National Library of Energy BETA

Sample records for oil profile mississippi

  1. Mississippi

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi

  2. Mississippi State Oil and Gas Board | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Board Jump to: navigation, search Name: Mississippi State Oil and Gas Board Address: 500 Greymont Ave., Suite E Place: Mississippi Zip: 39202-3446 Website:...

  3. Mississippi Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  4. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi nuclear power plants, summer capacity and net generation, 2010" "Plant name/total reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  5. Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Mississippi (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 49 68 2000's 38 71 42 68 79 87 79 35 126 117 2010's 94 90 82 73 85 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  6. Mississippi - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Mississippi

  7. Mississippi - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Mississippi

  8. Mississippi - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Mississippi

  9. Mississippi's ratable-take rule preempted: Transcontinental Gas Pipeline Corp. v. State Oil and Gas Board

    SciTech Connect (OSTI)

    Box, A.L.

    1986-01-01

    While the Court's objections to Mississippi's ratable-take rules as applied to interstate pipelines are clear, conservation lawyers have concerns about the impact of the Transco decision upon state interests in oil and gas conservation and because the decision does not clarify the limits of preemption of state conservation legislation. A variety of state regulatory legislation challenges will likely result in different contexts. These could affect interest on royalties, payment procedures, and could even lead to conflicting regulations.

  10. ,"Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  11. Mississippi Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    835,855 800,065 771,577 830,756 806,396 819,763 1984-2014 Residential 5 5 4 7 7 8 1984-2014 Commercial 26,641 23,713 26,383 26,386 24,019 28,803 1984-2014 Industrial 21,853 18,362 15,450 20,153 21,186 19,595 1984-2014 Oil Company 3,955 4,262 4,058 6,226 7,450 6,419 1984-2014 Farm 41,080 57,087 52,559 81,878 84,753 79,443 1984-2014 Electric Power 3,796 3,393 2,019 1,674 2,223 1,921 1984-2014 Railroad 24,727 17,936 37,741 29,848 32,550 35,578 1984-2014 Vessel Bunkering 141,302 93,384 58,285 58,505

  12. Rankin County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Mississippi Brandon, Mississippi Florence, Mississippi Flowood, Mississippi Jackson, Mississippi Pearl, Mississippi Pelahatchie, Mississippi Puckett, Mississippi...

  13. Bolivar County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, Mississippi Alligator, Mississippi Benoit, Mississippi Beulah, Mississippi Boyle, Mississippi Cleveland, Mississippi Duncan, Mississippi Gunnison, Mississippi...

  14. Transcontinental Gas Pipeline Corp. v. Oil and Gas Board of Mississippi: the demise of state ratable-take requirements

    SciTech Connect (OSTI)

    Frankenburg, K.M.

    1988-01-01

    Natural gas was not widely used until the 1930s when the development of seamless pipe enabled gas to be delivered at high compression to markets far from the wellhead. Now the availability and relatively low cost of natural gas have resulted in its widespread use in both home heating and industry. Regulation of this important fuel is consequently a hotly debated issue. The scope and fundamental purpose of the Natural Gas and Policy Act of 1978 (NGPA) was recently the subject of the Supreme Court's opinion in Transcontinental Gas Pipeline Corp v. Oil and Gas Board of Mississippi (Transcontinental). In a five-to-four decision, the Court held that the NGPA pre-empted the enforcement of a state ratable-take requirement. This Note examines Justice Blackmun's majority opinion and the persuasive dissent presented by Justice Rehnquist in the court's decision. The effects of the decision, the Court's first interpretation of NPGA, will undoubtedly be quite significant.

  15. Hinds County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bolton, Mississippi Byram, Mississippi Clinton, Mississippi Edwards, Mississippi Jackson, Mississippi Learned, Mississippi Raymond, Mississippi Terry, Mississippi Utica,...

  16. Holmes County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Holmes County, Mississippi Cruger, Mississippi Durant, Mississippi Goodman, Mississippi Lexington, Mississippi Pickens, Mississippi Tchula, Mississippi West,...

  17. The Mississippi CCS Project

    SciTech Connect (OSTI)

    Doug Cathro

    2010-09-30

    The Mississippi CCS Project is a proposed large-scale industrial carbon capture and sequestration (CCS) project which would have demonstrated advanced technologies to capture and sequester carbon dioxide (CO{sub 2}) emissions from industrial sources into underground formations. Specifically, the Mississippi CCS Project was to accelerate commercialization of large-scale CO{sub 2} storage from industrial sources by leveraging synergy between a proposed petcoke to Substitute Natural Gas (SNG) plant that is selected for a Federal Loan Guarantee and would be the largest integrated anthropogenic CO{sub 2} capture, transport, and monitored sequestration program in the U.S. Gulf Coast Region. The Mississippi CCS Project was to promote the expansion of enhanced oil recovery (EOR) in the Mississippi, Alabama and Louisiana region which would supply greater energy security through increased domestic energy production. The capture, compression, pipeline, injection, and monitoring infrastructure would have continued to sequester CO{sub 2} for many years after the completion of the term of the DOE agreement. The objectives of this project were expected to be fulfilled through two distinct phases. The overall objective of Phase 1 was to develop a fully definitive project basis for a competitive Renewal Application process to proceed into Phase 2 - Design, Construction and Operations. Phase 1 included the studies that establish the engineering design basis for the capture, compression and transportation of CO{sub 2} from the MG SNG Project, and the criteria and specifications for a monitoring, verification and accounting (MVA) plan at the Soso oil field in Mississippi. The overall objective of Phase 2, was to execute design, construction and operations of three capital projects: the CO{sub 2} capture and compression equipment, the Mississippi CO{sub 2} Pipeline to Denbury's Free State Pipeline, and an MVA system at the Soso oil field.

  18. Lauderdale County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Subtype A. Places in Lauderdale County, Mississippi Collinsville, Mississippi Marion, Mississippi Meridian Station, Mississippi Meridian, Mississippi Nellieburg,...

  19. Neshoba County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    in Neshoba County, Mississippi Bogue Chitto, Mississippi Pearl River, Mississippi Philadelphia, Mississippi Tucker, Mississippi Union, Mississippi Retrieved from "http:...

  20. Quitman County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Crenshaw, Mississippi Crowder, Mississippi Falcon, Mississippi Lambert, Mississippi Marks, Mississippi Sledge, Mississippi Retrieved from "http:en.openei.orgw...

  1. Madison County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    A. Places in Madison County, Mississippi Canton, Mississippi Flora, Mississippi Jackson, Mississippi Madison, Mississippi Ridgeland, Mississippi Retrieved from "http:...

  2. Mississippi Recovery Act State Memo | Department of Energy

    Energy Savers [EERE]

    Mississippi has substantial natural resources, including biomass, oil, coal, and natural gas. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on ...

  3. Profiles in Leadership: Paula Gant, Deputy Secretary for Oil and Gas

    Office of Energy Efficiency and Renewable Energy (EERE)

    This is Profiles in Leadership, a series of interviews with senior executives in the Office of Fossil Energy (FE). In this edition we talk to Paula Gant, Deputy Secretary for Oil and Gas

  4. Leake County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Carthage, Mississippi Lena, Mississippi Redwater, Mississippi Sebastopol, Mississippi Standing Pine, Mississippi Walnut Grove, Mississippi Retrieved from "http:en.openei.orgw...

  5. Lafayette County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in Lafayette County, Mississippi Abbeville, Mississippi Oxford, Mississippi Taylor, Mississippi Retrieved from "http:en.openei.orgw...

  6. Downhole seal for low profile oil well pumping installations

    SciTech Connect (OSTI)

    James, R.G.

    1984-02-14

    Set out herein is a seal arrangement for sealing an oil well rod string below ground surface. More specifically a polished cylinder is inserted into the casing of an oil well and is supported at the well head by a flange radially extending from the upper end thereof. Received in the cylinder is a piston assembly connected at the upper surface to a flexible string or chain articulated by a pump and supporting at the lower surface a polished rod sealably extending through a lower seal fitting received in the bottom end of the polished cylinder. The cavity formed between the piston and the polished cylinder is aspirated into the well casing through a one-way check valve on the upward stroke of the piston and any oil residue that may pass through the lower sealing assembly is forced back into the well casing by another check valve opened during the downward piston stroke. Both the piston and the seal assembly may include sealing rings to improve edge contact which thus render the downhole seal less vulnerable to hot gases and abrasive impurities commonly found in the course of secondary recovery.

  7. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,251",8.0,"9,643",17.7 "Coal","2,526",16.1,"13,629",25.0 "Natural ...

  8. Mississippi Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","1,251",8.0,"9,643",17.7 "Coal","2,526",16.1,"13,629",25.0 "Natural Gas","11,640",74.2,"29,619",54.4

  9. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    Grand Gulf" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,"1,251","9,643",88.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR = Boiling Water Reactor."

  10. Mississippi Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    mwh)","Share of State nuclear net generation (percent)","Owner" "Grand Gulf Unit 1","1,251","9,643",100.0,"System Energy Resources, Inc" "1 Plant 1 Reactor","1,251","9,643",100.0

  11. Mississippi Nuclear Profile - Grand Gulf

    U.S. Energy Information Administration (EIA) Indexed Site

    expiration date" 1,"1,251","9,643",88.0,"BWR","applicationvnd.ms-excel","applicationvnd.ms-excel" ,"1,251","9,643",88.0 "Data for 2010" "BWR Boiling Water Reactor."

  12. Lowndes County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Mississippi Columbus AFB, Mississippi Columbus, Mississippi Crawford, Mississippi New Hope, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleLowndesCounty,Mis...

  13. Choctaw County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Places in Choctaw County, Mississippi Ackerman, Mississippi French Camp, Mississippi Mathiston, Mississippi Weir, Mississippi Retrieved from "http:...

  14. Simpson County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    County, Mississippi Braxton, Mississippi D'Lo, Mississippi Magee, Mississippi Mendenhall, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleSimpsonCounty,...

  15. DeSoto County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in DeSoto County, Mississippi Hernando, Mississippi Horn Lake, Mississippi Lynchburg, Mississippi Olive Branch, Mississippi...

  16. Coahoma County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Coahoma, Mississippi Friars Point, Mississippi Jonestown, Mississippi Lula, Mississippi Lyon, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleCoahomaCounty,Mis...

  17. Mississippi Ethanol Gasification Project

    SciTech Connect (OSTI)

    2006-08-01

    This is a Congressionally-mandated effort to develop and demonstrate technologies for the conversion of biomass to ethanol in the State of Mississippi.

  18. Salmon, Mississippi, Site

    Office of Legacy Management (LM)

    The Salmon, Mississippi, Site, also called the Tatum Dome Test Site, is a 1,470-acre tract ... The Salmon test took place on October 22, 1964, at a depth of 2,700 feet below ground ...

  19. Benton County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Benton County, Mississippi Ashland, Mississippi Hickory Flat, Mississippi Snow Lake Shores, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleBenton...

  20. Mississippi: Mississippi's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Mississippi.

  1. AgraPure Mississippi Biomass Project

    SciTech Connect (OSTI)

    Blackwell,D.A; Broadhead, L.W.; Harrell, W.J.

    2006-03-31

    The AgraPure Mississippi Biomass project was a congressionally directed project, initiated to study the utilization of Mississippi agricultural byproducts and waste products in the production of bio-energy and to determine the feasibility of commercialization of these agricultural byproducts and waste products as feedstocks in the production of energy. The final products from this project were two business plans; one for a Thermal plant, and one for a Biodiesel/Ethanol plant. Agricultural waste fired steam and electrical generating plants and biodiesel plants were deemed the best prospects for developing commercially viable industries. Additionally, oil extraction methods were studied, both traditional and two novel techniques, and incorporated into the development plans. Mississippi produced crop and animal waste biomasses were analyzed for use as raw materials for both industries. The relevant factors, availability, costs, transportation, storage, location, and energetic value criteria were considered. Since feedstock accounts for more than 70 percent of the total cost of producing biodiesel, any local advantages are considered extremely important in developing this particular industry. The same factors must be evaluated in assessing the prospects of commercial operation of a steam and electrical generation plant. Additionally, the access to the markets for electricity is more limited, regulated and tightly controlled than the liquid fuel markets. Domestically produced biofuels, both biodiesel and ethanol, are gaining more attention and popularity with the consuming public as prices rise and supplies of foreign crude become less secure. Biodiesel requires no major modifications to existing diesel engines or supply chain and offers significant environmental benefits. Currently the biodiesel industry requires Federal and State incentives to allow the industry to develop and become self-sustaining. Mississippi has available the necessary feedstocks and is

  2. Table 18. Reported proved nonproducing reserves of crude oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Reported proved nonproducing reserves of crude oil, lease condensate, nonassociated gas, ... Mississippi 85 0 200 4 204 Montana 155 0 29 96 125 New Mexico 489 20 ...

  3. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  4. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  5. Hattiesburg, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Projects in Hattiesburg, Mississippi South Mississippi Electric Power Association (SMEPA) Smart Grid Project References US Census Bureau Incorporated place and minor civil...

  6. Claiborne County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Claiborne County, Mississippi Port Gibson, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleClaiborneCo...

  7. Molybdenum carbide nanoparticles as catalysts for oil sands upgrading: Dynamics and free-energy profiles

    SciTech Connect (OSTI)

    Liu, Xingchen; Salahub, Dennis R.

    2015-12-31

    There is no doubt that a huge gap exists in understanding heterogeneous catalysis between a cluster model of a few atoms and a bulk model of periodic slabs. Nanoparticles, which are crucial in heterogeneous catalysis in industry, lie in the middle of the gap. We present here our work on the computational modelling of molybdenum carbide nanoparticles (MCNPs) as the catalysts for the upgrading of oil sands in the in-situ environment, using benzene hydrogenation as a model reaction. With a cluster model, efforts were first made to understand the mechanism of the reaction with a density functional theory (DFT) study on the adsorption of benzene and its hydrogenation product – cyclohexane, as well as the cyclic hydrogenation reaction intermediates on the Mo{sub 2}C(0001) surface. From the thermodynamic data, along with literature information, it was found that the benzene hydrogenation reaction on molybdenum carbide happens most likely through a Langmuir-Hinshelwood mechanism with the gradual lifting up of the benzene molecule. The electron localization function (ELF) was then used to help understand the nature of the interactions between the MCNPs, identifying strong multi-center interactions between the adsorbates and the MCNPs. To enable the treatment of larger nanoparticles, a fast semi-empirical density functional tight-binding (DFTB) method was parameterized. With this method, the potential energy profiles of benzene hydrogenation reactions on different sizes of MCNPs are calculated. The study was then extended to consider a MCNP embedded in solvent (benzene), using a quantum mechanical (DFTB) / molecular mechanical approach. Calculations on the free energies profiles with the umbrella sampling method show that the entropy of the MCNPs and the solvent are essential in understanding the catalytic activity of the transition metal related nanoparticles for solid/liquid heterogeneous catalysis.

