National Library of Energy BETA

Sample records for oil profile louisiana

  1. Louisiana

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana

  2. Louisiana DNR Oil and Gas Division | Open Energy Information

    Open Energy Info (EERE)

    Louisiana DNR Oil and Gas Division Jump to: navigation, search Name: Louisiana DNR Oil and Gas Division Address: P.O. Box 94396 Place: Louisiana Zip: 70804-9396 Website:...

  3. Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--North Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  4. Louisiana Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  5. Louisiana - North Crude Oil + Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - North Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  6. Louisiana Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana nuclear power plants, summer capacity and net generation, 2010" "Plant Name/Total Reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State nuclear net generation (Pprcent)","Owner" "River Bend Unit 1",974,"8,363",44.9,"Entergy Gulf States - LA LLC" "Waterford 3 Unit 3","1,168","10,276",55.1,"Entergy Louisiana Inc" "2 Plants 2

  7. Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  8. Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana - South Onshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 343 2010's 342 328 370 396 405 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus

  9. Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 56 2010's 57 61 76 67 78 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Crude Oil plus Lease

  10. Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana (with State Offshore) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 198 226 2000's 204 227 185 190 150 193 198 193 144 149 2010's 183 152 157 180 221 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release

  11. Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 143 146 2000's 123 134 139 150 115 148 162 164 122 129 2010's 126 113 125 155 188 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next

  12. Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 37 38 2000's 50 66 30 26 24 28 22 18 13 12 2010's 12 9 19 13 16 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  13. Louisiana - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  14. Louisiana - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  15. Louisiana - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Louisiana

  16. ,"North Louisiana Crude Oil plus Lease Condensate Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate Proved Reserves (Million Barrels) Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 3,704 2010's 4,043 4,567 4,602 4,591 4,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  18. ,"Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  19. ,"Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. ,"Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. Louisiana Sales of Distillate Fuel Oil by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  3. Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

  4. Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Oil Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Oil Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 410,179 375,593 360,533 1980's 360,906 348,113 357,671 408,632 461,821 502,000 529,453 470,493 426,945 403,144 1990's 408,654 455,052 436,493 467,340 518,305 522,437 523,155 566,210 643,886 722,750 2000's 752,296 NA NA NA NA NA NA NA NA NA 2010's NA NA 0 0 0 - = No Data Reported;

  5. Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing

    U.S. Energy Information Administration (EIA) Indexed Site

    Reservoirs (Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Federal Offshore--Louisiana and Alabama Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 1,128 1,133 2000's 1,267 2,352 2,530 2,801 2,581 2,591 1,816 2,231 2,229 2,013 2010's 1,595 2,597 2,130 2,406 2,204 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Terrebonne Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Terrebonne Parish, Louisiana Bayou Cane, Louisiana Chauvin, Louisiana Dulac, Louisiana Gray, Louisiana Houma, Louisiana Montegut, Louisiana Schriever, Louisiana Retrieved from...

  7. Technical/economical feasibility study for the Apex Oil Company alcohol/gasohol plant near Carville, Louisiana

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The results of a study conducted to determine the feasibility of constructing and operating a 33 million gallon-per-year ethanol plant in Carville, Louisiana are presented. Under current market conditions the 33 million gallon per year ethanol plant under consideration by Apex at its Carville, Louisiana site does not appear to be attractive at this time. There are five major factors which contribute to this outcome: (1) the market for ethanol/gasohol is not developed to the point where there is sufficient demand to assure full plant utilization in the near future; (2) the price required to provide a reasonable rate of return is 80 cents per barrel above the current estimated market clearing price of $1.50 per gallon; (3) the capital costs to construct a plant of this size has increased from $30 million at the onset of the study to $86 million; (4) Louisiana gasohol blending incentives cannot be assured since there is insufficient local feedstock production to meet the minimum import requirements; and (5) lack of participation by major oil companies in the gasohol program limits both the distribution and potential retail outlets for the product. Apex plans to place the project on hold pending satisfactory resolution of these items.

  8. Livingston Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana French Settlement, Louisiana Killian, Louisiana Livingston, Louisiana Port Vincent, Louisiana Springfield, Louisiana Walker, Louisiana Retrieved from "http:...

  9. Jefferson Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Estelle, Louisiana Grand Isle, Louisiana Gretna, Louisiana Harahan, Louisiana Harvey, Louisiana Jean Lafitte, Louisiana Jefferson, Louisiana Kenner, Louisiana Lafitte,...

  10. St. Landry Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Leonville, Louisiana Melville, Louisiana Opelousas, Louisiana Palmetto, Louisiana Port Barre, Louisiana Sunset, Louisiana Washington, Louisiana Retrieved from "http:...

  11. Lafourche Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Galliano, Louisiana Golden Meadow, Louisiana Larose, Louisiana Lockport, Louisiana Mathews, Louisiana Raceland, Louisiana Thibodaux, Louisiana Retrieved from "http:...

  12. Evangeline Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Basile, Louisiana Chataignier, Louisiana Mamou, Louisiana Pine Prairie, Louisiana Turkey Creek, Louisiana Ville Platte, Louisiana Retrieved from "http:en.openei.orgw...

  13. De Soto Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Longstreet, Louisiana Mansfield, Louisiana South Mansfield, Louisiana Stanley, Louisiana Stonewall, Louisiana Retrieved from "http:en.openei.orgw...

  14. Union Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Farmerville, Louisiana Junction City, Louisiana Lillie, Louisiana Marion, Louisiana Spearsville, Louisiana Retrieved from "http:en.openei.orgw...

  15. Acadia Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in Acadia Parish, Louisiana Basile, Louisiana Church Point, Louisiana Crowley, Louisiana Duson, Louisiana Estherwood, Louisiana Eunice, Louisiana Iota, Louisiana...

  16. Caddo Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Panhandle Energies LLC Places in Caddo Parish, Louisiana Belcher, Louisiana Blanchard, Louisiana Gilliam, Louisiana Greenwood, Louisiana Hosston, Louisiana Ida, Louisiana...

  17. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease Condensate Proved Reserves",10,"Annual",2014...

  18. Assumption Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Zone Number 2 Climate Zone Subtype A. Places in Assumption Parish, Louisiana Belle Rose, Louisiana Labadieville, Louisiana Napoleonville, Louisiana Paincourtville, Louisiana...

  19. Plaquemines Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana Boothville-Venice, Louisiana Buras-Triumph, Louisiana Empire, Louisiana Port Sulphur, Louisiana Retrieved from "http:en.openei.orgwindex.php?titlePlaqueminesP...

  20. St. Charles Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Louisiana Montz, Louisiana New Sarpy, Louisiana Norco, Louisiana Paradis, Louisiana St. Rose, Louisiana Taft, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.C...

  1. St. Mary Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    A. Places in St. Mary Parish, Louisiana Amelia, Louisiana Baldwin, Louisiana Bayou Vista, Louisiana Berwick, Louisiana Charenton, Louisiana Franklin, Louisiana Morgan City,...

  2. Rapides Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Cleco Power LLC Places in Rapides Parish, Louisiana Alexandria, Louisiana Ball, Louisiana Boyce, Louisiana Cheneyville, Louisiana Deville, Louisiana Forest Hill,...

  3. DOE - Fossil Energy: An Introduction to Oil Well Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use each day? To find out... READ ON.... FORWARD Dr. H. Carbon asks: Which state produces the most crude oil? ALASKA Alaska TEXAS Texas LOUISIANA Louisiana CALIFORNIA California

  4. Sabine Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    3 Climate Zone Subtype A. Places in Sabine Parish, Louisiana Converse, Louisiana Fisher, Louisiana Florien, Louisiana Many, Louisiana Noble, Louisiana Pleasant Hill,...

  5. East Feliciana Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Climate Zone Subtype A. Places in East Feliciana Parish, Louisiana Clinton, Louisiana Jackson, Louisiana Norwood, Louisiana Slaughter, Louisiana Wilson, Louisiana Retrieved from...

  6. Allen Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 2 Climate Zone Subtype A. Places in Allen Parish, Louisiana Elizabeth, Louisiana Kinder, Louisiana Oakdale, Louisiana Oberlin, Louisiana Reeves, Louisiana...

  7. Iberville Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Tete, Louisiana Maringouin, Louisiana Plaquemine, Louisiana Rosedale, Louisiana St. Gabriel, Louisiana White Castle, Louisiana Retrieved from "http:en.openei.orgw...

  8. Bossier Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Bossier City, Louisiana Eastwood, Louisiana Haughton, Louisiana Plain Dealing, Louisiana Red Chute, Louisiana Shreveport, Louisiana Retrieved from "http:en.openei.orgw...

  9. St. Martin Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Broussard, Louisiana Cecilia, Louisiana Henderson, Louisiana Morgan City, Louisiana Parks, Louisiana St. Martinville, Louisiana Retrieved from "http:en.openei.orgw...

  10. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. Concentrations in produced water discharge plume/receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  11. Radionuclides, Metals, and Hydrocarbons in Oil and Gas Operational Discharges and Environmental Samples Associated with Offshore Production Facilities on the Texas/Louisiana Continental Shelf with an Environmental Assessment of Metals and Hydrocarbons.

    SciTech Connect (OSTI)

    1997-06-01

    This report presents concentrations of radionuclides, metals, and hydrocarbons in samples of produced water and produced sand from oil and gas production platforms located offshore Texas and Louisiana. concentrations in produced water discharge plume / receiving water, ambient seawater, sediment, interstitial water, and marine animal tissue samples collected in the vicinity of discharging platforms and reference sites distant from discharges are also reported and discussed. An environmental risk assessment is made on the basis of the concentration of metals and hydrocarbons determined in the samples.

  12. Profiles in Leadership: Paula Gant, Deputy Secretary for Oil and Gas

    Broader source: Energy.gov [DOE]

    This is Profiles in Leadership, a series of interviews with senior executives in the Office of Fossil Energy (FE). In this edition we talk to Paula Gant, Deputy Secretary for Oil and Gas

  13. St. Tammany Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Madisonville, Louisiana Mandeville, Louisiana Pearl River, Louisiana Slidell, Louisiana Sun, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleSt.TammanyParish,L...

  14. Vernon Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hornbeck, Louisiana Leesville, Louisiana New Llano, Louisiana Rosepine, Louisiana Simpson, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleVernonParish,Loui...

  15. Webster Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Webster Parish, Louisiana Cotton Valley, Louisiana Cullen, Louisiana Dixie Inn, Louisiana Doyline, Louisiana Dubberly,...

  16. Madison Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Madison Parish, Louisiana Delta, Louisiana Mound, Louisiana Richmond, Louisiana Tallulah, Louisiana Retrieved from "http:en.openei.orgw...

  17. Louisiana Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net generation (thousand mwh)","Share of State total (percent)" "Nuclear","2,142",8.0,"18,639",18.1 "Coal","3,417",12.8,"23,924",23.3 "Hydro and Pumped Storage",192,0.7,"1,109",1.1

  18. Louisiana Nuclear Profile - River Bend

    U.S. Energy Information Administration (EIA) Indexed Site

    River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date" 1,974,"8,363",98.0,"BWR","application/vnd.ms-excel","application/vnd.ms-excel" ,974,"8,363",98.0 "Data for 2010" "BWR = Boiling

  19. Louisiana Nuclear Profile - Waterford 3

    U.S. Energy Information Administration (EIA) Indexed Site

    Waterford 3" "Unit","Summer Capacity (MW)","Net Generation (Thousand MWh)","Summer Capacity Factor (Percent)","Type","Commercial Operation Date","License Expiration Date" 3,"1,168","8,949",87.5,"PWR","application/vnd.ms-excel","application/vnd.ms-excel" ,"1,168","8,949",87.5

  20. South Louisiana Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    South Louisiana Ethanol LLC Place: Louisiana Product: Ethanol production equipment provider. References: South Louisiana Ethanol LLC1 This article is a stub. You can help OpenEI...

  1. Lafayette, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Act Smart Grid Projects in Lafayette, Louisiana Lafayette Consolidated Government, LA Smart Grid Project Utility Companies in Lafayette, Louisiana City of Lafayette, Louisiana...

  2. Louisiana/Incentives | Open Energy Information

    Open Energy Info (EERE)

    (Louisiana) Sales Tax Incentive No DEMCO - Touchstone Energy Home Program (Louisiana) Utility Rebate Program Yes Energy Fund (Louisiana) State Bond Program No Entergy New...

  3. Louisiana: Louisiana's Clean Energy Resources and Economy (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-03-01

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

  4. West Baton Rouge Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    A. Places in West Baton Rouge Parish, Louisiana Addis, Louisiana Brusly, Louisiana Port Allen, Louisiana Retrieved from "http:en.openei.orgwindex.php?titleWestBatonRoug...

  5. Ascension Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    2 Climate Zone Subtype A. Places in Ascension Parish, Louisiana Donaldsonville, Louisiana Gonzales, Louisiana Sorrento, Louisiana Retrieved from "http:en.openei.orgw...

  6. Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 938,635 822,216 818,942 724,016 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Louisiana

  7. EIS-0010: Strategic Petroleum Reserves, Sulphur Mines Salt Dome, Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Strategic Petroleum Reserves prepared this EIS to assess the environmental impacts of the proposed storage of 24 million barrels of crude oil at the Sulphur Mines salt dome located in Calcasieu Parish, Louisiana, including construction and operation impacts.

  8. Louisiana: Verenium Cellulosic Ethanol Demonstration Facility...

    Energy Savers [EERE]

    Louisiana: Verenium Cellulosic Ethanol Demonstration Facility Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium...

  9. Metairie, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Louisiana.1 Registered Energy Companies in Metairie, Louisiana Pontchartrain Mechanical Company References US Census Bureau 2005 Place to 2006 CBSA Retrieved from...

  10. THIRD GEOPRESSURED-GEOTHERMAL ENERGY CONFERENCE University of Southwestern Louisiana

    Office of Scientific and Technical Information (OSTI)

    THIRD GEOPRESSURED-GEOTHERMAL ENERGY CONFERENCE University of Southwestern Louisiana La fay ette, Louisiana November , I 6-1 8, 19,77 VOLUME I - Supported by the U. S. DEPARTMENT OF ENERGY under Contract No. EG-77-G.05-5557 Assistance provided by the American Gas Association O W Is CONF-771153-P1-8 CRUDE OIL AND NATURAL GAS DISSOLVED IN DEEP, HOT GEOTHERMAL WATERS OF PETROLEUM BASINS-- A POSSIBLE SIGNIFICANT NEW ENERGY SOURCE ! Leigh C . Price, U.S. Geological Survey, Denver, Colorado ABSTRACT

  11. St. James Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Generation Facilities in St. James Parish, Louisiana IMC Phosphates Company Uncle Sam Biomass Facility Places in St. James Parish, Louisiana Gramercy, Louisiana Lutcher,...

  12. Louisiana Offshore Natural Gas Plant Liquids Production Extracted...

    Gasoline and Diesel Fuel Update (EIA)

    Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Louisiana Offshore Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade...

  13. Louisiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Louisiana Region High School Regional Louisiana Louisiana Regional High School...

  14. Energy Incentive Programs, Louisiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana Energy Incentive Programs, Louisiana Updated June 2015 Louisiana utilities collectively budgeted over $5 million for energy efficiency programs in 2014. What public-purpose-funded energy efficiency programs are available in my state? Louisiana has no public-purpose-funded energy efficiency programs; however, in 2013 the Louisiana Public Service Commission (LSPC) created a framework for voluntary energy efficiency programs. Investor-owned electric utilities began offering programs in

  15. Entergy Gulf States Louisiana LLC | Open Energy Information

    Open Energy Info (EERE)

    States Louisiana LLC Jump to: navigation, search Name: Entergy Gulf States Louisiana LLC Place: Louisiana Phone Number: 1-800-368-3749 Website: www.entergy-louisiana.com Twitter:...

  16. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  17. Workplace Charging Challenge Partner: Louisiana State University |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Workplace Charging Challenge Partner: Louisiana State University Joined the Challenge: October 2015 Headquarters: Baton Rouge, LA Charging Location: Baton Rouge, LA Domestic Employees: 36,757 Louisiana State University (LSU) has 3 charging stations on campus, and 12 plug-in electric vehicles routinely used the stations in 2015. LSU Campus Sustainability aims to promote energy

  18. Louisiana Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals 159,456 166,570 164,270 166,973 161,280 163,799 1991-2015 From Gas Wells NA NA NA NA NA NA 1991-2015 From Oil Wells NA NA NA NA NA NA 1991-2015 From Shale Gas ...

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Renewable Electricity Profile 2010 Louisiana profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - -

  20. New Orleans, Louisiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Orleans, Louisiana New Orleans, Louisiana NOLA WISE Location: New Orleans, Louisiana Seed Funding: $2.4 million-a portion of SEEA Southeast Consortium's $20 million funding Target Building Types: Residential (single-family and multifamily), commercial Website: www.nolawise.org Learn More: Read SEEA Snapshot Reports Watch program video View Presentations: NOLA WISE Energy Home Makeover Contest February 17, 2012 NOLA WISE Transforms the Energy Efficiency Market in the Big Easy In fall 2011,

  1. Sandia Energy - Louisiana Blue Ribbon Commission on Bayou Corne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the sinkhole. (Photo courtesy of Louisiana Department of Natural Resources) Secretary Stephen Chustz, from the Louisiana Department of Natural Resources (LADNR), asked David Borns...

  2. Louisiana's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Louisiana's 5th congressional district Cleco Power LLC Smart Grid Project Registered Energy Companies in Louisiana's 5th congressional district...

  3. Louisiana's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Projects in Louisiana's 7th congressional district Lafayette Consolidated Government, LA Smart Grid Project Energy Generation Facilities in Louisiana's 7th congressional district...

  4. Lafayette Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Smart Grid Projects in Lafayette Parish, Louisiana Lafayette Consolidated Government, LA Smart Grid Project Utility Companies in Lafayette Parish, Louisiana City of Lafayette,...

