Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Studsvik Processing Facility Update  

SciTech Connect (OSTI)

Studsvik has completed over four years of operation at its Erwin, TN facility. During this time period Studsvik processed over 3.3 million pounds (1.5 million kgs) of radioactive ion exchange bead resin, powdered filter media, and activated carbon, which comprised a cumulative total activity of 18,852.5 Ci (6.98E+08 MBq). To date, the highest radiation level for an incoming resin container has been 395 R/hr (3.95 Sv/h). The Studsvik Processing Facility (SPF) has the capability to safely and efficiently receive and process a wide variety of solid and liquid Low Level Radioactive Waste (LLRW) streams including: Ion Exchange Resins (IER), activated carbon (charcoal), graphite, oils, solvents, and cleaning solutions with contact radiation levels of up to 400 R/hr (4.0 Sv/h). The licensed and heavily shielded SPF can receive and process liquid and solid LLRWs with high water and/or organic content. This paper provides an overview of the last four years of commercial operations processing radioactive LLRW from commercial nuclear power plants. Process improvements and lessons learned will be discussed.

Mason, J. B.; Oliver, T. W.; Hill, G. M.; Davin, P. F.; Ping, M. R.

2003-02-25T23:59:59.000Z

2

Process oil manufacturing process  

SciTech Connect (OSTI)

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

3

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network [OSTI]

in Alaskan North Slope oil production facilities. Title:Profiling Despite oil production from several major16) was isolated from oil-production water and has optimal

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

4

"Z" Facility Dielectric Oil Clean-Up  

SciTech Connect (OSTI)

In August of 1998 the Z facility leaked approximately 150 gallons of deionized water into the dielectric oil of the Energy Storage Section (ESS). After processing the oil to remove existing particulate and free water the dielectric breakdown strength increased from the mid 20kV range to values in excess of 40 kV. 40 kV is above historical operating levels of about 35 kV. This, however, was not enough to allow 90 kV charging of the Marx Generators in the ESS. Further analysis of the oil showed dissolved water at a saturated level (70 - 80 ppm) and some residual particulate contamination smaller than 3 microns. The dissolved water and particulate combination was preventing the 90 kV charging of the Marx Generators in the ESS. After consulting with the oil industry it was determined that nitrogen sparging could be used to remove the dissolved water. Further particulate filtering was also conducted. After approximately 20 hours of sparging the water content in the ESS was reduced to 42 ppm which enabled Marx charging to 90 kV.

Alessandri, Daniel; Bloomquist, Doug; Donovan, Guy; Feltz, Greg; Grelle, Nibby; Guthrie, Doug; Harris, Mark; Horry, Mike; Lockas, Mike; Potter, Jimmy; Pritchard, Chuck; Steedly, Jim

1999-06-30T23:59:59.000Z

5

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

6

Beneficiation-hydroretort processing of US oil shales, engineering study  

SciTech Connect (OSTI)

This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

Johnson, L.R.; Riley, R.H.

1988-12-01T23:59:59.000Z

7

Advanced Polymer Processing Facility  

SciTech Connect (OSTI)

Some conclusions of this presentation are: (1) Radiation-assisted nanotechnology applications will continue to grow; (2) The APPF will provide a unique focus for radiolytic processing of nanomaterials in support of DOE-DP, other DOE and advanced manufacturing initiatives; (3) {gamma}, X-ray, e-beam and ion beam processing will increasingly be applied for 'green' manufacturing of nanomaterials and nanocomposites; and (4) Biomedical science and engineering may ultimately be the biggest application area for radiation-assisted nanotechnology development.

Muenchausen, Ross E. [Los Alamos National Laboratory

2012-07-25T23:59:59.000Z

8

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

9

Process for the production of refrigerator oil  

SciTech Connect (OSTI)

A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

Kunihiro, T.; Tsuchiya, K.

1985-06-04T23:59:59.000Z

10

Independent Oversight Assessment, Salt Waste Processing Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department...

11

Feasibility of establishing and operating a generic oil shale test facility  

SciTech Connect (OSTI)

The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

Not Available

1986-12-01T23:59:59.000Z

12

Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities  

E-Print Network [OSTI]

Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities Atalla F. Sayda and James H. Taylor Abstract-- Oil production facilities exhibit complex and challenging dynamic behavior simplicity. I. INTRODUCTION The function of an oil production facility is to separate the oil well stream

Taylor, James H.

13

Australian developments in oil shale processing  

SciTech Connect (OSTI)

This study gives some background on Australian oil shale deposits, briefly records some history of oil shale processing in the country and looks at the current status of the various proposals being considered to produce syncrudes from Australian oil shales. 5 refs.

Baker, G.L.

1981-01-01T23:59:59.000Z

14

Oil field waste disposal costs at commercial disposal facilities  

SciTech Connect (OSTI)

The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

Veil, J.A.

1997-10-01T23:59:59.000Z

15

Chemical kinetics and oil shale process design  

SciTech Connect (OSTI)

Oil shale processes are reviewed with the goal of showing how chemical kinetics influences the design and operation of different processes for different types of oil shale. Reaction kinetics are presented for organic pyrolysis, carbon combustion, carbonate decomposition, and sulfur and nitrogen reactions.

Burnham, A.K.

1993-07-01T23:59:59.000Z

16

Process for converting heavy oil deposited on coal to distillable oil in a low severity process  

DOE Patents [OSTI]

A process for removing oil from coal fines that have been agglomerated or blended with heavy oil comprises the steps of heating the coal fines to temperatures over 350.degree. C. up to 450.degree. C. in an inert atmosphere, such as steam or nitrogen, to convert some of the heavy oil to lighter, and distilling and collecting the lighter oils. The pressure at which the process is carried out can be from atmospheric to 100 atmospheres. A hydrogen donor can be added to the oil prior to deposition on the coal surface to increase the yield of distillable oil.

Ignasiak, Teresa (417 Heffernan Drive, Edmonton, Alberta, CA); Strausz, Otto (13119 Grand View Drive, Edmonton, Alberta, CA); Ignasiak, Boleslaw (417 heffernan Drive, Edmonton, Alberta, CA); Janiak, Jerzy (17820 - 76 Ave., Edmonton, Alberta, CA); Pawlak, Wanda (3046 - 11465 - 41 Avenue, Edmonton, Alberta, CA); Szymocha, Kazimierz (3125 - 109 Street, Edmonton, Alberta, CA); Turak, Ali A. (Edmonton, CA)

1994-01-01T23:59:59.000Z

17

Process for tertiary oil recovery using tall oil pitch  

DOE Patents [OSTI]

A process and compositions for enhancing the recovery of acid crudes are disclosed. The process involves injecting caustic solutions into the reservoir to maintain a pH of 11 to 13. The fluid contains an effective amount of multivalent cation for inhibiting alkaline silica dissolution with the reservoir. A tall oil pitch soap is added as a polymeric mobility control agent. (DMC)

Radke, C.J.

1983-07-25T23:59:59.000Z

18

Environmental assessment of oil degasification at four Strategic Petroleum Reserve facilities in Texas and Louisiana  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) proposes to treat gassy oil at four Strategic Petroleum Reserve (SPR) storage sites to lower the gas content of the stored crude oil and help ensure safe transfer of the oil during drawdown. The crude oil is stored underground in caverns created in salt domes. The degree of gassiness of the oil varies substantially among sites and among caverns within a site. This environmental assessment describes the proposed degasification operation, its alternatives, and potential environmental impacts. The need for degasification has arisen because over time, gases, principally methane and nitrogen, have migrated into and become dissolved in the stored crude oil. This influx of gas has raised the crude oil vapor pressure above limits required by safety and emission guidelines. When oil is drawn from the caverns, excess gases may come out of solution. Based on preliminary data from an ongoing sampling program, between 200 and 350 million of the 587 million barrels of crude oil stored at these four sites would require processing to remove excess gas. Degasification, a commonly used petroleum industry process, would be done at four crude oil storage facilities: Bryan Mound and Big Hill in Texas, and West Hackberry and Bayou Choctaw in Louisiana. DOE would use a turnkey services contract for engineering, procurement, fabrication, installation, operation and maintenance of two degasification plants. These would be installed initially at Bryan Mound and West Hackberry. Degasification would be complete in less than three years of continuous operations. This report summarizes the environmental impacts of this gasification process.

Not Available

1994-09-01T23:59:59.000Z

19

Springfield Processing Plant (SPP) Facility Information  

SciTech Connect (OSTI)

The Springfield Processing Plant is a hypothetical facility. It has been constructed for use in training workshops. Information is provided about the facility and its surroundings, particularly security-related aspects such as target identification, threat data, entry control, and response force data.

Leach, Janice; Torres, Teresa M.

2012-10-01T23:59:59.000Z

20

Processing alternatives for glandless cottonseed oil  

E-Print Network [OSTI]

PROCESSING ALTERNATIVES FOR GLANDLESS COTTONSEED OIL A Thesis by NARONG C~SEM Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1981 Major Subject...: Food Science and Technology PROCESSING ALTERNATIVES FOR GLANDLESS COTTONSEED OIL A Thesis by NARONG CHAMKASEM Approved as to style and content by: (Chairman of Committee) (Me r) (Member) ember) ;. +7+i~', P; I j Head of D artment) May 1981...

Chamkasem, Narong

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fabrication of Separator Demonstration Facility process vessel  

SciTech Connect (OSTI)

The process vessel system is the central element in the Separator Development Facility (SDF). It houses the two major process components, i.e., the laser-beam folding optics and the separators pods. This major subsystem is the critical-path procurement for the SDF project. Details of the vaious parts of the process vessel are given.

Oberst, E.F.

1985-01-15T23:59:59.000Z

22

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network [OSTI]

anaerobic thermophilic oil reservoir and well communities.been detected in hot oil reservoirs and production fluids (other thermophilic oil reservoirs and wells suggests that

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

23

Cyclone oil shale retorting concept. [Use it all retorting process  

SciTech Connect (OSTI)

A new concept for above-ground retorting of oil shale was disclosed by A.E. Harak in US Patent No. 4,340,463, dated July 20, 1982, and assigned to the US Department of Energy. This patent titled System for Utilizing Oil Shale Fines, describes a process wherein oil shale fines of one-half inch diameter and less are pyrolyzed in an entrained-flow reactor using hot gas from a cyclone combustor. Spent shale and supplemental fuel are burned at slagging conditions in this combustor. Because of fines utilization, the designation Use It All Retorting Process (UIARP) has been adopted. A preliminary process engineering design of the UIARP, analytical tests on six samples of raw oil shale, and a preliminary technical and economic evaluation of the process were performed. The results of these investigations are summarized in this report. The patent description is included. It was concluded that such changes as deleting air preheating in the slag quench and replacing the condenser with a quench-oil scrubber are recognized as being essential. The addition of an entrained flow raw shale preheater ahead of the cyclone retort is probably required, but final acceptance is felt to be contingent on some verification that adequate reaction time cannot be obtained with only the cyclone, or possibly some other twin-cyclone configuration. Sufficient raw shale preheating could probably be done more simply in another manner, perhaps in a screw conveyor shale transporting system. Results of the technical and economic evaluations of Jacobs Engineering indicate that further investigation of the UIARP is definitely worthwhile. The projected capital and operating costs are competitive with costs of other processes as long as electric power generation and sales are part of the processing facility.

Harak, A.E.; Little, W.E.; Faulders, C.R.

1984-04-01T23:59:59.000Z

24

Thermal processes for heavy oil recovery  

SciTech Connect (OSTI)

This status report summarizes the project BE11B (Thermal Processes for Heavy Oil Recovery) research activities conducted in FY93 and completes milestone 7 of this project. A major portion of project research during FY93 was concentrated on modeling and reservoir studies to determine the applicability of steam injection oil recovery techniques in Texas Gulf Coast heavy oil reservoirs. In addition, an in-depth evaluation of a steamflood predictive model developed by Mobil Exploration and Production Co. (Mobil E&P) was performed. Details of these two studies are presented. A topical report (NIPER-675) assessing the NIPER Thermal EOR Research Program over the past 10 years was also written during this fiscal year and delivered to DOE. Results of the Gulf Coast heavy oil reservoir simulation studies indicated that though these reservoirs can be successfully steamflooded and could recover more than 50% of oil-in-place, steamflooding may not be economical at current heavy oil prices. Assessment of Mobil E&P`s steamflood predictive model capabilities indicate that the model in its present form gives reasonably good predictions of California steam projects, but fails to predict adequately the performance of non-California steam projects.

Sarkar, A.K.; Sarathi, P.S.

1993-11-01T23:59:59.000Z

25

Western oil shale conversion using the ROPE copyright process  

SciTech Connect (OSTI)

Western Research Institute (WRI) is continuing to develop the Recycle Oil Pyrolysis and Extraction (ROPE) process to recover liquid hydrocarbon products from oil shale, tar sand, and other solid hydrocarbonaceous materials. The process consists of three major steps: (1) pyrolyzing the hydrocarbonaceous material at a low temperature (T {le} 400{degrees}C) with recycled product oil, (2) completing the pyrolysis of the residue at a higher temperature (T > 400{degrees}C) in the absence of product oil, and (3) combusting the solid residue and pyrolysis gas in an inclined fluidized-bed reactor to produce process heat. Many conventional processes, such as the Paraho and Union processes, do not use oil shale fines (particles smaller than 1.27 cm in diameter). The amount of shale discarded as fines from these processes can be as high as 20% of the total oil shale mined. Research conducted to date suggests that the ROPE process can significantly improve the overall oil recovery from western oil shale by processing the oil shale fines typically discarded by conventional processes. Also, if the oil shale fines are co-processed with shale oil used as the heavy recycle oil, a better quality oil will be produced that can be blended with the original shale oil to make an overall produce that is more acceptable to the refineries and easier to pipeline. Results from tests conducted in a 2-inch process development unit (PDU) and a 6-inch bench-scale unit (BSU) with western oil shale demonstrated a maximum oil yield at temperatures between 700 and 750{degrees}F (371 and 399{degrees}C). Test results also suggest that the ROPE process has a strong potential for recovering oil from oil shale fines, upgrading shale oil, and separating high-nitrogen-content oil for use as an asphalt additive. 6 refs., 10 figs., 11 tabs.

Cha, C.Y.; Fahy, L.J.; Grimes, R.W.

1989-12-01T23:59:59.000Z

26

Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79  

SciTech Connect (OSTI)

Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

NONE

1989-07-01T23:59:59.000Z

27

Proof-of-Concept Oil Shale Facility Environmental Analysis Program  

SciTech Connect (OSTI)

The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI`s archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970`s and early 1980`s. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

Not Available

1990-11-01T23:59:59.000Z

28

Proof-of-Concept Oil Shale Facility Environmental Analysis Program  

SciTech Connect (OSTI)

The objectives of the Project are to demonstrate: (1) the Modified In- Situ (MIS) shale oil extraction process and (2) the application of CFBC technology using oil shale, coal and waste gas streams as fuels. The project will focus on evaluating and improving the efficiency and environmental performance of these technologies. The project will be modest by commercial standards. A 17-retort MIS system is planned in which two retorts will be processed simultaneously. Production of 1206-barrels per calendar day of raw shale oil and 46-megawatts of electricity is anticipated. West Virginia University coordinated an Environmental Analysis Program for the Project. Experts from around the country were retained by WVU to prepare individual sections of the report. These experts were exposed to all of OOSI's archives and toured Tract C-b and Logan Wash. Their findings were incorporated into this report. In summary, no environmental obstacles were revealed that would preclude proceeding with the Project. One of the most important objectives of the Project was to verify the environmental acceptability of the technologies being employed. Consequently, special attention will be given to monitoring environmental factors and providing state of the art mitigation measures. Extensive environmental and socioeconomic background information has been compiled for the Tract over the last 15 years and permits were obtained for the large scale operations contemplated in the late 1970's and early 1980's. Those permits have been reviewed and are being modified so that all required permits can be obtained in a timely manner.

Not Available

1990-11-01T23:59:59.000Z

29

Waste minimization at a plutonium processing facility  

SciTech Connect (OSTI)

As part of Los Alamos National Laboratory`s (LANL) mission to reduce the nuclear danger throughout the world, the plutonium processing facility at LANL maintains expertise and skills in nuclear weapons technologies as well as leadership in all peaceful applications of plutonium technologies, including fuel fabrication for terrestrial and space reactors and heat sources and thermoelectric generators for space missions. Another near-term challenge resulted from two safety assessments performed by the Defense Nuclear Facilities Safety Board and the U.S. Department of Energy during the past two years. These assessments have necessitated the processing and stabilization of plutonium contained in tons of residues so that they can be stored safely for an indefinite period. This report describes waste streams and approaches to waste reduction of plutonium management.

Pillay, K.K.S. [Los Alamos National Laboratory, NM (United States)

1995-12-31T23:59:59.000Z

30

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network [OSTI]

due to corrosion are expensive problems in the oil industrycorrosion. The similarity of core taxa in these samples and those from other thermophilic oil

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

31

RMOTC offers unique test facility to oil industry  

SciTech Connect (OSTI)

Testing laboratory developed new tools and techniques in actual field conditions before commercialization has long been a significant problem. Working lab models may fail in the first field applications because of handling, incompatibility with existing equipment, or natural elements such as wind, humidity, or temperature. Further, the risk of damage to the operators wellbore, production, or other operations can be costly and embarrassing. As research dollars are becoming harder to obtain, a neutral, non-competitive, and user friendly test site is needed. This type of facility has been developed at the US Department of Energy`s Naval Petroleum Reserve No. 3 (NPR-3), near Casper, Wyoming, through the Rocky Mountain Oilfield Testing Center (RMOTC). New technologies and processes field tested at this facility include those related to drilling production/lifting costs, P and A methods, and environmental control and remediation.

Opsal, C.M. [Fluor Daniel NPOSR-CUW, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

1998-12-31T23:59:59.000Z

32

Safeguards Approaches for Black Box Processes or Facilities  

SciTech Connect (OSTI)

The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25T23:59:59.000Z

33

Co-processing of carbonaceous solids and petroleum oil  

DOE Patents [OSTI]

In a process for producing distillates from coal by a first stage thermal liquefaction followed by a catalytic hydrogenation, liquefaction solvent is added at points spaced over the length of the thermal liquefaction heater. Coal may be co-processed with petroleum oil by adding pre-hydrogenated oil to the first stage or unhydrogenated oil to the second stage.

Gupta, Avinash (Bloomfield, NJ); Greene, Marvin I. (Oradell, NJ)

1992-01-01T23:59:59.000Z

34

Altering Design Decisions to Better Suit Facilities Management Processes  

E-Print Network [OSTI]

Research work reported in this paper tackles the communication between processes of both facilities management (FM) and design, showing the effect of such communication on the capability of newly built facilities in supporting organizations...

Jawdeh, H. B.; Abudul-Malak, M. A.; Wood, G.

2010-01-01T23:59:59.000Z

35

Wireless Critical Process Control in oil and gas refinery plants  

E-Print Network [OSTI]

Wireless Critical Process Control in oil and gas refinery plants Stefano Savazzi1, Sergio Guardiano control in in- dustrial plants and oil/gas refineries. In contrast to wireline communication, wireless of an oil refinery is illustrated in Fig. 1: typical locations of wireless devices used for re- mote control

Savazzi, Stefano

36

Process for removing heavy metal compounds from heavy crude oil  

DOE Patents [OSTI]

A process is provided for removing heavy metal compounds from heavy crude oil by mixing the heavy crude oil with tar sand; preheating the mixture to a temperature of about 650.degree. F.; heating said mixture to up to 800.degree. F.; and separating tar sand from the light oils formed during said heating. The heavy metals removed from the heavy oils can be recovered from the spent sand for other uses.