  8. Strategic Energy Planning - Mississippi Choctaw

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Planning Lessons Learned Mississippi Band of Choctaw Indians January 27, 2016 Mississippi Choctaw Overview  Federal Recognition in 1945  10,500 enrolled members  35,000 acres of Trust Land  8 Communities in East Central Mississippi  Democratically-elected Government Topics 1. Why Mississippi Choctaw decided to do a Strategic Energy Plan 2. Our Timeline 3. What data we gathered in advance 4. How we assembled our "Stakeholders" group 5. How we structured our 2 day

  9. Mississippi Renewable Electric Power Industry Net Generation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","...

  10. Northcentral Mississippi E P A | Open Energy Information

    Open Energy Info (EERE)

    Northcentral Mississippi E P A Jump to: navigation, search Name: Northcentral Mississippi E P A Place: Mississippi Phone Number: 662-895-2151 Website: www.northcentralepa.com...

  11. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    your school's state, county, city, or district. For more information, please visit the Middle School Coach page. Mississippi Region Middle School Regional Mississippi Mississippi...

  12. Mississippi State Briefing Book for low-level radioactive waste management

    SciTech Connect (OSTI)

    1981-08-01

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.

  13. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  14. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Renewable Electricity Profile 2010 Mississippi profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 15,691 100.0 Total Net Summer Renewable Capacity 235 1.5 Geothermal - - Hydro Conventional - - Solar - - Wind - - Wood/Wood Waste 235 1.5 MSW/Landfill Gas - -

  15. Fermilab Today | University of Mississippi Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Front row, from left: Lucien Cremaldi, Sudeep Bhatia and Peter Sonnek. From left: Terry Hart, MICE and APC; Lalith Perera, CMS; and Alex Melnitchouk, DZero. Not pictured: Rahmat...

  16. Flora, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Flora is a town in Madison County, Mississippi. It falls under Mississippi's 2nd...

  17. Habitat Restoration at the Salmon, Mississippi, Site

    Broader source: Energy.gov [DOE]

    The 1,470-acre Salmon, Mississippi, Site is located in Lamar County, approximately 20 miles southwest of Hattiesburg, in southwestern Mississippi. It is roughly square in shape, and each side is...

  18. Oxford, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Oxford is a city in Lafayette County, Mississippi. It falls under Mississippi's 1st...

  19. Natchez, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Natchez is a city in Adams County, Mississippi. It falls under Mississippi's 3rd congressional district.12...

  20. Mississippi Agency Weatherizing Homes, Creating Jobs

    Broader source: Energy.gov [DOE]

    One Mississippi Community Action Agency has already doubled their output for weatherized homes from the previous year.

  1. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese

  2. Risk-Based Data Management System design specifications and implementation plan for the Alaska Oil and Gas Conservation Commission; the Mississippi State Oil and Gas Board; the Montana Board of Oil and Gas Conservation; and the Nebraska Oil and Gas Conservation Commission

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The purpose of this document is to present design specifications and an implementation schedule for the development and implementation of Risk Based Data Management Systems (RBDMS`s) in the states of Alaska, Mississippi, Montana, and Nebraska. The document presents detailed design information including a description of the system database structure, data dictionary, data entry and inquiry screen layouts, specifications for standard reports that will be produced by the system, functions and capabilities (including environmental risk analyses), And table relationships for each database table within the system. This design information provides a comprehensive blueprint of the system to be developed and presents the necessary detailed information for system development and implementation. A proposed schedule for development and implementation also is presented. The schedule presents timeframes for the development of system modules, training, implementation, and providing assistance to the states with data conversion from existing systems. However, the schedule will vary depending upon the timing of funding allocations from the United States Department of Energy (DOE) for the development and implementation phase of the project. For planning purposes, the schedule assumes that initiation of the development and implementation phase will commence November 1, 1993, somewhat later than originally anticipated.

  3. Improved oil production using economical biopolymer-surfactant blends for profile modification and mobility control. Final report, November 1998

    SciTech Connect (OSTI)

    Gabitto, J.; Barrufet, M.A.; Burnett, D.B.

    1998-12-01

    In the past, starch hydrocolloids have not been effective alternates to partially hydrolyzed polyacrylamides, copolymers, and xanthan gum polymers as water shutoff agents in fractures and in matrix flow configurations. Poor injectivity and questionable stability have usually prevented their use in profile control applications. However, in recent years, the demands of the oil and gas drilling industry have led to the development of new drilling, drill-in, and completion fluids with improved functionality. New types of modified starches have contributed to these new drill in fluid (DIF) products. It was felt that the properties of the new products would lend themselves to applications in improved recovery. The objective of this project has been to evaluate the use of agricultural starch biopolymers for gelled and polymer applications in oil recovery processes. The authors believe that there is great potential for finding new functional starch products because of their chemical and structural flexibility, low cost, and wide availability. The goals of this project have been, therefore, to systematically investigate how the physical properties and chemical composition of relatively inexpensive agricultural starch products will influence their use as effective selective permeability control agents or as gels for water shut-off.

  4. Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profiling your application with Intel VTune at NERSC --- 1 --- VTune background and availability * Focus: O n---node p erformance a nalysis - Sampling a nd t race---based p rofiling - Performance c ounter i ntegra8on - Memory b andwidth a nalysis - On---node p arallelism: vectoriza8on a nd t hreading * Pre---defined a nalysis e xperiments * GUI a nd c ommand---line i nterface ( good f or h eadless collec?on a nd l ater a nalysis) * NERSC a vailability ( as t he vtune m odule) - Edison ( Dual 1

  5. VES-0071- In the Matter of Mississippi Power Company

    Broader source: Energy.gov [DOE]

    On May 1, 2000, the Mississippi Power Company, of Gulfport, Mississippi (Mississippi Power), filed with the Office of Hearings and Appeals (OHA) of the Department of Energy an Application for...

  6. North East Mississippi E P A | Open Energy Information

    Open Energy Info (EERE)

    Mississippi E P A Jump to: navigation, search Name: North East Mississippi E P A Place: Mississippi Phone Number: 662.234.6331 Website: northeastpower.orgmainNavhom Facebook:...

  7. City of Water Valley, Mississippi (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Valley, Mississippi (Utility Company) Jump to: navigation, search Name: City of Water Valley Place: Mississippi Phone Number: (662) 473-3243 Outage Hotline: (662) 473-3243...

  8. Benefits of Biofuel Production and Use in Mississippi

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that can be used to establish Mississippi as a leader in the growing bioeconomy. ... production can establish Mississippi as a leader in sustainable fuels-creating jobs and ...

  9. SEP Success Story: Mississippi Adopts New Rules to Save Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi Adopts New Rules to Save Energy, Money SEP Success Story: Mississippi Adopts ... courtesy of the University of Kentucky. SEP Success Story: Research Laboratory ...

  10. Mississippi Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... High School Science Bowl Simpson County Mississippi Regional High School Science Bowl Smith County Mississippi Regional High School Science Bowl Stone County Louisiana Regional ...

  11. Adams County, Mississippi ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Adams County, Mississippi ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Adams County, Mississippi ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  12. ,"Mississippi (with State Offshore) Natural Gas Plant Liquids...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ... 1: Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected ...

  13. ,"Mississippi (with State Offshore) Natural Gas Liquids Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    for" ,"Data 1","Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, ... 1: Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, ...

  14. Energy Secretary Moniz Visits Clean Coal Facility in Mississippi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mississippi Energy Secretary Moniz Visits Clean Coal Facility in Mississippi November 8, 2013 - 3:36pm Addthis On Friday, Nov. 8, 2013, Secretary Moniz and international energy ...

  15. Lincoln County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Lincoln County, Mississippi Brookhaven, Mississippi Retrieved from "http:en.openei.orgwindex.php?titleLincolnCounty,...

  16. EIS-0509: Mississippi River LNG Project, Plaquemines Parish,...

    Office of Environmental Management (EM)

    9: Mississippi River LNG Project, Plaquemines Parish, Louisiana EIS-0509: Mississippi River LNG Project, Plaquemines Parish, Louisiana SUMMARY The Federal Energy Regulatory ...

  17. EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Gulf LNG Liquefaction Project, Jackson County, Mississippi EIS-0504: Gulf LNG Liquefaction Project, Jackson County, Mississippi SUMMARY The Federal Energy Regulatory Commission ...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  19. Mississippi Public Service Commission Adopts Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy and Natural Resources Division, Mississippi ... solar-powered LED lights that replaced natural gas-powered streetlights in the city of Deming, New Mexico. | DOE ...

  20. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  1. Mississippi Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  2. Mississippi/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Mississippi Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Entergy Mississippi- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Entergy Mississippi offers residential energy efficiency programs to help residential customers save energy by providing rebates for lighting, heating and cooling equipment, A/C tune ups, and...

  4. ,"Mississippi Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  5. Mississippi Power Co | Open Energy Information

    Open Energy Info (EERE)

    www.mississippipower.com Twitter: @mspower?mhpbmsmtwitter Facebook: https:www.facebook.compagesMississippi-Power Outage Hotline: 1-800-487-3275 Outage Map:...

  6. Mississippi Underground Natural Gas Storage - All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  7. Argonne National Laboratory and Mississippi State University...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Media Contacts Ben Schiltz ...

  8. Taylor, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    dataset (All States, all geography) US Census Bureau Congressional Districts by Places. Retrieved from "http:en.openei.orgwindex.php?titleTaylor,Mississippi&oldid250859...

  9. ,"Mississippi Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  10. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:44 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Mississippi Natural Gas in ...

  11. Mississippi/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No Coast Electric Power Association - Comfort Advantage Home Program (Mississippi) Utility Rebate Program Yes Coast Electric Power Association - Commercial Energy Efficiency...

  12. Mississippi Working Natural Gas Underground Storage Capacity...

    Gasoline and Diesel Fuel Update (EIA)

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  13. Recovery Act State Memos Mississippi

    Broader source: Energy.gov (indexed) [DOE]

    Mississippi For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  14. Mississippi Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    8 3.85 NA 3.36 3.19 3.46 1989-2016 Residential 8.65 8.17 9.26 11.05 13.30 14.29 1989-2016 Commercial 7.96 7.58 7.86 8.07 7.54 7.06 1989-2016 Industrial 4.45 4.39 4.16 3.88 3.61 3.74 2001-2016 Electric Power W W W W W W 2002-2016 Production (Million Cubic Feet) Gross Withdrawals NA NA NA NA NA NA 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016

  15. Mississippi Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-","...

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  20. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  1. Mississippi Natural Gas Plant Liquids Production Extracted in Mississippi

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  2. Tennessee Valley Authority (Mississippi) | Open Energy Information

    Open Energy Info (EERE)

    Name: Tennessee Valley Authority Place: Mississippi References: Energy Information Administration.1 EIA Form 861 Data Utility Id 18642 This article is a stub. You can help OpenEI...

  3. Entergy Mississippi Inc | Open Energy Information

    Open Energy Info (EERE)

    ergy-mississippi.com Twitter: @EntergyMS Facebook: https:www.facebook.comEntergyMS Outage Hotline: 1-800-968-8243 Outage Map: www.etrviewoutage.comexternal References: EIA...

  4. Jackson, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson is a city in Hinds County and Madison County and Rankin County, Mississippi. It falls...

  5. Enerkem Mississippi Biofuels Pontotoc, MS Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enerkem Mississippi Biofuels Pontotoc, MS Facility 2013 IBR Peer Review May 21 st , 2013 ... as part of the first wave of advanced biofuels projects in the U.S. The advanced and ...

  6. Mississippi County Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Mississippi County Electric Coop Place: Arkansas Phone Number: 870-762-2586 or toll free 1-800-439-4563 Website: www.mceci.com Outage Hotline: 870-762-2586 or toll free...

  7. Montgomery County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Montgomery County is a county in Mississippi. Its FIPS County Code is 097. It is classified as...

  8. Harrison County, Mississippi: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harrison County is a county in Mississippi. Its FIPS County Code is 047. It is classified as...

  9. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly

  10. South Mississippi El Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    South Mississippi El Pwr Assn Place: Mississippi Phone Number: 601.268.2083 Website: www.smepa.coop Outage Hotline: 601.268.2083 References: EIA Form EIA-861 Final Data File for...

  11. East Mississippi Elec Pwr Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: East Mississippi Elec Pwr Assn Place: Mississippi Phone Number: Meridian Office: 601-581-8600 -- Quitman Office: 601-776-6271 -- DeKalb Office: 601-743-2641 --...

  12. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:57 AM" "Back to Contents","Data 1: Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035MS3" "Date","Mississippi...

  13. Southwest Mississippi E P A | Open Energy Information

    Open Energy Info (EERE)

    E P A Jump to: navigation, search Name: Southwest Mississippi E P A Place: Mississippi Phone Number: (800) 287-8564 Website: southwestepa.com Outage Hotline: 1-800-287-8564...

  14. Gulf Of Mexico Natural Gas Processed in Mississippi (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Mississippi (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  15. Alternative Fuels Data Center: Mississippi Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Mississippi Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Mississippi Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative

  16. Mississippi: Mississippi’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Mississippi.

  17. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Moss Point, MS | Department of Energy 8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS Documents Available for Download November 12, 2009 EIS-0428: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, Mississippi December 1, 2009 EIS-0428:

  18. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands...

    Office of Environmental Management (EM)

    Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale ...

  19. Mississippi exploration field trials using microbial, radiometrics, free soil gas, and other techniques

    SciTech Connect (OSTI)

    Moody, J.S.; Brown, L.R.; Thieling, S.C.

    1995-12-31

    The Mississippi Office of Geology has conducted field trials using the surface exploration techniques of geomicrobial, radiometrics, and free soil gas. The objective of these trials is to determine if Mississippi oil and gas fields have surface hydrocarbon expression resulting from vertical microseepage migration. Six fields have been surveyed ranging in depth from 3,330 ft to 18,500 ft. The fields differ in trapping styles and hydrocarbon type. The results so far indicate that these fields do have a surface expression and that geomicrobial analysis as well as radiometrics and free soil gas can detect hydrocarbon microseepage from pressurized reservoirs. All three exploration techniques located the reservoirs independent of depth, hydrocarbon type, or trapping style.

  20. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  1. Project Reports for Sac and Fox Tribe of the Mississippi in Iowa...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project Project Reports for Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project The Sac and Fox Tribe of the Mississippi ...