  5. New Orleans, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Inc. Smart Grid Project Registered Energy Companies in New Orleans, Louisiana GT Energy Sun Energy Group LLC Energy Incentives for New Orleans, Louisiana Climate Action Plan (New...

  6. Orleans Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Smart Grid Project Registered Energy Companies in Orleans Parish, Louisiana GT Energy Sun Energy Group LLC Energy Incentives for Orleans Parish, Louisiana Climate Action Plan...

  7. Louisiana Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Louisiana Region Middle School Regional Louisiana Arkansas Regional Middle...

  8. Louisiana's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Louisiana's 2nd congressional district Entergy New Orleans Inc Retrieved from "http:en.openei.orgwindex.php?titleLouisiana%27s2ndcongressionaldistrict&oldid192538...

  9. Louisiana's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in Louisiana's 1st congressional district Entergy New Orleans Inc Retrieved from "http:en.openei.orgwindex.php?titleLouisiana%27s1stcongressionaldistrict&oldid192537...

  10. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:38 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Louisiana Natural Gas in ...

  11. Crowley, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Crowley, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.2140928, -92.3745761 Show Map Loading map... "minzoom":false,"mappingser...

  12. ,"Louisiana Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  13. ,"Louisiana Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  14. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  15. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey...

  16. Louisiana Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New...

  17. Washington Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Washington Parish, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.6163073, -92.057063 Show Map Loading map......

  18. Louisiana/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Louisiana Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  19. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    the U.S. Oil Market Hurricane Katrina's Impact on the U.S. Oil Market As of 3:00 pm, Monday, August 29 --SEE MOST RECENT-- According to the Minerals Management Service (MMS), Gulf of Mexico oil production was reduced by about 1.4 million barrels per day as a result of Hurricane Katrina. The MMS also reported that 8.3 billion cubic feet per day of natural gas production was shut in. The Louisiana Offshore Oil Port (LOOP) stopped making shipments to onshore facilities as of Saturday, and was

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  2. Improved oil production using economical biopolymer-surfactant blends for profile modification and mobility control. Final report, November 1998

    SciTech Connect (OSTI)

    Gabitto, J.; Barrufet, M.A.; Burnett, D.B.

    1998-12-01

    In the past, starch hydrocolloids have not been effective alternates to partially hydrolyzed polyacrylamides, copolymers, and xanthan gum polymers as water shutoff agents in fractures and in matrix flow configurations. Poor injectivity and questionable stability have usually prevented their use in profile control applications. However, in recent years, the demands of the oil and gas drilling industry have led to the development of new drilling, drill-in, and completion fluids with improved functionality. New types of modified starches have contributed to these new drill in fluid (DIF) products. It was felt that the properties of the new products would lend themselves to applications in improved recovery. The objective of this project has been to evaluate the use of agricultural starch biopolymers for gelled and polymer applications in oil recovery processes. The authors believe that there is great potential for finding new functional starch products because of their chemical and structural flexibility, low cost, and wide availability. The goals of this project have been, therefore, to systematically investigate how the physical properties and chemical composition of relatively inexpensive agricultural starch products will influence their use as effective selective permeability control agents or as gels for water shut-off.

  3. Profiling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Profiles in Renewable Energy: Case Studies of Successful Utility-Sector Projects The Shape of Renewable Energy Technologies Today Biomass Wood-Burning Plant Reduces Air Pollution Kettle Falls Wood-Fired Plant Washington Power Company Regulatory Changes Spur Wood-Fired Plant Grayling Generating Station Decker Energy International, Inc. Community Partnership Leads to Waste-Burning Plant Bristol Waste-to-Energy Plant Ogden Martin Systems Geothermal Geothermal Loan Encourages New Power

  4. EA-0952: The Louisiana State University Waste-to Energy Incinerator, Baton Rouge, Louisiana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for incinerating combustible, non-recyclable office wastes from Louisiana State University (LSU) administrative/academic areas and...

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  7. Louisiana Renewable Electric Power Industry Statistics

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana Primary Renewable Energy Capacity Source WoodWood ... Hydro Conventional 192 0.7 Solar - - Wind - - WoodWood ...Landfill Gas - - Other Biomass 74 0.1 - No data reported. ...

  8. Louisiana Natural Gas Plant Processing

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  9. Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Processed in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

  10. South Louisiana Elec Coop Assn | Open Energy Information

    Open Energy Info (EERE)

    search Name: South Louisiana Elec Coop Assn Place: Louisiana Phone Number: Houma Office: (985) 876-6880 or Amelia Office: (985) 631-3605 Website: www.sleca.com Facebook:...

  11. Entergy (Louisiana and Gulf States)- Residential Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    Residential customers of Entergy Louisiana, and Entergy Gulf States Louisiana can participate in energy efficiency programs designed to help offset cost of installing energy efficient equipment and...

  12. Panola-Harrison Elec Coop, Inc (Louisiana) | Open Energy Information

    Open Energy Info (EERE)

    Louisiana) Jump to: navigation, search Name: Panola-Harrison Elec Coop, Inc Place: Louisiana Phone Number: (318) 933-5096 Outage Hotline: (318) 933-5096 References: EIA Form...

  13. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    292016 12:15:44 AM" "Back to Contents","Data 1: Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035LA3" "Date","Louisiana...

  14. Surviving the toxics in south Louisiana: A minority perspective

    SciTech Connect (OSTI)

    Wright, B.

    1995-12-01

    The Louisiana industrial corridor along the Mississippi River is lined with 136 petro-chemical plants and serves oil refineries. This approximates nearly one plant or refinery for every half mile of the river. The air, ground, and water along this corridor are so full or carcinogens that it has been described as a massive human experiment. Poor blacks live in river towns near the brunt of this discharge. Total mortality rates and cancer mortality rates in counties along the Mississippi River are significantly higher than in the rest of the nation`s counties. Moreover, the areas of greatest toxic discharge. Findings of disproportionately high mortality rates along the Mississippi, especially in communities on the lower river where toxic discharge minority and poor communities along the Mississippi River chemical corridor.

  15. Louisiana: Louisiana’s Clean Energy Resources and Economy

    SciTech Connect (OSTI)

    2013-03-15

    This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Louisiana.

  16. Alternative Fuels Data Center: Louisiana Transportation Data for

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels and Vehicles Louisiana Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Louisiana Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data

  17. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  19. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  20. EIA Report 9/12/08 - Hurricane Impacts on U.S. Oil & Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum As of 12:30 pm EDT (11:30 am CDT), September 12, the Minerals Management Service ... Additionally, the Louisiana Offshore Oil Port (LOOP) suspended all operations, both ...

  1. EIA Report 9/11/08 - Hurricane Impacts on U.S. Oil & Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum As of 12:30 pm EDT (11:30 am CDT), September 11, the Minerals Management Service ... Additionally, the Louisiana Offshore Oil Port (LOOP) suspended marine operations for ...

  2. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England

    2004-10-20

    In 1997, the United States Environmental Protection Agency (EPA) promulgated new National Ambient Air Quality Standards (NAAQS) for particulate matter, including for the first time particles with aerodynamic diameter smaller than 2.5 micrometers ({micro}m) referred to as PM2.5. PM2.5 in the atmosphere also contributes to reduced atmospheric visibility, which is the subject of existing rules for siting emission sources near Class 1 areas and new Regional Haze rules. There are few existing data regarding emissions and characteristics of fine aerosols from oil, gas and power generation industry combustion sources, and the information that is available is generally outdated and incomplete. Traditional stationary source air emission sampling methods tend to underestimate or overestimate the contribution of the source to ambient aerosols because they do not properly account for primary aerosol formation, which occurs after the gases leave the stack. Primary aerosol includes both filterable particles that are solid or liquid aerosols at stack temperature plus those that form as the stack gases cool through mixing and dilution processes in the plume downwind of the source. These deficiencies in the current methods can have significant impacts on regulatory decision-making. PM2.5 measurement issues were extensively reviewed by the American Petroleum Institute (API) (England et al., 1998), and it was concluded that dilution sampling techniques are more appropriate for obtaining a representative particulate matter sample from combustion systems for determining PM2.5 emission rate and chemical speciation. Dilution sampling is intended to collect aerosols including those that condense and/or react to form solid or liquid aerosols as the exhaust plume mixes and cools to near-ambient temperature immediately after the stack discharge. These techniques have been widely used in recent research studies. For example, Hildemann et al. (1994) and McDonald et al. (1998) used filtered ambient air to dilute the stack gas sample followed by 80-90 seconds residence time to allow aerosol formation and growth to stabilize prior to sample collection and analysis. More accurate and complete emissions data generated using the methods developed in this program will enable more accurate source-receptor and source apportionment analysis for PM2.5 National Ambient Air Quality Standards (NAAQS) implementation and streamline the environmental assessment of oil, gas and power production facilities. The overall goals of this program were to: (1) Develop improved dilution sampling technology and test methods for PM2.5 mass emissions and speciation measurements, and compare results obtained with dilution and traditional stationary source sampling methods. (2) Develop emission factors and speciation profiles for emissions of fine particulate matter, especially organic aerosols, for use in source-receptor and source apportionment analyses. (3) Identify and characterize PM2.5 precursor compound emissions that can be used in source-receptor and source apportionment analyses.

  3. DOE Announces Loans of Oil from the Strategic Petroleum Reserve |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Loans of Oil from the Strategic Petroleum Reserve DOE Announces Loans of Oil from the Strategic Petroleum Reserve June 28, 2006 - 2:38pm Addthis WASHINGTON, DC - U. S. Department of Energy (DOE) Secretary Samuel W. Bodman announced today that DOE has approved two loan requests totaling 750,000 barrels of crude oil from the Strategic Petroleum Reserve (SPR) to two Louisiana refineries. The refineries were not receiving scheduled shipments of crude oil because of the

  4. Improvement of Carbon Dioxide Sweep Efficiency by Utilization of Microbial Permeability Profile Modification to Reduce the Amount of Oil Bypassed During Carbon Dioxide Flood

    SciTech Connect (OSTI)

    Darrel Schmitz; Lewis Brown F. Leo Lynch; Brenda Kirkland; Krystal Collins; William Funderburk

    2010-12-31

    The objective of this project was to couple microbial permeability profile modification (MPPM), with carbon dioxide flooding to improve oil recovery from the Upper Cretaceous Little Creek Oil Field situated in Lincoln and Pike counties, MS. This study determined that MPPM technology, which improves production by utilizing environmentally friendly nutrient solutions to simulate the growth of the indigenous microflora in the most permeable zones of the reservoir thus diverting production to less permeable, previously unswept zones, increased oil production without interfering with the carbon dioxide flooding operation. Laboratory tests determined that no microorganisms were produced in formation waters, but were present in cores. Perhaps the single most significant contribution of this study is the demonstration that microorganisms are active at a formation temperature of 115?C (239?F) by using a specially designed culturing device. Laboratory tests were employed to simulate the MPPM process by demonstrating that microorganisms could be activated with the resulting production of oil in coreflood tests performed in the presence of carbon dioxide at 66?C (the highest temperature that could be employed in the coreflood facility). Geological assessment determined significant heterogeneity in the Eutaw Formation, and documented relatively thin, variably-lithified, well-laminated sandstone interbedded with heavily-bioturbated, clay-rich sandstone and shale. Live core samples of the Upper Cretaceous Eutaw Formation from the Heidelberg Field, MS were quantitatively assessed using SEM, and showed that during MPPM permeability modification occurs ubiquitously within pore and throat spaces of 10-20 ?m diameter. Testing of the MPPM procedure in the Little Creek Field showed a significant increase in production occurred in two of the five production test wells; furthermore, the decline curve in each of the production wells became noticeably less steep. This project greatly extends the number of oil fields in which MPPM can be implemented.

  5. Environmental Assessment for decommissioning the Strategic Petroleum Reserve Weeks Island Facility, Iberia Parish, Louisiana

    SciTech Connect (OSTI)

    1995-12-01

    The Strategic Petroleum Reserve (SPR) Weeks Island site is one of five underground salt dome crude oils storage facilities operated by the Department of Energy (DOE). It is located in Iberia Parish, Louisiana. The purpose of the proposed action is to decommission the Weeks Island crude oil storage after the oil inventory has been transferred to other SPR facilities. Water intrusion into the salt dome storage chambers and the development of two sinkholes located near the aboveground facilities has created uncertain geophysical conditions. This Environmental Assessment describes the proposed decommissioning operation, its alternatives, and potential environmental impacts. Based on this analyses, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) and has issued the Finding of No Significant Impact (FONSI).

  6. Louisiana Save Energy Now Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » State and Utility Engagement Activities » Louisiana Save Energy Now Program Louisiana Save Energy Now Program Map highlighting Louisiana According to the U.S. Energy Information Administration, the industrial sector accounts for approximately one-third of all energy consumed in the United States each year. The U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO; formerly the Industrial Technologies Program) developed multiple resources and a suite of

  7. EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility | Department of Energy Louisiana: Verenium Cellulosic Ethanol Demonstration Facility EERE Success Story-Louisiana: Verenium Cellulosic Ethanol Demonstration Facility April 9, 2013 - 12:00am Addthis In 2010, Verenium Corporation received EERE funds to operate a 1.4 million gallon per year demonstration plant in Jennings, Louisiana, to convert agricultural residues and energy crops to cellulosic ethanol. The project's goal was to implement a technology that had been demonstrated in a

  8. MiniBooNE: Up and Running Morgan Wascko Morgan Wascko Louisiana...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wascko Louisiana State University Louisiana State University Morgan O. Wascko, LSU Yang Institute Conference 11 October, 2002 MiniBooNE detector at Fermi National Accelerator...

  9. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Natural Gas Plant Liquids, Proved Reserves (Million Barrels) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas Plant Liquids, Proved Reserves (Million Barrels)...

  10. SEP Success Story: Louisiana Company Makes Switch to CNG, Helps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture A ...

  11. Louisiana Company Makes Switch to CNG, Helps Transform Local...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Cedric ...

  12. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana ...

    Energy Savers [EERE]

    environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing...

  13. Louisiana--State Offshore Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  14. Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2...

  15. Louisiana - South Onshore Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1...

  16. Louisiana--South Onshore Natural Gas Plant Liquids, Expected...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  17. Louisiana State Offshore Dry Natural Gas Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

  18. Louisiana--North Natural Gas Plant Liquids, Expected Future Production...

    Gasoline and Diesel Fuel Update (EIA)

    Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  19. ,"Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)",1,"Annual",2014 ,"Release Date:","9...

  20. ,"Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  1. Louisiana Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  2. Krotz Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Krotz Springs, Louisiana: Energy Resources (Redirected from Krotz Springs, LA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.5368592, -91.7528931 Show Map...

  3. Abita Springs, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Abita Springs, Louisiana: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.4785257, -90.0375755 Show Map Loading map... "minzoom":false,"mapp...

  4. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana...

  5. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease...

  6. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease...

  7. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Dry Natural Gas Proved Reserves",10,"Annual",2014,"06301981"...

  8. ,"Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore, Gulf of Mexico, Louisiana & Alabama Coalbed Methane Proved Reserves, Reserves Changes, and...

  9. City of Natchitoches, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Twitter: @natchitoches Facebook: https:www.facebook.comnatchitoches.louisiana.56 Outage Hotline: (318) 357-3880 References: EIA Form EIA-861 Final Data File for 2010 -...

  10. City of Lafayette, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    (Redirected from Lafayette Consolidated Government, LA) Jump to: navigation, search Name: City of Lafayette Place: Lafayette, Louisiana References: EIA Form EIA-861 Final Data File...

  11. Louisiana Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Louisiana are ...

  12. Heavy rains hamper Louisiana gas line

    SciTech Connect (OSTI)

    Horner, C.

    1983-06-01

    Despite heavy rains and flooding a 36-mile gas pipeline loop for Transcontinental Gas Pipe Line Corp. was completed from north of Starks (at the end of Transco's south Louisiana lateral) to the Lake Charles area. Somastic-coated, 42-in. grade X-60 pipe comprises 90% of the route. The contract included multiple 30-42 in. fabrications, installation of six 42-in. gate valves, and expansion of the Gillis compressor station.

  13. Regional and local subsidence in Louisiana

    SciTech Connect (OSTI)

    Trahan, D.B.

    1984-01-01

    The measurement of local, man-induced subsidence is especially critical in areas with high rates of land loss. To measure this subsidence, absolute historical geodetic movements have been estimated by adjusting all movements along the first-order vertical control network from northeast to southwest Louisiana as related to the Monroe uplift. The adjustment will serve as a base line by which local subsidence or uplift can be measured. A generalized trend of increasing subsidence to the south in Louisiana probably reflects increasing sediment thickness and weight toward the axis of the Gulf Coast basin. Anomalous values as low as -17.6 mm/y (-0.7 in./y) occur in areas overlying Pleistocene and Holocene fluvial elements. Positive movement as high as +4.1 mm/y (+0.2 in./y), has been found to be associated with the Iberian structural axis in south-central Louisiana. Land subsidence due to natural causes may far outweigh subsidence resulting from fluid withdrawal or depressurization of geopressured aquifers. The effects of regional and local natural processes should not be underestimated in any systematic approach to measuring subsidence.

  14. North Louisiana Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions 1 12 31 1 6 27 2009-2014 Extensions 1 2 0 0 1 2 2009-2014 New Field Discoveries 0 0 0 0 0 0 2009-2014 New Reservoir Discoveries in Old Fields 0 0 0 0 0 0 2009-2014 ...

  15. Louisiana Crude Oil plus Lease Condensate Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions 26 28 21 50 51 54 2009-2014 New Field Discoveries 0 0 1 1 1 5 2009-2014 New Reservoir Discoveries in Old Fields 3 6 2 1 4 3 2009-2014 Estimated Production 68 66 68 70 71 ...

  16. South Louisiana Enhanced Oil Recovery/Sequestration Demonstration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the benefits of carbon capture, utilization, and storage (CCUS) to stakeholders; and (5) satisfying the regulatory permitting requirements for small-scale CCUS projects. ...