Cha, Chang Y. (Golden, CO); Boysen, John E. (Laramie, WY); Branthaver, Jan F. (Laramie, WY)

1991-01-01T23:59:59.000Z

37

Co-processing of heavy oil  

SciTech Connect (OSTI)

In co-processing of petroleum and coal, the petroleum fraction may serve as the {open_quotes}liquefaction solvent,{close_quotes} or hydrogen donor, and the aromatics present in the coal liquid may serve as hydrogen {open_quotes}shuttlers{close_quotes} by efficiently transferring hydrogen moieties to places where they are most deficient. The important advantages of co-processing include the following: (1) upgrading of heavy petroleum in a reaction with coal and (2) conversion of coal to synthetic crudes which could be further upgraded to a premium liquid fuel. Co-processing of coal with petroleum, heavy crudes, and residues through catalytic hydrogenation or solvent extraction have been extensively investigated. The studies were typically conducted in the temperature range of 450{degrees}-500{degrees}C under pressurized hydrogen; catalysts are generally also added for hydroconversion of the feedstocks. However, relatively little has been reported in the literature regarding co-processing of coal with heavy petroleum by simple pyrolysis. In this study, co-processing of heavy oil and coal at relatively middle conditions was conducted without the complicating influences of pressurized hydrogen or catalysts. The resulted demonstrate that there is a synergism during co-processing of petroleum and coal. This synergism enhances both the yield and quality of the liquid products. In general, liquids from co-processing the mixture contain a higher content of alkane/alkene, neutral aromatics, lower content of monophenols, and other oxygen containing compounds as compared to the liquids from coal alone. The liquid from the mixture also contains a higher content of naphthenic carbon and naphthenic rings/molecules than those from coal liquid. This suggests that the product from the mixture can be easily upgraded to a premium quality fuel.

Khan, M.R. [Texaco Research and Development, Beacon, NY (United States)

1995-12-31T23:59:59.000Z

38

Sales and Use Tax Exemption for Gas Processing Facilities  

Broader source: Energy.gov [DOE]

In North Dakota, materials purchased for building or expending gas processing facilities are exempt from sales and use taxes. Building materials, equipment, and other tangible property are eligible...

39

Waste receiving and processing facility module 1 auditable safetyanalysis  

SciTech Connect (OSTI)

The Waste Receiving and Processing Facility Module 1 Auditable Safety Analysis analyzes postulated accidents and determines controls to prevent the accidents or mitigate the consequences.

Bottenus, R.J.

1997-02-01T23:59:59.000Z

40

Appendix D: Facility Process Data and Appendix E: Equipment Calibratio...  

Broader source: Energy.gov (indexed) [DOE]

D: Facility Process Data and Appendix E: Equipment Calibration Data Sheets from Final Report: Particulate Emissions Testing, Unit 1, Potomac River Generating Station, Alexandria,...

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Pinellas Plant facts. [Products, processes, laboratory facilities  

SciTech Connect (OSTI)

This plant was built in 1956 in response to a need for the manufacture of neutron generators, a principal component in nuclear weapons. The neutron generators consist of a miniaturized linear ion accelerator assembled with the pulsed electrical power supplies required for its operation. The ion accelerator, or neutron tube, requires ultra clean, high vacuum technology: hermetic seals between glass, ceramic, glass-ceramic, and metal materials: plus high voltage generation and measurement technology. The existence of these capabilities at the Pinellas Plant has led directly to the assignment of the lightning arrester connector, specialty capacitor, vacuum switch, and crystal resonator. Active and reserve batteries and the radioisotopically-powered thermoelectric generator draw on the materials measurement and controls technologies which are required to ensure neutron generator life. A product development and production capability in alumina ceramics, cermet (electrical) feedthroughs, and glass ceramics has become a specialty of the plant; the laboratories monitor the materials and processes used by the plant's commercial suppliers of ferroelectric ceramics. In addition to the manufacturing facility, a production development capability is maintained at the Pinellas Plant.

Not Available

1986-09-01T23:59:59.000Z

42

Energy Efficient Pump Control for an Offshore Oil Processing System  

E-Print Network [OSTI]

Energy Efficient Pump Control for an Offshore Oil Processing System Zhenyu Yang Kian Soleiman Bo, Denmark. Abstract: The energy efficient control of a pump system for an offshore oil processing system is investigated. The seawater is lifted up by a pump system which consists of three identical centrifugal pumps

Yang, Zhenyu

43

Attrition and abrasion models for oil shale process modeling  

SciTech Connect (OSTI)

As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

Aldis, D.F.

1991-10-25T23:59:59.000Z

44

Uranium Processing Facility Site Readiness Subproject Completed...  

National Nuclear Security Administration (NNSA)

(NNSA) commitment to complete UPF by 2025 and move out of the aging 9212 building facilities it is currently using for a cost not to exceed 6.5 billion. UPF is the...

45

Montana Facilities Which Do Not Discharge Process Wastewater...  

Open Energy Info (EERE)

Which Do Not Discharge Process Wastewater (MDEQ Form 2E) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Montana Facilities Which Do Not Discharge Process...

46

Oil  

E-Print Network [OSTI]

Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

unknown authors

47

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

SciTech Connect (OSTI)

Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

2009-09-16T23:59:59.000Z

48

Hydrocal II process for superior naphthenic lube oils  

SciTech Connect (OSTI)

The HydroCall II Process is an advanced technology process to produce superior napthenic base lube oil stocks and specialty products. All products will be unlabeled and cover the full viscosity range of 30 to 4000 SUS at 100/sup 0/F. The process features high pressure, multiple stages, a multiple catalyst system and plurality of reactors and catalyst beds to achieve selective conversion of specific aromatic types contained in typical naphthenic lube oil feedstocks. Calumet's new HydroCall II oils will be available to the industry the latter part of 1987.

Rausch, M.K.; Love, G.A.; Tollefsen, G.E.

1987-01-01T23:59:59.000Z

49

Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Stewart Mehlman

2010-06-16T23:59:59.000Z

50

Results for the Independent Sampling and Analysis of Used Oil Drums at the Impact Services Facility in Oak Ridge, TN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) requested that Oak Ridge Associated Universities (ORAU), via the Oak Ridge Institute for Science and Education (ORISE) contract, perform independent sampling and analysis of used oils contained within eight 55 gallon drums stored at the former IMPACT Services facility, located at the East Tennessee Technology Park in Oak Ridge, Tennessee. These drums were originally delivered by LATA Sharp Remediation Services (LSRS) to IMPACT Services on January 11, 2011 as part of the Bldg. K-33 demolition project, and the drums plus contents should have been processed as non-hazardous non-radiological waste by IMPACT Services. LSRS received a certificate of destruction on August 29, 2012 (LSRS 2012a). However, IMPACT Services declared bankruptcy and abandoned the site later in 2012, and eight of the original eleven K-33 drums are currently stored at the facility. The content of these drums is the subject of this investigation. The original drum contents were sampled by LSRS in 2010 and analyzed for gross alpha, gross beta, and polychlorinated biphenyls (PCBs), using both compositing and grab sampling techniques. The objective of this 2013 sample and analysis effort was to duplicate, to the extent possible, the 2010 sampling and analysis event to support final disposition decisions. Part of that decision process includes either verifying or refuting the assertion that oils that are currently stored in drums at the IMPACT Services facility originated from Bldg. K-33 equipment.

none,

2013-04-25T23:59:59.000Z

51

Stabilization of Fast Pyrolysis Oil: Post Processing Final Report  

SciTech Connect (OSTI)

UOP LLC, a Honeywell Company, assembled a comprehensive team for a two-year project to demonstrate innovative methods for the stabilization of pyrolysis oil in accordance with DOE Funding Opportunity Announcement (FOA) DE-PS36-08GO98018, Biomass Fast Pyrolysis Oil (Bio-oil) Stabilization. In collaboration with NREL, PNNL, the USDA Agricultural Research Service (ARS), Pall Fuels and Chemicals, and Ensyn Corporation, UOP developed solutions to the key technical challenges outlined in the FOA. The UOP team proposed a multi-track technical approach for pyrolysis oil stabilization. Conceptually, methods for pyrolysis oil stabilization can be employed during one or both of two stages: (1) during the pyrolysis process (In Process); or (2) after condensation of the resulting vapor (Post-Process). Stabilization methods fall into two distinct classes: those that modify the chemical composition of the pyrolysis oil, making it less reactive; and those that remove destabilizing components from the pyrolysis oil. During the project, the team investigated methods from both classes that were suitable for application in each stage of the pyrolysis process. The post processing stabilization effort performed at PNNL is described in this report. The effort reported here was performed under a CRADA between PNNL and UOP, which was effective on March 13, 2009, for 2 years and was subsequently modified March 8, 2011, to extend the term to December 31, 2011.

Elliott, Douglas C.; Lee, Suh-Jane; Hart, Todd R.

2012-03-01T23:59:59.000Z

52

Waste Heat Recovery from Refrigeration in a Meat Processing Facility  

E-Print Network [OSTI]

A case study is reviewed on a heat recovery system installed in a meat processing facility to preheat water for the plant hot water supply. The system utilizes waste superheat from the facility's 1,350-ton ammonia refrigeration system. The heat...

Murphy, W. T.; Woods, B. E.; Gerdes, J. E.

1980-01-01T23:59:59.000Z

53

TA-55: LANL Plutonium-Processing Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemistry; nuclear materials separation, processing, and recovery; plutonium metallurgy, preparation, casting, fabrication, and recovery; machining and metallurgy...

54

Energy Efficiency Opportunities in California Food Processing Facilities  

E-Print Network [OSTI]

the Commission has conducted 10 targeted and plant-wide assessments in industrial facilities associated with the food processing industry. Two of these assessments were Energy Savings Assessments (ESA) funded under the DOE’s “Save Energy Now” Program. All...

Wong, T.; Kazama, D; Wang, J.

2008-01-01T23:59:59.000Z

55

Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities  

E-Print Network [OSTI]

Corrosion of metallic oilfield pipelines by microorganismsbiodegradation processes in the oilfield environment can beand is typical of ANS oilfields that collectively have

Duncan, Kathleen E.

2010-01-01T23:59:59.000Z

56

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network [OSTI]

organoarsenic compounds in oi.l shale process waters using aPresented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.

Fish, Richard H.

2013-01-01T23:59:59.000Z

57

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network [OSTI]

Presented at the 13th Oil Shale Symposium, Golden, CO, April~1ETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS Richard H.compounds in the seven oil shale process waters. These

Fish, Richard H.

2013-01-01T23:59:59.000Z

58

Plan and justification for a Proof-of-Concept oil shale facility. Final report  

SciTech Connect (OSTI)

The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

Not Available

1990-12-01T23:59:59.000Z

59

Plan and justification for a Proof-of-Concept oil shale facility  

SciTech Connect (OSTI)

The technology being evaluated is the Modified In-Situ (MIS) retorting process for raw shale oil production, combined with a Circulating Fluidized Bed Combustor (CFBC), for the recovery of energy from the mined shale. (VC)

Not Available

1990-12-01T23:59:59.000Z

60

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.

Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.

1984-01-03T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process for heating coal-oil slurries  

DOE Patents [OSTI]

Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.

Braunlin, Walter A. (Spring, TX); Gorski, Alan (Lovington, NM); Jaehnig, Leo J. (New Orleans, LA); Moskal, Clifford J. (Oklahoma City, OK); Naylor, Joseph D. (Houston, TX); Parimi, Krishnia (Allison Park, PA); Ward, John V. (Arvada, CO)

1984-01-03T23:59:59.000Z

62

Opportunities for Process Monitoring Techniques at Delayed Access Facilities  

SciTech Connect (OSTI)

Except for specific cases where the International Atomic Energy Agency (IAEA) maintains a continuous presence at a facility (such as the Japanese Rokkasho Reprocessing Plant), there is always a period of time or delay between the moment a State is notified or aware of an upcoming inspection, and the time the inspector actually enters the material balance area or facility. Termed by the authors as “delayed access,” this period of time between inspection notice and inspector entrance to a facility poses a concern. Delayed access also has the potential to reduce the effectiveness of measures applied as part of the Safeguards Approach for a facility (such as short-notice inspections). This report investigates the feasibility of using process monitoring to address safeguards challenges posed by delayed access at a subset of facility types.

Curtis, Michael M.; Gitau, Ernest TN; Johnson, Shirley J.; Schanfein, Mark; Toomey, Christopher

2013-09-20T23:59:59.000Z

63

Re-refining of Waste Oil Solvent Is Used in Treatment/Distillation Process  

E-Print Network [OSTI]

INDUSTRIAL APPLICATION. A combination solvent treatment/distillation process has been designed for re-refining industrial waste oil (such as equipment lubricants, metal-working oil, and process oil) and used automotive lubricants (engine oil, hydraulic oil, and gear oil) for reuse. WASTE ENERGY RECOVERY. Recycling of waste oil in the United States has the potential to save the energy equivalent of 7-12 million bbl of crude oil annually.1 WASTE OIL RECOVERY. Prior to 1960, a significant portion of the demand for automotive lubricating oil was met by re-relined used oil. At the time, 150 re-refineries produced 300 million gal of motor oil annually. Since 1960, however, the production of re-refined oil has steadily declined. In 1981, for example, out of about 1.2 billion gal of automobile lubricating oil and 1.6 billion gal of industrial lubricating oils purchased, 25 U.S. rerefineries

unknown authors

64

Comparison of the Acceptability of Various Oil Shale Processes  

SciTech Connect (OSTI)

While oil shale has the potential to provide a substantial fraction of our nation's liquid fuels for many decades, cost and environmental acceptability are significant issues to be addressed. Lawrence Livermore National Laboratory (LLNL) examined a variety of oil shale processes between the mid 1960s and the mid 1990s, starting with retorting of rubble chimneys created from nuclear explosions [1] and ending with in-situ retorting of deep, large volumes of oil shale [2]. In between, it examined modified-in-situ combustion retorting of rubble blocks created by conventional mining and blasting [3,4], in-situ retorting by radio-frequency energy [5], aboveground combustion retorting [6], and aboveground processing by hot-solids recycle (HRS) [7,8]. This paper reviews various types of processes in both generic and specific forms and outlines some of the tradeoffs for large-scale development activities. Particular attention is given to hot-recycled-solids processes that maximize yield and minimize oil shale residence time during processing and true in-situ processes that generate oil over several years that is more similar to natural petroleum.

Burnham, A K; McConaghy, J R

2006-03-11T23:59:59.000Z

65

The measurement of solubility and viscosity of oil/refrigerant mixtures; At high pressures and temperatures test facility and initial results for R-22/naphthenic oil mixtures  

SciTech Connect (OSTI)

The design and construction of a test facility for measuring the solubility and viscosity of lubricating oil/refrigerant mixtures at high pressures and temperatures are described. An auxiliary charging system, developed to provide precisely measured quantities of oil and refrigerant to the test facility, is also presented. Initial results for liquid mixtures of 10% to 40% R-22 (by mass) in a 150 SUS naphthenic oil are reported over the temperature range 70 {degrees} F (20{degrees}C) to 300 {degrees} F(150 {degrees}C). Good agreement with existing data from the open literature is obtained over the limited temperature range for which previously published data are available.

Van Gaalen, N.A.; Zoz, S.C.; Pate, M.B. (Dept. of Mechanical Engineering, Iowa State Univ., Ames, IA (US))

1990-01-01T23:59:59.000Z

66

Development of an Algal Oil Separation Process  

E-Print Network [OSTI]

-Texas A&M University, personnel of Texas Agrilife Research and its Algal Research facility, Pecos, Texas, for providing us with algal cultures for these experiments. Finally I would like to thank the National Alliance of Advance Biofuels and Bioproducts... piston driven by pressurized hydraulic fluid was used to force the material through the nozzle creating a high velocity jet. This liquid jet was then forced through a homogenization cell where high intra-material shear forces were generated...

Samarasinghe, Nalin

2012-10-19T23:59:59.000Z

67

Combination process for upgrading residual oils  

SciTech Connect (OSTI)

This patent describes a method for upgrading high boiling residual portions of crude oils comprising metal contaminants, porphyrins, asphaltenes and high molecular weight multi-ring hydrocarbon material. It comprises: charging a high boiling residual portion of crude oil admixed with diluent in contact with suspended upflowing substantially inert fluidizable solids particulate material at an elevated thermal visbreaking temperature in a riser contact zone for a time sufficient to recover therefrom a vaporous hydrocarbon product higher boiling than gasoline partially decarbonized and demetallized to a lower contaminating metals level, quenching the vaporous product of thermal visbreaking below its dew point after separation from solids, charging quenched thermally modified high boiling hydrocarbon product with a crystalline zeolite cracking catalyst under cracking conditions for a hydrocarbon residence time in a riser cracking zone; recovering a hydrocarbon conversion product; separating a combined C{sub 4} minus wet gas product stream of the visbreaking and zeolite catalyst cracking operating to recover a C{sub 3}-C{sub 4} rich fraction separately from a C{sub 2} minus dry gas product fraction, and regenerating the crystalline zeolite contcontaining catalyst.

Busch, L.E.; Walters, P.W.; Zandona, O.

1990-01-16T23:59:59.000Z

68

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect (OSTI)

The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied to facility modifications or new designs • Modifications of the design that could mitigate a potential safeguards issue or facilitate a more efficient application of the safeguards approach • Possible innovative ideas for more efficient application of safeguards • The potential for changes in elements of the safeguard approach that may be required by IAEA as a result of facility design features and characteristics • Other potential concerns These issues will then be presented to the IAEA and the state regulator to be resolved in a timely manner, ensuring that the planned safeguards approach is acceptable and compatible with the facility design. The proposed approach should be validated by application to suitable facilities to assess its utility, comprehensiveness, and cost-effectiveness. The approach and example application should also be reviewed by industry to confirm the conclusions reached in the DOE review.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

2011-10-10T23:59:59.000Z

69

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

1992-01-01T23:59:59.000Z

70

Low-rank coal oil agglomeration product and process  

DOE Patents [OSTI]

A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

1992-11-10T23:59:59.000Z

71

Facility effluent monitoring plan for the Waste Receiving and Processing Facility Module 1  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the US Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal state, and local requirements. This facility effluent monitoring plan shall ensure lonq-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years.

Lewis, C.J.

1995-10-01T23:59:59.000Z

72

Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery  

SciTech Connect (OSTI)

The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

2010-06-21T23:59:59.000Z

73

Development of miscella refining process for cottonseed oil-isopropyl alcohol system: laboratory-scale evaluations  

E-Print Network [OSTI]

A technologically feasible cottonseed oil-isopropyl alcohol (IPA) miscella refining process was developed to produce high quality cottonseed oil. Individual steps necessary to refine cottonseed oil-IPA miscella were determined and improved...

Chau, Chi-Fai

1994-01-01T23:59:59.000Z

74

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network [OSTI]

A. Robb, and T. J. Spedding. Minor Elements in Oil Shale andOil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

Farrier, D.S.