  2. ,"Mississippi Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  3. Mississippi Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 0 1 1 10 0 1 2009-2014 Extensions 3 0 0 8 10 19 2009-2014 New Field Discoveries 1 0 1 1 0 2 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 1 2009-2014 ...

  4. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,701 34,645 35,609 1970's 33,283 28,809 25,377 26,985 22,700 18,133 16,776 17,162 13,199 12,023 1980's 12,394 12,597 11,822 13,216 13,881 11,685 15,132 14,463 14,640 15,856 1990's 19,983 22,155 20,384 15,631 9,597 6,051 6,210 7,276 8,628 5,750 2000's 5,339 5,132 5,344 4,950 4,414 4,966 4,511 6,203 7,542 8,934 2010's 8,714 8,159 43,421 7,256 7,150

  5. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 14,007 12,950 12,852 12,298 12,701 12,832 12,133 13,315 13,649 14,006 1992 13,518 12,036 12,319 11,938 12,197 12,113 12,292 12,210 9,847 12,244 12,326 12,112 1993 12,220 10,726 11,049 10,851 11,043 10,930 11,479 10,611 10,707 10,465 9,764 9,550 1994 9,434 8,582 9,664 9,225 9,507 9,235 9,510 9,561 9,486 9,489 9,054 9,458 1995 9,241 8,330 9,198 8,983 9,779 9,456 9,610 10,131 10,024 9,789 9,160 9,700 1996 9,510 8,771

  6. Mississippi Natural Gas Gross Withdrawals from Oil Wells (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 1,891 1,527 1,907 1,923 1,910 2,023 2,113 1,945 1,738 1,757 1,671 1,751 1992 1,519 1,518 1,752 1,625 1,776 1,769 1,699 1,695 1,719 1,810 1,717 1,786 1993 1,353 1,451 1,528 1,396 1,419 1,258 1,400 1,238 1,242 1,186 1,077 1,081 1994 890 892 891 759 720 650 649 1,113 1,295 610 578 551 1995 533 475 545 511 506 427 457 541 518 494 522 524 1996 491 399 577 564 555 536 513 461 457 566 535 554 1997 491 526 573 570 645 655 625 671 657

  7. Mississippi (with State Offshore) Natural Gas Plant Liquids,...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  8. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  9. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  10. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - February 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County...

  11. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  12. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  13. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  14. 4-County Electric Power Assn (Mississippi) EIA Revenue and Sales...

    Open Energy Info (EERE)

    4-County Electric Power Assn (Mississippi) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for 4-County Electric...

  15. ,"Mississippi Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","102015" ,"Release Date:","12...

  16. ,"Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi...

  17. Argonne and Mississippi State University partner to create energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mississippi State University partner to create energy storage technology solutions for southeast region August 13, 2015 Tweet EmailPrint Starkville, Miss., - The U.S. Department of...

  18. City of Philadelphia, Mississippi (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Place: Mississippi Phone Number: 601-656-2601 Website: neshoba.orgutilities.html Facebook: https:www.facebook.compagesCentral-Electric-Power-Association...

  19. Clay County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mississippi: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6567838, -88.8263006 Show Map Loading map... "minzoom":false,"mappingservice":"...

  20. ,"Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. ,"Mississippi Natural Gas Imports Price All Countries (Dollars...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet)",1,"Annual",2014...

  2. Mississippi (with State off) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi (with State off) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Coalbed Methane ...

  3. Oil recovery improvement through profile modification by thermal precipitation. Final report, October 1, 1991--August 27, 1993

    SciTech Connect (OSTI)

    Reis, J.C.

    1994-04-01

    The objective of this research project has been to investigate the potential for using temperature-dependent (thermal) precipitation of chemicals to reduce the porosity and permeability of porous rocks. The method consists of injecting hot water that is saturated in a chemical that will precipitate upon cooling. Through this process, the permeability of thief zones in oil reservoirs could be reduced, allowing improved recovery by secondary and tertiary recovery processes. The chemical literature was reviewed for environmentally safe chemicals that have a suitable temperature-dependent solubility for the thermal precipitation process. Four suitable chemicals were identified: boron oxide, potassium carbonate, sodium borate, and potassium chloride. An experimental apparatus was constructed to test the thermal precipitation process at high temperatures and pressures. Data was collected with clastic Berea sandstone cores using two chemicals: potassium carbonate and sodium borate. Data was also collected with limestone cores using potassium carbonate. The porosities and permeabilities were measured before and after being treated by the thermal precipitation process. A theoretical study of the process was also conducted. A model for predicting the fractional reduction in porosity was developed that is based on the temperature-dependent solubility of the chemical used. An empirical model that predicts the fractional reduction in permeability in terms of the fractional reduction in porosity was then developed for Berea sandstone. Existing theoretical models for estimating the permeability of porous media were tested against the measured data. The existing models, including the widely-used Carman-Kozeny equation, underpredicted the reduction in permeability for the thermal precipitation process. This study has shown that the thermal precipitation process has considerable potential for the controlled reduction in porosity and permeability in geologic formations.

  4. Mississippi Power's UESC/ESCO Vetting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power's UESC/ESCO Vetting Joe Bosco May 18, 2016 Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR Mississippi Power Company Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX * Large Federal presence * UESC experience - 20 years OUR CULTURE: Southern Style * Unquestionable Trust * Superior Performance * Total Commitment Federal Utility Partnership Working Group November 3-4, 2015 Houston, TX MPC's UESC Approaches * In-House - Business & Industry Services

  5. EIS-0409: Kemper County Integrated Gasification Combined Cycle Project, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to provide funding for the Kemper County Integrated Gasification Combined Cycle Project in Kemper County, Mississippi to assess the potential environmental impacts associated with the construction and operation of a project proposed by Southern Power Company, through its affiliate Mississippi Power Company, which has been selected by DOE for consideration under the Clean Coal Power Initiative (CCPI) program.

  6. EIS-0428: Department of Energy Loan Guarantee for Mississippi Integrated Gasification Combined Cycle, Moss Point, Mississippi

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a petroleum coke-to-substitute natural gas facility proposed to be built by Mississippi Gasification. The facility would be designed to produce 120 million standard cubic feet of gas per day. Other products would be marketable sulfuric acid, carbon dioxide, argon, and electric power. This project is inactive.

  7. Mississippi Adopts New Rules to Save Energy, Money | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mississippi Adopts New Rules to Save Energy, Money Mississippi Adopts New Rules to Save Energy, Money November 8, 2013 - 11:59am Addthis The Jackson County Welcome Center in Moss Point, Mississippi. The Mississippi Public Service Commission has approved new rules that will help provide utility customers several pathways to increase energy efficiency. | Photo courtesy of Energy and Natural Resources Division, Mississippi Development Authority The Jackson County Welcome Center in Moss Point,

  8. Environmental assessment: Richton Dome Site, Mississippi

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  9. Environmental assessment: Richton Dome site, Mississippi

    SciTech Connect (OSTI)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Richton Dome site in Mississippi as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Richton Dome site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EAs. The site is in the Gulf interior region, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains two other potentially acceptable sites--the Cypress Creek Dome site in Mississippi and the Vacherie Dome site in Louisiana. Although the Cypress Creek Dome and the Vacherie Dome sites are suitable for site characterization, the DOE has concluded that the Richton Dome site is the preferred site in the Gulf interior region. On the basis of the evaluations reported in this EA, the DOE has found that the Richton Dome site is not disqualified under the guidelines.

  10. Mississippi Dry Natural Gas Expected Future Production (Billion...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Billion Cubic Feet) Mississippi Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  11. Mississippi Public Service Commission Adopts Energy Efficiency Rules

    Broader source: Energy.gov [DOE]

    Mississippi Public Service Commission (PSC) approved new energy efficiency rules for electric and natural gas utility companies to offer customers several pathways to increase energy efficiency. According to the PSC, the rules could potentially s

  12. Perry County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Perry County is a county in Mississippi. Its FIPS County Code is 111. It is classified as...

  13. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  14. Jackson County, Mississippi: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Mississippi. Its FIPS County Code is 059. It is classified as...

  15. Mississippi Total Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",15125,14707,14454,14340,142... " Other Gases",4,4,4,4,4 "Nuclear",1266,1268,1259,1251,1251 ...

  16. Mississippi Dry Natural Gas New Reservoir Discoveries in Old...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Mississippi Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  17. Mississippi (with State off) Shale Production (Billion Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    off) Shale Production (Billion Cubic Feet) Mississippi (with State off) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  18. City of Tupelo, Mississippi (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Tupelo City of Place: Mississippi Phone Number: 662-841-6460 Website: www.tupeloms.govwater-light Twitter: @TWLDEPT Facebook: https:www.facebook.comTupeloWaterLight Outage...

  19. City of Oxford, Mississippi (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Oxford Place: Mississippi Phone Number: 662-232-2373 or 662-236-1310 Website: www.oxfordms.netdepartmentse Twitter: @OxfordMS Facebook: https:www.facebook.com...

  20. Marion County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Marion County is a county in Mississippi. Its FIPS County Code is 091. It is classified as...

  1. Mississippi Power- EarthCents New Home Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mississippi Power offers incentives to its residential customers to help offset the cost of installing energy efficient measures in new homes. A three-level program is offered to encourage the...

  2. Lee County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Lee County is a county in Mississippi. Its FIPS County Code is 081. It is classified as...

  3. Smith County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Smith County is a county in Mississippi. Its FIPS County Code is 129. It is classified as...

  4. Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Mississippi Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 14,797 13,076 ...

  5. Pike County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike County is a county in Mississippi. Its FIPS County Code is 113. It is classified as...

  6. Adams County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Adams County is a county in Mississippi. Its FIPS County Code is 001. It is classified as...

  7. Scott County, Mississippi: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Scott County is a county in Mississippi. Its FIPS County Code is 123. It is classified as...

  8. Mississippi Total Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" "Energy Source",2006,2007,2008,2009,2010 "Fossil",34254,39184,37408,36266,43331 " Coal",18105,17407,16683,12958,13629 " Petroleum",399,399,76,17,81 " Natural ...

  9. Bibliography, geophysical data locations, and well core listings for the Mississippi Interior Salt Basin

    SciTech Connect (OSTI)

    1998-05-01

    To date, comprehensive basin analysis and petroleum system modeling studies have not been performed on any of the basins in the northeastern Gulf of Mexico. Of these basins, the Mississippi Interior Salt Basin has been selected for study because it is the most petroliferous basin in the northeastern Gulf of Mexico, small- and medium-size companies are drilling the majority of the exploration wells. These companies do not have the resources to perform basin analysis or petroleum system modeling research studies nor do they have the resources to undertake elaborate information searches through the volumes of publicly available data at the universities, geological surveys, and regulatory agencies in the region. The Advanced Geologic Basin Analysis Program of the US Department of Energy provides an avenue for studying and evaluating sedimentary basins. This program is designed to improve the efficiency of the discovery of the nation`s remaining undiscovered oil resources by providing improved access to information available in the public domain and by increasing the amount of public information on domestic basins. This report provides the information obtained from Year 1 of this study of the Mississippi Interior Salt Basin. The work during Year 1 focused on inventorying the data files and records of the major information repositories in the northeastern Gulf of Mexico and making these inventories easily accessible in an electronic format.

  10. Argonne National Laboratory and Mississippi State University Partner to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Create Energy Storage Technology Solutions for Southeast Region - Joint Center for Energy Storage Research Argonne National Laboratory and Mississippi State University Partner to Create Energy Storage Technology Solutions for Southeast Region News Release Starkville, Miss., Aug. 13, 2015 - The U.S. Department of Energy's Argonne National Laboratory and Mississippi State University (MSU) are collaborating to develop new technologies that address next-generation energy storage challenges.

  11. Mississippi - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio

  12. Mississippi Band of Choctaw Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  13. Mississippi Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    917 853 860 607 595 558 1977-2014 Adjustments 26 1 109 65 29 -15 1977-2014 Revision Increases 92 77 105 91 39 82 1977-2014 Revision Decreases 250 70 156 300 75 29 1977-2014 Sales 17 31 11 159 39 115 2000-2014 Acquisitions 2 13 10 109 90 82 2000-2014 Extensions 132 33 24 4 5 9 1977-2014 New Field Discoveries 2 0 1 1 0 1 1977-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 2 1977-2014 Estimated Production 100 87 75 64 61 5

    Acquisitions (Billion Cubic Feet) Mississippi Dry Natural Gas

  14. Mississippi Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Mississippi Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 46,068 44,510 0 1970's 50,509 44,732 29,538 29,081 24,568 29,694 0 0 0 1980's 34,337 38,315 29,416 29,705 23,428 21,955 12,131 9,565 8,353 1990's 7,887 7,649 4,822 4,892 5,052 4,869 4,521 4,372 3,668 135,773 2000's 205,106 239,830 263,456 283,675 283,763 292,023 278,436 224,596 174,573 215,951 2010's 218,840 126,859 6,865 4,527

  15. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2011

    SciTech Connect (OSTI)

    2012-03-01

    This report summarizes the 2011 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site1). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi.

  16. Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 35 29 33 29 9 54 30 78 4 2 2010's 13 10 109 90 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions Mississippi Dry Natural Gas

  17. Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 96 34 29 42 18 17 44 24 2 17 2010's 31 11 159 39 115 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Mississippi Dry Natural Gas Proved Reserves

  18. Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) (No intransit Receipts) (Million Cubic Feet) Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 5,774 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Imports (Summary) Mississippi U.S. Natural Gas

  19. Mississippi Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 19 37 19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Mississippi Shale Gas Proved Reserves, Reserves

  20. Mississippi Natural Gas Plant Liquids, Proved Reserves (Million Barrels)

    Gasoline and Diesel Fuel Update (EIA)

    Feet) (No intransit Receipts) (Million Cubic Feet) Mississippi Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 0 5,774 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Imports (Summary) Mississippi U.S. Natural Gas

  1. Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    off) Shale Proved Reserves (Billion Cubic Feet) Mississippi (with State off) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 19 37 19 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Mississippi Shale Gas Proved Reserves,

  2. Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 ...

  3. S. 1461: Oil Tanker Navigation Safety Act of 1989. Introduced in the Senate of the United States, One Hundredth First Congress, First Session, August 1, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    This bill would enhance the navigation safety of oil tankers. Title I, Provisions applicable to nationally licensed personnel, explains provisions relating to motor vehicle driving records of vessel personnel; dangerous drugs and other grounds for suspension or revocation; alcohol testing and alcohol rehabilitation; prohibition on service; vessel traffic services; oil tanker construction and size; oil spill contingency plans and approval; international inventory of equipment and contractors; national council on oil spill technology research and development; oil spill disaster assistance; impact on other laws; penalties; and a report on user fees. Title II, Provisions applicable with respect to Alaska pilotage at Port of Valdez, includes explanations of Bligh reef light; Prince William Sound VTS; oil spill recovery institute; and the Trans-Alaska pipeline liability fund. Title III, Provisions applicable to Mississippi River radio communications on Mississippi River, is also included.