  17. ,"Louisiana Crude Oil plus Lease Condensate Proved Reserves"

    U.S. Energy Information Administration (EIA) Indexed Site

    plus Lease Condensate Proved Reserves" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

  18. Louisiana Title V General Permits

    SciTech Connect (OSTI)

    Boyer, B.E.; Neal, T.L.

    1995-12-31

    Title V of the Federal Clean Air Act Amendments of 1990 requires federal operating permits for all major sources of air pollution. In 1992, Title 40, Part 70 of the Code of Federal Regulations (40 CFR Part 70) codified the law s requirements. These federal regulations, entitled Operating Permit Program, define the minimum requirements for state administered operating permit programs. The intent of Title V is to put into one document all requirements of an operating permit. General Permits for oil and gas facilities may be preferred if the facility can comply with all permit requirements. If greater flexibility than allowed by the General Permit is required, then the facility should apply for an individual Title V permit. General Permits are designed to streamline the permitting process, shorten the time it takes to obtain approval for initial and modified permits. The advantages of the General Permit include reduced paperwork and greater consistency because the permits are standardized. There should be less uncertainty because permit requirements will be known at the time of application. Approval times for Initial and modified General Permits should be reduced. Lengthy public notice procedures (and possible hearings) will be required for only the initial approval of the General Permit and not for each applicant to the permit. A disadvantage of General Permits is reduced flexibility since the facility must comply with the requirements of a standardized permit.

  19. Risk assessment for produced water discharges to Louisiana Open Bays

    SciTech Connect (OSTI)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1995-06-23

    Data were collected prior to termination of discharge at three sites (including two open bay sites at Delacroix Island and Bay De Chene) for the risk assessments. The Delacroix Island Oil and Gas Field has been in production since the first well drilling in 1940; the Bay De Chene Field, since 1942. Concentrations of 226Ra, 228Ra, 210Po, and 228Th were measured in discharges. Radium conc. were measured in fish and shellfish tissues. Sediment PAH and metal conc. were also available. Benthos sampling was conducted. A survey of fishermen was conducted. The tiered risk assessment showed that human health risks from radium in produced water appear to be small; ecological risk from radium and other radionuclides in produced water also appear small. Many of the chemical contaminants discharged to open Louisiana bays appear to present little human health or ecological risk. A conservative screening analysis suggested potential risks to human health from Hg and Pb and a potential risk to ecological receptors from total effluent, Sb, Cd, Cu, Pb, Ni, Ag, Zn, and phenol in the water column and PAHs in sediment; quantitiative risk assessments are being done for these contaminants.

  20. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Primary Renewable Energy Capacity Source Wood/Wood Waste Primary Renewable Energy Generation Source Wood/Wood Waste Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 26,744 100.0 Total Net Summer Renewable Capacity 517 1.9 Geothermal - - Hydro Conventional 192 0.7 Solar - - Wind - - Wood/Wood Waste 311 1.2 MSW/Landfill Gas - - Other Biomass 14 0.1 Generation (thousand megawatthours) Total Electricity Net Generation 102,885 100.0 Total Renewable Net

  1. Louisiana Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Primary Renewable Energy Capacity Source","Wood/Wood Waste" "Primary Renewable Energy Generation Source","Wood/Wood Waste" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",26744,100 "Total Net Summer Renewable Capacity",517,1.9 " Geothermal","-","-" " Hydro Conventional",192,0.7 "

  2. High Energy Physics Research at Louisiana Tech

    SciTech Connect (OSTI)

    Sawyer, Lee; Greenwood, Zeno; Wobisch, Marcus

    2013-06-28

    The goal of this project was to create, maintain, and strengthen a world-class, nationally and internationally recognized experimental high energy physics group at Louisiana Tech University, focusing on research at the energy frontier of collider-based particle physics, first on the D� experiment and then with the ATLAS experiment, and providing leadership within the US high energy physics community in the areas of jet physics, top quark and charged Higgs decays involving tau leptons, as well as developing leadership in high performance computing.

  3. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS-FIRED COMBUSTION SYSTEMS

    SciTech Connect (OSTI)

    Glenn C. England; Stephanie Wien; Mingchih O. Chang

    2002-08-01

    This report provides results from the first year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operations. Detailed emission rate and chemical speciation test results for a refinery gas-fired process heater and plans for cogeneration gas turbine tests and pilot-scale tests are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods to compare PM2.5 mass and chemical speciation. Test plans are presented for a gas turbine facility that will be tested in the fourth quarter of 2002. A preliminary approach for pilot-scale tests is presented that will help define design constraints for a new dilution sampler design that is smaller, lighter, and less costly to use.

  4. Abstract Testimony of Dan S. Born* President, Louisiana Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana Chemical Association 2040 One American Place Baton Rouge, LA 70825 dan@lca.org 225.376.7660 Presented to the Quadrennial Energy Review Task Force May 27, 2014 LSU...

  5. Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Louisiana Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  6. Cameron Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Cameron Parish is a county in Louisiana. Its FIPS County Code is 023. It is classified as...

  7. Louisiana Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

  8. Louisiana - North Dry Natural Gas Expected Future Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Dry Natural Gas Expected Future Production (Billion Cubic Feet) Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

  9. Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Gas Wells (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 ...

  10. Louisiana Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 ...

  11. Louisiana Natural Gas in Underground Storage (Base Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136 ...

  12. Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 1,273 1,150 ...

  13. Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Wells (Million Cubic Feet) Louisiana--State Offshore Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  14. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  15. Louisiana--State Offshore Natural Gas Dry Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    Dry Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

  16. EECBG Success Story: LEDs Ready for Takeoff at Louisiana Airport

    Broader source: Energy.gov [DOE]

    About 250 lights along the taxiway at Hammond Northshore Regional Airport in Louisiana are being replaced with light-emitting diodes (LEDs) with funds from an Energy Efficiency and Conservation Block Grant (EECBG). Learn more.

  17. Jackson Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson Parish is a county in Louisiana. Its FIPS County Code is 049. It is classified as...

  18. La Salle Parish, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. La Salle Parish is a county in Louisiana. Its FIPS County Code is 059. It is classified as...

  19. Louisiana Natural Gas Number of Industrial Consumers (Number...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Industrial Consumers (Number of Elements) Louisiana Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

  20. City of Kaplan, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Louisiana Phone Number: 337-643-8604 or 337-643-8811 Website: www.kaplanla.comcontacts.html Outage Hotline: 337-643-3505 References: EIA Form EIA-861 Final Data File for 2010 -...

  1. City of Jonesville, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    City of Place: Louisiana Phone Number: 318.339.6638 Website: townofjonesville.net6085.html Outage Hotline: 318.339.9886 References: EIA Form EIA-861 Final Data File for 2010 -...

  2. Town of Vinton, Louisiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Town of Vinton Place: Louisiana Phone Number: (337) 589-7453 Website: cityofvinton.comhtmlservices Outage Hotline: (337) 589-7453 References: EIA Form EIA-861 Final Data File...

  3. ,"Louisiana Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:40:50 AM" "Back to Contents","Data 1: Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  4. West Carroll Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Carroll Parish is a county in Louisiana. Its FIPS County Code is 123. It is classified...

  5. West Feliciana Parish, Louisiana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Feliciana Parish is a county in Louisiana. Its FIPS County Code is 125. It is...

  6. Red River Parish, Louisiana: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Red River Parish is a county in Louisiana. Its FIPS County Code is 081. It is classified as...

  7. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  8. North Vacherie, Louisiana: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. North Vacherie is a census-designated place in St. James Parish, Louisiana.1 References US Census Bureau 2005 Place to 2006 CBSA...

  9. Geopressured-geothermal well activities in Louisiana

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  10. Clean Cities: Louisiana Clean Fuels coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    worked successfully across a variety of industries including oil and gas exploration, health-care software, and solar installation and brings many years of event planning,...

  11. Sinkhole progression at the Weeks Island, Louisiana, Strategic Petroleum Reserve (SPR) site

    SciTech Connect (OSTI)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1995-11-01

    A sinkhole measuring 11 m (36 ft) across and 9 m (30 ft) deep was first observed in alluvium overlying the Weeks Island, Louisiana, salt dome in May 1992, but it was about a year old, based on initial surface appearance and subsequent reverse extrapolation of growth rates. A second and much smaller sinkhole was identified in early 1995, nearly three years later. Their position directly over the edges of the SPR oil storage chamber, a former room-and-pillar salt mine, caused apprehension. The association of sinkholes over mines is well established and this occurrence suggested that groundwater influx undoubtedly was causing salt dissolution at shallow depth, and associated collapse of soil at the surface. Leaks of groundwater into other salt mines in Louisiana and elsewhere led to flooding and eventual abandonment (Coates et al., 1981). Consequently, much attention has been and continues to be given to characterizing these sinkholes, and to mitigation. This paper summarizes current engineering geologic concepts, and briefly describes diagnostic and risk mitigation efforts being conducted by the US Department of Energy, operator of the Strategic Petroleum Reserve (Bauer et al., 1994).

  12. SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO...

    Energy Savers [EERE]

    Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 SEMI-ANNUAL REPORTS FOR Louisiana LNG Energy LLC - FE DKT. NO 14-19-LNG - ORDER 3482 PDF icon October 2014 PDF icon ...

  13. EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ATVM ATVM Environmental Compliance EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle ...

  14. Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies April 23, 2014 - 1:43pm Addthis Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Shreveport, Louisiana's first public heavy duty CNG fueling station officially opened on Earth Day. | Photo courtesy of Ivan Smith Furniture Cedric

  15. EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in

    Energy Savers [EERE]

    Monroe, LA | Department of Energy ATVM » ATVM Environmental Compliance » EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA EA-1732: Next Autoworks Louisiana, LLC (fka V-Vehicle Company) Project in Monroe, LA January 3, 2011 EA-1732: Final Environmental Assessment Loan To Next Autoworks Louisiana, LLC, For An Advanced Technology Gasoline Vehicle Manufacturing Project In Monroe, Louisiana January 24, 2011 EA-1732: Finding of No Significant Impact Next

  16. Bio-Oil Co-Processing: Expanding the Refinery Supply System | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Bio-Oil Co-Processing: Expanding the Refinery Supply System Bio-Oil Co-Processing: Expanding the Refinery Supply System The Department of Energy's (DOE's) Bioenergy Technologies Office (BETO) is hosting a workshop on Thursday, April 3, 2014, at the Renaissance New Orleans Arts Hotel in New Orleans, Louisiana. This workshop will explore the resource expansion potential for conventional refineries by considering biomass-derived oils as a supplemental feedstock. BETO wants to identify

  17. Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed

  18. Louisiana--North Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,473 12,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana

  19. Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate,

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Louisiana

  20. Louisiana (with State Offshore) Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) Louisiana (with State Offshore) Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 23 293 2010's 1,232 2,084 2,204 1,510 1,191 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Louisiana Shale Gas Proved

  1. Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 5,020 4,583 4,920 4,936 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Processed Louisiana Onshore-Texas

  2. Louisiana--North Natural Gas Liquids Lease Condensate, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 North Louisiana Coalbed Methane Proved

  3. Louisiana--North Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) Louisiana--North Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1 23 293 2010's 1,232 2,084 2,204 1,509 1,169 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production North Louisiana Shale Gas Proved Reserves,

  4. Louisiana--South Onshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--North Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,473 12,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 North Louisiana Shale

  5. Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 597 496 594 622 935 224 500 2,303 1,069 127 2010's 738 5,583 352 1,049 2,478 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Louisiana Dry Natural

  6. Louisiana Natural Gas Exports From All Countries (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    From All Countries (Million Cubic Feet) Louisiana Natural Gas Exports From All Countries (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 22,814 38,552 7,655 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Exports (Summary) Louisiana U.S. Natural Gas Imports &

  7. Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Louisiana Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 2010's 249 435 553 560 517 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Total Supplemental Supply of Natural Gas Louisiana Supplemental Supplies of

  8. Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Onshore Natural Gas Dry Production (Million Cubic Feet) Louisiana--Onshore Natural Gas Dry Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,849,980 1,884,566 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Dry Production Louisiana Onshore Natural Gas Gross Withdrawals and

  9. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Texas (Million Cubic Feet) Louisiana Onshore Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Louisiana Onshore-Texas

  10. Summary of events and geotechnical factors leading to decommissioning of the Strategic Petroleum Reserve (SPR) facility at Weeks Island, Louisiana

    SciTech Connect (OSTI)

    Neal, J.T.; Bauer, S.J.; Ehgartner, B.L.

    1996-10-01

    A sinkhole discovered over the edge of the Strategic Petroleum Reserve storage facility at Weeks Island salt dome, Louisiana, led to decommissioning the site during 1995--1998, following extensive diagnostics in 1994. The sinkhole resulted from mine-induced fractures in the salt which took may years to develop, eventually causing fresh water to leak into the storage chamber and dissolve the overlying salt, thus causing overburden collapse into the void. Prior to initiating the oil removal, a freeze wall was constructed at depth around the sinkhole in 1995 to prevent water inflow; a freeze plug will remain in place until the mine is backfilled with brine in 1997--8, and stability is reached. Residual oil will be removed; environmental monitoring has been initiated and will continue until the facility is completely plugged and abandoned, and environmental surety is achieved.

  11. Non-profit Making a Difference in Louisiana

    Broader source: Energy.gov [DOE]

    Change is in the air at SMILE Community Action Agency. The non-profit received a $3 million American Recovery and Reinvestment Act grant for its weatherization program. With the needed boost in funding Louisiana-based SMILE can increase its reach.

  12. EIS-0497: CE FLNG Project, Plaquemines Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to construct and operate a liquefied natural gas terminal in Plaquemines Parish, Louisiana, and approximately 37 miles of 42-inch diameter natural gas transmission pipeline to connect the terminal to natural gas infrastructure facilities.

  13. Evaluation of potential geopressure geothermal test sites in southern Louisiana

    SciTech Connect (OSTI)

    Bassiouni, Z.

    1980-04-01

    Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

  14. Slide 1 | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Louisiana

  15. SEP Success Story: Louisiana Company Makes Switch to CNG, Helps Transform Local Fuel Supplies

    Broader source: Energy.gov [DOE]

    A Shreveport, Louisiana, company is switching to a locally-produced, cleaner source of fuel and helping other distribution fleets do the same. Learn more.

  16. EIS-0488: Cameron Liquefaction Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared an EIS for a proposal to expand the existing Cameron Pipeline by 21 miles (from Calcasieu to Beauregard Parishes, Louisiana, with modifications in Cameron Parish), and expand an existing liquefied natural gas (LNG) import terminal in Cameron Parish, Louisiana, to enable the terminal to liquefy and export LNG. DOE, a cooperating agency, adopted the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest. Additional information is available at http://energy.gov/fe/services/natural-gas-regulation.

  17. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    164,270 166,973 161,374 161,692 158,650 151,208 1991-2016 From Gas Wells NA NA NA NA NA NA 1991-2016 From Oil Wells NA NA NA NA NA NA 1991-2016 From Shale Gas Wells NA NA NA NA NA NA 2007-2016 From Coalbed Wells NA NA NA NA NA NA 2002-2016 Repressuring NA NA NA NA NA NA 1991-2016 Vented and Flared NA NA NA NA NA NA 1991-2016 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 1996-2016 Marketed Production 163,482 166,172 160,600 160,916 157,889 150,482

  18. Louisiana Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    10 2011 2012 2013 2014 2015 View History Gross Withdrawals 2,218,283 3,040,523 2,955,437 2,366,943 1,987,630 1,941,727 1967-2015 From Gas Wells 911,967 883,712 775,506 780,623 737,185 1967-2014 From Oil Wells 63,638 68,505 49,380 51,948 50,638 1967-2014 From Shale Gas Wells 1,242,678 2,088,306 2,130,551 1,534,372 1,199,807 2007-2014 From Coalbed Wells 0 0 0 0 0 2002-2014 Repressuring 3,606 5,015 0 2,829 3,199 1967-2014 Vented and Flared 4,578 6,302 0 3,912 4,143 1967-2014 Nonhydrocarbon Gases

  19. Louisiana Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    8-2014 From Gas Wells 72,278 63,222 64,448 67,801 70,015 54,501 1978-2014 From Oil Wells 4,108 6,614 6,778 5,443 7,735 7,161 1978-2014 Repressuring 285 116 120 NA NA NA 1992-2014 Vented and Flared 215 146 149 NA NA NA 1999-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production 75,885 69,574 70,957 73,244 77,750 61,662 1992-2014 Dry Production 68,145 58,077 2012

    0 249 435 553 560 517 2007-2014 Biomass 249 435 553 560 517 201

  20. EIA - Special Report 8/29/05 - Hurricane Katrina's Impact on Oil Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    the U.S. Oil Market Hurricane Katrina's Impact on the U.S. Oil Market As of 3:00 pm, Monday, August 29 --SEE MOST RECENT-- According to the Minerals Management Service (MMS), Gulf of Mexico oil production was reduced by about 1.4 million barrels per day as a result of Hurricane Katrina. The MMS also reported that 8.3 billion cubic feet per day of natural gas production was shut in. The Louisiana Offshore Oil Port (LOOP) stopped making shipments to onshore facilities as of Saturday, and was

  1. Risk assessment for produced water discharges to Louisiana open bays. Final report

    SciTech Connect (OSTI)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-22

    The US Department of Energy (USDOE) has a program of research in the environmental aspects of oil and gas extraction. This sampling project will characterize the environmental impacts associated with the discharge of naturally occurring radioactive materials (NORM), metals and organics in produced water. This report is part of a series of studies of the health and ecological risks from discharges of produced water to the Gulf of Mexico, supported by the USDOE. These assessments are being coordinated with the field study, using the collected data to perform human health and ecological risk assessments. These assessments will provide input to regulators in the development of guidelines and permits, and to industry in the development and use of appropriate discharge practices. The initial human health and ecological risk assessments consist of conservative screening analyses meant to identify potentially important contaminants, and to eliminate others from further consideration. More quantitative assessments were done for contaminants identified, in the screening analysis, as being of potential concern. Section 2 gives an overview of human health and ecological risk assessment to help put the analyses presented here in perspective. Section 3 provides the hazard assessment portion of the risk assessment, and identifies the important receptors and pathways of concern. Section 3 also outlines the approach taken to the risk assessments presented in the rest of the report. The remaining sections (4 through 9) present the human health and ecological risk assessments for discharges of produced water to open bays in Louisiana.