2011-01-01T23:59:59.000Z

75

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network [OSTI]

W. A. Robb, and T. J. Spedding. Minor Elements in Oil Shaleand Oil Shale Products. LERC Rept. of Invest. 77-1, 1977.Significant to In Situ Oil Shale Processing. Quart. Colo.

Farrier, D.S.

2011-01-01T23:59:59.000Z

76

Oil shale technology and evironmental aspects  

SciTech Connect (OSTI)

Oil shale processes are a combination of mining, retorting, and upgrading facilities. This work outlines the processing steps and some design considerations required in an oil shale facility. A brief overview of above ground and in situ retorts is presented; 6 retorts are described. The development aspects which the oil shale industry is addressing to protect the environment are presented.

Scinta, J.

1982-01-01T23:59:59.000Z

77

OCCIDENTAL VERTICAL MODIFIED IN SITU PROCESS FOR THE RECOVERY OF OIL FROM OIL SHALE. PHASE II  

SciTech Connect (OSTI)

The progress presented in this report covers the period June 1, 1980 through August 31, 1980 under the work scope for.Phase II of the DOE/Occidental Oil Shale, Inc. (OOSI) Cooperative Agreement. The major activities at OOSI 1s Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7, 8 and 8x; completing Mini-Retort (MR) construction; continuing surface facility construction; tracer testing the MR 1 s; conducting Retorts 7 & 8 related Rock Fragmentation tests; setting up and debugging the Sandia B-61 trailer; and preparing the Phase II instrumentation plan.

Nelson, Reid M.

1980-09-01T23:59:59.000Z

78

EIS-0082: Defense Waste Processing Facility, Savannah River Plant  

Broader source: Energy.gov [DOE]

The Office of Defense Waste and Byproducts Management developed this EIS to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility at the SRP site.

79

Technical evaluation of proposed Ukrainian Central Radioactive Waste Processing Facility  

SciTech Connect (OSTI)

This technical report is a comprehensive evaluation of the proposal by the Ukrainian State Committee on Nuclear Power Utilization to create a central facility for radioactive waste (not spent fuel) processing. The central facility is intended to process liquid and solid radioactive wastes generated from all of the Ukrainian nuclear power plants and the waste generated as a result of Chernobyl 1, 2 and 3 decommissioning efforts. In addition, this report provides general information on the quantity and total activity of radioactive waste in the 30-km Zone and the Sarcophagus from the Chernobyl accident. Processing options are described that may ultimately be used in the long-term disposal of selected 30-km Zone and Sarcophagus wastes. A detailed report on the issues concerning the construction of a Ukrainian Central Radioactive Waste Processing Facility (CRWPF) from the Ukrainian Scientific Research and Design institute for Industrial Technology was obtained and incorporated into this report. This report outlines various processing options, their associated costs and construction schedules, which can be applied to solving the operating and decommissioning radioactive waste management problems in Ukraine. The costs and schedules are best estimates based upon the most current US industry practice and vendor information. This report focuses primarily on the handling and processing of what is defined in the US as low-level radioactive wastes.

Gates, R.; Glukhov, A.; Markowski, F.

1996-06-01T23:59:59.000Z

80

Facility Effluent Monitoring Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the U.S. Department of Energy in Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee public safety, or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan ensures long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and must be updated, as a minimum, every 3 years.

DAVIS, W.E.

2000-03-08T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas  

E-Print Network [OSTI]

Plant-wide Control for Better De-oiling of Produced Water in Offshore Oil & Gas Production Zhenyu (PWT) in offshore oil & gas production processes. Different from most existing facility- or material offshore and the oil industry expects this share to grow continuously in the future. In last decade, oil

Yang, Zhenyu

82

Oil shale mining cost analysis. Volume I. Surface retorting process. Final report  

SciTech Connect (OSTI)

An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

1981-01-01T23:59:59.000Z

83

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery  

E-Print Network [OSTI]

Coarse-scale Modeling of Flow in Gas-injection Processes for Enhanced Oil Recovery James V. Lambers of gas-injection processes for enhanced oil recovery may exhibit geometrically complex features

Lambers, James

84

Design characteristics for facilities which process hazardous particulate  

SciTech Connect (OSTI)

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

85

Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Eighth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section.

NONE

1995-03-01T23:59:59.000Z

86

The Role of the Flexicoking Process in Heavy Oil Processing  

E-Print Network [OSTI]

is transferred by crr FLUID COKING process, which in turn built on the culating coke from the exothermic reaction t~king fluid solids experience accumulated in cat crack- i place in the gasifier to the endothermic reaftion ing since the second world war... liquid volume basis. Virtually all of the energy input to the process comes from the exothermic reaction taking place in the gasification of the coke. Thus, oxidation of coke supplies the energy for con version to 1ight products, and no premium fuel...

Taylor, R. I.

1980-01-01T23:59:59.000Z

87

Accident Fault Trees for Defense Waste Processing Facility  

SciTech Connect (OSTI)

The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

Sarrack, A.G.

1999-06-22T23:59:59.000Z

88

The Sodium Process Facility at Argonne National Laboratory-West  

SciTech Connect (OSTI)

Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

1998-07-01T23:59:59.000Z

89

Development of the Write Process for Pipeline-Ready Heavy Oil  

SciTech Connect (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

90

200 Area effluent treatment facility process control plan 98-02  

SciTech Connect (OSTI)

This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP).

Le, E.Q.

1998-01-30T23:59:59.000Z

91

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas) Engineering  

E-Print Network [OSTI]

MEMORIAL UNIVERSITY OF NEWFOUNDLAND Three-year Term Appointment in Process (Oil and Gas with oil and gas specialization at the assistant- or associate professor-level, commencing April 12, 2010 in the area of oil and gas, and process engineering, to supervise graduate students, to participate in other

George, Glyn

92

Economic impacts of oil spills: Spill unit costs for tankers, pipelines, refineries, and offshore facilities. [Task 1, Final report  

SciTech Connect (OSTI)

The impacts of oil spills -- ranging from the large, widely publicized Exxon Valdez tanker incident to smaller pipeline and refinery spills -- have been costly to both the oil industry and the public. For example, the estimated costs to Exxon of the Valdez tanker spill are on the order of $4 billion, including $2.8 billion (in 1993 dollars) for direct cleanup costs and $1.125 billion (in 1992 dollars) for settlement of damages claims caused by the spill. Application of contingent valuation costs and civil lawsuits pending in the State of Alaska could raise these costs appreciably. Even the costs of the much smaller 1991 oil spill at Texaco`s refinery near Anacortes, Washington led to costs of $8 to 9 million. As a result, inexpensive waming, response and remediation technologies could lower oil spin costs, helping both the oil industry, the associated marine industries, and the environment. One means for reducing the impact and costs of oil spills is to undertake research and development on key aspects of the oil spill prevention, warming, and response and remediation systems. To target these funds to their best use, it is important to have sound data on the nature and size of spills, their likely occurrence and their unit costs. This information could then allow scarce R&D dollars to be spent on areas and activities having the largest impact. This report is intended to provide the ``unit cost`` portion of this crucial information. The report examines the three key components of the US oil supply system, namely, tankers and barges; pipelines and refineries; and offshore production facilities. The specific purpose of the study was to establish the unit costs of oil spills. By manipulating this key information into a larger matrix that includes the size and frequency of occurrence of oil spills, it will be possible` to estimate the likely future impacts, costs, and sources of oil spills.

Not Available

1993-10-15T23:59:59.000Z

93

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-01-01T23:59:59.000Z

94

Materials evaluation programs at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided.

Gee, J.T.; Iverson, D.C.; Bickford, D.F.

1992-12-31T23:59:59.000Z

95

Vapour extraction (VAPEX) process for recovery of heavy oil and bitumen  

SciTech Connect (OSTI)

For over 90% of the vast resources of bitumen and heavy oil in Canada, in situ recovery processes have to be developed to produce and utilize them efficiently and economically. Thermal recovery processes using steam, although effective for thick reservoirs with good quality sands, are increasingly proving to be uneconomical, particularly for thin, shaley, or bottom water reservoirs. The inefficiency is caused by large heat losses, high water requirement, extensive surface facilities, and adverse environmental impact. To overcome these problems, a new non-thermal vapour extraction (VAPEX) process has been developed. The process is closely related to the Steam-Assisted Gravity Drainage (SAGD) concept. However, in the VAPEX process the steam chamber is replaced with a chamber containing light hydrocarbon vapours close to its dew point at the reservoir pressure. If the pressure used is close to the saturation pressure of hydrocarbons, deasphalting may occur in the reservoir causing a substantial reduction in viscosity and heavy metal contents. Experiments conducted in a Hele-Shaw cell and in a 2D physical scaled model using Lloydminster, Cold Lake, and Peace River heavy oil/bitumen and ethane, propane, and butane as solvents demonstrated that this process is very promising technically as well as economically. An active aquifer underlying the bitumen zone made the reservoir more valuable because of spreading of the solvent vapour directly underneath the formation which increased the vapour-bitumen contact extensively. The investigation was extended from a dual horizontal continuous injection/production well strategy described above to a single horizontal well cyclic process for the Cold Lake reservoir in a 3D physical scaled model. The tests illustrated that ethane was an effective solvent in producing Cold Lake bitumen and that the cyclic VAPEX process has the potential to be a breakthrough recovery technology.

Jha, K.N. [CANMET, Ottawa, Ontario (Canada); Butler, R.M. [Univ. of Calgary, Alberta (Canada); Lim, G.B. [Imperial Oil Resources Limited, Calgary, Alberta (Canada)] [and others

1995-12-31T23:59:59.000Z

96

Compilation and Presentation of Existing Data on Oil and Gas Leasing Development in a Manner Useful to the NEPA Process  

SciTech Connect (OSTI)

In recognition of our nation's increasing energy needs, the George W. Bush Administration's National Energy Policy Development Group report (May 2001) suggested that one way to increase domestic on-shore production of oil and gas is to increase access to undiscovered resources on federal lands. Also recognized is the need to protect and conserve natural resources, which often are located on and around federal lands. The National Environmental Policy Act (NEPA) was designed to create and maintain conditions under which man and nature can exist in productive harmony. NEPA requires that federal agencies prepare an environmental impact statement (EIS) prior to the approval of any development activities. The NEPA scope is broad, with the process applicable to many situations from the building of highways, barge facilities and water outtake facilities, bridges, and watersheds to other less significant projects. The process often involves cooperation among multiple federal agencies, industry, scientists and consultants, and the surrounding community. The objective of the project, titled Compilation and Presentation of Existing Data on Oil and Gas Leasing and Development in a Manner Useful to the NEPA Process, is to facilitate faster and more comprehensive access to current oil and gas data by land management agencies and operators. This will enable key stakeholders in the NEPA process to make decisions that support access to federal resources while at the same time achieving a legitimate balance between environmental protection and appropriate levels of development.

Amy Childers; Dave Cornue

2008-11-30T23:59:59.000Z

97

Environmental assessment for the Strategic Petroleum Reserve Big Hill facility storage of commercial crude oil project, Jefferson County, Texas  

SciTech Connect (OSTI)

The Big Hill SPR facility located in Jefferson County, Texas has been a permitted operating crude oil storage site since 1986 with benign environmental impacts. However, Congress has not authorized crude oil purchases for the SPR since 1990, and six storage caverns at Big Hill are underutilized with 70 million barrels of available storage capacity. On February 17, 1999, the Secretary of Energy offered the 70 million barrels of available storage at Big Hill for commercial use. Interested commercial users would enter into storage contracts with DOE, and DOE would receive crude oil in lieu of dollars as rental fees. The site could potentially began to receive commercial oil in May 1999. This Environmental Assessment identified environmental changes that potentially would affect water usage, power usage, and air emissions. However, as the assessment indicates, changes would not occur to a major degree affecting the environment and no long-term short-term, cumulative or irreversible impacts have been identified.

NONE

1999-03-01T23:59:59.000Z

98

Effects of scale-up on oil and gas yields in a solid-recycle bed oil shale retorting process  

SciTech Connect (OSTI)

Fluidized bed pyrolysis of oil shale in a non-hydrogen atmosphere has been shown to significantly increase oil yield in laboratory-scale reactors compared to the Fischer assay by many workers. The enhancement in oil yield by this relatively simple and efficient thermal technique has led to the development of several oil shale retorting processes based on fluidized bed and related technologies over the past fifteen years. Since 1986, the Center for Applied Energy Research (CAER) has been developing one such process, KENTORT II, which is mainly tailored for the Devonian oil shales that occur in the eastern U.S. The process contains three main fluidized bed zones to pyrolyze, gasify, and combust the oil shale. A fourth fluidized bed zone serves to cool the spent shale prior to exiting the system. The autothermal process utilizes processed shale recirculation to transfer heat from the combustion to the gasification and pyrolysis zones. The CAER is currently testing the KENTORT II process in a 22.7-kg/hr process-development unit (PDU).

Carter, S.D.; Taulbee, D.N.; Vego, A. [Univ. of Kentucky, Lexington, KY (United States)

1994-12-31T23:59:59.000Z

99

Waste receiving and processing facility module 1, detailed design report  

SciTech Connect (OSTI)

WRAP 1 baseline documents which guided the technical development of the Title design included: (a) A/E Statement of Work (SOW) Revision 4C: This DOE-RL contractual document specified the workscope, deliverables, schedule, method of performance and reference criteria for the Title design preparation. (b) Functional Design Criteria (FDC) Revision 1: This DOE-RL technical criteria document specified the overall operational criteria for the facility. The document was a Revision 0 at the beginning of the design and advanced to Revision 1 during the tenure of the Title design. (c) Supplemental Design Requirements Document (SDRD) Revision 3: This baseline criteria document prepared by WHC for DOE-RL augments the FDC by providing further definition of the process, operational safety, and facility requirements to the A/E for guidance in preparing the design. The document was at a very preliminary stage at the onset of Title design and was revised in concert with the results of the engineering studies that were performed to resolve the numerous technical issues that the project faced when Title I was initiated, as well as, by requirements established during the course of the Title II design.

Not Available

1993-10-01T23:59:59.000Z

100

(HC){sub 3} process - An economical technology for upgrading bitumen and heavy oil  

SciTech Connect (OSTI)

This paper discusses the development of the (HC){sub 3} Process. (HC){sub 3} is a high conversion hydro-cracking process with integrated hydro-treating that has been developed by Alberta Department of Energy, Oil Sands and Research Division. The (HC){sub 3} Process has been developed and demonstrated to achieve conversion in excess of 95% at moderate pressures and relatively high temperature in a very cost effective manner. This has been achieved with the aid of a colloidal catalyst that selectively converts the asphaltenes, and a proprietary recycle methodology that significantly reduces the catalyst consumption. Cost and economic studies indicate that capital and operating costs of the (HC){sub 3} upgrading scheme are lower than those of other high conversion schemes and are comparable to those of low and moderate conversion upgrading schemes. This cost advantage combined with the high yield gives the (HC){sub 3} a significant economic advantage over other upgrading schemes. The (HC){sub 3} process shows great promise at achieving high conversion efficiently and economically. The process is ready for commercial testing. Discussions are underway with regards to testing the process in a commercial facility designed to process nominally 5000 barrels per day (BPD).

Padamsey, R.; Bailey, R.T.; Cyr, T.J. [Alberta Dept. of Energy, Calgary (Canada)] [and others

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Building success : the role of the state in the cultural facility development process  

E-Print Network [OSTI]

This thesis investigates the question of what is the current role of the state in the cultural facility development process, and, in light of facility-related warnings that have been made over the years, what role should ...

Choy, Carolyn (Carolyn Anne)

2007-01-01T23:59:59.000Z

102

Characterization of emissions from scrap metal processing facilities  

SciTech Connect (OSTI)

To prepare its members for the permitting requirements under Title 5 of the Clean Act, the Institute of Scrap Recycling Industries (ISRI) commissioned a project to develop a Title 5 applicability workbook. A critical element in the preparation of the workbook was the characterization of emissions from processes and equipment typically found in the scrap metal processing industry. This paper describes the approach to the preparation of the workbook with emphasis on characterization of specific emission units which are deemed important for Title 5. The paper describes the methodology employed for acquiring existing emissions information from equipment manufacturers, vendors, and scrap recycling facility operators. The data were aggregated and analyzed to develop a variety of emission tabulations for pollutants requiring analysis under Title 5. The project also involved a survey of numerous state and local air pollution agencies to determine regulatory requirements regarding critical issues in the scrap processing industry. The paper describes a methodology for determining Title 5 applicability with emphasis on the use of emission tabulations and example worksheets. Emissions data are presented for metal shredders to demonstrate the methodology and procedures developed during the project. Finally, the paper discusses the structure of the Title 5 applicability workbook and its dissemination to a major industry trade association.

Norco, J.E. [Versar, Inc., Lombard, IL (United States); Tyler, T. [Inst. of Scrap Recycling Industries, Inc., Washington, DC (United States)

1997-12-31T23:59:59.000Z

103

A survey of decontamination processes applicable to DOE nuclear facilities  

SciTech Connect (OSTI)

The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

1997-05-01T23:59:59.000Z

104

Liquid fuels from co-processing coal with bitumen or heavy oil: A review  

SciTech Connect (OSTI)

Coal, bitumen and heavy oil (and various pitches, resids, etc.) are similar in that they require more substantial treatment than does conventional light oil to yield useful liquid fuels. The authors provide a brief and selective review of technologies for liquefying coal, followed by consideration of co-processing coal with bitumen/heavy oil. Such co-processing may be considered as use of bitumen/heavy oil as a solvent and/or hydrogen donor in liquefaction of coal, or as the use of coal to aid upgrading bitumen/heavy oil.

Moschopedis, S.E.; Hepler, L.G.

1987-01-01T23:59:59.000Z

105

An active oil spill detection digital processing system  

E-Print Network [OSTI]

scattered power collected receiver area power transmitted Fresnel transmission coefficient for vertical polarization for propagation from medium 1 (air) to medium 3 (water) Fresnel transmission coefficient for propagation from medium 3 to medium 1... without oil fresnel transmission coefficients with super- script denoting polarization and subscripts denoting the medium (l-air, 2-oil, 3-water) effective extinction coefficient (a function of oil type and wavelength) 17 t = oil thickness From...

Dennard, Robert Marion

1976-01-01T23:59:59.000Z

106

IMPACT OF THE SMALL COLUMN ION EXCHANGE PROCESS ON THE DEFENSE WASTE PROCESSING FACILITY - 12112  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is investigating the deployment of a parallel technology to the Salt Waste Processing Facility (SWPF, presently under construction) to accelerate high activity salt waste processing. The proposed technology combines large waste tank strikes of monosodium titanate (MST) to sorb strontium and actinides with two ion exchange columns packed with crystalline silicotitanate (CST) resin to sorb cesium. The new process was designated Small Column Ion Exchange (SCIX), since the ion exchange columns were sized to fit within a waste storage tank riser. Loaded resins are to be combined with high activity sludge waste and fed to the Defense Waste Processing Facility (DWPF) for incorporation into the current glass waste form. Decontaminated salt solution produced by SCIX will be fed to the SRS Saltstone Facility for on-site immobilization as a grout waste form. Determining the potential impact of SCIX resins on DWPF processing was the basis for this study. Accelerated salt waste treatment is projected to produce a significant savings in the overall life cycle cost of waste treatment at SRS.