  4. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  5. Mississippi State University Wins DOE and GM Challenge X 2008 Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Competition | Department of Energy Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition Mississippi State University Wins DOE and GM Challenge X 2008 Advanced Vehicle Competition May 21, 2008 - 12:00pm Addthis Launches EcoCAR: The NeXt Challenge WASHINGTON - U.S. Secretary of Energy Samuel W. Bodman today announced that Mississippi State University in Starkville, Miss. is the first place winner of Challenge X, in which 17 university teams from

  6. Agronomic Suitability of Bioenergy Crops in Mississippi

    SciTech Connect (OSTI)

    Lemus, Rocky; Baldwin, Brian; Lang, David

    2011-10-01

    In Mississippi, some questions need to be answered about bioenergy crops: how much suitable land is available? How much material can that land produce? Which production systems work best in which scenarios? What levels of inputs will be required for productivity and longterm sustainability? How will the crops reach the market? What kinds of infrastructure will be necessary to make that happen? This publication helps answer these questions: • Which areas in the state are best for bioenergy crop production? • How much could these areas produce sustainably? • How can bioenergy crops impact carbon sequestration and carbon credits? âÂÃÃÂ

  7. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  8. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at the Cranfield site in Southwestern Mississippi. It is led by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven members of the Regional Carbon...

  9. DOE-Sponsored Mississippi Project Hits 1-Million-Ton Milestone for Injected CO2

    Broader source: Energy.gov [DOE]

    A large-scale carbon dioxide storage project in Mississippi has become the fifth worldwide to reach the important milestone of more than 1 million tons injected.

  10. Alaska - State Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York

  11. Guam - Territory Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) Guam - Territory Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico

  12. Mississippi Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014 From Coalbed Wells 6,785 5,921 5,363 5,036 4,630 4,199 2002-2014 Repressuring 3,039 3,480 3,788 0 NA NA 1967-2014 Vented and Flared 7,875 8,685 9,593 0 NA NA 1967-2014 Nonhydrocarbon Gases Removed 253,817 315,775 348,482 389,072 0 0 1980-2014 Marketed Production

  13. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  14. Mississippi Ethanol Gasification Project, Final Scientific / Technical Report

    SciTech Connect (OSTI)

    Pearson, Larry, E.

    2007-04-30

    The Mississippi Ethanol (ME) Project is a comprehensive effort to develop the conversion of biomass to ethanol utilizing a proprietary gasification reactor technology developed by Mississippi Ethanol, LLC. Tasks were split between operation of a 1/10 scale unit at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) of Mississippi State University (MSU) and the construction, development, and operation of a full scale pilot unit located at the ME facility in Winona, Mississippi. In addition to characterization of the ME reactor gasification system, other areas considered critical to the operational and economic viability of the overall ME concept were evaluated. These areas include syngas cleanup, biological conversion of syngas to alcohol, and effects of gasification scale factors. Characterization of run data from the Pre-Pilot and Pilot Units has allowed development of the factors necessary for scale-up from the small unit to the larger unit. This scale range is approximately a factor of 10. Particulate and tar sampling gave order of magnitude values for preliminary design calculations. In addition, sampling values collected downstream of the ash removal system show significant reductions in observed loadings. These loading values indicate that acceptable particulate and tar loading rates could be attained with standard equipment additions to the existing configurations. Overall operation both the Pre-Pilot and Pilot Units proceeded very well. The Pilot Unit was operated as a system, from wood receiving to gas flaring, several times and these runs were used to address possible production-scale concerns. Among these, a pressure feed system was developed to allow feed of material against gasifier system pressure with little or no purge requirements. Similarly, a water wash system, with continuous ash collection, was developed, installed, and tested. Development of a biological system for alcohol production was conducted at Mississippi State University with

  15. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2012

    SciTech Connect (OSTI)

    2013-03-01

    This report summarizes the 2012 annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site (Salmon site). The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. A revised plan is in preparation. The Long-Term Surveillance Plan for the Salmon, Mississippi, Site is intended for release in 2013. The Salmon site consists of 1,470 acres. The site is located in Lamar County, Mississippi, approximately 10 miles west of Purvis, Mississippi, and about 21 miles southwest of Hattiesburg, Mississippi The State of Mississippi owns the surface real estate subject to certain restrictions related to subsurface penetration. The State is the surface operator; the Mississippi Forestry Commission is its agent. The federal government owns the subsurface real estate (including minerals and some surface features), shares right-of-entry easements with the State, and retains rights related to subsurface monitoring. The U.S. Department of Energy (DOE) Office of Legacy Management (LM), a successor agency to the U.S. Atomic Energy Commission, is responsible for the long-term surveillance of the subsurface real estate

  16. Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 9 104 -18 1980's 29 399 24 11 7 8 51 5 -1 17 1990's 82 106 -102 68 -1 31 13 -16 -19 34 2000's -20 53 81 -26 20 5 -26 37 12 26 2010's 1 109 65 29 -15 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  17. Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 88 121 154 1980's 170 196 198 159 181 151 165 178 181 155 1990's 141 143 109 111 82 91 88 93 79 79 2000's 78 94 98 94 93 86 83 100 110 100 2010's 87 75 64 61 54 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 341 108 68 1980's 103 73 42 31 49 79 71 32 31 57 1990's 20 11 9 2 2 30 43 48 109 11 2000's 53 43 54 81 27 75 119 146 155 132 2010's 33 24 4 5 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  19. Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decreases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 148 118 124 1980's 151 161 372 279 193 176 214 96 85 192 1990's 142 151 121 108 133 46 88 56 112 120 2000's 39 43 75 41 55 27 40 50 96 250 2010's 70 156 300 75 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  20. Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Increases (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 55 107 71 1980's 45 75 226 179 176 88 192 153 130 181 1990's 163 88 121 64 55 73 87 66 177 165 2000's 84 70 89 67 48 57 96 53 108 92 2010's 77 105 91 39 82 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  1. Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Price All Countries (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Imports Price All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 13 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Imports Price

  2. Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91 2000's 3.75 7.85 -- -- -- -- -- -- -- -- 2010's -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  3. Mississippi (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Mississippi (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 5 1980's 5 5 6 6 5 4 3 3 3 3 1990's 3 3 3 3 3 3 2 2 3 3 2000's 2 2 2 2 1 2 2 3 3 4 2010's 4 6 4 3 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  4. Mississippi (with State off) Coalbed Methane Production (Billion Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Estimated Production Mississippi Coalbed Methane Proved Reserves, Reserves Changes, and Production Coalbed Methane Production

  5. Energy Department Awards Cooperative Agreement to Mississippi State University

    Broader source: Energy.gov [DOE]

    Cincinnati – The U.S. Department of Energy (DOE) today awarded a cooperative agreement to Mississippi State University, Institute for Clean Energy Technology (MSU-ICET), to continue research efforts in the evaluation of High-Efficiency Particulate Air Filters (HEPA) and other technologies to enhance nuclear safety in the defense waste complex. The total value of the cooperative agreement over five years is $5 million. The project period of the cooperative agreement will be from January 20, 2015 through January 19, 2020.

  6. Born on an Air Force base in Mississippi, Jan never

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on an Air Force base in Mississippi, Jan never lived any place for more than three years as a child. Her family moved to Germany when she was seven, and she recalls trips all over Europe. "We visited Holland, camped in Italy for a summer, and toured numerous museums and castles. My dad had been a pilot in World War II and Korea, and he took us to Hitler's Eagle's Nest retreat, and even to the Dachau concentration camp. These made extremely strong impressions of the influences of cultural

  7. Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Mississippi (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 11 1980's 15 13 12 13 10 8 8 8 9 9 1990's 8 7 6 8 6 5 5 4 5 7 2000's 6 8 6 5 5 5 6 6 6 8 2010's 7 7 10 12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  8. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 67 1980's 73 66 74 80 114 105 66 61 71 105 1990's 126 108 85 53 43 27 47 51 47 31 2000's 35 26 33 27 20 20 21 30 45 38 2010's 36 62 62 43 58 - = No Data Reported; --

  9. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Egypt (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,954 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG Imports from Egypt

  10. Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and

    U.S. Energy Information Administration (EIA) Indexed Site

    Tobago (Million Cubic Feet) Trinidad and Tobago (Million Cubic Feet) Gulf LNG, Mississippi Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 2,820 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Liquefied Natural Gas Imports by Point of Entry Gulf LNG, MS LNG

  11. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  12. Venezuelan oil

    SciTech Connect (OSTI)

    Martinez, A.R. )

    1989-01-01

    Oil reserves have been known to exist in Venezuela since early historical records, however, it was not until the 20th century that the extensive search for new reserves began. The 1950's marked the height of oil exploration when 200 new oil fields were discovered, as well as over 60{percent} of proven reserves. Venezuela now produces one tone in seven of crude oil consumption and the country's abundant reserves such as the Bolivar Coastal field in the West of the country and the Orinoco Belt field in the East, will ensure it's continuing importance as an oil producer well into the 21st century. This book charts the historical development of Venezuela oil and provides a chronology of all the significant events which have shaped the oil industry of today. It covers all the technical, legal, economic and political factors which have contributed to the evolution of the industry and also gives information on current oil resources and production. Those events significant to the development of the industry, those which were influential in shaping future policy and those which precipitated further action are included. The book provides a source of reference to oil companies, oil economists and petroleum geologists.

  13. EcoCAR 2 Announces Year One Winner: Mississippi State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Announces Year One Winner: Mississippi State University EcoCAR 2 Announces Year One Winner: Mississippi State University May 24, 2012 - 10:40am Addthis NEWS MEDIA CONTACT (202) 586-4940 Los Angeles, Calif. - EcoCAR 2: Plugging In to the Future today named Mississippi State University its Year One winner at the EcoCAR 2012 Competition in Los Angeles. The 15 universities competing in EcoCAR 2 gathered for six days of judged competition this week with $100,000 in prize

  14. Project Reports for Sac and Fox Tribe of the Mississippi in Iowa - 2010

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project Project Reports for Sac and Fox Tribe of the Mississippi in Iowa - 2010 Project The Sac and Fox Tribe of the Mississippi in Iowa Wind Energy Feasibility Study project will prepare the tribe for the development of clean, dependable, renewable wind energy on tribal land. Learn more about this project or find details in the below status reports. November 2009 status report (17.53 MB) October 2010 status

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  16. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  17. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  18. SEP Success Story: Mississippi Adopts New Rules to Save Energy, Money

    Broader source: Energy.gov [DOE]

    An economic impact statement issued by the Mississippi Public Service Commission indicates new energy efficiency rules could potentially save the state’s consumers $2.3 billion by 2034 and create 9,500 jobs by 2030. Learn more.

  19. Mississippi Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Mississippi Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Mississippi Regional High

  20. Mississippi Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Mississippi Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Mississippi

  1. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    people profiles People Profiles Featured Profile Hye-Sook Park Pursuing a challenging-and rewarding-career Read More » Henry Hui Henry Hui Tanza Lewis Tanza Lewis Jamie King Jamie King Lisa Burrows Lisa Burrows Jeremy Huckins Jeremy Huckins Ibo Matthews Ibo Matthews Peter Thelin Peter Thelin Susanna Reyes Susana Reyes Jerry Britten Jerry Britten Reggie Drachenberg Reggie Drachenberg Beth Dzenitis Beth Dzenitis Rebecca Dylla-Spears Rebecca Dylla-Spears John Heebner John Heebner Terry Land Terry

  2. Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Mississippi Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 98 53 17 1980's 359 45 15 9 17 10 0 1 20 25 1990's 21 12 5 10 4 14 0 0 0 0 2000's 1 0 1 0 0 0 0 0 2 2 2010's 0 1 1 0 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release

  3. Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,777 6,372 5,655 5,971 7,706 6,802 4,741 1990's 6,636 3,877 4,372 4,291 3,169 3,108 3,202 3,280 3,347 3,283 2000's 2,962 3,304 3,818 4,243 4,559 4,718 5,473 7,068 8,976 9,090 2010's 10,388 2,107 3,667 2,663 1,487 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure

  4. Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  5. Mississippi Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Mississippi Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 43,362 44,170 44,253 1990's 43,184 43,693 44,313 45,310 43,803 45,444 46,029 47,311 45,345 47,620 2000's 50,913 51,109 50,468 50,928 54,027 54,936 55,741 56,155 55,291 50,713 2010's 50,537 50,636 50,689 50,153 50,238 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  6. Mississippi Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Mississippi Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,312 1,263 1,282 1990's 1,317 1,314 1,327 1,324 1,313 1,298 1,241 1,199 1,165 1,246 2000's 1,199 1,214 1,083 1,161 996 1,205 1,181 1,346 1,132 1,141 2010's 980 982 936 933 943 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  7. Mississippi Natural Gas Number of Residential Consumers (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Residential Consumers (Number of Elements) Mississippi Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 370,094 372,238 376,353 1990's 382,251 386,264 392,155 398,472 405,312 415,123 418,442 423,397 415,673 426,352 2000's 434,501 438,069 435,146 438,861 445,212 445,856 437,669 445,043 443,025 437,715 2010's 436,840 442,479 442,840 445,589 444,423 - = No Data Reported; -- = Not

  8. Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 44,979 36,329 31,594 2000's 30,895 30,267 26,997 26,003 21,869 21,496 22,131 27,316 28,677 28,951 2010's 28,117 28,828 48,497 23,667 19,787 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  9. Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 855 830 641 591 385 298 280 1990's 621 708 573 538 463 399 382 372 363 638 2000's 786 722 758 251 895 1,018 1,138 1,196 1,140 1,150 2010's 1,155 1,042 1,111 1,103 1,310 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  10. Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Mississippi Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,127 971 1,334 1970's 1,270 1,217 1,058 878 679 567 520 367 485 1,146 1980's 553 830 831 633 618 458 463 437 811 380 1990's 445 511 416 395 425 377 340 300 495 5,462 2000's 11,377 15,454 16,477 11,430 13,697 14,308 14,662 13,097 10,846 18,354 2010's 18,405 11,221 486 466 495 - = No Data Reported; -- =

  11. Mississippi Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Mississippi Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 255,475 241,342 306,733 2000's 300,652 332,589 343,890 265,842 282,051 301,663 307,305 364,067 355,006 364,323 2010's 438,733 433,538 494,016 420,594 412,979 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  12. Mississippi Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Mississippi Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 211,116 206,871 178,426 197,217 195,299 196,912 148,167 1990's 149,012 126,637 129,340 131,450 105,646 95,349 88,805 98,075 88,723 83,232 2000's 70,965 76,986 112,979 133,901 145,692 52,923 60,531 73,460 96,641

  13. Project Reports for Mississippi Band of Choctaw Indians- 2002 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  14. Baseline ecological risk assessment Salmon Site, Lamar County, Mississippi

    SciTech Connect (OSTI)

    1995-04-01

    The Salmon Site (SS), formerly the Tatum Dome Test Site, located in Mississippi was the site of two nuclear and two gas explosion tests conducted between 1964 and 1970. A consequence of these testing activities is that radionuclides were released into the salt dome, where they are presently contained. During reentry drilling and other site activities, incidental liquid and solid wastes that contained radioactivity were generated, resulting in some soil, ground water and equipment contamination. As part of the remedial investigation effort, a Baseline Ecological Risk Assessment was conducted at the SS. The purpose is to gauge ecological and other environmental impacts attributable to past activities at the former test facility. The results of this facility-specific baseline risk assessment are presented in this document.