  2. Final Report: Risk assessment for produced water discharges to Louisiana open bays

    SciTech Connect (OSTI)

    Meinhold, A.F.; DePhillips, M.P.; Holtzman, S.

    1996-03-01

    Potential human health and environmental impacts from discharges of produced water to the Gulf of Mexico are of concern to regulators at the State and Federal levels, the public, environmental interest groups and industry. Current and proposed regulations require a zero discharge limit for coastal facilities, based primarily on studies in low energy, poorly flushed environments. However, produced water discharges in coastal Louisiana include a number of open bay sites, where potential human health and environmental impacts are likely to be smaller than those demonstrated for low energy canal environments, but greater than the minimal impacts associated with offshore discharges. Additional data and assessments are needed to support risk managers at the State and Federal levels in the development of regulations that protect human health and the environment without unnecessary cost to the economic welfare of the region and the nation. This project supports the Natural Gas and Oil Initiative objectives to: (1) improve coordination on environmental research; (2) streamline State and Federal regulation; (3) enhance State, and Federal regulatory decision making capability; (4) enhance dialogue through industry/government/public partnerships; and (5) work with States and Native American Tribes.

  3. Information resources: How they are utilized by Louisiana

    SciTech Connect (OSTI)

    Gardner, S.

    1990-12-31

    Louisiana, now in a developmental stage of policy and planning, has completed a project aimed at reducing hazardous releases of air toxics in thee state. The state is also conducting a Comparative Risk Project and is using risk assessment practices to develop its waste quality standards. In developing an air toxic list, Louisiana incorporated four major criteria into the ranking: emission levels, human health effects, potential population exposure, and persistence or accumulation in the environment. For the human health effects criterion, data for each substance was gathered from numerous sources, although the Integrated Risk Information System (IRIS) database was used as a primary source for toxicological information. Following guidelines established by the Environmental Protection Agency (EPA), the Office of Water Resources, Water Pollution Control Division, has developed numerical criteria for human health protection based on risk assessment procedures in the 1989 Water Quality Standards Revision. Currently over 30 toxic substances have risk-based criteria for th protection of human health in the standards. Numerical criteria were calculated for carcinogenic substances having an EPA Classification of A, B1, B2, or C. Cancer class designations along with cancer potency slopes and reference doses were extracted from the IRIS database, with the exception of those chemicals that had not been assessed in IRIS as of December 1, 1988. The parameters necessary for calculating human health criteria for the missing chemicals were taken from 1980, 1984, and 1985 ambient water quality criteria documents: data on bioconcentration factors were included. Currently, Louisiana is working on a Comparative Risk Project, a ranking of the environmental issues in the state relative to potential risk to the public, which is the basis for a widespread 1991 public outreach effort.

  4. Preliminary effects of Marcellus shale drilling on Louisiana waterthrush in West Virginia

    SciTech Connect (OSTI)

    Becker, D.; Sheehan, J.; Wood, P.B.; Edenborn, H.M.

    2011-01-01

    Preliminary effects of Marcellus shale drilling on Louisiana Waterthrush in West Virginia Page 1 of 1 Doug Becker and James Sheehan, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Petra Bohall Wood, U.S. Geological Survey, WV Cooperative Fish and Wildlife Research Unit, West Virginia Univ., Morgantown, WV 26506, USA; Harry Edenborn, National Energy Technology Laboratory, U.S. Department of Energy, Pittsburgh, PA 15236, USA. Spurred by technological advances and high energy prices, extraction of natural gas from Marcellus shale is increasing in the Appalachian Region. Because little is known about effects on wildlife populations, we studied immediate impacts of oil and gas CO&G) extraction on demographics and relative abundance of Louisiana Waterthrush'CLOWA), a riparian obligate species, to establish a baseline for potential future changes. Annually in 2008-2010, we conducted point counts, monitored Mayfield nesting success, spotted-mapped territories, and measured habitat quality using the EPA Rapid Bioassessment protocol for high gradient streams and a LOWA Habitat Suitability Index CHSI) on a 4,100 ha study area in northern West Virginia. On 11 streams, the stream length affected by O&G activities was 0-58%. Relative abundance, territory denSity, and nest success varied annually but were not significantly different across years. Success did not differ between impacted and unimpacted nests, but territory density had minimal correlation with percent of stream impacted by O&G activities. Impacted nests had lower HSI values in 2010 and lower EPA indices in 2009. High site fidelity could mask the immediate impacts of habitat disturbance from drilling as we measured return rates of 57%. All returning individuals were on the same stream they were banded and 88% were within 250 m of their territory from the previous year. We also observed a spatial shift in LOWA territories, perhaps in response to drilling activities. Preliminary results identified few differences at low habitat disturbance levels but highlight the need for continued monitoring with increasing disturbance. file:

  5. Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Coalbed Methane Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 1 7 9 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of

  6. Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 313 237 224 223 228 1990's 214 205 178 161 153 171 162 176 177 176 2000's 195 187 137 112 96 101 104 112 99 110 2010's 106 108 121 119 115 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  7. Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  8. Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 765 1980's 916 1,040 832 775 690 632 567 488 249 237 1990's 241 192 160 120 134 133 255 287 183 260 2000's 186 168 159 139 107 98 90 73 78 53

  9. Louisiana Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",713,827,1064,1236,1109 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",2881,2898,2639,2297,2393 "MSW Biogenic/Landfill

  10. Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 519 420 341 - = No Data Reported; -- = Not Applicable; NA =

  11. Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,820 1,100 1,218 1,002 1,042 1990's 812 875 691 789 820 714 626 613 473 541 2000's 592 627 428 448 333 370 386 327 248 215 2010's 279 468 391 332 273 - =

  12. Louisiana Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",69795,71028,72850,70155,80110 " Coal",24395,23051,24100,23067,23924 " Petroleum",1872,2251,2305,1858,3281 " Natural Gas",41933,43915,45344,44003,51344 " Other Gases",1595,1811,1101,1227,1561 "Nuclear",16735,17078,15371,16782,18639 "Renewables",3676,3807,3774,3600,3577 "Pumped

  13. Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 42 1980's 36 36 26 24 19 18 18 17 17 20 1990's 20 21 19 19 21 24 24 30 23 25 2000's 26 27 19 19 21 26 29 31 27 26 2010's 27 33 38 39 48 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  14. Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 263 1980's 267 253 243 238 229 220 208 194 193 196 1990's 182 175 151 133 123 136 127 134 138 142 2000's 159 141 107 82 66 65 65 71 64 74 2010's 68 64 70 68 56 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  15. Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves,

  16. Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 LA, State Offshore

  17. Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 24 11 13 13 12 1990's 12 9 8 9 9 11 11 12 16 9 2000's 10 19 11 11 9 10 10 10 8 10 2010's 11 11 13 12 11 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  18. EIS-0510: Calcasieu Pass Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EIS that analyzes the potential environmental impacts of the Calcasieu Pass Project, a proposed liquefied natural gas (LNG) export terminal in Cameron Parish, Louisiana. DOE is a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  19. Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,264,929 3,316,713 3,478,699 3,425,304 3,661,613 3,724,807 3,725,209 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Marketed

  20. Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate, Proved Reserves (Million Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 256 230 223 223 278 1990's 258 253 226 235 233 305 422 433 435 430 2000's 433 325 300 251 205 196 185 163 151 134 2010's 129 129 98 88 108 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Gulf of Mexico Federal Offshore - Louisiana and Alabama

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 5,875 1990's 5,098 5,085 4,637 4,570 4,982 5,385 5,492

  2. Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec.

  3. Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 22,897 1990's 17,952 16,943 15,369 15,181 16,226 16,279 16,627 16,241 15,427 14,950 2000's

  4. EIS-0491: Lake Charles Liquefaction Project; Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) prepared, with DOE as a cooperating agency, an EIS to analyze the potential environmental impacts of a proposal to expand an existing liquefied natural gas (LNG) import terminal in Calcasieu Parish, Louisiana, by constructing and operating natural gas liquefaction and exportation capabilities.DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  5. Louisiana (with State Offshore) Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 400 287 301 294 294 1990's 324 321 317 260 281 430 381 261 234 281 2000's 241 204 186 183 167 191 176 191 201 231 2010's 216 192 189 212 243 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  6. Louisiana - North Natural Gas Plant Liquids, Proved Reserves (Million

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 6 858 9,307 2010's 20,070 21,950 13,523 11,483 12,792 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31

  7. Louisiana--North Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,269 1,351 1,478 1,209 1,273 1990's 1,019 1,082 845 946 988 862 783 743 571 661 2000's 721 772 512 527 394 433 442 392 934 728 2010's 386 519 519 420 341 - = No Data Reported; -- = Not Applicable; NA = Not

  8. Louisiana--North Natural Gas Plant Liquids, Reserves Based Production

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Expected Future Production (Million Barrels) Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 54 1980's 59 63 59 50 38 47 39 33 39 40 1990's 38 38 41 38 48 55 61 50 34 36 2000's 35 35 30 48 53 57 60 69 68 98 2010's 79 54 35 52 83 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

  9. Louisiana--South Onshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Production (Million Barrels) Expected Future Production (Million Barrels) Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 413 1980's 273 291 258 289 225 222 220 235 228 215 1990's 249 242 229 201 214 359 284 199 187 222 2000's 178 128 119 100 87 103 94 97 78 90 2010's 113 94 134 144 145 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld

  10. Louisiana--South Onshore Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Shale Production (Billion Cubic Feet) Louisiana--South Onshore Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 1 22 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production LA, South Onshore Shale Gas Proved Reserves, Reserves Changes, and

  11. Louisiana--State Offshore Coalbed Methane Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 0 10 181 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 LA, South Onshore Shale Gas Proved Reserves, Reserves

  12. Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 758 888 686 513 592 378 738 1,651 1,287 103 2010's 847 5,552 285 1,425 4,523 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  13. Louisiana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 205 127 156 517 328 1990's -15 -47 -273 579 557 -285 626 203 -261 509 2000's -107 322 72 281 -11 130 86 192 -71 319 2010's -612 178 605 -42 487 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  14. Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 772 7 16 23 17 1990's 3 68 75 5 25 63 13 11 57 44 2000's 45 27 68 12 18 6 27 0 191 257 2010's 48 47 5 17 57 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date:

  15. Louisiana Natural Gas Exports (Price) From All Countries (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's -- -- -- 2010's 7.07 9.63 11.80 -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural

  16. EA-1983: Sabine Pass Liquefaction Expansion Project, Cameron Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing an EA for a proposal to expand the existing Sabine Pass Liquefied Natural Gas Terminal in Cameron Parish, and to extend an associated existing pipeline system in Cameron, Calcasieu, Beauregard, Allen, and Evangeline Parishes in Louisiana. DOE is a cooperating agency in preparing the EA. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  17. Water resources data for Louisiana, water year 1995. Water data report (Annual), 1 October 1994-30 September 1995

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1996-05-01

    Water resources data for the 1995 water year for Louisiana consists of records of stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 65 gaging stations; stage only for 40 gaging stations and 6 lakes; water quality for 45 surface-water stations (including 23 gage stations) and 76 wells; and water levels for 217 observation wells. Also included are data for 113 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  18. Water resources data for Louisiana, water year 1994. Water-data report (Annual), 1 October 1993-30 September 1994

    SciTech Connect (OSTI)

    Garrison, C.R.; Lovelace, W.M.; Montgomery, P.A.

    1995-03-01

    Water resources data for the 1994 water year for Louisiana consists of records for stage, discharge, and water quality of streams; stage, contents, and water quality of lakes and reservoirs; and water levels and water quality of ground water. This report contains records for water discharge at 64 gaging stations; stage only for 45 gaging stations and 6 lakes; water quality for 51 surface-water stations (including 24 gage stations) and 84 wells; and water levels for 209 observations wells. Also included are data for 115 crest-stage and flood-profile partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program, and are published as miscellaneous measurements.

  19. Landform technology at fort polk, louisiana: lessons learned. Final report

    SciTech Connect (OSTI)

    Smith, J.L.; Grafton, J.D.; Mann, D.K.

    1992-03-01

    Fort Polk, LA, is located in central Vernon Parish in West-Central Louisiana, about 6 miles southeast of the town of Leesville. In early 1983, a combination of factors prompted Fort Polk to explore alternatives for disposing of sewage sludge and contaminated soil. Changes in Louisiana's Solid Waste Rules and Regulations ended the practice of disposing of contaminated soil in the installation's landfill. Changing regulations were also affecting the disposal of sewage sludge. The technology investigated in this research is landfarming, a treatment process in which waste is mixed with the surface soil and is degraded, transformed, or immobilized. The surface soil is used as the treatment medium and the process is based primarily on the principle of aerobic decomposition of organic wastes. Compared to other land disposal treatments such as landfills and surface impoundments, landfarming has the potential to reduce monitoring and maintenance costs, as well as cleanup liabilities. Because of these reduced costs and liabilities, and the relatively low initial and operating costs, landfarming has received much attention as an ultimate disposal alternative.

  20. An overview of agriforestry waste production and use in Louisiana

    SciTech Connect (OSTI)

    Kleit, S.; Hoop, C.F. de; Chang, S.J.

    1994-12-31

    Agriculture and forestry are the second largest employers in the state of Louisiana. Natural by-products of these industries are biomass waste in the form of bark, wood chips, sawdust, cotton gin trash, rice hulls and sugar bagasse. Disposing of these wastes poses problems for the air and water. One popular waste management solution is to use them for fuel. To measure the potential for using biomass waste for fuel and other uses, a study was conducted of sugar cane processors, cotton ginners, rice processors and the primary and secondary wood processors in Louisiana. The study revealed that while some firms use waste for their own boilers, or sell it to others for fuel, there is still unused waste. There are many reasons for this including the cost of competing energy sources, lack of marketing innovation and the economies of scale. The study`s mission includes identifying new areas for utilizing waste. To facilitate these innovations, and bridge buyers with sellers of biomass waste, a geographic information system (GIS) was developed to map all sites claiming to produce and/or consume wood waste, as well as processors of cotton gin trash, rice hulls and sugar bagasse. These data are layered with timber supply data from the U.S. Forest Service.

  1. The proposed Institute for Micro-manufacturing, Louisiana Tech University

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) DOE/EA-0958, evaluating the construction and equipping of two components of the proposed Institute for Micro-manufacturing at Louisiana Tech University (LTU), a proposed R and D facility to be located in Ruston, LA. and, the proposed installation of a beamline for micro-machining applications at the Center for Advanced Microstructures and Devices (CAMD) facility at Louisiana State University in Baton Rouge, LA. The objective of the proposed project is to focus on the applied, rather than basic research emphasizing the design and development, metrology, inspection and testing, and the assembly and production of micron and submicron structures and devices. Also, the objective of the beamline at CAMD would be the fundamental study of processing and analysis technologies, including x-ray lithography, which are important to microstructures fabrication and electronic device development. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  2. Alaska - State Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) Alaska - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New

  3. Wyoming - State Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York

  4. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  5. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  6. Parallax Enterprises (NOLA) LLC- (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  7. Parallax Enterprises (NOLA) LLC (Formerly Louisiana LNG Energy LLC) FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  8. Louisiana LNG Energy LLC – FE Dkt. No. 14-29-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 18, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term authorization to export two million metric...

  9. Louisiana LNG Energy LLC – FE Dkt. No. 14-19-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on February 5, 2014, by Louisiana LNG Energy LLC (LLNG) requesting long-term multi-contract authorization to export...

  10. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  11. Biomedical Engineering Bionanosystems Research at Louisiana Tech University

    SciTech Connect (OSTI)

    Palmer, James; Lvov, Yuri; Hegab, Hisham; Snow, Dale; Wilson, Chester; McDonald, John; Walker, Lynn; Pratt, Jon; Davis, Despina; Agarwal, Mangilal; DeCoster, Mark; Feng, June; Que, Long; O'Neal, Chad; Guilbeau, Eric; Zivanovic, Sandra; Dobbins, Tabbetha; Gold, Scott; Mainardi, Daniela; Gowda, Shathabish; Napper, Stan

    2010-03-25

    The nature of this project is to equip and support research in nanoengineered systems for biomedical, bioenvironmental, and bioenergy applications. Funds provided by the Department of Energy (DoE) under this Congressional Directive were used to support two ongoing research projects at Louisiana Tech University in biomedical, bioenvironmental, and bioenergy applications. Two major projects (Enzyme Immobilization for Large Scale Reactors to Reduce Cellulosic Ethanol Costs, and Nanocatalysts for Coal and Biomass Conversion to Diesel Fuel) and to fund three to five additional seed projects were funded using the project budget. The project funds also allowed the purchase and repair of sophisticated research equipment that will support continued research in these areas for many years to come. Project funds also supported faculty, graduate students, and undergraduate students, contributing to the development of a technically sophisticated work force in the region and the State. Descriptions of the technical accomplishments for each funded project are provided. Biofuels are an important part of the solution for sustainable transportation fuel and energy production for the future. Unfortunately, the country's appetite for fuel cannot be satisfied with traditional sugar crops such as sugar cane or corn. Emerging technologies are allowing cellulosic biomass (wood, grass, stalks, etc.) to also be converted into ethanol. Cellulosic ethanol does not compete with food production and it has the potential to decrease greenhouse gas (GHG) emissions by 86% versus current fossil fuels (current techniques for corn ethanol only reduce greenhouse gases by 19%). Because of these advantages, the federal government has made cellulosic ethanol a high priority. The Energy Independence and Security Act of 2007 (EISA) requires a minimum production of at least 16 billion gallons of cellulosic ethanol by 2022. Indeed, the Obama administration has signaled an ambitious commitment of achieving 2 billion gallons of cellulosic ethanol by 2013. Louisiana is well positioned to become a national contributor in cellulosic ethanol, with an excellent growing season, a strong pulp/paper industry, and one of the nation's first cellulosic ethanol demonstration plants. Dr. Palmer in Chemical Engineering at Louisiana Tech University is collaborating with Drs. Lvov and Snow in Chemistry and Dr. Hegab in Mechanical Engineering to capitalize on these advantages by applying nanotechnology to improve the cellulosic ethanol processes. In many of these processes, expensive enzymes are used to convert the cellulose to sugars. The nanotechnology processes developed at Louisiana Tech University can immobilize these enzymes and therefore significantly reduce the overall costs of the process. Estimates of savings range from approximately $32 million at each cellulosic ethanol plant, to $7.5 billion total if the 16 billion gallons of cellulosic ethanol is achieved. This process has the advantage of being easy to apply in a large-scale commercial environment and can immobilize a wide variety or mixture of enzymes for production. Two primary objectives with any immobilization technique are to demonstrate reusability and catalytic activity (both reuse of the immobilized enzyme and reuse of the polymer substrate). The scale-up of the layering-by-layering process has been a focus this past year as some interesting challenges in the surface chemistry have become evident. Catalytic activity of cellulase is highly dependent upon how the feed material is pretreated to enhance digestion. Therefore, efforts this year have been performed this year to characterize our process on a few of the more prevalent pretreatment methods.

