National Library of Energy BETA

Sample records for oil production outlook

  1. Review of EIA Oil Production Outlooks

    U.S. Energy Information Administration (EIA) Indexed Site

    Review of EIA oil production outlooks For 2014 EIA Energy Conference July 15, 2014 | Washington, DC By Samuel Gorgen, Upstream Analyst Overview Gorgen, Tight Oil Production Trends EIA Conference, July 15, 2014 2 * Drilling Productivity Report performance review - Permian - Eagle Ford - Bakken * Crude oil production projections - Short-Term Energy Outlook - Annual Energy Outlook - International tight oil outlook * New DPR region highlights: Utica Drilling Productivity Report review - major tight

  2. Annual Energy Outlook 2014 projects reduced need for U.S. oil...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Annual Energy Outlook 2014 projects reduced need for U.S. oil imports due to tight oil production growth U.S. production of tight crude oil is expected to make up a larger share ...

  3. Oil market outlook and drivers

    Gasoline and Diesel Fuel Update (EIA)

    Oil inventories in industrialized countries to reach record high at end of 2015 The amount of year-end oil inventories held in industrialized countries is expected to be the highest on record in 2015. In its monthly forecast, the U.S. Energy Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this year almost 90 million barrels more than at the end of 2014. Global oil production

  4. Soviet Union oil sector outlook grows bleaker still

    SciTech Connect (OSTI)

    Not Available

    1991-08-12

    This paper reports on the outlook for the U.S.S.R's oil sector which grows increasingly bleak and with it prospects for the Soviet economy. Plunging Soviet oil production and exports have analysts revising near term oil price outlooks, referring to the Soviet oil sector's self-destructing and Soviet oil production in a freefall. County NatWest, Washington, citing likely drops in Soviet oil production and exports (OGJ, Aug. 5, p. 16), has jumped its projected second half spot price for West Texas intermediate crude by about $2 to $22-23/bbl. Smith Barney, New York, forecasts WTI postings at $24-25/bbl this winter, largely because of seasonally strong world oil demand and the continued collapse in Soviet oil production. It estimates the call on oil from the Organization of Petroleum Exporting Countries at more than 25 million b/d in first quarter 1992. That would be the highest level of demand for OPEC oil since 1980, Smith Barney noted.

  5. Oil and natural gas market outlook and drivers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFS | Oil and natural gas market outlook and drivers, May 18, 2016 Global supply has ... WTI price dollars per barrel EIA expects WTI oil prices to remain low compared to recent ...

  6. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  7. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel ...

  8. Short-Term Energy Outlook Model Documentation: Petroleum Product Prices Module

    Reports and Publications (EIA)

    2015-01-01

    The petroleum products price module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. average wholesale and retail price forecasts for motor gasoline, diesel fuel, heating oil, and jet fuel.

  9. Short-Term Energy Outlook Model Documentation: Other Petroleum Products Consumption Model

    Reports and Publications (EIA)

    2011-01-01

    The other petroleum product consumption module of the Short-Term Energy Outlook (STEO) model is designed to provide U.S. consumption forecasts for 6 petroleum product categories: asphalt and road oil, petrochemical feedstocks, petroleum coke, refinery still gas, unfinished oils, and other miscvellaneous products

  10. Short-Term Energy Outlook Model Documentation: Petroleum Products Supply Module

    Reports and Publications (EIA)

    2013-01-01

    The Petroleum Products Supply Module of the Short-Term Energy Outlook (STEO) model provides forecasts of petroleum refinery inputs (crude oil, unfinished oils, pentanes plus, liquefied petroleum gas, motor gasoline blending components, and aviation gasoline blending components) and refinery outputs (motor gasoline, jet fuel, distillate fuel, residual fuel, liquefied petroleum gas, and other petroleum products).

  11. The outlook for US oil dependence

    SciTech Connect (OSTI)

    Greene, D.L.; Jones, D.W.; Leiby, P.N.

    1995-05-11

    Market share OPEC lost in defending higher prices from 1979-1985 is being steadily regained and is projected to exceed 50% by 2000. World oil markets are likely to be as vulnerable to monopoly influence as they were 20 years ago, as OPEC regains lost market share. The U.S. economy appears to be as exposed as it was in the early 1970s to losses from monopoly oil pricing. A simulated 2-year supply reduction in 2005-6 boosts OPEC revenues by roughly half a trillion dollars and costs the U.S. economy an approximately equal amount. The Strategic Petroleum Reserve appears to be of little benefit against such a determined, multi-year supply curtailment either in reducing OPEC revenues or protecting the U.S. economy. Increasing the price elasticity of oil demand and supply in the U.S. and the rest of the world, however, would be an effective strategy.

  12. Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields

    Gasoline and Diesel Fuel Update (EIA)

    Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the

  13. Short-Term Energy Outlook Model Documentation: Regional Residential Heating Oil Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential heating oil price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 census regions: Northeast, South, Midwest, and West.

  14. Oil Production

    Energy Science and Technology Software Center (OSTI)

    1989-07-01

    A horizontal and slanted well model was developed and incorporated into BOAST, a black oil simulator, to predict the potential production rates for such wells. The HORIZONTAL/SLANTED WELL MODEL can be used to calculate the productivity index, based on the length and location of the wellbore within the block, for each reservoir grid block penetrated by the horizontal/slanted wellbore. The well model can be run under either pressure or rate constraints in which wellbore pressuresmore » can be calculated as an option of infinite-conductivity. The model can simulate the performance of multiple horizontal/slanted wells in any geometric combination within reservoirs.« less

  15. U.S., non-U.S. outlays to rise in `98, but oil price plunge clouds spending outlook

    SciTech Connect (OSTI)

    Beck, R.J.

    1998-03-23

    Capital spending by oil and gas companies in and outside the US will rise in 1998, but that forecast may be jeopardized by the continuing plunge in oil prices. For operations in the US, oil and gas company capital spending is expected to move up in 1998 for the fourth year in a row. If the money is spent, it will be the highest industry investment level since 1985. Strong oil and gas prices and increased volumes have boosted company cash flow and profits the last few years, fueling increased spending. However, the near-term outlook has now been clouded by economic turmoil in a number of Asian countries and the recent collapse of oil prices. The paper discusses oil and gas prices, US upstream spending, US non-exploration and production spending, capital spending in Canada, and spending outside US and Canada.

  16. Short-Term Energy Outlook Supplement: 2015 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    Gasoline and Diesel Fuel Update (EIA)

    4 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: 2014 Hurricane Outlook i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  17. Short-Term Energy Outlook Supplement: 2013 Outlook for Gulf of Mexico Hurricane-Related Production Outages

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: 2013 Hurricane Outlook i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other

  18. Outlook for Biomass Ethanol Production and Demand

    Reports and Publications (EIA)

    2000-01-01

    This paper presents a midterm forecast for biomass ethanol production under three different technology cases for the period 2000 to 2020, based on projections developed from the Energy Information Administration's National Energy Modeling System. An overview of cellulose conversion technology and various feedstock options and a brief history of ethanol usage in the United States are also presented.

  19. Assumptions and Expectations for Annual Energy Outlook 2015: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions and Expectations for Annual Energy Outlook 2016: Oil and Gas Working Group AEO2016 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis December 1, 2015| Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE We welcome feedback on our assumptions and documentation * The AEO Assumptions report http://www.eia.gov/forecasts/aeo/assumptions/

  20. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  This edition of the Short-Term Energy Outlook is the first to include forecasts for 2016.  December was the sixth consecutive month in which monthly average Brent prices decreased, falling $17/barrel (bbl) from November to a monthly average of $62/bbl, the lowest since May 2009. The December price decline reflects continued growth in U.S. tight oil production, strong global supply, and weakening outlooks for the global economy and oil demand growth.  EIA forecasts

  1. Going Global: Tight Oil Production

    Gasoline and Diesel Fuel Update (EIA)

    GOING GLOBAL: TIGHT OIL PRODUCTION Leaping out of North America and onto the World Stage JULY 2014 GOING GLOBAL: TIGHT OIL PRODUCTION Jamie Webster, Senior Director Global Oil ...

  2. The Outlook for U.S. Oil Dependence

    SciTech Connect (OSTI)

    Greene, D.L.

    1995-01-01

    Market share OPEC lost in defending higher prices from 1979-1985 is being steadily regained and is projected to exceed 50% by 2000. World oil markets are likely to be as vulnerable to monopoly influence as they were 20 years ago, as OPEC regains lost market share. The US economy appears to be as exposed as it was in the early 1970s to losses from monopoly oil pricing. A simulated 2-year supply reduction in 2005-6 boosts OPEC revenues by roughly half a trillion dollars and costs the US economy an approximately equal amount. The Strategic Petroleum Reserve appears to be of little benefit against such a determined, multi-year supply curtailment either in reducing OPEC revenues or protecting the US economy. Increasing the price elasticity of oil demand and supply in the US and the rest of the world, however, would be an effective strategy.

  3. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Summer 2003 Motor Gasoline Outlook Summary For the upcoming summer season (April to September 2003), high crude oil costs and other factors are expected to yield average retail motor gasoline prices higher than those of last year. Current crude oil prices reflect a substantial uncertainty premium due to concerns about the current conflict in the Persian Gulf, lingering questions about whether Venezuelan oil production will recover to near pre-strike

  4. Short Term Energy Outlook ,October 2002

    Gasoline and Diesel Fuel Update (EIA)

    October 2002 1 Short-Term Energy Outlook October 2002 Overview World Oil Markets: Continued high oil prices are the result of declining OECD commercial oil inventories, worries over a potential clash with Iraq, and OPEC's decision to leave production quotas unchanged at its September meeting. Solid growth in world oil demand this winter (and for 2003 as a whole) is likely to tighten world oil markets and reduce commercial oil inventories. The West Texas Intermediate (WTI) crude oil spot price

  5. Energy Information Administration/Short-Term Energy Outlook - October 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 1 October 2005 Short-Term Energy Outlook and Winter Fuels Outlook October 12, 2005 Release (Next Update: November 8, 2005) Overview Warnings from previous Outlooks about the potential adverse impacts of an active hurricane season on domestic energy supply and prices are unfortunately being reflected in the challenging realities brought about by Hurricanes Katrina and Rita. The impact of the hurricanes on oil and natural gas production, oil refining, natural gas processing, and pipeline systems

  6. Crude Oil Domestic Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Crude Oil Domestic Production Refinery Crude Oil Inputs Refinery Gross Inputs Refinery Operable Capacity (Calendar Day) Refinery Percent Operable Utilization Net Inputs of Motor Gasoline Blending Components Net Inputs of RBOB Blending Components Net Inputs of CBOB Blending Components Net Inputs of GTAB Blending Components Net Inputs of All Other Blending Components Net Inputs of Fuel Ethanol Net Production - Finished Motor Gasoline Net Production - Finished Motor Gasoline (Excl.

  7. STEO September 2012 - oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil ...

  8. Energy Information Administration/Short-Term Energy Outlook - April 2006

    Gasoline and Diesel Fuel Update (EIA)

    6 1 April 2006 Short-Term Energy Outlook and Summer Fuels Outlook April 11, 2006 Release Contents Overview Global Petroleum Markets U.S. Petroleum Markets Motor Gasoline Diesel Fuel Natural Gas Markets Electricity Markets Coal Markets Overview Continued steady world oil demand growth, combined with only modest increases in world spare oil production capacity and the continuing risks of geopolitical instability, are expected to keep crude oil prices high through 2006. The price of West Texas

  9. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    Western Hemisphere Oil Products Balance Ramn Espinasa, Ph.D. Lead Specialist July 2014 ... non-commercial purposes. 4 United States Oil Products Balance 5 Energy Matrix - USA 6 ...

  10. STEO December 2012 - oil production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rise in 2012 U.S. oil production largest since 1859, output in 2013 seen topping 7 million bpd U.S. crude oil production is now expected to rise by about 760,000 barrels per day in ...

  11. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    8 Reference case Table A14. Oil and gas supply Energy Information Administration / Annual Energy Outlook 2015 Table A14. Oil and gas supply Production and supply Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Crude oil Lower 48 average wellhead price 1 (2013 dollars per barrel) ...................................... 96 97 75 87 101 117 136 1.3% Production (million barrels per day) 2 United States total ............................................... 6.50 7.44

  12. Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices

    Gasoline and Diesel Fuel Update (EIA)

    Energy-weighted industrial production indices December 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Short-Term Energy Outlook Supplement: Energy-weighted industrial production indices i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  13. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOE/EIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy Information Administration, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge, SR/RNGD/87-01 (Washington, DC, September 1987). U.S. Department of Interior, Arctic National

  14. U.S. crude oil production expected to top 9 million barrels per day in December

    U.S. Energy Information Administration (EIA) Indexed Site

    crude oil production expected to top 9 million barrels per day in December U.S. crude oil production is expected to continue to increase through next year, despite the outlook for lower crude oil prices. In its new short-term forecast, the U.S. Energy Information Administration said monthly average oil production is on track to surpass 9 million barrels per day in December for the first time since 1986 and then rise to an average 9.4 million barrels a day next year. Even though that's down about

  15. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    1 December 2014 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil spot prices fell by more than 15% in November, declining from $85/barrel (bbl) on November 3 to $72/bbl on November 28. Monthly average Brent crude oil prices have declined 29% from their 2014 high of $112/bbl in June to an average of $79/bbl in November, the lowest monthly average since September 2010. The November price decline reflects continued growth in U.S. tight oil production along with weakening

  16. Energy Markets Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Energy Markets Outlook For National Association for Business Economics March 7, 2016 | Washington, D.C. By Adam Sieminski, Administrator Forecast -3 -2 -1 0 1 2 3 4 5 6 82 84 86 88 90 92 94 96 98 100 2011-Q1 2012-Q1 2013-Q1 2014-Q1 2015-Q1 2016-Q1 2017-Q1 Implied stock change and balance (right axis) World production (left axis) World consumption (left axis) world supply and demand million barrels per day implied stock change million barrels per day Global oil inventories are forecast to

  17. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  18. Short Term Energy Outlook, February 2003

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook February 2003 Overview World Oil Markets. World oil markets will likely remain tight through most of 2003, as petroleum inventories and global spare production capacity continue to dwindle amid blasts of cold weather and constrained output from Venezuela. OPEC efforts to increase output to make up for lower Venezuela output has reduced global spare production capacity to only 2 million barrels per day, leaving little room to make up for unexpected supply or demand

  19. South Pacific: Another slow year is ahead. [Oil and gas industry outlook in the South Pacific

    SciTech Connect (OSTI)

    Langley, B. )

    1993-08-01

    This paper summarizes the oil and gas exploration activities in Australia, Papua New Guinea, and New Zealand in the 1992--1993 period and projects the near-future market and development of these resources. It provides statistics on numbers of new wells drilled, footage involved, number or completions, and production information. The paper also describes the main geographical areas of exploration, types of exploration equipment involved.

  20. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  1. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  2. International energy outlook 1998

    SciTech Connect (OSTI)

    1998-04-01

    The International Energy Outlook 1998 (IEO98) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2020. Projections in IEO98 are displaced according to six basic country groupings. The industrialized region includes projections for four individual countries -- the United States, Canada, Mexico, and Japan -- along with the subgroups Western Europe and Australasia (defined as Australia, New Zealand, and the US Territories). The developing countries are represented by four separate regional subgroups: developing Asia, Africa, Middle East, and Central and South America. China and India are represented in developing Asia. New to this year`s report, country-level projections are provided for Brazil -- which is represented in Central and South America. Eastern Europe and the former Soviet Union (EE/FSU) are considered as a separate country grouping. The report begins with a review of world trends in energy demand. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in five fuel chapters, with a review of the current status of each fuel on a worldwide basis. Summary tables of the IEO98 projections for world energy consumption, carbon emissions, oil production, and nuclear power generating capacity are provided in Appendix A. 88 figs., 77 tabs.

  3. Microsoft Word - Hurricane Outlook_v3.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2007 1 June 2007 Short-Term Energy Outlook Supplement: The 2007 Outlook for Hurricane Impacts on Gulf of Mexico Crude Oil and Natural Gas Production Highlights * The National Oceanic and Atmospheric Administration (NOAA) predicts above-normal hurricane activity in the May 22, 2007 version of its Atlantic Hurricane Season Outlook. They project 13 to 17 named storms will form within the Atlantic Basin, including 7 to 10 hurricanes of which 3 to 5 will be intense. 1 * Above-normal hurricane

  4. Short Term Energy Outlook, December 2002

    Gasoline and Diesel Fuel Update (EIA)

    December 2002 1 Short-Term Energy Outlook December 2002 Overview World Oil Markets: Average crude oil prices fell by about $2.50 per barrel between October and November in response to continued high production levels from OPEC 10 countries (Figure 1). However, by the end of November oil prices had risen to end-October levels as concerns over the situations in Iraq and Venezuela pushed prices up. Oil inventories, which are currently in the lower portion of the previous 5-year range, are poised to

  5. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Outlook September 2015 1 September 2015 Short-Term Energy Outlook (STEO) Highlights * North Sea Brent crude oil prices averaged $47/barrel (b) in August, a $10/b decrease from July. This third consecutive monthly decrease in prices likely reflects concerns about lower economic growth in emerging markets, expectations of higher oil exports from Iran, and continuing growth in global inventories. Crude oil price volatility increased significantly, with Brent prices showing daily changes of more

  6. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  7. U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Domestic Oil Production Exceeds Imports for First Time in 18 Years U.S. Domestic Oil Production Exceeds Imports for First Time in 18 Years November 15, 2013 - 3:47pm Addthis Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel Wood. Allison Lantero Allison Lantero Digital Content Specialist, Office of Public Affairs In February 1995, The Brady Bunch Movie and Billy Madison were in movie theaters, "Creep" by TLC was at the top of

  8. Assumptions and Expectations for Annual Energy Outlook 2014: Oil and Gas Working Group

    U.S. Energy Information Administration (EIA) Indexed Site

    4: Oil and Gas Working Group AEO2014 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis July 25, 2013 | Washington, DC http://www.eia.gov/forecasts/aeo/workinggroup/ WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Introduction/Background Office of Petroleum, Gas, and Biofuels Analysis Working Group Presentation for Discussion Purposes Washington, DC, July 25, 2013 DO NOT QUOTE OR CITE as results are

  9. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    and Summer Fuels Outlook April 2015 1 April 2015 Short-Term Energy and Summer Fuels Outlook (STEO) Highlights * On April 2, Iran and the five permanent members of the United Nations Security Council plus Germany (P5+1) reached a framework agreement that could result in the lifting of oil- related sanctions against Iran. Lifting sanctions could substantially change the STEO forecast for oil supply, demand, and prices by allowing a significantly increased volume of Iranian barrels to enter the

  10. Short-term energy outlook, January 1999

    SciTech Connect (OSTI)

    1999-01-01

    The Energy Information Administration (EIA) prepares the Short-Term Energy Outlook (energy supply, demand, and price projections) monthly. The forecast period for this issue of the Outlook extends from January 1999 through December 2000. Data values for the fourth quarter 1998, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the January 1999 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 28 figs., 19 tabs.

  11. Short-term energy outlook, quarterly projections, second quarter 1998

    SciTech Connect (OSTI)

    1998-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections. The details of these projections, as well as monthly updates, are available on the Internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The paper discusses outlook assumptions; US energy prices; world oil supply and the oil production cutback agreement of March 1998; international oil demand and supply; world oil stocks, capacity, and net trade; US oil demand and supply; US natural gas demand and supply; US coal demand and supply; US electricity demand and supply; US renewable energy demand; and US energy demand and supply sensitivities. 29 figs., 19 tabs.

  12. International energy outlook 1996

    SciTech Connect (OSTI)

    1996-05-01

    This International Energy Outlook presents historical data from 1970 to 1993 and EIA`s projections of energy consumption and carbon emissions through 2015 for 6 country groups. Prospects for individual fuels are discussed. Summary tables of the IEO96 world energy consumption, oil production, and carbon emissions projections are provided in Appendix A. The reference case projections of total foreign energy consumption and of natural gas, coal, and renewable energy were prepared using EIA`s World Energy Projection System (WEPS) model. Reference case projections of foreign oil production and consumption were prepared using the International Energy Module of the National Energy Modeling System (NEMS). Nuclear consumption projections were derived from the International Nuclear Model, PC Version (PC-INM). Alternatively, nuclear capacity projections were developed using two methods: the lower reference case projections were based on analysts` knowledge of the nuclear programs in different countries; the upper reference case was generated by the World Integrated Nuclear Evaluation System (WINES)--a demand-driven model. In addition, the NEMS Coal Export Submodule (CES) was used to derive flows in international coal trade. As noted above, foreign projections of electricity demand are now projected as part of the WEPS. 64 figs., 62 tabs.

  13. International energy outlook 2005

    SciTech Connect (OSTI)

    2005-07-01

    This report presents international energy projections through 2025, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. After a chapter entitled 'Highlights', the report begins with a review of world energy and an economic outlook. The IEO2005 projections cover a 24 year period. The next chapter is on world oil markets. Natural gas and coal reserves and resources, consumption and trade discussed. The chapter on electricity deals with primary fuel use for electricity generation, and regional developments. The final section is entitled 'Energy-related greenhouse gas emissions'.

  14. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook April 2003 Overview World Oil Markets. Crude oil prices fell sharply at the onset of war in Iraq, but the initial declines probably overshot levels that we consider to be generally consistent with fundamental factors in the world oil market. Thus, while near-term price averages are likely to be below our previous projections, the baseline outlook for crude oil prices (while generally lower) is not drastically different and includes an average for spot West Texas

  15. Methodology for Monthly Crude Oil Production Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    015 U.S. Energy Information Administration | Methodology for Monthly Crude Oil Production Estimates 1 Methodology for Monthly Crude Oil Production Estimates Executive summary The U.S. Energy Information Administration (EIA) relies on data from state and other federal agencies and does not currently collect survey data directly from crude oil producers. Summarizing the estimation process in terms of percent of U.S. production: * 20% is based on state agency data, including North Dakota and

  16. Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads

    U.S. Energy Information Administration (EIA) Indexed Site

    14, 2014 Annual Energy Outlook 2014 foresees growth of LNG as a fuel for railroads The U.S. Energy Information Administration expects liquefied natural gas, or LNG, to play an increasing role in powering freight locomotives in the coming years. EIA's Reference case, in its recently released Annual Energy Outlook 2014 indicates that growing natural gas production and lower natural gas spot prices compared to crude oil prices could provide significant cost savings for locomotives that use LNG as a

  17. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  18. U.S. oil imports to decline with rising oil production through...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oil imports to decline with rising oil production through 2014 The United States will need fewer oil imports over the next two years because of rising U.S. oil production. The new ...

  19. U.S. crude oil production expected to exceed oil imports later...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crude oil production expected to exceed oil imports later this year U.S. crude oil production is expected to surpass U.S. crude oil imports by the fourth quarter of this year. That ...

  20. High oil production continues to cut U.S. oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High oil production continues to cut U.S. oil imports High U.S. crude oil production will help further reduce America's reliance on oil imports during the next two years. In its ...

  1. Product Supplied for Total Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished

  2. Energy Information Administration/Short-Term Energy Outlook - September 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 1 Short-Term Energy Outlook September 2005 Hurricane Katrina (Figures 1 and 2) The Gulf of Mexico coast region is a major oil and natural gas supply center for the United States with significant offshore oil and natural gas production, refining capacity, and petrochemical facilities, and serves as a major import hub and nexus for pipeline infrastructure. In the Gulf coast region, Federal offshore crude oil production accounts for 1.5 million barrels per day (29 percent of total U.S.