  15. Mississippi Natural Gas Delivered to Commercial Consumers for the Account

    Gasoline and Diesel Fuel Update (EIA)

    of Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Mississippi Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 777 731 645 647 647 615 585 1,148 1,101 807 2000's 954 935 707 937 943 895 993 2,327 1,942 1,715 2010's 1,983 2,067 1,958 2,123 2,772 - = No Data Reported; -- = Not Applicable; NA =

  16. Mississippi Natural Gas Injections into Underground Storage (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 NA NA NA NA NA NA NA NA NA NA NA NA 2016 NA NA NA NA NA NA Cubic Feet)

    Price All Countries (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Imports Price All Countries (Dollars per

  17. Mississippi Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 2 2 2 2 2 2 2 2 2 2 2 2 2014 2 2 2 2 2 2 2 2 2 2 2 2 2015 0 0 0 0 0 2 2 2 2 2 2 2 2016 2 2 2 2 7 7 Feet)

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2.82 1.63 2.51 2.76 2.79 2.91

  18. Mississippi Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,511 1980's 1,776 2,042 1,803 1,603 1,496 1,364 1,304 1,223 1,146 1,108 1990's 1,129 1,061 873 800 653 667 634 583 662 681 2000's 620 663 746 748 692 758 816 958 1,035 922 2010's 858 868 612 600 563 - = No Data Reported; -- = Not

  19. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,444 1980's 1,703 1,976 1,729 1,523 1,382 1,259 1,238 1,162 1,075 1,003 1990's 1,003 953 788 747 610 640 587 532 615 650 2000's 585 637 713 721 672 738 795 928 990 884 2010's 822 806

  20. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  2. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  4. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  5. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  6. Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA

  7. Mississippi Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,013 1,013 1,014 1,014 1,015 1,018 1,018 1,021 1,022 1,025 1,020 1,020 2014 1,019 1,014 1,019 1,026 1,030 1,034 1,035 1,036 1,035 1,033 1,035 1,034 2015 1,036 1,033 1,031 1,037 1,032 1,030 1,030 1,029 1,031 1,028 1,029 1,030 2016 1,031 1,032 1,039 1,033 1,036 1,030

    % of Total Residential Deliveries (Percent) Mississippi Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4

  8. Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.18 1970's 0.18 0.21 0.27 0.23 0.29 0.50 0.71 0.73 1.15 1.60 1980's 2.32 3.21 3.91 3.78 3.47 3.17 2.13 1.94 1.86 1.97 1990's 1.76 1.66 1.64 1.73 1.49 1.24 1.66 1.73 1.42 1.63 2000's 3.30 3.93 3.06 5.13 5.83 8.54 6.84 6.70 8.80 3.73 2010's 4.17 - = No Data Reported; -- = Not

  9. Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 1991 47,530 47,483 47,483 47,483 47,483 47,868 48,150 48,150 48,150 48,150 48,150 48,150 1992 48,150 48,150 48,149 48,149 48,149 48,149 48,149 48,149 48,149 48,149 47,851 48,049 1993 48,039 48,049 48,049 48,049 47,792 48,049 48,049 48,049

  10. Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884

  11. Post-Closure Inspection and Monitoring Report for the Salmon, Mississippi, Site Calendar Year 2007

    SciTech Connect (OSTI)

    2008-05-01

    This report summarizes inspection and monitoring activities performed on and near the Salmon, Mississippi, Site in calendar year 2007. The Draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County, Mississippi (DOE 2007) specifies the submittal of an annual report of site activities and the results of sample analyses. This report is submitted to comply with that requirement. The Tatum Salt Dome was used by the U.S. Atomic Energy Commission (AEC) for underground nuclear testing during the cold war. The land surface above the salt dome, the Salmon Site, is located in Lamar County, Mississippi, approximately 12 miles west of Purvis (Figure 1). The U.S. Department of Energy (DOE), the successor to the AEC, is responsible for long-term surveillance and maintenance of the site. The DOE Office of Legacy Management (LM) was assigned this responsibility effective October 2006.

  12. Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Gulf LNG, Mississippi LNG Imports (Price) (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's -- 12.93 -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: U.S. Price of Liquefied Natural

  13. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would be developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  14. Analysis of the Monitoring Network at the Salmon, Mississippi, Site

    SciTech Connect (OSTI)

    2013-08-01

    The Salmon site in southern Mississippi was the location of two underground nuclear tests and two methane-oxygen gas explosion tests conducted in the Tatum Salt Dome at a depth of 2,715 feet below ground surface. The U.S. Atomic Energy Commission (a predecessor agency of the U.S. Department of Energy [DOE]) and the U.S. Department of Defense jointly conducted the tests between 1964 and 1970. The testing operations resulted in surface contamination at multiple locations on the site and contamination of shallow aquifers. No radionuclides from the nuclear tests were released to the surface or to groundwater, although radionuclide-contaminated drill cuttings were brought to the surface during re-entry drilling. Drilling operations generated the largest single volume of waste materials, including radionuclide-contaminated drill cuttings and drilling fluids. Nonradioactive wastes were also generated as part of the testing operations. Site cleanup and decommissioning began in 1971 and officially ended in 1972. DOE conducted additional site characterization between 1992 and 1999. The historical investigations have provided a reasonable understanding of current surface and shallow subsurface conditions at the site, although some additional investigation is desirable. For example, additional hydrologic data would improve confidence in assigning groundwater gradients and flow directions in the aquifers. The U.S. Environmental Protection Agency monitored groundwater at the site as part of its Long-Term Hydrologic Monitoring Program from 1972 through 2007, when DOE's Office of Legacy Management (LM) assumed responsibility for site monitoring. The current monitoring network consists of 28 monitoring wells and 11 surface water locations. Multiple aquifers which underlie the site are monitored. The current analyte list includes metals, radionuclides, and volatile organic compounds (VOCs).

  15. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  16. FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds FCC Pilot Plant Results with Vegetable Oil and Pyrolysis Oil Feeds Breakout Session 2: Frontiers and Horizons ...

  17. EIS-0385-S1: Ancillary Facilities for the Richton Site of the Strategic Petroleum Reserve, Mississippi

    Broader source: Energy.gov [DOE]

    Since selecting the Richton site, DOE has engaged in further consultations with Federal and Mississippi state agencies and is now considering different locations from those addressed in DOE/EIS–0385 for certain facilities associated with the Richton SPR expansion site.

  18. Geologic technical assessment of the Richton salt dome, Mississippi, for potential expansion of the U.S. strategic petroleum reserve.

    SciTech Connect (OSTI)

    Snider, Anna C.; Rautman, Christopher Arthur; Looff, Karl M.

    2006-01-01

    Technical assessment and remodeling of existing data indicates that the Richton salt dome, located in southeastern Mississippi, appears to be a suitable site for expansion of the U.S. Strategic Petroleum Reserve. The maximum area of salt is approximately 7 square miles, at a subsurface elevation of about -2000 ft, near the top of the salt stock. Approximately 5.8 square miles of this appears suitable for cavern development, because of restrictions imposed by modeled shallow salt overhang along several sides of the dome. The detailed geometry of the overhang currently is only poorly understood. However, the large areal extent of the Richton salt mass suggests that significant design flexibility exists for a 160-million-barrel storage facility consisting of 16 ten-million-barrel caverns. The dome itself is prominently elongated from northwest to southeast. The salt stock appears to consist of two major spine features, separated by a likely boundary shear zone trending from southwest to northeast. The dome decreases in areal extent with depth, because of salt flanks that appear to dip inward at 70-80 degrees. Caprock is present at depths as shallow as 274 ft, and the shallowest salt is documented at -425 ft. A large number of existing two-dimensional seismic profiles have been acquired crossing, and in the vicinity of, the Richton salt dome. At least selected seismic profiles should be acquired, examined, potentially reprocessed, and interpreted in an effort to understand the limitations imposed by the apparent salt overhang, should the Richton site be selected for actual expansion of the Reserve.

  19. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  20. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  1. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Mississippi Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable 1 235 1.5 1,504 2.8 Petroleum 35 0.2 81 0.1 Total 15,691 100.0 54,487 100.0 * = Absolute percentage less than 0.05. Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture byproducts,

  2. MPI Profiling

    SciTech Connect (OSTI)

    Han, D K; Jones, T R

    2005-02-11

    The Message Passing Interface (MPI) is the de facto message-passing standard for massively parallel programs. It is often the case that application performance is a crucial factor, especially for solving grand challenge problems. While there have been many studies on the scalability of applications, there have not been many focusing on the specific types of MPI calls being made and their impact on application performance. Using a profiling tool called mpiP, a large spectrum of parallel scientific applications were surveyed and their performance results analyzed.

  3. EA-1865: Department of Energy Loan Guarantee to Kior, Inc., for Biorefinery Facilities in Georgia, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Kior, Inc., for biorefinery facilities in Georgia, Mississippi, and Texas. This EA is on hold.

  4. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  5. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  6. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional ... quantify potential risks associated with oil and gas resources in shale reservoirs that ...

  7. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  8. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  9. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  10. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Mancini, Ernest A.

    2003-02-06

    The project objectives are improving access to information for the Mississippi Interior Salt Basin by inventorying data files and records of the major information repositories in the region, making these inventories easily accessible in electronic format, increasing the amount of information available on domestic sedimentary basins through a comprehensive analysis of the Mississippi Interior Salt Basin, and enhancing the understanding of the petroleum systems operating in the Mississippi Interior Salt Basin.

  11. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  12. Uranium Resource Evaluation Project. Hydrochemical and stream-sediment reconnaissance basic data for Palestine, Alexandria, and Natchez Quadrangles, Texas; Louisiana; Mississippi

    SciTech Connect (OSTI)

    Not Available

    1982-06-07

    Data are compiled for hydrochemical and stream sediment reconnaissance of the Palestine, Alexandria and Natchez quadrangles in Texas, Louisiana and Mississippi.

  13. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  14. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  15. Post-Closure Inspection, Sampling, and Maintenance Report for the Salmon, Mississippi, Site Calendar Year 2010

    SciTech Connect (OSTI)

    2011-03-01

    This report summarizes the annual inspection, sampling, measurement, and maintenance activities performed at the Salmon, Mississippi, Site in calendar year 2010. The draft Long-Term Surveillance and Maintenance Plan for the Salmon Site, Lamar County Mississippi (DOE 2007) specifies the submittal of an annual report of site activities with the results of sample analyses. The Salmon, MS, Site is a federally owned site located in Lamar County, MS, approximately 12 miles west of Purvis, MS, and about 21 miles southwest of Hattiesburg, MS (Figure 1). The U.S. Department of Energy (DOE), a successor agency to the U.S. Atomic Energy Commission (AEC), is responsible for the long-term surveillance and maintenance of the 1,470-acre site. DOE's Office of Legacy Management (LM) is the operating agent for the surface and subsurface real estate.

  16. Sac and Fox Tribe of the Mississippi in Iowa- 2010 Project

    Broader source: Energy.gov [DOE]

    The Sac and Fox Tribe of the Mississippi in Iowa Wind Energy Feasibility Study project will prepare the tribe for the development of clean, dependable, renewable wind energy on tribal land. The feasibility study reports resulting from this project, including technical and business analyses, will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement.

  17. Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pathways Toward Sustainable Bioenergy Feedstock Production in the Mississippi River Watershed March 24, 2015 Analysis and Sustainability Review Jason Hill University of Minnesota This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement * The overall goal of this project is to use an ecosystem service framework to evaluate the environmental impact of biomass production options and their placement on the landscape so as to guide the

  18. Feasibility study of a corn-to-ethanol plant in Sardis, Mississippi

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    A feasibility study for a corn-to-ethanol plant in Panola County, Mississippi was carried out. This area is well suited for the production of ethanol from corn, as it has a mild climate, a plentiful supply of wood fuel, and a well-developed agricultural infrastructure. The project was designed for 5 million gallons per year, using the ACR Process, a process proven in 6 plants now operating. It was determined to be technically feasible for this size. However, without a state financial incentive such as a gasoline excise tax or sales tax exemption, the plant is not economically feasible in Mississippi. Even though a 4 cents per gallon federal excise tax exemption will likely remain, the economics without any other incentive are not strong enough to obtain financing or equity funds. While the Mississippi legislature decided not to consider a financial incentive in their 1982 session, an attempt will be made to introduce a proposal for a suitable exemption during the 1983 legislative session. Until then, the project is on hold.

  19. Final report on decommissioning boreholes and wellsite restoration, Gulf Coast Interior Salt Domes of Mississippi

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    In 1978, eight salt domes in Texas, Louisiana, and Mississippi were identified for study as potential locations for a nuclear waste repository as part of the National Waste Terminal Storage (NWTS) program. Three domes were selected in Mississippi for ``area characterization`` phase study as follows: Lampton Dome near Columbia, Cypress Creek Dome near New Augusta, and Richton Dome near Richton. The purpose of the studies was to acquire geologic and geohydrologic information from shallow and deep drilling investigations to enable selection of sites suitable for more intensive study. Eleven deep well sites were selected for multiple-well installations to acquire information on the lithologic and hydraulic properties of regional aquifers. In 1986, the Gulf Coast salt domes were eliminated from further consideration for repository development by the selection of three candidate sites in other regions of the country. In 1987, well plugging and restoration of these deferred sites became a closeout activity. The primary objectives of this activity are to plug and abandon all wells and boreholes in accordance with state regulations, restore all drilling sites to as near original condition as feasible, and convey to landowners any wells on their property that they choose to maintain. This report describes the activities undertaken to accomplish these objectives, as outlines in Activity Plan 1--2, ``Activity Plan for Well Plugging and Site Restoration of Test Hole Sites in Mississippi.``

  20. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  1. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  2. Mississippi Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 73,170 76,447 106,302 2000's 100,643 149,432 163,664 96,081 107,432 135,562 139,918 182,996 167,345 183,344 2010's 235,250 244,051 291,341 234,274 221,910 331,496

    352,888 401,660 443,351 452,915 59,272 54,440 1967-2014 From Gas Wells 337,168 387,026 429,829 404,457 47,385 43,091 1967-2014 From Oil Wells 8,934 8,714 8,159 43,421 7,256 7,150 1967-2014 From Shale Gas Wells 0 0 0 0 0 0 2007-2014

  3. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  4. Crude Oil Characteristics Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The Energy Information Administration projects that U.S. oil production will reach 9.3 million barrels per day in 2015 - the highest annual average level of oil production since 1972. This domestic energy boom is due primarily to new unconventional production of light sweet crude oil from tight-oil formations like the

  5. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  6. Past, Present, and Future Production of Bio-oil

    SciTech Connect (OSTI)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.