  12. Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,869 1980's 3,160 3,358 2,988 3,008 2,546 2,650 2,567 2,350 2,442 2,705 1990's 2,640 2,435 2,363 2,376 2,599 2,863 3,189 3,156 2,943 3,127 2000's 3,344 3,927 4,283 5,137 5,841 6,768 6,795 6,437 7,966 17,273 2010's

  13. Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,104 1980's 2,244 2,318 2,156 2,233 1,856 2,018 2,000 1,862 2,193 2,468 1990's 2,399 2,243 2,203 2,256 2,465 2,730 2,934 2,869 2,760 2,867 2000's 3,158 3,759 4,124

  14. Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463

  15. Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,276 1980's 11,273 11,178 10,364 9,971 9,162 8,328 7,843 7,644 7,631 7,661 1990's 7,386 6,851 6,166 5,570 5,880 5,446 5,478 5,538 5,336 5,259 2000's

  16. Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,360 2,391 2,128 1,794 1,741 1990's 1,554 1,394 1,167 926 980 1,001 1,039 1,016 911 979 2000's 807 796 670 586 557 588 561 641 1,235 1,072 2010's 679 639 773 870 908

  17. Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals Total Offshore (Million Cubic Feet) Louisiana Natural Gas Gross Withdrawals Total Offshore (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,600,197 4,750,119 1980's 4,617,585 4,584,491 4,246,464 3,635,942 4,070,279 3,542,827 3,279,165 3,610,041 3,633,594 3,577,685 1990's 3,731,764 3,550,230 3,442,437 3,508,112 3,673,494 3,554,147 3,881,697 3,941,802 3,951,997 3,896,569 2000's 3,812,991 153,871 137,192 133,456

  18. Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 3,991 2,622 -3,556 0 0 0 0 0 1990's 1,697 558 448 -1,356 -429 308 -39 2,174 13,871 0 2000's 0 0 0 0 0 0 0 1,446 2010's 0 0 -24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  19. Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 19,676 13,334 12,852 12,620 12,912 1990's 12,151 11,363 10,227 9,541 10,145 9,891 10,077 10,036 9,480 9,646 2000's 9,512 10,040 9,190 9,538 9,792 10,679 10,710 10,292 11,816 20,970 2010's 29,517 30,545 22,135 20,389 23,258 - = No Data Reported;

  20. Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 16,316 10,943 10,724 10,826 11,171 1990's 10,597 9,969 9,060 8,615 9,165 8,890 9,038 9,020 8,569 8,667 2000's 8,704 9,245 8,520 8,952 9,235 10,091 10,149 9,651 10,581 19,898 2010's 28,838

  1. Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Louisiana--State Offshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 498,876 487,512 1980's 417,312 381,938 366,546 322,588 319,638 256,736 207,265 225,599 214,645 204,005 1990's 182,240 148,429 138,101 157,011 159,513 94,044 192,527 180,848 192,956 164,523 2000's 141,567 153,871 137,192 133,456 129,245 107,584 97,479 72,868 86,198 76,386 2010's 69,836

  2. Louisiana--State Offshore Natural Gas Marketed Production (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 138,101 157,011 159,513 94,044 191,092 179,569 191,837 163,406 2000's 140,639 151,592 135,137 130,772 126,980 106,437 96,269 71,743 85,603 75,885 2010's 69,574 70,957 73,244 77,750 61,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  3. Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (Million Cubic Feet) Louisiana--onshore Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,535,033 1,538,511 1,552,603 1,608,633 1,469,698 1,357,155 1,386,478 1,434,389 2000's 1,342,963 1,370,802 1,245,270 1,244,672 1,248,050 1,202,328 1,280,758 1,309,960 1,301,523 1,482,252 2010's 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  4. Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (Million Cubic Feet) Louisiana--onshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,511,271 1,517,415 1,531,493 1,589,019 1,437,037 1,325,445 1,360,141 1,403,510 2000's 1,314,375 1,350,494 1,226,613 1,219,627 1,226,268 1,189,611 1,264,850 1,293,590 1,292,366 1,472,722 2010's 2,140,525 2,958,249 2,882,193 2,282,452 1,918,626 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Gross Withdrawals (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Gross Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,838,521 4,101,321 4,262,607 1980's 4,200,273 4,202,553 3,879,918 3,313,354 3,750,641 3,286,091 3,071,900 3,384,442 3,418,949 3,373,680 1990's 3,549,524 3,401,801 3,304,336 3,351,101 3,513,981 3,460,103 3,689,170 3,760,953 3,759,040 3,732,046 2000's 3,671,424 NA NA NA NA NA NA NA NA NA

  6. Louisiana - South Onshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,869 1980's 3,160 3,358 2,988 3,008 2,546 2,650 2,567 2,350 2,442 2,705 1990's 2,640 2,435 2,363 2,376 2,599 2,863 3,189 3,156 2,943 3,127 2000's 3,344 3,927 4,283 5,137 5,841 6,768 6,795 6,437 7,966 17,273 2010's 26,136

  7. Louisiana Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,580 1980's 13,407 13,049 12,153 11,553 10,650 10,120 9,416 9,024 8,969 8,934 1990's 8,492 7,846 7,019 6,219 6,558 6,166 6,105 6,137 5,966 5,858 2000's 5,447 5,341 4,395 3,874 3,557 3,478 3,473 3,463 2,916

  8. Louisiana--State Offshore Natural Gas Plant Liquids, Reserves Based

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Marketed Production (Million Cubic Feet) Louisiana--State Offshore Natural Gas Marketed Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 138,101 157,011 159,513 94,044 191,092 179,569 191,837 163,406 2000's 140,639 151,592 135,137 130,772 126,980 106,437 96,269 71,743 85,603 75,885 2010's 69,574 70,957 73,244 77,750 61,662 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of

  9. Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Estimated Production (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,482 1,741 1,625 1,691 1,687 1990's 1,596 1,527 1,494 1,457 1,453 1,403 1,521 1,496 1,403 1,421 2000's 1,443 1,479 1,338 1,280 1,322 1,206 1,309 1,257 1,319 1,544 2010's 2,189 2,985 3,057 2,344 1,960 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  10. Louisiana Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 932 729 414 461 680 1990's 674 445 206 284 510 627 575 754 631 316 2000's 596 1,427 647 1,584 1,940 1,560 1,026 1,247 1,848 9,807 2010's 10,989 5,793 3,151 1,023 2,740 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  11. Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,419 1,962 1,414 1,555 4,434 1990's 1,663 1,696 1,222 1,527 1,239 1,404 975 1,360 2,034 2,297 2000's 1,277 1,696 1,853 1,159 1,229 849 1,417 1,104 1,376 3,105 2010's 3,184 5,843 12,816 3,787 3,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  12. Louisiana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Louisiana Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,978 1,526 1,655 1,717 5,217 1990's 1,568 1,883 1,472 1,419 1,586 1,684 1,111 1,606 2,173 2,571 2000's 1,645 1,013 1,206 792 1,089 876 1,191 1,011 1,387 1,863 2010's 3,149 3,755 3,757 2,951 2,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  13. Louisiana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (No intransit Receipts) (Million Cubic Feet) Louisiana Natural Gas Imports (No intransit Receipts) (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 23,114 96,945 0 0 0 3,934 1990's 30,750 33,284 12,637 30,790 17,887 5,149 7,042 30,596 42,922 67,362 2000's 127,198 145,157 102,130 238,237 163,738 108,967 144,060 268,714 18,110 70,099 2010's 90,867 60,554 20,132 5,750 5,880 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  14. Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Imports Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1.74 1990's 1.88 1.70 1.73 1.70 1.71 1.85 2.22 2.63 2.67 2.43 2000's 3.61 4.42 3.42 5.00 5.61 9.04 6.64 6.98 9.76 3.89 2010's 4.84 7.57 7.98 14.40 14.59 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  15. Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Louisiana Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 22,711 96,945 0 0 0 0 0 0 1990's 27,903 33,284 12,545 30,677 17,823 5,032 7,016 30,419 30,385 0 2000's 0 0 0 0 0 0 0 0 1,446 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  16. Louisiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Louisiana Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 18,720 94,323 3,556 0 0 0 0 0 1990's 26,206 32,726 12,097 32,033 18,252 4,723 7,056 28,245 16,515 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 24 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  17. Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 153,850 179,291 153,777 141,098 178,271 150,519 121,991 1990's 175,439 111,793 134,088 147,888 140,571 133,825 144,486 156,387 131,595 111,203 2000's 130,550 37,811 34,285 51,254 48,308 45,543 49,124 61,368 52,941 56,656 2010's 59,336 80,983 54,463 57,549 58,034 - = No Data Reported; -- = Not Applicable; NA =

  18. Louisiana Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Louisiana Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 67,382 66,472 64,114 1990's 62,770 61,574 61,030 62,055 62,184 62,930 62,101 62,270 63,029 62,911 2000's 62,710 62,241 62,247 63,512 60,580 58,409 57,097 57,127 57,066 58,396 2010's 58,562 58,749 63,381 59,147 58,611 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  19. Louisiana Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Louisiana Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 952,079 946,970 934,472 1990's 934,007 936,423 940,403 941,294 945,387 957,558 945,967 962,786 962,436 961,925 2000's 964,133 952,753 957,048 958,795 940,400 905,857 868,353 879,612 886,084 889,570 2010's 893,400 897,513 963,688 901,635 899,378 - = No Data Reported; -- = Not Applicable; NA = Not

  20. Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 71,523 60,400 48,214 2000's 50,647 48,257 50,711 47,019 44,963 41,812 47,979 52,244 53,412 49,937 2010's 46,892 51,897 49,235 36,737 45,762 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  1. Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 34,179 30,527 - = No Data Reported; -- = Not Applicable; NA = Not

  2. Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids Production (Million Cubic Feet) Louisiana Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 115,177 140,290 179,117 1970's 193,209 195,072 197,967 206,833 194,329 189,541 172,584 166,392 161,511 165,515 1980's 142,171 142,423 128,858 124,193 132,501 117,736 115,604 124,890 120,092 121,425 1990's 119,405 129,154 132,656 130,336 128,583 146,048 139,841 150,008 144,609 164,794 2000's 164,908

  3. Louisiana Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Louisiana Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,661,061 1,569,190 1,495,478 2000's 1,536,725 1,219,013 1,341,444 1,233,505 1,281,428 1,254,370 1,217,871 1,289,421 1,238,661 1,189,744 2010's 1,354,641 1,420,264 1,482,343 1,396,261 1,460,031 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  4. Louisiana Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Louisiana Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,149,192 3,650,412 3,179,306 2,986,468 3,243,795 3,158,903 3,066,789 1990's 3,780,551 3,355,867 3,404,963 3,454,646 3,562,360 3,709,015 3,976,305 5,398,216 5,410,523 5,265,670 2000's 3,587,815 1,529,733 1,365,925

  5. Louisiana Natural Gas Gross Withdrawals from Coalbed Wells (Million Cubic

    Gasoline and Diesel Fuel Update (EIA)

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 279,258 320,034 322,360 2000's 304,791 243,017 323,804 236,408 245,361 285,022 195,927 224,419 236,543 222,486 2010's 270,528 293,245 322,632 267,629 290,020 342,742 Thousand Cubic Feet)

    (Price) From All Countries (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Exports (Price) From All Countries (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6

  6. EIS-0501: Golden Pass LNG Export Project; Texas and Louisiana | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 01: Golden Pass LNG Export Project; Texas and Louisiana EIS-0501: Golden Pass LNG Export Project; Texas and Louisiana Summary The Federal Energy Regulatory Commission (FERC) is analyzing the potential environmental impacts of a proposal to construct and operate natural gas liquefaction and export facilities at the existing Golden Pass liquefied natural gas terminal in Jefferson County, Texas. The proposal includes three new compressor stations in Jefferson and Orange Counties,

  7. Federal Offshore, Gulf of Mexico, Louisiana & Alabama Crude Oil plus Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Condensate Proved Reserves ,704 4,043 4,567 4,602 4,591 4,352 2009-2014 Adjustments 2 -3 -2 -93 -265 139 2009-2014 Revision Increases 616 790 1,861 1,077 567 648 2009-2014 Revision Decreases 174 183 1,354 760 322 812 2009-2014 Sales 20 54 42 187 283 67 2009-2014 Acquisitions 14 102 52 245 216 73 2009-2014 Extensions 158 61 29 113 143 82 2009-2014 New Field Discoveries 34 10 410 7 181 140 2009-2014 New Reservoir Discoveries in Old Fields 57 134 2 20 150 7 2009-2014 Estimated Production 522

  8. Louisiana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 49,911 45,895 52,056 51,824 53,179 51,160 51,838 51,338 50,707 53,983 51,301 53,185 1992 56,781 53,536 57,527 52,612 54,118 51,783 54,745 46,818 45,949 52,282 51,428 52,183 1993 55,056 50,947 54,835 52,701 55,840 54,557 57,597 57,077 55,896 56,419 58,537 61,340 1994 57,125 51,971 56,630 56,001 58,509 56,976 57,582 59,098 58,707 60,680 62,079 63,697 1995 58,290 52,384 55,124 54,149 58,058 55,482 59,895 56,853 58,709 51,745 58,718 61,985

  9. Louisiana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,016,600 1,153,555 1,255,130 1970's 1,264,823 1,306,885 1,235,559 1,143,462 882,571 786,718 777,266 738,911 778,402 615,375 1980's 591,362 599,600 600,278 641,967 698,099 723,841 747,374 698,508 641,000 586,441 1990's 576,558 616,378 629,760 670,803 699,055 681,392 663,252 118,830 178,409 112,250 2000's 143,129 125,693 100,324 94,615 114,934 97,460 96,163 106,303 61,663 58,037 2010's 63,638 68,505 49,380 51,948

  10. Louisiana Natural Gas Gross Withdrawals from Oil Wells (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 425,704 369,500 394,133 375,706 368,379 343,024 341,136 345,609 348,857 382,865 382,974 405,804 1992 396,490 348,791 363,440 359,305 377,209 365,217 372,644 335,890 335,221 362,563 354,887 376,053 1993 368,020 331,608 351,661 343,021 355,274 340,312 355,282 363,355 361,667 384,473 400,042 421,105 1994 384,244 350,309 379,795 367,913 379,618 363,778 376,753 376,822 352,424 368,178 400,029 427,180 1995 383,499 338,242 366,579 361,527

  11. People Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People Profiles Featured Profile Peter Thelin The art of optics Read More Lisa Burrows Lisa Burrows Jeremy Huckins Jeremy Huckins Ibo Matthews Ibo Matthews Susanna Reyes Susana...