  3. Crude Oil and Petroleum Products Total Stocks Stocks by Type

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils

  4. International energy outlook 2006

    SciTech Connect (OSTI)

    2006-06-15

    This report presents international energy projections through 2030, prepared by the Energy Information Administration. After a chapter entitled 'Highlights', the report begins with a review of world energy and economic outlook, followed by energy consumption by end-use sector. The next chapter is on world oil markets. Natural gas, world coal market and electricity consumption and supply are then discussed. The final chapter covers energy-related carbon dioxide emissions.

  5. Microsoft Word - Hurricane Outlook.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration/Short-Term Energy Outlook Supplement - June 2010 1 June 2010 Short-Term Energy Outlook Supplement: 2010 Outlook for Hurricane-Related Production Outages in the Gulf of Mexico Highlights  The National Oceanic and Atmospheric Administration's (NOAA) Atlantic Hurricane Season Outlook, released on May 27, 2010, predicted that the Atlantic basin will likely experience above-normal tropical weather activity during the upcoming hurricane season (June 1 - November 30). 1

  6. Iran outlines oil productive capacity

    SciTech Connect (OSTI)

    Not Available

    1992-11-09

    National Iranian Oil Co. (NIOC) tested production limits last month to prove a claim of 4 million bd capacity made at September's meeting of the organization of Petroleum Exporting Countries. Onshore fields account for 3.6 million bd of the total, with offshore fields providing the rest. NIOC plans to expand total capacity to 4.5 million bd by April 1993, consisting of 4 million b/d onshore and 500,000 b/d offshore. Middle East Economic Survey says questions remain about completion dates for gas injection, drilling, and offshore projects, but expansion targets are attainable within the scheduled time. NIOC said some slippage may be unavoidable, but it is confident the objective will be reached by third quarter 1993 at the latest. More than 60 rigs are working or about to be taken under contract to boost development drilling in onshore fields and provide gas injection in some. NIOC has spent $3.2 billion in foreign exchange on the drilling program in the last 2 1/2 years.

  7. Short-term energy outlook, April 1999

    SciTech Connect (OSTI)

    1999-04-01

    The forecast period for this issue of the Outlook extends from April 1999 through December 2000. Data values for the first quarter 1999, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the April 1999 version of the Short-Term Integrated forecasting system (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 25 figs., 19 tabs.

  8. Oil and gas outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011 2012 2013 2014 2015 non-OECD consumption growth non-OECD GDP growth* Prices and economic growth are important, but policy, preferences, and technology may have a bigger...

  9. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctab_webinar_bio_oils_production.pdf (772.25 KB) More Documents & Publications Conversion Technologies for Advanced Biofuels - Bio-Oil Upgrading 2013 Peer Review Presentations-Bio-oil Workshop on Conversion Technologies for Advanced Biofuels - Bio-Oils

  10. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  11. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Energy Savers [EERE]

    Oil Production Conversion Technologies for Advanced Biofuels - Bio-Oil Production RTI International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels ...

  12. Improving Microalgal Oil Production Based on Quantitative, Biochemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microalgal Oil Production Based on Quantitative, Biochemical and Genetic Analyses of ... Goal Statement * Maximizing production of oil (triacylglycerols) in the green alga ...

  13. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the ...

  14. Engineered microbes and methods for microbial oil production...

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Engineered microbes and methods for microbial oil production Title: Engineered microbes and methods for microbial oil production Some aspects of this ...

  15. Engineered microbes and methods for microbial oil production...

    Office of Scientific and Technical Information (OSTI)

    Engineered microbes and methods for microbial oil production Title: Engineered microbes and methods for microbial oil production Some aspects of this invention provide engineered ...

  16. Engineered microbes and methods for microbial oil production...

    Office of Scientific and Technical Information (OSTI)

    Patent: Engineered microbes and methods for microbial oil production Citation Details In-Document Search Title: Engineered microbes and methods for microbial oil production Some ...

  17. STEO January 2013 - oil production increase

    U.S. Energy Information Administration (EIA) Indexed Site

    since 1988. Most of America's oil production growth over the next two years will come from more drilling activity in tight shale rock formations located in North Dakota and Texas

  18. Outlook optimistic for 1997 E and P industry

    SciTech Connect (OSTI)

    Popov, S.

    1997-01-01

    The ninth annual Arthur Andersen Oil and Gas Industry Outlook Survey of company executives` forecasts for the US exploration and production industry were presented last month at the 17th Annual Energy Symposium. The consulting firm surveyed the chief financial officers of more than 350 US E and P companies, with 92 companies responding, including 8 majors, 9 large and 75 small independents. Overall, top E and P company executives predict 1997 to be a healthy year for the oil and gas industry. The paper discusses demand and supply, oil and gas prices, capital spending, employment, rig counts and availability, problems and opportunities.

  19. VEE-0023- In the Matter of Oil Products, Inc.

    Broader source: Energy.gov [DOE]

    On May 13, 1996, Oil Products, Inc. (Oil Products) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Oil...

  20. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Energy Information Administration | Annual Energy Outlook 2015 Table A1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise noted) Supply, disposition, and prices Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Production Crude oil and lease condensate ............................ 13.7 15.6 22.2 21.5 21.1 19.8 19.9 0.9% Natural gas plant liquids ........................................ 3.3 3.6 5.5 5.7 5.7 5.6

  1. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  2. Higher U.S. oil production in 2013 and 2014 means lower oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Higher U.S. oil production in 2013 and 2014 means lower oil imports U.S. crude oil production topped 7 million barrels per day in November and December for the first time in 20 ...

  3. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  4. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    March 2015 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil prices averaged $58/barrel (bbl) in February, an increase of $10/bbl from the January average, and the first monthly average price increase since June 2014. The price increase reflects news of falling U.S. crude oil rig counts and announced reductions in capital expenditures by major oil companies, along with lower-than-expected Iraqi crude oil exports.  EIA forecasts that Brent crude oil prices will average

  5. Annual Energy Outlook 2015 - Appendix B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F4. Oil and gas supply model regions F-5 U.S. Energy Information Administration | Annual ...

  6. Alcorn wells bolster Philippines oil production

    SciTech Connect (OSTI)

    Not Available

    1992-09-21

    This paper reports that Alcorn International Inc., Houston, is producing about 16,500 b/d of oil from West Linapacan A field in the South China Sea off the Philippines. The field's current production alone is more than fivefold the Philippines' total average oil flow of 3,000 b/d in 1991. It's part of a string of oil and gas strikes off Palawan Island that has made the region one of the hottest exploration/development plays in the Asia-Pacific theater.

  7. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil ...

  8. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: ... of technically recoverable undiscovered oil are in the ANWR coastal plain, a 5 percent ...

  9. Production of Oil in Vegetative Tissues - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Production of Oil in Vegetative Tissues Inventors: Christoph Benning, Changcheng Xu, ... University's technology increases the oil storage capacity in plants and could help ...

  10. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: ... Section 1002 of ANILCA deferred a decision on the management of oil and gas exploration ...

  11. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    4 1 October 2014 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, electricity, and propane will decrease this winter heating season (October 1 through March 31) compared with last winter, which was 11% colder than the previous 10-year average nationally. Projected average household expenditures for propane and heating oil are 27% and 15% lower, respectively, because of lower heating demand and prices.

  12. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    June 2014 1 June 2014 Short-Term Energy Outlook (STEO) Highlights  North Sea Brent crude oil spot prices increased from a monthly average of $108/barrel (bbl) in April to $110/bbl in May. This was the 11 th consecutive month in which the average Brent crude oil spot price fell within a relatively narrow range of $107/bbl to $112/bbl. The discount of West Texas Intermediate (WTI) crude oil to Brent crude oil, which averaged more than $13/bbl from November through January, fell below $4/bbl in

  13. Oil and gas production in the Amu Dar`ya Basin of Western Uzbekistan and Eastern Turkmenistan

    SciTech Connect (OSTI)

    Sagers, M.J.

    1995-05-01

    The resource base, development history, current output, and future outlook for oil and gas production in Turkmenistan and Uzbekistan are examined by a Western specialist with particular emphasis on the most important gas-oil province in the region, the Amu Dar`ya basin. Oil and gas have been produced in both newly independent countries for over a century, but production from the Amu Dar`ya province proper dates from the post-World War II period. Since that time, however, fields in the basin have provided the basis for a substantial natural gas industry (Uzbekistan and Turkmenistan consistently have trailed only Russia among the former Soviet republics in gas output during the last three decades). Despite high levels of current production, ample oil and gas potential (Turkmenistan, for example, ranks among the top five or six countries in the world in terms of gas reserves) contributes to the region`s prominence as an attractive area for Western investors. The paper reviews the history and status of several international tenders for the development of both gas and oil in the two republics. Sections on recent gas production trends and future outlook reveal considerable differences in consumption patterns and export potential in the region. Uzbekistan consumes most of the gas it produces, whereas Turkmenistan, with larger reserves and a smaller population, exported well over 85% of its output over recent years and appears poised to become a major exporter. A concluding section examines the conditions that will affect these countries` presence on world oil and gas markets over the longer term: reserves, domestic consumption, transportation bottlenecks, the likelihood of foreign investment, and future oil and gas demand. 33 refs., 1 fig., 3 tabs.

  14. August 2012 Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    August 2012 1 August 2012 Short-Term Energy Outlook Highlights  EIA projects that the Brent crude oil spot price will average about $103 per barrel during the second half of 2012, about $3.50 per barrel higher than in last month's Outlook. The forecast Brent crude oil spot price falls to an average of $100 per barrel in 2013. The projected West Texas Intermediate (WTI) crude oil spot price discount to Brent crude oil narrows from about $14 in the third quarter of 2012 to $9 by late 2013.

  15. Microsoft Word - Hurricane Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    8 1 June 2008 Short-Term Energy Outlook Supplement: The 2008 Outlook for Hurricane Production Outages in the Gulf of Mexico Highlights * The National Oceanic and Atmospheric Administration (NOAA) predicted above-normal hurricane activity in its Atlantic Hurricane Season Outlook released on May 22, 2008. 1 NOAA projects 12 to 16 named storms will form within the Atlantic Basin, including 6 to 9 hurricanes, of which 2 to 5 will be intense, during the upcoming hurricane season (June 1 - November

  16. Microsoft Word - Hurricane Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    9 1 June 2009 Short-Term Energy Outlook Supplement: The 2009 Outlook for Hurricane Production Outages in the Gulf of Mexico Highlights * The National Oceanic and Atmospheric Administration (NOAA) predicted in its Atlantic Hurricane Season Outlook released on May 21, 2009 that the Atlantic basin will most likely experience near-normal activity during the upcoming hurricane season (June 1 - November 30). 1 NOAA projects 9 to 14 named storms will form within the Atlantic Basin over the next 6

  17. Microsoft Word - Hurricane Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    June 2010 1 June 2010 Short-Term Energy Outlook Supplement: 2010 Outlook for Hurricane-Related Production Outages in the Gulf of Mexico Highlights  The National Oceanic and Atmospheric Administration's (NOAA) Atlantic Hurricane Season Outlook, released on May 27, 2010, predicted that the Atlantic basin will likely experience above-normal tropical weather activity during the upcoming hurricane season (June 1 - November 30). 1 NOAA projects that 14 to 23 named storms will form within the

  18. Microsoft Word - Hurricane Outlook.docx

    U.S. Energy Information Administration (EIA) Indexed Site

    June 2012 1 June 2012 Short-Term Energy Outlook Supplement: 2012 Outlook for Hurricane-Related Production Outages in the Gulf of Mexico Highlights  The National Oceanic and Atmospheric Administration's (NOAA) Atlantic Hurricane Season Outlook, released on May 24, 2012, predicts that the Atlantic basin likely will experience near- normal tropical weather activity during the upcoming hurricane season (June 1 - November 30). 1 NOAA projects that 9 to 15 named storms will form within the Atlantic

  19. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2013 High Oil Price case projections Table D1. World total primary energy consumption by region, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 117.0 120.2 119.5 124.2 128.2 131.8 136.7 144.7 0.6 United States a 94.9 97.9 96.0 99.4 100.9 101.4 103.0 107.3 0.3 Canada 13.7 13.5 13.9 14.3 15.3 16.4

  20. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  1. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  2. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS1... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand ...

  3. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Contents","Data 1: U.S. Total Crude Oil and Products Imports" "Sourcekey","MTTIMUS2... "Date","U.S. Imports of Crude Oil and Petroleum Products (Thousand Barrels ...

  4. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels per Day)","U.S. Imports ...

  5. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Panama of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Papua New Guinea of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Peru ...

  6. ,"U.S. Total Crude Oil and Products Imports"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Georgia of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Germany of Crude Oil and Petroleum Products (Thousand Barrels)","U.S. Imports from Ghana of ...

  7. Implications of Increasing U.S. Crude Oil Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Implications of Increasing U.S. Crude Oil Production By John Powell June 18, 2013 U.S. crude oil production is up dramatically since 2010 and will continue to grow rapidly; this has implications for: John Powell June 18, 2013 2 * Refinery operations * Refinery investment * Logistics infrastructure investment * Exports of petroleum products * Exports of crude oil Increased U.S. crude oil production has resulted in: John Powell June 18, 2013 3 * Declines in U.S. crude imports * Changes to refinery

  8. Annual outlook for US electric power, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-04-24

    This document includes summary information on the ownership structure of the US electric utility industry, a description of electric utility regulation, and identification of selected factors likely to affect US electricity markets from 1985 through 1995. This Outlook expands upon projections first presented in the Annual Energy Outlook 1985, offering additional discussion of projected US electricity markets and regional detail. It should be recognized that work on the Annual Energy Outlook 1985 had been completed prior to the sharp reductions in world oil prices experienced early in 1986.

  9. Outlook for Non-OPEC Oil Supply Growth in 2008-2009 (Released in the STEO February 2008)

    Reports and Publications (EIA)

    2008-01-01

    In 2008-2009, the Energy Information Administration expects that non-OPEC (Organization of the Petroleum Exporting Countries) petroleum supply growth will surpass that in recent years because of the large number of new oil projects scheduled to come online during the forecast period.

  10. Outlook for Non-OPEC Oil Supply in 2010-2011 (Released in the STEO January 2010)

    Reports and Publications (EIA)

    2010-01-01

    Two large categories define the world's producing countries of crude oil and other liquid fuels (hereafter liquids): those that are members of the Organization of the Petroleum Exporting Countries (OPEC) and those that are outside that group (non-OPEC). This article takes a closer look at the latter category.

  11. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    23 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A11. Petroleum and other liquids supply and disposition (million barrels per day, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A11. Petroleum and other liquids supply and disposition (million barrels per day, unless otherwise noted) Supply and disposition Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Crude oil Domestic

  12. Gulf of Mexico Federal Offshore Percentage of Crude Oil Production...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Production from Greater than 200 Meters Deep (Percent) Gulf of Mexico Federal Offshore Percentage of Crude Oil Production from Greater than 200 Meters Deep (Percent) Decade Year-0...

  13. International energy outlook 1999

    SciTech Connect (OSTI)

    1999-03-01

    This report presents international energy projections through 2020, prepared by the Energy Information Administration. The outlooks for major energy fuels are discussed, along with electricity, transportation, and environmental issues. The report begins with a review of world trends in energy demand. The historical time frame begins with data from 1970 and extends to 1996, providing readers with a 26-year historical view of energy demand. The IEO99 projections covers a 24-year period. The next part of the report is organized by energy source. Regional consumption projections for oil, natural gas, coal, nuclear power, and renewable energy (hydroelectricity, geothermal, wind, solar, and other renewables) are presented in the five fuel chapters, along with a review of the current status of each fuel on a worldwide basis. The third part of the report looks at energy consumption in the end-use sectors, beginning with a chapter on energy use for electricity generation. New to this year`s outlook are chapters on energy use in the transportation sector and on environmental issues related to energy consumption. 104 figs., 87 tabs.

  14. Low oil prices cut less into U.S. oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    Low oil prices cut less into U.S. oil production U.S. crude oil production has been more resilient to lower oil prices since mid-2014 than many had expected. In its new forecast, the U.S. Energy Information Administration estimates domestic oil production averaged 9.6 million barrels per day in May the highest monthly output since 1972 despite a 60% drop in the number of rigs drilling for oil since last October. Output is up because producers are completing wells already drilled and those wells

  15. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    5 1 October 2015 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas, heating oil, and propane during the upcoming winter heating season (October 1 through March 31) will be 10%, 25%, and 18% lower, respectively, than last winter, because of lower fuel prices and lower heating demand. Forecast lower heating demand and relatively unchanged prices contribute to electricity expenditures that are 3% lower than last winter

  16. Key Milestones/Outlook

    Office of Energy Efficiency and Renewable Energy (EERE)

    Key Milestones/Outlook per the Department of Energy 2015 Congressional Budget Request, Environmental Management, March 2014

  17. Short Term Energy Outlook, March 2003

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook March 2003 Overview World Oil Markets. February crude oil prices moved higher than expected pushed by fears of a war in Iraq, low inventories, slow recovery in Venezuelan exports, continued cold weather and sharply higher natural gas prices in the United States. West Texas Intermediate prices averaged close to $36 for the month (Figure 1), a level not seen since October 1990. Oil inventories continued lower through the month resulting in a cumulative reduction in

  18. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  19. Supplement to the annual energy outlook 1994

    SciTech Connect (OSTI)

    1994-03-01

    This report is a companion document to the Annual Energy Outlook 1994 (AEO94), (DOE/EIA-0383(94)), released in Jan. 1994. Part I of the Supplement presents the key quantitative assumptions underlying the AEO94 projections, responding to requests by energy analysts for additional information on the forecasts. In Part II, the Supplement provides regional projections and other underlying details of the reference case projections in the AEO94. The AEO94 presents national forecasts of energy production, demand and prices through 2010 for five scenarios, including a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. These forecasts are used by Federal, State, and local governments, trade associations, and other planners and decisionmakers in the public and private sectors.

  20. Short-term energy outlook: Quarterly projections, second quarter 1997

    SciTech Connect (OSTI)

    1997-04-01

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for publication in January, April, July, and October in the Outlook. The forecast period for this issue of the Outlook extends from the second quarter of 1997 through the fourth quarter of 1998. Values for the first quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the second quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the Short-Term Integrated Forecasting System (STIFS). 34 figs., 19 tabs.

  1. Short-term energy outlook. Quarterly projections, first quarter 1996

    SciTech Connect (OSTI)

    1996-02-01

    The Energy Information Administration (EIA) prepares quarterly, short-term energy supply, demand, and price projections for publication in February, May, August, and November in the Outlook. The forecast period for this issue of the Outlook extends from the first quarter of 1996 through the fourth quarter of 1997. Values for the fourth quarter of 1995, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in the Weekly Petroleum Status Report) or are calculated from model simulations using the latest exogenous information available (for example, electricity sales and generation are simulated using actual weather data). The historical energy data, compiled into the first quarter 1996 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS database is archived quarterly and is available from the National Technical Information Service. The cases are produced using the Short-Term Integrated Forecasting System (STIFS). The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are produced by DRI/McGraw-Hill but are adjusted by EIA to reflect EIA assumptions about the world price of crude oil, energy product prices, and other assumptions which may affect the macroeconomic outlook.

  2. Market analysis of shale oil co-products. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-12-01

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  3. Combined process for heavy oil, upgrading and synthetic fuel production

    SciTech Connect (OSTI)

    Polomski, R.E.

    1984-06-05

    A process for upgrading heavy oil to fuel products comprises deasphalting the heavy oil with an oxygenated solvent and simultaneously converting the oxygenated solvent and deasphalted oil over a ZSM-5 type catalyst to produce gasoline and distillate boiling range hydrocarbons.

  4. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (83/3Q) Short-Term Energy Outlook iuarterly Projections August 1983 Energy Information Administration Washington, D.C. 20585 t rt jrt- .ort- iort- iort- iort- nort- lort- '.ort- ort- Tt- .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Term .-Term -Term xrm Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy -OJ.UUK Outlook Outlook Outlook Outlook Outlook Outlook

  5. Oil & Natural Gas Projects Exploration and Production Technologies...

    Open Energy Info (EERE)

    & Natural Gas Projects Exploration and Production Technologies Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oil & Natural Gas Projects Exploration...

  6. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks by Type",6,"Monthly","82015","1151956"...

  7. Crude Oil and Lease Condensate Production by API Gravity

    Gasoline and Diesel Fuel Update (EIA)

    ... Petroleum Institute's measure of specific gravity of crude oil or condensate in degrees. ... At the individual statearea level, production volumes in the "Unknown" category are ...

  8. Table 7. Crude oil proved reserves, reserves changes, and production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude oil proved reserves, reserves changes, and production, 2014" "million barrels" ,,"Changes in Reserves During 2014" ,"Published",,,..."New Reservoir" ,"Proved",,"Revision","...

  9. U.S. Crude Oil Production to 2025: Updated Production of Crude...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure data Previous Issues 5-29-2014 U.S. Crude Oil Production to 2025: Updated Projection of Crude Types Release date: May 28, 2015 Preface U.S. oil production has grown rapidly ...

  10. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  11. Life-Cycle Assessment of Pyrolysis Bio-Oil Production*

    SciTech Connect (OSTI)

    Steele, Philip; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-07-01

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  12. Analysis of Oil and Gas Production in the Arctic National Wildlife Refuge

    Reports and Publications (EIA)

    2004-01-01

    This study analyzed the impact on future oil imports and expenditures of opening the Arctic National Wildlife Refuge (ANWR) to petroleum development. High, low, and mean ANWR oil resource case projections were compared to the Annual Energy Outlook 2004 reference case. The study also examined whether potential synergies exist in opening ANWR to petroleum development and the construction of an Alaska gas pipeline from the North Slope to the lower 48 states.

  13. Prediction of Oil Production With Confidence Intervals*

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... spray Target studies for Muon Collider Pellet injection studies for ITER Oil reservoirgroundwater simulation studies 56 Conclusions: Turbulent mixing A ...

  14. Economic Effects of High Oil Prices (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    The Annual Energy Outlook 2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real gross domestic product (GDP) growth, inflation, employment, exports and imports, and interest rates.

  15. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of 2005 relative to the first quarter of 2004 and relatively lower fuel oil prices. Short-Term Natural Gas Market Outlook, April 2004 History Projections Jan-04 Feb-04 Mar-04...

  16. Natural Gas Summary from the Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    power sector eases and relative coal and fuel oil spot prices decline somewhat. Short-Term Natural Gas Market Outlook, May 2004 History Projections Feb-04 Mar-04 Apr-04 May-04...

  17. U.S. oil production forecast update reflects lower rig count

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in ...

  18. Energy Information Administration/Short-Term Energy Outlook - January 2005

    Gasoline and Diesel Fuel Update (EIA)

    January 2005 1 Short-Term Energy Outlook January 2005 Winter Fuels Update (Figure 1) Consumer prices for heating fuels are relatively unchanged since the December Outlook, leaving projections for household heating fuel expenditures about the same as previously projected, despite continued warm weather in the middle of the heating season. Heating oil expenditures by typical Northeastern households are expected to average 30 percent above last winter's levels, with residential fuel oil prices

  19. Process for stimulating and upgrading the oil production from a heavy oil reservoir

    SciTech Connect (OSTI)

    Sweany, G.A.