  7. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  8. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery As much as two-thirds of conventional crude oil discovered in U.S. fields remains unproduced, left behind due to the physics of fluid flow. In addition, ...

  9. US Crude oil exports

    Gasoline and Diesel Fuel Update (EIA)

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since ...

  10. Crude Oil Characteristics Research

    Broader source: Energy.gov (indexed) [DOE]

    SAE Plan June 29, 2015 Page 1 Crude Oil Characteristics Research Sampling, Analysis and Experiment (SAE) Plan The U.S. is experiencing a renaissance in oil and gas production. The ...

  11. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  12. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  13. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  14. Oil-futures markets

    SciTech Connect (OSTI)

    Prast, W.G.; Lax, H.L.

    1983-01-01

    This book on oil futures trading takes a look at a market and its various hedging strategies. Growing interest in trading of commodity futures has spread to petroleum, including crude oil, and key refined products such as gasoline and heating oil. This book describes how the international petroleum trade is structured, examines the working of oil futures markets in the United States and the United Kingdom, and assesses the possible courses of further developments.

  15. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  16. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C.; Foster, Edward P.

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  17. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  18. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  19. New insights into microbial responses to oil spills from the Deepwater Horizon incident

    SciTech Connect (OSTI)

    Mason, O.U.; Hazen, T.C.

    2011-06-15

    On April 20, 2010, a catastrophic eruption of methane caused the Deepwater Horizon exploratory drill rig drilling the Macondo Well in Mississippi Canyon Block 252 (MC252) to explode. The Deepwater Horizon oil spill was unprecendeted for several reasons: the volume of oil released; the spill duration; the well depth; the distance from the shore-line (77 km or about 50 miles); the type of oil (light crude); and the injection of dispersant directly at the wellhead. This study clearly demonstrated that there was a profound and significant response by certain members of the in situ microbial community in the deep-sea in the Gulf of Mexico. In particular putative hydrocarbon degrading Bacteria appeared to bloom in response to the Deepwater Horizon oil spill, even though the temperature at these depths is never >5 C. As the plume aged the shifts in the microbial community on a temporal scale suggested that different, yet metabolically important members of the community were able to respond to a myriad of plume constituents, e.g. shifting from propane/ethane to alkanes and finally to methane. Thus, the biodegradation of hydrocarbons in the plume by Bacteria was a highly significant process in the natural attenuation of many compounds released during the Deepwater Horizon oil spill.

  20. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  1. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31

    , multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to

  2. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31

    , multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to

  3. ,"Mississippi Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  4. ,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File Name:","n5290ms2m.xls"

  5. ,"Mississippi Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  6. ,"Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  8. The Role of Landscape in the Distribution of Deer-Vehicle Collisions in South Mississippi

    SciTech Connect (OSTI)

    McKee, Jacob J; Cochran, David

    2012-01-01

    Deer-vehicle collisions (DVCs) have a negative impact on the economy, traffic safety, and the general well-being of otherwise healthy deer. To mitigate DVCs, it is imperative to gain a better understanding of factors that play a role in their spatial distribution. Much of the existing research on DVCs in the United States has been inconclusive, pointing to a variety of causal factors that seem more specific to study site and region than indicative of broad patterns. Little DVC research has been conducted in the southern United States, making the region particularly important with regard to this issue. In this study, we evaluate landscape factors that contributed to the distribution of 347 DVCs that occurred in Forrest and Lamar Counties of south Mississippi, from 2006 to 2009. Using nearest-neighbor and discriminant analysis, we demonstrate that DVCs in south Mississippi are not random spatial phenomena. We also develop a classification model that identified seven landscape metrics, explained 100% of the variance, and could distinguish DVCs from control sites with an accuracy of 81.3 percent.

  9. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  10. Hazardous materials in aquatic environments of the Mississippi River Basin. Annual technical report, 30 December 1992--29 December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    Tulane and Xavier Universities have singled out the environment as a major strategic focus for research and training for now and beyond the year 2000. In 1989, the Tulane/Xavier Center for Bioenvironmental Research (CBR) was established as the umbrella organization which coordinates environmental research at both universities. In December, 1992, the Tulane/Xavier DBR was awarded a five year grant to study pollution in the Mississippi River system. The ``Hazardous Materials in Aquatic Environments of the Mississippi River Basin`` project is a broad research and education program aimed at elucidating the nature and magnitude of toxic materials that contaminate aquatic environments of the Mississippi River Basin. Studies include defining the complex interactions that occur during the transport of contaminants, the actual and potential impact on ecological systems and health, and the mechanisms through which these impacts might be remediated. The Mississippi River Basin represents a model system for analyzing and solving contamination problems that are found in aquatic systems world-wide. Individual papers have been processed separately for inclusion in the appropriate data bases.

  11. Hazardous materials in aquatic environments of the Mississippi River Basin. Quarterly project status report, 1 April--30 June 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report contains a cluster of twenty separate project reports concerning the fate, environmental transport, and toxicity of hazardous wastes in the Mississippi River Basin. Some of topics investigated involve: biological uptake and metabolism; heavy metal immobilization; biological indicators; toxicity; and mathematical models.

  12. Shale oil dearsenation process

    SciTech Connect (OSTI)

    Brickman, F.E.; Degnan, T.F.; Weiss, C.S.

    1984-10-29

    This invention relates to processing shale oil and in particular to processing shale oil to reduce the arsenic content. Specifically, the invention relates to treating shale oil by a combination of processes - coking and water washing. Many shale oils produced by conventional retorting processes contain inorganic materials, such as arsenic, which interfere with subsequent refining or catalytic hydroprocessing operations. Examples of these hydroprocessing operations are hydrogenation, denitrogenation, and desulfurization. From an environmental standpoint, removal of such contaminants may be desirable even if the shale oil is to be used directly as a fuel. Hence, it is desirable that contaminants such as arsenic be removed, or reduced to low levels, prior to further processing of the shale oil or prior to its use as a fuel.

  13. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  14. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  15. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  16. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  17. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  18. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  19. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  20. Lower oil prices also cutting winter heating oil and propane...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    see even lower natural gas and heating oil bills this winter than previously expected ... said the average household heating with oil will experience a 41% drop in heating oil ...

  1. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  2. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  3. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  4. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  5. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  6. STEO September 2012 - oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil ...

  7. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  8. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  9. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  10. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  11. Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 543 1990's 585 629 507 620 583 535 568 560 527 560 2000's 997 1,143 979 427 1,536 1,676 1,836 2,315 2,343 2,320 2010's 1,979 5,732 1,669 1,967 1,645 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  12. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  13. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  14. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  15. Operation of Grand Gulf Nuclear Station, Units 1 and 2, Dockets Nos. 50-416 and 50-417: Mississippi Power and Light Company, Middle South Energy, Inc. , South Mississippi Electric Power Association. Final environmental statement

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The information in this Final Environmental Statement is the second assessment of the environmental impacts associated with the construction and operation of the Grand Gulf Nuclear Station, Units 1 and 2, located on the Mississippi River in Claiborne County, Mississippi. The Draft Environmental Statement was issued in May 1981. The first assessment was the Final Environmental Statement related to construction, which was issued in August 1973 prior to issuance of the Grand Gulf Nuclear Station construction permits. In September 1981 Grand Gulf Unit 1 was 92% complete and Unit 2 was 22% complete. Fuel loading for Unit 1 is scheduled for December 1981. The present assessment is the result of the NRC staff review of the activities associated with the proposed operation of the Station, and includes the staff responses to comments on the Draft Environmental Statement.

  16. China shows increasing interest in heavy oil and oil sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  17. Fermilab Today | University Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States,...

  18. Profiling Your Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sure to focus on only the main computation of your application (omitting initialization steps which may otherwise clutter the profiling results). Further, it may be valuable at...

  19. 1,"Victor J Daniel Jr","Coal","Mississippi Power Co",1992 2,"Grand Gulf","Nuclear","System Energy Resources, Inc",1408.5

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi" ,"Plant","Primary energy source","Operating company","Net summer capacity (MW)" 1,"Victor J Daniel Jr","Coal","Mississippi Power Co",1992 2,"Grand Gulf","Nuclear","System Energy Resources, Inc",1408.5 3,"Baxter Wilson","Natural gas","Entergy Mississippi Inc",1143.2 4,"Jack Watson","Coal","Mississippi Power Co",998

  20. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    IN SITU THERMAL PROCESSING OF OIL SHALESANDS Authors: Michal Hradisky and Philip J. Smith DOE Award No.: DE-FE0001243 Reporting Period: October 1, 2009 - September 30, 2011 ...

  1. oil1987.xls

    Gasoline and Diesel Fuel Update (EIA)

    ... Average Fuel OilKerosene Consumption Expenditures Below Poverty Line 100 Percent 2.0 1.4 ... for 1987. (3) Below 150 percent of poverty line or 60 percent of median State ...

  2. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  3. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  4. Hydroprocessing hydrocarbon oils

    SciTech Connect (OSTI)

    Simpson, H.D.; Borgens, P.B.

    1990-07-10

    This patent describes a catalytic hydroprocess of a hydrocarbon oil containing nitrogen or sulfur. It comprises: contacting a catalytic composition with the hydrocarbon oil under hydroprocessing conditions so as to produce a product hydrocarbon oil containing less nitrogen or sulfur than the hydrocarbon oil, the catalytic composition prepared by the method comprising the steps of impregnating porous refractory support particles with an aqueous impregnating solution comprising one or more Group VIB metal components, one or more phosphorus components and citric acid, the citric acid in a mole ratio to the Group VIB metal components calculated as the Group VIB metal trioxide of less than 1 to 1. The solution has a pH less than 1.0 and calcining the impregnated support particles to produce a catalytic composition containing a Group VIB metal component and a phosphorous component on the porous refractory oxide support.

  5. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  6. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  7. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  8. Characterization of oil and gas reservoir heterogeneity

    SciTech Connect (OSTI)

    Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

    1992-10-01

    Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

  9. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  10. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

  11. Deepwater Oil & Gas Resources | Department of Energy

    Office of Environmental Management (EM)

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  12. Heating Oil Reserve History | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Oil Reserve History Heating Oil Reserve History Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed ...

  13. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  14. Finding Hidden Oil and Gas Reserves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finding Hidden Oil and Gas Reserves Finding Hidden Oil and Gas Reserves Key Challenges: Seismic imaging methods, vital in our continuing search for deep offshore oil and gas...

  15. United Oil Company | Open Energy Information

    Open Energy Info (EERE)

    Oil Company Jump to: navigation, search Name: United Oil Company Place: Pittsburgh, Pennsylvania Product: Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

  16. Microsoft Word - Heating Oil Season.docx

    Broader source: Energy.gov (indexed) [DOE]

    4-2015 Heating Oil Season Northeast Home Heating Oil Reserve Trigger Mechanism (Cents per Gallon, Except Where Noted) Week Residential Heating Oil Price Average Brent Spot Price ...

  17. Formation resistivity as an indicator of oil generation in black shales

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturity to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.

  18. Abandoned Texas oil fields

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

  19. International Oil and Gas Board International Oil and Gas Board...

    Open Energy Info (EERE)

    Petroleum Company Syrian Petroleum Company Damascus Syria Syria http www spc sy com en production activities1 en php Yemen Ministry of Oil and Minerals Yemen Ministry of Oil and...

  20. Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Oil Recovery to Fuel Future Oil Demands Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) ...

  1. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    SciTech Connect (OSTI)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  2. Mississippi Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Mississippi Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 31.9 17.1 14.2 15.5 11.1 7.9 -1.1 -5.7 -3.6 -2.3 -15.3 -16.4 1992 -6.8 1.1 -4.7 -16.9 -14.3 -8.0 -2.7 -5.4 -2.8 -7.0 5.6 3.5 1993 13.6 -2.2 -12.3 -6.0 1.7 0.0 0.9 6.3 4.6 1.9 -35.2 -40.7 1994 -53.0 -55.0 -36.7 -28.8 -29.8 -34.1 -28.0 -22.8 -26.7 -21.5 26.7 39.2 1995 50.8 54.7 11.0

  3. Health hazard evaluation report HETA 79-034-1440, Intex Plastics, Corinth, Mississippi

    SciTech Connect (OSTI)

    Salisbury, S.

    1984-03-01

    In response to a request from the president of the United Rubber Workers, Local 759, an investigation was begun into possible hazardous working conditions at the Hatco Plastics Division, Currently known as Intex Plastics, Corinth, Mississippi. The request indicated that several production and maintenance employees at that site had been disabled due to chemical poisoining and related illnesses. A medical survey was begun at the facility in March of 1979. Fifty employees participated by completing a questionnaire. A high prevalence of eye, nose, and throat irritation was found along with shortness of breath, cough, and skin rash among workers assigned to the Calender, Color, and Laminating Departments. Air sampling was performed in several departments. Except for methyl-ethyl-ketone (MEK), the levels of substances detected were quite low. The department with the highest exposure to airborne contaminants included the Print Service with 36 to 299 parts per million (ppm) MEK, laminating at 74 to 105ppm MEK, printing at 15 to 113ppm MEK, color at 15 to 24ppm MEK, premix at 0.3 to 6.8mg/cu m total dust, and calender at 0.1 to 0.6mg/cu m total dust.

  4. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    SciTech Connect (OSTI)

    Mago, Pedro; Newell, LeLe

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  5. History of western oil shale

    SciTech Connect (OSTI)

    Russell, P.L.