  12. Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.19 0.20 0.20 0.22 0.31 0.42 0.46 0.70 0.84 1.11 1980's 1.61 2.07 2.60 2.67 2.73 2.66 2.21 1.78 1.81 1.82 1990's 1.83 1.73 1.73 2.14 2.08 1.58 2.33 2.36 2.02 2.22 2000's 3.68 3.99 3.20 5.64 5.96 8.72 6.93 7.02 8.73 3.82 2010's 4.23 - = No Data Reported; -- = Not

  13. Louisiana Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,015 1,013 1,015 1,015 1,015 1,016 1,016 1,017 1,017 1,016 1,018 1,019 2014 1,017 1,016 1,018 1,021 1,028 1,025 1,029 1,029 1,031 1,034 1,037 1,038 2015 1,030 1,031 1,029 1,029 1,028 1,027 1,028 1,024 1,023 1,023 1,022 1,023 2016 1,024 1,025

    % of Total Residential Deliveries (Percent) Louisiana Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

  14. Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA =

  15. Louisiana Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 1 1 1 1 1 1 1 1 1 1 1 1 2011 1 1 1 1 1 1 1 1 1 1 1 1 2012 1 1 1 1 1 1 1 1 1 1 1 1 2013 4 4 4 4 4 4 4 4 4 4 4 4 2014 5 4 5 4 5 4 5 5 4 5 4 5 2015 1 1 1 1 1 4 5 5 4 5 4 5 2016 5 5

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.24 3.56 4.30 3.47 2.36 2.99 3.53 5.57 4.75 4.47

  16. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  17. Refinery Upgrading of Hydropyrolysis Oil From Biomass

    SciTech Connect (OSTI)

    Roberts, Michael; Marker, Terry; Ortiz-Toral, Pedro; Linck, Martin; Felix, Larry; Wangerow, Jim; Swanson, Dan; McLeod, Celeste; Del Paggio, Alan; Urade, Vikrant; Rao, Madhusudhan; Narasimhan, Laxmi; Gephart, John; Starr, Jack; Hahn, John; Stover, Daniel; Parrish, Martin; Maxey, Carl; Shonnard, David; Handler, Robert; Fan, Jiquig

    2015-08-31

    Cellulosic and woody biomass can be converted to bio-oils containing less than 10% oxygen by a hydropyrolysis process. Hydropyrolysis is the first step in Gas Technology Institute’s (GTI) integrated Hydropyrolysis and Hydroconversion IH2®. These intermediate bio-oils can then be converted to drop-in hydrocarbon fuels using existing refinery hydrotreating equipment to make hydrocarbon blending components, which are fully compatible with existing fuels. Alternatively, cellulosic or woody biomass can directly be converted into drop-in hydrocarbon fuels containing less than 0.4% oxygen using the IH2 process located adjacent to a refinery or ethanol production facility. Many US oil refineries are actually located near biomass resources and are a logical location for a biomass to transportation fuel conversion process. The goal of this project was to work directly with an oil refinery partner, to determine the most attractive route and location for conversion of biorenewables to drop in fuels in their refinery and ethanol production network. Valero Energy Company, through its subsidiaries, has 12 US oil refineries and 11 ethanol production facilities, making them an ideal partner for this analysis. Valero is also part of a 50- 50 joint venture with Darling Ingredients called Diamond Green Diesel. Diamond Green Diesel’s production capacity is approximately 11,000 barrels per day of renewable diesel. The plant is located adjacent to Valero’s St Charles, Louisiana Refinery and converts recycled animal fats, used cooking oil, and waste corn oil into renewable diesel. This is the largest renewable diesel plant in the U.S. and has successfully operated for over 2 years For this project, 25 liters of hydropyrolysis oil from wood and 25 liters of hydropyrolysis oils from corn stover were produced. The hydropyrolysis oil produced had 4-10% oxygen. Metallurgical testing of hydropyrolysis liquids was completed by Oak Ridge National Laboratories (Oak Ridge) and showed the hydropyrolysis oils had low acidity and caused almost no corrosion in comparison to pyrolysis oils, which had high acidity and caused significant levels of corrosion.

  18. EIA - Renewable Electricity State Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New ...

  19. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2009 2010 2011 2012 2013 2014 View History U.S. 0 0 0 0 0 0 1986-2014 East Coast (PADD 1) 0 0 0 0

  20. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  1. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  2. EIA - Special Report 8/30/05 - Hurricane Katrina's Impact on Oil Markets

    U.S. Energy Information Administration (EIA) Indexed Site

    August 30, 3:00 pm --SEE MOST RECENT-- According to the Minerals Management Service (MMS), as of 11:30 Central Time August 30, Gulf of Mexico oil production was reduced by over 1.4 million barrels per day as a result of Hurricane Katrina, equivalent to about 95 percent of daily Gulf of Mexico oil production. The MMS also reported that 8.8 billion cubic feet per day of natural gas production was shut in, equivalent to 88 percent of daily Gulf of Mexico natural gas production. The Louisiana

  3. Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Louisiana (Million Cubic Feet) Gulf Of Mexico Natural Gas Plant Liquids Production Extracted in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 51,010 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: NGPL Production, Gaseous Equivalent Gulf of Mexico-Louisia

  4. EIS-0165: Strategic Petroleum Reserve Alabama, Louisiana, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EIS assesses the impacts of construction and operation for the range of alternatives being considered and focuses on oil and brine spill risk and impacts of brine disposal. The proposed action entails the development of a plan for 250 million barrels of new crude oil storage capacity in two Gulf Coast salt domes to expand the Strategic Petroleum Reserve pursuant to Congressional directive (PL I 01-383 and PL 101-512). Storage capacity would be developed by solution-mining the salt which would require about two billion barrels of surface water and would generate about two billion barrels of salt brine.

  5. Federal Offshore Louisiana Natural Gas Gross Withdrawals and...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series Area 2009 2010 2011 2012 2013 2014 View History Gross Withdrawals NA NA NA 0 0 0 1977-2014 From Gas Wells NA NA NA 0 0 0 1977-2014 From Oil Wells NA NA NA 0 0 0 ...

  6. District of Columbia - State Energy Profile Overview - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) District of Columbia - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire

  7. International Conference to be Held in Honor of LSU Professor (Louisiana

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Media Center) | Jefferson Lab International Conference to be Held in Honor of LSU Professor (Louisiana State University Media Center) External Link: http://www.lsu.edu/ur/ocur/lsunews/MediaCenter/News/2012/06/item48547.html By jlab_admin on Mon, 2012-06-0

  8. Base line for determining local, small-scale vertical movements in Louisiana

    SciTech Connect (OSTI)

    Trahan, D.B.

    1983-01-01

    Subsidence in Louisiana is a result of many factors ranging from local, man-induced to regional, large-scale processes. The measurement of local, man-induced subsidence is especially critical in areas with high rates of land loss. In order to measure local vertical movement, absolute historical geodetic movements have been estimated by adjusting all movements along the first-order vertical control network from northeast to southwest Louisiana as related to the Monroe Uplift. The adjustment will serve as a base line by which local subsidence or uplift can be measured. A generalized trend of increasing subsidence to the south in Louisiana is probably a reflection of increasing sediment thickness and weight toward the AXIS of the Gulf Coast Basin. Anomalous values as low as -17.6 mm/y occur superjacent to the position of Pleistocene and Holocene fluvial elements. Positive movement, up to +4.1 mm/y, has been found associated with the Iberian structural axis in south-central Louisiana. Land subsidence due to natural causes may far outweigh subsidence resulting from fluid withdrawal or depressurization of geopressured aquifers. The effects of regional and local natural processes should not be underestimated in any systematic approach to measuring subsidence. 13 references, 7 figures.

  9. Oil Shale Research in the United States | Department of Energy

    Energy Savers [EERE]

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies PDF icon Oil Shale Research in the United States More Documents & Publications Applicability of a Hybrid Retorting Technology in the Green River Formation Secure Fuels from Domestic Resources - Oil Shale and Tar Sands National Strategic Unconventional Resource Model

  10. OIl Speculation

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of investor flows and financial market conditions on returns in crude-oil futures markets. ... for returns in US and emerging-economy stock markets, a measure of the balance-sheet ...

  11. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  12. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  13. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  15. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  16. Comparison of Methods for Estimating the NOx Emission Impacts of Energy Efficiency and Renewable Energy Projects: Shreveport, Louisiana Case Study (Revised)

    SciTech Connect (OSTI)

    Chambers, A.; Kline, D. M.; Vimmerstedt, L.; Diem, A.; Dismukes, D.; Mesyanzhinov, D.

    2005-07-01

    This is a case study comparing methods of estimating the NOx emission impacts of energy efficiency and renewable energy projects in Shreveport, Louisiana.

  17. Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana (Presentation)

    SciTech Connect (OSTI)

    Esposito, A.; Augustine, C.

    2012-04-01

    Geopressured geothermal reservoirs are characterized by high temperatures and high pressures with correspondingly large quantities of dissolved methane. Due to these characteristics, the reservoirs provide two sources of energy: chemical energy from the recovered methane, and thermal energy from the recovered fluid at temperatures high enough to operate a binary power plant for electricity production. Formations with the greatest potential for recoverable energy are located in the gulf coastal region of Texas and Louisiana where significantly overpressured and hot formations are abundant. This study estimates the total recoverable onshore geopressured geothermal resource for identified sites in Texas and Louisiana. In this study a geopressured geothermal resource is defined as a brine reservoir with fluid temperature greater than 212 degrees F and a pressure gradient greater than 0.7 psi/ft.

  18. Methodology for the evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.; White, D.L.; Huang, H.L.

    1998-03-01

    The US Army and a private energy service company are developing a comprehensive energy efficiency project to upgrade the family housing at Fort Polk, Louisiana. The project includes converting the space conditioning systems of more than 4,000 housing units to geothermal (or ground-source) heat pumps (GHPs). This interim report describes the methodology of the evaluation associated with this project, including the field monitoring that has been conducted at the base.

  19. Louisiana Onshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  20. Louisiana State Offshore Natural Gas Gross Withdrawals and Production

    U.S. Energy Information Administration (EIA) Indexed Site

    8-2014 From Gas Wells 72,278 63,222 64,448 67,801 70,015 54,501 1978-2014 From Oil Wells 4,108 6,614 6,778 5,443 7,735 7,161 1978-2014 Repressuring 285 116 120 NA NA NA 1992-2014 Vented and Flared 215 146 149 NA NA NA 1999-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production 75,885 69,574 70,957 73,244 77,750 61,662 1992-2014 Dry Production 68,145 58,077 2012

  1. Louisiana Onshore Natural Gas Plant Liquids Production Extracted in

    Gasoline and Diesel Fuel Update (EIA)

    1,482,252 2,148,447 2,969,297 2,882,193 2,289,193 1,925,968 1992-2014 From Gas Wells 1,027,728 848,745 819,264 707,705 710,608 682,684 1992-2014 From Oil Wells 53,930 57,024 61,727 43,936 44,213 43,477 1992-2014 From Shale Gas Wells 2,130,551 1,199,807 2012-2014 From Coalbed Wells 0 0 0 0 0 0 2007-2014 Repressuring 5,409 3,490 4,895 NA 2,829 3,199 1992-2014 Vented and Flared 4,121 4,432 6,153 NA 3,912 4,143 1992-2014 Nonhydrocarbon Gases Removed NA NA NA NA NA NA 2003-2014 Marketed Production

  2. State of Louisiana Department of Energy EPSCoR. Final project report

    SciTech Connect (OSTI)

    Gershey, J.S.; Glass, G.A.; Koplitz, B.; Ford, R.

    2001-12-31

    The Louisiana Board of Regents (BoR) was awarded a Department of Energy (DOE) Experimental Program to Stimulate Competitive Research (EPSCoR) Planning Grant in September, 1991. Through this grant, the BoR surveyed Louisiana's energy-related science and engineering research capabilities, and determined which research areas were best suited for development through the EPSCoR program. Louisiana's DOE/EPSCoR program supported three research clusters concentrating on the basic energy sciences, environmental restoration and waste management, and environmental health sciences. More specifically, the topics dealt with by the clusters were (1) inorganic synthesis and laser-induced photochemistry relevant to the fabrication of electronic materials, (2) using high-energy ion beams and synchrotron radiation for modification and analysis of corrosion and wear-inhibiting coating of metallic alloys, and (3) development of mammalian and non-mammalian toxicological indices of risk associated with energy-related wastes. Each of the clusters involved multiple universities using an interdisciplinary approach to energy-related research and human resource development. Reprints of significant publications are attached.

  3. FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"

    SciTech Connect (OSTI)

    Gayle, Phillip A., Jr.

    2012-01-13

    The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.

  4. Louisiana State Offshore Natural Gas Plant Liquids, Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    514,474 1,744,771 1,873,769 1,488,986 1,405,392 1,375,580 1984-2014 Residential 1,036 140 34 53 84 89 1984-2014 Commercial 59,689 38,695 39,659 36,840 17,590 21,197 1984-2014 Industrial 21,826 26,063 20,770 33,052 31,744 33,670 1984-2014 Oil Company 243,789 319,394 364,261 245,303 183,801 178,810 1984-2014 Farm 42,624 44,027 49,985 48,462 40,785 46,134 1984-2014 Electric Power 4,321 4,775 5,464 2,733 4,610 4,826 1984-2014 Railroad 18,345 25,425 32,515 28,110 39,578 45,790 1984-2014 Vessel

  5. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  6. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  7. State Nuclear Profiles 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    21 Louisiana Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable 1 325 1.2 2,468 2.4 Petroleum 881 3.3 3,281 3.2 Total 26,744 100.0 102,885 100.0 Other Renewable: Wood, black liquor, other wood waste, biogenic municipal solid waste, landfill gas, sludge waste, agriculture

  8. PIA - Northeast Home Heating Oil Reserve System (Heating Oil) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PDF icon PIA - Northeast Home Heating Oil Reserve System (Heating Oil) More Documents & Publications PIA - WEB Physical Security Major Application PIA - GovTrip (DOE data) PIA - WEB Unclassified Business Operations General Support

  9. Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana - South Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,304 1980's 2,134 1,871 1,789 1,582 1,488 1,792 1,573 1,380 1,338 1,273 1990's 1,106 995 853 649 678 720 627 599 630 599

  10. Louisiana Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",192,192,192,192,192 "Solar","-","-","-","-","-" "Wind","-","-","-","-","-" "Wood/Wood Waste",318,380,380,373,311 "MSW/Landfill

  11. Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 449 251 260 207 231 1990's 207 207 154 157 168 148 157 130 98 120 2000's 129 145 84 79 61 63 56 65 686 513 2010's 107 51 128 88 68 - = No

  12. Louisiana Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana" "Energy Source",2006,2007,2008,2009,2010 "Fossil",23904,23379,23207,23087,23906 " Coal",3453,3482,3482,3482,3417 " Petroleum",285,346,346,346,881 " Natural Gas",19980,19384,19345,19225,19574 " Other Gases",186,167,34,34,34 "Nuclear",2119,2127,2154,2142,2142 "Renewables",525,586,586,579,517 "Pumped Storage","-","-","-","-","-"

  13. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected

    U.S. Energy Information Administration (EIA) Indexed Site

    Future Production (Million Barrels) Plant Liquids, Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available;

  14. Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Future Production (Million Barrels) Expected Future Production (Million Barrels) Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 358 336 309 289 297 1990's 261 292 246 255 267 191 199 352 341 403 2000's 487 460 483 347 410 407 390 365 313 301 2010's 340 354 369 292 367 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to

  15. Monitoring Environmental Recovery at Terminated Produced Water Discharge Sites in Coastal Louisiana Waters

    SciTech Connect (OSTI)

    Continental Shelf Associates, Inc.

    1999-08-16

    This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.

  16. Energy engineering analysis program, Fort Polk, Louisiana. Pre-final executive summary, increment `f`

    SciTech Connect (OSTI)

    1987-11-01

    Executive Order 12003, dated 19 July 1977, initiated the U.S. Army`s energy conservation effort. Specifically, the Executive Order led to the development of the Army Facilities Energy Plan which directs Army Staff and Major Army Commands to develop detailed implementation plans for energy conservation. As a result of these directives, the Fort Worth District of the U.S. Army Corps of Engineers contracted for an Energy Engineering Analysis Program (EEAP) at Fort Polk, Louisiana. The EEAP included Increments `A`, `B`, `E`, and `O`.

  17. ,"Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. ,"Louisiana--State Offshore Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Marketed Production (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  20. Comparison of estimated and background subsidence rates in Texas-Louisiana geopressured geothermal areas

    SciTech Connect (OSTI)

    Lee, L.M.; Clayton, M.; Everingham, J.; Harding, R.C.; Massa, A.

    1982-06-01

    A comparison of background and potential geopressured geothermal development-related subsidence rates is given. Estimated potential geopressured-related rates at six prospects are presented. The effect of subsidence on the Texas-Louisiana Gulf Coast is examined including the various associated ground movements and the possible effects of these ground movements on surficial processes. The relationships between ecosystems and subsidence, including the capability of geologic and biologic systems to adapt to subsidence, are analyzed. The actual potential for environmental impact caused by potential geopressured-related subsidence at each of four prospects is addressed. (MHR)

  1. ,"Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  2. ,"Federal Offshore--Louisiana Natural Gas Marketed Production (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketed Production (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana Natural Gas Marketed Production (MMcf)",1,"Annual",1998 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  3. ,"Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  4. ,"Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016"

  6. ,"Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  7. ,"Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. ,"Louisiana Dry Natural Gas Production (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Production (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Dry Natural Gas Production (Million Cubic Feet)",1,"Monthly","12/2013" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  9. ,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  10. ,"Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Offshore (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals Total Offshore (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","na1090_sla_2a.xls"

  11. ,"Louisiana Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals and Production",10,"Monthly","2/2016","1/15/1989" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. ,"Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  13. ,"Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  14. ,"Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  15. ,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5290la2m.xls"

  16. ,"Louisiana Natural Gas Underground Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"Louisiana Natural Gas Underground Storage Volume (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File Name:","n5030la2m.xls"

  18. ,"Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  19. ,"Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  20. ,"Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  1. ,"Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Dry Natural Gas Expected Future Production (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Dry Natural Gas Expected Future Production (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  2. ,"Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  3. ,"Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  4. ,"Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  5. ,"Louisiana--North Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--North Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  6. ,"Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  7. ,"Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--South Onshore Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  10. ,"Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel

  11. ,"Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gross Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana--State Offshore Natural Gas Gross Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  12. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business ...

  13. Oil Security Metrics Model

    SciTech Connect (OSTI)

    Greene, David L.; Leiby, Paul N.

    2005-03-06

    A presentation to the IWG GPRA USDOE, March 6, 2005, Washington, DC. OSMM estimates oil security benefits of changes in the U.S. oil market.

  14. Crude Oil | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries, transmission pipelines, and tank farms) can be ...

  15. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, Eugene T.; Lin, Mow

    1994-01-01

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

  16. Biochemically enhanced oil recovery and oil treatment

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.

    1994-03-29

    This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

  17. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  18. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  19. The dominant processes responsible for subsidence of coastal wetlands in south Louisiana

    SciTech Connect (OSTI)

    Kuecher, G.J.