    1981-08-18

    A process for thermally stimulating and upgrading oil production from a heavy oil reservoir wherein the heavy oil produced from the reservoir is combined with a hydrogen donor diluent and the mixture is subjected to thermal cracking to upgrade the heavy oil into more valuable hydrocarbon products. The cracked products are fractionated into a light end vapor fraction, an intermediate liquid fraction, a gas oil fraction and a pitch fraction, and at least a portion of the gas oil fraction is hydrogenated by contacting it with a hydrogen-containing gas stream to produce the hydrogen donor diluent combined with the heavy oil. The pitch fraction is subjected to partial oxidation to produce the hydrogen-containing gas stream and a by-product gas stream containing steam which is combined with additional steam and injected into the heavy oil reservoir to enhance the mobility of heavy oil contained therein. The light end vapor fraction and unreacted hydrogen-containing gas produced by the process are utilized as fuel in the process. The intermediate liquid fraction produce and portion of the gas oil fraction not hydrogenated are readily transportable from the process.

  20. Annual Energy Outlook2014

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    For further information . . . The Annual Energy Outlook 2014 (AEO2014) was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti...

  1. Annual Energy Outlook Retrospective Review - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration ‹ Analysis & Projections Annual Energy Outlook Retrospective Review Release Date: March 25, 2015 | Next Release Date: April 2017 | Report Number: DOE/EIA-0640(2014) Evaluation of 2014 and Prior Reference Case Projections The U.S. Energy Information Administration (EIA) produces projections of energy production, consumption and prices each year in the Annual Energy Outlook (AEO). Each year, EIA also produces an AEO Retrospective Review document, which presents a

  2. Short Term Energy Outlook, January 2003

    Gasoline and Diesel Fuel Update (EIA)

    3 1 Short-Term Energy Outlook January 2003 Overview World Oil Markets. The oil market is vulnerable to a number of forces that could cause substantial price volatility over the coming months. The combination of a sustained loss of most of Venezuela's exports, risk of increased tensions in the Middle East and low oil inventories could cause oil prices to spike at least temporarily above our base case. The average West Texas Intermediate (WTI) price, which stood at $27.27 per barrel on December 2,

  3. Crude Oil and Petroleum Products Movements by Pipeline between PAD

    U.S. Energy Information Administration (EIA) Indexed Site

    Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Isobutane/Isobutylene Normal Butane/Butylene Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional

  4. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  5. Table 5.2 Crude Oil Production and Crude Oil Well Productivity...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... reports. * 1981-1994Independent Petroleum Association of America, The Oil Producing Industry in Your State. * 1995 forwardGulf Publishing Co., World Oil, February issues. ...

  6. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact 578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was ...

  7. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Gunks Up Biofuels Production from Bio-Oils Biological and Environmental Research ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  8. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Office of Science (SC) Website

    Water Gunks Up Biofuels Production from Bio-Oils Advanced Scientific Computing Research ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  9. Supplement to the Annual Energy Outlook 1993

    SciTech Connect (OSTI)

    Not Available

    1993-02-17

    The Supplement to the Annual Energy Outlook 1993 is a companion document to the Energy Information Administration`s (EIA) Annual Energy Outlook 1993 (AEO). Supplement tables provide the regional projections underlying the national data and projections in the AEO. The domestic coal, electric power, commercial nuclear power, end-use consumption, and end-use price tables present AEO forecasts at the 10 Federal Region level. World coal tables provide data and projections on international flows of steam coal and metallurgical coal, and the oil and gas tables provide the AEO oil and gas supply forecasts by Oil and Gas Supply Regions and by source of supply. All tables refer to cases presented in the AEO, which provides a range of projections for energy markets through 2010.

  10. Energy Information Administration/Short-Term Energy Outlook - August 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 1 Short-Term Energy Outlook August 2005 Short-Term Energy Outlook - Regional Enhancements Starting with this edition of the Short-Term Energy Outlook (STEO), EIA is introducing regional projections (the scope of which will vary by fuel) of energy prices, consumption, and production. The addition of regional data and forecasts will allow us to examine regional fuel demands and prices, regional fuel inventory trends, the interaction between regional electricity demand shifts, and regional

  11. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  12. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual" "Projected" " (million barrels)" ,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,201...

  13. Gulf of Mexico Federal Offshore Crude Oil Production from Greater...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Greater than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Greater than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2...

  14. Gulf of Mexico Federal Offshore Crude Oil Production from Less...

    Gasoline and Diesel Fuel Update (EIA)

    Less than 200 Meters Deep (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production from Less than 200 Meters Deep (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

  15. Gulf of Mexico Federal Offshore Crude Oil Production (Million...

    Gasoline and Diesel Fuel Update (EIA)

    (Million Barrels) Gulf of Mexico Federal Offshore Crude Oil Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 267 266...

  16. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  January was the seventh consecutive month in which monthly average North Sea Brent crude oil prices decreased, reaching $48/barrel (bbl), the lowest since March 2009. The price decline reflects continued growth in U.S. tight oil production and strong global supply, amid weaker global oil demand growth, which contributed to rising global oil inventories. In January, estimated Organization for Economic Cooperation and Development (OECD) total commercial oil inventories

  17. World Oil Price Cases (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    World oil prices in Annual Energy Outlook 2005 are set in an environment where the members of OPEC (Organization of the Petroleum Exporting Countries) are assumed to act as the dominant producers, with lower production costs than other supply regions or countries. Non-OPEC oil producers are assumed to behave competitively, producing as much oil as they can profitability extract at the market price for oil. As a result, the OPEC member countries will be able effectively to set the price of oil when they can act in concert by varying their aggregate production. Alternatively, OPEC members could target a fixed level of production and let the world market determine the price.

  18. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect (OSTI)

    2012-01-01

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  19. Oil products distribution in Iran: a planning approach

    SciTech Connect (OSTI)

    Abrishami, H.

    1986-01-01

    The significance of this study is that it examines the functions of the most important element in the public sector of the economy of Iran - the Ministry of Oil. Oil is the main source of Iran's foreign earnings and the commodity most crucial to the country's economy as its prime export. Furthermore, it plays a vital role in meeting domestic energy demands. The distribution of oil products affects, on the one hand, households, small businesses, and larger industries while, on the other, it affects the allocation, in general of other national resources. Accordingly, the effects of the Ministry of Oil's policies with regard to its production-distribution system cannot be overemphasized. The research entailed has elicited certain factors: The Ministry of Oil's present system suffers from a number of weaknesses in its production-distribution design. These deficiencies involved, among others, terminal location, number of terminals, assignment of terminals to customers, substitution of other major sources of energy for major oil products, the middle distillates problem, and an outmoded distribution method and techniques. This dissertation addresses alternatives that will eliminate faults in the present system. The approach and conclusions of this research have the potential of application to any type of industry in Iran - oil or otherwise, whether in the private or public sector - that has a similar intricate distribution-system design subject to similar variables.

  20. Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook 2015 AEO Annual Energy Outlook AEO2015 Annual Energy Outlook 2015 API American Petroleum Institute bbl Barrels bbl/d Barrels per day Brent North Sea Brent Btu British thermal unit(s) CAFE Corporate average fuel economy CAIR Clean Air Interstate Rule CHP Combined heat and power CO2 Carbon dioxide CPI Consumer price index CSAPR Cross-State Air Pollution Rule CTL Coal-to-liquids E85 Motor fuel containing up to 85% ethanol EIA U.S. Energy Information Administration EOR Enhanced

  1. U.S. monthly oil production tops 8 million barrels per day for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    monthly crude oil production highest in 26 years with bigger oil flows still to come U.S. crude oil production averaged 8.3 million barrels per day in April....the highest monthly ...

  2. Tribal Economic Outlook Conference

    Broader source: Energy.gov [DOE]

    Hosted by Northern Arizona University, the Tribal Economic Outlook Conference will preview the conditions that will impact business and economy in the year ahead. Hear what the experts are predicting for 2016 at the tribal, state, and local level.

  3. China Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    X I A O J I E X U C H A I R F E L L O W , W O R L D E N E R G Y C H I N A O U T L O O K I N S T I T U T E O F W O R L D E C O N O M I C S A N D P O L I T I C S , C H I N E S E A C A D E M Y O F S O C I A L S C I E N C E S China Energy Outlook 2020 2014-7-15 Washington DC World Energy China Outlook | Xiaojie Xu and Chen Tangsi | xuoffice@vip.sina.com 1 World Energy China Outlook 2014-2015 Annual interactive Energy Outlook Mid-year Updates IWEP Energy Chinese Academy of Social Sciences 2014-7-15

  4. Energy Market Outlook

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the Federal Utility Partnership Working Group Energy Market Outlook: Helping Customers Meet Their Diverse Energy Goals, held on May 22-23, 2013 in San Francisco, California.

  5. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    band is very wide 2 WTI price dollars per barrel Source: EIA, Short-Term Energy Outlook, June 2015 0 25 50 75 100 125 150 Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct...

  6. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    band is very wide 2 WTI price dollars per barrel Source: EIA, Short-Term Energy Outlook, May 2015 0 25 50 75 100 125 150 Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct...

  7. The Outlook for Energy: A View to 2030 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Outlook for Energy: A View to 2030 The Outlook for Energy: A View to 2030 Presents an outlook on the future supply and demand for energy until the year 2030, with a major focus on oil, natural gas, coal, and renewable sources of energy. deer08_tunison.pdf (288.67 KB) More Documents & Publications Energy Outlook for the Transport Sector Measuring the Costs of U.S. Oil Dependence and the Benefits of Reducing It Before the Senate Energy and Natural Resources Committee

  8. Summer_Gas_Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (Energy Information Administration/Short-Term Energy Outlook -- April 2001) 1 Summer 2001 Motor Gasoline Outlook Summary April 2001 For the upcoming summer season (April to September), motor gasoline markets are projected to once again exhibit a very tight supply/demand balance. * Retail gasoline prices (regular grade) are expected to average $1.49 per gallon, slightly lower than last summer's average of $1.53 per gallon, but still above the previous (current-dollar) record summer average of

  9. International Energy Outlook 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    484(2016) I May 2016 International Energy Outlook 2016 ~ Independent Statistics & Ana[ysis e~ ~* a~ 1 U.S. ~~ergy. Information Administration Contacts The International Energy Outlook 2016 was prepared by the U.S. Energy Information Administration (EIA) under the direction of John Conti, Assistant Administrator for Energy Analysis (john.conti@eia.gov, 202-586-2222); Paul Holtberg, Team Leader, Analysis Integration Team (paul.holtberg@eia.gov, 202-586-1284); Jim Diefenderfer, Director, Office

  10. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  11. Energy Information Administration/Short-Term Energy Outlook - February 2005

    Gasoline and Diesel Fuel Update (EIA)

    February 2005 1 Short-Term Energy Outlook February 2005 Winter Fuels Update (Figure 1) Despite some cold weather during the second half of January, expected average consumer prices for heating fuels this heating season are little changed since the January Outlook, leaving projections for household heating fuel expenditures about the same as previously reported. Heating oil expenditures by typical Northeastern households are expected to average 32 percent above last winter's levels, with

  12. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L.; Bezdek, Roger; Wendling, Robert

    2005-02-01

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  13. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  14. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  15. Annual Energy Outlook 2014 Preliminary Results

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Group 2 September 25, 2013 | Washington, DC By Trisha Hutchins and Nicholas Chase Office of Transportation Energy Consumption and Efficiency Analysis Annual Energy Outlook 2014: transportation modeling updates and preliminary results Overview 2 AEO2014 Transportation Working Group 2: Modeling updates and preliminary results Washington, D.C., September 25, 2013 Discussion purposes only - Do not cite or circulate * Macroeconomic drivers - GDP, population, world oil price * Light-duty

  16. Past, Present, and Future Production of Bio-oil

    SciTech Connect (OSTI)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers

  17. AEO Early Release 2013 - oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Growing U.S. oil output and rising vehicle fuel economy to cut U.S. reliance on foreign oil The United States is expected to continue cutting its dependence on petroleum and liquid fuels imports over the rest of this decade because of growing domestic crude oil production and more fuel-efficient vehicles on America's highways. The new long-term outlook from the U.S. Energy Information Administration shows America's dependence on imported petroleum and liquid fuels will decline from 45 percent of

  18. Too early to tell on $100 oil

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil ...

  19. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    market outlook and drivers for Official Monetary and Financial Institutions Forum (OMFIF) July 14, 2016 | St. Louis, MO by Howard Gruenspecht, Deputy Administrator Forecast -3 -2 -1 0 1 2 3 4 5 6 82 84 86 88 90 92 94 96 98 100 2011-Q1 2012-Q1 2013-Q1 2014-Q1 2015-Q1 2016-Q1 2017-Q1 Implied stock change and balance (right axis) World production (left axis) World consumption (left axis) world supply and demand million barrels per day implied stock change million barrels per day OMFIF l Third Main

  20. Environmental Compliance for Oil and Gas Exploration and Production

    SciTech Connect (OSTI)

    Hansen, Christine

    1999-10-26

    The Appalachian/Illinois Basin Directors is a group devoted to increasing communication among the state oil and gas regulatory agencies within the Appalachian and Illinois Basin producing region. The group is comprised of representatives from the oil and gas regulatory agencies from states in the basin (Attachment A). The directors met to discuss regulatory issues common to the area, organize workshops and seminars to meet the training needs of agencies dealing with the uniqueness of their producing region and perform other business pertinent to this area of oil and gas producing states. The emphasis of the coordinated work was a wide range of topics related to environmental compliance for natural gas and oil exploration and production.

  1. Fact #780: May 20, 2013 Crude Oil Reserve to Production Ratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: May 20, 2013 Crude Oil Reserve to Production Ratio Fact 780: May 20, 2013 Crude Oil Reserve to Production Ratio The ratio of reserves to production gives a relative measure of ...

  2. Short-Term Energy Outlook July 2013

    Gasoline and Diesel Fuel Update (EIA)

    1 July 2013 Short-Term Energy Outlook (STEO) Highlights  The U.S. Energy Information Administration (EIA) expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. This forecast assumes there are no disruptions to energy markets arising from the recent unrest in Egypt. After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then

  3. Short-Term Energy Outlook June 2013

    Gasoline and Diesel Fuel Update (EIA)

    1 June 2013 Short-Term Energy Outlook (STEO) Highlights * After increasing to $119 per barrel in early February 2013, the Brent crude oil spot price fell to a low of $97 per barrel in mid-April and then recovered to an average of $103 per barrel in May. EIA expects that the Brent crude oil spot price will average $102 per barrel over the second half of 2013, and $100 per barrel in 2014. * EIA expects the price of regular gasoline will average $3.53 per gallon over the summer driving season

  4. Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The projections in the U.S. Energy Information Administration's (EIA's) Annual Energy Outlook 2015 (AEO2015) focus on the factors that shape the U.S. energy system over the long term. For the first time, the Annual Energy Outlook (AEO) is presented as a shorter edition under a newly adopted two-year release cycle. With this approach, full editions and shorter editions of the AEO will be produced in alternating years. This approach will allow EIA to focus more resources on rapidly changing energy markets both in the United States and internationally, and to consider how they might evolve over the next few years.

  5. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * Benchmark North Sea Brent crude oil spot prices averaged $47/barrel (b) in May, a $5/b increase from April and the fourth consecutive monthly increase since reaching a 12-year low of $31/b in January. Growing global oil supply disruptions, rising oil demand, and falling U.S. crude oil production contributed to the price increase. * Brent crude oil prices are forecast to average $43/b in 2016 and $52/b in 2017, $3/b and $1/b higher than forecast in last month's STEO,

  6. Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela

    SciTech Connect (OSTI)

    Kaufman, R.L.; Noguera, V.H.; Bantz, D.M.; Rodriguez, R.

    1996-08-01

    Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

  7. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, Curtis L.; Timpe, Ronald C.; Potas, Todd A.; DeWall, Raymond A.; Musich, Mark A.

    1992-01-01

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  8. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  9. Energy Information Administration/Short-Term Energy Outlook - May 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 1 Short-Term Energy Outlook May 2005 2005 Summer Motor Gasoline Outlook Update (Figure 1) A considerable break in the expected strength of near-term crude oil prices has resulted in a lower forecast for retail gasoline prices this spring. Gasoline prices may well have seen their peak for the year, barring sharp disruptions in crude oil supply or refinery operations. Pump prices for the summer (April-September) are now projected to average $2.17 per gallon, still high by historical standards

  10. Fact #652: December 6, 2010 U.S. Crude Oil Production Rises | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2: December 6, 2010 U.S. Crude Oil Production Rises Fact #652: December 6, 2010 U.S. Crude Oil Production Rises The production of crude oil in the U.S., including lease condensates, rose in 2009 for the first time since 1991. The general trend of declining oil production began in 1986 after a slight peak in 1985 of 8.97 million barrels per day. In 2008, the lowest point in the series, oil production was only 4.95 million barrels per day. The highest U.S. crude oil production was forty

  11. Annual energy outlook 2009 with projections to 2030

    SciTech Connect (OSTI)

    2009-03-15

    The Annual Energy Outlook 2009 (AEO009), presents long-term projections of energy supply, demand, and prices through 2030, based on results from EIA's National Energy Modeling System (NEMS). EIA published an 'early release' version of the AEO009 reference case in December 2008. The report begins with an 'Executive Summary' that highlights key aspects of the projections. It is followed by a 'Legislation and Regulations' section that discusses evolving legislation and regulatory issues, including a summary of recently enacted legislation, such as the Energy Improvement and Extension Act of 2008 (EIEA2008). The next section, 'Issues in Focus,' contains discussions of selected topics, including: the impacts of limitations on access to oil and natural gas resources on the Federal Outer Continental Shelf (OCS); the implications of uncertainty about capital costs for new electricity generating plants; and the result of extending the Federal renewable production tax credit (PTC). It also discusses the relationship between natural gas and oil prices and the basis of the world oil price and production trends in AEO2009.

  12. China's energy outlook

    SciTech Connect (OSTI)

    Fridley, D.

    1991-03-01

    Economic reform in China has given a major boost to the development of China's energy industries. Demand for energy has risen steadily in response to the rapid expansion of the economy over the past ten years, while economic liberalization and deregulation have stimulated energy output as the energy industries found new sources of capital, labor, and investment opportunities. In the first half of 1980s, the coal, oil, and electric power industries all experienced accelerating rates of growth. After mid-decade, however, an overheating economy, rising inflation, and lower international oil prices had a serious impact on the vitality of the energy industries. At a time when energy demand was soaring, the state-owned energy industries faced a decline in the real value of their output, excessive debt, falling productivity, and sharply higher costs of production. These trends have continued into 1990 despite the economic slowdown engineered in late 1988 and, if left unmanaged, will constrain the ability of the domestic energy industries to meet the energy needs of China's modernization program. This in turn could lead to progressively higher imports of energy, particularly oil, and could limit the speed and scope of economic expansion in the 1990s and beyond. 2 figs., 18 tabs.

  13. Microsoft PowerPoint - BP 2030 Outlook (EIA conference Apr 2011).ppt

    U.S. Energy Information Administration (EIA) Indexed Site

    BP Energy Outlook 2030 Washington, DC 26 April 2011 Energy Outlook 2030 2 © BP 2011 Global trends US particulars What can bend the trend? Outline Energy Outlook 2030 3 © BP 2011 Non-OECD economies drive consumption growth Billion toe Billion toe 0 2 4 6 8 10 12 14 16 18 1990 2000 2010 2020 2030 OECD Non-OECD 0 2 4 6 8 10 12 14 16 18 1990 2000 2010 2020 2030 Renewables Hydro Nuclear Coal Gas Oil * * Includes biofuels Energy Outlook 2030 4 © BP 2011 Gas and renewables win as fuel shares

  14. Modern methods wrest more gas, oil from Ukraine`s historic producing basins

    SciTech Connect (OSTI)

    Texas, L.C.; Machuzhak, M.I.; Chepily, P.M.

    1998-11-23

    The major oil and gas producing area of the Republic of Ukraine is the Dnieper-Donets basin located in the eastern part of the country. The paper describes the geology of the basin, the oil and gas accumulations, field activities, and potential for further production. The paper then discusses the Precarpathian region located in western Ukraine, its oil and gas accumulation, potential, specifications of the fluids, and future outlook.

  15. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * North Sea Brent crude oil prices averaged $64/barrel (b) in May, a $5/b increase from April and the highest monthly average of 2015. Despite estimated global inventories increasing by more than 2 million barrels per day (b/d) for the third consecutive month, several factors contributed to higher prices in May, including continued signals of higher global oil demand growth, expectations for declining U.S. tight oil production in the coming months, and the growing risk of

  16. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  North Sea Brent crude oil prices averaged $60/barrel (b) in April, a $4/b increase from March and the highest monthly average of 2015. Despite increasing global inventories, several factors contributed to higher prices in April, including indications of higher global oil demand growth, expectations for declining U.S. tight oil production in the coming months, and the growing risk of unplanned supply outages in the Middle East and North Africa.  EIA forecasts that Brent

  17. U.S. Crude Oil Production to 2025: Updated Projection of Crude...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Information Administration | U.S. Crude Oil Production to 2025 - Updated Projection of ... May 2015 U.S. Energy Information Administration | U.S. Crude Oil Production to 2025 - ...

  18. Fact #758: December 17, 2012 U.S. Production of Crude Oil by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Fact 758: December 17, 2012 U.S. Production of Crude Oil by State, 2011 Texas is by far the State that produces ...

  19. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    Natural Gas Production and U.S. Oil Imports Natural Gas Production and U.S. Oil Imports January 26, 2012 - 11:14am Addthis Matthew Loveless Matthew Loveless Data Integration ...

  20. Water Gunks Up Biofuels Production from Bio-Oils | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Gunks Up Biofuels Production from Bio-Oils Basic Energy Sciences (BES) BES Home ... Water Gunks Up Biofuels Production from Bio-Oils New findings will help extend the ...

  1. U.S. monthly oil production tops 8 million barrels per day for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. crude oil production expected to hit four-decade high during 2015 U.S. crude oil production over the next two years is expected to grow to its highest level since the early ...

  2. U.S. oil production expected to decline over next year, rebounding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9, 2015 U.S. oil production expected to decline over next year, rebounding in late 2016 U.S. monthly crude oil production is expected to decline through the middle of next year in ...

  3. Non-OPEC oil production set to decline for the first time since...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-OPEC oil production set to decline for the first time since 2008 Total oil production from countries outside of OPEC, the Organization of the Petroleum Exporting Countries, is ...

  4. U.S. monthly oil production tops 8 million barrels per day for...

    Gasoline and Diesel Fuel Update (EIA)

    Rising U.S. oil production cuts into petroleum imports Growing U.S. crude oil production is on track to push the amount of petroleum liquid fuels imports needed to meet domestic ...

  5. EIA revises up forecast for U.S. 2013 crude oil production by...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information ...

  6. Accelerated Depletion: Assessing Its Impacts on Domestic Oil and Natural Gas Prices and Production

    Reports and Publications (EIA)

    2000-01-01

    Analysis of the potential impacts of accelerated depletion on domestic oil and natural gas prices and production.

  7. Short-Term Energy Outlook Model Documentation: Coal Supply, Demand, and Prices

    Reports and Publications (EIA)

    2016-01-01

    The coal module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, imports, exports, inventories, and prices.