    1980-01-01

    The history of oil shale in the United States since the early 1900's is detailed. Research on western oil shale probably began with the work of Robert Catlin in 1915. During the next 15 years there was considerable interest in the oil shales, and oil shale claims were located, and a few recovery plants were erected in Colorado, Nevada, Utah, Wyoming, and Montana. Little shale soil was produced, however, and the major oil companies showed little interest in producing shale oil. The early boom in shale oil saw less than 15 plants produce a total of less than 15,000 barrels of shale oil, all but about 500 barrels of which was produced by the Catlin Operation in Nevada and by the US Bureau of Mines Rulison, Colorado operation. Between 1930 and 1944 plentiful petroleum supplies at reasonable prices prevent any significant interest in shale oil, but oil shortages during World War II caused a resurgence of interest in oil shale. Between 1940 and 1969, the first large-scale mining and retorting operations in soil shale, and the first attempts at true in situ recovery of shale oil began. Only 75,000 barrels of shale oil were produced, but major advancements were made in developing mine designs and technology, and in retort design and technology. The oil embargo of 1973 together with a new offering of oil shale leases by the Government in 1974 resulted in the most concentrated efforts for shale oil production to date. These efforts and the future prospects for shale oil as an energy source in the US are discussed.

  6. Too early to tell on $100 oil

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil ...

  7. Oil and Gas

    Office of Environmental Management (EM)

    RD&D Leases in the United States Oil Shale RD&D Leases in the United States This paper describes the original plans, progress and accomplishments, and future plans for nine oil shale research, development and demonstration (RD&D) projects on six existing RD&D leases awarded in 2006 and 2007 by the United States Department of the Interior, Bureau of Land Management (BLM) to Shell, Chevron, EGL (now AMSO), and OSEC (now Enefit American, respectively); as well as three pending

  8. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Hemisphere Oil Products Balance Ramn Espinasa, Ph.D. Lead Specialist July 2014 ... non-commercial purposes. 4 United States Oil Products Balance 5 Energy Matrix - USA 6 ...

  9. Distributed Bio-Oil Reforming

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Bio-Oil Reforming R. Evans, S. Czernik, R. French, M. Ratcliff National ... GAS 7 BIOMASS BIO-OIL CHAR For reactor or export Gas recycle For fluidization or export ...

  10. Assessment of heavy oil conversion

    SciTech Connect (OSTI)

    Gleim, W.T.K.

    1983-08-01

    Removal of benzene insoluble asphaltene components greatly facilitates and improves the subsequent upgrading of residual oils, the desulfurization in particular. For the upgrading of Venezualean oils, the Aurobon process is still the only feasible solution.

  11. STEO December 2012 - oil production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in ...

  12. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOENETL-20151691 ... Research Portfolio Report: Unconventional Oil & Gas Resources Executive Summary S ...

  13. Nineteenth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1986-01-01

    This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

  14. Heating Oil and Propane Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Maps of states participating in Winter Fuels Survey Residential propane PADD map Residential heating oil PADD map

  15. Oil shale: Technology status report

    SciTech Connect (OSTI)

    Not Available

    1986-10-01

    This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

  16. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $2.41 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region currently average $2.35 per gallon. This is Marcela Rourk with EIA, in Washington.

  17. Country profile: Hungary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary's energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit of reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.

  18. Country profile: Hungary

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    Country Profile: Hungary has been prepared as a background document for use by US Government agencies and US businesses interested in becoming involved with the new democracies of Eastern Europe as they pursue sustainable economic development. The focus of the Profile is on energy and highlights information on Hungary`s energy supply, demand, and utilization. It identifies patterns of energy usage in the important economic sectors, especially industry, and provides a preliminary assessment for opportunities to improve efficiencies in energy production, distribution and use by introducing more efficient technologies. The use of more efficient technologies would have the added benefit of reducing the environmental impact which, although is not the focus of the report, is an issue that effects energy choices. The Profile also presents considerable economic information, primarily in the context of how economic restructuring may affect energy supply, demand, and the introduction of more efficient technologies.

  19. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  20. African oil plays

    SciTech Connect (OSTI)

    Clifford, A.J. )

    1989-09-01

    The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

  1. World Oil Transit Chokepoints

    Reports and Publications (EIA)

    2012-01-01

    Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

  2. Dying for oil

    SciTech Connect (OSTI)

    Sachs, A.

    1996-05-01

    This article discusses the fight and execution of Ken Saro-Wiwa, the Ogoni leader who defended his people`s land on the Niger delta against oil development encouraged by the government and persued by the Royal/Dutch Shell Co. Political reprocussions and heightened vigilance of environmental activists are discussed at length.

  3. Salinity, temperature, oil composition, and oil recovery by waterflooding

    SciTech Connect (OSTI)

    Tang, G.Q.; Morrow, N.R.

    1997-11-01

    The effect of aging and displacement temperatures and brine and oil composition on wettability and the recovery of crude oil by spontaneous imbibition and waterflooding has been investigated. This study is based on displacement tests in Berea sandstone with three crude oils and three reservoir brines (RB`s). Salinity was varied by changing the concentration of total dissolved solids (TDS`s) of the synthetic brine in proportion. Salinity of the connate and invading brines can have a major influence on wettability and oil recovery at reservoir temperature. Oil recovery increased over that for the RB with dilution of both the initial (connate) and invading brine or dilution of either. Aging and displacement temperatures were varied independently. For all crude oils, water wetness and oil recovery increased with increase in displacement temperature. Removal of light components from the crude oil resulted in increased water wetness. Addition of alkanes to the crude oil reduced the water wetness, and increased oil recovery. Relationships between waterflood recovery and rate and extent of oil recovery by spontaneous imbibition are summarized.

  4. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOE Patents [OSTI]

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  5. ,"Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next

  6. Process for upgrading heavy oils

    SciTech Connect (OSTI)

    LePage, J.F.; Marlino, G.

    1983-07-05

    The viscosity of heavy oils is reduced in order to facilitate pipe line transportation thereof. A fraction of the heavy oil is deasphalted in the presence of C/sub 5/-C/sub 7/ hydrocarbons, a portion of the separated asphalt is converted to synthesis gas, at least a portion of said gas is used to manufacture an alcohol mixture including methanol and C/sub 2/ to C/sub 10/ alcohols, which mixture is admixed with the heavy oil before transportation thereof. This procedure is more beneficial to the transported heavy oil than the prior processes which do not comprise the conversion of the asphalt fraction of the heavy oil.

  7. Episodic potassic alteration of Ordovician tuffs in the Upper Mississippi Valley

    SciTech Connect (OSTI)

    Lee, M.; Hay, R.L.; Kolata, D.R.

    1985-01-01

    Tuffs of middle and late Ordovician age are altered to mixed-layer illite-smectite (I/S) and to K-feldspar in the Upper Mississippi Valley in northeast Iowa, southeast Minnesota, and southwest Wisconsin. Some and perhaps much of the I/S replaces previously feldspathized tuff, as shown by field and petrographic relationships. Samples for K-Ar dating were collected over a 200 km southeast-northwest traverse. Dates from authigenic K-feldspar are early Devonian and range from 397 +/- 13 to 406 +/- 18, averaging 400 m.y. in three samples, including a middle Ordovician tuff in Iowa and Minnesota and a late Ordovician tuff in Minnesota. Ages of illite layers in I/S are late Devonian and early Mississippian and range from 356 +/- 16 to 371 +/- 17, averaging 366 m.y. in 5 samples including 4 from two middle Ordovician tuffs in Minnesota and Iowa and the late Ordovician tuff in Minnesota. Oxygen-isotopic composition of the K-feldspar and I/S shows that the two minerals crystallized under different conditions and probably reflect introduction of waters of varying chemistry and temperature. K-feldspar very likely crystallized under higher temperatures and possibly lower salinity than the I/S. Introduction of these pore waters may have been caused by groundwater movements resulting from recharge in distal areas undergoing tectonic uplift. K-feldspar alteration was concurrent with early Devonian uplift on the Northeast Missouri Arch and possibly the Transcontinental Arch. Age of the illite layers corresponds to movements on the Sangamon Arch and possibly the Wisconsin Arch.

  8. Bio-energy feedstock yields and their water quality benefits in Mississippi

    SciTech Connect (OSTI)

    Parajuli, Prem B.

    2011-08-10

    Cellulosic and agricultural bio-energy crops can, under careful management, be harvested as feedstock for bio-fuels production and provide environmental benefits. However, it is required to quantify their relative advantages in feedstock production and water quality. The primary objective of this research was to evaluate potential feedstock yield and water quality benefit scenarios of bioenergy crops: Miscanthus (Miscanthus-giganteus), Switchgrass (Panicum virgatum), Johnsongrass (Sorghum halepense), Alfalfa (Medicago sativa L.), Soybean {Glycine max (L.) Merr.}, and Corn (Lea mays) in the Upper Pearl River watershed (UPRW), Mississippi using a Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0.60 to 0.86). The RMSE values (from 14 m3 s-1 to 37 m3 s-1) were estimated at similar levels of errors during model calibration and validation. The long-term average annual potential feedstock yield as an alternative energy source was determined the greatest when growing Miscanthus grass (373,849 Mg) as followed by Alfalfa (206,077 Mg), Switchgrass (132,077 Mg), Johnsongrass (47,576 Mg), Soybean (37,814 Mg), and Corn (22,069 Mg) in the pastureland and cropland of the watershed. Model results determined that average annual sediment yield from the Miscanthus grass scenario determined the least (1.16 Mg/ha) and corn scenario the greatest (12.04 Mg/ha). The SWAT model simulated results suggested that growing Miscanthus grass in the UPRW would have the greatest potential feedstock yield and water quality benefits.

  9. Aerobic microbial enhanced oil recovery

    SciTech Connect (OSTI)

    Torsvik, T.; Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  10. Low profile thermite igniter

    DOE Patents [OSTI]

    Halcomb, Danny L.; Mohler, Jonathan H.

    1991-03-05

    A thermite igniter/heat source comprising a housing, high-density thermite, and low-density thermite. The housing has a relatively low profile and can focus energy by means of a torch-like ejection of hot reaction products and is externally ignitable.

  11. Profile for Gautam Gupta

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gautam Gupta Profile Pages View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for. submit Gautam Gupta Gautam Gupta Email Phone (505) 606-0852 Capabilities Biosciences Biomaterials Chemical Science Biological chemistry Inorganic chemistry Organic chemistry Physical chemistry Energetic materials Mass spectrometers Materials chemistry

  12. Profile for Hisato Yamaguchi

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hisato Yamaguchi Profile Pages View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for. submit Hisato Yamaguchi Hisato Yamaguchi Email Phone (505) 664-0382 Capabilities Chemical Science Energetic materials Separation technologies Materials chemistry Carbon nanotubes Nanostructured quantum confined materials Materials Materials by design

  13. Pyrolysis kinetics applied to prediction of oil generation in the Maracaibo Basin, Venezuela

    SciTech Connect (OSTI)

    Sweeney, J.J.; Talukdar, S.; Burnham, A.K.; Vallejos, C.; DGSI, The Woodlands, TX; Lawrence Livermore National Lab., CA; INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas )

    1989-09-01

    We use chemical kinetic parameters for oil generation derived from modified Rock-Eval and Pyromat instruments, coupled with thermal history models, to predict the timing and extent of oil generation in the Maracaibo Basin of Venezuela. The vitrinite reflectance model developed at Lawrence Livermore National Laboratory is used to calibrate thermal history models with measured vitrinite reflectance profiles. We examine the way differences in the kinetic parameters affect predictions of oil maturation in several parts of the basin with different thermal histories. Maturity indicators, such as H/C atomic ratio and API gravity, are compared to the calculated extent of oil generation. We use the comparison to check the accuracy of the coupled oil generation and thermal history models. 20 refs., 13 figs.

  14. Performance profiles of major energy producers 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-13

    Performance Profiles of Major Energy Producers 1992 is the sixteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 25 major energy companies (the FRS companies) required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. The data are presented in the context of key energy market developments with a view toward identifying changing strategies of corporate development and measuring the apparent success of current ongoing operations.

  15. Coal sector profile

    SciTech Connect (OSTI)

    Not Available

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  16. Performance profiles of major energy producers, 1997

    SciTech Connect (OSTI)

    1999-01-01

    The energy industry generally and petroleum and natural gas operations in particular are frequently reacting to a variety of unsettling forces. Falling oil prices, economic upswings, currency devaluations, increasingly rigorous environmental quality standards, deregulation of electricity markets, and continued advances in exploration and production technology were among the challenges and opportunities to the industry in 1997. To analyze the extent to which these and other developments have affected energy industry financial and operating performance, strategies, and industry structure, the Energy Information Administration (EIA) maintains the Financial Reporting Systems (FRS). Through Form EIA-28, major US energy companies annually report to the FRS. Financial and operating information is reported by major lines of business, including oil and gas production (upstream), petroleum refining and marketing (downstream), other energy operations, and nonenergy business. Performance Profiles of Major Producers 1997 examines the interplays of energy markets, companies` strategies, and government policies (in 1997 and in historical context) that gave rise to the results given here. The report also analyzes other key aspects of energy company financial performance as seen through the multifaceted lens provided by the FRS data and complementary data for industry overall. 41 figs., 77 tabs.

  17. Oil shale retort apparatus

    DOE Patents [OSTI]

    Reeves, Adam A.; Mast, Earl L.; Greaves, Melvin J.

    1990-01-01

    A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

  18. Shale oil recovery process

    DOE Patents [OSTI]

    Zerga, Daniel P.

    1980-01-01

    A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

  19. Enhanced oil recovery

    SciTech Connect (OSTI)

    Fisher, W.G.

    1982-01-01

    The principal enhanced recovery technique is waterflooding, because water generally is inexpensive to obtain and inject into the reservoir and it works. With the shortage of conventional oil in Canada there is greater emphasis being placed on other recovery schemes in addition to or in place of waterflooding. Tertiary recovery is applicable to many of the existing projects and engineers must recognize those fields that are candidates for tertiary recovery applications. The application of tertiary recovery techniques to a specific reservoir requires consideration of all methods developed to select the one most suitable. A thorough understanding of waterflooding and the factors that affect recovery is necessary before a tertiary process is considered. Factors that affect oil recovery under waterflooding are areal and vertical sweep efficiency, contact factor and displacement efficiency.

  20. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  1. Oil Price Volatility

    U.S. Energy Information Administration (EIA) Indexed Site

    Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April

  2. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  3. Retrofitting heavy oil processes

    SciTech Connect (OSTI)

    Hamilton, G.L.; Fitzgerald, M.; D'Amico, V.

    1986-01-01

    Refiners, faced with the need to process the bottom end of the heavy high sulfur crude oil barrel in today's uncertain economic environment, are reluctant to commit large amounts of money to expensive upgrading processes. In order to conserve scarce capital while improving operating margins, additional valuable products can be produced by retrofits such as conversion of an idle crude unit to visbreaking, delayed coking or deasphalting service, or conversion of hydrodesulfurizers to mild hydrocracking.