    1995-12-31

    Wetland loss in coastal areas of Terrebonne and Lafourche Parishes, Louisiana, largely results from two subsurface processes: (1) consolidation of recently deposited Holocene deltaic sediments and (2) active growth faulting. Locally, settlement is high where the thickness of valley fill is great and in broad interdistributary basins where the thickness of consolidation-prone, peaty soils is great. The delta cycle is identified as the fundamental sedimentologic unit that constitutes the lower delta plain. Peaty soils from the waning phase of the delta cycle are identified as the deltaic facies most subject to consolidation settlement. Data indicate direct relationships between the thickness of deltaic sediments in individual delta cycles, and the thickness of peaty soils capping these cycles, with present patterns of coastal tract land loss. In addition, active growth faulting is correlated with new areas of interior tract wetland loss. Consolidation and faulting largely explain the curious nature of wetland loss patterns in south Louisiana. Subsidence in The Netherlands has been attributed to similar causes, i.e. thick deposits of consolidation-prone sediments that accumulate on the downthrown sides of basin margin faults.

  20. Safety Evaluation Report for the Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This report documents the US Nuclear Regulatory Commission (NRC) staff review and safety evaluation of the Louisiana Energy Services, L.P. (LES, the applicant) application for a license to possess and use byproduct, source, and special nuclear material and to enrich natural uranium to a maximum of 5 percent U-235 by the gas centrifuge process. The plant, to be known as the Claiborne Enrichment Center (CEC), would be constructed near the town of Homer in Claiborne Parish, Louisiana. At full production in a given year, the plant will receive approximately 4,700 tonnes of feed UF{sub 6} and produce 870 tonnes of low-enriched UF{sub 6}, and 3,830 tonnes of depleted UF{sub 6} tails. Facility construction, operation, and decommissioning are expected to last 5, 30, and 7 years, respectively. The objective of the review is to evaluate the potential adverse impacts of operation of the facility on worker and public health and safety under both normal operating and accident conditions. The review also considers the management organization, administrative programs, and financial qualifications provided to assure safe design and operation of the facility. The NRC staff concludes that the applicant`s descriptions, specifications, and analyses provide an adequate basis for safety review of facility operations and that construction and operation of the facility does not pose an undue risk to public health and safety.

  1. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  2. World Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    World Crude Oil Prices (Dollars per Barrel) The data on this page are no longer available.

  3. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  4. Audit Report on "Management Controls over the Department of Energy's American Recovery and Reinvestment Act - Louisiana State Energy Program"

    SciTech Connect (OSTI)

    2010-05-01

    The Department of Energy's (Department) Office of Energy Efficiency and Renewable Energy (EERE) provides grants to states, territories and the District of Columbia (states) to support their energy priorities through the State Energy Program (SEP). Federal funding is based on a grant formula that considers the population and energy consumption in each state, and amounted to $25 million for Fiscal Year (FY) 2009. The American Recovery and Reinvestment Act of 2009 (Recovery Act) expanded the SEP by authorizing an additional $3.1 billion to states using the existing grant formula. EERE made grant awards to states after reviewing plans that summarize the activities states will undertake to achieve SEP Recovery Act objectives, including preserving and creating jobs; saving energy; increasing renewable energy sources; and, reducing greenhouse gas emissions. EERE program guidance emphasizes that states are responsible for administering SEP within each state, and requires each state to implement internal controls over the use of Recovery Act funds. The State of Louisiana received $71.6 million in SEP Recovery Act funds; a 164-fold increase over its FY 2009 SEP grant of $437,000. As part of the Office of Inspector General's strategy for reviewing the Department's implementation of the Recovery Act, we initiated this review to determine whether the Louisiana State Energy Office had internal controls in place to efficiently and effectively administer Recovery Act funds provided for its SEP program. Louisiana developed a strategy for SEP Recovery Act funding that focused on improving energy efficiency in state buildings, housing and small businesses; increasing Energy Star appliance rebates; and, expanding the use of alternative fuels and renewable energy. Due to a statewide hiring freeze, Louisiana outsourced management of the majority of its projects ($63.3 million) to one general contractor. Louisiana plans to internally manage one project, Education and Outreach ($2.6 million). The remaining funds are allocated to program specific management expenses, including the contractor's fee, a monitoring contract, and Louisiana's payroll expenses ($5.7 million). Louisiana formally approved the general contractor in February 2010. State officials plan to initiate a separate consulting contract for monitoring, verifying and auditing expenditures, energy savings and other metrics as required by EERE for Recovery Act funding.

  5. Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading of Biomass Fast Pyrolysis Oil (Bio-oil) March 22, 2015 Bio-Oil Technology Area Review Principal Investigator : Zia Abdullah Organization: Battelle Memorial Institute 1 ...

  6. ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (Btu) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (trillion Btu)",,,,,"Fuel Oil Energy Intensity (thousand Btu...

  7. Going Global: Tight Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Thin target zone Disconnected target zones Controlled fractures GOING GLOBAL: TIGHT OIL PRODUCTION Tight Oil has Significant Energy Security Impacts Tight oil production growth ...

  8. AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT

    SciTech Connect (OSTI)

    Bunting, Bruce G; Boyd, Alison C

    2012-01-01

    One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

  9. Apparatus for distilling shale oil from oil shale

    SciTech Connect (OSTI)

    Shishido, T.; Sato, Y.

    1984-02-14

    An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

  10. Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas Wells (Million Cubic Feet) Federal Offshore--Louisiana Natural Gas Withdrawals from Gas Wells (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 3,428,342 3,725,728 3,902,074 1980's 3,839,367 3,854,440 3,522,247 2,904,722 3,288,820 2,784,091 2,542,447 2,913,949 2,992,004 2,970,536 1990's 3,140,870 2,946,749 2,867,842 2,883,761 2,995,676 2,937,666 3,166,015 3,194,743 3,115,154 3,009,296 2000's 2,919,128 NA NA NA NA NA NA NA

  11. Characterization of household hazardous waste from Marin County, California, and New Orleans, Louisiana

    SciTech Connect (OSTI)

    Rathje, W.L.; Wilson, D.C.; Lambou, V.W.; Herndon, R.C.

    1987-09-01

    There is a growing concern that certain constituents of common household products, that are discarded in residential garbage, may be potentially harmful to human health and the environment by adversely affecting the quality of ground and surface water. A survey of hazardous wastes in residential garbage from Marin County, California, and New Orleans, Louisiana, was conducted in order to determine the amount and characteristics of such wastes that are entering municipal landfills. The results of the survey indicate that approximately 642 metric tons of hazardous waste are discarded per year for the New Orleans study area and approximately 259 metric tons are discarded per year for the Marin County study area. Even though the percent of hazardous household waste in the garbage discarded in both study areas was less than 1%, it represents a significant quantity of hazardous waste because of the large volume of garbage involved.

  12. Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Dry Natural Gas Expected Future Production (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,260 1990's 22,679 21,611 19,653 19,383 20,835 21,392 21,856 21,934 20,774 19,598 2000's 19,788 19,721 18,500 16,728 14,685 13,665 11,824 11,090 10,450 9,362 2010's 8,896 8,156

  13. Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet

    U.S. Energy Information Administration (EIA) Indexed Site

    After Lease Separation Proved Reserves (Billion Cubic Feet) Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gulf of Mexico Federal Offshore - Louisiana and Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 28,772 1990's 23,050 22,028 20,006 19,751 21,208 21,664 22,119 22,428 21,261 20,172 2000's 20,466 20,290 19,113 17,168 15,144 14,073 12,201

  14. EIS-0498: Magnolia LNG and Lake Charles Expansion Projects; Calcasieu Parish, Louisiana

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission prepared an EIS that analyzes the potential environmental impacts of constructing and operating the proposed Magnolia LNG Project, an on-land liquefied natural gas (LNG) terminal and associated facilities near Lake Charles, Louisiana. The EIS also analyzes the potential environmental impacts of constructing and operating the proposed Lake Charles Expansion Project, which would reconfigure an existing pipeline system to serve the LNG terminal site. DOE was a cooperating agency in preparing the EIS. DOE, Office of Fossil Energy, has an obligation under Section 3 of the Natural Gas Act to authorize the import and export of natural gas, including LNG, unless it finds that the import or export is not consistent with the public interest.

  15. Louisiana Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Louisiana Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 18 16 1990's 0 233 3,552 479 505 464 451 1,048 1,287 1,528 2000's 948 861 251 299 344 342 350 487 362 1,902 2010's 4,367 4,260 5,778 6,434 6,581 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 195,990 212,134 273,213 1970's 287,222 292,589 312,145 336,832 347,098 301,816 556,772 591,292 558,877 305,181 1980's 196,033 180,687 337,398 275,698 303,284 258,069 243,283 301,279 272,455 256,123 1990's 258,267 195,526 220,711 222,813 207,171 209,670 213,721 227,542 194,963 - = No Data

  17. Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.24 3.56 4.30 3.47 2.36 2.99 3.53 5.57 4.75 4.47 2000's 5.74 8.11 5.57 7.64 9.73 13.83 12.59 12.00 13.02 8.58 2010's 11.14 10.58 10.53 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next

  18. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -16,163 -3,291 4,933 5,735 6,541 3,761 1,457 -2,718 333 6,361 22,218 1991 25,998 -7,924 -12,602 -6,752 5,539 14,861 14,428 10,464 17,383 22,644 -158 -24,807 1992 -21,205 -18,174 -17,028 -17,433 -15,973 -21,203 -22,672 -16,614 -16,409 -16,981 -10,425

  19. Energy Engineering Analysis Program - Fort Polk, Louisiana. Executive summary. Final report

    SciTech Connect (OSTI)

    1986-03-01

    The CRS Group, Inc. is pleased to submit this Final Report covering Increments A, B, E, and G of the Energy Engineering Analysis Program (EEAP) for Fort Polk, Louisiana work accomplished under Contract DACA63-80-C-0166 plus modifications with the Fort Worth District, Corps of Engineers. The work presented in these volumes presents the results in which 32 energy conserving measures (ECM`s) have been investigated for ECIP potential for Increments A (existing buildings including Family Housing) and B (existing utilities and energy distribution systems and a centralized Energy Monitoring and Control System-EMCS). Additionally, five scenarios for implementation of a Central Energy Plant (CEP) were studied under Increment E and an analysis of using waste POL as a fuel source in three scenarios was made. Four projects were analyzed under Increment G to identify additional energy savings.

  20. Geopressured-geothermal well activities in Louisiana. Annual report, 1 January 1991--31 December 1991

    SciTech Connect (OSTI)

    John, C.J.

    1992-10-01

    Since September 1978, microseismic networks have operated continuously around US Department of Energy (DOE) geopressured-geothermal well sites to monitor any microearthquake activity in the well vicinity. Microseismic monitoring is necessary before flow testing at a well site to establish the level of local background seismicity. Once flow testing has begun, well development may affect ground elevations and/or may activate growth faults, which are characteristic of the coastal region of southern Louisiana and southeastern Texas where these geopressured-geothermal wells are located. The microseismic networks are designed to detest small-scale local earthquakes indicative of such fault activation. Even after flow testing has ceased, monitoring continues to assess any microearthquake activity delayed by the time dependence of stress migration within the earth. Current monitoring shows no microseismicity in the geopressured-geothermal prospect areas before, during, or after flow testing.

  1. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  2. South American oil

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    GAO reviewed the petroleum industries of the following eight South American Countries that produce petroleum but are not major exporters: Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Peru, and Trinidad and Tobago. This report discusses the amount of crude oil the United States imports from the eight countries, expected crude oil production for these countries through the year 2010, and investment reforms that these countries have recently made in their petroleum industries. In general, although the United States imports some oil from these countries, as a group, the eight countries are currently net oil importers because combined domestic oil consumption exceeds oil production. Furthermore, the net oil imports are expected to continue to increase through the year 2010, making it unlikely that the United States will obtain increased oil shipments from these countries.

  3. Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ward Oil Co., 24 DOE 81,002 (1994); see also Belcher Oil Co., 15 DOE 81,018 (1987) ... months relief because of flood); Utilities Bd. of Citronelle-Gas, 4 DOE 81,205 (1979) ...

  4. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to 2.84 per gallon. That's down 1.22 from a year ago, based on the ...

  5. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to 2.97 per gallon. That's down 1.05 from a year ago, based on the ...

  6. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to 3.04 per gallon. That's down 99.4 cents from a year ago, based on the ...

  7. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to 2.91 per gallon. That's down 1.10 from a year ago, based on the ...

  8. Vegetable oils for tractors

    SciTech Connect (OSTI)

    Moroney, M.

    1981-11-14

    Preliminary tests by the Agricultural Institute, show that tractors can be run on a 50:50 rape oil-diesel mixture or on pure rape oil. In fact, engine power actually increased slightly with the 50:50 blend but decreased fractionally with pure rape oil. Research at the North Dakota State University on using sunflower oil as an alternative to diesel fuel is also noted.

  9. SRC residual fuel oils

    SciTech Connect (OSTI)

    Tewari, K.C.; Foster, E.P.

    1985-10-15

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  10. SRC Residual fuel oils

    DOE Patents [OSTI]

    Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

    1985-01-01

    Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

  11. Processing of heavy oil utilizing the Aurabon process. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    This report contains estimates of the product yields and product properties from four separate, commercial-scale Aurabon heavy oil upgrading complexes capable of producing low-sulfur, hydrogen-rich products from various fractions of either a Venezuelan Boscan or a Canadian Lloydminster heavy oil feedstock. These estimates formed the basis for the development of the necessary process engineering work, including the general equipment specifications for the major equipment items included in each processing unit, required to determine cost and utilities estimates, construction labor requirements, and an estimated construction cost schedule for each of the four upgrading complexes. In addition to the above information, estimates of the yields and properties of the products produced during the upgrading of the heavy portion of the Aurabon product by both the hydrocracking and fluidized catalytic cracking processes are also included in this report. Consistent with the provisions of the executed contract for this work, those portions of the engineering work which were considered proprietary to UOP, including the heat and material balances, process flow diagrams, piping and instrument diagrams, and general equipment specifications developed for each process unit contained in the heavy oil upgrading facilities have not been included in this report. This report does, however, contain sufficient non-proprietary information to provide the reader with a general understanding of the Aurabon process and detailed information regarding the performance of the process when upgrading the two heavy oil feedstocks studied. UOP has allowed the consulting firms of Walk, Haydel and Associates of New Orleans, Louisiana and Texas Consultants, Inc. of Houston, Texas to review various portions of the engineering work developed by UOP under this contract. 1 reference, 13 figures, 22 tables.

  12. Performance profiles of major energy producers 1993

    SciTech Connect (OSTI)

    1995-01-01

    Performance Profiles of Major Energy Producers 1993 is the seventeenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 25 major US energy companies required to report annually on Form EIA-28. Financial information is reported by major liens of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the US and abroad. This year`s report analyzes financial and operating developments for 1993 (Part 1: Developments in 1993) and also reviews key developments during the 20 years following the Arab Oil Embargo of 1973--1974 (Part 2: Major Energy Company Strategies Since the Arab Oil Embargo). 49 figs., 104 tabs.

  13. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  14. Biochemical upgrading of oils

    DOE Patents [OSTI]

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  15. Utah Heavy Oil Program

    SciTech Connect (OSTI)

    J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

    2009-10-20

    The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

  16. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer ...

  17. LANSCE | News & Media | Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    background News Multimedia Events Profiles Highlights Activity Reports The Pulse User Program Headlines News & Media dotline LANSCE Profiles Kurt Schoenberg: Steering LANSCE for ...

  18. ,"Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  19. ,"Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  20. ,"Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  1. US Crude oil exports

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 EIA Energy Conference U.S. Crude Oil Exports July 14, 2014 By Lynn D. Westfall U.S. Energy Information Administration U.S. crude oil production has grown by almost 50% since 2008 and is up by 1.0 million b/d (14%) since April of 2013 U.S. crude oil production million barrels of oil per day Source: U.S. Energy Information Administration Lynn Westfall, 2014 EIA Energy Conference, U.S. Crude Oil Exports, July 14, 2014 2 0 2 4 6 8 10 12 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

  2. Final Environmental Impact Statement for the construction and operation of Claiborne Enrichment Center, Homer, Louisiana (Docket No. 70-3070)

    SciTech Connect (OSTI)

    Zeitoun, A.

    1994-08-01

    This two-volume Final Environmental Impact Statement (FEIS) was prepared by the Nuclear Regulatory Commission (NRC) in accordance with regulation 10 CFR Part 51, which implements the National Environmental Policy Act (NEPA). Volume 1 contains the assessment of the potential environmental impacts for licensing the construction and operation of a proposed gaseous centrifuge enrichment facility to be built in Claiborne Parish, Louisiana, by Louisiana Energy Services, LP. (LES). The proposed facility would have a production capacity of about 866 metric tons annually of up to 5 weight percent enriched UF{sub 6}, using a proven centrifuge technology. Included in the assessment are construction, both normal operations and potential accidents (internal and external events), and the eventual decontamination and decommissioning (D&D)- of the site. Issues addressed include the purpose and need for the facility, the alternatives to the proposed action, potential disposition of the tails, the site selection process, and environmental justice. The NRC staff concludes that the facility can be constructed and operated with small and acceptable impacts on the public and the environment. The FEIS supports issuance of a license to the applicant, Louisiana Energy Services, to authorize construction and operation of the proposed facility.

  3. Crude Oil Analysis Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Shay, Johanna Y.

    The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

  4. Crude Oil Characteristics Research

    Broader source: Energy.gov [DOE]

    The Department of Energy Office of Fossil Energy is continuing to develop a better understanding of scientific questions associated with the production, treatment, and rail transportation of crude oils, including Bakken crude oil. To support this effort, the DOE - in collaboration with the Department of Transportation’s Pipeline and Hazardous Materials Safety Administration (PHMSA) will focus on the portion of the effort described in the Crude Oil Characteristics Sampling, Analysis and Experiment (SAE) Plan. The work contained in this SAE plan is intended to fill knowledge gaps based on recommendations on research needed to improve understanding of transport-critical crude oil and especially tight crude oil properties from the Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport recently completed by Sandia National Laboratory.