  8. International Energy Outlook 2016-World energy demand and economc outlook -

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Analysis & Projections International Energy Outlook 2016 Release Date: May 11, 2016 | Next Release Date: September 2017 | | Report Number: DOE/EIA-0484(2016) Chapter 1. World energy demand and economic outlook print version Overview The International Energy Outlook 2016 (IEO2016) Reference case projects significant growth in worldwide energy demand over the 28-year period from 2012 to 2040. Total world consumption of marketed energy expands from 549

  9. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * North Sea Brent crude oil prices averaged $42/barrel (b) in April, a $3/b increase from March. Improving economic data, growing supply disruptions, and falling U.S. crude oil production and rig counts contributed to the price increase. * Brent crude oil prices are forecast to average $41/b in 2016 and $51/b in 2017, $6/b and $10/b higher than forecast in last month's STEO, respectively. West Texas Intermediate (WTI) crude oil prices are forecast to average slightly less than

  10. Spot Prices for Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon) Period: Daily Weekly Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Product by Area 08/30/16 08/31/16 09/01/16 09/02/16 09/05/16 09/06/16 View History Crude Oil WTI - Cushing, Oklahoma 46.32 44.68 43.17 44.39 44.39 44.85 1986-2016 Brent - Europe 47.94 47.94 45.05 45.96 46.72 46.21 1987-2016 Conventional Gasoline New York Harbor, Regular

  11. International energy outlook 1994

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The International Energy Outlook 1994 (IEO94) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets between 1990 and 2010. The report is provided as a statistical service to assist energy managers and analysts, both in government and in the private sector. These forecasts are used by international agencies, Federal and State governments, trade associations, and other planners and decisionmakers. They are published pursuant to the Depart. of Energy Organization Act of 1977 (Public Law 95-91), Section 205(c). The IEO94 projections are based on US and foreign government policies in effect on October 1, 1993-which means that provisions of the Climate Change Action Plan unveiled by the Administration in mid-October are not reflected by the US projections.

  12. Oil and gas production equals jobs and revenue

    SciTech Connect (OSTI)

    Aimes, L.A.

    1994-12-31

    The effects of oil and gas production on jobs and revenue are discussed. Some suggestions are presented that should provide the climate to increase jobs, add revenue and increase efficiency in state agencies within the producing states. Some of the ideas and suggestions are summarized. Some of these ideas include: how to extend the economic limits of marginal properties; how the states can encourage additional drilling without incurring loss of revenue; and the use of investment tax credits.

  13. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.T.

    1985-04-01

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  14. Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    For further information . . . The Annual Energy Outlook 2015 (AEO2015) was prepared by the U.S. Energy Information Administration (EIA), under the direction of John J. Conti (john.conti@eia.gov, 202/586-2222), Assistant Administrator of Energy Analysis; Paul D. Holtberg (paul.holtberg@ eia.gov, 202/586-1284), Team Leader, Analysis Integration Team, Office of Integrated and International Energy Analysis; James R. Diefenderfer (jim.diefenderfer@eia.gov, 202/586-2432), Director, Office of

  15. Internatioanl Energy Outlook 2016

    Gasoline and Diesel Fuel Update (EIA)

    Chapter 6 Buildings sector energy consumption Overview Energy consumed in the buildings sector consists of residential and commercial end users and accounts for 20.1% of the total delivered energy consumed worldwide. Consumption of delivered, or site, energy contrasts with the use of the primary energy that also includes the energy used to generate and deliver electricity to individual sites such as homes, offices, or industrial plants. In the International Energy Outlook 2016 (IEO2016)

  16. U.S. Crude Oil + Lease Condensate Estimated Production from Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production from Reserves (Million Barrels) U.S. Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 ...

  17. Engineered microbes and methods for microbial oil production

    DOE Patents [OSTI]

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  18. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy 8: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumption, 2007 The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the world's petroleum consumption in 2007. The Organization for Petroleum Exporting Countries (OPEC) held 69% of the world's crude oil reserves and produced 41% of world

  19. Natural Gas Winter Outlook 2000-2001

    Reports and Publications (EIA)

    2000-01-01

    This article is based on the Winter Fuels Outlook published in the 4th Quarter Short-Term Energy Outlook and discusses the supply and demand outlook from October 2000 through March 2001.

  20. Short-Term Energy Outlook

    U.S. Energy Information Administration (EIA) Indexed Site

    ... power Liquid biofuels Wood biomass Hydropower Source: Short-Term Energy Outlook, August 2016. Note: Hydropower excludes pumped storage generation. Liquid biofuels include ...

  1. 2015 Trilateral Energy Outlook Project

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 Trilateral Energy Outlook Project December 2015 Prepared by: The National Energy Board Canada Secretara de Energa de Mxico U.S. Energy Information Administration 2015 ...

  2. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Special Analysis + EXPAND ALL Feature Articles The Short-Term Outlook for Hydrocarbon Gas Liquids March 2016 PDF Changes to the Natural Gas Storage Regions December 2015 PDF 2015 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2015 PDF Weather Sensitivity in Natural Gas Markets October 2014 PDF 2014 Outlook for Gulf of Mexico Hurricane-Related Production Outages June 2014 PDF Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast February 2014

  3. Floating oil production unit slated in small field off Gabon

    SciTech Connect (OSTI)

    Not Available

    1991-10-14

    This paper reports on the first U.S. tanker converted to a floating production, storage, and offloading (FPSO) unit which takes up station in Gombe-Beta field off Gabon by Dec. 1. FPSO Ocean Producer will work under a 3 year, day rate contract let late in 1990 by Amoco-Gabon Bombe Marin co., a unit of Amoco Production Co. (OGJ, Dec. 24, 1990, p. 27). Gombe-Beta field is in the Atlantic Ocean about 70 miles south of Port Gentil, Gabon. Ocean Producer will be moored in 50 ft of water 3.7 miles off Gabon, with Bombe-Beta's unmanned production platform about 820 ft astern. The vessel will be held in position by a disconnectable, asymmetric, six point, spread mooring system, It is owned and operated by Oceaneering International Services Ltd. (OISL). Affiliate Oceaneering Production Systems (OPS) converted the 78,061 dwt oil tanker MT Baltimore Sea at a capital cost of $25 million at Gulf Copper Manufacturing Corp.'s Port Arthur, Tex., shipyard. Both companies are units of Oceaneering International Inc., Houston. OPS the Ocean Producer's use in Gombe-Beta field is the shallowest water FPSO application in the world. Amoco-Gabon chose an FPSO production system for Gombe-Beta because it expects the remote field to have a short economic life, and the oil requires extensive processing.

  4. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    20 Reference case Table A9. Electricity generating capacity (gigawatts) Energy Information Administration / Annual Energy Outlook 2015 Table A9. Electricity generating capacity (gigawatts) Net summer capacity 1 Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Electric power sector 2 Power only 3 Coal 4 .................................................................... 300.2 296.1 255.4 252.8 252.8 252.8 252.9 -0.6% Oil and natural gas steam 4,5

  5. Short-Term Energy Outlook January 2014

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  This edition of the Short-Term Energy Outlook is the first to include forecasts for 2015.  After falling to the lowest monthly average of 2013 in November, U.S. regular gasoline retail prices increased slightly to reach an average of $3.28 per gallon (gal) during December. The annual average regular gasoline retail price, which was $3.51/gal in 2013, is expected to fall to $3.46/gal in 2014 and $3.39/gal in 2015.  The North Sea Brent crude oil spot price in December

  6. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information Administration’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral

  7. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    Administration | Annual Energy Outlook 2015 Reference case Energy Information Administration Annual Energy Outlook 2015 Table A15. Coal supply, disposition, and prices ...

  8. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  9. Declines in U.S. monthly oil production expected to continue

    U.S. Energy Information Administration (EIA) Indexed Site

    Declines in U.S. monthly oil production expected to continue U.S. monthly oil production continues to decline in response to the drop in oil prices that began almost two years ago. In its new monthly forecast, the U.S. Energy Information Administration said domestic oil production averaged 8.7 million barrels per day in May falling below the daily output level of 9 million barrels for the first time since September 2014. May's 250,000 barrel-per-day decrease in oil production would be the

  10. Energy Information Administration/Short-Term Energy Outlook - July 2005

    Gasoline and Diesel Fuel Update (EIA)

    July 2005 1 Short-Term Energy Outlook July 2005 2005 Summer Motor Fuels Outlook Update (Figure 1) Retail regular-grade gasoline prices moved up from about $2.12 per gallon at the beginning of June to $2.33 on July 11. Gasoline pump prices for the summer (April-September) are now projected to average $2.25 per gallon, 8 cents per gallon higher than last month's projection and about 35 cents per gallon above the year-ago level. Crude oil prices are expected to remain high enough to keep quarterly

  11. Energy Information Administration/Short-Term Energy Outlook - June 2005

    Gasoline and Diesel Fuel Update (EIA)

    5 1 Short-Term Energy Outlook June 2005 2005 Summer Motor Fuels Outlook Update (Figure 1) In May, while West Texas Intermediate (WTI) crude oil prices oscillated from the low $50s range to $47 and back again, retail gasoline prices declined steadily from about $2.24 per gallon at the beginning of the month to $2.10 on May 30. On June 6, average retail prices were $2.12 per gallon. Pump gasoline prices for the summer (April-September) are now projected to average $2.17 per gallon, similar to last

  12. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    2 Appendix D Table D3. World gross domestic product (GDP) by region expressed in purchasing power parity, High Oil Price case, 2009-2040 (billion 2005 dollars) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas 15,498 15,929 17,914 20,777 23,647 26,726 30,368 34,751 2.6 United States a 12,758 13,063 14,519 16,803 19,017 21,301 23,998 27,270 2.5 Canada 1,165 1,202 1,351 1,524 1,701 1,897 2,148 2,445 2.4 Mexico/Chile 1,575

  13. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    to account for 91% of the growth in world oil production in 2015 The United States is expected to provide nine out of every 10 barrels of new global oil supplies in 2015. In its ...

  14. U.S. crude oil production expected to top 8 million barrels per...

    U.S. Energy Information Administration (EIA) Indexed Site

    that U.S. crude oil output exceeded 8 million barrels per day. The higher production over the next two years will be due mainly to increased oil drilling in North Dakota and Texas

  15. Annual Energy Outlook Retrospective Review

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook Retrospective Review provides a yearly comparison between realized energy outcomes and the Reference case projections included in previous Annual Energy Outlooks (AEO) beginning with 1982. This edition of the report adds the AEO 2012 projections and updates the historical data to incorporate the latest data revisions.

  16. Table 5. Domestic Crude Oil Production, Projected vs. Actual

    U.S. Energy Information Administration (EIA) Indexed Site

    Domestic Crude Oil Production, Projected vs. Actual Projected (million barrels) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 AEO 1994 2508 2373 2256 2161 2088 2022 1953 1891 1851 1825 1799 1781 1767 1759 1778 1789 1807 1862 AEO 1995 2402 2307 2205 2095 2037 1967 1953 1924 1916 1905 1894 1883 1887 1887 1920 1945 1967 AEO 1996 2387 2310 2248 2172 2113 2062 2011 1978 1953 1938 1916 1920 1927 1949 1971 1986 2000 2018 2055 AEO 1997 2362 2307

  17. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    2010-07-15

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  18. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    SciTech Connect (OSTI)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  19. World oil and gas resources-future production realities

    SciTech Connect (OSTI)

    Masters, C.D.; Root, D.H.; Attanasi, E.D. )

    1990-01-01

    Welcome to uncertainty was the phrase Jack Schanz used to introduce both layman and professionals to the maze of petroleum energy data that must be comprehended to achieve understanding of this critical commodity. Schanz was referring to the variables as he and his colleagues with Resources for the Future saw them in those years soon after the energy-awakening oil embargo of 1973. In some respects, the authors have made progress in removing uncertainty from energy data, but in general, we simply must accept that there are many points of view and many ways for the blindman to describe the elephant. There can be definitive listing of all uncertainties, but for this paper the authors try to underscore those traits of petroleum occurrence and supply that the author's believe bear most heavily on the understanding of production and resource availability. Because oil and gas exist in nature under such variable conditions and because the products themselves are variable in their properties, the authors must first recognize classification divisions of the resource substances, so that the reader might always have a clear perception of just what we are talking about and how it relates to other components of the commodity in question.

  20. 2013 Propane Market Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domestic propane prices will not fully delink from oil prices, and competition against electricity and natural gas in traditional propane markets will remain very challenging....

  1. Annual Energy Outlook 2011 with Projections to 2035

    SciTech Connect (OSTI)

    2011-04-01

    The projections in the Energy Information Administration's (EIA) Annual Energy Outlook 2011 (AEO2011) focus on the factors that shape the U.S. energy system over the long term. Under the assumption that current laws and regulations remain unchanged throughout the projections, the AEO2011 Reference case provides the basis for examination and discussion of energy production, consumption, technology, and market trends and the direction they may take in the future. It also serves as a starting point for analysis of potential changes in energy policies. But AEO2011 is not limited to the Reference case. It also includes 57 sensitivity cases (see Appendix E, Table E1), which explore important areas of uncertainty for markets, technologies, and policies in the U.S. energy economy. Key results highlighted in AEO2011 include strong growth in shale gas production, growing use of natural gas and renewables in electric power generation, declining reliance on imported liquid fuels, and projected slow growth in energy-related carbon dioxide (CO2) emissions even in the absence of new policies designed to mitigate greenhouse gas (GHG) emissions. AEO2011 also includes in-depth discussions on topics of special interest that may affect the energy outlook. They include: impacts of the continuing renewal and updating of Federal and State laws and regulations; discussion of world oil supply and price trends shaped by changes in demand from countries outside the Organization for Economic Cooperation and Development or in supply available from the Organization of the Petroleum Exporting Countries; an examination of the potential impacts of proposed revisions to Corporate Average Fuel Economy standards for light-duty vehicles and proposed new standards for heavy-duty vehicles; the impact of a series of updates to appliance standard alone or in combination with revised building codes; the potential impact on natural gas and crude oil production of an expanded offshore resource base

  2. Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD

    U.S. Energy Information Administration (EIA) Indexed Site

    Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Propane/Propylene Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor

  3. East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other

  4. International Energy Outlook 2016 - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    International Energy Outlook 2016 Release Date: May 11, 2016 | Next Release Date: September 2017 | | Report Number: DOE/EIA-0484(2016) Preface International Energy Outlook 2014 cover. The International Energy Outlook 2016 (IEO2016) presents an assessment by the U.S. Energy Information Administration (EIA) of the outlook for international energy markets through 2040. U.S. projections appearing in IEO2016 are consistent with those published in EIA's Annual Energy Outlook 2015 (AEO2015). IEO2016 is

  5. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F1. Total world delivered energy consumption by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 9.5 9.5 9.1 8.9 8.7 8.5 8.3 -0.4 Natural gas 19.9 20.8 22.6 24.8 27.1 29.0 30.8 1.5 Coal 4.6 4.4 4.5 4.5 4.4 4.4 4.3 -0.3

  6. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    5 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F11. Delivered energy consumption in Russia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 -0.7 Natural gas 2.8 2.7 2.8 2.9 3.1 3.3 3.5 0.8 Coal 0.3 0.3 0.3 0.3 0.2 0.2 0.2 -1.5 Electricity 0.4

  7. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F13. Delivered energy consumption in China by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.2 1.1 1.1 1.1 1.0 1.0 0.9 -1.0 Natural gas 0.9 1.6 2.5 3.5 4.7 5.9 7.1 7.2 Coal 3.0 2.9 3.0 3.0 3.0 3.0 2.9 -0.2 Electricity 1.8

  8. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F15. Delivered energy consumption in Other Non-OECD Asia by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.5 0.5 0.5 0.5 0.6 0.6 0.6 0.3 Natural gas 0.4 0.4 0.6 0.7 0.8 0.9 1.1 3.7 Coal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.4

  9. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F17. Delivered energy consumption in Africa by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.7 0.7 0.7 0.7 0.7 0.8 0.8 0.5 Natural gas 0.2 0.2 0.3 0.3 0.4 0.5 0.6 3.4 Coal 0.1 0.1 0.1 0.1 0.1 0.2 0.2 2.5 Electricity 0.6

  10. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F19. Delivered energy consumption in Other Central and South America by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.4 0.3 0.3 0.3 0.3 0.3 -0.1 Natural gas 0.4 0.5 0.6 0.7 0.8 1.0 1.1 3.2 Coal 0.0 0.0 0.0 0.0 0.0 0.0

  11. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F3. Delivered energy consumption in the United States by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 1.1 1.1 1.0 1.0 0.9 0.9 0.9 -1.0 Natural gas 4.9 4.8 4.6 4.5 4.5 4.3 4.2 -0.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -1.6

  12. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F5. Delivered energy consumption in Mexico and Chile by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.1 Natural gas 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.4 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.2

  13. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F7. Delivered energy consumption in Japan by end-use sector and fuel, 2010-2040 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.6 0.5 0.5 0.5 0.5 0.4 0.4 -1.2 Natural gas 0.4 0.4 0.4 0.5 0.5 0.5 0.5 0.3 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Electricity 1.1 1.2

  14. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | International Energy Outlook 2013 Reference case projections by end-use sector and country grouping Table F9. Delivered energy consumption in Australia/New Zealand by end-use sector and fuel, 2008-2035 (quadrillion Btu) Sector/fuel Projections Average annual percent change, 2010-2040 2010 2015 2020 2025 2030 2035 2040 Residential Liquids 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -- Natural gas 0.1 0.1 0.2 0.2 0.2 0.2 0.2 1.5 Coal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 --

  15. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    SciTech Connect (OSTI)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen ranged from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.

  16. Hydrocarbon Liquid Production via the bioCRACK Process and Catalytic Hydroprocessing of the Product Oil

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schwaiger, Nikolaus; Elliott, Douglas C.; Ritzberger, Jurgen; Wang, Huamin; Pucher, Peter; Siebenhofer, Matthaus

    2015-02-13

    Continuous hydroprocessing of liquid phase pyrolysis bio-oil, provided by BDI-BioEnergy International bioCRACK pilot plant at OMV Refinery in Schwechat/Vienna Austria was investigated. These hydroprocessing tests showed promising results using catalytic hydroprocessing strategies developed for unfractionated bio-oil. A sulfided base metal catalyst (CoMo on Al2O3) was evaluated. The bed of catalyst was operated at 400 °C in a continuous-flow reactor at a pressure of 12.1 MPa with flowing hydrogen. The condensed liquid products were analyzed and found that the hydrocarbon liquid was significantly hydrotreated so that nitrogen and sulfur were below the level of detection (<0.05), while the residual oxygen rangedmore » from 0.7 to 1.2%. The density of the products varied from 0.71 g/mL up to 0.79 g/mL with a correlated change of the hydrogen to carbon atomic ratio from 2.1 down to 1.9. The product quality remained high throughout the extended tests suggesting minimal loss of catalyst activity through the test. These tests provided the data needed to assess the quality of liquid fuel products obtained from the bioCRACK process as well as the activity of the catalyst for comparison with products obtained from hydrotreated fast pyrolysis bio-oils from fluidized-bed operation.« less

  17. Short-Term Energy Outlook April 1999-Summer Gasoline Outlook

    Gasoline and Diesel Fuel Update (EIA)

    Summer Motor Gasoline Outlook This year's base case outlook for summer (April-September) motor gasoline markets may be summarized as follows: * Pump Prices: (average regular) projected to average about $1.13 per gallon this summer, up 9-10 cents from last year. The increase, while substantial, still leaves average prices low compared to pre-1998 history, especially in inflation-adjusted terms. * Supplies: expected to be adequate, overall. Beginning-of-season inventories were even with the 1998

  18. Impact of Tropical Cyclones on Gulf of Mexico Crude Oil and Natural Gas Production, The

    Reports and Publications (EIA)

    2006-01-01

    This is a special analysis report on hurricanes and their effects on oil and natural gas production in the Gulf of Mexico region.

  19. Instructions for using HSPD-12 Authenticated Outlook Web Access...

    Energy Savers [EERE]

    Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Provides instructions for remote Outlook...

  20. Energy Outlook for the Transport Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outlook for the Transport Sector Energy Outlook for the Transport Sector Energy Outlook for the Transport Sector PDF icon deer10karsner.pdf More Documents & Publications The ...

  1. World oil trends

    SciTech Connect (OSTI)

    Anderson, A. )

    1991-01-01

    This book provides data on many facets of the world oil industry topics include; oil consumption; oils share of energy consumption; crude oil production; natural gas production; oil reserves; prices of oil; world refining capacity; and oil tankers.

  2. On-farm production of soybean oil and its properties as a fuel

    SciTech Connect (OSTI)

    Suh, S.R.

    1983-01-01

    This study presents the design of a system for on-farm production of soybean oil for use as a fuel in compression ignition engines. The soybean oil production system consists of a heat exchanger to heat the beans with the exhaust gas of an engine, a screw press and a system for water degumming and drying the expressed crude oil. Optimum parameters of the oil production system were found. The rheological properties of soybean oil, ester of soybean oil and blends of the above with diesel fuel and diesel fuel additives are given. Data on soybean temperature, outlet gas temperature and thermal efficiency were obtained from a developed mathematical model of the heat exchanger. Chemical analyses show that crude oil from the press is similar to that of commercially degummed oil. The degumming process is not needed for the crude oil to be used as a fuel in compression ignition engines. Rheological properties of the soybean oil and soybean oil diesel fuel mixture show that the fluids have viscosities of time independent characteristics and are Newtonian fluids. Diesel fuel additives having low viscosities can be used to lower the viscosity of soybean oil and blends with diesel fuel but the effect is insignificant.

  3. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 0 40 80 120 160 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 World crude oil price projection is lower in the AEO2015 Reference case than in AEO2014, particularly...

  4. International Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    September 9, 2014" "Figure 1. North Sea Brent crude oil spot prices in three cases, 1990-2040 (2012 dollars per barrel)" 1990,,,37.26967935 1991,,,30.36263812 1992,,,28.59310566 ...

  5. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  6. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  7. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    April 2004 Summer 2004 Motor Gasoline Outlook Summary * Gasoline markets are tight as the 2004 driving season begins and conditions are likely to remain volatile through the summer. High crude oil costs, strong gasoline demand growth, low gasoline inventories, uncertainty about the availability of gasoline imports, high transportation costs, and changes in gasoline specifications have added to current and expected gasoline costs and pump prices. * For the upcoming summer driving season (April to

  8. Short-Term Energy and Winter Fuels Outlook October 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly

  9. U.S. net oil and petroleum product imports expected to fall to...

    U.S. Energy Information Administration (EIA) Indexed Site

    and petroleum product imports expected to fall to just 29 percent of demand in 2014 With ... oil and petroleum products is forecast to fall from 40 percent in 2012 to just 29 percent ...

  10. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    1999-10-01

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  11. Fiber optic penetrator for offshore oil well exploration and production

    SciTech Connect (OSTI)

    Collins, J.C.; Warner, C.P.; Henkener, J.A.; Glauser, R.

    1986-07-01

    A fiber optic penetrator arrangement is described for an undersea wall structure of offshore oil well production apparatus, comprising: a. a generally cylindrical housing; b. a cofferdam associated with the undersea production apparatus and defining a generally cylindrical entrance port into which the penetrator is designed to be inserted and mounted; c. a sealing means for sealing the penetrator relative to the entrance port after insertion of the penetrator therein; d. an external bulkhead; e. a second bulkhead positioned internally of the external bulkead; f. a compression spring normally retaining the second bulkhead in a sealed position with the penetrator, the compressing spring being compressed between the second bulkhead and the external bulkhead; g. a breakaway connection affixed to the external bulkhead for coupling an optical fiber transmission cable to the external bulkhead, such that if the transmission cable is snagged or pulled, the external bulkhead will sever along with the breakaway connection so that the penetrator is not pulled from the cofferdam entrance port, the second bulkhead being held in position by ambient water pressure to become the primary bulkhead after the external bulkhead is severed.

  12. Oil

    Broader source: Energy.gov [DOE]

    The Energy Department works to ensure domestic and global oil supplies are environmentally sustainable and invests in research and technology to make oil drilling cleaner and more efficient.