  4. Successful Sequestration and Enhanced Oil Recovery Project Could...

    Energy Savers [EERE]

    Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil and Less CO2 Emissions Successful Sequestration and Enhanced Oil Recovery Project Could Mean More Oil ...

  5. Strategic Significance of Americas Oil Shale Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early products de- rived from shale oil included kerosene and lamp oil, paraffin, fuel oil, lubricating oil and grease, naphtha, illuminating gas, and ammonium sulfate fertilizer. ...

  6. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil ... Crude Oil plus Lease Condensate Proved Reserves, as of Dec. 31 North Louisiana Crude Oil ...

  7. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, R.D.

    1983-10-11

    Disclosed is a temperature profile detector shown as a tubular enclosure surrounding an elongated electrical conductor having a plurality of meltable conductive segments surrounding it. Duplicative meltable segments are spaced apart from one another along the length of the enclosure. Electrical insulators surround these elements to confine molten material from the segments in bridging contact between the conductor and a second electrical conductor, which might be the confining tube. The location and rate of growth of the resulting short circuits between the two conductors can be monitored by measuring changes in electrical resistance between terminals at both ends of the two conductors. Additional conductors and separate sets of meltable segments operational at differing temperatures can be monitored simultaneously for measuring different temperature profiles. 8 figs.

  8. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total

  10. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum

  11. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3

  12. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total

  6. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8

  7. Compare Gene Profiles

    SciTech Connect (OSTI)

    2014-05-31

    Compare Gene Profiles (CGP) performs pairwise gene content comparisons among a relatively large set of related bacterial genomes. CGP performs pairwise BLAST among gene calls from a set of input genome and associated annotation files, and combines the results to generate lists of common genes, unique genes, homologs, and genes from each genome that differ substantially in length from corresponding genes in the other genomes. CGP is implemented in Python and runs in a Linux environment in serial or parallel mode.

  8. Temperature-profile detector

    DOE Patents [OSTI]

    Not Available

    1981-01-29

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.

  9. Temperature profile detector

    DOE Patents [OSTI]

    Tokarz, Richard D.

    1983-01-01

    Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.

  10. LANL Data Profile

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Profile 2012-2013 Total: 10,407 Quick Facts FY2013 Operating Budget ..... $1.95 billion Operating costs 54% NNSA Weapons Programs 12% Work for other agencies 10% Nonproliferation programs 9% Environmental management 6% Safeguards and security 5% DOE Office of Science 4% Energy and related programs Workforce Demographics Average Age: 46 67% male, 33% female 45% ethnic minorities 67% university degrees -28% undergraduate degrees -17% graduate degrees -22% PhD degrees Capital/Construction

  11. Aerosol Extinction Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Thermodynamic Responses to Uncertainty in Aerosol Extinction Profiles For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Aerosol radiative effects are of great importance for climate simulations over South Asia. For quantifying aerosol direct radiative effect, aerosol optical depth (AOD) and single scattering albedo (SSA) are often compared with observations. These comparisons have revealed large AOD underestimation and

  12. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    Nuclear Profiles 2010 April 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing

  13. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  14. Surface profiling interferometer

    DOE Patents [OSTI]

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  15. DOE to Purchase Heating Oil for the Northeast Home Heating Oil...

    Energy Savers [EERE]

    Purchase Heating Oil for the Northeast Home Heating Oil Reserve DOE to Purchase Heating Oil for the Northeast Home Heating Oil Reserve June 23, 2008 - 1:29pm Addthis WASHINGTON, DC ...

  16. U.S. oil imports to decline with rising oil production through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  17. U.S. crude oil production expected to exceed oil imports later...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That ...

  18. High oil production continues to cut U.S. oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High oil production continues to cut U.S. oil imports High U.S. crude oil production will help further reduce America's reliance on oil imports during the next two years. In its ...

  19. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  20. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  1. Method of operating an oil shale kiln

    DOE Patents [OSTI]

    Reeves, Adam A.

    1978-05-23

    Continuously determining the bulk density of raw and retorted oil shale, the specific gravity of the raw oil shale and the richness of the raw oil shale provides accurate means to control process variables of the retorting of oil shale, predicting oil production, determining mining strategy, and aids in controlling shale placement in the kiln for the retorting.

  2. The twentieth oil shale symposium proceedings

    SciTech Connect (OSTI)

    Gary, J.H.

    1987-01-01

    This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.18 per gallon. That's down 79 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.13 per gallon, unchanged from last week, and down 88

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.16 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.11 per gallon, down 2.8 cents from last week, and down 77

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5.1 cents from a week ago to $2.11 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.05 per gallon, down 5.3 cents from last week, and down 75

  6. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 5 cents from a week ago to $2.06 per gallon. That's down 75 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.01 per gallon, down 4.1 cents from last week, and down 78

  7. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.8 cents from a week ago to $2.82 per gallon. That's down $1.36 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.79 per gallon, down 1.5 cents from last week, and down $1.34

  8. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1.8 cents from a week ago to $2.08 per gallon. That's down 72 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 3-tenths of a cent from last week, and down 76

  9. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $2.80 per gallon. That's down $1.44 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.78 per gallon, down 1.2 cents from last week, and down $1.40

  10. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.09 per gallon. That's down 82 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.02 per gallon, up 8-tenths of a cent from last week, and down 85

  11. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1.1 cents from a week ago to $2.10 per gallon. That's down 94 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 2.3 cents from last week, and down 95

  12. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 9-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.09 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, down 1-tenth of a cent from last week, and down $1.11

  13. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price decreases The average retail price for home heating oil fell 5-tenths of a cent from a week ago to $2.09 per gallon. That's down $1.20 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.03 per gallon, down 9-tenths of a cent from last week, and down $1.22

  14. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 6-tenths of a cent from a week ago to $2.10 per gallon. That's down $1.11 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.04 per gallon, up 5-tenths of a cent from last week, and down $1.14

  15. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 2.6 cents from a week ago to $2.12 per gallon. That's down 91 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.06 per gallon, up 2.1 cents from last week, and down 94

  16. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential heating oil price increases The average retail price for home heating oil rose 1 cent from a week ago to $2.13 per gallon. That's down 80 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $2.07 per gallon, up 9-tenths of a cent from last week, and down 83

  17. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 10.5 cents from a week ago to $2.93 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.90 per gallon, down 10.4 cents from last week. This is Marcela Rourk

  18. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2.3 cents from a week ago to $2.38 per gallon. That's down 99 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.32 per gallon, down 3.1 cents from last week, and down $1.00

  19. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 1.5 cents from a week ago to $2.36 per gallon. That's down 97 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.31 per gallon, down 2-tenths of a cent from last week, and down 96

  20. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3 cents from a week ago to $2.33 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.28 per gallon, down 3.5 cents from last week, and down 9

  1. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.26 per gallon. That's down 89 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.19 per gallon, down 8.9 cents from last week, and down 92

  2. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.5 cents from a week ago to $2.21 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.15 per gallon, down 3.6 cents from last week, and down 89

  3. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.5 cents from a week ago to $2.18 per gallon. That's down 87 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.13 per gallon, down 2.2 cents from last week, and down 88

  4. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    5, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 1.9 cents from a week ago to $3.43 per gallon. That's down 39 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.38 per gallon, down 2.6 cents from last week, and down 38.7

  5. Residential heating oil price decreases

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 7.8 cents from a week ago to $3.14 per gallon. That's down 81.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.12 per gallon, down 6.5 cents from last week, and down 79.9

  6. Residential heating oil prices available

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices available The average retail price for home heating oil is $3.52 per gallon. That's down 32.7 cents from a year ago, based on the U.S. Energy Information Administration's weekly residential heating fuel price survey. Heating oil prices in the New England region are at $3.48 per gallon, down 29.1 cents from a year ago. This is Marcela Rourk, with EIA, in Washington

  7. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 2 cents from a week ago to $3.36 per gallon. That's down 52.5 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.31 per gallon, down 1.3 cents from last week, and down 52.6

  8. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $3.08 per gallon. That's down 90.3 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.05 per gallon, down 6.8 cents from last week, and down 91.6

  9. Residential heating oil prices decline

    U.S. Energy Information Administration (EIA) Indexed Site

    2, 2014 Residential heating oil prices decline The average retail price for home heating oil is $3.48 per gallon. That's down 4.5 cents from a week ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region are at $3.43 per gallon, down 5.7 cents from last week. This is Amerine Woodyard

  10. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices decrease The average retail price for home heating oil fell 1.7 cents from a week ago to $4.02 per gallon. That's up 1.7 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 4.01 per gallon, down 6-tenths of a cent from last week, and up 5.8

  11. Residential heating oil prices decrease

    U.S. Energy Information Administration (EIA) Indexed Site

    9, 2014 Residential heating oil price decreases The average retail price for home heating oil fell 2.9 cents from a week ago to $3.45 per gallon. That's down 36.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.41 per gallon, down 3 cents from last week, and down 35

  12. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 5.4 cents from a week ago to $4.04 per gallon. That's up 4.9 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.02 per gallon, up 5.6 cents from last week, and up 8

  13. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    3, 2014 Residential heating oil prices increase The average retail price for home heating oil rose 4.4 cents from a week ago to $4.06 per gallon. That's up 4.1 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.03 per gallon, up 2.5 cents from last week, and up 6

  14. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 12 cents from a week ago to $4.18 per gallon. That's up 13 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 4.13 per gallon, up 9.8 cents from last week, and up 12.9 cents from a

  15. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 3.9 cents last week to $3.96 per gallon. That's down 2.6 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. The price for heating oil in the New England region averaged 3.92 per gallon, up 5.2 cents from last week, and 1.7

  16. Residential heating oil prices increase

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil prices increase The average retail price for home heating oil rose 2.9 cents from a week ago to $3.98 per gallon. That's up 6-tenths of a penny from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region rose to 3.96 per gallon, up 4.1 cents from last week, and up 4.8

  17. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A.; Young, Robert R.

    1985-01-01

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  18. Solar retorting of oil shale

    DOE Patents [OSTI]

    Gregg, David W.

    1983-01-01

    An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

  19. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  20. Oil market outlook and drivers

    Gasoline and Diesel Fuel Update (EIA)

    Oil inventories in industrialized countries to reach record high at end of 2015 The amount of year-end oil inventories held in industrialized countries is expected to be the highest on record in 2015. In its monthly forecast, the U.S. Energy Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this year almost 90 million barrels more than at the end of 2014. Global oil production

  1. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    The Federal forms below are required for State Energy Officials participating in the State Heating Oil and Propane Program (SHOPP) to execute their cooperative agreements with the ...

  2. Heating Oil and Propane Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Holiday Release Schedule The Heating Oil and Propane Update is produced during the winter heating season, which extends from October through March of each year. The standard ...

  3. Brushing up on oil recovery

    SciTech Connect (OSTI)

    Mackey, J.

    1995-12-01

    To be prepared for a range of oil spills, emergency response organizations must have an arsenal of powerful and adaptable equipment. Around the coastal United States, a network of oil spill cooperatives and emergency response organizations stand ready with the technology and the know-how to respond to the first sign of an oil spill. When the telephone rings, they may be required to mop up 200 gallons of oil that leaked off the deck of a ship or to contain and skim 2,000 gallons of oil from a broken hose at a loading terminal. In a few cases each year, they may find themselves responding to a major pollution incident, one that involves hundreds of people and tons of equipment. To clean an oil spill at a New Jersey marine terminal, the local cooperative used the Lundin Oil Recovery Inc. (LORI) skimming system to separate the oil and water and the lift the oil out of the river. The LORI skimming technology is based on sound principles of fluid management - using the natural movement of water instead of trying to fight against it. A natural feeding mechanism delivers oily water through the separation process, and a simple mechanical separation and recovery device - a brush conveyor - removes the pollutants from the water.

  4. Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands

    SciTech Connect (OSTI)

    Tyler, R.; Major, R.P.; Holtz, M.H.

    1997-08-01

    Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

  5. Upgrading residual oil

    SciTech Connect (OSTI)

    Angevine, P.J.; Stein, T.R.

    1982-04-13

    Residual oil fractions are upgraded in that Conradson Carbon Residue (CCR) is selectively removed without undue hydrogen consumption by hydroprocessing with a catalyst comprising a single metal such as molybdenum, tungsten, nickel, iron or palladium or multimetallic combination of such metals, excluding, however, active desulfurization compositions such as nickel molybdenum and nickel-tungsten. Said catalyst is characterized as having greater than about 50% of its pore volume contribution in pores having diameters in the range of between about 100 and 200 angstroms. The product of such hydroprocessing is a particularly preferable feedstock for coking to give more liquid yield and less coke make.

  6. Relationship between sediment morphology and oil pollution along the Suez Canal beaches, Egypt

    SciTech Connect (OSTI)

    Barakat, M.A.K.; Shimy, T.M.; Mostafa, Y.M.

    1996-10-01

    In this study, marine surface sediments are collected from nine locations along the Suez Canal in order to investigate the relationship between the morphology of sands in the studied beaches and pollution by oil. Basically, the studied samples were analyzed by three techniques: grains-size analysis, microscopic examination, and gas chromatographic (GC) analysis. This study concluded that medium sand is the major class represented in the studied marine sediments. Pollution in these sand grains increases in the irregular grains more so than in the more rounded grains. Also, deep surface points, pitting, and fissures are considered to be good sites to precipitate oil contamination. Also, the presence of iron oxides may be taken as evidence for tanker ballast washings. The heavy fraction (zircon) shows more contamination than the light fraction (quartz) in these samples. Finally, GC profiles have shown two types of samples: one typical of weathered or highly weathered crude oil patterns and the other for samples with very highly weathered profiles. The relationship obtained between morphology studies and both oil content and GC chromatogram profiles indicates that all of the studied locations are suffering from pollution of oil that is spilled while shipping petroleum through the Suez Canal.

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  8. Environmental profile of Paraguay

    SciTech Connect (OSTI)

    Not Available

    1985-12-01

    The social, cultural, physical, and economic dimensions of Paraguay's environment are analyzed to identify main environmental features and problems and to recommend specific actions. The environmental profile presents an overview of Paraguay's ethno-historic and anthropological background, present-day society, and the impact of pollution. Descriptions are presented of: the legal and institutional aspects of environmental policy; the structure and performance of the economy, with focus on the primary and energy sectors; physical resources (climate, geological, mineral, soil, and water resources); and biological resources (vegetation, wild animal life, protected areas, and fish resources).

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide