer's equation, we construct an exact solution of the eigenvalue problem and provide the dispersion relation implicitly through the existence criterion for the non-trivial solution. We also discuss the convergence of the series solution. It is shown that this solution reduces to the physically relevant solutions in two asymptotic limits: (i) when the linear viscous profile approaches a constant viscous profile; or (ii) when the length of the middle layer approaches zero.

  20. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Broader source: Energy.gov (indexed) [DOE]

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

  1. Mississippi Public Service Commission Adopts Energy Efficiency...

    Energy Savers [EERE]

    Mississippi Public Service Commission Adopts Energy Efficiency Rules Mississippi Public Service Commission Adopts Energy Efficiency Rules November 8, 2013 - 12:00am Addthis...

  2. EIS-0428: Department of Energy Loan Guarantee for Mississippi...

    Broader source: Energy.gov (indexed) [DOE]

    8: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi EIS-0428: Department of Energy Loan Guarantee for Mississippi...

  3. Salmon, Mississippi, Site

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3u ;;;:: A'Salmon, Mississippi,

  4. Fermilab Today | University of Mississippi Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. CategoryFebruaryFebruaryInThe,Michigan0Manchester-

  5. Salmon, Mississippi Fact Sheet

    SciTech Connect (OSTI)

    None

    2010-01-04T23:59:59.000Z

    The Salmon, Mississippi, Site, also called the Tatum Dome Test Site, is a 1,470-acre tract of land in Lamar County, Mississippi, 21 miles southwest of Hattiesburg. The nearest town is Purvis, about 10 miles east of the site. The site is in a forested region known as the long-leaf pine belt of the Gulf Coastal Plain. Elevations in the area range from about 240 to 350 feet above sea level. The site overlies a salt formation called the Tatum Salt Dome. Land around the Salmon site has residential, industrial, and commercial use, although no one lives within the boundary of the site itself. The U.S. Atomic Energy Commission, a predecessor agency of the U.S. Department of Energy (DOE), and the U.S. Department of Defense conducted two underground nuclear tests at the site under the designation of Project Dribble, part of a larger program known as the Vela Uniform program. Two gas explosive tests, designated Project Miracle Play, were also conducted at the site.

  6. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14T23:59:59.000Z

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  7. Habitat Restoration at the Salmon, Mississippi, Site

    Broader source: Energy.gov [DOE]

    The 1,470-acre Salmon, Mississippi, Site is located in Lamar County, approximately 20 miles southwest of Hattiesburg, in southwestern Mississippi. It is roughly square in shape, and each side is...

  8. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20T23:59:59.000Z

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycer

  9. VES-0071- In the Matter of Mississippi Power Company

    Broader source: Energy.gov [DOE]

    On May 1, 2000, the Mississippi Power Company, of Gulfport, Mississippi (Mississippi Power), filed with the Office of Hearings and Appeals (OHA) of the Department of Energy an Application for...

  10. Exploration pace fast in Mississippi, Alabama

    SciTech Connect (OSTI)

    Petzet, G.A.

    1991-03-04T23:59:59.000Z

    Exploration in northern and southern Mississippi and adjacent northwestern Alabama is off to a fast start in 1991. A sample of activity in the area includes a potentially significant Cambro-Ordovician Knox dolomite play building in northern Mississippi and west of the Black Warrior basin. In northeastern Mississippi, two companies are kicking off a Knox exploratory program on a spread of more than 200,000 net acres.

  11. Qualifying RPS State Export Markets (Mississippi)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Mississippi as eligible sources towards their RPS targets or goals. For specific...

  12. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  13. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20T23:59:59.000Z

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  14. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31T23:59:59.000Z

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  15. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01T23:59:59.000Z

    in Alaskan North Slope oil production facilities. Title:Profiling Despite oil production from several major16) was isolated from oil-production water and has optimal

  16. Mississippi Regulations For the Prevention of Air Pollution Emergency Episodes (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Mississippi Regulations for the Prevention of Air Pollution Emergency Episodes is to prevent the excessive buildup of air pollutants during air pollution episodes, thus...

  17. Upper Jurassic depositional systems and hydrocarbon potential of southeast Mississippi

    SciTech Connect (OSTI)

    Meendsen, F.C.; Moore, C.H.; Heydari, E.; Sassen, R.

    1987-09-01T23:59:59.000Z

    Upper Jurassic sedimentation in southeast Mississippi was controlled by eustatic sea level fluctuations and locally modified by salt tectonism and basement structure. This study, using conventional core data and geophysical logs, indicates that a stable carbonate platform developed along the updip margin of the Mississippi interior salt basin. The basin was partially barred from the main Gulf of Mexico water mass by the Wiggins uplift, and became evaporitic during the Late Jurassic. Moldic, intercrystalline, and vuggy dolomite porosity is developed on the crests of intermediate and high-amplitude salt highs and on the Wiggins uplift. Jurassic source rocks are lower Smackover laminated lime mudstones. Migration into adjacent reservoirs postdated formation of porosity and the growth of salt anticlines, the most common trap type. A large potential Norphlet-Smackover gas play extends along the southern flank of the Wiggins uplift. Salt anticlines within the interior basin remain viable targets. Small oil discoveries should continue in stratigraphic traps, subtle salt structures, and basement blocks on the platform.

  18. Mississippi Power- EarthCents Financing Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers loans to residential customers to help pay for energy efficiency upgrades. The loan can be used for heat pumps, heating and cooling systems, electric water heaters,...

  19. Alternative Fuels Data Center: Mississippi Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    facilities in Mississippi, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  20. Mississippi

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60

  1. Carbon dioxide source development, northeast Jackson Dome, Mississippi

    SciTech Connect (OSTI)

    Studlick, J.R.J.; Shew, R.D.; Basye, G.L.; Ray, J.R.

    1987-05-01T23:59:59.000Z

    A pilot conducted at Little Creek field Mississippi, in the 1970s indicated that the injection of carbon dioxide (CO/sub 2/) could lead to the successful recovery of additional oil reserves even after waterflood operations. It was realized early that a large volume of CO/sub 2/ would be required for enhanced oil recovery operations Little Creek and other prospective fields. Shell's search for CO/sub 2/ in the area began in the early 1970s. Exploratory drilling for hydrocarbons as early as 1950 had indicated high concentrations of CO/sub 2/ present in central Mississippi. These occur in salt-generated structures north and east of the intrusive Jackson igneous dome; the area is therefore termed the N.E. Jackson Dome Source Area. CO/sub 2/ generation is believed to have occurred by the thermal metamorphism associated with the intrusion of Jurassic-age carbonates. The CO/sub 2/ migrated updip and is concentrated in the Buckner, Smackover, and Norphlet Formations at depths of 14,000 to 17,000 ft. The objectives are sandstones and dolomites that are interpreted as dune and sabkha deposits. Reservoir quality is variable (abundant illite locally in the Norphlet and highly compacted sandstones in the Buckner) but generally good. Rates of 20 MMCFGD have been tested from these wells. Many salt-related structures have been defined in the source area by seismic data. Leasing began in 1973 and drilling in 1977. Eight structures have been tested, with all but one encountering commercial CO/sub 2/ accumulations. Shell has drilled 15 wells (13 successful, 1 junked and abandoned, and 1 dry hole) on 640- and 1280-ac spacing. Gas compositions vary: Smackover CO/sub 2/ is sour and will require treatment, whereas the Buckner and Norphlet sands contain sweet and semisweet CO/sub 2/, respectively. Industry reserves in N.E. Jackson Dome exceed 6 tcf of gas.

  2. Petrology and hydrocarbon reservoir potential of Mississippian (Chesterian) sandstones, Black Warrior basin, Mississippi

    SciTech Connect (OSTI)

    Hughes, S.B.; Meylan, M.A.

    1988-09-01T23:59:59.000Z

    The character and reservoir quality of six different Mississippian (Chesterian) sandstone units in frontier areas of the Black Warrior basin of Mississippi have been determined by core inspection, thin-section examination, and x-ray diffractometry. A total of 113 samples from ten wells was taken from cores of the following sandstones: the Lewis, a calcareous sandstone at the top of or just above the Lewis that the authors refer to as the Lewis limestone, the Evans, the Rea, the Sanders, and the Carter. Hydrocarbon production from the basin, which is located in northeastern Mississippi and northwestern Alabama, is mostly shallow gas (with minor gas condensate and oil) from the units. Sample depths range from about 2500 ft (762 m) in northern Chickasaw County to about 5500 ft (1676 m) in Monroe and Lowndes Counties, with the deepest samples coming from almost 11,000 ft (3353 m) in northern Clay County.

  3. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01T23:59:59.000Z

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  4. Biomarkers and carbon isotopes of oils in the Jurassic Smackover trend of the Gulf Coast states, U. S. A

    SciTech Connect (OSTI)

    Sofer, Z. (Consultant, Austin, TX (USA))

    1988-01-01T23:59:59.000Z

    The geochemistry of 25 oils from 23 fields in Alabama and the Mississippi and Louisiana-Arkansas Jurassic salt basins was evaluated. Results show that the oils were generated by a carbonate source rock which was deposited under highly anoxic conditions, and which contains mainly marine derived organic matter. The Mississippi and Louisiana-Arkansas oils are geochemically similar, indicating similar depositional environments for the source. Although the Alabama oils were also derived from a carbonate source rock, they are dissimilar to the Mississippi and Louisiana-Arkansas oils. Terpane biomarkers suggest that in addition to marine derived organic matter, the source for the Alabama oils had an organic input from a more near shore (paralic) environment, i.e. with a component of terrestrially-derived kerogen. Within each area the oils are similar. Therefore, the Norphlet and Upper Smackover oils in Alabama share a common source and the Upper Smackover, Cotton Valley and some of the Lower Tuscaloosa oils (where production is from faulted structures) in Mississippi also share a common source. Maturities of the oils in the three areas vary from low in the updip Mississippi salt basin, high in the Louisiana-Arkansas salt basin, to very high in portions of Alabama. Based on the maturity of oils in Mississippi, oil generation and migration commenced during the Cretaceous when the source was at modest levels of thermal maturity. Oils migrated relatively short distances into nearby reservoir rocks. Some oils reached high maturities in the reservoirs, resulting in abundant late-forming bitumen and pyrobitumen deposition in pore spaces.

  5. Mississippi Regulations for the Prevention of Significant Deterioration of Air Quality (Mississippi)

    Broader source: Energy.gov [DOE]

    This regulation applies to any stationary source or modification to which 40 CFR 52.21 applied as of the date of adoption of this regulation, but for which the Mississippi Environmental Quality...

  6. University of Mississippi School of Medicine

    E-Print Network [OSTI]

    Raucher, Drazen

    of Mississippi Medical Center Jackson, MS Hayes Baker Internal Med University of Virginia Charlottesville, VA Hood Urology Wake Forest University School of Medicine Winston-Salem, NC Josh Hughes Neurosurgery Mayo Graduate School of Medicine Rochester, MN Joy Hughes Gen Surgery Mayo Graduate School of Medicine Rochester

  7. Oil recovery improvement through profile modification by thermal precipitation. Final report, October 1, 1991--August 27, 1993

    SciTech Connect (OSTI)

    Reis, J.C.

    1994-04-01T23:59:59.000Z

    The objective of this research project has been to investigate the potential for using temperature-dependent (thermal) precipitation of chemicals to reduce the porosity and permeability of porous rocks. The method consists of injecting hot water that is saturated in a chemical that will precipitate upon cooling. Through this process, the permeability of thief zones in oil reservoirs could be reduced, allowing improved recovery by secondary and tertiary recovery processes. The chemical literature was reviewed for environmentally safe chemicals that have a suitable temperature-dependent solubility for the thermal precipitation process. Four suitable chemicals were identified: boron oxide, potassium carbonate, sodium borate, and potassium chloride. An experimental apparatus was constructed to test the thermal precipitation process at high temperatures and pressures. Data was collected with clastic Berea sandstone cores using two chemicals: potassium carbonate and sodium borate. Data was also collected with limestone cores using potassium carbonate. The porosities and permeabilities were measured before and after being treated by the thermal precipitation process. A theoretical study of the process was also conducted. A model for predicting the fractional reduction in porosity was developed that is based on the temperature-dependent solubility of the chemical used. An empirical model that predicts the fractional reduction in permeability in terms of the fractional reduction in porosity was then developed for Berea sandstone. Existing theoretical models for estimating the permeability of porous media were tested against the measured data. The existing models, including the widely-used Carman-Kozeny equation, underpredicted the reduction in permeability for the thermal precipitation process. This study has shown that the thermal precipitation process has considerable potential for the controlled reduction in porosity and permeability in geologic formations.

  8. BASIN ANALYSIS OF THE MISSISSIPPI INTERIOR SALT BASIN AND PETROLEUM SYSTEM MODELING OF THE JURASSIC SMACKOVER FORMATION, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A,. Mancini

    1999-04-09T23:59:59.000Z

    Part 2 (Basin Analysis of the Mississippi Interior Salt Basin) objectives are to provide a comprehensive analysis of the Mississippi Interior Salt Basin in Years 2 and 3 of the project and to transfer effectively the research results to producers through workshops and topical reports. Work accomplished so far: (Task 1) Tectonic History--Petroleum traps in the Mississippi Interior Salt Basin have been characterized. (Task 2) Depositional History--The depositional systems for Mesozoic strata in the Mississippi Interior Salt Basin have been identified and characterized. (Task 3) Fluid Flow--Modeling of 1-D burial and thermal history profiles for 48 wells in the Mississippi Interior Salt Basin has been completed. Multidimensional thermal maturity modeling has been initiated. (Task 4) Underdeveloped Plays--Three major exploration plays have been identified. These include the basement ridge play, the regional peripheral fault trend play, and the salt anticline play. (Task 5) Technology Transfer--No work was performed on this task for this quarter. (Task 6) Topical Reports--The topical reports on the tectonic, depositional, burial and thermal histories of the Mississippi Interior Salt Basin have been completed and sent to DOE.

  9. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptemberState Nuclear Profiles 2010

  10. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi Nuclear Profile 2010

  11. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi Nuclear Profile

  12. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorthSouthTexas profile

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 TableMichiganMississippi

  14. Mississippi Crude Oil plus Lease Condensate Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349252 254 245 276

  15. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)CommercialperSalesU.S.Feet) Year

  16. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)CommercialperSalesU.S.Feet)

  17. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.YearProved ReservesReservoirs

  18. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production

  19. Mississippi State Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasole IncMinuteman Wind LLC Jump to:

  20. Mississippi Power- EarthCents Commercial Incentives Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers rebates to commercial customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps,...

  1. Naval Construction Battalion Center Gulfport- Mississippi Power Partnership Success Story

    Broader source: Energy.gov [DOE]

    Presentation covers the Naval Construction Battalion Center Gulfport - Mississippi Power Partnership success story given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting...

  2. The industrial Center at Mississippi State University

    SciTech Connect (OSTI)

    b.K. Hodge; Mary C. Emplaincourt

    2007-04-30T23:59:59.000Z

    The Mississippi State University Industrial Assessment Center (IAC) is one of 26 centers supported by the U.S. Department of Energy (DOE) at universities across the country. The Mississippi State University IAC in existence since 1994 provides plant assessments at no cost to eligible small and mid-sized manufacturers categorized in Standard Industrial Classification (SIC) Codes 20-39. Client eligibility is based on gross sales below $100 million, fewer than 500 employees at the plant, annual utility bills more than $100,000 and less than $2 million, and no in-house professional staff to perform an assessment. IAC assessment benefits include no cost to the clients, increased profitability and competitiveness, confidentiality, non-regulatory, nonobligatory, and student involvement.

  3. Salt dome discoveries mounting in Mississippi

    SciTech Connect (OSTI)

    Ericksen, R.L. [Mississippi Office of Geology, Jackson, MS (United States)

    1996-06-17T23:59:59.000Z

    Exploratory drilling around piercement salt domes in Mississippi has met with a string of successes in recent months. Exploration of these salt features is reported to have been initiated through the review of non-proprietary, 2D seismic data and subsurface control. This preliminary data and work were then selectively upgraded by the acquisition of additional, generally higher quality, conventional 2D seismic lines. This current flurry of successful exploration and ensuing development drilling by Amerada Hess Corp. on the flanks of salt domes in Mississippi has resulted in a number of significant Hosston discoveries/producers at: Carson salt dome in Jefferson Davis County; Dry Creek salt dome in Covington County, Midway salt dome in lamar County, Monticello salt dome in Lawrence County, and Prentiss salt dome in Jefferson Davis County. The resulting production from these fields is gas and condensate, with wells being completed on 640 acre production units.