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  14. U.S. Product Supplied for Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total Crude Oil and Petroleum Products 19,180 18,882 18,490 18,961 19,106 19,395 1973-2015 Crude Oil 0 0 0 0 0 0 1981-2015 Natural Gas Liquids and LRGs 2,265 2,237 2,301 2,495 2,448 2,465 1983-2015 Pentanes Plus 92 32 50 56 52 91 1983-2015 Liquefied Petroleum Gases 2,173 2,204 2,251 2,440 2,396 2,375 1973-2015 Ethane/Ethylene 880 950 958 990 1,048 1,051 1983-2015 Propane/Propylene 1,160 1,153 1,175 1,275 1,167 1,121 1973-2015 Normal Butane/Butylene 108

  15. International Energy Outlook 2014

    Gasoline and Diesel Fuel Update (EIA)

    Household heating bills expected to be lower this winter U.S. consumers are expected to pay less this winter on their home heating bills because of lower oil and natural gas prices and projected milder temperatures than last winter. In its new forecast, the U.S. Energy Information Administration said households that rely on heating oil which are mainly located in the Northeast will pay the lowest heating expenditures in 9 years down 25% from last winter as consumers are expected to save about

  16. INFOGRAPHIC: Offshore Wind Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Offshore Wind Outlook INFOGRAPHIC: Offshore Wind Outlook December 12, 2012 - 2:15pm Addthis According to a new report commissioned by the Energy Department, a U.S. ...

  17. Short-Term Energy Outlook January 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    4 1 January 2014 Short-Term Energy Outlook (STEO) Highlights This edition of the Short-Term Energy Outlook is the first to include forecasts for 2015. After falling to the...

  18. LED Watch: The Outlook for OLEDs

    Broader source: Energy.gov [DOE]

    December 2014 LED Watch: The Outlook for OLEDs James Brodrick, U.S. Department of Energy LD+A Magazine

  19. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing

  20. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska, Open File Report 98-34, 1999) provided basic information used in this study. A prior assessment was completed in 1987 by the USGS.

  1. 2015 Outlook for NERSC Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Outlook for NERSC Systems 2015 Outlook for NERSC Systems January 6, 2015 by David Turner, Richard Gerber NERSC staff member David Turner put together the following nice summary of NERSC systems schedule for the next year: The year 2015 promises to be a busy one for NERSC! After almost 15 years in downtown Oakland, NERSC will be moving back to the main Berkeley Lab site in the hills above the UC Berkeley campus. We will take up residence in a brand-new, purpose-built facility: the

  2. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  3. Short-Term Energy Outlook March 2016

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * North Sea Brent crude oil prices averaged $32/barrel (b) in February, a $1/b increase from January. * Brent crude oil prices are forecast to average $34/b in 2016 and $40/b in 2017, $3/b and $10/b lower than forecast in last month's STEO, respectively. The lower forecast prices reflect oil production that has been more resilient than expected in a low-price environment and lower expectations for forecast oil demand growth. * Forecast West Texas Intermediate (WTI) crude oil

  4. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  5. Decline in U.S. oil production wont be as steep

    U.S. Energy Information Administration (EIA) Indexed Site

    Decline in U.S. oil production won't be as steep Although total U.S. crude oil production is expected to continue declining, the drop in output this year and in 2017 won't be as steep, because of improved efficiency at drilling rigs and more drilling overall. In its new monthly forecast, the U.S. Energy Information Administration revised up its estimate for domestic daily oil output for this year by about 100,000 barrels to 8.8 million barrels per day. Daily production for next year was given a

  6. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  7. EIS-0016: Cumulative Production/Consumption Effects of the Crude Oil Price Incentive Rulemakings, Programmatic

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy prepared this Final Statement to FEA-FES-77-7 to assess the environmental and socioeconomic implications of a rulemaking on crude oil pricing incentives as pertains to the full range of oil production technologies (present as well as anticipated.)

  8. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  9. Common Products Made from Oil and Natural Gas

    Broader source: Energy.gov [DOE]

    Educational poster developed by the Office of Fossil Energy that graphically displays items that are made from oil and gas. Appropriate for teachers and students in K-8th grade.

  10. The outlook for natural gas

    SciTech Connect (OSTI)

    1993-12-31

    The proceedings of the Institute of Gas Technology`s Houston Conference on the Outlook for Natural Gas held October 5, 1993 are presented. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

  11. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  12. Past, Present, and Future Production of Bio-oil (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 ...

  13. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  14. U.S. monthly oil production tops 8 million barrels per day for...

    U.S. Energy Information Administration (EIA) Indexed Site

    1970. Almost all of the growth in U.S. crude oil production over the last few years has been from drilling in tight shale formations, particularly those in Texas and North Dakota

  15. U.S. crude oil production in July was the highest in more than...

    U.S. Energy Information Administration (EIA) Indexed Site

    EIA's new monthly forecast expects average crude oil production next year will climb to 8.2 million barrels per day....about 800,000 barrels per day higher than this year. Drilling ...

  16. Short-Term Energy Outlook Model Documentation: Hydrocarbon Gas Liquids Supply and Demand

    Reports and Publications (EIA)

    2015-01-01

    The hydrocarbon gas liquids (ethane, propane, butanes, and natural gasoline) module of the Short-Term Energy Outlook (STEO) model is designed to provide forecasts of U.S. production, consumption, refinery inputs, net imports, and inventories.

  17. Total Crude Oil and Petroleum Products Imports by Area of Entry

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable

  18. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment, was prepared for the U.S. Senate Committee on Energy and Natural Resources at the request of Chairman Frank H. Murkowski in a letter dated March 10, 2000. The request asked the Energy Information

  19. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    57 Liquid Fuels Market Module The NEMS Liquid Fuels Market Module (LFMM) projects petroleum product prices and sources of liquid fuels supply for meeting petroleum product demand. The sources of liquid fuels supply include petroleum-based fuels, such as crude oil (both domestic and imported), petroleum product imports, and unfinished oil imports. It also includes non-petroleum-based inputs, including alcohols, ethers, esters, corn, biomass, natural gas, and coal. In addition, liquid fuels supply

  20. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A.

    1995-12-01

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  1. Annual Energy Outlook 2015

    Gasoline and Diesel Fuel Update (EIA)

    ... GDP Gross domestic product. Btu British thermal unit. - - Not applicable. Sources: 2012 and 2013: IHS Economics, Industry and Employment models, November 2014. Projections: ...

  2. US energy outlook: 1981

    SciTech Connect (OSTI)

    Linden, H.R.

    1981-01-01

    This study examines new perceptions of the US energy picture through the year 2000. US energy consumption has been relatively stable since the 1973 oil embargo in terms of demand by both fuel type and sector. Total consumption has temporarily flattened out in the 75 to 80 quads range, because of high price elasticity of demand operating during a period of rapidly escalating real costs for most energy commodities, compounded by structural changes in the US economy. Only coal use shows a consistent upward trend among major primary energy sources. The share of primary energy consumption used for electric power generation shows the only clear upward trend in the sectoral demands. The consensus opinion is that primary energy consumption in the US by the year 2000 will be in the range of 90 to 100 quads. Estimates of fossil fuel supplies to meet this level of demand are presented.

  3. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives

  4. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31%

  5. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    Supplement from: U.S. Crude Oil and Natural Gas Proved Reserves Top 100 U.S. Oil and Gas Fields With Data for 2013 | Release Date: April 2, 2015 | Next Release Date: January 2016 Previous Issues (pdf): Year: 2009 2008 2007 (Appendix B) 2006 (Appendix B) 2005 (Appendix B) 2004 (Appendix B) 2003 (Appendix B) 2002 (Appendix B) 2001 (Appendix B) 2000 (Appendix B) 1999 (Appendix B) 1998 (Appendix B) 1997 (Appendix B) 1996 (Appendix B) Go Introduction This supplement to the U.S. Energy Information

  6. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  7. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  8. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  9. Gulf Coast (PADD 3) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31

  10. Midwest (PADD 2) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur

  11. Rocky Mountain (PADD 4) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha

  12. Annual energy outlook, 1986

    SciTech Connect (OSTI)

    Not Available

    1987-02-11

    The forecast summary highlights the principal components of the Energy Information Administration's projections of energy supply, demand, and prices. Key issues are addressed for each of the major energy markets (petroleum, natural gas, coal, and electricity), along with the developments anticipated for end-use energy consumption and new technologies. The overview lists the principal conclusions followed by discussions of the important elements of the projections. This information revises production forecasts for 1986, 1987, and 1988, but its effect on later years should be much less, because some portion of the production fall amounts to production delays (Table 1). Lower well completions and delayed work-overs remove production from significantly sized wells, but little of this production is lost permanently. To the extent that higher prices encourage higher development activity, well completions and work-overs should resume at a more normal level. In the short run, shut-in wells, which are mostly marginal stripper wells, can also be returned to production. With the liberalization of State and Federal regulations on when shut-in wells must be permanently abandoned, a window of about one year exists during which these stripper wells can be restored. Some of these wells will never resume production, but with prices in the $18 plus range, most will again be economic.

  13. GRC Annual Meeting 2015 Presentation: GTO Current Outlook | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy GRC Annual Meeting 2015 Presentation: GTO Current Outlook GRC Annual Meeting 2015 Presentation: GTO Current Outlook 2015 GRC GTO Current Outlook final.pdf (3.38 MB) More Documents & Publications Geothermal Technologies Office Current Outlook GRC Annual Meeting 2015 Presentation: GTO Current Outlook 2015 Annual Report, Geothermal Technologies Office 2015 Peer Review | Plenaries

  14. Geothermal Technologies Office Current Outlook | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Outlook Geothermal Technologies Office Current Outlook 2015 GRC GTO Current Outlook final.pdf (3.38 MB) More Documents & Publications GRC Annual Meeting 2015 Presentation: GTO Current Outlook Geothermal Technologies Office Current Outlook 2015 Annual Report, Geothermal Technologies Office FORGE, 2015 Peer Review Plenary

  15. Microsoft Office Outlook - Memo Style

    National Nuclear Security Administration (NNSA)

    ... - underground - bldg 2211 4. Waste Oil Storage - 550 gal - used oil - underground - ... tank - bldg 2211 6. Facility Backup Power Generator - 550 gal - underground - Fuel ...

  16. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOE Patents [OSTI]

    Knight, James A.; Gorton, Charles W.

    1990-01-02

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  17. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    significant contributors to non-OPEC crude and lease condensate production: Canada, Brazil, U.S., Kazakhstan, Russia 0 6 12 18 24 Canada United States Mexico Brazil Kazakhstan...

  18. International Energy Outlook 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2015 Most significant contributors to non-OPEC crude and lease condensate production: Canada, Brazil, U.S., Kazakhstan, Russia 0 6 12 18 24 Canada United States Mexico...

  19. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-10-01

    The energy and crude oil requirements for the production of reformulated gasoline (RFG) are estimated. The scope of the study includes both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components. The effects on energy and crude oil use of employing various oxygenates to meet the minimum oxygen-content level required by the Clean Air Act Amendments are evaluated. The analysis shows that production of RFG requires more total energy, but uses less crude oil, than that of conventional gasoline. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than does RFG with methyl tertiary butyl ether (MTBE) or ethyl tertiary butyl ether. A specific proposal by the US Environmental Protection Agency, designed to allow the use of ethanol in RFG, would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over the corresponding values for the base RFG with MTBE.

  20. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M.; McNutt, B.

    1993-11-01

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  1. Spot Prices for Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    Crude Oil WTI - Cushing, Oklahoma 31.32 34.43 37.69 38.32 39.18 36.82 1986-2016 Brent - Europe 33.12 36.28 39.30 38.50 39.19 37.0 1987-2016 Conventional Gasoline New York Harbor, ...

  2. World heavy oil and bitumen riches - update 1983: Part two, production

    SciTech Connect (OSTI)

    Not Available

    1983-06-08

    Despite world recession, overabundance of conventional oil and light product supplies, softer oil prices, and certain important reversals in development policies, worldwide production of heavy and extra-heavy crude oil increased 11.3% in 1982 compared to 1981; latest 1983 data confirm this trend. For the top ten heavy-oil-producing nations, the increase was 17.7% over the same period, mainly due to increases in Venezuela, Mexico, and Nigeria. In 1981, world heavy and extra-heavy crude production was 6.1% of world conventional oil production; in 1982 it increased to 7.2%. Bitumen production in Canada, the only country with 1982 production figures, increased 46% over 1981. It is probable that further technological advances and experimentation in other countries, including the Soviet Union, have resulted in other bitumen production increases as well. Although multinational cooperation in research for extraction, upgrading, and transportation of heavy crudes and bitumens has not grown to the extent that many industry experts had hoped, several broad areas of cooperation stand supported and many of them have been strengthened. Such progress in the face of economic and political uncertainties are demonstrations of world leadership for the next petroleum age. This issue presents the Energy Detente fuel price/tax series and industrial fuel prices for June 1983 for countries of the Eastern Hemisphere.

  3. EPRI conference proceedings: solar and wind power - 1982 status and outlook

    SciTech Connect (OSTI)

    DeMeo, E.A.

    1983-02-01

    Separate abstracts were prepared for 18 papers in this proceedings. Not separately abstracted are speeches and presentations covering: past progress and future directions in solar and wind power research and development, new directions in Federal solar electric programs, Solar Energy Research Institute status and outlook, ARCO Solar Industries' involvement in the production of potential solar electric technologies, wind power status and outlook, utility requirements, roles and rewards, and a panel discussion on solar and wind power status and outlook as viewed from industrial, utility, financial, and government perspectives. (LEW)

  4. AEO2012 Preliminary Assumptions: Oil and Gas Supply

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 Oil and Gas Supply Working Group Meeting Office of Petroleum, Gas, and Biofuels Analysis ... for Annual Energy Outlook 2013: Oil and Gas Working Group Overview 2 Office of ...

  5. International Energy Outlook 2013

    Gasoline and Diesel Fuel Update (EIA)

    0 Appendix D Table D2. World total energy consumption by region and fuel, High Oil Price case, 2009-2040 (quadrillion Btu) Region History Projections Average annual percent change, 2010-2040 2009 2010 2015 2020 2025 2030 2035 2040 OECD OECD Americas Liquids 45.5 46.4 45.0 44.8 44.1 43.6 43.8 45.0 -0.1 Natural gas 28.9 29.9 31.9 34.0 36.2 38.4 40.7 43.0 1.2 Coal 21.3 22.5 19.3 20.2 21.1 21.7 22.2 22.6 0.0 Nuclear 9.4 9.5 9.8 10.3 10.9 11.1 11.1 12.4 0.9 Other 11.9 11.9 13.6 15.0 15.9 17.0 18.9

  6. Annual Energy Outlook 2013 with Projections to 2040

    SciTech Connect (OSTI)

    2013-04-01

    The Annual Energy Outlook 2013 (AEO2013), prepared by the U.S. Energy Information Administration (EIA), presents long-term projections of energy supply, demand, and prices through 2040, based on results from EIA’s National Energy Modeling System. The report begins with an “Executive summary” that highlights key aspects of the projections. It is followed by a “Legislation and regulations” section that discusses evolving legislative and regulatory issues, including a summary of recently enacted legislation and regulations, such as: Updated handling of the U.S. Environmental Protection Agency’s (EPA) National Emissions Standards for Hazardous Air Pollutants for industrial boilers and process heaters; New light-duty vehicle (LDV) greenhouse gas (GHG) and corporate average fuel economy (CAFE) standards for model years 2017 to 2025; Reinstatement of the Clean Air Interstate Rule (CAIR) after the court’s announcement of intent to vacate the Cross-State Air Pollution Rule (CSAPR); and Modeling of California’s Assembly Bill 32, the Global Warming Solutions Act (AB 32), which allows for representation of a cap-and-trade program developed as part of California’s GHG reduction goals for 2020. The “Issues in focus” section contains discussions of selected energy topics, including a discussion of the results in two cases that adopt different assumptions about the future course of existing policies, with one case assuming the elimination of sunset provisions in existing policies and the other case assuming the elimination of the sunset provisions and the extension of a selected group of existing public policies—CAFE standards, appliance standards, and production tax credits. Other discussions include: oil price and production trends in AEO2013; U.S. reliance on imported liquids under a range of cases; competition between coal and natural gas in electric power generation; high and low nuclear scenarios through 2040; and the impact of growth in natural gas

  7. Lubricant oil production: The proper marriage of process and catalyst technologies

    SciTech Connect (OSTI)

    Everett, G.L.; Suchanek, A.

    1996-12-01

    As the industry moves into the next millennium, higher product quality demands to meet the higher performance needs of modern engine technology and rising costs of traditional good quality lube crudes are driving lubricant base oil manufacturers to select hydroprocessing options versus traditional solvent refining techniques. This paper discusses how to properly select the best economic hydroprocessing technology necessary to produce high quality lubricant base oils and waxes. The economic success of such operations depends on the proper combination of process and catalyst technologies that maximizes yields of high quality products with minimum consumption of hydrogen resources and process utilities. This is particular true on the extreme end of the quality spectrum, namely, Very High Viscosity Index (VHVI) base oils and food grade white oils and waxes where there is no room for marginal product quality. Multiplicity of operations is also becoming more important as refiners try to upgrade their facilities with as little capital expense as possible, while at the same time, broaden their high valued product slate to recoup these expenses in the shortest possible payback period. Lyondell Licensing and Criterion Catalyst have put together an effective alliance based on years of development and commercial experience in both the process and catalyst areas to assist lubricant oil manufacturers in meeting these future challenges using as much existing equipment and infrastructure as is practical. Their experience will permit the proper fitting of the chemistry of hydroprocessing to make lubricant base oils to existing or new operations.

  8. EIA - Annual Energy Outlook 2014 Early Release

    U.S. Energy Information Administration (EIA) Indexed Site

    Annual Energy Outlook 2016 Full Release Date: Mid September 2016 Overview Data Reference Case Side Cases Interactive Table Viewer By Section Issues in Focus Annual Energy Outlook 2016 presents yearly projections and analysis of energy topics Projections in the Annual Energy Outlook 2016 (AEO2016) focus on the factors expected to shape U.S. energy markets through 2040. The projections provide a basis for examination and discussion of energy market trends and serve as a starting point for analysis

  9. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas

  10. Economics of on-farm production and use of vegetable oils for fuel

    SciTech Connect (OSTI)

    McIntosh, C.S.; Withers, R.V.; Smith, S.M.

    1982-01-01

    The technology of oilseed processing, on a small scale, is much simpler than that for ethanol production. This, coupled with the fact that most energy intensive farm operations use diesel powered equipment, has created substantial interest in vegetable oils as an alternative source of liquid fuel for agriculture. The purpose of this study was to estimate the impact on gross margins resulting from vegetable oil production and utilization in two case study areas, Latah and Power Counties, in Iadho. The results indicate that winter rape oil became a feasible alternative to diesel when the price of diesel reached $0.84 per liter in the Latah County model. A diesel price of $0.85 per liter was required in the Power County model before it became feasible to produce sunflower oil for fuel. 5 tables.

  11. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    2015 Reference case Table A12. Petroleum and other liquids prices (2013 dollars per gallon, unless otherwise noted) Energy Information Administration Annual Energy Outlook 2015 ...

  12. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    C-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table C1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  13. Annual Energy Outlook 2015 - Appendix B

    Gasoline and Diesel Fuel Update (EIA)

    B-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table B1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  14. Annual Energy Outlook 2015 - Appendix D

    Gasoline and Diesel Fuel Update (EIA)

    D-1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Table D1. Total energy supply, disposition, and price summary (quadrillion Btu per year, unless otherwise ...

  15. Annual Energy Outlook 2015 - Appendix A

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Reference case Energy Information Administration Annual Energy Outlook 2015 Table A3. Energy prices by sector and source (2013 dollars per million Btu, unless otherwise noted) ...

  16. Annual Energy Outlook 2015 - Appendix F

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figure F5. Natural gas transmission and distribution model regions 218 U.S. Energy Information Administration Annual Energy Outlook 2010 Figure F5. Natural Gas Transmission and ...

  17. Annual Energy Outlook 2015 - Appendix F

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Energy Information Administration | Annual Energy Outlook 2015 Source: U.S. Energy Information Administration, Office of Energy Analysis. U.S. Energy Information ...

  18. Annual Energy Outlook 2015 - Appendix F

    U.S. Energy Information Administration (EIA) Indexed Site

    F-3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F2. Electricity market module regions Source: U.S. Energy Information Administration, ...

  19. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    9 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A4. Residential sector key indicators and consumption (quadrillion Btu per year, unless ...

  20. Short-term energy outlook, quarterly projections, first quarter 1998

    SciTech Connect (OSTI)

    1998-01-01

    The forecast period for this issue of the Outlook extends from the first quarter of 1998 through the fourth quarter of 1999. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the first quarter 1998 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. Macroeconomic estimates are adjusted by EIA to reflect EIA assumptions which may affect the macroeconomic outlook. By varying the assumptions, alternative cases are produced by using the STIFS model. 24 figs., 19 tabs.

  1. Short-term energy outlook: Quarterly projections, fourth quarter 1997

    SciTech Connect (OSTI)

    1997-10-14

    The Energy Information Administration (EIA) prepares quarterly short-term energy supply, demand, and price projections for printed publication in January, April, July, and October in the Short-Term Energy Outlook. The details of these projections, as well as monthly updates on or about the 6th of each interim month, are available on the internet at: www.eia.doe.gov/emeu/steo/pub/contents.html. The forecast period for this issue of the Outlook extends from the fourth quarter of 1997 through the fourth quarter of 1998. Values for the fourth quarter of 1997, however, are preliminary EIA estimates (for example, some monthly values for petroleum supply and disposition are derived in part from weekly data reported in EIA`s Weekly Petroleum Status Report) or are calculated from model simulations that use the latest exogenous information available (for example, electricity sales and generation are simulated by using actual weather data). The historical energy data, compiled in the fourth quarter 1997 version of the Short-Term Integrated Forecasting System (STIFS) database, are mostly EIA data regularly published in the Monthly Energy Review, Petroleum Supply Monthly, and other EIA publications. Minor discrepancies between the data in these publications and the historical data in this Outlook are due to independent rounding. The STIFS model is driven principally by three sets of assumptions or inputs: estimates of key macroeconomic variables, world oil price assumptions, and assumptions about the severity of weather. 19 tabs.

  2. Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas

    SciTech Connect (OSTI)

    Haeberle, F.R. )

    1992-04-01

    Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

  3. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  4. Milestone Reached: New Process Reduces Cost and Risk of Biofuel Production from Bio-Oil Upgrading

    Office of Energy Efficiency and Renewable Energy (EERE)

    Battelle—a nonprofit research and development organization that operates many of the national laboratories—reached an Energy Department project milestone to demonstrate at least 1,000 hours of bio-oil hydrotreatment on a single catalyst charge. Typically, it takes many catalysts to convert a bio-oil intermediate into biofuel, making the conversion process expensive. Battelle’s new process substantially reduces the cost and risk of biofuel production and helps make the process more commercially viable.

  5. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E.; Daniel, J.

    1991-12-31

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  6. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E. ); Daniel, J. )

    1991-01-01

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  7. Exemptions from OSHA`s PSM rule oil and gas field production

    SciTech Connect (OSTI)

    West, H.H. [Shawnee Engineers, Houston, TX (United States); Landes, S. [SH Landes, Houston, TX (United States)

    1995-12-31

    The OSHA Process Safety Management (PSM) regulation, OSHA 1910.119, contains a number of exemptions which are specifically directed to the low hazard situations typically found in the field production facilities of the oil and gas industry. Each relevant PSM exemption is discussed with particular regard to the requirements of hydrocarbon production facilities.