Koopman, D.; Lambert, D.; Fox, K.; Stone, M.

2011-11-07T23:59:59.000Z

107

Process Considerations in the Biodesulfurization of Crude Oil  

SciTech Connect (OSTI)

Biodesulfurization offers an attractive alternative to conventional hydrodesulfurization due to the mild operating conditions and reaction specificity afforded by the biocatalyst. The enzymatic pathway existing in Rhodococcus has been demonstrated to oxidatively desulfhrize the organic sulfbr occurring in dibenzothiophene while leaving the hydrocarbon intact. In order for biodesulfiization to realize commercial success, a variety of process considerations must be addressed including reaction rate, emulsion formation and breakage, biocatalyst recovery, and both gas and liquid mass transport. This study compares batch stirred to electro-spray bioreactors in the biodesulfurization of both model organics and actual crudes in terms of their operating costs, ability to make and break emulsions, ability to effect efficient reaction rates and enhance mass transport. Further, sulfim speciation in crude oil is assessed and compared to the sulfur specificity of currently available biocatalyst.

Borole, A.P.; Kaufman, E.N.

1998-10-20T23:59:59.000Z

108

Defense Waste Processing Facility wasteform and canister description: Revision 2  

SciTech Connect (OSTI)

This document describes the reference wasteform and canister for the Defense Waste Processing Facility (DWPF). The principal changes include revised feed and glass product compositions, an estimate of glass product characteristics as a function of time after the start of vitrification, and additional data on glass leaching performance. The feed and glass product composition data are identical to that described in the DWPF Basic Data Report, Revision 90/91. The DWPF facility is located at the Savannah River Plant in Aiken, SC, and it is scheduled for construction completion during December 1989. The wasteform is borosilicate glass containing approximately 28 wt % sludge oxides, with the balance consisting of glass-forming chemicals, primarily glass frit. Borosilicate glass was chosen because of its stability toward reaction with potential repository groundwaters, its relatively high ability to incorporate nuclides found in the sludge into the solid matrix, and its reasonably low melting temperature. The glass frit contains approximately 71% SiO/sub 2/, 12% B/sub 2/O/sub 3/, and 10% Na/sub 2/O. Tests to quantify the stability of DWPF waste glass have been performed under a wide variety of conditions, including simulations of potential repository environments. Based on these tests, DWPF waste glass should easily meet repository criteria. The canister is filled with about 3700 lb of glass which occupies 85% of the free canister volume. The filled canister will generate approximately 690 watts when filled with oxides from 5-year-old sludge and precipitate from 15-year-old supernate. The radionuclide activity of the canister is about 233,000 curies, with an estimated radiation level of 5600 rad/hour at the canister surface. 14 figs., 28 tabs.

Baxter, R.G.

1988-12-01T23:59:59.000Z

109

Voluntary Protection Program Onsite Review, Salt Waste Processing Facility Construction Project- February 2013  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Salt Waste Processing Facility Construction Project is continuing to perform at a level deserving DOE-VPP Star recognition.

110

Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE  

E-Print Network [OSTI]

is providing Tiger Bullets to two major exploration and production companies, one in the Fayetteville ShaleBUSINESS Oil drilling to use LSU process Show Caption BILL FEIG/THE ADVOCATE Advocate staff process to make wood-plastic composites has found a new application in the oil and gas business

111

Eastern oil shale research involving the generation of retorted and combusted oil shale solid waste, shale oil collection, and process stream sampling and characterization: Final report  

SciTech Connect (OSTI)

Approximately 518 tons of New Albany oil shale were obtained from the McRae quarry in Clark County, Indiana and shipped to Golden, CO. A portion of the material was processed through a TOSCO II pilot plant retort. About 273 tons of crushed raw shale, 136 tons of retorted shale, 1500 gallons of shale oil, and 10 drums of retort water were shipped to US Department of Energy, Laramie, WY. Process conditions were documented, process streams were sampled and subjected to chemical analysis, and material balance calculations were made. 6 refs., 12 figs., 14 tabs.

Not Available

1989-02-01T23:59:59.000Z

112

Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems  

SciTech Connect (OSTI)

This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

2009-05-31T23:59:59.000Z

113

Process for recovering uranium from waste hydrocarbon oils containing the same. [Uranium contaminated lubricating oils from gaseous diffusion compressors  

DOE Patents [OSTI]

The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.

Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.

1982-06-29T23:59:59.000Z

114

Plantwide Energy Assessment of a Sugarcane Farming and Processing Facility  

SciTech Connect (OSTI)

A plantwide energy assessment was performed at Hawaiian Commercial & Sugar Co., an integrated sugarcane farming and processing facility on the island of Maui in the State of Hawaii. There were four main tasks performed for the plantwide energy assessment: 1) pump energy assessment in both field and factory operations, 2) steam generation assessment in the power production operations, 3) steam distribution assessment in the sugar manufacturing operation, and 4) electric power distribution assessment of the company system grid. The energy savings identified in each of these tasks were summarized in terms of fuel savings, electricity savings, or opportunity revenue that potentially exists mostly from increased electric power sales to the local electric utility. The results of this investigation revealed eight energy saving projects that can be implemented at HC&S. These eight projects were determined to have potential for $1.5 million in annual fuel savings or 22,337 MWh equivalent annual electricity savings. Most of the savings were derived from pump efficiency improvements and steam efficiency improvements both in generation and distribution. If all the energy saving projects were implemented and the energy savings were realized as less fuel consumed, there would be corresponding reductions in regulated air pollutants and carbon dioxide emissions from supplemental coal fuel. As HC&S is already a significant user of renewable biomass fuel for its operations, the projected reductions in air pollutants and emissions will not be as great compared to using only coal fuel for example. A classification of implementation priority into operations was performed for the identified energy saving projects based on payback period and ease of implementation.

Jakeway, L.A.; Turn, S.Q.; Keffer, V.I.; Kinoshita, C.M.

2006-02-27T23:59:59.000Z

115

Capturing Process Knowledge for Facility Deactivation and Decommissioning  

Broader source: Energy.gov [DOE]

The Office of Environmental Management (EM) is responsible for the disposition of a vast number of facilities at numerous sites around the country which have been declared excess to current mission...

116

Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis  

SciTech Connect (OSTI)

A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

Thorsness, C. B., LLNL

1997-01-21T23:59:59.000Z

117

Supporting technology for enhanced oil recovery for thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth fifth, sixth, seventh, eighth, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-90/1/SP, DOE/BC-90/1/SP) (DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP)] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, October 1991, February 1993, and March 1995 respectively.

Reid, T.B.; Bolivar, J.

1997-12-01T23:59:59.000Z

118

Gas-assisted gravity drainage (GAGD) process for improved oil recovery  

DOE Patents [OSTI]

A rapid and inexpensive process for increasing the amount of hydrocarbons (e.g., oil) produced and the rate of production from subterranean hydrocarbon-bearing reservoirs by displacing oil downwards within the oil reservoir and into an oil recovery apparatus is disclosed. The process is referred to as "gas-assisted gravity drainage" and comprises the steps of placing one or more horizontal producer wells near the bottom of a payzone (i.e., rock in which oil and gas are found in exploitable quantities) of a subterranean hydrocarbon-bearing reservoir and injecting a fluid displacer (e.g., CO.sub.2) through one or more vertical wells or horizontal wells. Pre-existing vertical wells may be used to inject the fluid displacer into the reservoir. As the fluid displacer is injected into the top portion of the reservoir, it forms a gas zone, which displaces oil and water downward towards the horizontal producer well(s).

Rao, Dandina N. (Baton Rouge, LA)

2012-07-10T23:59:59.000Z

119

SOLVENT-BASED ENHANCED OIL RECOVERY PROCESSES TO DEVELOP WEST SAK ALASKA NORTH SLOPE HEAVY OIL RESOURCES  

SciTech Connect (OSTI)

A one-year research program is conducted to evaluate the feasibility of applying solvent-based enhanced oil recovery processes to develop West Sak and Ugnu heavy oil resources found on the Alaska North Slope (ANS). The project objective is to conduct research to develop technology to produce and market the 300-3000 cp oil in the West Sak and Ugnu sands. During the first phase of the research, background information was collected, and experimental and numerical studies of vapor extraction process (VAPEX) in West Sak and Ugnu are conducted. The experimental study is designed to foster understanding of the processes governing vapor chamber formation and growth, and to optimize oil recovery. A specially designed core-holder and a computed tomography (CT) scanner was used to measure the in-situ distribution of phases. Numerical simulation study of VAPEX was initiated during the first year. The numerical work completed during this period includes setting up a numerical model and using the analog data to simulate lab experiments of the VAPEX process. The goal was to understand the mechanisms governing the VAPEX process. Additional work is recommended to expand the VAPEX numerical study using actual field data obtained from Alaska North Slope.

David O. Ogbe; Tao Zhu

2004-01-01T23:59:59.000Z

120

Process analysis and optimization of biodiesel production from vegetable oils  

E-Print Network [OSTI]

in Table (2.2) (OTM, 1999). Crude oils are composed of 80 to 90% hydrogen saturated aliphatic alkanes (paraffins) and cycloalkanes (naphthenes). Aromatic hydrocarbons and alkenes (olefins) comprise 10- 20% and 1%, respectively, of crude oil composition....2 Hydrocarbon Contents in Crude Oil (ATSDR, 1995; OTM, 1999) HYDROCARBONS GENERAL FORMULA CHAIN TYPE STATE (Room temp) EXAMPLES Paraffins (Aliphatic) CnH2n+2 (n:1 to20) Linear or Branched Gas or Liquid Methane, Propane Hexane Aromatic C6H5-Y...

Myint, Lay L.

2009-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Overview of Fiscal Year 2002 Research and Development for Savannah River Site's Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Savannah River Site (SRS) high-level waste program is responsible for storage, treatment, and immobilization of high-level waste for disposal. The Salt Processing Program (SPP) is the salt (soluble) waste treatment portion of the SRS high-level waste effort. The overall SPP encompasses the selection, design, construction and operation of treatment technologies to prepare the salt waste feed material for the site's grout facility (Saltstone) and vitrification facility (Defense Waste Processing Facility). Major constituents that must be removed from the salt waste and sent as feed to Defense Waste Processing Facility include actinides, strontium, cesium, and entrained sludge. In fiscal year 2002 (FY02), research and development (R&D) on the actinide and strontium removal and Caustic-Side Solvent Extraction (CSSX) processes transitioned from technology development for baseline process selection to providing input for conceptual design of the Salt Waste Processing Facility. The SPP R&D focused on advancing the technical maturity, risk reduction, engineering development, and design support for DOE's engineering, procurement, and construction (EPC) contractors for the Salt Waste Processing Facility. Thus, R&D in FY02 addressed the areas of actual waste performance, process chemistry, engineering tests of equipment, and chemical and physical properties relevant to safety. All of the testing, studies, and reports were summarized and provided to the DOE to support the Salt Waste Processing Facility, which began conceptual design in September 2002.

H. D. Harmon, R. Leugemors, PNNL; S. Fink, M. Thompson, D. Walker, WSRC; P. Suggs, W. D. Clark, Jr

2003-02-26T23:59:59.000Z

122

An hybrid ensemble based approach for process parameter estimation in offshore oil platforms  

E-Print Network [OSTI]

An hybrid ensemble based approach for process parameter estimation in offshore oil platforms Piero in offshore oil platforms. In particular, the difference between the theoretical value of the valve flow on real measurements performed on a number of similar offshore choke valves. 1. Introduction In this paper

Paris-Sud XI, Université de

123

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

1 Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process. Larribau 64018 Pau Cedex, France Oil and Gas Science and Technology 2012, 67 (6), 1029-1039, doi:10 pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated

Paris-Sud XI, Université de

124

Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste  

SciTech Connect (OSTI)

This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing.

Brown, C M

1980-07-01T23:59:59.000Z

125

Design and construction of the defense waste processing facility project at the Savannah River Plant  

SciTech Connect (OSTI)

The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility.

Baxter, R G

1986-01-01T23:59:59.000Z

126

Facility Siting and Layout Optimization Based on Process Safety  

E-Print Network [OSTI]

) that identifies potential layouts by minimizing overall costs. This approach gives the coordinates of each facility in a continuous plane, and estimates for the total length of pipes, the land area, and the selection of safety devices. Finally, the 3D...

Jung, Seungho

2012-02-14T23:59:59.000Z

127

Slow Radio-Frequency Processing of Large Oil Shale Volumes to Produce Petroleum-Like Shale Oil  

SciTech Connect (OSTI)

A process is proposed to convert oil shale by radio frequency heating over a period of months to years to create a product similar to natural petroleum. Electrodes would be placed in drill holes, either vertical or horizontal, and a radio frequency chosen so that the penetration depth of the radio waves is of the order of tens to hundreds of meters. A combination of excess volume production and overburden compaction drives the oil and gas from the shale into the drill holes, where it is pumped to the surface. Electrical energy for the process could be provided initially by excess regional capacity, especially off-peak power, which would generate {approx}3 x 10{sup 5} bbl/day of synthetic crude oil, depending on shale grade. The electricity cost, using conservative efficiency assumptions, is $4.70 to $6.30/bbl, depending on grade and heating rate. At steady state, co-produced gas can generate more than half the electric power needed for the process, with the fraction depending on oil shale grade. This would increase production to 7.3 x 10{sup 5} bbl/day for 104 l/Mg shale and 1.6 x 10{sup 6} bbl/day for 146 l/Mg shale using a combination of off-peak power and power from co-produced gas.

Burnham, A K

2003-08-20T23:59:59.000Z

128

Facility design philosophy: Tank Waste Remediation System Process support and infrastructure definition  

SciTech Connect (OSTI)

This report documents the current facility design philosophy for the Tank Waste Remediation System (TWRS) process support and infrastructure definition. The Tank Waste Remediation System Facility Configuration Study (FCS) initially documented the identification and definition of support functions and infrastructure essential to the TWRS processing mission. Since the issuance of the FCS, the Westinghouse Hanford Company (WHC) has proceeded to develop information and requirements essential for the technical definition of the TWRS treatment processing programs.

Leach, C.E.; Galbraith, J.D. [Westinghouse Hanford Co., Richland, WA (United States); Grant, P.R.; Francuz, D.J.; Schroeder, P.J. [Fluor Daniel, Inc., Richland, WA (United States)

1995-11-01T23:59:59.000Z

129

Oil to Coal Conversion of Power and Industrial Facilities in the Dominican Republic  

E-Print Network [OSTI]

Realizing that the use of coal has the potential to offset the effects of world oil prices on the Dominican Republic's economy, the Commission Nacional de Politica Energetica (CNPE) requested Bechtel Power Corporation to study the technical...

Causilla, H.; Acosta, J. R.

1982-01-01T23:59:59.000Z

130

Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70.degree. C. to 90.degree. C., at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1996-02-20T23:59:59.000Z

131

Process for producing modified microorganisms for oil treatment at high temperatures, pressures and salinity  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. The processes are comprised of steps which successively limit the carbon sources and increase the temperature, pressure and salinity of the media. This is done until microbial strains are obtained that are capable of growing in essentially crude oil as a carbon source and at a temperature range from about 70 C to 90 C, at a pressure range from about 2,000 to 2,500 psi and at a salinity range from about 1.3 to 35%. 68 figs.

Premuzic, E.T.; Lin, M.

1996-02-20T23:59:59.000Z

132

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect (OSTI)

Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

2012-08-01T23:59:59.000Z

133

Evaluation of solvent-based in situ processes for upgrading and recovery of heavy oil bitumen  

SciTech Connect (OSTI)

Solvent-based in situ recovery processes have been proposed as lower cost alternatives to thermal processes for recovery of heavy oil and bitumen. Advantages of solvent based processes are: reduced steam requirements, reduced water treating, and in situ upgrading of the produced oil. Lab results and process calculations show that low-pressure, low-energy solvent-based in situ processes have considerable technical and economic potential for upgrading and recovery of bitumen and heavy oil. In a lab flow test using Athabasca tar sand and propane as solvent, 50 percent of the bitumen was recovered as upgraded oil. Relative to the raw bitumen, API gravity increased by about 10{degrees}API, viscosity was reduced 30-fold, sulfur content was reduced about 50 percent, and metals content was also substantially reduced. Process uncertainties that will have a major impact on economics are: (1) oil production rate, (2) oil recovery, (3) extent of in situ upgrading, and (4) solvent losses. Additional lab development and field testing are required to reduce these process uncertainties and to predict commercial-scale economics.

Duerksen, J.H.; Eloyan, A. [Chevron Petroleum Technology Co., La Habra, CA (United States)

1995-12-31T23:59:59.000Z

134

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research  

SciTech Connect (OSTI)

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

Not Available

1992-01-01T23:59:59.000Z

135

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress.

Yorstos, Yannis C.

2003-03-19T23:59:59.000Z

136

Oil production by entrained pyrolysis of biomass and processing of oil and char  

DOE Patents [OSTI]

Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

Knight, James A. (Atlanta, GA); Gorton, Charles W. (Atlanta, GA)

1990-01-02T23:59:59.000Z

137

Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas  

SciTech Connect (OSTI)

The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

Brock P.E., Cary D.

2003-03-10T23:59:59.000Z

138

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas Exploration  

E-Print Network [OSTI]

VolumeExplorer: Roaming Large Volumes to Couple Visualization and Data Processing for Oil and Gas dedicated to oil and gas exploration. Our system combines probe- based volume rendering with data processing Seismic interpretation is an important task in the oil and gas exploration-production (EP) workflow [9, 26

Paris-Sud XI, Université de

139

Standard practice for dosimetry in electron beam and X-Ray (Bremsstrahlung) irradiation facilities for food processing  

E-Print Network [OSTI]

Standard practice for dosimetry in electron beam and X-Ray (Bremsstrahlung) irradiation facilities for food processing

International Organization for Standardization. Geneva

2005-01-01T23:59:59.000Z

140

Potential For Energy, Peak Demand, and Water Savings in California Tomato Processing Facilities  

E-Print Network [OSTI]

of electrical energy in these plants will be shown. Results from potential electrical efficiency, demand response, and natural gas efficiency measures that have applications in tomato processing facilities will be presented. Additionally, water conservation...

Trueblood, A. J.; Wu, Y. Y.; Ganji, A. R.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility  

E-Print Network [OSTI]

The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

Batson, Vicky Lynn

1994-01-01T23:59:59.000Z

142

Criticality Safety Evaluation Report for the Cold Vacuum Drying (CVD) Facilities Process Water Handling System  

SciTech Connect (OSTI)

This report addresses the criticality concerns associated with process water handling in the Cold Vacuum Drying Facility. The controls and limitations on equipment design and operations to control potential criticality occurrences are identified.

KESSLER, S.F.

2000-08-10T23:59:59.000Z

143

Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas  

SciTech Connect (OSTI)

This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A. [Los Alamos Technical Associates, Kennewick, WA (United States); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (United States)

1994-08-01T23:59:59.000Z

144

Plutonium production story at the Hanford site: processes and facilities history  

SciTech Connect (OSTI)

This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

Gerber, M.S., Westinghouse Hanford

1996-06-20T23:59:59.000Z

145

doi: 10.3176/oil.2008.2.02 © 2008 Estonian Academy Publishers THERMAL PROCESSING OF POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

This study is concerned with thermal processing of polyvinylchloride (PVC) in the presence of alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the feedstock is heated by mixing with ash from retorted feed-stock combustion, are potentially an

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

146

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

E-Print Network [OSTI]

Process for Recovery of Oil Shale, Nov. 1976-0ct. 1977,M. A. , Proc. 12th Oil Shale Sympos. , Colorado School ofCOMPOUNDS IN IN SITU OIL SHALE RETORT ~~D PROCESS WATERS

Fish, Richard H.