  5. Hot Oiling Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    1993-10-22

    One of the most common oil-field treatments is hot oiling to remove paraffin from wells. Even though the practice is common, the thermal effectiveness of the process is not commonly understood. In order for producers to easily understand the thermodynamics of hot oiling, a simple tool is needed for estimating downhole temperatures. Such a tool has been developed that can be distributed as a compiled spreadsheet.

  6. Vegetable oil fuel

    SciTech Connect (OSTI)

    Bartholomew, D.

    1981-04-01

    In this article, the future role of renewable agricultural resources in providing fuel is discussed. it was only during this century that U.S. farmers began to use petroleum as a fuel for tractors as opposed to forage crop as fuel for work animals. Now farmers may again turn to crops as fuel for agricultural production - the possible use of sunflower oil, soybean oil and rapeseed oil as substitutes for diesel fuel is discussed.

  7. Louisiana Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Louisiana Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 22.5 -6.7 -11.5 -6.1 4.7 11.3 9.9 6.6 10.0 12.0 -0.1 -13.0 1992 -15.0 -16.6 -17.6 -16.9 -13.0 -14.5 -14.2 -9.8 -8.6 -8.0 -5.3 -9.7 1993 -14.1 -27.1 -40.9 -42.3 -18.5 -3.2 9.0 15.5 21.5 17.1 14.1 13.8 1994 8.5 40.4 69.8 104.5 54.4 28.4 23.9 17.6 8.8 5.4 10.4 15.6 1995 29.7 13.7 22.0

  8. Energy Engineering Analysis Program, Fort Polk, Louisiana. Final executive summary, increment `f`

    SciTech Connect (OSTI)

    1988-06-01

    Executive Order 12003, dated 19 July 1977, initiated the U.S. Army`s energy conservation effort. Specifically, the Executive Order led to the development of the Army Facilities Energy Plan which directs Army Staff and Major Army Commands to develop detailed implementation plans for energy conservation. As a result of these directives, the Fort Worth District of the U.S. Army Corps of Engineers contracted for an Energy Engineering Analysis Program (EEAP) at Fort Polk, Louisiana. The EEAP included Increments `A`, `B`, `E`, and `G`. To accomplish the intent of Increment `P`, namely, providing low cost/no cost energy savings recommendations in the form of specific, practical instructions for use by the Facility Engineer, the following general steps were taken: (1) Consider treasures identified in Detailed Scope of Work. (2) identify other potential Low Cost/No Cost energy Conservation Measures (ECM) through discussions with Fort Polk personnel and field surveys by Graham Associates engineers. (3) Review Increments `A`, `B`, and `G` for ECM`s within the Facility Engineer`s funding authority; $200,000 for alteration projects and $1,000,000 for maintenance and repair type work. (4) Evaluate ECM`s using relevant data for other Increments of the ESAP, and develop new data where appropriate.

  9. Health-hazard evaluation report HETA 91-338-2187, IMC Corporation, Sterlington, Louisiana

    SciTech Connect (OSTI)

    Kiefer, M.; Tepper, A.; Miller, R.

    1992-03-01

    In response to a request from an authorized representative of the Construction and General Laborers Union, Local 762, an investigation was made of potential hazards for asbestos abatement contract workers at IMC Corporation, (SIC-2869), Sterlington, Louisiana. The IMC facility consisted of two ammonia facilities, a nitroparaffin (NP) facility, and a NP derivatives facility. An explosion occurred on May 1, 1991 in the NP facility, caused by a faulty compressor. During the post explosion renovation activities, an asbestos abatement firm was working on site due to the large amounts of asbestos (1332214) insulation which had been disturbed by the explosion. Records indicated that several workers complained of ill effects and odors on June 17 and 19. The incidents were investigated but no chemical exposure explanation was found. Routine and complaint based industrial hygiene monitoring was primarily area monitoring and not substance specific. Of the 25 workers interviewed, 22 had symptoms they felt were related to their work at IMC. The symptoms included those of the upper respiratory tract, central nervous system, and gastrointestinal system. The most common included diarrhea, nausea, headache, dizziness, and cough, each experienced by significantly more than half the subjects. The symptoms could not be linked conclusively to any specific chemical release, job task, work location, or food or drink source.

  10. Health-hazard evaluation report HETA 88-391-2156, Morton Salt Company, Weeks Island, Louisiana

    SciTech Connect (OSTI)

    Ferguson, R.P.; Knutti, E.B.

    1991-11-01

    In response to a request from the International Chemical Workers Union, project director, an evaluation was undertaken of possible hazardous working conditions at the Morton Salt Company (SIC-1479), Weeks Island, Louisiana. At Weeks Island the salt was mined from large domes, circular in shape and from a few hundred yards to a mile across. The only detectable overexposures in the mining operation were to coal-tar pitch volatiles. None of the 20 personal breathing zone and area air samples collected in the mill were above detectable limits for asbestos (1332214). The prevalences of chronic cough and chronic phlegm reported were statistically different, exceeding those reported by a group of nonexposed blue collar workers. Chronic symptoms were reported by underground workers in all smoking categories, but only by those surface workers who also smoked. There were more complaints about eye irritation and tearing of the eyes in the underground workers, consistent with diesel byproduct exposure. Four workers were identified through pulmonary function test results with mild obstructive lung disease and one with moderate obstructive lung disease. Three workers with mild restriction of lung volume were noted. None of the 61 chest films taken read positively for pneumoconiosis. The authors conclude that overexposures to coal-tar pitch volatiles existed at the time of the survey. The authors recommend measures for reducing occupational exposures to workplace contaminants. A follow up medical questionnaire survey should be conducted.

  11. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the ...

  12. Refiner Crude Oil Inputs

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Refiner Crude Oil Inputs Refiner Gross Inputs Refiner Operable Capacity ... Download Series History Download Series History Definitions, Sources & Notes Definitions, ...

  13. Oil & Gas Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. ...

  14. Upgrading heavy gas oils

    SciTech Connect (OSTI)

    Ferguson, S.; Reese, D.D.

    1986-05-20

    A method is described of neutralizing the organic acidity in heavy gas oils to produce a neutralization number less than 1.0 whereby they are rendered suitable as lube oil feed stocks which consists essentially of treating the heavy gas oils with a neutralizing amount of monoethanolamine to form an amine salt with the organic acids and then heating the thus-neutralized heavy gas oil at a temperature at least about 25/sup 0/F greater than the boiling point of water and for a time sufficient to convert the amine salts to amides.

  15. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  16. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  17. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  18. Oil Shale and Oil Sands Development Robert Keiter; John Ruple...

    Office of Scientific and Technical Information (OSTI)

    Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development Robert Keiter; John Ruple; Heather Tanana; Rebecca Holt 29 ENERGY...

  19. Oil shale technology

    SciTech Connect (OSTI)

    Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

    1991-01-01

    Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

  20. Technical support for geopressured-geothermal well activities in Louisiana: Annual report for the period 1 November 1984 to 31 December 1986

    SciTech Connect (OSTI)

    Groat, C.G.

    1987-09-01

    This report describes environmental monitoring activities carried out by Louisiana State University (LSU) under US Department of Energy Contract FC07-85NV10425 for the period 1 November 1984 through 31 December 1986. Other aspects of the LSU technical support program completed under prior contracts were covered in final form in reports preceding this one. During the contract period, the Louisiana Geological Survey, aided by subcontractors, monitored microseismic activity, land-surface subsidence, and surface and ground-water quality at three designed geopressured-geothermal test well sites in Louisiana and Texas. Don Stevenson supervised microseismic monitoring activities, and Drukell Trahan coordinated water quality and land-surface subsidence studies. This is a progress report in the sense that it discusses program components, provides raw data, and presents preliminary interpretations. The environmental monitoring program continues and will be the subject of subsequent annual reports.

  1. Microbial enhanced oil recovery and wettability research program

    SciTech Connect (OSTI)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  2. Vegetable oil as fuel

    SciTech Connect (OSTI)

    Not Available

    1980-11-01

    A review is presented of various experiments undertaken over the past few years in the U.S. to test the performance of vegetable oils in diesel engines, mainly with a view to on-farm energy self-sufficiency. The USDA Northern Regional Research Center in Peoria, Illinois, is screening native U.S. plant species as potential fuel oil sources.

  3. Oil Refund Decisions

    Broader source: Energy.gov [DOE]

    During the period 1973 through 1981, the Federal government imposed price and allocation controls of crude oil and refined petroleum products, such as gasoline and heating oil. During that period and for many years afterwards, the DOE had an enforcement program. When a firm was found to have overcharged, the DOE generally required the firm to make refunds to its customers.

  4. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)... focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. ...

  5. Balancing oil and environment... responsibly.

    SciTech Connect (OSTI)

    Weimer, Walter C.; Teske, Lisa

    2007-01-25

    Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

  6. Corrosivity Of Pyrolysis Oils

    SciTech Connect (OSTI)

    Keiser, James R; Bestor, Michael A; Lewis Sr, Samuel Arthur; Storey, John Morse

    2011-01-01

    Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

  7. ,"Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  8. ,"Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Federal Offshore--Louisiana and Alabama Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  9. ,"Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Lease Condensate, Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  10. ,"Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana (with State Offshore) Natural Gas Plant Liquids, Expected Future Production (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  11. ,"Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  12. ,"Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - North Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  13. ,"Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana - South Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  14. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release

  15. ,"Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next

  16. ,"Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015"

  17. ,"Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release

  18. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    SciTech Connect (OSTI)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.

  19. The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report

    SciTech Connect (OSTI)

    Hughes, P.J.; Shonder, J.A.

    1998-03-01

    This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

  20. Prairie Canal Well No. 1, Calcasieu Parish, Louisiana. Volume 1. Completion and testing. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The Prairie Canal Company, Inc. Well No. 1, approximately 8 miles south of the city of Lake Charles, Louisiana, was tested through the annulus between 5-1/2 inch casing and 2-3/8 inch tubing. The interval tested was from 14,782 to 14,820 feet. The geological section was the Hackberry Sand, a member of the Oligocene Frio formation. Produced water was injected into a disposal well which was perforated in several Miocene Sands from 3070 to 4600 feet. Original plans were to test a section of the Hackberry sand from 14,976 to 15,024 feet. This primary zone, however, produced a large amount of sand, shale, gravel, and rocks during early flow periods and was abandoned in favor of the secondary zone. Four pressure drawdown flow tests and three pressure buildup tests were conducted during a 12-day period. A total of 36,505 barrels of water was produced. The highest sustained flow rate was approximately 7100 BWPD. The gas-to-water ratio, measured during testing, ranged from 41 to 50 SCF/BBL. There is disagreement as to the saturation value of the reservoir brine, which may be between 43.3 and 49.7 SCF/BBL. The methane content of the flare line gas averaged 88.4 mole percent. The CO/sub 2/ content averaged 8.4 mole percent. Measured values of H/sub 2/S in the gas were between 12 and 24 ppM.

  1. China shows increasing interest in heavy oil and oil sands

    SciTech Connect (OSTI)

    Not Available

    1986-12-01

    China and Canadian and US groups are cooperating in several areas to develop the heavy oil, asphalt, and oil sand deposits of China. The agreements dealing with exploration and upgrading are briefly described. The majority of the paper describes the occurrences of heavy oil, asphalt, and oil sands in China. 1 figure.

  2. Subsidence in geopressured geothermal resource test sites: Monitoring assessment combining geodetic leveling and tidal control stations in southwestern Louisiana

    SciTech Connect (OSTI)

    Ramsey, K.E.; John, C.J. ); Trahan, D.B. )

    1989-09-01

    The Louisiana Geological Survey has an ongoing environmental monitoring program, sponsored by the US Department of Energy, at geopressured geothermal prospect well sites in southwestern Louisiana. This paper presents the results from monitoring subsidence at some of these reservoir sites. Over 1,000 km of first-order surveys and data from several NOAA and US Army Corps of Engineers tidal control stations were examined to determine regional trends. Tidal records were used to examine the history of sea level with respect to the land surface. Relative rates of land subsidence can be determined by comparing rates of water level rise over time with rates of rise from a stable craton. Regional subsidence ranges from 3 to 5 mm/year. First-order bench-mark networks established at Parcperdue, Sweet Lake, and Gladys McCall prospects were used to determine local trends of subsidence. Repeated leveling surveys before, during, and after fluid withdrawal from Parcperdue and Gladys McCall indicate that an increase in subsidence was observed during the drilling of the wells. Data suggest subsidence was possibly due to surface loading by heavy drilling equipment. Historical leveling in the Sweet Lake region indicates differential compaction between sediments as a possible cause for subsidence. However, in all cases, virtually no increase in subsidence was observed during and after times of fluid withdrawal.

  3. National Uranium Resource Evaluation Program. Data report: Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. Hydrogeochemical and stream sediment reconnaissance

    SciTech Connect (OSTI)

    Fay, W M; Sargent, K A; Cook, J R

    1982-02-01

    This report presents the results of ground water, stream water, and stream sediment reconnaissance in Arkansas, Louisiana, Mississippi, Missouri, Oklahoma, and Texas. The following samples were collected: Arkansas-3292 stream sediments, 5121 ground waters, 1711 stream waters; Louisiana-1017 stream sediments, 0 ground waters, 0 stream waters; Misissippi-0 stream sediments, 814 ground waters, 0 stream waters; Missouri-2162 stream sediments, 3423 ground waters 1340 stream waters; Oklahoma-2493 stream sediments, 2751 ground waters, 375 stream waters; and Texas-279 stream sediments, 0 ground waters, 0 stream waters. Neutron activation analyses are given for U, Br, Cl, F, Mn, Na, Al, V, and Dy in ground water and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in sediments. The results of mass spectroscopic analysis for He are given for 563 ground water sites in Mississippi. Field measurements and observations are reported for each site. Oak Ridge National Laboratory analyzed sediment samples which were not analyzed by Savannah River Laboratory neutron activation.

  4. Performance profiles of major energy producers 1989

    SciTech Connect (OSTI)

    Not Available

    1991-01-23

    Performance Profiles of Major Energy Producers 1989 is the thirteenth annual report of the Energy Information Administration's (EIA) Financial Reporting System (FRS). The report examines financial and operating developments, with particular reference to the 23 major energy companies (the FRS companies'') required to report annually on Form EIA-28. Financial information is reported by major lines of business including oil and gas production, petroleum refining and marketing, and other energy operations. Domestic and international operations are examined separately in this report. It also traces key developments affecting the financial performance of major energy companies in 1989, as well as review of important trends.

  5. Performance profiles of major energy producers 1994

    SciTech Connect (OSTI)

    1996-02-01

    Performance Profiles of Major Energy Producers 1994 is the eighteenth annual report of the Energy Information Administration`s (EIA) Financial Reporting System (FRS). The report examines financial and operating developments in energy markets, with particular reference to the 24 major U.S. energy companies required to report annually on Form EIA-28. Financial information is reported by major lines of business, including oil and gas production, petroleum refining and marketing, other energy operations, and nonenergy businesses. Financial and operating results are presented in the context of energy market developments with a view toward identifying changing corporate strategies and measuring the performance of ongoing operations both in the United States and abroad.

  6. Heating Oil Reserve History

    Broader source: Energy.gov [DOE]

    Creation of an emergency reserve of heating oil was directed by President Clinton on July 10, 2000, when he directed then-Energy Secretary Bill Richardson to establish a two million barrel home...

  7. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to 2.84 per gallon, down 5.4 cents from last week

  8. Crude Oil Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

  9. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  10. Oil shale research in China

    SciTech Connect (OSTI)

    Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

    1989-01-01

    There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

  11. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  12. Fermilab Today | University Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Profiles Archive Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO More than 2,000 scientists worldwide work with Fermilab. In the United States, about 1,300 scientists from institutions in 36 states rely on Fermilab for their research, with support from the U.S. Department of Energy and the National Science Foundation. These profiles, published in Fermilab Today, spotlight the critical role of universities in particle physics research. We'd love to profile your

  13. Strategic Petroleum Reserve, West Hackberry oil storage cavern fire and spill of September 21, 1978: an environmental assessment. Final report

    SciTech Connect (OSTI)

    Taylor, A

    1980-02-29

    This report summarizes an environmental assessment of the fire and oil spill at the Strategic Petroleum Reserve site, West Hackberry, Louisiana. Subjective identification of oil contaminated habitats was supported by a more rigorous classification of samples utilizing discriminant analysis. Fourteen contaminated stations were identified along the shore of Black Lake just north and west of Wellpad 6, encompassing approximately 9 hectares. Seasonal variation in the structures of marsh and lake bottom communities in this contaminated area were not generally distinguishable from that of similar communities in uncontaminated habitats along the southern and southeastern shores of Black Lake. The major impact of spilled oil on the marsh vegetation was to accelerate the natural marsh deterioration which will eventually impact animals dependent on marsh vegetation for habitat structure. Vanadium, the predominate trace metal in the oil, and pyrogenic products due to the fire were found at the most distant sampling site (5 km) from Cavern 6 during Phase I, but were not detected downwind of the fire in excess of background levels in the later phases. Remote sensing evaluation of vegetation under the plume also indicated that stress existed immediately after the fire, but had disappeared by the end of the 1-year survey.

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Electricity Profile 2013 Table 1. 2013 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,662 27 Electric ...

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric ...

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric ...

  17. LANSCE | News & Media | Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users User Office User Program LANSCE User Group Rosen Scholar Rosen Prize News & Multimedia News Multimedia Events Profiles Highlights Seminars Activity Reports The Pulse User ...

  18. Profiling Your Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sure to focus on only the main computation of your application (omitting initialization steps which may otherwise clutter the profiling results). Further, it may be valuable at...

  19. Process for preparing lubricating oil from used waste lubricating oil

    DOE Patents [OSTI]

    Whisman, Marvin L.; Reynolds, James W.; Goetzinger, John W.; Cotton, Faye O.

    1978-01-01

    A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

  20. Oil/gas collector/separator for underwater oil leaks

    DOE Patents [OSTI]

    Henning, Carl D.

    1993-01-01

    An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.