  8. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect (OSTI)

    Liberatore, Matthew; Herring, Andy; Prasad, Manika; Dorgan, John; Batzle, Mike

    2012-10-30

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formation's vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  9. Western states enhanced oil shale recovery program: Shale oil production facilities conceptual design studies report

    SciTech Connect (OSTI)

    Not Available

    1989-08-01

    This report analyzes the economics of producing syncrude from oil shale combining underground and surface processing using Occidental's Modified-In-Situ (MIS) technology and Lawrence Livermore National Laboratory's (LLNL) Hot Recycled Solids (HRS) retort. These retorts form the basic technology employed for oil extraction from oil shale in this study. Results are presented for both Commercial and Pre-commercial programs. Also analyzed are Pre-commercialization cost of Demonstration and Pilot programs which will confirm the HRS and MIS concepts and their mechanical designs. These programs will provide experience with the circulating Fluidized Bed Combustor (CFBC), the MIS retort, the HRS retort and establish environmental control parameters. Four cases are considered: commercial size plant, demonstration size plant, demonstration size plant minimum CFBC, and a pilot size plant. Budget cost estimates and schedules are determined. Process flow schemes and basic heat and material balances are determined for the HRS system. Results consist of summaries of major equipment sizes, capital cost estimates, operating cost estimates and economic analyses. 35 figs., 35 tabs.

  10. Non-OPEC oil supply continues to grow

    SciTech Connect (OSTI)

    Knapp, D.H.

    1995-12-25

    Global reserves of crude oil remain at 1 trillion bbl, according to OGJ`s annual survey of producing countries. Significant gains are in Brazil, Colombia, Congo, Egypt, Libya, Nigeria, Oman, and Papua New Guinea. Decreases were reported by Indonesia, Norway, the U.K., Iran, Canada, Mexico, and the US. Natural gas reserves slipped to 4.9 quadrillion cu ft. The major production trend is a lasting surge from outside of OPEC. This year`s Worldwide Production report begins with a detailed analysis of this crucial development by an international authority. This article discusses the OECD outlook by region and the turnaround in production in the former Soviet Union.

  11. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend ... Water Treatment and Reuse in Unconventional Gas Production A key challenge in tapping vast ...

  12. Conversion Technologies for Advanced Biofuels … Bio-Oil Production

    Broader source: Energy.gov (indexed) [DOE]

    David C. Dayton Director, Chemistry and Biofuels Center for Energy Technology RTI ... integrated biorefinery technology development activities for biofuels production. ...

  13. Short-Term Energy and Winter Fuels Outlook October 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    October 2013 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) ... 5-year average (see EIA Short-Term Energy and Winter Fuels Outlook slideshow). ...

  14. Assumptions to the Annual Energy Outlook 2014 - Abbreviations

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    AEO: Annual Energy Outlook AEO2012: Annual Energy Outlook 2012 AFUE: Average Fuel Use Efficiency ANWR: Artic National Wildlife Refuge ARRA2009: American Recovery and...

  15. International energy outlook 1997 with projections to 2015

    SciTech Connect (OSTI)

    1997-04-01

    The International Energy Outlook 1997 (IE097) presents an assessment by the Energy Information Administration (EIA) of the outlook for international energy markets through 2015.

  16. Natural Gas Summary from the Short-Term Energy Outlook

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    change the pattern of annual demand shifts reported in earlier Outlooks. Short-Term Natural Gas Market Outlook, December 2002 History Projections Sep-02 Oct-02 Nov-02...

  17. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    374 33 4,092 2,128 3,351 69 54 4,048 479 5,465 Crude Oil 45 - - - - 900 191 70 -38 1,126 119 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 329 -1 55 28 -81 - - 11 14 90 215 Pentanes Plus 34 -1 - - - 0 - - 0 - 4 29 Liquefied Petroleum Gases 295 - - 55 28 -82 - - 11 14 86 186 Ethane/Ethylene 135 - - 0 - -119 - - 2 - 17 -3 Propane/Propylene 110 - - 37 24 38 - - 3 - 62 144 Normal Butane/Butylene 34 - - 17 2 0 - - 6 1 6 40 Isobutane/Isobutylene 16 - - 0 2 0 - - -1 13 0 5 Other Liquids - -

  18. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    ,508 978 4,808 2,166 -154 -17 -79 4,592 505 5,271 Crude Oil 1,673 - - - - 2,058 -115 -51 -217 3,683 99 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 835 -20 208 69 -126 - - 309 78 289 290 Pentanes Plus 99 -20 - - 0 155 - - 6 24 198 5 Liquefied Petroleum Gases 737 - - 208 69 -281 - - 303 54 91 285 Ethane/Ethylene 279 - - - - -133 - - 4 - 63 79 Propane/Propylene 303 - - 120 55 -120 - - 174 - 10 174 Normal Butane/Butylene 97 - - 92 6 -27 - - 125 4 17 22 Isobutane/Isobutylene 57 - - -3 7

  19. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,030 14 695 326 -681 9 -14 668 11 729 Crude Oil 643 - - - - 315 -330 2 -18 647 1 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 387 0 21 7 -364 - - 11 17 3 19 Pentanes Plus 59 0 - - - -48 - - 0 6 2 3 Liquefied Petroleum Gases 327 - - 21 7 -316 - - 11 11 1 16 Ethane/Ethylene 117 - - - - -115 - - 2 - - 0 Propane/Propylene 134 - - 9 6 -127 - - 1 - 0 21 Normal Butane/Butylene 52 - - 11 0 -47 - - 9 4 1 3 Isobutane/Isobutylene 24 - - 1 1 -27 - - 0 7 - -9 Other Liquids - - 14 - - 3 18 -18 6

  20. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,040 27 3,154 1,585 508 51 -156 2,960 452 3,108 Crude Oil 983 - - - - 1,258 127 8 -36 2,399 14 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 58 0 94 11 - - - 28 61 46 26 Pentanes Plus 26 0 - - - - - - 0 21 1 4 Liquefied Petroleum Gases 31 - - 94 11 - - - 28 40 46 22 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 11 - - 47 11 - - - 4 - 29 36 Normal Butane/Butylene 7 - - 44 0 - - - 25 19 17 -10 Isobutane/Isobutylene 13 - - 3 - - - - -1 21 - -4 Other Liquids - - 27 - - 137

  1. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,086 15 662 340 -715 -38 10 637 18 686 Crude Oil 762 - - - - 326 -425 -44 9 602 8 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 323 0 13 10 -297 - - 1 20 7 21 Pentanes Plus 55 0 - - - -45 - - 0 6 5 -1 Liquefied Petroleum Gases 268 - - 13 10 -252 - - 1 14 2 22 Ethane/Ethylene 77 - - - - -76 - - 0 - - 1 Propane/Propylene 122 - - 9 9 -110 - - 0 - 0 29 Normal Butane/Butylene 50 - - 3 0 -40 - - 1 7 2 5 Isobutane/Isobutylene 19 - - 0 1 -25 - - 0 7 0 -13 Other Liquids - - 15 - - 1 8 -5 1 15

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  5. International Energy Outlook 2016-Natural gas - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration 3. Natural gas print version Overview Consumption of natural gas worldwide is projected to increase from 120 trillion cubic feet (Tcf) in 2012 to 203 Tcf in 2040 in the International Energy Outlook 2016 (IEO2016) Reference case. By energy source, natural gas accounts for the largest increase in world primary energy consumption. Abundant natural gas resources and robust production contribute to the strong competitive position of natural gas among other resources. Natural gas

  6. Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000

    Gasoline and Diesel Fuel Update (EIA)

    Demand and Price Outlook for Phase 2 Reformulated Gasoline, 2000 Tancred Lidderdale and Aileen Bohn (1) Contents * Summary * Introduction * Reformulated Gasoline Demand * Oxygenate Demand * Logistics o Interstate Movements and Storage o Local Distribution o Phase 2 RFG Logistics o Possible Opt-Ins to the RFG Program o State Low Sulfur, Low RVP Gasoline Initiatives o NAAQS o Tier 2 Gasoline * RFG Production Options o Toxic Air Pollutants (TAP) Reduction o Nitrogen Oxides (NOx) Reduction o

  7. Corrosion-resistant alloy products for oil and gas industries by the HIP clad process

    SciTech Connect (OSTI)

    Bishop, M.

    1984-10-01

    Sour gas wells, which have extremely corrosive environments, are occurring more and more frequently as oil companies are forced to drill deeper wells to find new reserves. This places a premium on tubular goods and wellhead components that can withstand the hydrogen sulfide (H/sub 2/S), brine, and sulphur found in sour gas. The oil industry is currently injecting water or oil-base inhibitors into the bottom of the wells to prevent corrosion of the tubulars and wellhead components. The inhibitor coats the steel, as it flows upward with the oil or gas, protecting it from corrosion. Unfortunately, it is often uneconomical to transport inhibitors to offshore rigs, and high temperature wells can cause the inhibitors to break down and render them useless. Because of these problems, products made from corrosion-resistant alloys are being developed and tested. One of the most important developments in this area is the use of cladding.

  8. Implications of Increasing Light Tight Oil Production for U.S. Refining

    U.S. Energy Information Administration (EIA) Indexed Site

    Implications of Increasing Light Tight Oil Production for U.S. Refining May 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Implications of Increasing Light Oil Production on the U.S. Refining System i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are

  9. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    369,558 35,210 623,399 302,286 9,238 -1,703 590,222 156,194 594,978 2,077,498 Crude Oil 261,028 - - - - 228,320 3,220 -11,881 492,960 11,489 0 1,223,700 Natural Gas Plant Liquids and Liquefied Refinery Gases 108,530 -665 26,382 3,475 - - 24,697 12,892 34,311 65,822 211,782 Pentanes Plus 13,410 -665 - - 4 - - 383 4,630 6,226 1,510 20,935 Liquefied Petroleum Gases 95,120 - - 26,382 3,471 - - 24,314 8,262 28,085 64,312 190,847 Ethane/Ethylene 41,404 - - 25 - - - 6,614 - 2,414 32,401 51,566

  10. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2,319 1,174 20,780 10,076 308 -57 19,674 5,206 19,833 Crude Oil 8,701 - - - - 7,611 107 -396 16,432 383 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,618 -22 879 116 - - 823 430 1,144 2,194 Pentanes Plus 447 -22 - - 0 - - 13 154 208 50 Liquefied Petroleum Gases 3,171 - - 879 116 - - 810 275 936 2,144 Ethane/Ethylene 1,380 - - 1 - - - 220 - 80 1,080 Propane/Propylene 1,157 - - 590 96 - - 286 - 742 815 Normal Butane/Butylene 311 - - 295 10 - - 305 66 108 137 Isobutane/Isobutylene 322

  11. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,213 980 122,761 63,840 100,522 2,062 1,606 121,451 14,360 163,960 198,551 Crude Oil 1,348 - - - - 27,006 5,743 2,103 -1,144 33,768 3,576 0 16,685 Natural Gas Plant Liquids and Liquefied Refinery Gases 9,865 -15 1,644 839 -2,431 - - 333 421 2,704 6,444 6,334 Pentanes Plus 1,018 -15 - - - 14 - - 11 - 128 878 203 Liquefied Petroleum Gases 8,847 - - 1,644 839 -2,445 - - 322 421 2,576 5,566 6,131 Ethane/Ethylene 4,036 - - 14 - -3,574 - - 66 - 513 -103 366 Propane/Propylene 3,291 - - 1,118 718 1,147

  12. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    75,232 29,328 144,249 64,976 -4,629 -508 -2,382 137,745 15,165 158,122 335,233 Crude Oil 50,177 - - - - 61,740 -3,442 -1,537 -6,518 110,479 2,977 0 150,638 Natural Gas Plant Liquids and Liquefied Refinery Gases 25,055 -609 6,251 2,061 -3,770 - - 9,259 2,341 8,682 8,706 56,453 Pentanes Plus 2,960 -609 - - 4 4,645 - - 168 721 5,948 163 9,361 Liquefied Petroleum Gases 22,095 - - 6,251 2,057 -8,415 - - 9,091 1,620 2,734 8,543 47,092 Ethane/Ethylene 8,383 - - - - -3,989 - - 133 - 1,901 2,360 5,937

  13. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    21,004 3,686 240,921 116,120 -90,690 5,896 4,195 222,187 112,784 157,771 1,349,503 Crude Oil 160,724 - - - - 92,388 3,768 2,344 -2,605 257,341 4,489 0 972,590 Natural Gas Plant Liquids and Liquefied Refinery Gases 60,280 -17 15,054 43 17,128 - - 13,949 7,783 21,444 49,312 140,327 Pentanes Plus 6,869 -17 - - - -3,215 - - 221 3,100 77 239 10,985 Liquefied Petroleum Gases 53,411 - - 15,054 43 20,343 - - 13,728 4,683 21,366 49,074 129,342 Ethane/Ethylene 25,477 - - 11 - 11,010 - - 6,370 - - 30,128

  14. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    7,367 123 8,031 3,871 -3,023 197 140 7,406 3,759 5,259 Crude Oil 5,357 - - - - 3,080 126 78 -87 8,578 150 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 2,009 -1 502 1 571 - - 465 259 715 1,644 Pentanes Plus 229 -1 - - - -107 - - 7 103 3 8 Liquefied Petroleum Gases 1,780 - - 502 1 678 - - 458 156 712 1,636 Ethane/Ethylene 849 - - 0 - 367 - - 212 - - 1,004 Propane/Propylene 599 - - 377 - 209 - - 104 - 641 439 Normal Butane/Butylene 120 - - 130 1 75 - - 139 38 66 82 Isobutane/Isobutylene

  15. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    30,900 412 20,857 9,790 -20,439 265 -433 20,027 316 21,876 45,716 Crude Oil 19,300 - - - - 9,454 -9,893 57 -527 19,403 42 0 24,402 Natural Gas Plant Liquids and Liquefied Refinery Gases 11,600 -10 624 201 -10,927 - - 326 506 90 566 3,588 Pentanes Plus 1,776 -10 - - - -1,444 - - -5 177 53 97 328 Liquefied Petroleum Gases 9,824 - - 624 201 -9,483 - - 331 329 37 469 3,260 Ethane/Ethylene 3,506 - - - - -3,447 - - 45 - - 14 502 Propane/Propylene 4,028 - - 277 178 -3,803 - - 38 - 1 641 1,303 Normal

  16. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    31,209 805 94,611 47,560 15,236 1,522 -4,688 88,812 13,570 93,249 148,494 Crude Oil 29,479 - - - - 37,732 3,824 253 -1,087 71,969 406 0 59,385 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,730 -14 2,809 331 - - - 830 1,841 1,391 794 5,080 Pentanes Plus 787 -14 - - - - - - -12 632 19 134 58 Liquefied Petroleum Gases 943 - - 2,809 331 - - - 842 1,209 1,372 660 5,022 Ethane/Ethylene 2 - - - - - - - - - - 2 - Propane/Propylene 338 - - 1,402 323 - - - 130 - 856 1,077 1,151 Normal

  17. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    301,768 290,577 310,060 294,858 315,660 302,286 1981-2016 Crude Oil 237,910 229,402 249,300 229,100 246,323 228,320 1920-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 6,189 6,369 4,462 3,491 4,213 3,475 1981-2016 Pentanes Plus 332 289 5 4 604 4 1981-2016 Liquefied Petroleum Gases 5,857 6,080 4,457 3,487 3,609 3,471 1981-2016 Ethane 43 1993-2016 Ethylene 1993-2015 Propane 3,929 4,835 3,045 2,413 2,497 2,060 1995-2016 Propylene 625 682 749 686 623 812 1993-2016 Normal Butane 730 192

  18. U.S. Exports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 2,353 2,986 3,205 3,621 4,176 4,750 1973-2015 Crude Oil 42 47 67 134 351 458 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 164 249 314 468 703 967 1983-2015 Pentanes Plus 32 101 118 137 166 182 1984-2015 Liquefied Petroleum Gases 132 148 196 332 537 785 1973-2015 Ethane/Ethylene 0 0 0 38 65 1983-2015 Propane/Propylene 109 124 171 302 423 615 1973-2015 Normal Butane/Butylene 22 24 26 30 76 98 1983-2015 Isobutane/Isobutylene 7

  19. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 11,793 11,436 10,598 9,859 9,241 9,401 1973-2015 Crude Oil 9,213 8,935 8,527 7,730 7,344 7,351 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 179 183 170 182 143 144 1983-2015 Pentanes Plus 26 48 29 34 14 11 1983-2015 Liquefied Petroleum Gases 153 135 141 148 128 133 1973-2015 Ethane 1993-2007 Ethylene 0 0 0 0 0 0 1993-2015 Propane 93 82 85 103 89 93 1995-2015 Propylene 29 28 31 24 19 19 1993-2015 Normal Butane 12 8 9 6 7 6

  20. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    4,631,167 399,635 7,260,943 3,431,210 130,585 158,333 6,882,105 1,733,771 7,079,331 2,014,788 Crude Oil 3,436,537 - - - - 2,682,946 55,121 91,814 5,915,532 167,258 0 1,176,487 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,194,630 -7,655 223,448 52,563 - - 21,920 188,270 353,016 899,780 197,273 Pentanes Plus 156,568 -7,655 - - 4,027 - - -45 53,404 66,494 33,087 20,543 Liquefied Petroleum Gases 1,038,062 - - 223,448 48,536 - - 21,965 134,866 286,522 866,693 176,730 Ethane/Ethylene

  1. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    12,688 1,095 19,893 9,401 358 434 18,855 4,750 19,395 Crude Oil 9,415 - - - - 7,351 151 252 16,207 458 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 3,273 -21 612 144 - - 60 516 967 2,465 Pentanes Plus 429 -21 - - 11 - - 0 146 182 91 Liquefied Petroleum Gases 2,844 - - 612 133 - - 60 369 785 2,375 Ethane/Ethylene 1,108 - - 6 0 - - -3 - 65 1,051 Propane/Propylene 1,117 - - 559 112 - - 51 - 615 1,121 Normal Butane/Butylene 324 - - 55 10 - - 12 169 98 110 Isobutane/Isobutylene 296 - - -7

  2. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    18,493 10,299 1,386,705 615,305 1,341,370 42,058 35,012 1,368,120 90,331 2,020,767 192,970 Crude Oil 17,461 - - - - 227,582 153,586 40,768 1,159 409,330 28,908 0 16,298 Natural Gas Plant Liquids and Liquefied Refinery Gases 101,032 -191 14,223 16,761 -4,395 - - 937 12,599 16,573 97,321 8,270 Pentanes Plus 11,667 -191 - - 9 4 - - 99 583 706 10,101 209 Liquefied Petroleum Gases 89,365 - - 14,223 16,752 -4,399 - - 838 12,016 15,867 87,220 8,061 Ethane/Ethylene 30,795 - - 170 - -31,804 - - 30 - -

  3. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    325 28 3,799 1,686 3,675 115 96 3,748 247 5,536 Crude Oil 48 - - - - 624 421 112 3 1,121 79 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 277 -1 39 46 -12 - - 3 35 45 267 Pentanes Plus 32 -1 - - 0 0 - - 0 2 2 28 Liquefied Petroleum Gases 245 - - 39 46 -12 - - 2 33 43 239 Ethane/Ethylene 84 - - 0 - -87 - - 0 - - -2 Propane/Propylene 110 - - 37 41 76 - - 3 - 38 223 Normal Butane/Butylene 36 - - 2 1 0 - - -1 23 6 11 Isobutane/Isobutylene 14 - - -1 4 0 - - 0 10 0 7 Other Liquids - - 29 -

  4. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    938,803 337,875 1,648,603 880,978 -179,813 5,075 45,559 1,573,850 158,221 1,853,890 334,507 Crude Oil 684,654 - - - - 841,415 -149,968 -7,459 39,872 1,299,921 28,849 0 150,472 Natural Gas Plant Liquids and Liquefied Refinery Gases 254,149 -6,980 40,909 25,611 -16,520 - - 2,143 33,456 92,412 169,158 54,687 Pentanes Plus 32,237 -6,980 - - 45 46,186 - - 857 6,692 62,712 1,227 9,997 Liquefied Petroleum Gases 221,912 - - 40,909 25,566 -62,706 - - 1,286 26,764 29,700 167,931 44,690 Ethane/Ethylene

  5. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    572 926 4,517 2,414 -493 14 125 4,312 433 5,079 Crude Oil 1,876 - - - - 2,305 -411 -20 109 3,561 79 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 696 -19 112 70 -45 - - 6 92 253 463 Pentanes Plus 88 -19 - - 0 127 - - 2 18 172 3 Liquefied Petroleum Gases 608 - - 112 70 -172 - - 4 73 81 460 Ethane/Ethylene 191 - - 0 0 -27 - - 2 - 65 98 Propane/Propylene 274 - - 112 57 -122 - - -2 - 4 318 Normal Butane/Butylene 94 - - 2 7 -26 - - 4 27 12 33 Isobutane/Isobutylene 48 - - -1 6 4 - - 0 46 0

  6. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    764,126 37,360 2,865,360 1,309,259 -1,087,330 56,793 70,483 2,650,249 1,331,308 1,893,527 1,297,642 Crude Oil 2,066,856 - - - - 1,085,333 95,312 11,559 41,650 3,113,888 103,522 0 931,007 Natural Gas Plant Liquids and Liquefied Refinery Gases 697,270 -207 145,337 4,588 129,222 - - 18,599 109,314 228,253 620,044 125,761 Pentanes Plus 81,397 -207 - - 3,955 -29,697 - - -991 34,994 439 21,006 9,983 Liquefied Petroleum Gases 615,873 - - 145,337 633 158,919 - - 19,590 74,320 227,814 599,038 115,778

  7. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    7,573 102 7,850 3,587 -2,979 156 193 7,261 3,647 5,188 Crude Oil 5,663 - - - - 2,974 261 32 114 8,531 284 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,910 -1 398 13 354 - - 51 299 625 1,699 Pentanes Plus 223 -1 - - 11 -81 - - -3 96 1 58 Liquefied Petroleum Gases 1,687 - - 398 2 435 - - 54 204 624 1,641 Ethane/Ethylene 755 - - 5 - 190 - - -4 - - 955 Propane/Propylene 599 - - 360 0 156 - - 52 - 551 512 Normal Butane/Butylene 131 - - 40 2 67 - - 6 86 66 81 Isobutane/Isobutylene 202 -

  8. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    396,272 5,367 241,768 124,089 -260,935 -13,868 3,558 232,453 6,470 250,212 45,547 Crude Oil 278,279 - - - - 119,074 -155,092 -16,161 3,234 219,796 3,070 0 23,545 Natural Gas Plant Liquids and Liquefied Refinery Gases 117,993 -123 4,589 3,561 -108,299 - - 387 7,148 2,691 7,495 3,622 Pentanes Plus 20,168 -123 - - - -16,493 - - 20 2,045 1,914 -427 310 Liquefied Petroleum Gases 97,825 - - 4,589 3,561 -91,806 - - 367 5,103 777 7,922 3,312 Ethane/Ethylene 27,979 - - - - -27,855 - - -86 - - 210 432

  9. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    413,474 8,734 1,118,507 501,579 186,709 40,528 3,721 1,057,433 147,442 1,060,934 144,121 Crude Oil 389,288 - - - - 409,542 56,162 26,413 5,899 872,597 2,909 0 55,165 Natural Gas Plant Liquids and Liquefied Refinery Gases 24,186 -154 18,390 2,042 -8 - - -146 25,753 13,086 5,763 4,933 Pentanes Plus 11,099 -154 - - 18 - - - -30 9,090 723 1,180 44 Liquefied Petroleum Gases 13,087 - - 18,390 2,024 -8 - - -116 16,663 12,363 4,583 4,889 Ethane/Ethylene 35 - - - - - - - - - - 35 - Propane/Propylene