  4. Dry Creek salt dome, Mississippi Interior Salt basin

    SciTech Connect (OSTI)

    Montgomery, S.L.; Ericksen, R.L.

    1997-03-01T23:59:59.000Z

    Recent drilling of salt dome flanks in the Mississippi Salt basin has resulted in important new discoveries and the opening of a frontier play. This play is focused on gas/condensate reserves in several Cretaceous formations, most notably the Upper Cretaceous Eutaw and lower Tuscaloosa intervals and Lower Cretaceous Paluxy and Hosston formations. As many as eight domes have been drilled thus far; sandstones in the upper Hosston Formation comprise the primary target. Production has been as high as 3-5 Mcf and 500-1200 bbl of condensate per day, with estimated ultimate reserves in the range of 0.2 to 1.5 MBOE (million barrels oil equivalent) per well. As typified by discovery at Dry Creek salt dome, traps are related to faulting, unconformities, and updip loss of permeability. Previous drilling at Dry Creek, and in the basin generally, avoided the flank areas of most domes, due to geologic models that predicted latestage (Tertiary) piercement and breached accumulations. Recent data from Dry Creek and other productive domes suggest that growth was episodic and that piercement of Tertiary strata did not affect deeper reservoirs charged with hydrocarbons in the Late Cretaceous.

  5. Nutrient Management, Mississippi 2004 Larry Oldham, Ph.D.

    E-Print Network [OSTI]

    of Cropping Management Systems for the Brown Loam Area of Mississippi Animal By-Product Related Nutrient Litter Management for Land Productivity and Water Quality: Forestry Component Comparison of PoultryNutrient Management, Mississippi 2004 Larry Oldham, Ph.D. Associate Extension Professor - Soils #12

  6. Mississippi Agricultural and Forestry Experiment Station Vehicle Rental Request Form

    E-Print Network [OSTI]

    Ray, David

    Mississippi Agricultural and Forestry Experiment Station Vehicle Rental Request Form Driver Name Date: Travel Destination: Account #: Vehicle Information 1995 Crown Victoria 1995 Crown Victoria 1995 with the MSU Authorized Vehicle Use Policy. You further acknowledge that you have executed the Mississippi

  7. Department of Geology and Geological Engineering University of Mississippi Announces

    E-Print Network [OSTI]

    Elsherbeni, Atef Z.

    Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

  8. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  9. Mississippi Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Mississippi Water Resources Research Institute Annual Technical Report FY 2004 Introduction The FY 2004 Annual Technical Report of the Mississippi Water Resources Research - GeoResources Institute of Nutrient and Pesticide Runoff Losses from Golf Courses and Residential Lawns in the South Atlantic

  10. Mississippi Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    Mississippi Water Resources Research Institute Annual Technical Report FY 2005 Introduction The FY 2005 Annual Technical Report for the Mississippi Water Resources Research Institute summarizes USGS and Pesticide Runoff Losses from Golf Courses and Residential Lawns in the South Atlantic-Gulf Region Basic

  11. EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power.

  12. Basin Analysis of the Mississippi Interior Salt Baisn and Petroleum System Modeling of the Jurassic smackover Formation, Eastern Gulf Costal Plain: Quarterly progress report, January 1, 1997-March 31, 1997

    SciTech Connect (OSTI)

    Mancini, E.A.

    1997-03-27T23:59:59.000Z

    Part I (Inventory of Existing Data and Information Sources) objectives are to provide improved access to information available in the public domain by inventorying data files and records of the major information repositories in the Eastern Gulf Coastal Plain and making these inventories easily accessible in electronic format. The producers in the region maintain that the accessibility of oil and gas information is the single-most important factor to assist them in finding new hydrocarbon discoveries and in improving production from established fields. The principal investigator continues to discuss the project with geologists for Alabama, Mississippi, and Florida. A subcontract has been executed between the University of Alabama and the Geological Survey of Alabama. A subcontract agreement is under review by the Mississippi Office of Geology. The principal investigator continues to discuss the project with a number of faculty members from departments of geology in the region. A listing of theses and dissertations from the University of Alabama, Auburn University, Mississippi State University, University of Mississippi, University of Southern Mississippi, University of Southwestern Louisiana, and Louisiana State University related to the petroleum geology of the Mississippi Interior Salt Basin has been compiled. This list is accessible electronically through the Home Page of the Eastern Gulf Region of the Pertroleum Technology Transfer Council (EGRPTTC) (http://egrpttc.geo.ua.edu).

  13. Directional drilling used in Mississippi River crossing

    SciTech Connect (OSTI)

    Fuess, G.T.

    1988-05-02T23:59:59.000Z

    Tennessee Gas Pipeline Co. recently completed its longest large-diameter directional bore and pulled nearly 3,000 feet of 20-in. replacement pipe under the Southwest Pass of the Mississippi River. The replacement was necessary to allow for planned widening and deepening of Southwest Pass. This article explains why conventional dredging methods were not possible. It then explains how the directional drilling was done. Given favorable soil conditions such as found along much of the Gulf Coast, the speed of installation, environmental consideration of dredging eliminated, and the cost-competitive posture Tennessee found among the directional drilling contractors, Tennessee plans to utilize this technique increasingly in the future.

  14. Energy Incentive Programs, Mississippi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFactIowa EnergyMaineMichiganMississippi

  15. Canton, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermits ManualCanisteo, New York:Canton,Mississippi: Energy

  16. Taylor, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0InformationBPLake Village,Mississippi:

  17. Mississippi County Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc JumpFinancingMinnesotaMintMississippi

  18. Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers IncMississippi: Energy Resources Jump to:

  19. Ridgeland, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,Maze -Richton Park, Illinois:Ridgeland, Mississippi:

  20. Utica, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planning methodologies and toolsoperation plans forMississippi:

  1. Vicksburg, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga,planningFlowmeter Logging Jump to:Vicksburg, Mississippi: Energy

  2. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  3. Role of halite in the evolution of sandstone porosity, upper Jurassic Norphlet Formation, Mississippi salt basin

    SciTech Connect (OSTI)

    Schenk, C.J.; Schmoker, J.W. (Geological Survey, Denver, CO (United States))

    1993-09-01T23:59:59.000Z

    Analysis of petrographic point-count data, cement paragenesis, and scanning electron microscopy examination of pores has shown that poikilitic halite cement in sandstones of the Norphlet Formation in a core from Wayne County, Mississippi, formed following cementation by quartz, feldspar, dolomite, and anhydrite. Intergranular volume ranges from 26 to 42%, averaging 35%, indicating that an average of 10% of the rock volume was lost to compaction, and a further 10-15%, was lost to cementation prior to halite cementation, assuming a depositional porosity of about 45%. Most halite occurs as intergranular cement, but some halite is present as intragranular cement within framework feldspars and lithic fragments. Halite is easily removed from a sandstone during coring, slabbing, and thin-section preparation techniques that do not use oil-based fluids and muds, so the amount of porosity in these samples that is a product of artificial removal of halite is unknown. Although the present and former distribution of halite is poorly known, natural halite dissolution could have produced about 20% secondary porosity in the Norphlet Formation at depth in this part of the Mississippi Salt basin.

  4. Mississippi Power- EarthCents Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers rebates to its residential customers to help offset the cost of conversions from gas equipment to energy efficient electric equipment. Rebates are eligible for heat pumps,...

  5. Mississippi Power- EarthCents New Home Program

    Broader source: Energy.gov [DOE]

    Mississippi Power offers incentives to its residential customers to help offset the cost of installing energy efficient measures in new homes. A three-level program is offered to encourage the...

  6. FUPWG Meeting Agenda - Biloxi, Mississippi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Katherine Hamilton, President of GridWise Alliance (PDF 876 KB) 12:00 pm Lunch Tony Smith, Manager, Plant Eaton, Mississippi Power's Renewable Generation Initiatives 1:15 pm...

  7. Surface Water and Groundwater Use and Protection (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Surface and Groundwater Use and Protection is to ensure that Mississippi's public resource of water is safe and used properly. It requires that any person must obtain a permit...

  8. Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Nonhazardous Solid Waste Management Regulations and Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

  9. Distribution of cesium-137 in the Mississippi Delta 

    E-Print Network [OSTI]

    Pflaum, Ronald Charles

    1982-01-01T23:59:59.000Z

    Energy Commission Health and Safety Lab (HASL-329). The stations reporting Sr fallout data within the Mississippi drainage basin were located in Argoune, Ill. ; New Orleans, La. ; International Falls, Minn. ; Columbia, Mo. ; Williston, N. Dak. ; Tulsa...

  10. Polycyclic aromatic hydrocarbon distributions in Mississippi Fan sediments

    E-Print Network [OSTI]

    Sandberg, William Allan

    1986-01-01T23:59:59.000Z

    POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1986 Major Subject: Oceanography POLYCYCLIC AROMATIC HYDROCARBON DISTRIBUTIONS IN MISSISSIPPI FAN SEDIMENTS A Thesis by WILLIAM ALLAN SANDBERG Approved as to style and content by: James M. Brooks (Chairman of Committee) Leis M...

  11. Host Plants of Xylosandrus mutilatus in Mississippi

    SciTech Connect (OSTI)

    Stone, W.D.; Nebeker, T.E. [Department of Entomology and Plant Pathology, Mississippi State University, Box 9775, Mississippi State, MS 39762 (United States); Gerard, P.D. [Experimental Statistics Unit, Mississippi State University, Box 9731, Mississippi State, MS 39762 (United States)

    2007-03-15T23:59:59.000Z

    Host range of Xylosandrus mutilatus (Blandford) in North America is reported here for the first time. Descriptive data such as number of attacks per host, size of stems at point of attacks, and height of attacks above ground are presented. Hosts observed in Mississippi were Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux, and Vitus rotundifolia Michaux. Liquidamber styraciflua had significantly more successful attacks, significantly higher probability of attacks, and significantly higher number of adult beetles per host tree than did Carya spp., A. rubrum, and L. tulipifera. This information is relevant in determining the impact this exotic beetle may have in nurseries, urban areas, and other forestry systems where this beetle becomes established. (author) [Spanish] El rango de hospederos de Xylosandrus mutilatus (Blandford) en America del Norte esta reportado aqui por la primera vez. Se presentan datos descriptivos como el numero de ataques por hospederos, el tamano de los tallos en el punto de ataque y la altura por encima del nivel de tierra de los ataques. Los hospederos observados en el estado de Mississippi fueron Acer rubrum L., Acer saccharum Marsh., Acer palmatum Thunb., Ostrya virginiana (Mill.) K. Koch., Cornus florida L., Fagus grandifolia Ehrh., Liquidamber styraciflua L., Carya spp., Liriodendron tulipifera L., Melia azedarach L., Pinus taeda L., Prunus serotina Ehrh., Prunus americana Marsh., Ulmus alata Michaux y Vitus rotundifolia Michaux. Liquidamber styraciflua tuvo ataques significativamente mas exitosos, una probabilidad significativamente mas alta de ataques y un numero significativamente mayor de adultos de escarabajos por arbol hospedero que Carya spp., A. rubrum y L. tulipifera. Esta informacion es pertinente en determinar el impacto que pueda tener este escarabajo exotico en invernaderos, areas urbanas y otros sistemas forestales donde el escarabajo se establece. (author)

  12. Overview of Mississippi River - Louisiana State Study

    SciTech Connect (OSTI)

    Rosselli, A.T.

    1983-11-01T23:59:59.000Z

    There are significant benefits to be obtained from providing deepdraft vessel access to the lower Mississippi River including savings in vessel transportation costs, increased export tonnage and consequent improvements of the U.S. balance of payments, increases in employment, and the opportunity for creation of marshlands and land reclamation in the river's eroding delta. The most effective course of action for the State of Louisiana to take is to plan and seek authorization to further deepen the channel in stages to 55 feet should actual increases in commerce equal the high level of commerce, but to dredge the present 40-foot channel to 45 feet initially from the Gulf via Southwest Pass to Mile 172 AHP to provide for two-way navigation of vessels. In addition, the State should encourage private interests to put into operation as soon as possible, facilities for loading and topping-off grain ships midstream and topping-off coal carriers in the Gulf in order to attract and establish patterns of trade in large ships.

  13. Jurassic stratigraphy of the Wiggins Arch, Mississippi

    SciTech Connect (OSTI)

    Rhodes, J.A.; Maxwell, G.B. (Mobil Oil Company, Houston, TX (United States))

    1993-09-01T23:59:59.000Z

    Mobil and Shell jointly explored the Wiggins arch area in southern Mississippi from 1985 to 1991. The effort concentrated on the Jurassic Norphlet and Smackover formations. Two wells were drilled into Paleozoic crystalline rocks and one well into the Pine Hill formation. Two of these wells were located on the southern side of the Wiggins arch and provide significant data for interpreting Jurassic stratigraphy. The Mobil No. 1 U.S.A. well encountered a complete Jurassic section, but with some significantly different facies than those encountered by wells to the north. A granite wash section is the equivalent to the Frisco City formation previously only found 100 mi to the north-northeast. All 300 ft of Smackover is crystalline dolomite. The Norphlet section is entirely granite wash. The Pine Hill anhydrite is unusually thick and interpreted to be equivalent to the Louann Salt. Correlations to other wells on the Wiggins arch, particularly the Conoco No. 1 Higgins, indicate that the Jurassic can be divided into three transgressive events separated by the Norphlet/Pine Hill and Frisco City/Buckner regressive events.

  14. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    none

    2006-09-15T23:59:59.000Z

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  15. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2011

    SciTech Connect (OSTI)

    None

    2012-03-01T23:59:59.000Z

    This report summarizes the 2011 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site1). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi.

  16. Mississippi - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60Mississippi Mississippi

  17. Mississippi - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60MississippiMississippi

  18. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.

  19. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  20. Author's personal copy Gasoline prices and traffic safety in Mississippi

    E-Print Network [OSTI]

    Levinson, David M.

    Author's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur November 2010 Keywords: Gasoline prices Traffic crashes Traffic safety Age Gender Race Problem: Limited literature suggests that gasoline prices have substantial effects on reducing fatal crashes. However

  1. Mississippi Water Resources Research Institute Annual Technical Report

    E-Print Network [OSTI]

    ); this could include the development of vegetation management plans for drainage canal systems; and 3) Human and groundwater management, water quality management and water resources development, contaminant transport;Water quality and other ecosystem services in wetlands managed for waterfowl in Mississippi Basic

  2. Fates of Eroded Soil Organic Carbon: Mississippi Basin Case Study

    E-Print Network [OSTI]

    Smith, S. V.; Sleezer, R. O.; Renwick, W. H.; Buddemeier, Robert W.

    2005-01-01T23:59:59.000Z

    We have developed a mass balance analysis of organic carbon (OC) across the five major river subsystems of the Mississippi (MS) Basin (an area of 3.2 3 106 km2). This largely agricultural landscape undergoes a bulk soil erosion rate of ;480 t·km22...

  3. Oil production response to in situ electrical resistance heating

    E-Print Network [OSTI]

    McDougal, Fred William

    1987-01-01T23:59:59.000Z

    of the electric power through electrical resistance heating with a very small electromagnetic power absorption component. The oil viscosity decreases as the temperature increases thus stimulating oil production. DEDICATION I would like to dedicate this thesis... PROFILE FOR CASE S-2 INTRODUCTION Oil production can be stimulated by applying electrical power to the formation. The electrical power causes a temperature increase that reduces oil viscosity, resulting in increased oil production rates. Electrical...

  4. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  5. Crude oil and shale oil

    SciTech Connect (OSTI)

    Mehrotra, A.K. [Univ. of Calgary (Canada)

    1995-06-15T23:59:59.000Z

    This year`s review on crude oil and shale oil has been prepared by classifying the references into the following main headings: Hydrocarbon Identification and Characterization, Trace Element Determination, Physical and Thermodynamic Properties, Viscosity, and Miscellaneous Topics. In the two-year review period, the references on shale oils were considerably less in number than those dealing with crude oils. Several new analytical methodologies and applications were reported for hydrocarbon characterization and trace element determination of crude oils and shale oils. Also included in this review are nine U.S., Canadian British and European patents. 12 refs.

  6. Public policy implications of deepening the lower Mississippi

    SciTech Connect (OSTI)

    Cocchiara, J.G.