2013-01-01T23:59:59.000Z

147

EIS-0070: Mining, Construction and Operation for a Full-size Module at the Anvil Points Oil Shale Facility, Rifle, Garfield County, Colorado  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement to assess the environmental and socioeconomic implications of its proposal to mine 11 million tons of oil shale from the Naval Oil Shale Reserves (NOSR) at Anvil Points, Colorado; to construct an experimental full-size shale retort module on a 365-acre lease tract having a 4700 bbl/day production capacity; and to consider extension, modification or new leasing of the facility.

148

Progress of the High Level Waste Program at the Defense Waste Processing Facility - 13178  

SciTech Connect (OSTI)

The Defense Waste Processing Facility at the Savannah River Site treats and immobilizes High Level Waste into a durable borosilicate glass for safe, permanent storage. The High Level Waste program significantly reduces environmental risks associated with the storage of radioactive waste from legacy efforts to separate fissionable nuclear material from irradiated targets and fuels. In an effort to support the disposition of radioactive waste and accelerate tank closure at the Savannah River Site, the Defense Waste Processing Facility recently implemented facility and flowsheet modifications to improve production by 25%. These improvements, while low in cost, translated to record facility production in fiscal years 2011 and 2012. In addition, significant progress has been accomplished on longer term projects aimed at simplifying and expanding the flexibility of the existing flowsheet in order to accommodate future processing needs and goals. (authors)

Bricker, Jonathan M.; Fellinger, Terri L.; Staub, Aaron V.; Ray, Jeff W.; Iaukea, John F. [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)] [Savannah River Remediation, Aiken, South Carolina, 29808 (United States)

2013-07-01T23:59:59.000Z

149

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

The emphasis of this work was on investigating the mechanisms and factors that control the recovery of heavy oil with the objective to improve recovery efficiencies. For this purpose the interaction of flow transport and reaction at various scales from the pore network to the field scales were studied. Particular mechanisms to be investigated included the onset of gas flow in foamy oil production and in in-situ steam drive, gravity drainage in steam processes, the development of sustained combustion fronts and the propagation of foams in porous media. Analytical, computational and experimental methods were utilized to advance the state of the art in heavy oil recovery. Successful completion of this research was expected to lead to improvements in the Recovery efficiency of various heavy oil processes.

Yorstos, Yanis C.

2002-03-11T23:59:59.000Z

150

The Uranium Processing Facility Finite Element Meshing Discussion  

Office of Environmental Management (EM)

* Discuss the mesh criteria * Discuss the evolution of the mesh of the UPF main building model * Discuss how the mesh affects the analysis process October 25, 2011 2 Department of...

151

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26, 2008 (Next1,Product: Total Crude Oil and

152

Certification of U.S. instrumentation in Russian nuclear processing facilities  

SciTech Connect (OSTI)

Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities.

D.H. Powell; J.N. Sumner

2000-07-12T23:59:59.000Z

153

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 1  

SciTech Connect (OSTI)

This ACDR was performed following completed of the Conceptual Design Report in July 1992; the work encompassed August 1992 to January 1994. Mission of the WRAP Module 2A facility is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage at Hanford and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford from about DOE sites. This volume provides an introduction to the ACDR process and the scope of the task along with a project summary of the facility, treatment technologies, cost, and schedule. Major areas of departure from the CDR are highlighted. Descriptions of the facility layout and operations are included.

Not Available

1994-03-01T23:59:59.000Z

154

Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous extraction process: Feasibility  

E-Print Network [OSTI]

Direct extraction of oil from sunflower seeds by twin-screw extruder according to an aqueous the feasibility of an aqueous process to extract sunflower seed oil using a co-rotating twin-screw extruder. Aqueous extraction was carried out using whole seeds and the influence of the operating conditions on oil

Paris-Sud XI, Université de

155

Design of the Waste Receiving and Processing Module 2A Facility  

SciTech Connect (OSTI)

Westinghouse Hanford Company has determined that a facility is required for the treatment of mixed low-level waste at the Hanford Site. The mission of that facility will be to receive, process/treat, package, certify, and ship the contact-handled, mixed low-level waste that must be handled by Hanford Site to permanent disposal. Preconceptual and conceptual design studies were performed by United Engineers and Constructors, and a conceptual design report was issued. This report presents a summary of the conceptual design for a facility that will meet the mission established.

Lamberd, D.L.

1993-03-01T23:59:59.000Z

156

Preliminary technical data summary No. 3 for the Defense Waste Processing Facility  

SciTech Connect (OSTI)

This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

Landon, L.F. (comp.)

1980-05-01T23:59:59.000Z

157

324 Facility B-Cell quality process plan  

SciTech Connect (OSTI)

B-Cell is currently being cleaned out (i.e., removal of equipment, fixtures and residual radioactive materials) and deactivated. TPA Milestone M-89-02 dictates that all mixed waste and equipment be removed from B-Cell by 5/31/99. The following sections describe the major activities that remain for completion of the TPA milestone. This includes: (1) Size Reduce Tank 119 and Miscellaneous Equipment. This activity is the restart of hotwork in B-Cell to size reduce the remainder of Tank 119 and other miscellaneous pieces of equipment into sizes that can be loaded into a grout container. This activity also includes the process of preparing the containers for shipment from the cell. The specific activities and procedures used are detailed in a table. (2) Load and Ship Low-Level Waste. This activity covers the process of taking a grouted LLW container from B-Cell and loading it into the cask in the REC airlock and Cask Handling Area (CHA) for shipment to the LLBG. The detailed activities and procedures for this part of cell cleanout are included in second table.

Carlson, J.L.

1998-06-10T23:59:59.000Z

158

Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery  

SciTech Connect (OSTI)

This is the final report describing the evolution of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' from its conceptual stage in 2002 to the field implementation of the developed technology in 2006. This comprehensive report includes all the experimental research, models developments, analyses of results, salient conclusions and the technology transfer efforts. As planned in the original proposal, the project has been conducted in three separate and concurrent tasks: Task 1 involved a physical model study of the new GAGD process, Task 2 was aimed at further developing the vanishing interfacial tension (VIT) technique for gas-oil miscibility determination, and Task 3 was directed at determining multiphase gas-oil drainage and displacement characteristics in reservoir rocks at realistic pressures and temperatures. The project started with the task of recruiting well-qualified graduate research assistants. After collecting and reviewing the literature on different aspects of the project such gas injection EOR, gravity drainage, miscibility characterization, and gas-oil displacement characteristics in porous media, research plans were developed for the experimental work to be conducted under each of the three tasks. Based on the literature review and dimensional analysis, preliminary criteria were developed for the design of the partially-scaled physical model. Additionally, the need for a separate transparent model for visual observation and verification of the displacement and drainage behavior under gas-assisted gravity drainage was identified. Various materials and methods (ceramic porous material, Stucco, Portland cement, sintered glass beads) were attempted in order to fabricate a satisfactory visual model. In addition to proving the effectiveness of the GAGD process (through measured oil recoveries in the range of 65 to 87% IOIP), the visual models demonstrated three possible multiphase mechanisms at work, namely, Darcy-type displacement until gas breakthrough, gravity drainage after breakthrough and film-drainage in gas-invaded zones throughout the duration of the process. The partially-scaled physical model was used in a series of experiments to study the effects of wettability, gas-oil miscibility, secondary versus tertiary mode gas injection, and the presence of fractures on GAGD oil recovery. In addition to yielding recoveries of up to 80% IOIP, even in the immiscible gas injection mode, the partially-scaled physical model confirmed the positive influence of fractures and oil-wet characteristics in enhancing oil recoveries over those measured in the homogeneous (unfractured) water-wet models. An interesting observation was that a single logarithmic relationship between the oil recovery and the gravity number was obeyed by the physical model, the high-pressure corefloods and the field data.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Wagirin Ruiz Paidin; Thaer N. N. Mahmoud; Daryl S. Sequeira; Amit P. Sharma

2006-09-30T23:59:59.000Z

159

Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)  

SciTech Connect (OSTI)

The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

TOMASZEWSKI, T.A.

2000-04-25T23:59:59.000Z

160

Environmental research on a modified in situ oil shale task process. Progress report  

SciTech Connect (OSTI)

This report summarizes the progress of the US Department of Energy's Oil Shale Task Force in its research program at the Occidental Oil Shale, Inc. facility at Logan Wash, Colorado. More specifically, the Task Force obtained samples from Retort 3E and Retort 6 and submitted these samples to a variety of analyses. The samples collected included: crude oil (Retort 6); light oil (Retort 6); product water (Retort 6); boiler blowdown (Retort 6); makeup water (Retort 6); mine sump water; groundwater; water from Retorts 1 through 5; retort gas (Retort 6); mine air; mine dust; and spent shale core (Retort 3E). The locations of the sampling points and methods used for collection and storage are discussed in Chapter 2 (Characterization). These samples were then distributed to the various laboratories and universities participating in the Task Force. For convenience in organizing the data, it is useful to group the work into three categories: Characterization, Leaching, and Health Effects. While many samples still have not been analyzed and much of the data remains to be interpreted, there are some preliminary conclusions the Task Force feels will be helpful in defining future needs and establishing priorities. It is important to note that drilling agents other than water were used in the recovery of the core from Retort 3E. These agents have been analyzed (see Table 12 in Chapter 2) for several constituents of interest. As a result some of the analyses of this core sample and leachates must be considered tentative.

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 2  

SciTech Connect (OSTI)

This volume presents the Total Estimated Cost (TEC) for the WRAP (Waste Receiving and Processing) 2A facility. The TEC is $81.9 million, including an overall project contingency of 25% and escalation of 13%, based on a 1997 construction midpoint. (The mission of WRAP 2A is to receive, process, package, certify, and ship for permanent burial at the Hanford site disposal facilities the Category 1 and 3 contact handled low-level radioactive mixed wastes that are currently in retrievable storage, and are forecast to be generated over the next 30 years by Hanford, and waste to be shipped to Hanford site from about 20 DOE sites.)

Not Available

1994-03-01T23:59:59.000Z

162

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This project is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2001-08-07T23:59:59.000Z

163

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

This report is an investigation of various multi-phase and multiscale transport and reaction processes associated with heavy oil recovery. The thrust areas of the project include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Y.C.

2001-05-29T23:59:59.000Z

164

INTERLABORATORY, MULTIMETHOD STUDY OF AN IN SITU PRODUCED OIL SHALE PROCESS WATER  

E-Print Network [OSTI]

Minor Elements in Oil Shale and Oil Shale Products. LERCfor Use 1n Oil Shale and Shale Oil. OSRD-32, 1945. Jeris, J.Water coproduced with shale oil and decanted from it is

Farrier, D.S.

2011-01-01T23:59:59.000Z

165

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

SciTech Connect (OSTI)

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

2012-11-09T23:59:59.000Z

166

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

SciTech Connect (OSTI)

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

2013-01-26T23:59:59.000Z

167

A New Concept: Use of Negotiations in the Hazardous Waste Facility Permitting Process in New Mexico  

SciTech Connect (OSTI)

This paper describes a unique negotiation process leading to authorization of the U.S. Department of Energy (DOE) to manage and dispose remote-handled (RH) transuranic (TRU) mixed wastes at the Waste Isolation Pilot Plant (WIPP). The negotiation process involved multiple entities and individuals brought together under authority of the New Mexico Environment Department (NMED) to discuss and resolve technical and facility operational issues flowing from an NMED-issued hazardous waste facility Draft Permit. The novel negotiation process resulted in numerous substantive changes to the Draft Permit, which were ultimately memorialised in a 'Draft Permit as Changed'. This paper discusses various aspects of the negotiation process, including events leading to the negotiations, regulatory basis for the negotiations, negotiation participants, and benefits of the process. (authors)

Johnson, G.J. [Washington TRU Solutions, LLC, Waste Isolation Pilot Plant, New Mexico (United States); Rose, W.M. [U.S. Department of Energy, Carlsbad Field Office, Waste Isolation Pilot Plant, New Mexico (United States); Domenici, P.V.; Hollingsworth, L. [Domenici Law Firm PC, Albuquerque, New Mexico (United States)

2007-07-01T23:59:59.000Z

168

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

169

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

170

Standard Guide for Absorbed-Dose Mapping in Radiation Processing Facilities  

E-Print Network [OSTI]

1.1 This document provides guidance in determining absorbed-dose distributions in products, materials or substances irradiated in gamma, X-ray (bremsstrahlung) and electron beam facilities. Note 1—For irradiation of food and the radiation sterilization of health care products, other specific ISO and ISO/ASTM standards containing dose mapping requirements exist. For food irradiation, see ISO/ASTM 51204, Practice for Dosimetry in Gamma Irradiation Facilities for Food Processing and ISO/ASTM 51431, Practice for Dosimetry in Electron and Bremsstrahlung Irradiation Facilities for Food Processing. For the radiation sterilization of health care products, see ISO 11137: 1995, Sterilization of Health Care Products Requirements for Validation and Routine Control Radiation Sterilization. In those areas covered by ISO 11137, that standard takes precedence. ISO/ASTM Practice 51608, ISO/ASTM Practice 51649, and ISO/ASTM Practice 51702 also contain dose mapping requirements. 1.2 Methods of analyzing the dose map data ar...

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

171

Spent nuclear fuel project cold vacuum drying facility process water conditioning system design description  

SciTech Connect (OSTI)

This document provides the System Design Description (SDD) for the Cold Vacuum Drying Facility (CVDF) Process Water Conditioning (PWC) System. The SDD was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998), the HNF-SD-SNF-DRD-O02, 1998, Cold Vacuum Drying Facility Design Requirements, and the CVDF Design Summary Report. The SDD contains general descriptions of the PWC equipment, the system functions, requirements and interfaces. The SDD provides references for design and fabrication details, operation sequences and maintenance. This SDD has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1998-11-30T23:59:59.000Z

172

A facile process for soak-and-peel delamination of CVD graphene from substrates using water  

E-Print Network [OSTI]

A facile process for soak-and-peel delamination of CVD graphene from substrates using water Priti Ulm, Germany (Dated: 31 July 2013) We demonstrate a simple technique to transfer CVD-grown graphene deionized water. The lack of chemical etchants results in cleaner CVD graphene films minimizing

Deshmukh, Mandar M.

173

Supporting Information: A facile process for soak-and-peel delamination of CVD graphene from  

E-Print Network [OSTI]

Supporting Information: A facile process for soak-and-peel delamination of CVD graphene from equally to this work. 1 #12;I. CVD growth of graphene (a) Continuous graphene layer growth Continuous lms of CVD graphene were grown on 1 cm × 1 cm sized Cu and Pt substrates. Cu foils (Alfa Aesar, 25 µm thick

Deshmukh, Mandar M.

174

Carbo-metallic oil-conversion process and catalysts  

SciTech Connect (OSTI)

This patent describes a continuous process for cracking of a residual hydrocarbon feedstock into lower molecular weight hydrocarbon transportation fuels. The cracking being carried out in the presence of a catalyst having catalyst parameters comprising porosity, metals content, rare earth content, and zeolite content. The residual hydrocarbon feedstock comprising metal contaminants, fractions boiling above 1025{degrees}F. comprising asphaltenes, polynuclear aromatics, naphthenes and prophyrins.

Hettinger, W.P.; Beck, W.

1989-10-31T23:59:59.000Z

175

Investigation of Multiscale and Multiphase Flow, Transport and Reaction in Heavy Oil Recovery Processes  

SciTech Connect (OSTI)

In this report, the thrust areas include the following: Internal drives, vapor-liquid flows, combustion and reaction processes, fluid displacements and the effect of instabilities and heterogeneities and the flow of fluids with yield stress. These find respective applications in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of concurrent and countercurrent vapor-liquid flows, associated with thermal methods and steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous media and the development of wormholes during cold production.

Yortsos, Yanis C.

2002-10-08T23:59:59.000Z

176

Checkout and start-up of the integrated DWPF (Defense Waste Processing Facility) melter system  

SciTech Connect (OSTI)

The Integrated DWPF Melter System (IDMS) is a one-ninth-scale demonstration of the Defense Waste Processing Facility (DWPF) feed preparation, melter, and off-gas systems. The IDMS will be the first engineering-scale melter system at SRL to process mercury and flowsheet levels of halides and sulfates. This report includes a summary of the IDMS program objectives, system and equipment descriptions, and detailed discussions of the system checkout and start-up. 10 refs., 44 figs., 20 tabs.

Smith, M.E.; Hutson, N.D.; Miller, D.H.; Morrison, J.; Shah, H.; Shuford, J.A.; Glascock, J.; Wurzinger, F.H.; Zamecnik, J.R.

1989-11-11T23:59:59.000Z

177

Evaluating the effects of the number of caverns on the performance of underground oil storage facilities  

SciTech Connect (OSTI)

Three dimensional finite element calculations were performed to investigate the effect field size, in terms of the number of caverns, on the performance of SPR oil storage caverns leached in domal salt (interms of surface subsidence, storage losses, and cavern integrity). The calculations were performed for cavern fields containing 1, 7, 19, and an infinite number of caverns. The magnitude and volume of subsidence was significantly affected by increasing the number of caverns (nearly an order of magnitude increase was predicted for each increase in field size), while the extent of subsidence (approximately 2000 m fromthe center of the field) and storage loss were not. Furthermore, the percentage of storage loss volume manifested as surface subsidence increased as the cavern field was enlarged. This was attributed to elasticvolumetric dilatation of overlying strata. The multiple cavern calculations demonstrate that storage losses are greater for caverns farther from the center of the caverns field. Based on an accumulated strain stability criteria, the larger cavern fields are predicted to have a shorter life. This criteria also indicates that caverns on the periphery of a field may show signs of instability before the inner caverns. The West Hackberry site (containing 22 caverns) subsidence data closely agrees with the 19 cavern model subsidence predictions, providing confidence in the calculations. Even a 19 cavern field, substantially large by SPR standards, does not approach the behavior predicted by infinite cavern models (which are frequently used because they are economical). This demonstrates that 3D modeling is required to accurately investigate the performance of a multi-cavern array. Although based on a typical SPR cavern design, the results of this study describe mechanics common to all multi-cavern fields and should, in general, be useful tocavern engineers and architects.

Hoffman, E.L.; Ehgartner, B.L.