  10. Supply and Disposition of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    1,133 24 3,064 1,374 512 111 10 2,897 404 2,907 Crude Oil 1,067 - - - - 1,122 154 72 16 2,391 8 0 Natural Gas Plant Liquids and Liquefied Refinery Gases 66 0 50 6 0 - - 0 71 36 16 Pentanes Plus 30 0 - - 0 - - - 0 25 2 3 Liquefied Petroleum Gases 36 - - 50 6 0 - - 0 46 34 13 Ethane/Ethylene 0 - - - - - - - - - - 0 Propane/Propylene 12 - - 41 5 - - - -2 - 22 39 Normal Butane/Butylene 12 - - 7 0 - - - 2 25 12 -20 Isobutane/Isobutylene 11 - - 3 0 0 - - 0 21 0 -6 Other Liquids - - 24 - - 114 306 23 3

  11. U.S. Exports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 858,685 1,089,848 1,172,965 1,321,787 1,524,170 1,733,771 1981-2015 Crude Oil 15,198 17,158 24,693 48,968 128,233 167,258 1870-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 59,842 90,968 115,054 170,941 256,587 353,016 1981-2015 Pentanes Plus 11,792 36,837 43,136 49,883 60,533 66,494 1984-2015 Liquefied Petroleum Gases 48,050 54,131 71,918 121,058 196,054 286,522 1981-2015 Ethane/Ethylene 0 0 0 13,820 23,655 1983-2015

  12. U.S. Exports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    4,878 4,948 5,002 5,154 5,658 5,206 1973-2016 Crude Oil 364 374 508 591 662 383 1920-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 1,246 1,245 1,079 1,147 1,367 1,144 1981-2016 Pentanes Plus 199 223 200 220 228 208 1984-2016 Liquefied Petroleum Gases 1,047 1,022 879 927 1,139 936 1973-2016 Ethane/Ethylene 84 76 85 86 94 80 1981-2016 Propane/Propylene 866 884 673 700 894 742 1973-2016 Normal Butane/Butylene 91 57 117 132 148 108 1981-2016 Isobutane/Isobutylene 5 5 5 8 3 5 1984-2016

  13. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History Total 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Crude Oil 3,362,856 3,261,422 3,120,755 2,821,480 2,680,626 2,682,946 1910-2015 Natural Gas Plant Liquids and Liquefied Refinery Gases 65,314 66,851 62,192 66,290 52,031 52,563 1981-2015 Pentanes Plus 9,498 17,681 10,680 12,241 5,186 4,027 1981-2015 Liquefied Petroleum Gases 55,816 49,170 51,512 54,049 46,845 48,536 1981-2015 Ethane 1993-2007 Ethylene 135 119 115 123 129 36

  14. U.S. Imports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    9,734 10,020 10,002 9,829 10,183 10,076 1973-2016 Crude Oil 7,675 7,910 8,042 7,637 7,946 7,611 1920-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 200 220 144 116 136 116 1981-2016 Pentanes Plus 11 10 0 0 19 0 1981-2016 Liquefied Petroleum Gases 189 210 144 116 116 116 1973-2016 Ethane 1 1993-2016 Ethylene 1993-2015 Propane 127 167 98 80 81 69 1995-2016 Propylene 20 24 24 23 20 27 1993-2016 Normal Butane 24 7 5 0 2 6 1995-2016 Butylene 4 3 3 2 3 4 1993-2016 Isobutane 13 10 14 10 11

  15. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Teresa; Graeff-Honninger, Simone; French, William Todd; Hernandez, Rafael; Claupein, Wilhelm; Holmes, William E.; Merkt, Nikolaus

    2012-01-01

    The production of biodiesel has notably increased over the past decade. Currently, plant oil is the main feedstock for biodiesel production, but, due to concerns related to the competition with food production, alternative oil feedstocks have to be found. Oleaginous yeasts are known to produce high amounts of lipids, but no integrated process from microbial fermentation to final biodiesel production has reached commercial realization yet due to economic constraints. Therefore, growth and lipid production of red yeast Rhodotorula glutinis was tested on low-cost substrates, namely, wastewaters from potato, fruit juice, and lettuce processing. Additionally, the production of carotenoids as high-valuemore » by-products was examined. All evaluated wastewaters met the general criteria for microbial lipid production. However, no significant increase in lipid content was observed, probably due to lack of available carbon in wastewaters from fruit juice and lettuce processing, and excess of available nitrogen in potato processing wastewater, respectively. During growth on wastewaters from fruit juice and lettuce processing the carotenoid content increased significantly in the first 48 hours. The relations between carbon content, nitrogen content, and carotenoid production need to be further assessed. For economic viability, lipid and carotenoid production needs to be increased significantly. Lastly, the screening of feedstocks should be extended to other wastewaters.« less

  16. Selectively reducing offshore royalty rates in the Gulf of Mexico could increase oil production and federal government revenue

    SciTech Connect (OSTI)

    Bowsher, C.A.

    1985-05-10

    The US government leases large areas in the Outer Continental Shelf in the Gulf of Mexico for the development of oil resources and receives royalties on the oil produced. Conventional methods of oil recovery have recovered or are expected to recover about half of the 16 billion barrels of oil discovered in this area. Other oil recovery methods, collectively known as enhanced oil recovery (EOR), could potentially increase production by about 1 billion barrels of oil. EOR in the Gulf is expensive and does not appear to be economically justified in most cases. Under existing economic conditions and federal policies, GAO's review indicates that utilizing EOR methods will probably produce only about 10 percent of the additional recoverable oil. However, financial incentives in the form of royalty reductions could increase both oil production and federal government revenue if applied on a project-by-project basis. Universal applications of royalty reduction for EOR, however, while achieving increased oil production, would not increase federal government revenue. GAO recommends that the Department of the Interior's Minerals Management Service initiate action that would allow for selective royalty reductions for EOR projects in the Gulf in instances where both total oil production and federal government revenue will increase. 6 figs., 1 tab.

  17. Annual energy outlook 2005 with projections to 2025

    SciTech Connect (OSTI)

    2005-02-01

    The Annual Energy Outlook 2005 (AEO2005) presents midterm forecasts of energy supply, demand, and prices through 2025 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA's National Energy Modelling System (NEMS). The report begins with an 'Overview' summarizing the AEO2005 reference case. The next section, 'Legislation and Regulations', discusses evolving legislative and regulatory issues in the USA. Issues in Focus includes discussions on key energy market issues and examines their potential impacts. In particular, it includes a discussion of the world oil price assumptions used in the reference case and four alternative world oil price cases examined in AEO2005. 'Issues in Focus' is followed by 'Market Trends', which provides a summary of energy market trends in the AEO2005 forecast. The analysis in AEO2005 focuses primarily on a reference case, lower and higher economic growth cases, and four alternative oil price cases, a low world oil price case, an October oil futures case, and two high world oil price cases. Forecast tables for those cases are provided in Appendixes A through D. The major results for the alterative cases, which explore the impacts of varying key assumption in NEMS (such as rates of technology penetration), are summarized in Appendix E. Appendix F briefly describes NEMS and the alternative cases. 115 figs., 38 tabs., 8 apps.

  18. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * The market's perception of reduced risk to Iraqi oil exports and news regarding increasing Libyan oil exports contributed to a drop in the Brent crude oil spot price to an average of $107 per barrel (bbl) in July, $5/bbl lower than the June average. EIA projects Brent crude oil prices to average $107/bbl over the second half of 2014 and $105/bbl in 2015. West Texas Intermediate (WTI) crude oil prices fell from an average of $106/bbl in June to $104/bbl in July, despite record

  19. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * Unrest in Iraq put upward pressure on world oil prices last month, helping North Sea Brent crude oil spot prices reach their highest daily level of the year at just over $115/barrel (bbl) on June 19. North Sea Brent crude oil spot prices increased from a monthly average of $110/bbl in May to $112/bbl in June. This was the 12th consecutive month in which the average Brent crude oil spot price ranged between $107/bbl and $112/bbl. EIA projects Brent crude oil prices to average

  20. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  1. Method and apparatus for stimulating oil well production

    SciTech Connect (OSTI)

    Brieger, E.F.

    1981-08-25

    A system for cleaning perforations in a well bore where the perforations are located below a packer means on a production tubing. A tool on a string of pipe has packer means for sealing off the cross-section of the production tubing and the pressure in the annulus between the string of pipe and production tubing is reduced. The tool has a bypass passage across the packer means which opens upon the reaching of a predetermined pressure across the packer means and the high volume pressure from the earth formations suddenly flows through the tool and cleaning of the perforations is effected.

  2. Cushing, Oklahoma Stocks of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Product Price Formation August 9, 2016 | Washington, DC An analysis of the factors that influence product prices, with chart data updated monthly, quarterly and annually Gasoline spot prices 2 Sources: U.S. Energy Information Administration, Bloomberg L.P. August 9, 2016 dollars per gallon Chicago CBOB New York Harbor Conventional gasoline Gulf Coast Conventional gasoline Los Angeles CARBOB Northwest Europe gasoline Singapore gasoline 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

  3. Annual energy outlook 1995, with projections to 2010

    SciTech Connect (OSTI)

    1995-01-01

    The Annual Energy Outlook 1995 (AEO95) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projections and analyses of energy supply, demand, and prices through 2010, based on results from the National Energy Modeling System (NEMS). Quarterly forecasts of energy supply and demand for 1995 and 1996 are published in the Short-Term Energy Outlook (February 1995). Forecast tables for the five cases examined in the AEO95 are provided in Appendixes A through C. Appendix A gives historical data and forecasts for selected years from 1992 through 2010 for the reference case. Appendix B presents two additional cases, which assume higher and lower economic growth than the reference case. Appendix C presents two cases that assume higher and lower world oil prices. Appendix D presents a summary of the forecasts in units of oil equivalence. Appendix E presents a summary of household energy expenditures. Appendix F provides detailed comparisons of the AEO95 forecasts with those of other organizations. Appendix G briefly describes NEMS and the major AEO95 forecast assumptions. Appendix H presents a stand-alone high electricity demand case. Appendix 1 provides a table of energy conversion factors and a table of metric conversion factors. 89 figs., 23 tabs.

  4. U.S. Exports of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    151,212 143,480 155,073 154,624 175,388 156,194 1981-2016 Crude Oil 11,273 10,860 15,742 17,736 20,511 11,489 1920-2016 Natural Gas Plant Liquids and Liquefied Refinery Gases 38,614 36,109 33,450 34,405 42,385 34,311 1981-2016 Pentanes Plus 6,162 6,464 6,195 6,600 7,067 6,226 1984-2016 Liquefied Petroleum Gases 32,452 29,646 27,254 27,805 35,318 28,085 1981-2016 Ethane/Ethylene 2,610 2,197 2,621 2,587 2,923 2,414 1981-2016 Propane/Propylene 26,840 25,644 20,863 21,015 27,706 22,269 1981-2016

  5. DOE Acquisition Outlook and Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Acquisition Outlook and Challenges DOE Acquisition Outlook and Challenges Presentation from the 2015 DOE National Cleanup Workshop by John Hale, Director, Office of Small And Disadvantaged Business Utilization. DOE Acquisition Outlook and Challenges (489.45 KB) More Documents & Publications DOE-National-Cleanup-Workshop-Outlook-and-Challenges-John-Hale-III Webinar Presentation: Doing Business with Us Small Business Webinar: March 7 2013

  6. Short-term energy outlook annual supplement, 1993

    SciTech Connect (OSTI)

    1993-08-06

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  7. Short-term energy outlook, annual supplement 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  8. Thermal upgrading of residual oil to light product and heavy residual fuel

    SciTech Connect (OSTI)

    Yan, T.Y.; Shu, P.

    1986-08-05

    The method is described of upgrading residual oil boiling in the range of 1050/sup 0/F+ comprising: thermally cracking the residual oil at a temperature of 650/sup 0/-900/sup 0/F, a pressure of 0-100 psig, and a residence time of 0.1 to 5 hours at the highest severity in the range between about 1,000-18,000 seconds, as expressed in equivalent reaction time at 800/sup 0/F, sufficient to convert at least about 50 wt% of the residual oil to light products, substantially without the formation of solid coke; recovering separate fractions of light product and emulsifiable heavy bottom product which has a fusion temperature below about 150/sup 0/C and a quinoline-insoluble content between about 10 wt% and 30 wt% and wherein the highest severity is determined by a functional relationship between the asphaltene content of the residual oil feedstock and the heavy bottom product yield and quinoline-insoluble content.

  9. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with

  10. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information

  11. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre Arctic National Wildlife Refuge is the largest unexplored, potentially productive geologic onshore basin in the United States. The primary area of the coastal plain is the 1002 Area of ANWR established when ANWR was created. A decision on permitting the exploration and development

  12. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * Crude oil prices increased during the first three weeks of July 2013 as world oil markets tightened in the face of seasonal increases in world consumption, unexpected supply disruptions, and heightened uncertainty over the security of supply with the renewed unrest in Egypt. The U.S. Energy Information Administration (EIA) expects that the Brent crude oil spot price, which averaged $108 per barrel over the first half of 2013, will average $104 per barrel over the second half

  13. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  North Sea Brent crude oil prices averaged $57/barrel (b) in July, a $5/b decrease from June. Brent crude oil spot prices fell further in early August, settling at $48/b on August 7. The recent price declines reflect concerns about lower economic growth in emerging markets, expectations of higher oil exports from Iran, and continuing actual and expected growth in global inventories.  EIA forecasts that Brent crude oil prices will average $54/b in 2015 and $59/b in 2016,

  14. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * North Sea Brent crude oil prices averaged $44/barrel (b) in November, a $4/b decrease from October. Global oil inventories are estimated to have increased by 1.3 million barrels per day (b/d) in November, putting downward pressure on Brent prices. * EIA forecasts that Brent crude oil prices will average $53/b in 2015 and $56/b in 2016. Forecast West Texas Intermediate (WTI) crude oil prices average $4/b lower than the Brent price in 2015 and $5/b lower in 2016. The current

  15. Oil: Crude and Petroleum Products - Energy Explained, Your Guide To

    U.S. Energy Information Administration (EIA) Indexed Site

    Understanding Energy - Energy Information Administration Products Energy Explained - Home What Is Energy? Forms of Energy Sources of Energy Laws of Energy Units and Calculators Energy Conversion Calculators British Thermal Units (Btu) Degree-Days U.S. Energy Facts State and U.S. Territory Data Use of Energy In Industry For Transportation In Homes In Commercial Buildings Efficiency and Conservation Energy and the Environment Greenhouse Gases Effect on the Climate Where Greenhouse Gases Come

  16. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and

  18. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  19. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  20. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  1. East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area 2010 2011 2012 2013 2014 2015 View History Total Crude Oil and Petroleum Products 1,121,490 1,155,814 1,202,911 1,269,854 1,329,650 1,341,370 1981-2015 Crude Oil 6,766 7,153 23,011 81,350 147,071 153,586 1981-2015 Petroleum Products 1,114,724 1,148,661 1,179,900 1,188,504

  2. Fruit production of Attalea colenda (Arecaceae) in coastal Ecuador - an alternative oil resource?

    SciTech Connect (OSTI)

    Feil, J.P.

    1996-07-01

    Attalea colenda is a monoecious palm found in pastures in coastal Ecuador. In dry regions, it is a valuable source of oil in self-sufficiency farming or in combination with cattle in pastures. The palm was studied over a gradient of dry to humid environments during two fruiting seasons. Palm growth, production of leaves, inflorescences, and infructescences, number of fruits per infructescence, and seed weight of five populations were evaluated. The individual of average size is 15 m tall, which corresponds to approximately 30-40 years of age. No difference in fruit production was recorded between wet and dry regions of coastal Ecuador. The average production of one hectare of pasture, with 50 palms, was 0.9 t of oil per year. One population that was part of an agroforestry system produced 50% more fruits than the average of all populations in pasture. 18 refs., 1 fig., 6 tabs.

  3. East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipeline, Tanker, Barge and Rail Type: Net Receipts Receipts Shipments Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History Total Crude Oil and Petroleum Products 109,830 103,720 105,744 98,960 101,137 100,522 1981-2016 Crude Oil 9,972 7,611 8,237 6,549 7,648 5,743 1981-2016 Petroleum Products 100,144 95,869 96,421 92,656 93,488 94,779 1986-2016

  4. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF

  5. Method for enhancing heavy oil production using hydraulic fracturing

    SciTech Connect (OSTI)

    Jennings, A.R. Jr.; Smith, R.C.

    1991-04-09

    This patent describes a method for producing viscous substantially fines-free hydrocarbonaceous fluids from an unconsolidated or loosely consolidated formation. It comprises drilling into the formation at least one well into a first productive interval of the formation; fracturing hydraulically the well with a viscous fracturing fluid containing a proppant therein which is of a size sufficient to prop a created fracture and restrict fines movement into the fracture which proppant comprises silicon carbide, silicon nitride, or garnet; injecting a pre-determined volume of steam into the well in an amount sufficient to soften the viscous fluid and lower the viscosity of the fluid adjacent a fracture face producing the well at a rate sufficient to allow formation fines to build up on a fracture face communicating with the well thereby resulting in a filter screen sufficient to substantially remove formation fines from the hydrocarbonaceous fluids; injecting a second volume of steam into the well and producing substantially fines free hydrocarbonaceous fluids to the surface; repeating steps until a desired amount of hydrocarbonaceous fluids have been produced from the first interval; and isolating mechanically the first interval and repeating steps in a second productive interval of the formation.

  6. Production and fuel characteristics of vegetable oil from oilseed crops in the Pacific Northwest

    SciTech Connect (OSTI)

    Auld, D.L.; Bettis, B.L.; Peterson, C.L.

    1982-01-01

    The purpose of this research was to evaluate the potential yield and fuel quality of various oilseed crops adapted to the Pacific Northwest as a source of liquid fuel for diesel engines. The seed yield and oil production of three cultivars of winter rape (Brassica napus L.), two cultivars of safflower (Carthamus tinctorius L.) and two cultivars of sunflower (Helianthus annuus L.) were evaluated in replicated plots at Moscow. Additional trials were conducted at several locations in Idaho, Oregon and Washington. Sunflower, oleic and linoleic safflower, and low and high erucic acid rapeseed were evaluated for fatty acid composition, energy content, viscosity and engine performance in short term tests. During 20 minute engine tests power output, fuel economy and thermal efficiency were compared to diesel fuel. Winter rape produced over twice as much farm extractable oil as either safflower or sunflower. The winter rape cultivars, Norde and Jet Neuf had oil yields which averaged 1740 and 1540 L/ha, respectively. Vegetable oils contained 94 to 95% of the KJ/L of diesel fuel, but were 11.1 to 17.6 times more viscous. Viscosity of the vegetable oils was closely related to fatty acid chain length and number of unsaturated bonds (R/sup 2/=.99). During short term engine tests all vegetable oils produced power outputs equivalent to diesel, and had thermal efficiencies 1.8 to 2.8% higher than diesel. Based on these results it appears that species and cultivars of oilseed crops to be utilized as a source of fuel should be selected on the basis of oil yield. 1 figure, 5 tables.

  7. EM's Budget Outlook by Terry Tyborowski

    Office of Environmental Management (EM)

    Assistant Secretary for Program Planning and Budget April 18, 2012 www.em.doe.gov safety performance cleanup closure E M Environmental Management 2 EM's Budget Outlook: FY 2013, FY ...

  8. 2016 NASEO Energy Policy Outlook Conference

    Broader source: Energy.gov [DOE]

    NASEO’s Energy Policy Outlook Conference is the national forum to connect with and learn from state energy officials working on innovative energy policies and programs, and to engage with federal officials on priority energy issues.

  9. Annual Energy Outlook 2015 - Appendix A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A-3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise ...

  10. 2015 NASEO Energy Policy Outlook Conference

    Broader source: Energy.gov [DOE]

    BETO Director Jonathan Male will be speaking at the National Association of State Energy Organization Energy Policy Outlook Conference, which will be taking place from February 3–6 at the Washington, D.C.

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  12. East Coast (PADD 1) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History All Countries 54,063 56,468 52,343 59,570 56,245 63,583 1981-2016 Persian Gulf 3,326 2,849 3,951 2,738 3,343 3,487 1993-2016 OPEC* 12,172 13,760 12,417 15,062 14,321 14,771

  13. U.S. Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Import Area: U.S. Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Import Area Country 2010 2011 2012 2013 2014 2015 View History All Countries 4,304,533 4,174,210 3,878,852 3,598,454 3,372,904 3,431,210 1981-2015 Persian Gulf 624,638 679,403 789,082 733,325 684,235 550,046 1993-2015 OPEC* 1,790,811 1,662,720 1,563,273 1,357,907 1,181,458 1,058,209 1993-2015 Algeria 186,019 130,723 88,487 42,014 40,193 39,478

  14. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  16. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A2. Energy consumption by sector and source (quadrillion Btu per year, unless otherwise noted) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Energy consumption Residential Propane

  17. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A5. Commercial sector key indicators and consumption (quadrillion Btu per year, unless otherwise noted) Key indicators and consumption Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Key indicators

  18. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    Assumptions to the Annual Energy Outlook 2015 September 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2015 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  19. GEOGRAPHIC INFORMATION SYSTEM APPROACH FOR PLAY PORTFOLIOS TO IMPROVE OIL PRODUCTION IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Beverly Seyler; John Grube

    2004-12-10

    Oil and gas have been commercially produced in Illinois for over 100 years. Existing commercial production is from more than fifty-two named pay horizons in Paleozoic rocks ranging in age from Middle Ordovician to Pennsylvanian. Over 3.2 billion barrels of oil have been produced. Recent calculations indicate that remaining mobile resources in the Illinois Basin may be on the order of several billion barrels. Thus, large quantities of oil, potentially recoverable using current technology, remain in Illinois oil fields despite a century of development. Many opportunities for increased production may have been missed due to complex development histories, multiple stacked pays, and commingled production which makes thorough exploitation of pays and the application of secondary or improved/enhanced recovery strategies difficult. Access to data, and the techniques required to evaluate and manage large amounts of diverse data are major barriers to increased production of critical reserves in the Illinois Basin. These constraints are being alleviated by the development of a database access system using a Geographic Information System (GIS) approach for evaluation and identification of underdeveloped pays. The Illinois State Geological Survey has developed a methodology that is being used by industry to identify underdeveloped areas (UDAs) in and around petroleum reservoirs in Illinois using a GIS approach. This project utilizes a statewide oil and gas Oracle{reg_sign} database to develop a series of Oil and Gas Base Maps with well location symbols that are color-coded by producing horizon. Producing horizons are displayed as layers and can be selected as separate or combined layers that can be turned on and off. Map views can be customized to serve individual needs and page size maps can be printed. A core analysis database with over 168,000 entries has been compiled and assimilated into the ISGS Enterprise Oracle database. Maps of wells with core data have been generated

  20. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  North Sea Brent crude oil prices averaged $61/barrel (b) in June, a $3/b decrease from May. Crude oil prices fell by about $4/b on July 6 in the aftermath of the "no" vote in Greece on the economic program, as well as lingering concerns about lower economic growth in China, higher oil exports from Iran, and continuing growth in global petroleum and other liquids inventories. A percent price change of this extent on a single day is unusual, but despite daily price

  1. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  North Sea Brent crude oil prices averaged $48/barrel (b) in October, a $1/b increase from September. Daily Brent prices have ranged between $45/b and $53/b since the beginning of September. Oil price volatility was lower during October than during August and September, but it remains elevated compared with levels in recent years.  EIA forecasts that Brent crude oil prices will average $54/b in 2015 and $56/b in 2016. The 2015 forecast price is unchanged from last month's

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for

  3. World oil - An essay on its spectacular 120-year rise (1859-1979), recent decline, and uncertain future

    SciTech Connect (OSTI)

    Linden, H.R.

    1987-01-01

    An analysis of the evolution of the oil security problems of import-dependent industrialized countries and of the rise and recent erosion of the market power of the major oil exporting countries, particularly those located in the Persian Gulf area. The counterproductive reaction of the United States and other large oil importers to the resulting oil supply and price instability, especially since the 1973-74 oil embargo, is critiqued. In addition, the synergism between the early commercialization of crude oil production and refining in the United States and the development of the automobile industry is discussed, and the long-term outlook for oil-base transportation fuels is assessed. OPEC's role in destabilizing the world oil market during the 1970s and its current efforts to restabilize it are evaluated, as is the likely future course of world oil prices and of U.S. and other non-OPEC production. An important finding of this study is that the share of oil in the world energy mix has peaked and will continue its downward trend and that recurring expectations for a sharp escalation of world oil prices and shortages are based on erroneous assessments of the fundamentals governing the oil business.

  4. EIA-914 Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report Revision Policy

    U.S. Energy Information Administration (EIA) Indexed Site

    Revision Policy December 2015 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | EIA-94 Monthly Crude Oil, Lease Condensate, and Natural Gas Production Report Methodology i This revision policy was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  5. Overview of NETL Field Studies Related to Oil and Gas Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ENERGY lab 18 Aug 2015 Richard Hammack, Monitoring Team Lead USDOE National Energy Technology Laboratory, Pittsburgh, PA Overview of NETL Field Studies Related to Oil and Gas Production DOE Tribal Leaders Forum Denver, Colorado Newfield Exploration, Bakken Petroleum System, North Dakota * Reduce Environmental Impacts * Demonstrate Safe/Reliable Operations * Improve Efficiency of Hydraulic Fracturing Program Objectives * Surface Monitoring - Ambient Air Quality - Air Emissions - Ground Motion -

  6. Annual energy outlook 1994: With projections to 2010

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The Annual Energy Outlook 1994 (AEO94) presents the midterm energy forecasts of the Energy Information Administration (EIA). This year`s report presents projects and analyses of energy supply, demand, and prices through 2010, based for the first time on results from the National Energy Modeling System (NEMS). NEMS is the latest in a series of computer-based energy modeling systems used over the past 2 decades by EIA and its predecessor organization, the Federal Energy Administration, to analyze and forecast energy consumption and supply in the midterm period (about 20 years). Quarterly forecasts of energy supply and demand for 1994 and 1995 are published in the Short-Term Energy Outlook (February 1994). Forecast tables for 2000, 2005, and 2010 for each of the five scenarios examined in the AEO94 are provided in Appendices A through E. The five scenarios include a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices. Appendix F provides detailed comparisons of the AEO94 forecasts with those of other organizations. Appendix G briefly described the NEMS and the major AEO94 forecast assumptions. Appendix H summarizes the key results for the five scenarios.

  7. Assumptions and Expectations for Annual Energy Outlook 2015:...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    changes. (early work of a two year project) * Revise assumptions pertaining to price ... barrels per day January 2015 STEO forecast of U.S. oil production generally within ...

  8. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  9. OPEC's maximum oil revenue will be $80 billion per year

    SciTech Connect (OSTI)

    Steffes, D.W.

    1986-01-01

    OPEC's income from oil is less than $80 billion this year, only one fourth its 1981 revenue. The optimum revenue OPEC can expect is 15 MBB/D at $15/barrel. Energy conservation will continue despite falling prices because consumers no longer feel secure that OPEC can deliver needed supplies. Eleven concepts which affect the future world economic outlook include dependence upon petroleum and petroleum products, the condition of capital markets, low energy and commodity prices, the growth in money supply without a corresponding growth in investment, and the high debt level of the US and the developing countries.

  10. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    SciTech Connect (OSTI)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  11. DOE/EIA-0202(84/3Q) Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    3Q) Short-Term Energy Outlook pn Quarterly Projections August 1984 Published: September 1984 Energy Information Administration Washington, D.C. t- jrt .ort lort .iort .iort iort iort iort ort Tt jm .erm -Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook

  12. DOE/EIA-0202(84/4Q) Short-Term Energy Outlook Quarterly Projections

    Gasoline and Diesel Fuel Update (EIA)

    4Q) Short-Term Energy Outlook Quarterly Projections October 1984 Published: November 1984 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort lort iort lort \ort ort Tt .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook

  13. DOE/EIA-0202(85/2Q) Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    2Q) Short-Term Energy Outlook amm Quarterly Projections April 1985 Published: May 1985 Energy Information Administration Washington, D C t rt jrt .ort lort .iort iort iort lort '.ort ort .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term xrm nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Outlook Outlook Outlook Outlook Outlook Outlook Outlook

  14. DOE/EIA-0202(85/3Q) Short-Term Energy Outlook Quarterly Projections

    Gasoline and Diesel Fuel Update (EIA)

    3Q) Short-Term Energy Outlook Quarterly Projections July 1985 Published: August 1985 Energy Information Administration Washington, D C t rt jrt .ort lort iort iort iort iort '.ort ort Tt .-m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    and net oil production rates of 7,700 BPD and 750 BOPD (injection to production ratio of 4) will occur in October 1999. At that time, the reservoir should act more like a waterflood and production and cold water injection can be operated at lower net injection rates to be determined. Modeling runs developed this quarter found that varying individual well injection rates to meet added production and local pressure problems by sub-zone could reduce steam chest fill-up by up to one month.

  16. Production optimization of sucker rod pumping wells producing viscous oil in Boscan field, Venezuela

    SciTech Connect (OSTI)

    Guirados, C.; Sandoval, J.; Rivas, O.; Troconis, H.

    1995-12-31

    Boscan field is located in the western coast of Maracaibo lake and is operated by Maraven S.A., affiliate of Petroleos de Venezuela S.A. It has 315 active wells, 252 of which are produced with sucker rod pumping. Other artificial lift methods currently applied in this field are hydraulic (piston) pumping (39 wells) and ESP (24 wells). This paper presents the results of the production optimization of two sucker rod pumping wells of Boscan field producing viscous oil. This optimization has been possible due to the development of a new production scheme and the application of system analysis in completion design. The new production scheme involves the utilization of a subsurface stuffing box assembly and a slotted housing, both designed and patented by Intevep S.A., affiliate of Petroleos de Venezuela S.A. The completion design method and software used in the optimization study were also developed by Intevep S.A. The new production scheme and design method proved to be effective in preventing the causes of the above mentioned problems, allowing the increase of oil production under better operating conditions.

  17. INSTRUCTIONS FOR USING HSPD-12 AUTHENTICATED OUTLOOK WEB ACCESS...

    Broader source: Energy.gov (indexed) [DOE]

    172013 Page 1 INSTRUCTIONS FOR USING HSPD-12 AUTHENTICATED OUTLOOK WEB ACCESS (OWA) Outlook Web Access provides access to unencrypted email only and is suitable for use from any ...

  18. Upgraging heavy crude oils to lighter products with a dispersed zeolite

    SciTech Connect (OSTI)

    Rollmann, L. D.

    1985-08-20

    This invention provides a process for upgrading a variety of hydrocarbon oils including low-grade crudes and fractions thereof. In this process, a hydrocarbon oil having an ASTM 50% temperature not higher than 550/sup 0/ F. is converted at low temperature and pressure to more volatile products by a dispersion of crystalline zeolite catalysts having a silica: aluminia ratio of at least 12 and a C.I. within 1-12. Initially, 0.02-10 wt % of the catalyst is dispersed in the feed until the catalyst inventory in the reactor stage accumulates. Thereafter, catalyst is added and removed to maintain a total catalyst content not greater than about 35 wt % of the feed in the reactor.

  19. 97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production

    SciTech Connect (OSTI)

    Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.

    2008-01-01

    With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the bio-oil

  20. Assumptions to Annual Energy Outlook - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis & Projections Glossary › FAQS › Overview Projection Data Monthly short-term forecasts to 2016 Annual projections to 2040 International projections All projections reports Analysis & Projections Major Topics Most popular Annual Energy Outlook related Congressional & other requests International Energy Outlook related Presentations Recurring Short-Term Outlook Related Special outlooks Testimony All reports Browse by Tag Alphabetical Frequency Tag Cloud ‹ Analysis &

  1. U.S. Product Supplied for Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    19,055 19,680 19,616 19,264 19,202 19,833 1963-2016 Crude Oil 0 0 0 0 0 0 1981-2016 Natural Gas Liquids and LRGs 2,957 2,724 2,507 2,297 2,261 2,194 1981-2016 Pentanes Plus 59 1 63 42 30 50 1981-2016 Liquefied Petroleum Gases 2,898 2,723 2,444 2,255 2,230 2,144 1973-2016 Ethane/Ethylene 1,104 1,094 1,116 1,075 1,084 1,080 1981-2016 Propane/Propylene 1,577 1,490 1,160 918 894 815 1973-2016 Normal Butane/Butylene 109 57 72 150 125 137 1981-2016 Isobutane/Isobutylene 108 83 96 112 128 112 1981-2016

  2. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    3 U.S. Energy Information Administration | Annual Energy Outlook 2015 Reference case Energy Information Administration / Annual Energy Outlook 2015 Table A17. Renewable energy consumption by sector and source (quadrillion Btu per year) Sector and source Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Marketed renewable energy 1 Residential (wood) ............................................... 0.44 0.58 0.41 0.39 0.38 0.36 0.35 -1.8% Commercial (biomass)

  3. Short-Term Energy Outlook April 2016

    Gasoline and Diesel Fuel Update (EIA)

    and Summer Fuels Outlook Highlights  During the 2016 April-through-September summer driving season, U.S. regular gasoline retail prices are forecast to average $2.04/gallon (gal), compared with $2.63/gal last summer (see EIA Summer Fuels Outlook presentation). For all of 2016, the forecast average price is $1.94/gal, which if realized would save the average U.S. household about $350 on gasoline in 2016 compared with 2015, with annual average motor fuel expenditures at the lowest level in 12

  4. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities

  5. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect (OSTI)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  6. Filamentous carbon particles for cleaning oil spills and method of production

    DOE Patents [OSTI]

    Muradov, Nazim

    2010-04-06

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  7. DOE/EIA-0202|83/2Q)-1 Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    |83/2Q)-1 Short-Term Energy Outlook Volume 1-Quarterly Projections May 1983 Energy Information Administration Washington, D.C. t rt jrt .ort lort iort iort lOrt iort '.ort- ort Tt . m .erm Term Term Term Term Term Term Term Term Term Term Term Term Term -Term -Term nergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook Outlook

  8. Short-Term Energy Outlook July 2016

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights * U.S. regular gasoline retail prices this summer are forecast to average $2.25/gallon (gal), 2 cents/gal lower than forecast in last month's STEO and 39 cents/gal lower than last summer, measured as April through September. U.S. regular gasoline retail prices are forecast to average $2.12/gal in 2016 and $2.28/gal in 2017. * U.S. crude oil production averaged 9.4 million barrels per day (b/d) in 2015. Production is forecast to average 8.6 million b/d in 2016 and 8.2 million

  9. Solvent extraction of bituminous coals using light cycle oil: characterization of diaromatic products in liquids

    SciTech Connect (OSTI)

    Josefa M. Griffith; Caroline E. Burgess Clifford; Leslie R. Rudnick; Harold H. Schobert

    2009-09-15

    Many studies of the pyrolytic degradation of coal-derived and petroleum-derived aviation fuels have demonstrated that the coal-derived fuels show better thermal stability, both with respect to deposition of carbonaceous solids and cracking to gases. Much previous work at our institute has focused on the use of refined chemical oil (RCO), a distillate from the refining of coal tar, blended with light cycle oil (LCO) from catalytic cracking of vacuum gas oil. Hydroprocessing of this blend forms high concentrations of tetralin and decalin derivatives that confer particularly good thermal stability on the fuel. However, possible supply constraints for RCO make it important to consider alternative ways to produce an 'RCO-like' product from coal in an inexpensive process. This study shows the results of coal extraction using LCO as a solvent. At 350{sup o}C at a solvent-to-coal ratio of 10:1, the conversions were 30-50 wt % and extract yields 28-40 wt % when testing five different coals. When using lower LCO/coal ratios, conversions and extract yields were much smaller; lower LCO/coal ratios also caused mechanical issues. LCO is thought to behave similarly to a nonpolar, non-hydrogen donor solvent, which would facilitate heat-induced structural relaxation of the coal followed by solubilization. The main components contributed from the coal to the extract when using Pittsburgh coal are di- and triaromatic compounds. 41 refs., 3 figs., 12 tabs.

  10. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the

  11. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Exports" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Total Crude Oil and Petroleum Products Exports",6,"Monthly","6/2016","1/15/1981" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. Potential Oil Production from the Coastal Plain of the Arctic National

    U.S. Energy Information Administration (EIA) Indexed Site

    Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 1. Overview of the Arctic National Wildlife Refuge Background The Arctic National Wildlife Refuge (ANWR) 1002 Area of the Alaska North Slope represents an area of 1.5 million acres. The ANWR Coastal Plain Area includes the 1002 Area, State of Alaska lands to the 3-mile limit from the coast line, and approximately 92,000 acres of Native Inupiat lands.

  13. U.S. Product Supplied for Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    590,718 570,721 608,108 577,923 595,262 594,978 1981-2016 Crude Oil 0 0 0 0 0 0 1981-2016 Natural Gas Liquids and LRGs 91,675 79,004 77,710 68,899 70,078 65,822 1981-2016 Pentanes Plus 1,837 28 1,953 1,249 936 1,510 1981-2016 Liquefied Petroleum Gases 89,838 78,975 75,758 67,650 69,142 64,312 1981-2016 Ethane/Ethylene 34,222 31,731 34,598 32,255 33,595 32,401 1981-2016 Propane/Propylene 48,892 43,203 35,967 27,530 27,723 24,435 1981-2016 Normal Butane/Butylene 3,385 1,645 2,229 4,495 3,868 4,109

  14. Short-Term Energy Outlook Supplement: Summer 2013 Outlook for Residential Electric Bills

    U.S. Energy Information Administration (EIA) Indexed Site

    Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Summer 2013 Outlook for Residential Electric Bills i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by

  15. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil

  16. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery

  17. Annual Energy Outlook 2015 - Appendix F

    Gasoline and Diesel Fuel Update (EIA)

    7 U.S. Energy Information Administration | Annual Energy Outlook 2015 Regional maps Figure F6. Coal supply regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY ...

  18. Supplemental Tables to the Annual Energy Outlook

    Reports and Publications (EIA)

    2015-01-01

    The Annual Energy Outlook (AEO) Supplemental tables were generated for the reference case of the AEO using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets. Most of the tables were not published in the AEO, but contain regional and other more detailed projections underlying the AEO projections.

  19. DOE/EIA-0202(85/1Q) Short-Term Energy Outlook Quarterly Projections

    Gasoline and Diesel Fuel Update (EIA)

    1Q) Short-Term Energy Outlook Quarterly Projections January 1985 Published: February 1985 Energy Information Administration Washington, D.C. t rt jrt .ort lort lort lort nort lort *.ort ort Tt .m .erm -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term -Term uergy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy Energy ^nergy Outlook Outlook Outlook Outlook Outlook Outlook

  20. Short-Term Energy Outlook

    Gasoline and Diesel Fuel Update (EIA)

    (STEO) Highlights  After falling by more than 40 cents per gallon from the beginning of September through mid-November, weekly U.S. average regular gasoline retail prices increased by 8 cents per gallon to reach $3.27 per gallon on December 2, 2013, due in part to unplanned refinery maintenance and higher crude oil prices. The annual average regular gasoline retail price, which was $3.63 per gallon in 2012, is expected to average $3.50 per gallon in 2013 and $3.43 per gallon in 2014.  The

  1. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  2. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  3. Annual energy outlook 1999, with projections to 2020

    SciTech Connect (OSTI)

    1998-12-01

    The Annual Energy Outlook 1999 (AEO99) presents midterm forecasts of energy supply, demand, and prices through 2020 prepared by the Energy Information Administration (EIA). The projections are based on results from EIA`s National Energy Modeling System (NEMS). The report begins with an Overview summarizing the AEO99 reference case. The next section, Legislation and Regulations, describes the assumptions made with regard to laws that affect energy markets and discusses evolving legislative and regulatory issues. Issues in Focus discusses current energy issues--the economic decline in East Asia, growth in demand for natural gas, vehicle emissions standards, competitive electricity pricing, renewable portfolio standards, and carbon emissions. It is followed by the analysis of energy market trends. The analysis in AEO99 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present a summary of the reference case forecasts in units of oil equivalence and household energy expenditures. The AEO99 projections are based on Federal, State, and local laws and regulations in effect on July 1, 1998. Pending legislation and sections of existing legislation for which funds have not been appropriated are not reflected in the forecasts. Historical data used for the AEOI99 projections were the most current available as of July 31, 1998, when most 1997 data but only partial 1998 data were available.

  4. Annual energy outlook 1997 with projections to 2015

    SciTech Connect (OSTI)

    1996-12-01

    The Annual Energy Outlook 1997 (AEO97) presents midterm forecasts of energy supply, demand, and prices through 2015 prepared by the Energy Information Administration (EIA). These projections are based on results of EIA`s National Energy Modeling System (NEMS). This report begins with a summary of the reference case, followed by a discussion of the legislative assumptions and evolving legislative and regulatory issues. ``Issues in Focus`` discusses emerging energy issues and other topics of particular interest. It is followed by the analysis of energy market trends. The analysis in AEO97 focuses primarily on a reference case and four other cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. Forecast tables for these cases are provided in Appendixes A through C. Appendixes D and E present summaries of the reference case forecasts in units of oil equivalence and household energy expenditures. Twenty-three other cases explore the impacts of varying key assumptions in NEMS--generally, technology penetration, with the major results shown in Appendix F. Appendix G briefly describes NEMS and the major AEO97 assumptions, with a summary table. 114 figs., 22 tabs.

  5. 1983 annual outlook for US coal

    SciTech Connect (OSTI)

    Paull, M.K.

    1983-11-01

    This report highlights projections and discusses them in relation to coal's future domestic uses; the report also examines factors affecting coal's future growth. Coal was the primary source of energy in the United States from the mid-1800's until after World War II. After that war, coal lost most of its markets to oil and natural gas. In the 1960's, coal development was also hampered by environmental and mine safety concerns, and by the emergence of nuclear power. The 1973-74 oil embargo, however, demonstrated that the United States could no longer depend on imported oil to fuel its energy growth. Through 1990, coal is projected to meet an increasing share of total US energy demand. The projections for the 1985 to 1990 time period show an increased growth in coal consumption, particularly in the electric utility sector where new coal-fired power plants are coming on line. The projected growth in coal production, however, is subject to a series of potential constraints and/or obstacles that must be overcome. These potential constraints and obstacles are described after the history of coal supply and demand is reviewed and future projections are discussed.

  6. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products – Dataset

    Office of Energy Efficiency and Renewable Energy (EERE)

    Excel file and dataset for Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

  7. Fact #933: July 11, 2016 Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Texas, North Dakota, and the Gulf of Mexico Account for Two-Thirds of U.S. Crude Oil Production

  8. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi

    2012-09-29

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a demonstration size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  9. Crude Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other Petroleum Products Natural Gas Coal Purchased Electricity Purchased Steam Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 0 0 0 0 0 0 1986-2015 East Coast (PADD 1) 0 0 0 0

  10. Assumptions to the Annual Energy Outlook 2015

    U.S. Energy Information Administration (EIA) Indexed Site

    28 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule [93], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Oil and Gas

  11. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  12. U. S. monthly coal production

    Gasoline and Diesel Fuel Update (EIA)

    Confidential Presentation to: April 7, 2008 Middle East oil demand and Lehman Brothers oil price outlook Adam Robinson Middle East oil demand u Three pillars of Middle East oil demand - Petrodollar reinvestment - Purchasing power rise - Power sector constraints u Natural gas shortages for power generation mean balance of risks to any Middle East oil demand forecast are firmly to the upside, adding to summer upside seasonality u Lehman Brothers has pegged 3Q08 as the tightest quarter of the

  13. Supplement to the annual energy outlook 1995

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This section of the Supplement to the Annual Energy Outlook 1995 present the major assumptions of the modeling system used to generate the projections in the Annual Energy Outlook 1995 (AEO95). In this context, assumptions include general features of the model structure, assumptions concerning energy markets, and the key input data and parameters that are most significant in formulating the model results. Detailed documentation of the modeling system is available in a series of documentation reports listed in Appendix B. A synopsis of the National Energy Modeling System (NEMS), the model components, and the interrelationships of the modules is presented. The NEMS is developed and maintained by the office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA) to provide projection of domestic energy-economy markets in the midterm time period and perform policy analyses requested by various government agencies and the private sector.

  14. Annual Energy Outlook 2011 Reference Case

    U.S. Energy Information Administration (EIA) Indexed Site

    August 14, 2012 | Washington, DC Annual Energy Outlook 2013: Modeling Updates in the Transportation Sector WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview 2 AEO2013 Transportation Model Updates Washington, D.C., August 2012 Discussion purposes only - Do not cite or circulate * Light-duty vehicle - Light-duty vehicle technology update based on EPA/NHTSA Notice of Proposed Rule for model years 2017 through 2025 * Heavy-duty vehicle

  15. Annual Energy Outlook 2014 Modeling Updates

    U.S. Energy Information Administration (EIA) Indexed Site

    Analysis; Energy Consumption and Efficiency Analysis July 23, 2013 | Washington, DC Annual Energy Outlook 2014: Modeling Updates in the Transportation Sector Overview 2 AEO2014 Transportation Model Updates Washington, D.C., July 2013 Discussion purposes only - Do not cite or circulate * Light-duty vehicle - Vehicle miles traveled by age cohort, update modeling parameters, employment and VMT - E85 demand - Battery electric vehicle cost, efficiency, and availability * Heavy-duty vehicle, rail,

  16. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    2 Reference case Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2015 Table A10. Electricity trade (billion kilowatthours, unless otherwise noted) Electricity trade Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Interregional electricity trade Gross domestic sales Firm power .......................................................... 156 157 122 63 28 28 28 -6.2% Economy

  17. Annual Energy Outlook 2015 - Appendix A

    Gasoline and Diesel Fuel Update (EIA)

    6 Reference case Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Energy Information Administration / Annual Energy Outlook 2015 Table A19. Energy-related carbon dioxide emissions by end use (million metric tons) Sector and end use Reference case Annual growth 2013-2040 (percent) 2012 2013 2020 2025 2030 2035 2040 Residential Space heating ........................................................ 228 293 248 236 228 218 207 -1.3% Space cooling

  18. Short-Term Energy Outlook February 2014

    Gasoline and Diesel Fuel Update (EIA)

    4 1 February 2014 Short-Term Energy Outlook (STEO) Highlights  Temperatures east of the Rocky Mountains have been significantly colder this winter (October - January) compared with the same period both last winter and the previous 10- year average, putting upward pressure on consumption and prices of fuels used for space heating. U.S. average heating degree days were 12% higher than last winter (indicating colder weather) and 8% above the previous 10-year average. The Northeast was 11% colder

  19. Preliminary Results for Annual Energy Outlook 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Results for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group AEO2014 Liquid Fuels Markets Working Group Meeting Office of Petroleum, Natural Gas & Biofuels Analysis September 19, 2013 | Washington, DC WORKING GROUP PRESENTATION FOR DISCUSSION PURPOSES DO NOT QUOTE OR CITE AS RESULTS ARE SUBJECT TO CHANGE Overview 2 Office of Petroleum, Natural Gas, & Biofuels Analysis Working Group Presentation for Discussion Purposes Washington DC, September 19, 2013 DO NOT QUOTE OR CITE

  20. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-12-21

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.