    1983-11-01T23:59:59.000Z

    The Mississippi River and its tributary system serves the industrial and agricultural heartland of the United States. In terms of total tonnage, the deep water channel of the lower Mississippi, stretching 253 miles from the Gulf of Mexico to Baton Rouge, is the largest port complex in the world. The vast majority of the cargo carried on the river is carried in bulk, a major portion of which could benefit from a deeper river channel. The Corps of Engineers has recommended a 55 foot channel to Baton Rouge, but the Reagan administration has insisted that the federal government will no longer fully fund such projects. In response, the State of Louisiana, under the direction of Governor David C. Treen, has conducted its own independent in-depth evaluation of providing deeper draft access to the lower Mississippi. A special task force established for this purpose recently concluded a year long investigation. On September 2, it issued a recommendation for a phased deepening project, at a significantly lower cost than the Corps recommended plan, in combination with private development of offshore topping-off facilities.

  7. Mississippi Ethanol Gasification Project, Final Scientific / Technical Report

    SciTech Connect (OSTI)

    Pearson, Larry, E.

    2007-04-30T23:59:59.000Z

    The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with much progress. However, the current state of biological technology is not deemed to be ready commercially. A preliminary estimate of capital and operating costs of a 12000 gallon per day gasification/biological facility was developed for comparison purposes. In addition, during the biological organism screening and testing, some possible alternative products were identified. One such possibility is the biological production of bio-diesel. Additional research is necessary for further evaluation of all of the biological concepts.

  8. Final Independent External Peer Review Report for the Mississippi River Gulf Outlet Ecosystem

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Final Independent External Peer Review Report for the Mississippi River ­ Gulf Outlet Ecosystem Prepared for Department of the Army U.S. Army Corps of Engineers Ecosystem Restoration Planning Center Independent External Peer Review Report for the Mississippi River-Gulf Outlet Ecosystem Restoration Plan

  9. Temporal variability of uranium concentrations and 234 activity ratios in the Mississippi river and its tributaries

    E-Print Network [OSTI]

    conservatively under oxic conditions. As a consequence, the uranium concentration of seawater is relativelyTemporal variability of uranium concentrations and 234 U/238 U activity ratios in the Mississippi/238 U activity ratios and total dissolved uranium concentrations in the Lower Mississippi River at New

  10. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    SciTech Connect (OSTI)

    None

    2013-03-01T23:59:59.000Z

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate

  11. The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing

    E-Print Network [OSTI]

    Miami, University of

    The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing), The dynamics of the Mississippi River plume: Impact of topography, wind and offshore forcing on the fate of topography, winddriven and eddydriven circulation on the offshore removal of plume waters. A realistically

  12. Alum Profile

    E-Print Network [OSTI]

    Alum Profile. Kathryn E. Brenan Engineering Specialist The Aerospace Corporation. Kathryn Brenan is an Engineering Specialist with the Engineering ...

  13. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1998-04-08T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  14. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1998-07-07T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  15. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1997-12-22T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  16. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) announced its intent to prepare an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Jackson County Mississippi and modify related facilities to enable the terminal to liquefy natural gas for export. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  17. Lamar County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to: navigation,working-groupsIllinois:LakeIowa: EnergyClub,NewMississippi: Energy

  18. Lee County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands inLechee,Georgia:Mississippi:

  19. Percent of Commercial Natural Gas Deliveries in Mississippi Represented by

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(MillionPrice (Percent) Year Jan Feb MarPricethethe

  20. Walthall County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwide Permit webpageWalthall County, Mississippi: Energy Resources Jump

  1. Carroll County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar FarmMississippi: Energy

  2. Scott County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd JumpInformation Evaluation,SchmidNorthMississippi: Energy Resources

  3. Mississippi - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40 60Mississippi

  4. Jefferson County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia:Iowa: EnergyMississippi:

  5. Harrison County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation HandbookOhio: Energy ResourcesMississippi: Energy

  6. Humphreys County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtel Jump to:Pennsylvania:County,Ohio:Hughson,Hill,Mississippi: Energy

  7. Perry County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy Resources Jump to: navigation, searchP2Mississippi: Energy

  8. City of Okolona, Mississippi (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, Mississippi (Utility Company) Jump to:

  9. City of Oxford, Mississippi (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, Mississippi (UtilityCity ofCity

  10. City of Philadelphia, Mississippi (Utility Company) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity of Okolona, MississippiPetersburg, Alaska

  11. Marshall County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,JemezMissouri: EnergyMarlboro,Mississippi: Energy Resources

  12. Mississippi County, Arkansas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV JumpMotorsMississippi County,

  13. Mississippi County, Missouri: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIV JumpMotorsMississippi

  14. Mississippi's 4th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|MililaniMindanaoMinuanoIVInformation Mississippi's

  15. Covington County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core AnalysisCouncil,Mississippi: Energy Resources Jump

  16. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National Science Bowl®Mississippi Regions

  17. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhavenMassachusetts Regions National Science Bowl®Mississippi

  18. Amite County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmite County, Mississippi: Energy Resources

  19. Attala County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc Jump to: navigation, searchInformation AtsunMississippi:

  20. City of Leland, Mississippi (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville, LouisianaLansing,Leland, Mississippi

  1. City of Macon, Mississippi (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCityJonesville,Livingston, TexasMississippi (Utility

  2. Clarke County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: EnergyWashington: EnergyMississippi: Energy

  3. "Smart" Multifunctional Polymers for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    Charles McCormick; Andrew Lowe

    2007-03-20T23:59:59.000Z

    Recent recommendations made by the Department of Energy, in conjunction with ongoing research at the University of Southern Mississippi, have signified a need for the development of 'smart' multi-functional polymers (SMFPs) for Enhanced Oil Recovery (EOR) processes. Herein we summarize research from the period of September 2003 through March 2007 focusing on both Type I and Type II SMFPs. We have demonstrated the synthesis and behavior of materials that can respond in situ to stimuli (ionic strength, pH, temperature, and shear stress). In particular, Type I SMFPs reversibly form micelles in water and have the potential to be utilized in applications that serve to lower interfacial tension at the oil/water interface, resulting in emulsification of oil. Type II SMFPs, which consist of high molecular weight polymers, have been synthesized and have prospective applications related to the modification of fluid viscosity during the recovery process. Through the utilization of these advanced 'smart' polymers, the ability to recover more of the original oil in place and a larger portion of that by-passed or deemed 'unrecoverable' by conventional chemical flooding should be possible.

  4. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Tupelo quadrangle, Mississippi, Alabama, and Tennessee. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Tupelo quadrangle covers a region immediately east of the Mississippi River flood plain in the northernmost Gulf Coastal Physiographic Province. Sediments of Teritary and Paleozoic basins shoal eastward. Tertiary exposures dominate the western half of the quadrangle. Cretaceous strata are exposed over most of the eastern half. A search of available literature revealed no known uranium deposits. A total of eighty-six uranium anomalies were detected and are discussed briefly. Few were considered significant, and most appear to relate to some cultural feature. Magnetic data appears, for the most part, to be in agreement with existing structural interpretations of the region.

  5. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  6. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  7. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  8. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  9. Oil plays in Smackover reservoirs of the eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Tew, B.H.; Kopaskamerkel, D.C.; Mann, S.D. (Univ. of Alabama, Tuscaloosa (United States))

    1991-03-01T23:59:59.000Z

    Five Smackover (Upper Jurassic, Oxfordian) oil plays can be delineated in the eastern Gulf Coastal Plain. These include the basement ridge play, the regional peripheral fault trend play, the Mississippi interior salt basin play, the Mobile graben fault system play, and the Wiggins arch complex play. Plays are recognized by basinal position, relationships to regional structural features, and characteristic petroleum traps. Within two plays, subplays can be distinguished based on oil gravities and reservoir characteristics. Reservoirs are distinguished primarily by depositional setting and diagenetic overprint. The geology and petroleum characteristics of these plays are discussed.

  10. The Demographic Effects of Hurricane Katrina on the Mississippi Gulf Coast: An Analysis by Zip Code

    E-Print Network [OSTI]

    Swanson, David A

    2008-01-01T23:59:59.000Z

    344-362. Cossman, R. 2006. “Hurricane Katrina as a NaturalMississippi Gulf Coast after Hurricane Katrina: An In-depthInstitutions in the Wake of Hurricane Katrina. ” Journal of

  11. Rhetoric and heresthetic in the Mississippi Freedom Party controversy at the 1964 Democratic Convention

    E-Print Network [OSTI]

    Battaglia, Adria

    2005-11-01T23:59:59.000Z

    Democratic Convention. Specifically, the focus is on the rhetorical discourse presented by the members of the Mississippi Freedom Democratic Party, Fannie Lou Hamer in particular, at the Credentials Committee two days before the onset of the actual Convention...

  12. High-amplitude reflection packets (HARPs) of the Mississippi Fan, Gulf of Mexico

    E-Print Network [OSTI]

    Francis, Jason Michael

    2000-01-01T23:59:59.000Z

    sediment volumes. Mississippi Fan HARP deposition can be described by three depositional models: the "avulsion" model, the "fill and spill" model, and the "transition" model. The "avulsion" depositional model, developed by Flood et al. (1991), describes...

  13. EIS-0385: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Broader source: Energy.gov [DOE]

    DOE announced the cancellation of a supplemental environmental impact statement for certain facilities associated with the 2007 selection of Richton, Mississippi, as the location of a new storage site for expanding the Strategic Petroleum Reserve.

  14. Carbon flow and ecosystem dynamics in the Mississippi River plume described by inverse analysis

    E-Print Network [OSTI]

    Breed, Greg Allen

    2002-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE December 2002 Major Subject: Oceanography CARBON FLOW AND ECOSYSTEM DYNAMICS IN THE MISSISSIPPI RIVER PLUME DESCRIBED BY INVERSE ANALYSIS A Thesis by GREG ALLEN BREED Submitted to Texas A&M University in partial... of Department) December 2002 Major Sublect: Oceanography ABSTRACT Carbon Flow and Ecosystem Dynamics in the Mississippi River Plume Described by Inverse Analysis. (December 2002) Greg Allen Breed, B. S. , University of Minnesota Chair of Advisory...

  15. Clay minerals of recent marine sediments to the west of the Mississippi Delta

    E-Print Network [OSTI]

    McAllister, Raymond Francis

    1958-01-01T23:59:59.000Z

    CLAY MINERALS OF RECENT MARINE SEDIMENTS 10 THE WEST OP THE MISSISSIPPI DKLTA A Dissertation By RAYMOND ERANCIS McALLI9TER> Jr. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment... of the requirements for the degree of DOCTOR OF PHILOSOPHY IN OCEANOGRAPHY May* 1958 Major Subject: Geological Oceanography CLAY MINERALS OF RECENT MARINE SEDIMENTS TO THE WEST OF THE MISSISSIPPI DELTA A Dissertation RAYMOND FRANCIS McALLISTER, Jr. Approved...

  16. Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi 

    E-Print Network [OSTI]

    Cook, Billy Charles

    1968-01-01T23:59:59.000Z

    with the lower Unit being subdivided into an upper "sand and shale section" a middle "marine section", and a lower "massive sand section". The Mississippi Geological Society (1957) subdivided the subsurface Tuscaloosa Group into the Upper, Marine, and Lower...) described the Lower Tuscaloosa Formation of southern Mississippi as a unit of "rapidly alternating sands and shales of shallow marine origin, overlying a nearly unbroken sand sec- tion of still shallower marine or continental origin". Braunstein ai. so...

  17. Phase III Early Restoration Project Alabama Florida Louisiana Mississippi Texas

    E-Print Network [OSTI]

    , two making approximately three trips per day, for approximately 15 weeks during peak tourist season to be reduced during the off-peak winter season. To support the project, passenger queuing areas ­ one Horizon oil spill. ESTIMATED COST The estimated amount of Deepwater Horizon Oil Spill early restoration

  18. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.

  19. Mississippi DOE EPSCoR planning grant. Final report

    SciTech Connect (OSTI)

    Steele, W.G.

    1996-09-01T23:59:59.000Z

    The Mississippi DOE EPSCoR planning grant committee identified three focus areas for a proposal submitted on January 25, 1995, to the US DOE: Human Resource Development, Environmental Synergisms from Fuel Mixtures of Tire Particles and Low Rank Coals, and Energy Efficient Heat Transfer Equipment and Materials. In the human resources are, efforts were undertaken to identify and develop linkages with educational institutions, national laboratories, and industries and to identify strategies for attracting and involving students in areas leading to technical careers. The fuel mixtures project was directed toward developing ways to combine scrap tire particles and lignite coal into a blended fuel that could be used in electric power generation. In the energy efficient heat transfer area, analytical and experimental investigations were planned to increase the efficiency of heat exchangers and insulating materials.

  20. Isoperimetric profile of algebras

    E-Print Network [OSTI]

    D'Adderio, Michele

    2010-01-01T23:59:59.000Z

    2.4 Isoperimetric profile of groups . . . . . . . . . . .3.1 The Isoperimetric Profile . . . . . . . . . . . . . . .3.2 Isoperimetric profile and Amenability . . . . . . . .

  1. Trench sampling report Salmon Site Lamar County, Mississippi

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This report describes trench excavation and sample-collection activities conducted by IT Corporation (IT) as part of the ongoing Remedial Investigation and Feasibility Study at the Salmon Site, Lamar County, Mississippi (DOE, 1992). During construction, operation, and closure of the site wastes of unknown composition were buried in pits on site. Surface-geophysical field investigations were conducted intermittently between November 1992 and October 1993 to identify potential waste-burial sites and buried metallic materials. The geophysical investigations included vertical magnetic gradient, electromagnetic conductivity, electromagnetic in-phase component, and ground-penetrating radar surveys. A number of anomalies identified by the magnetic gradiometer survey in the Reynolds Electrical & Engineering Co., Inc., (REECo) pits area indicated buried metallic objects. All of the anomalies were field checked to determine if any were caused by surface features or debris. After field checking, 17 anomalies were still unexplained; trenching was planned to attempt to identify their sources. Between December 8, 1993, and December 17, 1993, 15 trenches were excavated and soil samples were collected at the anomalies. Samples were collected, placed in 250- and 500-milliliter (m{ell}) amber glass containers, and shipped on ice to IT Analytical Services (ITAS) in St. Louis, Missouri, using standard IT chain-of-custody procedures. The samples were analyzed for various chemical and radiological parameters. Data validation has not been conducted on any of the samples. During excavation and sampling, soil samples were also collected by IT for the MSDEQ and the Mississippi Department of Radiological Health, in accordance with their instructions, and delivered into their custody.

  2. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Helena quadrangle of Arkansas, Mississippi and Tennessee. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Helena quadrangle covers a region largely within the Mississippi River flood plain in the extreme northern Gulf Coastal Province. Tertiary sediments in this area are relatively thick, and overlie a Paleozoic basin gradually shoaling to the northeast. The Oachita Tectonic Zone strikes southeasterly through the center of the quadrangle. The exposed sequence is almost entirely Quaternary sediments of the flood plain area. Older Cenozoic deposits crop out in upland areas on the west side of the river valley. A search of available literature revealed no known uranium deposits. Sixty uranium anomalies were detected and are discussed briefly. None were considered significant, and all appeared to occur as the result of cultural and/or weather effects. Magnetic data appear to be in agreement with existing structural interpretations of the region.

  3. Perera Lam: An environmental justice assessment of the Mississippi River Industrial Corridor in Louisiana, U.S. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH 11(4): 681-697.

    E-Print Network [OSTI]

    Perera ­ Lam: An environmental justice assessment of the Mississippi River Industrial Corridor to assess the status of environmental justice concerns in the Mississippi River Industrial Corridor injustice in the study area. The study approach allows preliminary assessment of environmental justice

  4. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  5. Heat transfer and oil displacement models for tar sands reservoirs

    SciTech Connect (OSTI)

    Ward, C.E.; Ward, G.D.

    1984-09-01T23:59:59.000Z

    A convective heat transfer model and one dimensional displacement model applicable to tar sands and heavy oils for use with a microcomputer are presented. The convective heat transfer model describes the temperature profiles in a thermal operation. The displacement model offers insight into the effect of process variables on the steam/oil or air/oil ratio of thermal operations. A method is presented for predicting the fuel burn in a fireflood.

  6. Alabama Profile

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S. Offshore U.S. StateAlabama

  7. Post-Cretaceous faulting at head of Mississippi embayment

    SciTech Connect (OSTI)

    Nelson, W.J. (Illinois State Geological Survey, Champaign, IL (United States)); Harrison, R.W. (Geological Survey, Reston, VA (United States))

    1993-03-01T23:59:59.000Z

    Recent mapping in southernmost Illinois and southeastern Missouri has revealed numerous faults that displace Cretaceous and Tertiary strata. Units as young as the Pliocene-Pleistocene( ) Mounds Gravel are deformed; some faults possibly displace Quaternary sediments. The faults strike northeast, dip nearly vertically, and exhibit characteristics of dextral strike-slip. Pull-apart grabens occur along right-stepping fault strands, they contain chaotically jumbled blocks of Paleozoic, Cretaceous and Tertiary rocks downdropped as much as 800 m relative to wall rocks. Faults at the head of the Mississippi embayment probably originated during Cambrian rifting (Reelfoot rift) and have a long, complex history of reactivation under different stress fields. Some faults are on strike with faults in the New Madrid seismic zone. Kinematics of post-Cretaceous displacements fit the contemporary stress regime of ENE-WSW compression. Similar fault orientations and kinematics, as well as close proximity, suggest a close link between faulting at the head of the embayment and ongoing tectonism in the New Madrid seismic zone.

  8. Jurassic petroleum geology of southwestern Clarke County, Mississippi

    SciTech Connect (OSTI)

    Jackson, J.B.; Harris, P.M.

    1983-01-24T23:59:59.000Z

    The Jurassic stratigraphy of southwestern Clark County, Mississippi, is representative of the central Gulf Coast. Evaporites, carbonates, and siliciclastics were deposited in restricted marine, shallow marine, transitional, and continental environments; structural development during and after deposition by regional faulting, local faulting, and salt movement directly affected hydrocarbon accumulation. Subsurface electric log data were studied from West Nancy, Nancy, East Nancy, Prairie Branch, and Lake Utopia fields and from the surrounding wildcats for the structural relations in and between producing fields and for the thickness and stratigraphic relations that affect production in three major units: the Norphlet and Smackover formations and the Buckner member of the Haynesville formation. Results suggest that (1) the East Nancy field probably has the best potential for future development because the original depositional feature is larger and older than that at the other fields and faulting has not greatly influenced entrapment or deposition, (2) the Smackover pay zone in the Prairie Branch field may be successfully developed on the south flank, and (3) the Nancy field might be developed on its southeast and northwest flanks in the upper oolite zone seen in the flank wells.

  9. University Profile Profile 2006-2008

    E-Print Network [OSTI]

    Hickman, Mark

    University Profile 2006­2008 #12;Profile 2006-2008 #12;Page 2 University of Canterbury Profile 2006-2008 #12;University of Canterbury Profile 2006-2008 Page 3 Contents Part A: Strategic Direction Page 1. Appendix 1: Points of Connection between 18 STEP 2005-2007 and UC Profile Key Strategic Areas 12. Appendix

  10. Strong Interest Inventory Profile with College Profile

    E-Print Network [OSTI]

    Peak, Derek

    Strong Interest Inventory ® Profile with College Profile College Profile developed by Jeffrey P Interest Inventory® Profile JANE SAMPLE Date taken 1.1.2005 F HOW THE STRONG CAN HELP YOU The Strong in your Strong results. Understanding your Strong Profile can help you identify a career focus and begin

  11. A Computational Study of the Spreading of Oil Underneath a Sheet of Ice

    E-Print Network [OSTI]

    Soatto, Stefano

    A Computational Study of the Spreading of Oil Underneath a Sheet of Ice Mark Sussman Department) Abstract The spreading of oil underneath a sheet of ice is computed using an adaptive level set method the final steady profile of a body of oil under ice in water. The computational models are used to make

  12. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    SciTech Connect (OSTI)

    None

    2008-05-01T23:59:59.000Z

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006.

  13. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic. Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would he developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  14. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    over time even if the oil market were perfectly competitive.a big role in world oil markets, that era is long past.and re?ning oil and delivering it to the market. We could

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    appeared in the world oil market in the last fifteen years.have on the world oil markets and international relationsthe stability of the oil markets. 11 This literature,

  16. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    and Income on Energy and Oil Demand,” Energy Journal 23(1),the faster its growth in oil demand over the last half ofthe income elasticity of oil demand to fall signi?cantly.

  18. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    current pace of growth in oil demand as staying consistentthis point, China’s demand Oil Demand vs. Domestic Supply inand predictions of oil supply and demand affected foreign

  19. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

  20. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

  1. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  2. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    unfettered access to oil resources including the possibleChina’s search for oil resources around the world. However,a survey of China’s oil resources, while others focus

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

  4. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

  5. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

  6. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    in U.S. real GDP and oil consumption, 1949-2006. slope =Historical Chinese oil consumption and projection of trend.1991-2006: Chinese oil consumption in millions of barrels

  7. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  8. Mississippi Canyon 252 Incident NRDA Tier 1 for Deepwater Communities

    E-Print Network [OSTI]

    Resource Damage Assessment. Each Party reserves its right to produce its own independent interpretation Statement The northern Gulf of Mexico (GOM) is a geologically diverse basin, described as the most complex, and are visible on Google Earth. With 3D seismic data obtained by the oil and gas industry for geophysical

  9. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01T23:59:59.000Z

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  10. HAZARDOUS MATERIALS IN AQUATIC ENVIRONMENTS OF THE MISSISSIPPI RIVER BASIN

    SciTech Connect (OSTI)

    John A. McLachlan

    2003-12-01T23:59:59.000Z

    In December 1992, the CBR was awarded a five-year grant of $25M from the US Department of Energy Office of Environmental Management (DOE-EM) to study pollution in the Mississippi River system. The ''Hazardous Materials in Aquatic Environments of the Mississippi River Basin'' project was an interdisciplinary, collaborative research and education project aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments. This project funded 15 collaborative cluster multi-year projects and 41 one-year initiation projects out of 165 submitted research proposals. This project was carried out by 134 research and technical support faculty from Xavier University (School of Arts and Sciences, and College of Pharmacy) and Tulane University (Schools of Liberal Arts and Sciences, Engineering, Medicine, and Public Health and Tropical Medicine), and 173 publications and 140 presentations were produced. More than 100 graduate and undergraduate students were trained through these collaborative cluster and initiation research projects. Nineteen Tulane graduate students received partial funding to conduct their own competitively-chosen research projects, and 28 Xavier undergraduate LIFE Scholars and 30 LIFE Interns were supported with DOE funding to conduct their mentored research projects. Studies in this project have defined: (1) the complex interactions that occur during the transport of contaminants, (2) the actual and potential impact on ecological systems and health, and (3) the mechanisms through which these impacts might be remediated. The bayou and spoil banks of Bayou Trepagnier were mapped and analyzed in terms of risks associated with the levels of hydrocarbons and metals at specific sample sites. Data from contaminated sample sites have been incorporated into a large database and used in GIS analyses to track the fate and transport of heavy metals from spoil banks into the surrounding marsh. These data are crucial to understanding how heavy metals move through wetlands environments. These data, coupled with plume characterization data, indicate that Bayou Trepagnier is a model system for understanding how wetlands populations of fish, amphibians, and plants respond to long-term hydrocarbon and metals contamination. The CBR has fifteen years of experience in developing model aquatic ecosystems for evaluating environmental problems relevant to DOE cleanup activities. Using biotechnology screens and biomarkers of exposure, this project supports other CBR research demonstrating that chemicals in the environment can signal/alter the development of species in aquatic ecosystems, and show detrimental impacts on community, population, and the ecosystem, including human health. CBR studies funded through this grant have resulted in private sector investments, international collaborations, development of new technologies, and substantial new knowledge concerning the effects of hazardous materials on human and ecosystem health. Through the CBR, Tulane and Xavier Universities partnered with DOE-EM to lay groundwork for an effective research agenda that has become part of the DOE long term stewardship science and technology program and institutional management of the DOE complex.

  11. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll, Taxes Payroll, TaxesPeople Profiles

  12. Mentor Profile

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), OctoberMay 18-19,Department of EnergyMentor Profile

  13. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect (OSTI)

    None

    2013-08-01T23:59:59.000Z

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  14. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    historical data for claiming to be able to predict oil pricehistorical data. The second is to look at the predictions of economic theory as to how oil prices

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  17. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  18. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

    1994-01-01T23:59:59.000Z

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  19. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M. (Geologic Consultant)

    2006-01-01T23:59:59.000Z

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  20. New Mexico--West Crude Oil Reserves in Nonproducing Reservoirs (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels) Liquids LeaseBarrels) Crude Oil

  1. Land Cover Change of Louisiana and Mississippi produced by Hurricane Katrina

    E-Print Network [OSTI]

    Gilbes, Fernando

    Land Cover Change of Louisiana and Mississippi produced by Hurricane Katrina WILMA N. PABÓN RAMÍREZ of the strongest and most devastating hurricanes in the history of the United States: the hurricane Katrina. INTRODUCTION Hurricane Katrina is the sixth strongest Atlantic hurricane ever recorded and is the third

  2. Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81

    E-Print Network [OSTI]

    Survey of Ice Plants in Louisiana, Mississippi, and Alabama, 1980-81 JOHN M. WARD and JOHN R. POFFENBERGER Introduction Reports of ice shortages during the shrimp fishing season prompted a Na- tional closure regulation on ice plant production and sales. Like Texas, Louisiana controls the opening

  3. Our Mississippi is a quarterly newsletter of the U.S. Army

    E-Print Network [OSTI]

    US Army Corps of Engineers

    a ranking system for the proposed work by establishing an Index of Habitat Quality. Projects were ranked according to how they improve habitat quality and their cost-effectiveness; this information proved useful for project selection. Continued on page 2 >> ABOVE: Construction contractor Mississippi Limestone, Inc

  4. Research, Education and Outreach in the Division of Agriculture, Forestry and Veterinary Medicine Mississippi State University

    E-Print Network [OSTI]

    Ray, David

    as they keep their gins going. (Photo by Scott Corey) 4 Past Remembered A glimpse of what life was like, MSU Extension Service George M. Hopper Dean, College of Forest Resources Director, Forest and Wildlife Research Center Director, Mississippi Water Resources Research Institute Interim Dean, College

  5. Research, Education and Outreach in the Division of Agriculture, Forestry and Veterinary Medicine Mississippi State University

    E-Print Network [OSTI]

    Ray, David

    , attended the Cloverbud Caper Camp, sponsored by the MSU Extension Service. (Photo by Scott Corey) 4. Jackson Director, MSU Extension Service George M. Hopper Dean, College of Forest Resources Director, Forest and Wildlife Research Center Dean, College of Agriculture and Life Sciences Director, Mississippi

  6. Research, Education and Outreach in the Division of Agriculture, Forestry and Veterinary Medicine Mississippi State University

    E-Print Network [OSTI]

    Ray, David

    Center brought artwork and clients to the event. (Photo by Scott Corey) 4 Fresh Food Mississippians Service George M. Hopper Dean, College of Forest Resources Director, Forest and Wildlife Research Center Dean, College of Agriculture and Life Sciences Director, Mississippi Agricultural and Forestry

  7. FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER

    E-Print Network [OSTI]

    FLUCTUATION IN TRAP-NET CATCHES IN THE UPPER MISSISSIPPI RIVER if; Marine Biological LabofdiuryKay, Secretary Fish and Wildlife Service, Albert M. Day, Director FLUCTUATION IN TRAP NET CATCHES IN THE UPPER Gear used 3 Methods 5 Statistical considerations 5 Season trends in catch of trap nets 6 Black crappie

  8. The fate and transport of nitrate in shallow groundwater in northwestern Mississippi, USA

    E-Print Network [OSTI]

    modeling . USA Introduction Nitrate is the primary form of dissolved nitrogen in natural waters (MuellerThe fate and transport of nitrate in shallow groundwater in northwestern Mississippi, USA Heather L. Welch & Christopher T. Green & Richard H. Coupe Abstract Agricultural contamination of groundwater

  9. EIS-0385-S1: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Broader source: Energy.gov [DOE]

    Since selecting the Richton site, DOE has engaged in further consultations with Federal and Mississippi state agencies and is now considering different locations from those addressed in DOE/EIS–0385 for certain facilities associated with the Richton SPR expansion site.

  10. ,"Mississippi Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude Oil +Price

  11. Improved Soybean Oil for Biodiesel Fuel

    SciTech Connect (OSTI)

    Tom Clemente; Jon Van Gerpen

    2007-11-30T23:59:59.000Z

    The goal of this program was to generate information on the utility of soybean germplasm that produces oil, high in oleic acid and low in saturated fatty acids, for its use as a biodiesel. Moreover, data was ascertained on the quality of the derived soybean meal (protein component), and the agronomic performance of this novel soybean germplasm. Gathering data on these later two areas is critical, with respect to the first, soybean meal (protein) component is a major driver for commodity soybean, which is utilized as feed supplements in cattle, swine, poultry and more recently aquaculture production. Hence, it is imperative that the resultant modulation in the fatty acid profile of the oil does not compromise the quality of the derived meal, for if it does, the net value of the novel soybean will be drastically reduced. Similarly, if the improved oil trait negative impacts the agronomics (i.e. yield) of the soybean, this in turn will reduce the value of the trait. Over the course of this program oil was extruded from approximately 350 bushels of soybean designated 335-13, which produces oil high in oleic acid (>85%) and low in saturated fatty acid (<6%). As predicted improvement in cold flow parameters were observed as compared to standard commodity soybean oil. Moreover, engine tests revealed that biodiesel derived from this novel oil mitigated NOx emissions. Seed quality of this soybean was not compromised with respect to total oil and protein, nor was the amino acid profile of the derived meal as compared to the respective control soybean cultivar with a conventional fatty acid profile. Importantly, the high oleic acid/low saturated fatty acids oil trait was not impacted by environment and yield was not compromised. Improving the genetic potential of soybean by exploiting the tools of biotechnology to improve upon the lipid quality of the seed for use in industrial applications such as biodiesel will aid in expanding the market for the crop. This in turn, may lead to job creation in rural areas of the country and help stimulate the agricultural economy. Moreover, production of soybean with enhanced oil quality for biodiesel may increase the attractiveness of this renewable, environmentally friendly fuel.

  12. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  14. OIL & GAS INSTITUTE Introduction

    E-Print Network [OSTI]

    Mottram, Nigel

    OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

  15. Diagenesis of Eolian and fluvial feldspathic sandstones, Norphlet formation (upper Jurassic), Rankin County, Mississippi, and Mobile County, Alabama

    SciTech Connect (OSTI)

    McBride, E.F.; Land, L.S.; Mack, L.E.

    1987-09-01T23:59:59.000Z

    Norphlet sandstones in seven cores from Mississippi and Alabama are arkoses and subarkoses deposited in eolian-dune, interdune, and fluvial environments. Similar to the deeply buried (> 5 km) Tertiary feldspathic sandstones of the Gulf basin, all detrital plagioclase that survived dissolution has been albitized. Fluvial red sandstone lost all initial porosity by the introduction of preburial pedogenic calcite and compaction. Initial porosity of eolian sands was reduced by compaction to an average of 29%; and later by cementation by quartz, carbonates, anhydrite, halite, K-feldspar, and illite. Quartz and anhydrite cements precipitated between 90/sup 0/ and 100/sup 0/C (approximately 2.3 km deep), carbonates and halite cements formed below 120/sup 0/C (< 3 km), and late-stage illite cement formed between 130/sup 0/ and 150/sup 0/C (4-5 km deep). Cements are patchy, and some, especially quartz and anhydrite, are texture-selective, being more abundant in coarser laminae. Secondary porosity, which makes up approximately half the porosity in thin sections, formed by dissolution of detrital grains (feldspar, rock fragments) and cements (anhydrite, carbonate, halite). Reservoir bitumen records an early phase of oil entrapment. Reservoir quality is influenced by the abundance of reservoir bitumen and thread-like illite, both of which bridge pores. Isotopic data suggest that during the first 30 to 40 m.y. of burial, subsurface diagenesis of the Norphlet Formation was dominated by deep-circulating, hot, meteoric water. This phenomenon may be characteristic of the early diagenetic history of rifted basins. 10 figures, 5 tables.

  16. Computing & Communications PROFILE MANAGEMENT

    E-Print Network [OSTI]

    Warkentin, Ian G.

    Computing & Communications PROFILE MANAGEMENT What is a profile? If you use a SWGC computing account, a profile will be created for you. A profile is a special file which is used to store your are provided with a default profile which is the same for all users. Any changes you then make to your working

  17. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

  18. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  19. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal drilling, as well as enhanced oil recovery...

  20. Oil and Gas Supply Module

    Gasoline and Diesel Fuel Update (EIA)

    and sources. Crude oil recovery includes improved oil recovery processes such as water flooding, infill drilling, and horizontal continuity, as well as enhanced oil recovery...

  1. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  2. A amphoteric copolymer profile modification agent

    SciTech Connect (OSTI)

    Wang HongGuan; Yu LianCheng; Tian HongKun [Scientific Research Inst. of Petroleum Exploration and Development, Beijing (China)

    1995-11-01T23:59:59.000Z

    This report provides a new gel profile modification agent prepared by an amphoteric copolymer (FT-213) and a novel crosslinking agent (BY), and introduces the preparations of the amphoteric polymer, the crosslinking agent and the profile modification agent, the action mechanism, the test conditions and the evaluations of the performance of the agent. The 45 well treatments in oilfields demonstrate that the agent can be prepared conveniently, the agent has better compatibility and application performances, and the treatment life is longer with the use of the agent. 80,000 tons incremental oil and 60,000 m{sup 3} decreasing water production have been achieved.

  3. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14T23:59:59.000Z

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  4. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  5. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Mancini, Ernest A.

    2003-02-06T23:59:59.000Z

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  6. Libyan oil industry

    SciTech Connect (OSTI)

    Waddams, F.C.

    1980-01-01T23:59:59.000Z

    Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

  7. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  8. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi Nuclear

  9. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi NuclearHampshire

  10. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi NuclearHampshireJersey

  11. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippi

  12. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorth Carolina Nuclear

  13. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorth Carolina

  14. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorth

  15. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorthSouth Carolina

  16. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorthSouth

  17. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorthSouthTexas

  18. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest RegionMississippiNorthSouthTexasVirginia

  19. Past, Present, and Future Production of Bio-oil

    SciTech Connect (OSTI)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01T23:59:59.000Z

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.

  20. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2009

    SciTech Connect (OSTI)

    None

    2010-10-01T23:59:59.000Z

    This report summarizes the annual inspection, sampling, and maintenance activities performed on and near the Salmon, Mississippi, Site in calendar year 2009. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report complies with the annual report requirement. The Salmon, MS, Site is located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS The site encompasses 1,470 acres and is not open to the general public. The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned responsibility for the site effective October 1, 2006

  1. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    SciTech Connect (OSTI)

    None

    2011-03-01T23:59:59.000Z

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  2. Using Oils As Pesticides

    E-Print Network [OSTI]

    Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

    2006-10-30T23:59:59.000Z

    Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

  3. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

  4. Gas and Oil (Maryland)

    Broader source: Energy.gov [DOE]

    The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

  5. Annotated bibliography of the Black Warrior basin area, northern Alabama - northern Mississippi

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1983-01-01T23:59:59.000Z

    This bibliography contains 1964 records related to the geology of the Black Warrior basin of northern Alabama and northern Mississippi. Specific topics include, but are not limited to: coal, petroleum, and natural gas deposits; mineralogy; lithology; paleontology; petrology; stratigraphy; tectonics; bauxite; iron ores; geologic correlations; earthquakes; fossils; gold deposits; geological surveys; hydrology; and water resources. The subject index provides listings of records related to each county and the geologic ages covered by this area. Some of the items (54) are themselves bibliographies.

  6. The Low-Income Housing Program in the Louisiana and Mississippi Gulf Opportunity Zones

    E-Print Network [OSTI]

    Christman, Casey; Johnson, David; Rho, Eunju; Stein, Eric; Taylor, Beth

    2008-01-01T23:59:59.000Z

    1 Texas A&M University The Bush School of Government and Public Service The Low-Income Housing Program in the Louisiana and Mississippi Gulf Opportunity Zone For The Congressional Research Service Contract... ............................................. 40? Table 24: Variance in Estimates - LIHTC Projects in Louisiana .......................... 40? 6 Table 25: Variance in Estimates - LIHTC Units in Selected Parishes ................. 42? Table 26: Proposed Block Counting (e.g. District Level...

  7. Gunboat and musket: Civil War on the upper Mississippi River, 1861-1862

    E-Print Network [OSTI]

    Koch, Karl William

    1971-01-01T23:59:59.000Z

    's secessionist State Guard had been pushed west, the struggle for the Mississippi commenced in the southeastern regions of the state. Major General Leonidas Polk, commanding the Confederate river forces, and Major General John C. Fremont, commander... of the Union's western department, jockeyed for control of southeastern Missouri. During 1861 neither side ac- complished much, militarily speaking. A Confederate invasion of the area in the summer fizzled for want of firm direction from General Polk...

  8. The Civil War diary of James J. Kirkpatrick, Sixteenth Mississippi Infantry, C.S.A.

    E-Print Network [OSTI]

    Ott, Eugene Matthew

    1984-01-01T23:59:59.000Z

    of Committee) Al an C. As craft (Member) Robert . Cornish (Member) Henry C. Dethlo (Head of Department) August 1984 '1 11 ABSTRACT The Civil War Diary of James J. Kirkpatrick Sixteenth Mississippi Infantry, C. S. A. (August 1984) Eugene Matthew Ott... of History for their support and, above all, patience. TABLE OF CONTENTS CHAPTER INTRODUCTION II 1861 III 1862 . IV 1863 . V 1864 VI CONCLUSION BIBLIOGRAPHY VITA 14 31 168 222 224 229 CHAPTER I INTRODUCTION In 1931 John W. Kirkpatrick...

  9. Analysis of the salinity regime of the Mississippi River - Gulf Outlet Channel

    E-Print Network [OSTI]

    Amstutz, David E

    1964-01-01T23:59:59.000Z

    Intersecting Channel Polynomial Coefficients (A ) n, m A Tendency Summary n, m Average Tidal Lag and Amplitude Change From Gage Station N-140A 16 30 35 LIST OF FIGURES FIGURE NO. PAGE Area Map Mississippi River ? Gulf Outlet Channel Station... of salinity and tidal data gathering stations are shown in Figure 2. The average time required for tidal propagation be- tween these two stations is 5. 0 hours. The sampling programs began at station TABLE 1 ACCURACY OF CHANNEL SALINITY DATA Salinity...

  10. Shale oil demetallization process

    SciTech Connect (OSTI)

    Silverman, M. A.

    1985-08-13T23:59:59.000Z

    Trace metals, particularly As, Fe and Ni, are removed from hydrocarbonaceous oils, particularly shale oil by contacting the shale oil with quadrolobe alumina with or without a processing gas such as hydrogen or nitrogen at 500/sup 0/ F. to 800/sup 0/ F. at 250 to 750 psig and LHSV of 0.4 to 3.0 to deposit a portion of said trace metal onto said alumina and recover an oil product having substantially reduced amounts of trace metal.

  11. Oil Peak or Panic?

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

  12. Preliminary evaluation of coal and coalbed gas resource potential of western Clay County, Mississippi

    SciTech Connect (OSTI)

    Henderson, K.S.; Gazzier, C.A.

    1989-01-01T23:59:59.000Z

    After reviewing all previously published data it appeared that if the Mississippi portion of the Black Warrior Basin contained potentially economic seams of coal the thicker downdip section was a more likely place to look. The generosity of several exploration companies in providing an extensive suite of logs that could be correlated with samples contained in the Bureau of Geology Sample Library allowed the authors to correlate and identify these upper Pottsville coal groups previously unknown in Mississippi. The purpose of this study was to identify the potential for coal resources in western Clay County, Mississippi, and to correlate laterally any coal seams identified in order to develop a gross volumetric estimate of in-place resources. It became apparent that many of the shallow coal seams (1,800 feet-3,700 feet) had appreciable quantities of gas, for they exhibited excellent gas shows when drilled. Efforts to determine rank for these coals were made by vitrinite reflectance and thus a preliminary estimate was also made for the potential coalbed methane reserves. 73 refs., 8 figs., 3 tabs.

  13. Petrology and hydrocarbon reservoir potential of subsurface Pottsville (Pennsylvanian) sandstones, Black Warrior basin, Mississippi

    SciTech Connect (OSTI)

    Beard, R.H.; Maylan, M.A.

    1987-09-01T23:59:59.000Z

    The Black Warrior basin of Mississippi and Alabama is a Paleozoic foreland basin developed between the North American craton and the Appalachian and Ouachita orogenic belts. The basin fill consists of a middle Mississippian to Lower Pennsylvanian clastic wedge, transitional in character, between Appalachian molasse and Ouachita flysch. Pottsville (Pennsylvanian) sandstones, shales, coals, and thin conglomerates make up the greater part of the wedge, thickening to 11,000 ft in northeast Mississippi. Although the outcropping and near-surface Pottsville is economically importance as a source of coal in Alabama, only minor amounts of gas have been derived from the subsurface Pottsville of Mississippi (Clay and Monroe Counties). Production from the Black Warrior basin, mostly gas, is chiefly from Chesterian (Mississippian) sands and limestones in the shallower part of the basin, principally in Monroe County. Cores of Pottsville sandstones from four wells in the deeper part of the Black Warrior basin (Calhoun and Choctaw Counties) have been examined to determine their petrography, diagenetic history, and reservoir quality. This part of the basin is relatively unexplored, and the primary objective of the study was to determine if suitable hydrocarbon reservoirs are present.

  14. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  15. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  16. Exploiting heavy oil reserves

    E-Print Network [OSTI]

    Levi, Ran

    North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen the potential of heavy oil 8/9 Taking the legal lessons learned in the north Sea to a global audience 10 potential Exploiting heavy oil reserves Aberdeen: A community of science AT WORK FOR THE ENERGY SECTOR ISSUE

  17. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12T23:59:59.000Z

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  18. Establishing a Pivot profile

    E-Print Network [OSTI]

    Simaan, Nabil

    Establishing a Pivot profile and finding funding opportunities PIVOT.COS.COM #12;Expertise Database with Researcher Profiles Approx. 3.2M scholarly profiles Created from publications, public web sites Claim your profile and expand it Funding Opportunities Database Approx. 28k opportunities 70% domestic, 30

  19. Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance 

    E-Print Network [OSTI]

    Hervas Ordonez, Rafael Alejandro

    1994-01-01T23:59:59.000Z

    -iicro-fracture system. Nuclear Magnetic Resonance (NNM) sets of longitudinal and transverse profiles and images were recorded to visualize and quantify changes in fluid saturation inside the rock samples during the imbibition displacement tests. NMR oil saturation...

  20. Enhanced oil recovery through water imbibition in fractured reservoirs using Nuclear Magnetic Resonance

    E-Print Network [OSTI]

    Hervas Ordonez, Rafael Alejandro

    1994-01-01T23:59:59.000Z

    -iicro-fracture system. Nuclear Magnetic Resonance (NNM) sets of longitudinal and transverse profiles and images were recorded to visualize and quantify changes in fluid saturation inside the rock samples during the imbibition displacement tests. NMR oil saturation...

  1. U.S. Shale Gas and Shale Oil Plays Review of Emerging Resources...

    Gasoline and Diesel Fuel Update (EIA)

    most shale gas and shale oil wells are only a few years old, their long-term productivity is untested. Consequently, the long-term production profiles of shale wells and...

  2. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20T23:59:59.000Z

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  3. Oil Price Volatility

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0

  4. Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors forA2. For RenewableRTECSJanuary 2013

  5. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    SciTech Connect (OSTI)

    Mason, O.U.; Hazen, T.C.

    2011-06-15T23:59:59.000Z

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  6. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  7. Amphipods of the deep Mississippi Canyon, northern Gulf of Mexico: ecology and bioaccumulation of organic contaminants 

    E-Print Network [OSTI]

    Soliman, Yousria Soliman

    2009-05-15T23:59:59.000Z

    factor in the degradation of the marine ecosystem (see Browsky, et al, 1993). Chronic exposure may be more detrimental to marine ecosystem than the more dramatic oil spills, because organisms can bioaccumulate oil even at low concentrations (see...

  8. Depositional environment of jurassic smackover sandstones, Thomasville field, Rankin County, Mississippi

    E-Print Network [OSTI]

    Olsen, Rebecca Sarah Penfield

    1980-01-01T23:59:59.000Z

    of an ancient oil pool. Heat and burial cracked the oil, releasing the lighter, more volatile fractions and leaving a residue of pyrobitumen and heavy oil. On the basis of log character, it is possible to dis- tinguish between most sandstones, limestones... in the grammatical and quantitative editing of the manuscript. Hunt Energy Corporation provided funding, cores, and valuable information on Thomasville field. Hunt's aid to this study is greatly appreciated. Alan Thomson's (Shell Oil Co. ) comments on various...

  9. World Oil: Market or Mayhem?

    E-Print Network [OSTI]

    Smith, James L.

    2008-01-01T23:59:59.000Z

    The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

  10. Near Shore Submerged Oil Assessment

    E-Print Network [OSTI]

    Near Shore Submerged Oil Assessment September 2010 In the context of the BP Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments from very different physical and chemical processes. In this spill, the oil was released more than 5

  11. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  12. Accelerator beam profile analyzer

    DOE Patents [OSTI]

    Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

    1976-01-01T23:59:59.000Z

    A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

  13. Oil spill response resources

    E-Print Network [OSTI]

    Muthukrishnan, Shankar

    1996-01-01T23:59:59.000Z

    and development program. Title VIII concerns the amendments to the Trans Alaska Pipeline System Act. Title I deals with probably the most important part of OPA-90 ? liability and compensation. Claim procedures, federal authority, financial responsibility... minimum. LITERATURE REVIEW From the time that oil was discovered, drilled and transported, oil spills have been occurring. As long as crude oils and petroleum products are transported across the seas by ships or pipelines, there is the risk of spillage...

  14. Aerial gamma ray and magnetic survey: Mississippi and Florida airborne survey, Blytheville quadrangle, Tennessee, Arkansas, Alabama, and Missouri. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    The Blytheville quadrangle covers a region east of the Mississippi River in the northernmost Gulf Coastal Province. The Tertiary Mississippi Embayment and the older Black Warrior - Arkoma Basins all shoal to the northeast in this area. Surficial exposures are dominantly Cretaceous or younger. Older strata are exposed in the northeast. A search of available literature revealed no known uranium deposits. Ninety uranium anomalies were detected and are discussed briefly. Few were considered significant,and almost all appear to relate to some cultural feature. Magnetic data appears, for the most part, to be in agreement with existing structural interpretations of the region.

  15. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

  16. Oil and Gas (Indiana)

    Broader source: Energy.gov [DOE]

    This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

  17. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL)...

  18. OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    , well drilling schedule and production profiles of oil, water and gas in each time period. The model can and how many wells are to be drilled in those fields and in what order, which field to be connected, limitation on the number of wells that can be drilled each year due to availability of the drilling rigs

  19. Oil and Gas CDT Coupled flow of water and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Coupled flow of water and gas during hydraulic fracture in shale The University of Oxford http://www.earth.ox.ac.uk/people/profiles/academic/joec Key Words Shale gas, hydraulic fracture, groundwater contamination, transport in porous media Overview Recovery of natural gas from mudstone (shale

  20. A multispectral scanner survey of the Salmon Site and surrounding area, Lamar County, Mississippi

    SciTech Connect (OSTI)

    Blohm, J.D.; Brewster, S.B. Jr.; Shines, J.E.

    1994-06-01T23:59:59.000Z

    An airborne multispectral scanner survey was conducted over the Salmon Site and the surrounding area in Lamar County, Mississippi, on May 8, 1992. Twelve-channel daytime multispectral data were collected from altitudes of 2,000 feet, 4,000 feet, and 6,000 feet above ground level. Large-scale color photography was acquired simultaneously with the scanner data. Three different composite images have been prepared to demonstrate the digital image enhancement techniques that can be applied to the data. The data that were acquired offer opportunity for further standard and customized analysis based on any specific environmental characterization issues associated with this site.

  1. A study in animation and visualization: consolidation of the Mississippi Fan

    E-Print Network [OSTI]

    Parmley, Kelly Lynn

    1992-01-01T23:59:59.000Z

    of MASTER OF SCIENCE December 1992 Major Subject: Computer Science A STUDY IN ANIMATION AND VISUALIZATION: CONSOLIDATION OF THE MISSISSIPPI FAN A Thesis by KELLY LYNN PARMLEY Approved as to style and content by: Glen N. Williams (Chair of Committee... and effort expended, Malia Martin, Derek Spears, Debbie Carlson and Neal McDonald for help with portions of the research, and Dr. Childs, Susan Mengel, and Clay Williams for help in generating the LaTEX document. Thanks also go to Willis Marti, Donna...

  2. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi LNG

  3. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, Mississippi

  4. Gulf LNG, Mississippi LNG Imports (Price) from Egypt (Dollars per Thousand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYearper ThousandGulf LNG, MississippiCubic

  5. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

  6. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  7. The Legacy of Oil Spills

    E-Print Network [OSTI]

    Trevors, J. T.; Saier, M. H.

    2010-01-01T23:59:59.000Z

    010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

  8. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01T23:59:59.000Z

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  9. OIL SHALE DEVELOPMENT IN CHINA

    E-Print Network [OSTI]

    J. Qian; J. Wang; S. Li

    In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

  10. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25T23:59:59.000Z

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  11. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  12. Synthetic aircraft turbine oil

    SciTech Connect (OSTI)

    Yaffe, R.

    1982-03-16T23:59:59.000Z

    Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

  13. Shale oil by 1990

    SciTech Connect (OSTI)

    Isaac, E.D.; Svoboda, D.

    1981-01-01T23:59:59.000Z

    Commercial processing of oil shale is currently being carried out in two countries, these being Manchuria and Estonia. Germany, Israel, Australia, Brazil and the United States are planning commercial development of oil shale during the 1980's. In the United States, developers currently pursuing production facilities in the Piceance Basin in Colorado are the Union Oil Company; Colony Development Company, now owned by Tosco and Exxon; Occidental Oil Shale Inc.; The Rio Blanco Shale Company (Amoco and Gulf) CA Tract; The Cathedral Bluff's Oil Shale Company (Oxy and Tenneco) at CB tract; The Anvil Points Bureau of Mines Site under the direction of DOE which has been leased to the Paraho Development Company to optimize their process; and Superior Oil. Superior Oil plans to recover Negcolite and Dowsonite that are associated with their oil shale. The processes used by these companies are described briefly. These are the Union B process, Tosco II process, Paraho process, and Occidental process. It is estimated that between 400,000 to 500,000 barrels per day (63,600 to 79,500 m/sup 3//day) production would be achieved by 1990 if all of the effects on the infrastructure are planned for and constructed in an orderly manner.

  14. Marathon Oil Company

    E-Print Network [OSTI]

    unknown authors

    Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

  15. Oil Quantity : The histori

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    model for Prudhoe Bay. Figure 11: Historical Prudhoe Bay oil production data, modeled economically Production (million bbl per Month) Historical Production Best Fit (Hist. Tax w/ELF, Ref. P) High Price 120 140 160 19 Oil Quantity Con Wel N E A N N ng Results e Bay : The histori Bay over tim : Prudhoe Ba

  16. Parameters controlling hydrocarbon distribution at Tatums Camp Field, Lamar County, Mississippi

    SciTech Connect (OSTI)

    Jackson, P. (Stephen F. Austin State Univ., Nacogdoches, TX (USA))

    1990-09-01T23:59:59.000Z

    Structural setting, stratigraphy, diagenesis, and hydraulic pathways all have played an important role in the development of reservoir at Tatums Camp field in Lamar County, Mississippi. The field is a domal anticline located on the southern flank of Midway Salt Dome within the confines of the Mississippi Salt basin. Production is from the Booth Sandstone of the Lower Cretaceous Hosston Formation. The Booth Sandstone contains productive mouth bar sands that pinch out across the northeast half of the dome, and nonproductive channel sands on the west. The mouth bars appear to have been deposited in a marginal marine, perhaps, estuarine environment. Porosity is secondary in origin, the result of leaching of framework constituents. Diagenetic studies indicate that hydrocarbons migrated into the sands when they were at or close to their present depth of 15,700 15,800 ft (4,785-4,815 m). Hydraulic head estimates within the upper Hosston Formation decrease from north to south. This pattern suggests that fluid movement is to the south away from Midway Salt Dome. It is probable that these hydraulic pathways were established at the time of hydrocarbon migration. The reservoir at Tatums Camp field appears to be the result of hydrocarbon migration from the north into a stratigraphic pinchout lying across a structurally positive feature.

  17. The Role of Landscape in the Distribution of Deer-Vehicle Collisions in South Mississippi

    SciTech Connect (OSTI)

    McKee, Jacob J [ORNL; Cochran, David [University of Southern Mississippi, The

    2012-01-01T23:59:59.000Z

    Deer-vehicle collisions (DVCs) have a negative impact on the economy, traffic safety, and the general well-being of otherwise healthy deer. To mitigate DVCs, it is imperative to gain a better understanding of factors that play a role in their spatial distribution. Much of the existing research on DVCs in the United States has been inconclusive, pointing to a variety of causal factors that seem more specific to study site and region than indicative of broad patterns. Little DVC research has been conducted in the southern United States, making the region particularly important with regard to this issue. In this study, we evaluate landscape factors that contributed to the distribution of 347 DVCs that occurred in Forrest and Lamar Counties of south Mississippi, from 2006 to 2009. Using nearest-neighbor and discriminant analysis, we demonstrate that DVCs in south Mississippi are not random spatial phenomena. We also develop a classification model that identified seven landscape metrics, explained 100% of the variance, and could distinguish DVCs from control sites with an accuracy of 81.3 percent.

  18. An aerial radiological survey of the Salmon Site and surrounding area, Lamar County, Mississippi

    SciTech Connect (OSTI)

    Kernan, W.J.

    1994-05-01T23:59:59.000Z

    An aerial radiological survey was conducted over the former Atomic Energy Commission Test Site at the Salmon Site and surrounding area between April 20 and May 1, 1992. The Salmon Site is located in Lamar County, Mississippi, approximately 20 miles southwest of Hattiesburg, Mississippi. The purpose of the survey was to measure and document the gamma-ray environment of the Salmon Site and adjacent lands. A contour map showing gamma radiation exposure rates at 1 meter above ground level was constructed from the aerial data and overlaid on a rectified aerial photograph of the area. The exposure rates within the area are between 5 and 8 {mu}R/h. The reported exposure rates include a cosmic-ray contribution estimated to be 3.7 {mu}R/h. Radionuclide assays of soil samples and in situ measurements, taken with a pressurized ion chamber and a high-purity germanium detector, were obtained at 4 locations within the survey boundaries. These measurements were taken in support of and are in agreement with the aerial data.

  19. Jurassic sequence stratigraphy in the Mississippi interior salt basin of Alabama

    SciTech Connect (OSTI)

    Mancini, E.A. (Geological Survey of Alabama, Tuscaloosa (USA) Univ. of Alabama, Tuscaloosa (USA)); Tew, B.H.; Mink, R.M. (Geological Survey of Alabama, Tuscaloosa (USA))

    1990-09-01T23:59:59.000Z

    Three depositional sequences associated with cycles of eustatic sea-level change and coastal onlap can be identified in the Mississippi Interior Salt basin of Alabama. In the Mississippi Interior Salt basin, the lower depositional sequence is bounded by a basal unconformity and an upper Type 2 unconformity in the Callovian. This sequence includes Louann evaporites, Pine Hill anhydrites and shales, and Norphlet eolian sandstones. The middle depositional sequence reflects relative sea-level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones, middle Smackover mudstones and upper Smackover grainstones and anhydrites. The sequence has an upper Type 2 unconformity indicating relative sea-level fall in the Oxfordian. The upper depositional sequence reflects relative sea-level rise in the late Oxfordian. This sequence includes lower Haynesville evaporites and clastics (transgressive deposits), middle Haynesville carbonate mudstones and shales (condensed section), and upper Haynesville updip continental sandstones and downdip shales, limestones, and anhydrites (progradational highstand regressive deposits). The sequence has an upper Type 1 unconformity indicating abrupt sea-level fall in the late Kimmeridgian. In these depositional sequences, progradational highstand regressive deposits are the principal petroleum reservoirs. Condensed section deposits have the potential to be source rocks if subjected to proper burial conditions; however, only the lower and middle Smackover mudstones were deposited and buried under conditions favorable for hydrocarbon generation and preservation. An understanding of sequence stratigraphy can serve as an aid to identifying potential hydrocarbon exploration targets.

  20. COMMUNITY PROFILE Greenland, New Hampshire

    E-Print Network [OSTI]

    New Hampshire, University of

    GREENLAND COMMUNITY PROFILE REPORT Greenland, New Hampshire February 3 & 4, 2006 #12;TABLE......................................................................................................................................3 Creating a Community Profile in Greenland

  1. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  2. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  3. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  4. Tracking the sea-level signature of the 8.2 ka cooling event: New constraints from the Mississippi Delta

    E-Print Network [OSTI]

    Törnqvist, Torbjörn E.

    Tracking the sea-level signature of the 8.2 ka cooling event: New constraints from the Mississippi sparked immense interest in an abrupt, century-scale cooling around 8200 years ago, with a focal point in the North Atlantic and with hemispheric teleconnections. Despite considerable progress in the unraveling

  5. Phytoplankton distributions and species composition across the Texas-Louisiana continental shelf during two flow regimes of the Mississippi River

    E-Print Network [OSTI]

    Bontempi, Paula Susan

    1995-01-01T23:59:59.000Z

    was an average flow year for the Mississippi River, were compared with observations from 1993, which was a record flow year. Water samples for phytoplankton determinations were examined at 22 locations on cross-shelf transacts from 90.5' to 94.0'W longitude...

  6. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, December 30, 1992--December 29, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and by the year 2000. In December, 1992, the Tulane/Xavier CBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. These research and education projects are particularly relevant to the US Department of Energy`s programs aimed at addressing aquatic pollution problems associated with DOE National Laboratories. First year funding supported seven collaborative cluster projects and twelve initiation projects. This report summarizes research results for period December 1992--December 1993.

  7. The Transport of Heavy Metals by the Mississippi River and Their Fate in the Gulf of Mexico

    E-Print Network [OSTI]

    Trefry, John Harold

    1977-01-01T23:59:59.000Z

    . Average Si02, AI2O 3 and K2O concentrations in Mississippi River particulates are similar to crustal abundances. Particulate Na20, CaO and MgO values are 60-80% below crustal levels; however a high river dissolved load of these elements offsets the low...

  8. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  9. Oil removal from water via adsorption 

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . TABLE OF CONTENTS CHAPTER I. INTRODUCTION I I. LITERATURE REVIEW Significance of Oil Spill Proble. ". . s Growth of Marine Commerce Superport Oil Spills Oil Spills and the Law Oil Spill Control Methods Physical Removal of Oil III. MATERIALS... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  10. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    for gasoline, diesel and other petroleum products. This chapter provides an overview of world oil trends agreements on export routes have limited development. Petroleum production in the United States, including half of petroleum supplies to the United States. OPEC petroleum production also increased in 1994

  11. Texas Crop Profile: Onions

    E-Print Network [OSTI]

    Hall, Kent D.; Holloway, Rodney L.; Smith, Dudley

    2000-04-12T23:59:59.000Z

    This profile of onion production in Texas gives an overview of basic commodity information; discusses insect, disease and weed pests; and covers cultural and chemical control methods....

  12. Depositional environment of the "stringer sand" member, Lower Tuscaloosa Formation (Cretaceous), Mallalieu field, Mississippi

    E-Print Network [OSTI]

    Cook, Billy Charles

    1968-01-01T23:59:59.000Z

    resi- due deposits are found around a number of these domes, indicating that at one time there were accumulations of oil. The cause of the volatile material escaping and leaving these "fossil oil fields" has not been definitely established... showing the location of Mallalieu field and other nearby oil fields . 14 Structure ma. p of Mallalieu field Mallalieu field electric log correlation secrion. Legend for grain size and lithology logs. 40 49 Quartz grain size, electric log...

  13. Spot-Oiling Johnsongrass.

    E-Print Network [OSTI]

    Elliott, Fred C.; Norris, M. J.; Rea, H. E.

    1955-01-01T23:59:59.000Z

    kerosene or diesel fuel oil reduced the stand of the grass 95 percent following 4 applications in each of 4 tests. Ten thousand gallons of this mixture were used at College Station for crown-oiling scattered second gowth Johnsongrass in 49 1 acres... and kerosene kill tender second-growth ~hnsongrass when temperatures are high. lowever, they are slow in killing the grass uring low temperatures and when the grass .ears the boot stage. Oil-soluble dinitro and :her proved fortifiers can be added to diesel...

  14. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01T23:59:59.000Z

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  15. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01T23:59:59.000Z

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  16. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

  17. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  18. Hazardous materials in Aquatic environments of the Mississippi River basin. Quarterly project status report, 1 January 1994--30 March 1994

    SciTech Connect (OSTI)

    Abdelghani, A.

    1994-06-01T23:59:59.000Z

    Projects associated with this grant for studying hazardous materials in aquatic environments of the Mississippi River Basin are reviewed and goals, progress and research results are discussed. New, one-year initiation projects are described briefly.

  19. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D. (Livermore, CA)

    1993-01-01T23:59:59.000Z

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  20. Microwave Enhanced Separation of Water-In-Oil Emulsions

    E-Print Network [OSTI]

    Fang, C. S.; Lai, P.

    MICRaVAVE ENHANCED SEPARATION OF WATER-IN-oIL EMULSIONS C.S. FANG DEPAR'lMENT OF rnEMICAL ENGINEERING UNIVERSITY OF SOUTHWESTERN LOUISIANA LAFAYE'ITE, IDUISIANA ABSTRACT The experimental data showed that viscous and stable water-in-oil.....rrental data also indicated that water-in-oil emulsion can be heated uniformly by microwaves, if the pathlength is not too long. Temperature profiles and microwave heating can be predicted reasonably well fran di electric properties and the theory...

  1. Mississippi State Axion Search: A Light Shining though a Wall ALP Search

    E-Print Network [OSTI]

    Mohanmurthy, Prajwal; Formaggio, Joseph; Fowler, Nicholas; Gaerlan, Mikhail; Jiang, Yipeng; Madsen, John; Oblath, Noah; Powers, Adam; Ray, Amy; Riehle, Robertson

    2015-01-01T23:59:59.000Z

    The elegant solutions to the strong CP problem predict the existence of a particle called axion. Thus, the search for axion like particles (ALP) has been an ongoing endeavor. The possibility that these axion like particles couple to photons in presence of magnetic field gives rise to a technique of detecting these particles known as light shining through a wall (LSW). Mississippi State Axion Search (MASS) is an experiment employing the LSW technique in search for axion like particles. The apparatus consists of two radio frequency (RF) cavities, both under the influence of strong magnetic field and separated by a lead wall. While one of the cavities houses a strong RF generator, the other cavity houses the detector systems. The MASS apparatus looks for excesses in RF photons that tunnel through the wall as a signature of candidate axion-like particles. The concept behind the experiment as well as the projected sensitivities are presented here.

  2. Mississippi State Axion Search: A Light Shining though a Wall ALP Search

    E-Print Network [OSTI]

    Prajwal Mohanmurthy; Dipangkar Dutta; Joseph Formaggio; Nicholas Fowler; Mikhail Gaerlan; Yipeng Jiang; John Madsen; Noah Oblath; Adam Powers; Amy Ray; Robertson Riehle

    2015-03-08T23:59:59.000Z

    The elegant solutions to the strong CP problem predict the existence of a particle called axion. Thus, the search for axion like particles (ALP) has been an ongoing endeavor. The possibility that these axion like particles couple to photons in presence of magnetic field gives rise to a technique of detecting these particles known as light shining through a wall (LSW). Mississippi State Axion Search (MASS) is an experiment employing the LSW technique in search for axion like particles. The apparatus consists of two radio frequency (RF) cavities, both under the influence of strong magnetic field and separated by a lead wall. While one of the cavities houses a strong RF generator, the other cavity houses the detector systems. The MASS apparatus looks for excesses in RF photons that tunnel through the wall as a signature of candidate axion-like particles. The concept behind the experiment as well as the projected sensitivities are presented here.

  3. Solar energy system performance evaluation: seasonal report for IBM System 4 at Clinton, Mississippi

    SciTech Connect (OSTI)

    None

    1980-07-01T23:59:59.000Z

    The IBM System 4 Solar Energy System was designed to provide 35 percent of the space heating and 62 percent of the domestic hot water (DHW) preheating for a single-family residence located within the United States. The system is a prepackaged unit called the Remote Solar Assembly which has been integrated into the heating and DHW system in a dormitory in Clinton, Mississippi. The system consists of 259 square feet of Solaron 2001 Series flat-plate-air collectors, a rock thermal storage containing 5 1/2 ton of rock, heat exchangers, blowers, a 52 gallon preheat tank, controls, and associated plumbing, two 30 gallon electric water heaters draw water from the preheat tank. A 20 kilowatt, duct mounted, electric heater supplies auxiliary energy. This system which has three modes of system operation was activated September, 1978. A system performance assessment is presented.

  4. Name: ____________________ Stream Profile Lab 1

    E-Print Network [OSTI]

    Name: ____________________ Stream Profile Lab 1 LAB 4. Stream Profiles and Mass Balance: Supply vs hillslope diffusion experiments. We will now examine a slightly more complicated profile-evolution model on longitudinal channel profile shapes. The Questions: I. Why do streams generally have concave profiles

  5. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  6. Water Heaters (Storage Oil) | Department of Energy

    Energy Savers [EERE]

    Oil) Water Heaters (Storage Oil) Water Heater, Storage Oil - v1.0.xlsx More Documents & Publications Water Heaters (Tankless Electric) Water Heaters (Storage Electric)...

  7. The Effect of Profile Choice and Profile Gathering Methods on Profile-Driven

    E-Print Network [OSTI]

    The Effect of Profile Choice and Profile Gathering Methods on Profile-Driven Optimization Systems;Keywords: Compilers, Optimization, Performance of systems, Modeling tech- niques #12;Abstract Profile-time optimizer. In this work, we ana- lyze several important aspects of profile-driven optimization. We examine

  8. LANL Data Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Profile 2012-2013 Total: 10,407 Quick Facts FY2013 Operating Budget ..... 1.95 billion Operating costs 54% NNSA Weapons Programs 12% Work for other agencies 10%...

  9. Experimental investigation of in situ upgrading of heavy oil by using a hydrogen donor and catalyst during steam injection

    E-Print Network [OSTI]

    Mohammad, Ahmad A A

    2008-10-10T23:59:59.000Z

    ............................................................................................7 1.4 Research Objectives ............................................................................................................9 CHAPTER II LITERATURE REVIEW... profile versus time for Run 1. ....................................................... 28 4.2 Temperature profiles at 20 min intervals for Run 1. .......................................... 29 4.3 Cumulative oil and water production versus time...

  10. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    temperature, type of shale and oil content of shale isof Sulfur in Colorado Oil Shale Oil yield of shale, gal/toncontent of the shale, and shale oil content of the rock can

  11. Experimental use of airborne sensors in the measurement of Mississippi River outflow into the Gulf of Mexico

    E-Print Network [OSTI]

    Walsh, Don

    1967-01-01T23:59:59.000Z

    ~ZNENTAL USE OP AIRBORNE SENSORS IN THE MEASUREMBNZ OP MISSISSIPPI RIVER OUTPLO? INTO THE GULP OP I'IEXICO DON 'WAKEN Lieutenant Commander U ~ ST Navy Submitted to the Graduate College of the Texas ASM University in partial fulfillment... . . . . , . , 39 2 Freight-data--handling - -o- ~ . . ----. ------58 Vo. -ARQZSXS OP. RBSULTS o -~ ~ ~ o ~ o '~ o=. oo ~ ? o =-'- 63 Airborne Sensor Evaluation , . . . . . . 63 l. Xnfrared Xmagery o . . . . '. . ~ , 63 Ultraviolet Imagery ~ ~ . o ' 65 3. Aerial...

  12. Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".

    E-Print Network [OSTI]

    Maroncelli, Mark

    Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

  13. Oil removal from water via adsorption

    E-Print Network [OSTI]

    Jacobs, William Edward

    1973-01-01T23:59:59.000Z

    . Inorganic adsorbents, such as perlite and glass wool, do not have high oil adsorption capacities compared to organ- ics and the capacities are dependent on the viscosity of the oils. The inorganic adsorbents have higher oil adsorption capacities in more... IV Table V Table VI Significant Facts about Major Oil Spills Viscosity of Test Oils Determined by Capillary Viscometer Percent of Oil Remaining in Water After Removal of Oil-Carrier Combination Maximum Oil Adsorption Capacity for Light Crude...

  14. Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil

    E-Print Network [OSTI]

    Fu, Xuebing

    2012-08-20T23:59:59.000Z

    was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively...

  15. Virent is Replacing Crude Oil

    Broader source: Energy.gov [DOE]

    Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

  16. Oil and Gas Conservation (Montana)

    Broader source: Energy.gov [DOE]

    Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

  17. Oil and Gas Program (Tennessee)

    Broader source: Energy.gov [DOE]

    The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

  18. Business cycles in oil economies

    SciTech Connect (OSTI)

    Al-Mutairi, N.H.

    1991-01-01T23:59:59.000Z

    This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

  19. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444B (11-19-10)Fuel Oil

  20. Oil | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment ofCDepartmentthe ChiefOil Oil For the

  1. Spontaneous Charging and Crystallization of Water Droplets in Oil

    E-Print Network [OSTI]

    Joost de Graaf; Jos Zwanikken; Markus Bier; Arjen Baarsma; Yasha Oloumi; Mischa Spelt; Rene van Roij

    2008-07-31T23:59:59.000Z

    We study the spontaneous charging and the crystallization of spherical micron-sized water-droplets dispersed in oil by numerically solving, within a Poisson-Boltzmann theory in the geometry of a spherical cell, for the density profiles of the cations and anions in the system. We take into account screening, ionic Born self-energy differences between oil and water, and partitioning of ions over the two media. We find that the surface charge density of the droplet as induced by the ion partitioning is significantly affected by the droplet curvature and by the finite density of the droplets. We also find that the salt concentration and the dielectric constant regime in which crystallization of the water droplets is predicted is enhanced substantially compared to results based on the planar oil-water interface, thereby improving quantitative agreement with recent experiments.

  2. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES Beatrix Schunke JET Mercer St., New York NY 10012-1185 The temperature and density profiles of the Joint European Torus to determine which terms in the log-linear model to include. The density and temperature profiles

  3. PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES

    E-Print Network [OSTI]

    PROFILE SHAPE PARAMETERIZATION OF JET ELECTRON TEMPERATURE AND DENSITY PROFILES Beatrix Schunke JET Mercer St., New York NY 10012­1185 Abstract The temperature and density profiles of the Joint European are used to determine which terms in the log­linear model to include. The density and temperature profiles

  4. Oil and Gas Air Heaters 

    E-Print Network [OSTI]

    Kou, G.; Wang, H.; Zhou, J.

    2006-01-01T23:59:59.000Z

    , the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

  5. Analysis Patterns for Oil Refineries

    E-Print Network [OSTI]

    Lei Zhen; Guangzhen Shao

    We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

  6. Oil and Gas Air Heaters

    E-Print Network [OSTI]

    Kou, G.; Wang, H.; Zhou, J.

    2006-01-01T23:59:59.000Z

    , the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

  7. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01T23:59:59.000Z

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  8. Residual Fuel Oil Sales for Oil Company Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard Errors forA2. For9,250 14,609 9,851

  9. OIL ANALYSIS LAB TRIVECTOR ANALYSIS

    E-Print Network [OSTI]

    OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

  10. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01T23:59:59.000Z

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  11. University Profile University of Canterbury

    E-Print Network [OSTI]

    Hickman, Mark

    University Profile 2007­2009 #12;University of Canterbury PROFILE 2007 - 2009 Submitted to the Tertiary Education Commission, 31 October, 2006 #12;University of Canterbury Profile 2007-2009 Page 2 of 64 #12;Contents Page Profile Purpose and Structure 4 Part A: Strategic Direction 5 Part B: Key Strategic

  12. Connexxus Traveler Profile Arranger Assignment

    E-Print Network [OSTI]

    Tsien, Roger Y.

    Connexxus Traveler Profile Arranger Assignment Travelers have the option of submitting an email to UCTravel@ucop.edu authorizing UC Travel Management Services to access the traveler's profile and assign profile information. Specify permission options: Can Book Travel Can Access Traveler Profile Can Book

  13. Oil and Global Adjustment

    E-Print Network [OSTI]

    Brad Setser

    2007-01-01T23:59:59.000Z

    The current account surplus of the world’s major oil exporting economies – defined as the IMF’s fuel-exporting emerging economies plus Norway – increased from $110b to about $500b between 2002 and 2006. 2 In 2006, the current account surplus of the Gulf

  14. Dying for oil

    SciTech Connect (OSTI)

    Sachs, A.

    1996-05-01T23:59:59.000Z

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  15. Production of Shale Oil

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits...

  16. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. (BHP Petroleum, Melbourne, Victoria (Australia))

    1989-09-01T23:59:59.000Z

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  17. World Oil Transit Chokepoints

    Reports and Publications (EIA)

    2012-01-01T23:59:59.000Z

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  18. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin (Westland, MI)

    2000-05-09T23:59:59.000Z

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  19. Country profile: Hungary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary's energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit of reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.

  20. Country profile: Hungary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary`s energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit of reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana Electricity Profile

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania Electricity Profile

  3. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    AND SOCIAL IMPACTS OF OIL product, product that does notthe quantity of oil products that escapes from pipelines. ”transport of crude oil and petroleum products accounted for

  4. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    VII. IMPACTS OF OIL CONSUMPTION . . . . . . .and the location of oil consumption necessitates that crudere?neries. VII. IMPACTS OF OIL CONSUMPTION The combustion of

  5. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

  6. Performance profiles of major energy producers 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-13T23:59:59.000Z

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  7. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect (OSTI)

    Dunbar, John

    2012-12-31T23:59:59.000Z

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  8. Health hazard evaluation report HETA 79-034-1440, Intex Plastics, Corinth, Mississippi

    SciTech Connect (OSTI)

    Salisbury, S.

    1984-03-01T23:59:59.000Z

    In response to a request from the president of the United Rubber Workers, Local 759, an investigation was begun into possible hazardous working conditions at the Hatco Plastics Division, Currently known as Intex Plastics, Corinth, Mississippi. The request indicated that several production and maintenance employees at that site had been disabled due to chemical poisoining and related illnesses. A medical survey was begun at the facility in March of 1979. Fifty employees participated by completing a questionnaire. A high prevalence of eye, nose, and throat irritation was found along with shortness of breath, cough, and skin rash among workers assigned to the Calender, Color, and Laminating Departments. Air sampling was performed in several departments. Except for methyl-ethyl-ketone (MEK), the levels of substances detected were quite low. The department with the highest exposure to airborne contaminants included the Print Service with 36 to 299 parts per million (ppm) MEK, laminating at 74 to 105ppm MEK, printing at 15 to 113ppm MEK, color at 15 to 24ppm MEK, premix at 0.3 to 6.8mg/cu m total dust, and calender at 0.1 to 0.6mg/cu m total dust.

  9. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31T23:59:59.000Z

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  10. Community Energy Systems and the Law of Public Utilities. Volume Twenty-six. Mississippi

    SciTech Connect (OSTI)

    Feurer, D.A.; Weaver, C.L.

    1981-01-01T23:59:59.000Z

    A detailed description is presented of the laws and programs of the State of Mississippi governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  11. Solar heating system at Security State Bank, Starkville, Mississippi. Final report

    SciTech Connect (OSTI)

    None

    1980-08-01T23:59:59.000Z

    Information is provided on the Solar Energy Heating System (airtype) installed at the branch bank building, northwest corner of Highway 12 and Spring Street, Starkville, Mississippi. This installation was completed in June, 1979. The 312 square feet of Solaron flat plate air collectors provide for 788 square feet of space heating, an estimated 55 percent of the heating load. Solar heated air is distributed to the 96 cubic foot steel cylinder, which contains two inch diameter rocks. An air handler unit moves the air over the collector and into the steel cylinder. Four motorized dampers and two gravity dampers are also part of the system. A Solaron controller which has sensors located at the collectors, rock storage, and at the return air, automatically controls the system. Auxiliary heating energy is provided by electric resistance duct heaters. This project is part of the US Department of Energy's Solar Demonstration Program with the government sharing $14,201 of the $17,498 solar energy system installation cost. This system was acceptance tested February, 1980, and the demonstration period ends in 1985.

  12. Solar heating system at Quitman County Bank, Marks, Mississippi. Final report

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    Information is provided on the solar heating system installed in a single story wood frame, cedar exterior, sloped roof building, the Quitman County Bank, a branch of the First National Bank of Clarksdale, Mississippi. It is the first solar system in the geographical area and has promoted much interest. The system has on-site temperature and power measurements readouts. The 468 square feet of Solaron air flat plate collectors provide for 2000 square feet of space heating, an estimated 60% of the heating load. Solar heated air is distributed to the 235 cubic foot rock storage box or to the load (space heating) by a 960 cubic feet per minute air handler unit. A 7.5 ton Carrier air-to-air heat pump with 15 kilowatts of electric booster strips serve as a back-up (auxiliary) to the solar system. Motorized dampers control the direction of airflow and back draft dampers prevent thermal siphoning of conditioned air. The system was turned on in September 1979, and acceptance testing completed in February 1980. This is a Pon Cycle 3 Project with the Government sharing $13,445.00 of the $24,921 Solar Energy System installation cost.

  13. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L. (Camden, OH); Mohler, Jonathan H. (Spring Valley, OH)

    1991-03-05T23:59:59.000Z

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  14. Refinery Energy Profiling Procedure

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  15. Upper Atmospheric Density Profiles

    E-Print Network [OSTI]

    Withers, Paul

    · Uncertainties in aerodynamics, problems with signals from shaking solar panel, rotation of instrument about · Change in latitude per unit change in longitude along profile set by orbit inclination and latitude (not engineering) instrument, very high sensitivity, unseen part of 11-yr solar cycle · Current science

  16. Refinery Energy Profiling Procedure 

    E-Print Network [OSTI]

    Maier, R. W.

    1981-01-01T23:59:59.000Z

    This paper discusses a four-step procedure developed with support from the U.S. Department of Energy for preparing energy profiles for a refinery, for a single unit, or for an individual piece of equipment. The four steps are preparation, data...

  17. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    NONE

    1999-01-01T23:59:59.000Z

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  18. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    EOR continues to unlock oil resources. Oil & Gas Journal, [of conventional oil resource availability. Estimates ofthe tar sands and heavy oil resource in Figure 10. Note that

  19. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P. (Concord, CA)

    1980-01-01T23:59:59.000Z

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  20. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

    1990-01-01T23:59:59.000Z

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  1. Imbibition assisted oil recovery

    E-Print Network [OSTI]

    Pashayev, Orkhan H.

    2004-11-15T23:59:59.000Z

    as two superimposed continuous porous media. In the dual porosity model, the fluid flow between the matrix blocks and the surrounding fractures is characterized by the transfer functions. For the transfer functions, it is a prerequisite.... 1.2 Capillary Imbibition Capillary imbibition is described as a spontaneous penetration of a wetting phase into a porous media while displacing a non-wetting phase by means of capillary pressure, e.g., water imbibing into an oil-saturated rock...

  2. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01T23:59:59.000Z

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  3. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05T23:59:59.000Z

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  4. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Mississippi Profile State Profile and Energy Estimates Change StateTerritory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California...

  5. Canadian Oil Sands: Canada An Emerging Energy

    E-Print Network [OSTI]

    Boisvert, Jeff

    (collectively "statements") with respect to: expectations regarding crude oil production, global energy demand1 Canadian Oil Sands: Canada ­ An Emerging Energy Superpower 0 University of Alberta February 8 Oil Sands Limited ("Canadian Oil Sands"), Syncrude Canada Ltd. ("Syncrude") and the oil sands industry

  6. BP Oil Spill November 10, 2011

    E-Print Network [OSTI]

    Lega, Joceline

    BP Oil Spill Qiyam Tung November 10, 2011 1 Introduction Figure 1: BP Oil spill (source: http://thefoxisblack.com/2010/05/02/the-bp-oil-spill-in-the-gulf-of-mexico/) Last year, there was a major oil spill caused major techniques to minimize the threat once it happened. What kind of damage would an oil spill like this cause

  7. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01T23:59:59.000Z

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  8. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  9. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  10. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    state oil companies, Saudi Aramco, Petroleos de Venezuela,state oil companies, Saudi Aramco, Petroleos de Venezuela,

  11. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D. (West Richland, WA)

    1983-01-01T23:59:59.000Z

    A temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles.

  12. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11T23:59:59.000Z

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  13. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

    1997-08-01T23:59:59.000Z

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  14. Surface profiling interferometer

    DOE Patents [OSTI]

    Takacs, Peter Z. (P.O. Box 385, Upton, NY 11973); Qian, Shi-Nan (Hefei Synchrotron Radiation Laboratory, University of Science and, Hefei, Anhui, CN)

    1989-01-01T23:59:59.000Z

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  15. Hazardous materials in aquatic environment of the Mississippi River basin. Quarterly progress report, July 1--September 30, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    This report is divided into four aspects relating to water pollution problems in the Mississippi River Basin. They are: collaborative cluster research projects, in which investigators employ a synergistic approach to the solution of problems; initiation research projects, in which a single investigator is involved ; technical support activities, which involve anything that is required to support the research; and the research training and education core, which is designed to develop courses with emphasis on environmental studies. This report presents the objectives and accomplishments of the various research projects for July 1, 1996--September 30, 1996.

  16. Public health assessment for Chemfax, Gulfport, Harrison County, Mississippi, Region 4. Cerclis No. MSD008154486. Final report

    SciTech Connect (OSTI)

    NONE

    1995-03-02T23:59:59.000Z

    Chemfax Inc. is an active chemical processing plant in Gulfport, Harrison County, Mississippi. Workers at the site were exposed to several PAHs in surface soil and sediments, and to benzene, methylene chloride, and styrene in air at levels of public health concern. Potential routes for human exposure include ambient air, surface water and edible fish from the Industrial Seaway, groundwater, well water, and public supply water. ATSDR has made recommendations to reduce and prevent exposure to contaminants, characterize the site better, and implement institutional controls and other activities.

  17. Challenges of deep drilling. Part 2 (Conclusion). Mississippi wildcat shows design, planning pay off in deep drilling, completing, testing

    SciTech Connect (OSTI)

    Chadwick, C.E.

    1981-11-02T23:59:59.000Z

    Experienced, well-trained personnel who know when to solicit advice are the key to a successful deep-drilling operation. Planning and implementation are critical - the deeper the hole, the less latitude is available for deviation from the original casing design. Exxon spent 5 years planning a deep, abnormally pressured, sour-gas wildcat to test Mississippi's Smackover and Norphlet formations. Exxon details the preparations for drilling, completing, and testing this well, which reached a total depth of 23,130 ft and set a record for casing-string weight.

  18. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  19. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  20. Table 1. Crude Oil Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    December 1980; Form EIA-14, "Refiners' Monthly Cost Report," January 1981 to present. 1. Crude Oil Prices 2 Energy Information Administration Petroleum Marketing Annual 1996...

  1. Table 1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    December 1980; Form EIA-14, "Refiners' Monthly Cost Report," January 1981 to present. 1. Crude Oil Prices 2 Energy Information Administration Petroleum Marketing Annual 1997...

  2. Oil and Gas Exploration (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

  3. Carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Myers, G.D.

    1987-11-24T23:59:59.000Z

    This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

  4. Maps of crude oil futures

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01T23:59:59.000Z

    The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

  5. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W. (Morago, CA)

    1983-01-01T23:59:59.000Z

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  6. Oil and Gas CDT Structural and depositional controls on shale gas resources in

    E-Print Network [OSTI]

    Henderson, Gideon

    Oil and Gas CDT Structural and depositional controls on shale gas resources in the UK), http://www.bgs.ac.uk/staff/profiles/0688.html · Laura Banfield (BP) Key Words Shale gas, Bowland of structural and depositional controls on shale gas potential in the UK with a synthesis of a series

  7. Write an informative profile headline.

    E-Print Network [OSTI]

    Bordenstein, Seth

    Write an informative profile headline. Your headline is a short, memorable professional slogan. For example, "Honors student seeking marketing position." Check out the profiles of students and recent alumni (your profile will be 7x more likely to be viewed) of you alone, professionally dressed. No party shots

  8. Facies relationships and systems tracts in the late Holocene Mississippi Delta plain

    SciTech Connect (OSTI)

    Kosters, E.C. (Univ. of Utrecht (Netherlands). Inst. of Earth Sciences); Suter, J.R. (Exxon Production Research Co., Houston, TX (United States))

    1993-07-01T23:59:59.000Z

    Facies relationships in abandoned Holocene Mississippi Delta complexes are characteristic of both retrogradational transgressive systems tracts (TST) and progradational highstand systems tracts (HST). In the Barataria interlobe basin, delta-plain facies of the early Holocene Maringouin/Teche delta complex (TST), which accumulated from 7,500 to 6,000 yr BP, are overlain by a lagoonal facies 1-2 m thick (MFS) that accumulated during the maximum flooding event from 6,000 to 3,500 yr BP. Wave reworking transformed the distributary sands of retrogradational delta complexes into stratigraphically backstepping shoreline sand bodies. The most landward of these shorelines, the Teche shoreline, overlies the MFS and is, by definition, the shoreline of maximum transgression (SMT). Relatively thick peats of high organic content, dating from 2,400 to 1,100 yr BP, are located immediately landward of this shoreline. Younger delta lobes, rapidly prograding since 1,100 yr BP, have shifted the coastline seaward of the Teche shoreline, and form the first progradational HST parasequence. Thin, organic-poor salt marsh sediments are accumulating within this parasequence landward of the present shoreline. Rising relative sea level provides increased accommodation space while fresh water may be held within the delta plain, creating conditions of both groundwater and nutrients favorable to accumulation of high-quality organic facies of this type. In a subsequent progradational setting, stable relative sea level results in less accommodation space landward of the shoreline, while fresh water and nutrients are discharged into the Gulf of Mexico, forcing formation of brackish and salt marsh environments, unfavorable to accumulation of high-quality organic facies. These hypotheses may help explain the variability of some littoral high-quality coals vs. carbonaceous shales in the rock record.

  9. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10T23:59:59.000Z

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  10. A Historical Profile of the Higgs Boson

    E-Print Network [OSTI]

    Ellis, John

    2013-01-01T23:59:59.000Z

    Nanopoulos, A phenomenological profile of the Higgs boson,January 2012 A Historical Profile of the Higgs Boson Johnits phenomenolog- ical profile [12]. At the time, the Higgs

  11. Santa Cruz Harbor Commercial Fishing Community Profile

    E-Print Network [OSTI]

    Pomeroy, Caroline

    2008-01-01T23:59:59.000Z

    2002). Socio-economic profile of the California wetfishCommercial Fishing Community Profile, July 2008 Mangelsdorf,Commercial Fishing Community Profile, July 2008 Santa Cruz

  12. European Market Study for BioOil (Pyrolysis Oil)

    E-Print Network [OSTI]

    Kilns 6.2. Sawmill Dry Kilns 6.3. District Heating 6.4. Power Plants- Co-firing and Alternative Fuels 6-distance transportation advantages over raw biomass and wood pellets is BioOil from fast pyrolysis, or Pyrolysis Oil and district heating applications, and in the long-term as a clean burning fuel to replace diesel in industrial

  13. Membrane degumming of crude vegetable oil

    E-Print Network [OSTI]

    Lin, Lan

    1997-01-01T23:59:59.000Z

    Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

  14. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

  15. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

  16. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    Elastic-wave stimulation of oil produc- tion: A review ofCapillary-induced resonance of oil blobs in capillary tubesCapillary-induced resonance of oil blobs in porous media:

  17. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

  18. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

  19. CORROSION OF METALS IN OIL SHALE ENVIRONMENTS

    E-Print Network [OSTI]

    Bellman Jr., R.

    2012-01-01T23:59:59.000Z

    Elevated Temperature Corrosion of Oil Shale Retort Componentin In-Situ Oil Shale Retorts," NACE Corrosion 80, Paper No.6-10, 1981 CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A.

  20. WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY

    E-Print Network [OSTI]

    Fox, J.P.

    2010-01-01T23:59:59.000Z

    III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

  1. Oil and Gas

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergy OfficeProjectsResearch in

  2. World Crude Oil Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and

  3. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOil & Gas Efficient recovery

  4. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782AAdministrationheating oil price

  5. Residential heating oil price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) - HouseholdshortEIA-782AAdministrationheating oil

  6. Processing alternatives for glandless cottonseed oil

    E-Print Network [OSTI]

    Chamkasem, Narong

    1981-01-01T23:59:59.000Z

    to contamination of the two oils at processing facilities. This practice results in increased refining costs and increased oil loss. In many oil processing plants it would be economically advantageous to process all cotton- seed oils in the same manner as soy... with various levels of glanded cottonseed were quantified. Generally conventional refining of oil from glandless cottonseed containing up to 10% glanded seed contamination produced refined and bleached oils as good in color as extraction-site miscella-refined...

  7. www.fightbac.o anola oil is

    E-Print Network [OSTI]

    Ca co Th Ca "Canola" c which is Addition Ca he Ca in Th ca Ca m C know? anola oil is ooking oils. he average anola oil is comes fro s another nal Inform anola oil is eart healthy anola oil is n the world. he part of th anola meal anola oil ca many crop va ano the lowest . canola see a good sou m

  8. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region AboutGeorgia Nuclear Profile 2010

  9. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region AboutGeorgia Nuclear Profile

  10. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877Southwest Region AboutGeorgia Nuclear ProfileIowa

  11. EIA - State Nuclear Profiles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688 760,877SouthwestWisconsin profile Wisconsin total

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013 Summary

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013 SummaryGeorgia

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013Idaho Electricity

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013Idaho

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013IdahoIndiana

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1. 2013IdahoIndianaIowa

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.Kentucky Electricity

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.Kentucky

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.KentuckyMaine

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table 1.KentuckyMaineMaryland

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 Table

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 TableMichigan Electricity

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013 TableMichigan

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana Electricity

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana ElectricityNevada

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013Montana

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJersey Electricity

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJersey ElectricityMexico

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJersey

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJerseyNorth Carolina

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJerseyNorth

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJerseyNorthOhio

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile 2013MontanaJerseyNorthOhioOklahoma

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity Profile

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania Electricity

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania ElectricityCarolina

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvania

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennessee Electricity

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennessee

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennesseeUnited States

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennesseeUnited

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida Electricity ProfilePennsylvaniaTennesseeUnitedVermont

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013 Table 1.

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013 Table

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0EFlorida ElectricityWashington Electricity Profile 2013Wyoming

  11. Tools for Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solidSynthesisAppliances Tips:Harper receivesRecipientProfiling

  12. Optimize carbon dioxide sequestration, enhance oil recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

  13. RMOTC to Test Oil Viscosity Reduction Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RMOTC to Test Oil Viscosity Reduction Technology The Rocky Mountain Oilfield Testing Center (RMOTC) announces that the "Teapot Dome" oil field in Wyoming is hosting a series of...

  14. Peak Oil Awareness Network | Open Energy Information

    Open Energy Info (EERE)

    Awareness Network Jump to: navigation, search Name: Peak Oil Awareness Network Place: Crested Butte, Colorado Zip: 81224 Website: http:www.PeakOilAwarenessNet Coordinates:...

  15. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01T23:59:59.000Z

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  16. Trimble field, Mississippi; 100 bcf of bypassed, low resistivity cretaceous Eutaw pay at 7,000 ft

    SciTech Connect (OSTI)

    Cook, P.L. Jr. (Cook Energy Inc., Jackson, MS (US)); Schneeflock, R.D.; Bush, J.D.; Marble, J.C. (Paramount Petroleum Co., Jackson, MS (US))

    1990-10-22T23:59:59.000Z

    The Upper Cretaceous Eutaw formation of Mississippi has produced almost 2 tcf of gas since its initial discovery at Gwinville field in 1944. Prior to Trimble field, the last major Eutaw gas discovery in the state was Maxie-Pistol Ridge field in 1951. Consequently, the Trimble discovery is the most important shallow gas find in the Interior Salt basin in nearly 40 years. Trimble field will likely develop into at least 20 wells with combined reserved in excess of 100 bcf of gas and a production rate of 40 MMcfd. The Trimble discovery was made on a faulted structural closure drilled twice before. Both operators drilled excellent locations but failed to detect low resistivity pay. The discovery of gas on the third attempt was facilitated by the 1987 accidental discovery of Eutaw gas at Gitano field, where a flow test of 2 MMcfd from an Environmental Protection Agency permitted salt water disposal well proved a new gas pay zone for the field. A petrophysical examination of the Gitano discovery and its implications to the dry holes at Trimble has initiated intensive industry activity in a renewed Eutaw play in Mississippi.

  17. Jurassic sequence stratigraphy in Mississippi interior salt basin: an aid to petroleum exploration in eastern Gulf of Mexico area

    SciTech Connect (OSTI)

    Mancini, E.A.; Mink, R.M.; Tew, B.H.

    1988-02-01T23:59:59.000Z

    An understanding of sequence stratigraphy of Jurassic units in onshore basins can serve as an aid to identify potential petroleum reservoir and source rocks in the eastern Gulf of Mexico area. Three depositional sequences associated with cycles of eustatic sea level change and coastal onlap have been identified in the Mississippi Interior Salt basin. Three depositional sequences probably correspond to the J2.4, J3.1, and J3.2 sequences of Vail et al for Callovian through Kimmeridgian strata. In the Mississippi Interior salt basin, the lower depositional sequence is bounded by a basal type 2 unconformity and an upper type 2 unconformity in the Callovian. This sequence includes Louann evaporites (transgressive), Pine Hill anhydrites and shales (condensed section), and Norphlet eolian sandstones (highstand regressive). The middle depositional sequence reflects relative sea level rise in the late Callovian. This sequence includes Norphlet marine sandstones and lower Smackover packstones and mudstones (transgressive), middle Smackover mudstones (condensed section), and upper Smackover grainstones and anhydrites (highstand regressive).

  18. Engine breather oil recovery system

    SciTech Connect (OSTI)

    Speer, S.R.; Norton, J.G.; Wilson, J.D.

    1990-08-14T23:59:59.000Z

    This patent describes an engine breather oil recovery system, for use with reciprocating engines having an oil breather and an oil reservoir recovery system. It comprises:an engine breather outlet from the engine; a vapor and oil separator device in fluid flow connection with the engine breather outlet; a motive flow suction means in fluid flow connection between the separator device and the engine, so as to provide a substantially continuous pressure drop between the separator device and the engine oil reservoir; an engine fluid system in parallel with the separator device; and an engine driven pump in fluid flow connection with such other engine fluid system, wherein the motive force for the motive flow suction means is provided by the fluid from the engine pump.

  19. Process for oil shale retorting

    DOE Patents [OSTI]

    Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

    1981-10-27T23:59:59.000Z

    Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

  20. The Mississippi University Research Consortium for the Utilization of Biomass: Production of Alternative Fuels from Waste Biomass Initiative

    SciTech Connect (OSTI)

    Drs. Mark E. Zapp; Todd French; Lewis Brown; Clifford George; Rafael Hernandez; Marvin Salin (from Mississippie State University); Drs. Huey-Min Hwang, Ken Lee, Yi Zhang; Maria Begonia (from Jackson State University); Drs. Clint Williford; Al Mikell (from the University of Mississippi); Drs. Robert Moore; Roger Hester (from the University of Southern Mississippi).

    2009-03-31T23:59:59.000Z

    The Mississippi Consortium for the Utilization of Biomass was formed via funding from the US Department of Energy's EPSCoR Program, which is administered by the Office of Basic Science. Funding was approved in July of 1999 and received by participating Mississippi institutions by 2000. The project was funded via two 3-year phases of operation (the second phase was awarded based on the high merits observed from the first 3-year phase), with funding ending in 2007. The mission of the Consortium was to promote the utilization of biomass, both cultured and waste derived, for the production of commodity and specialty chemicals. These scientific efforts, although generally basic in nature, are key to the development of future industries within the Southeastern United States. In this proposal, the majority of the efforts performed under the DOE EPSCoR funding were focused primarily toward the production of ethanol from lignocellulosic feedstocks and biogas from waste products. However, some of the individual projects within this program investigated the production of other products from biomass feeds (i.e. acetic acid and biogas) along with materials to facilitate the more efficient production of chemicals from biomass. Mississippi is a leading state in terms of raw biomass production. Its top industries are timber, poultry production, and row crop agriculture. However, for all of its vast amounts of biomass produced on an annual basis, only a small percentage of the biomass is actually industrially produced into products, with the bulk of the biomass being wasted. This situation is actually quite representative of many Southeastern US states. The research and development efforts performed attempted to further develop promising chemical production techniques that use Mississippi biomass feedstocks. The three processes that were the primary areas of interest for ethanol production were syngas fermentation, acid hydrolysis followed by hydrolyzate fermentation, and enzymatic conversion. All three of these processes are of particular interest to states in the Southeastern US since the agricultural products produced in this region are highly variable in terms of actual crop, production quantity, and the ability of land areas to support a particular type of crop. This greatly differs from the Midwestern US where most of this region's agricultural land supports one to two primary crops, such as corn and soybean. Therefore, developing processes which are relatively flexible in terms of biomass feedstock is key to the southeastern region of the US if this area is going to be a 'player' in the developing biomass to chemicals arena. With regard to the fermentation of syngas, research was directed toward developing improved biocatalysts through organism discovery and optimization, improving ethanol/acetic acid separations, evaluating potential bacterial contaminants, and assessing the use of innovative fermentors that are better suited for supporting syngas fermentation. Acid hydrolysis research was directed toward improved conversion yields and rates, acid recovery using membranes, optimization of fermenting organisms, and hydrolyzate characterization with changing feedstocks. Additionally, a series of development efforts addressed novel separation techniques for the separation of key chemicals from fermentation activities. Biogas related research focused on key factors hindering the widespread use of digester technologies in non-traditional industries. The digestion of acetic acids and other fermentation wastewaters was studied and methods used to optimize the process were undertaken. Additionally, novel laboratory methods were designed along with improved methods of digester operation. A search for better performing digester consortia was initiated coupled with improved methods to initiate their activity within digester environments. The third activity of the consortium generally studied the production of 'other' chemicals from waste biomass materials found in Mississippi. The two primary examples of this activity are production of chem