1992-01-01T23:59:59.000Z

178

Diamonds in the rough: identification of individual napthenic acids in oil sands process water  

SciTech Connect (OSTI)

Expansion of the oil sands industry of Canada has seen a concomitant increase in the amount of process water produced and stored in large lagoons known as tailings ponds. Concerns have been raised, particularly about the toxic complex mixtures of water-soluble naphthenic acids (NA) in the process water. To date, no individual NA have been identified, despite numerous attempts, and while the toxicity of broad classes of acids is of interest, toxicity is often structure-specific, so identification of individual acids may also be very important. The chromatographic resolution and mass spectral identification of some individual NA from oil sands process water is described. The authors concluded that the presence of tricyclic diamondoid acids, never before even considered as NA, suggests an unprecedented degree of biodegradation of some of the oil in the oil sands. The identifications reported should now be followed by quantitative studies, and these used to direct toxicity assays of relevant NA and the method used to identify further NA to establish which, or whether all NA, are toxic. The two-dimensional comprehensive gas chromatography-mass spectrometry method described may also be important for helping to better focus reclamation/remediation strategies for NA as well as in facilitating the identification of the sources of NA in contaminated surface waters (auth)

Rowland, Steven J.; Scarlett, Alan G.; Jones, David; West, Charles E. (Petroleum and Environmental Geochemistry Group, Biogeochemistry Research Centre, University of Plymouth (United Kingdom)); Frank, Richard A. (Aquatic Ecosystems Protection Research Division-Water Science and Technology Directorate, Environment Canada, Burlington, Ontario (Canada)

2011-03-10T23:59:59.000Z

179

Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States  

SciTech Connect (OSTI)

In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

2010-09-28T23:59:59.000Z

180

Occidental vertical modified in situ process for the recovery of oil from oil shale, Phase 2. Construction, operation, testing, and environmental impact. Final report, August 1981-December 1982. Volume 1  

SciTech Connect (OSTI)

Occidential Oil Shale, Inc. (OOSI) recently completed the demonstration of mining, rubblization, ignition, and simulataneous processing of two commericalized modified in situ (MIS) retorts at the Logas Wash facility near DeBeque, Colorado. Upon completion of Retort 6 in 1978, Occidential began incorporating all of the knowledge previously acquired in an effort to design two more commercial-sized MIS retorts. Any commercial venture of the future would require the ability to operate simultaneously more than one retort. Thus, Retorts 7 and 8 were developed during 1980 and 1981 through joint funding of the DOE and OOSI in Phase II. Rubblization of the retorts produced an average rubble void of 18.5% in the low grade shale (17 gallons per ton) at the Logan Wash site. After rubblization, bulkheads were constructed, inlet and offgas pipes were installed and connected to surface processing facilities and liquid product handling systems were connected to the retorts. Extensive instrumentation was installed in cooperation with Sandia National Laboratories for monitoring the complete operation of the retorts. After pre-ignition testing, Retort 8 was ignited in December of 1981 and Retort 7 was ignited in January of 1982. The retorts were operated without interruption from ignition until mid- November of 1982 at which time inlet gas injection was terminated and water quenching was begun. Total product yield from the two retorts was approximately 200,000 barrels of oil, or 70% of the Fischer Assay oil-in-place in the rubblized rock in the two retrots. Water quenching studies were conducted over a period of several months, with the objective of determining the rate of heat extraction from the retorts as well as determining the quantity and quality of offgas and water coming out from the quenching process. Data from these studies are also included in this Summary Report. 62 figs., 18 tabs.

Stevens, A.L.; Zahradnik, R.L.; Kaleel, R.J.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Processing liquid radioactive waste by centrifuge and indrum dehydration facility at NPP Philippsburg  

SciTech Connect (OSTI)

Until 1989 the evaporator and filter concentrates have been treated by concreting. The centrifuge facility is used for the liquid waste from laundry, showers and also for processing filter concentrates and evaporator feedwater. The hot high pressure compacting of filter concentrates gives a volume reduction by a factor of 6. The evaporator concentrate is drained in a 200 l drum and this drum is heated by an external heating device. The indrum-dehydration facility reduces the treated volume by a factor of 12 compared with the former cementation.

Grundke, E.; Blaser, W. [NPP Philippsburg (Germany)

1993-12-31T23:59:59.000Z

182

Metals Processing Laboratory Users (MPLUS) Facility Annual Report FY 2002 (October 1, 2001-September 30, 2002)  

SciTech Connect (OSTI)

The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program, user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary user centers: (1) Processing--casting, powder metallurgy, deformation processing (including extrusion, forging, rolling), melting, thermomechanical processing, and high-density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, and bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; and (4) Materials/Process Modeling--mathematical design and analyses, high-performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials databases A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state-of-the-art materials characterization capabilities, and high-performance computing to manufacturing technologies. MPLUS can be accessed through a standardized user-submitted proposal and a user agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provided free of charge, while for proprietary efforts, the user pays the entire project costs based on DOE guidelines for ORNL costs.

Angelini, P

2004-04-27T23:59:59.000Z

183

Metals Processing Laboratory Users (MPLUS) Facility Annual Report: October 1, 2000 through September 30, 2001  

SciTech Connect (OSTI)

The Metals Processing Laboratory Users Facility (MPLUS) is a Department of Energy (DOE), Energy Efficiency and Renewable Energy, Industrial Technologies Program user facility designated to assist researchers in key industries, universities, and federal laboratories in improving energy efficiency, improving environmental aspects, and increasing competitiveness. The goal of MPLUS is to provide access to the specialized technical expertise and equipment needed to solve metals processing issues that limit the development and implementation of emerging metals processing technologies. The scope of work can also extend to other types of materials. MPLUS has four primary User Centers including: (1) Processing--casting, powder metallurgy, deformation processing including (extrusion, forging, rolling), melting, thermomechanical processing, high density infrared processing; (2) Joining--welding, monitoring and control, solidification, brazing, bonding; (3) Characterization--corrosion, mechanical properties, fracture mechanics, microstructure, nondestructive examination, computer-controlled dilatometry, and emissivity; (4) Materials/Process Modeling--mathematical design and analyses, high performance computing, process modeling, solidification/deformation, microstructure evolution, thermodynamic and kinetic, and materials data bases. A fully integrated approach provides researchers with unique opportunities to address technologically related issues to solve metals processing problems and probe new technologies. Access is also available to 16 additional Oak Ridge National Laboratory (ORNL) user facilities ranging from state of the art materials characterization capabilities, high performance computing, to manufacturing technologies. MPLUS can be accessed through a standardized User-submitted Proposal and a User Agreement. Nonproprietary (open) or proprietary proposals can be submitted. For open research and development, access to capabilities is provides free of charge while for proprietary efforts, the user pays the entire project costs based on DOE guidelines for ORNL costs.

Angelini, P

2004-04-27T23:59:59.000Z

184

Waste Analysis Plan for the Waste Receiving and Processing (WRAP) Facility  

SciTech Connect (OSTI)

The purpose of this waste analysis plan (WAP) is to document the waste acceptance process, sampling methodologies, analytical techniques, and overall processes that are undertaken for dangerous, mixed, and radioactive waste accepted for confirmation, nondestructive examination (NDE) and nondestructive assay (NDA), repackaging, certification, and/or storage at the Waste Receiving and Processing Facility (WRAP). Mixed and/or radioactive waste is treated at WRAP. WRAP is located in the 200 West Area of the Hanford Facility, Richland, Washington. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. The information on radionuclides is provided only for general knowledge.

TRINER, G.C.

1999-11-01T23:59:59.000Z

185

Methodology and concepts for the design of surface storage fills at the Anvil Points Oil Shale Retort Facility  

SciTech Connect (OSTI)

Primary obtectives in design of surface disposal fills for processed and raw oil shales are: (a) to insure long-term physical stability, and (b) to prevent surface runoff, surface erosion, and possible subsurface seepage from degrading the water quality of streams and ground water, it was concluded that the analysis and design of spent shale disposal fills should be based on sound geotechnical engineeering principles, considerable experience, and good judgment. An understanding of the source of variability of spent shale materials and its effect on engineering properties is a first step in developing fill design. A second important step is the assessment of long-term changes in the properties of spent shale within a disposal fill. This assessment requires consideration of possible thermal, hydrochemical, and physical interactions within the fill and between the fill and site environment. The site environment is site-specific and depends on the geological, surface and subsurface hydrological, and geotechnical characteristics of the site. The variability of spent shale materials is a direct function of variations in mineral and chemical composition of the raw shale and of the processes applied. Current technology for the design and construction of spent shale disposal fills has not been proven by experience. A major problem is the large quantities of spent shale generated for surface disposal and the lack of available sites other than large gulches in the oil shale country of the western United States. Conceptual research fill designs developed in this study should be refined and constructed to provide needed information on in situ properties and long-term performance. Research fills planned by others should be augmented to obtain needed information, especially for codisposal of spent shales with treated waste water, raw shale fines, and process dust.

Strohm, W.E. Jr.; Krinitzsky, E.L.

1983-12-01T23:59:59.000Z

186

Process for increasing the bitumen content of oil sands froth  

SciTech Connect (OSTI)

A process is described for the removal of solids and water from a feed bituminous froth containing bitumen, solids and water in a gravity settling vessel have an existing bituminous froth layer floating on a quiescent body of water defining a bitumen-water interface therebetween comprising the steps of heating the feed bituminous froth to a temperature in the range of 85 to 100 C, feeding the heated froth into the body of water at a level below the bitumen-water interface whereby water and solids contained in the feed froth separate from the froth and the bitumen rises to accumulate in the existing bituminous froth layer, discharging solids-containing under flow from the vessel, monitoring the level of the bitumen-water interface and controlling the discharge of solids-containing under flow responsive to the monitoring of the bitumen-water interface at a rate such that the said interface is maintained at an effective level above the level at which the feed bituminous froth is fed into the body of water, and recovering a bitumen-enriched layer as an overflow.

Tipman, R.N.; Rajan, V.S.V.; Wallace, D.

1993-06-29T23:59:59.000Z

187

Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3  

SciTech Connect (OSTI)

This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD).

Sullivan, N.

1995-05-02T23:59:59.000Z

188

CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir  

SciTech Connect (OSTI)

The application of cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital-intensive miscible projects. Texaco Exploration & Production Inc. and the U. S. Department of Energy have teamed up in an attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced 1,2 . The selected sites for this demonstration project are the Central Vacuum Unit waterflood in Lea County, New Mexico and the Sundown Slaughter Field in Hockley County, Texas. Miscible CO2 flooding is the process of choice for enhancing recovery of light oils 3 and already accounts for over 12% of the Permian Basin?s daily production.4 There are significant probable reserves associated with future miscible CO2 projects. However, many are marginally economic at current market conditions due to large up-front capital commitments for a peak response, which may be several years in the future. The resulting negative cash-flow is sometimes too much for an operator to absorb. The CO2 Huff-n-Puff process is being investigated as a near-term option to mitigate the negative cash-flow situation--allowing acceleration of inventoried miscible CO2 projects when coupled together. The CO2 Huff-n-Puff process is a proven enhanced oil recovery technology in Louisiana-Texas Gulf-coast sandstone reservoirs 5,6 . Application seems to mostly confine itself to low pressure sandstone reservoirs 7 . The process has even been shown to be moderately effective in conjunction with steam on heavy California crude oils 8,9 . A review of earlier literature 5,10,11 provides an excellent discussion on the theory, mechanics of the process, and several case histories. Although the technology is proven in light oil sandstones, it continues to be a very underutilized enhanced recovery option for carbonates. However, the theories associated with the CO2 Huff-n-Puff process are not lithology dependent. It was anticipated that this project would show that the application of the CO2 Huff-n-Puff process in shallow shelf carbonates could be economically implemented to recover appreciable volumes of light oil. The goals of the project were the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential.

Mark Kovar; Scott Wehner

1998-01-13T23:59:59.000Z

189

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

SciTech Connect (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

190

Simulation of EOR (enhanced oil recovery) processes in stochastically generated permeable media  

SciTech Connect (OSTI)

Many enhanced oil recovery (EOR) processes involve injecting an agent, such as steam or CO{sub 2}, that is much more mobile than the resident oil. Other EOR processes attempt to improve sweep efficiency by adding polymer or surfactant to the injected water to create a favorable mobility ratio. This study examines the effect of statistically generated heterogeneity on miscible displacements at unfavorable and favorable mobility ratios. The principal goal is to delineate the effects of fingering, dispersion and channeling on volumetric sweep efficiency. Two-dimensional heterogeneous permeability fields are generated with variability (heterogeneity) and spatial correlation as characterizing parameters. Four levels of correlation and three of variability make up a 12 element matrix. At each element of the matrix, a miscible displacement simulation at unit mobility ratio shows the effect of the heterogeneity, and simulations at mobility ratios of 10 and 0.5 show the effect of viscous force differences combined with heterogeneity. 20 refs., 7 figs., 3 tabs.

Waggoner, J.R.; Castillo, J.L.; Lake, L.W. (Texas Univ., Austin, TX (USA). Dept. of Petroleum Engineering)

1990-01-01T23:59:59.000Z

191

Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes  

SciTech Connect (OSTI)

This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

Seright, R.S.; Martin, F.D.

1991-11-01T23:59:59.000Z

192

Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report  

SciTech Connect (OSTI)

The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamo Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.

Forest, Cary B.

2013-09-19T23:59:59.000Z

193

The Mixed Waste Management Facility: Technology selection and implementation plan, Part 2, Support processes  

SciTech Connect (OSTI)

The purpose of this document is to establish the foundation for the selection and implementation of technologies to be demonstrated in the Mixed Waste Management Facility, and to select the technologies for initial pilot-scale demonstration. Criteria are defined for judging demonstration technologies, and the framework for future technology selection is established. On the basis of these criteria, an initial suite of technologies was chosen, and the demonstration implementation scheme was developed. Part 1, previously released, addresses the selection of the primary processes. Part II addresses process support systems that are considered ``demonstration technologies.`` Other support technologies, e.g., facility off-gas, receiving and shipping, and water treatment, while part of the integrated demonstration, use best available commercial equipment and are not selected against the demonstration technology criteria.

Streit, R.D.; Couture, S.A.

1995-03-01T23:59:59.000Z

194

Oil spill response resources  

E-Print Network [OSTI]

. ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

195

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery -DoE's First Demonstration Project in Poland  

E-Print Network [OSTI]

Bioremediation of a Process Waste Lagoon at a Southern Polish Oil Refinery - DoE's First by the Czechowice Oil Refinery, located in southern Poland, has produced an estimated 120 thousand tons of acidic company thereby eliminating the contaminants while providing the refinery an additional revenue source

Hazen, Terry

196

Identification of Process Energy and Pollution Reduction Opportunities at DoD Industrial Facilities  

E-Print Network [OSTI]

IDENTIFICATION OF PROCESS ENERGY AND POLLUTION REDUCTION OPPORTUNITIES AT DOD INDUSTRIAL FACILITIES Mike C. Lin Jeri 1. Northrup Principal Investigator Principal Investigator USACERL USACERL Champaign, IL Champaign, IL ABSTRACT Industrial... Information System (DEIS). DEIS is the infonnation system with which the DoD monitors its supplies and consumption of energy. It is primarily used as an energy management tool, providing infonnation about each fuel used within the DoD, including bulk...

Lin, M. C.; Northrup, J. I.; Smith, E. D.

197

Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory  

SciTech Connect (OSTI)

A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning.

Shanahan, K.L.

1992-02-01T23:59:59.000Z

198

Occidental vertical modified in situ process for the recovery of oil from oil shale. Phase II. Quarterly progress report, September 1, 1980-November 30, 1980  

SciTech Connect (OSTI)

The major activities at OOSI's Logan Wash site during the quarter were: mining the voids at all levels for Retorts 7 and 8; blasthole drilling; tracer testing MR4; conducting the start-up and burner tests on MR3; continuing the surface facility construction; and conducting Retorts 7 and 8 related Rock Fragmentation tests. Environmental monitoring continued during the quarter, and the data and analyses are discussed. Sandia National Laboratory and Laramie Energy Technology Center (LETC) personnel were active in the DOE support of the MR3 burner and start-up tests. In the last section of this report the final oil inventory for Retort 6 production is detailed. The total oil produced by Retort 6 was 55,696 barrels.

Not Available

1981-01-01T23:59:59.000Z

199

DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)  

SciTech Connect (OSTI)

This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

Jasen, W.G.

1998-01-07T23:59:59.000Z

200

A survey of current technologies for production of oil from oil shale by in-situ retorting processes; their technical and economic readiness and requirements for further developments  

SciTech Connect (OSTI)

Four in-situ oil shale processes; Vertical Modified In-Situ (VMIS), Horizontal Modified In-Situ (HMIS), Geokinetics, and Equity have been reviewed with respect to their developmental histories, major advantages and disadvantages, present activities, major technical problems, and present states of development. The various processes are described in detail, and up-to-date experimental data has been summarized. The preliminary designs for commercialization have been developed in order to estimate capital and operating costs. Required selling prices and sensitivities have been determined as they relate to various parameters, such as oil yields, capital costs, operating costs, and economic incentives. The technologies for the various processes have been analyzed for the purpose of identifying areas of further required research and development. Programs of technological development have been suggested for each in-situ process. The results of various process evaluations have been compared, and the best near-term solutions have been determined for producing oil from oil shale using in-situ methods.

Cha, C.Y.; Chazin, D.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Chemistry and processability of crude oil asphaltenes as studied by ultracentrifugation  

SciTech Connect (OSTI)

From the number of crudes of this study, there appears to be a positive correlation between the total quantity of crude oil hetero atoms (S, N, Ni, and V) which are precipitated under conditions of ultracentrifugation and the degree of that particular crude's difficulty of hydroprocessing. Because of its powerful ability to separate colloidal material from suspensions and because of the known colloidal nature of asphaltenes, the ultracentrifuge was employed to effect the separation of crude oil constituents, and to thus provide information relating to the hydrocracking of resids. Asphaltenes vary greatly in their response to hydrocracking with some being remarkably refractive while others are readily destroyed. By studying the chemical nature of the asphaltene/colloid fractions, a correlation between this chemical constitution and processability was observed. The observation of Liesegang band-like phenomena is also reported along with chemical analyses of these bands.

Weeks, R.W. Jr.; McBride, W.L.

1980-01-01T23:59:59.000Z

202

Waste Receiving and Processing (WRAP) Facility Public Address System Review Findings  

SciTech Connect (OSTI)

Public address system operation at the Waste Receiving and Processing (WRAP) facility was reviewed. The review was based on an Operational Readiness Review finding that public address performance was not adequate in parts of the WRAP facility. Several improvements were made to the WRAP Public Address (PA) system to correct the deficiencies noted. Speaker gain and position was optimized. A speech processor was installed to boost intelligibility in high noise areas. Additional speakers were added to improve coverage in the work areas. The results of this evaluation indicate that further PA system enhancements are not warranted. Additional speakers cannot compensate for the high background sound and high reverberation levels found in the work areas. Recommendations to improve PA system intelligibility include minor speaker adjustments, enhanced PA announcement techniques, and the use of sound reduction and abatement techniques where economically feasible.

HUMPHRYS, K.L.

1999-11-03T23:59:59.000Z

203

Tritium Facilities Modernization and Consolidation Project Process Waste Assessment (Project S-7726)  

SciTech Connect (OSTI)

Under the Tritium Facility Modernization {ampersand} Consolidation (TFM{ampersand}C) Project (S-7726) at the Savannah River Site (SS), all tritium processing operations in Building 232-H, with the exception of extraction and obsolete/abandoned systems, will be reestablished in Building 233-H. These operations include hydrogen isotopic separation, loading and unloading of tritium shipping and storage containers, tritium recovery from zeolite beds, and stripping of nitrogen flush gas to remove tritium prior to stack discharge. The scope of the TFM{ampersand}C Project also provides for a new replacement R&D tritium test manifold in 233-H, upgrading of the 233- H Purge Stripper and 233-H/234-H building HVAC, a new 234-H motor control center equipment building and relocating 232-H Materials Test Facility metallurgical laboratories (met labs), flow tester and life storage program environment chambers to 234-H.

Hsu, R.H. [Westinghouse Savannah River Company, AIKEN, SC (United States); Oji, L.N.

1997-11-14T23:59:59.000Z

204

Darlington tritium removal facility and station upgrading plant dynamic process simulation  

SciTech Connect (OSTI)

Ontario Power Generation Nuclear (OPGN) has a 4 x 880 MWe CANDU nuclear station at its Darlington Nuclear Div. located in Bowmanville. The station has been operating a Tritium Removal Facility (TRF) and a D{sub 2}O station Upgrading Plant (SUP) since 1989. Both facilities were designed with a Distributed Control System (DCS) and programmable logic controllers (PLC) for process control. This control system was replaced with a DCS only, in 1998. A dynamic plant simulator was developed for the Darlington TRF (DTRF) and the SUP, as part of the computer control system replacement. The simulator was used to test the new software, required to eliminate the PLCs. The simulator is now used for operator training and testing of process control software changes prior to field installation. Dynamic simulation will be essential for the ITER isotope separation system, where the process is more dynamic than the relatively steady-state DTRF process. This paper describes the development and application of the DTRF and SUP dynamic simulator, its benefits, architecture, and the operational experience with the simulator. (authors)

Busigin, A. [NITEK USA, Inc., 6405 NW 77 PL, Parkland, FL 33067 (United States); Williams, G. I. D.; Wong, T. C. W.; Kulczynski, D.; Reid, A. [Ontario Power Generation Nuclear, Box 4000, Bowmanville, ON L1C 3Z8 (Canada)

2008-07-15T23:59:59.000Z

205

Evaluation of the economic feasability of heavy oil production processes for West Sak Field.  

E-Print Network [OSTI]

??The West Sak heavy oil reservoir on the North Slope of Alaska represents a large potential domestic oil source which has not been fully developed… (more)

Wilkey, Jonathan E.

2012-01-01T23:59:59.000Z

206

Data acquisition and processing system at the NOVETTE laser fusion facility  

SciTech Connect (OSTI)

This paper describes the computer hardware and software used for acquisition and processing of data from experiments at the NOVETTE laser fusion facility. Nearly two hundred sensors are used to measure the performance of millimeter extent targets irradiated by multi-kilojoule laser pulses. Sensor output is recorded on CAMAC based digitzers, CCD arrays, and film. CAMAC instrument outputs are acquired and collected by a network of LSI-11 microprocessors centrally controlled by a VAX 11/780. The user controls the system through menus presented on color video displays equipped with touch panels. The control VAX collects data from all microprocessors and CCD arrays and stores them in a file for transport to a second VAX 11/780 which is used for processing and final analysis. Transfer is done through a high speed fiber-optic link. Relational data bases are used extensively in the processing and archiving of data.

Averbach, J.M.; Kroepfl, D.J.; Severyn, J.R.

1983-02-01T23:59:59.000Z

207

First Results from the CARIBU Facility: Mass Measurements on the r-Process Path  

E-Print Network [OSTI]

The Canadian Penning Trap mass spectrometer has made mass measurements of 33 neutron-rich nuclides provided by the new Californium Rare Isotope Breeder Upgrade (CARIBU) facility at Argonne National Laboratory. The studied region includes the 132Sn double shell closure and ranges in Z from In to Cs, with Sn isotopes measured out to A = 135, and the typical measurement precision is at the 100 ppb level or better. The region encompasses a possible major waiting point of the astrophysical r process, and the impact of the masses on the r process is shown through a series of simulations. These first-ever simulations with direct mass information on this waiting point show significant increases in waiting time at Sn and Sb in comparison with commonly used mass models, demonstrating the inadequacy of existing models for accurate r-process calculations.

J. Van Schelt; D. Lascar; G. Savard; J. A. Clark; P. F. Bertone; S. Caldwell; A. Chaudhuri; 1 A. F. Levand; G. Li; G. E. Morgan; R. Orford; R. E. Segel; K. S. Sharma; M. G. Sternberg

2013-07-01T23:59:59.000Z

208

Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs  

SciTech Connect (OSTI)

This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

2009-01-07T23:59:59.000Z

209

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

210

Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory  

SciTech Connect (OSTI)

Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

Goen, L.K. [Los Alamos National Lab., NM (United States); Salmon, M.W. [EQE International, Irwine, CA (United States)

1995-12-01T23:59:59.000Z

211

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

212

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

213

IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION  

SciTech Connect (OSTI)

During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

Jantzen, C.; Johnson, F.

2012-06-05T23:59:59.000Z

214

INSTALLATION OF BUBBLERS IN THE SAVANNAH RIVER SITED DEFENSE WASTE PROCESSING FACILITY MELTER  

SciTech Connect (OSTI)

Savannah River Remediation (SRR) LLC assumed the liquid waste contract at the Savannah River Site (SRS) in the summer of 2009. The main contractual agreement was to close 22 High Level Waste (HLW) tanks in eight years. To achieve this aggressive commitment, faster waste processing throughout the SRS liquid waste facilities will be required. Part of the approach to achieve faster waste processing is to increase the canister production rate of the Defense Waste Processing Facility (DWPF) from approximately 200 canisters filled with radioactive waste glass per year to 400 canisters per year. To reach this rate for melter throughput, four bubblers were installed in the DWPF Melter in the late summer of 2010. This effort required collaboration between SRR, SRR critical subcontractor EnergySolutions, and Savannah River Nuclear Solutions, including the Savannah River National Laboratory (SRNL). The tasks included design and fabrication of the bubblers and related equipment, testing of the bubblers for various technical issues, the actual installation of the bubblers and related equipment, and the initial successful operation of the bubblers in the DWPF Melter.

Smith, M.; Iverson, D.

2010-12-08T23:59:59.000Z

215

Supporting technology for enhanced oil recovery: EOR thermal processes. Seventh Amendment and Extension to Annex 4, Enhanced oil recovery thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Seventh Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 50 through 55. The first, second, third, fourth, fifth, sixth and seventh reports on Annex IV, Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5 and IV-6 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/l/SP, DOE/BC-90/l/SP, and DOE/BC-92/l/SP) contain the results for the first 49 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, and October 1991, respectively. Each task report has been processed separately for inclusion in the Energy Science and Technology Database.

Reid, T B [USDOE Bartlesville Project Office, OK (United States)] [USDOE Bartlesville Project Office, OK (United States); Colonomos, P [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)] [INTEVEP, Filial de Petroleos de Venezuela, SA, Caracas (Venezuela)

1993-02-01T23:59:59.000Z

216

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995  

SciTech Connect (OSTI)

A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

NONE

1995-12-31T23:59:59.000Z

217

RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) began stabilizing high level waste (HLW) in a glass matrix in 1996. Over the past few years, there have been several process and equipment improvements at the DWPF to increase the rate at which the high level waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process to upsets, thereby minimizing downtime and increasing production. Improvements due to optimization of waste throughput with increased HLW loading of the glass resulted in a 6% waste throughput increase based upon operational efficiencies. Improvements in canister production include the pour spout heated bellows liner (5%), glass surge (siphon) protection software (2%), melter feed pump software logic change to prevent spurious interlocks of the feed pump with subsequent dilution of feed stock (2%) and optimization of the steam atomized scrubber (SAS) operation to minimize downtime (3%) for a total increase in canister production of 12%. A number of process recovery efforts have allowed continued operation. These include the off gas system pluggage and restoration, slurry mix evaporator (SME) tank repair and replacement, remote cleaning of melter top head center nozzle, remote melter internal inspection, SAS pump J-Tube recovery, inadvertent pour scenario resolutions, dome heater transformer bus bar cooling water leak repair and new Infra-red camera for determination of glass height in the canister are discussed.

Odriscoll, R; Allan Barnes, A; Jim Coleman, J; Timothy Glover, T; Robert Hopkins, R; Dan Iverson, D; Jeff Leita, J

2008-01-15T23:59:59.000Z

218

Defense Waste Processing Facility (DWPF), Modular CSSX Unit (CSSX), and Waste Transfer Line System of Salt Processing Program (U)  

SciTech Connect (OSTI)

All of the waste streams from ARP, MCU, and SWPF processes will be sent to DWPF for vitrification. The impact these new waste streams will have on DWPF's ability to meet its canister production goal and its ability to support the Salt Processing Program (ARP, MCU, and SWPF) throughput needed to be evaluated. DWPF Engineering and Operations requested OBU Systems Engineering to evaluate DWPF operations and determine how the process could be optimized. The ultimate goal will be to evaluate all of the Liquid Radioactive Waste (LRW) System by developing process modules to cover all facilities/projects which are relevant to the LRW Program and to link the modules together to: (1) study the interfaces issues, (2) identify bottlenecks, and (3) determine the most cost effective way to eliminate them. The results from the evaluation can be used to assist DWPF in identifying improvement opportunities, to assist CBU in LRW strategic planning/tank space management, and to determine the project completion date for the Salt Processing Program.

CHANG, ROBERT

2006-02-02T23:59:59.000Z

219

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This report describes the progress of the project ''Development and Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the second project year (October 1, 2003--September 30, 2004). There are three main tasks in this research project. Task 1 is scaled physical model study of GAGD process. Task 2 is further development of vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. In Section I, preliminary design of the scaled physical model using the dimensional similarity approach has been presented. Scaled experiments on the current physical model have been designed to investigate the effect of Bond and capillary numbers on GAGD oil recovery. Experimental plan to study the effect of spreading coefficient and reservoir heterogeneity has been presented. Results from the GAGD experiments to study the effect of operating mode, Bond number and capillary number on GAGD oil recovery have been reported. These experiments suggest that the type of the gas does not affect the performance of GAGD in immiscible mode. The cumulative oil recovery has been observed to vary exponentially with Bond and capillary numbers, for the experiments presented in this report. A predictive model using the bundle of capillary tube approach has been developed to predict the performance of free gravity drainage process. In Section II, a mechanistic Parachor model has been proposed for improved prediction of IFT as well as to characterize the mass transfer effects for miscibility development in reservoir crude oil-solvent systems. Sensitivity studies on model results indicate that provision of a single IFT measurement in the proposed model is sufficient for reasonable IFT predictions. An attempt has been made to correlate the exponent (n) in the mechanistic model with normalized solute compositions present in both fluid phases. IFT measurements were carried out in a standard ternary liquid system of benzene, ethanol and water using drop shape analysis and capillary rise techniques. The experimental results indicate strong correlation among the three thermodynamic properties solubility, miscibility and IFT. The miscibility determined from IFT measurements for this ternary liquid system is in good agreement with phase diagram and solubility data, which clearly indicates the sound conceptual basis of VIT technique to determine fluid-fluid miscibility. Model fluid systems have been identified for VIT experimentation at elevated pressures and temperatures. Section III comprises of the experimental study aimed at evaluating the multiphase displacement characteristics of the various gas injection EOR process performances using Berea sandstone cores. During this reporting period, extensive literature review was completed to: (1) study the gravity drainage concepts, (2) identify the various factors influencing gravity stable gas injection processes, (3) identify various multiphase mechanisms and fluid dynamics operative during the GAGD process, and (4) identify important dimensionless groups governing the GAGD process performance. Furthermore, the dimensional analysis of the GAGD process, using Buckingham-Pi theorem to isolate the various dimensionless groups, as well as experimental design based on these dimensionless quantities have been completed in this reporting period. On the experimental front, recommendations from previous WAG and CGI have been used to modify the experimental protocol. This report also includes results from scaled preliminary GAGD displacements as well as the details of the planned GAGD corefloods for the next quarter. The technology transfer activities have mainly consisted of preparing technical papers, progress reports and discussions with industry personnel for possible GAGD field tests.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Amit P. Sharma

2004-10-01T23:59:59.000Z

220

CO2 Huff-n-Puff Process in a Light Oil Shallow Shelf Carbonate Reservoir  

SciTech Connect (OSTI)

The application cyclic CO2, often referred to as the CO2 Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO2 Huff-n-Puff process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in capital-intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in a attempt to develop the CO2 Huff-n-Puff process in the Grayburg and San Andres formations which are light oil, shallow shelf carbonate reservoirs that exist throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir.

Boomer, R.J.; Cole, R.; Kovar, M.; Prieditis, J.; Vogt, J.; Wehner, S.

1999-02-24T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Mercury Reduction and Removal from High Level Waste at the Defense Waste Processing Facility - 12511  

SciTech Connect (OSTI)

The Defense Waste Processing Facility processes legacy nuclear waste generated at the Savannah River Site during production of enriched uranium and plutonium required by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. One of the constituents in the nuclear waste is mercury, which is present because it served as a catalyst in the dissolution of uranium-aluminum alloy fuel rods. At high temperatures mercury is corrosive to off-gas equipment, this poses a major challenge to the overall vitrification process in separating mercury from the waste stream prior to feeding the high temperature melter. Mercury is currently removed during the chemical process via formic acid reduction followed by steam stripping, which allows elemental mercury to be evaporated with the water vapor generated during boiling. The vapors are then condensed and sent to a hold tank where mercury coalesces and is recovered in the tank's sump via gravity settling. Next, mercury is transferred from the tank sump to a purification cell where it is washed with water and nitric acid and removed from the facility. Throughout the chemical processing cell, compounds of mercury exist in the sludge, condensate, and off-gas; all of which present unique challenges. Mercury removal from sludge waste being fed to the DWPF melter is required to avoid exhausting it to the environment or any negative impacts to the Melter Off-Gas system. The mercury concentration must be reduced to a level of 0.8 wt% or less before being introduced to the melter. Even though this is being successfully accomplished, the material balances accounting for incoming and collected mercury are not equal. In addition, mercury has not been effectively purified and collected in the Mercury Purification Cell (MPC) since 2008. A significant cleaning campaign aims to bring the MPC back up to facility housekeeping standards. Two significant investigations are being undertaken to restore mercury collection. The SMECT mercury pump has been removed from the tank and will be functionally tested. Also, research is being conducted by the Savannah River National Laboratory to determine the effects of antifoam addition on the behavior of mercury. These path forward items will help us better understand what is occurring in the mercury collection system and ultimately lead to an improved DWPF production rate and mercury recovery rate. (authors)

Behrouzi, Aria [Savannah River Remediation, LLC (United States); Zamecnik, Jack [Savannah River National Laboratory, Aiken, South Carolina, 29808 (United States)

2012-07-01T23:59:59.000Z

222

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

223

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents [OSTI]

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

224

Evolution of seismic velocities in heavy oil sand reservoirs during thermal recovery process  

E-Print Network [OSTI]

In thermally enhanced recovery processes like cyclic steam stimulation (CSS) or steam assisted gravity drainage (SAGD), continuous steam injection entails changes in pore fluid, pore pressure and temperature in the rock reservoir, that are most often unconsolidated or weakly consolidated sandstones. This in turn increases or decreases the effective stresses and changes the elastic properties of the rocks. Thermally enhanced recovery processes give rise to complex couplings. Numerical simulations have been carried out on a case study so as to provide an estimation of the evolution of pressure, temperature, pore fluid saturation, stress and strain in any zone located around the injector and producer wells. The approach of Ciz and Shapiro (2007) - an extension of the poroelastic theory of Biot-Gassmann applied to rock filled elastic material - has been used to model the velocity dispersion in the oil sand mass under different conditions of temperature and stress. A good agreement has been found between these pre...

Nauroy, Jean-François; Guy, N; Baroni, Axelle; Delage, Pierre; Mainguy, Marc; 10.2516/ogst/2012027

2013-01-01T23:59:59.000Z

225

VERIFICATION OF THE DEFENSE WASTE PROCESSING FACILITY'S (DWPF) PROCESS DIGESTION METHOD FOR THE SLUDGE BATCH 7A QUALIFICATION SAMPLE  

SciTech Connect (OSTI)

For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs confirmation of the applicability of the digestion method to be used by the DWPF lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt samples and SRAT product process control samples. DWPF SRAT samples are typically dissolved using a room temperature HF-HNO{sub 3} acid dissolution (i.e., DWPF Cold Chem Method, see DWPF Procedure SW4-15.201) and then analyzed by inductively coupled plasma - atomic emission spectroscopy (ICP-AES). This report contains the results and comparison of data generated from performing the Aqua Regia (AR), Sodium peroxide/Hydroxide Fusion (PF) and DWPF Cold Chem (CC) method digestions of Sludge Batch 7a (SB7a) SRAT Receipt and SB7a SRAT Product samples. The SB7a SRAT Receipt and SB7a SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constituates the SB7a Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 6 (SB6), to form the Sb7a Blend composition.

Click, D.; Edwards, T.; Jones, M.; Wiedenman, B.

2011-03-14T23:59:59.000Z

226

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect (OSTI)

The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Turner, J.P.; Hasfurther, V.

1992-05-04T23:59:59.000Z

227

INVESTIGATION OF MULTISCALE AND MULTIPHASE FLOW, TRANSPORT AND REACTION IN HEAVY OIL RECOVERY PROCESSES  

SciTech Connect (OSTI)

This is final report for contract DE-AC26-99BC15211. The report describes progress made in the various thrust areas of the project, which include internal drives for oil recovery, vapor-liquid flows, combustion and reaction processes and the flow of fluids with yield stress. The report consists mainly of a compilation of various topical reports, technical papers and research reports published produced during the three-year project, which ended on May 6, 2002 and was no-cost extended to January 5, 2003. Advances in multiple processes and at various scales are described. In the area of internal drives, significant research accomplishments were made in the modeling of gas-phase growth driven by mass transfer, as in solution-gas drive, and by heat transfer, as in internal steam drives. In the area of vapor-liquid flows, we studied various aspects of concurrent and countercurrent flows, including stability analyses of vapor-liquid counterflow, and the development of novel methods for the pore-network modeling of the mobilization of trapped phases and liquid-vapor phase changes. In the area of combustion, we developed new methods for the modeling of these processes at the continuum and pore-network scales. These models allow us to understand a number of important aspects of in-situ combustion, including steady-state front propagation, multiple steady-states, effects of heterogeneity and modes of combustion (forward or reverse). Additional aspects of reactive transport in porous media were also studied. Finally, significant advances were made in the flow and displacement of non-Newtonian fluids with Bingham plastic rheology, which is characteristic of various heavy oil processes. Various accomplishments in generic displacements in porous media and corresponding effects of reservoir heterogeneity are also cited.

Yannis C. Yortsos

2003-02-01T23:59:59.000Z

228

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production.  

E-Print Network [OSTI]

??Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry… (more)

Brown, Duncan

2013-01-01T23:59:59.000Z

229

2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS IN NATURALLY FRACTURED  

E-Print Network [OSTI]

, followed by waterflooding, were performed at reservoir conditions to investigate rock wettability. A two Berea and Spraberry cores at reservoir conditions to illustrate the actual process of waterflooding- 31 - 2. INVESTIGATION OF CRUDE OIL/BRINE/ROCK INTERACTION 2.1 STUDY OF WATERFLOODING PROCESS

Schechter, David S.

230

Vectorially photoinduced electron-transfer processes across water-in-oil interfaces of microemulsions  

SciTech Connect (OSTI)

Artificial photosynthetic devices are potential fuel sources. The basic idea in the design of such devices is a photosensitized electron-transfer that yields chemical species capable of reducing and oxidizing water to hydrogen and oxygen. A fundamental difficulty in effecting this transfer is the thermodynamically favored back reactions of the intermediary redox species. An interfacial model composed of a water-in-oil microemulsion is suggested to provide the separation of these redox species, thereby preventing back-reactions. This model is designed to accomplish the photodecomposition of water in two separate water-in-oil microemulsions coupled by a redox reaction. Phase-transfer of one of the redox products from the water-in-oil interface to the continuous organic phase is the principle by which separation is achieved. The oxidation and reduction sites of the general model have been constructed. One system includes the photosensitized oxidation of a donor, EDTA, solubilized in the water pool, benzylnicotinamide acts as a primary acceptor that mediates by the phase transfer principle the reduction of a secondary acceptor, dimethylamino-azobenzene, solubilized in the continuous organic phase. In system two, involving the photosensitized reduction of methyl viologen, by tris(2,2'bipyridine)Ru(2+), thioophenol is used as the donor and its oxidation product is phase transferred to the continuous organic phase. The photoinduced processes accomplished in the two systems proceed along an uphill gradient of free energy. Two water soluble zinc-porphyrins can substitute for the Ru(2+) complex in the second system. As the two Zn-porphyrins are oppositely charged, the effect of electrostatic interactions on the quantum yields of viologen reduction could be evaluated. The results suggest that the surface charge of the wateroil interface strongly influences the efficiency of electron-transfer.

Willner, I.; Otvos, J.W.; Calvin, M.

1980-07-01T23:59:59.000Z

231

Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area  

SciTech Connect (OSTI)

This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

Amerine, D.B.

1982-09-01T23:59:59.000Z

232

Distillate fuel-oil processing for phosphoric acid fuel-cell power plants  

SciTech Connect (OSTI)

The current efforts to develop distillate oil-steam reforming processes are reviewed, and the applicability of these processes for integration with the fuel cell are discussed. The development efforts can be grouped into the following processing approaches: high-temperature steam reforming (HTSR); autothermal reforming (ATR); autothermal gasification (AG); and ultra desulfurization followed by steam reforming. Sulfur in the feed is a key problem in the process development. A majority of the developers consider sulfur as an unavoidable contaminant of distillate fuel and are aiming to cope with it by making the process sulfur-tolerant. In the HTSR development, the calcium aluminate catalyst developed by Toyo Engineering represents the state of the art. United Technology (UTC), Engelhard, and Jet Propulsion Laboratory (JPL) are also involved in the HTSR research. The ATR of distillate fuel is investigated by UTC and JPL. The autothermal gasification (AG) of distillate fuel is being investigated by Engelhard and Siemens AG. As in the ATR, the fuel is catalytically gasified utilizing the heat generated by in situ partial combustion of feed, however, the goal of the AG is to accomplish the initial breakdown of the feed into light gases and not to achieve complete conversion to CO and H/sub 2/. For the fuel-cell integration, a secondary reforming of the light gases from the AG step is required. Engelhard is currently testing a system in which the effluent from the AG section enters the steam-reforming section, all housed in a single vessel. (WHK)

Ushiba, K. K.

1980-02-01T23:59:59.000Z

233

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This report describes the progress of the project ''Development And Optimization of Gas-Assisted Gravity Drainage (GAGD) Process for Improved Light Oil Recovery'' for the duration of the thirteenth project quarter (Oct 1, 2005 to Dec 30, 2005). There are three main tasks in this research project. Task 1 is a scaled physical model study of the GAGD process. Task 2 is further development of a vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 is determination of multiphase displacement characteristics in reservoir rocks. Section I reports experimental work designed to investigate wettability effects of porous medium, on secondary and tertiary mode GAGD performance. The experiments showed a significant improvement of oil recovery in the oil-wet experiments versus the water-wet runs, both in secondary as well as tertiary mode. When comparing experiments conducted in secondary mode to those run in tertiary mode an improvement in oil recovery was also evident. Additionally, this section summarizes progress made with regard to the scaled physical model construction and experimentation. The purpose of building a scaled physical model, which attempts to include various multiphase mechanics and fluid dynamic parameters operational in the field scale, was to incorporate visual verification of the gas front for viscous instabilities, capillary fingering, and stable displacement. Preliminary experimentation suggested that construction of the 2-D model from sintered glass beads was a feasible alternative. During this reporting quarter, several sintered glass mini-models were prepared and some preliminary experiments designed to visualize gas bubble development were completed. In Section II, the gas-oil interfacial tensions measured in decane-CO{sub 2} system at 100 F and live decane consisting of 25 mole% methane, 30 mole% n-butane and 45 mole% n-decane against CO{sub 2} gas at 160 F have been modeled using the Parachor and newly proposed mechanistic Parachor models. In the decane-CO{sub 2} binary system, Parachor model was found to be sufficient for interfacial tension calculations. The predicted miscibility from the Parachor model deviated only by about 2.5% from the measured VIT miscibility. However, in multicomponent live decane-CO{sub 2} system, the performance of the Parachor model was poor, while good match of interfacial tension predictions has been obtained experimentally using the proposed mechanistic Parachor model. The predicted miscibility from the mechanistic Parachor model accurately matched with the measured VIT miscibility in live decane-CO2 system, which indicates the suitability of this model to predict miscibility in complex multicomponent hydrocarbon systems. In the previous reports to the DOE (15323R07, Oct 2004; 15323R08, Jan 2005; 15323R09, Apr 2005; 15323R10, July 2005 and 154323, Oct 2005), the 1-D experimental results from dimensionally scaled GAGD and WAG corefloods were reported for Section III. Additionally, since Section I reports the experimental results from 2-D physical model experiments; this section attempts to extend this 2-D GAGD study to 3-D (4-phase) flow through porous media and evaluate the performance of these processes using reservoir simulation. Section IV includes the technology transfer efforts undertaken during the quarter. This research work resulted in one international paper presentation in Tulsa, OK; one journal publication; three pending abstracts for SCA 2006 Annual Conference and an invitation to present at the Independents Day session at the IOR Symposium 2006.

Dandina N. Rao; Subhash C. Ayirala; Madhav M. Kulkarni; Thaer N.N. Mahmoud; Wagirin Ruiz Paidin

2006-01-01T23:59:59.000Z

234

Fluid diversion and sweep improvement with chemical gels in oil recovery processes  

SciTech Connect (OSTI)

The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work will establish how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. This report describes progress made during the first year of this three-year study the following tasks: gel screening studies; impact of gelation pH, rock permeability, and lithology on the performance of a monomer-based gel; preliminary study of the permeability reduction for CO{sub 2} and water using a resorcinol-formaldehyde gel; preliminary study of permeability reduction for oil and water using a resorcinol-formaldehyde gel; rheology of Cr(III)-xanthan gel and gelants in porous media; impact of diffusion, dispersion, and viscous fingering on gel placement in injection wells; examination of flow-profile changes for field applications of gel treatments in injection wells; and placement of gels in production wells. Papers have been indexed separately for inclusion on the data base.

Seright, F.S.; Martin, F.D.

1991-04-01T23:59:59.000Z

235

A study of the effect of process variables on forward combustion oil recovery  

E-Print Network [OSTI]

LIST OF FIGURES AND TABLES Figure Pa ge Schematic Diagram of Combustion Tube Apparatus 12 Fuel Concentration vs. Clay Content in Matri~. 27 Fuel Concentration vs. Clay Content in Matrix Midway-Sunset Crude Oil 28 Fuel Concentration vs. Oil... Gravity . Fuel Concentration vs. Oil Gravity . Fuel Concentration vs. Initial Oil Saturation. 30 31 33 Fuel Concentration vs. Average Air Injection Pressure 35 Fuel Concentration vs. Average Axial Burning Front Temperature . 37 Mole Fraction...

Berry, Holland James

1966-01-01T23:59:59.000Z

236

Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility  

E-Print Network [OSTI]

Suncor Energy Inc. developed a long term plan to expand production from its oil sands operation north of Fort McMurray, Alberta up to 500,000 to 550,000 barrels/day in 2010-2012, while reducing the per barrel energy usage, emissions, and long term...

Booker, G.; Robinson, J.

237

Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950`s to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life.

Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

1997-12-31T23:59:59.000Z

238

Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study  

SciTech Connect (OSTI)

This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

Moore, L.; Shanteau, C.

1992-12-01T23:59:59.000Z

239

Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study  

SciTech Connect (OSTI)

This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

Moore, L.; Shanteau, C.

1992-12-01T23:59:59.000Z

240

Eco Oil 4  

SciTech Connect (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect (OSTI)

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

242

Supercritical fluid extraction of bitumen free solids separated from Athabasca oil sand feed and hot water process tailings pond sludge  

SciTech Connect (OSTI)

The presence of strongly bound organic matter (SOM), in association with certain solids fractions, causes serious problems in the processability of Athabasca oil sands as well as in the settling and compaction of hot water process tailing pond sludge. It has been demonstrated that a substantial amount of this SOM can be separated from oil sands feed and sludge solids, after removal of bitumen by toluene, using a supercritical fluid extraction (SFE) method. The extracted material is soluble in common organic solvents which allows a direct comparison, between the SOM separated from oil sands and sludges, from the point of view of both gross analysis of the major compound types and detailed analysis of chemical structures.

Kotlyar, L.S.; Sparks, B.D.; Woods, J.R.; Ripmeester, J.A. (National Research Council of Canada, Ottawa, ON (Canada). Div. of Chemistry)

1990-01-01T23:59:59.000Z

243

DEVELOPMENT AND OPTIMIZATION OF GAS-ASSISTED GRAVITY DRAINAGE (GAGD) PROCESS FOR IMPROVED LIGHT OIL RECOVERY  

SciTech Connect (OSTI)

This is the first Annual Technical Progress Report being submitted to the U. S. Department of Energy on the work performed under the Cooperative Agreement DE-FC26-02NT15323. This report follows two other progress reports submitted to U.S. DOE during the first year of the project: The first in April 2003 for the project period from October 1, 2002 to March 31, 2003, and the second in July 2003 for the period April 1, 2003 to June 30, 2003. Although the present Annual Report covers the first year of the project from October 1, 2002 to September 30, 2003, its contents reflect mainly the work performed in the last quarter (July-September, 2003) since the work performed during the first three quarters has been reported in detail in the two earlier reports. The main objective of the project is to develop a new gas-injection enhanced oil recovery process to recover the oil trapped in reservoirs subsequent to primary and/or secondary recovery operations. The project is divided into three main tasks. Task 1 involves the design and development of a scaled physical model. Task 2 consists of further development of the vanishing interfacial tension (VIT) technique for miscibility determination. Task 3 involves the determination of multiphase displacement characteristics in reservoir rocks. Each technical progress report, including this one, reports on the progress made in each of these tasks during the reporting period. Section I covers the scaled physical model study. A survey of literature in related areas has been conducted. Test apparatus has been under construction throughout the reporting period. A bead-pack visual model, liquid injection system, and an image analysis system have been completed and used for preliminary experiments. Experimental runs with decane and paraffin oil have been conducted in the bead pack model. The results indicate the need for modifications in the apparatus, which are currently underway. A bundle of capillary tube model has been considered and formulated aiming to reveal the interplay of the viscous, interfacial and gravity forces and to predict the gravity drainage performance. Scaling criteria for the scaled physical model design have been proposed based on an inspectional analysis. In Section II, equation of state (EOS) calculations were extended to study the effect of different tuning parameters on MMP for two reservoir crude oils of Rainbow Keg River and Terra Nova. This study indicates that tuning of EOS may not always be advisable for miscibility determination. Comparison of IFT measurements for benzene in water, ethanol mixtures with the solubility data from the literature showed that a strong mutual relationship between these two thermodynamic properties exists. These preliminary experiments indicate applicability of the new vanishing interfacial tension (VIT) technique to determine miscibility of ternary liquid systems. The VIT experimental apparatus is under construction with considerations of expanded capacity of using equilibrated fluids and a new provision for low IFT measurement in gas-oil systems. In Section III, recommendations in the previous progress reports have been investigated in this reporting period. WAG coreflood experiments suggest the use of ''Hybrid''-WAG type floods for improved CO{sub 2} utilization factors and recoveries. The effect of saturating the injection water with CO{sub 2} for core-floods has been investigated further in this quarter. Miscible WAG floods using CO{sub 2} saturated brine showed higher recoveries (89.2% ROIP) compared to miscible WAG floods using normal brine (72.5%). Higher tertiary recovery factors (TRF) were also observed for WAG floods using CO{sub 2} saturated brine due to improved mobility ratio and availability of CO{sub 2}. Continued experimentation for evaluation of both, ''Hybrid''-WAG and gravity stable type displacements, in Berea sandstone cores using synthetic as well as real reservoir fluids are planned for the next quarter.

Dandina N. Rao

2003-10-01T23:59:59.000Z

244

ANION ANALYSES BY ION CHROMATOGRAPHY FOR THE ALTERNATE REDUCTANT DEMONSTRATION FOR THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

The Process Science Analytical Laboratory (PSAL) at the Savannah River National Laboratory was requested by the Defense Waste Processing Facility (DWPF) to develop and demonstrate an Ion Chromatography (IC) method for the analysis of glycolate, in addition to eight other anions (fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate and phosphate) in Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) samples. The method will be used to analyze anions for samples generated from the Alternate Reductant Demonstrations to be performed for the DWPF at the Aiken County Technology Laboratory (ACTL). The method is specific to the characterization of anions in the simulant flowsheet work. Additional work will be needed for the analyses of anions in radiological samples by Analytical Development (AD) and DWPF. The documentation of the development and demonstration of the method fulfills the third requirement in the TTQAP, SRNL-RP-2010-00105, 'Task Technical and Quality Assurance Plan for Glycolic-Formic Acid Flowsheet Development, Definition and Demonstrations Tasks 1-3'.

Best, D.

2010-08-04T23:59:59.000Z

245

Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility  

SciTech Connect (OSTI)

Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the PAFDs in an accessible format that could be interfaced by various programs. After evaluating several commercial relational database and graphing software packages, VISIO Enterprise was selected. LANL is in the process of completing conversion of the existing PAFDs into VISIO Enterprise. A number of the PAFDs have been converted to VISIO Enterprise, and the data from the drawings have been exported to an ACCESS database. After the conversion has taken place, the data contained in the PAFDs will be accessible for various programs. The data that was once stored in PowerPoint will now be available for tools, including expert analysis, propagation of a variance, SNM accountability, inventory difference analysis, measurement control, and other analysis tools that have yet to be identified. Converting from the PowerPoint format to a drawing stored as a relational database will improve the ability of plant personnel to interface with the PAFD.

Knepper, P.; Whiteson, R.; Strittmatter, R.; Mousseau, K.

1999-07-01T23:59:59.000Z

246

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

247

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

DC t Total facilities investment cost of production (capitalaverage of facilities investment cost of production for allThe total “facilities investment cost” of oil production on

Leighty, Wayne

2008-01-01T23:59:59.000Z

248

6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF/NTNU, Trondheim NORWAY  

E-Print Network [OSTI]

INTRODUCTION The efficiency of gas-liquid rectors like bubble columns, air-lift or agitated stirred reactors. Especially in case of fast reactions the effi- ciency of chemical reactors significantly depends on the mass6th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries SINTEF

Bothe, Dieter

249

Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas  

E-Print Network [OSTI]

Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

Ge, Zigang

250

Qualification of the Nippon Instrumentation for use in Measuring Mercury at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The Nippon Mercury/RA-3000 system installed in 221-S M-14 has been qualified for use. The qualification was a side-by-side comparison of the Nippon Mercury/RA-3000 system with the currently used Bacharach Mercury Analyzer. The side-by-side testing included standards for instrument calibration verifications, spiked samples and unspiked samples. The standards were traceable back to the National Institute of Standards and Technology (NIST). The side-by-side work included the analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples. With the qualification of the Nippon Mercury/RA-3000 system in M-14, the DWPF lab will be able to perform a head to head comparison of a second Nippon Mercury/RA-3000 system once the system is installed. The Defense Waste Processing Facility (DWPF) analyzes receipt and product samples from the Sludge Receipt and Adjustment Tank (SRAT) to determine the mercury (Hg) concentration in the sludge slurry. The SRAT receipt is typically sampled and analyzed for the first ten SRAT batches of a new sludge batch to obtain an average Hg concentration. This average Hg concentration is then used to determine the amount of steam stripping required during the concentration/reflux step of the SRAT cycle to achieve a less than 0.6 wt% Hg in the SRAT product solids. After processing is complete, the SRAT product is sampled and analyzed for mercury to ensure that the mercury concentration does not exceed the 0.45 wt% limit in the Slurry Mix Evaporator (SME). The DWPF Laboratory utilizes Bacharach Analyzers to support these Hg analyses at this facility. These analyzers are more than 10 years old, and they are no longer supported by the manufacturer. Due to these difficulties, the Bacharach Analyzers are to be replaced by new Nippon Mercury/RA-3000 systems. DWPF issued a Technical Task Request (TTR) for the Savannah River National Laboratory (SRNL) to assist in the qualification of the new systems. SRNL prepared a task technical and quality assurance (TT&QA) plan that outlined the activities that are necessary and sufficient to meet the objectives of the TTR. In addition, TT&QA plan also included a test plan that provided guidance to the DWPF Lab in collecting the data needed to qualify the new Nippon Mercury/RA-3000 systems.

Edwards, T.; Mahannah, R.

2011-07-05T23:59:59.000Z

251

Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils  

SciTech Connect (OSTI)

Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

2014-06-03T23:59:59.000Z

252

OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes 8/24/98  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to ensure that the contractor has provided for an effective interface between facility operations personnel and personnel responsible for operation of...

253

CONTAMINATED PROCESS EQUIPMENT REMOVAL FOR THE D&D OF THE 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINISHING PLANT (PFP)  

SciTech Connect (OSTI)

This paper describes the unique challenges encountered and subsequent resolutions to accomplish the deactivation and decontamination of a plutonium ash contaminated building. The 232-Z Contaminated Waste Recovery Process Facility at the Plutonium Finishing Plant was used to recover plutonium from process wastes such as rags, gloves, containers and other items by incinerating the items and dissolving the resulting ash. The incineration process resulted in a light-weight plutonium ash residue that was highly mobile in air. This light-weight ash coated the incinerator's process equipment, which included gloveboxes, blowers, filters, furnaces, ducts, and filter boxes. Significant airborne contamination (over 1 million derived air concentration hours [DAC]) was found in the scrubber cell of the facility. Over 1300 grams of plutonium held up in the process equipment and attached to the walls had to be removed, packaged and disposed. This ash had to be removed before demolition of the building could take place.

HOPKINS, A.M.; MINETTE, M.J.; KLOS, D.B.

2007-01-25T23:59:59.000Z

254

Oil and Gas Environmental Review and Approval Processes (New Brunswick, Canada)  

Broader source: Energy.gov [DOE]

Oil and natural gas companies engaged in exploration, development and production in New Brunswick will be required by the Department of Environment to undergo a Phased Environmental Impact...

255

Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, October, November, December 1983  

SciTech Connect (OSTI)

Retort No. 27 was ignited on August 11, 1983 and by December 31 had completed 139 days of operation and produced 11,420 barrels of oil. Retort No. 28 was ignited on October 18, 1983 and on December 31 had completed 74 days of operation and produced 5,285 barrels of oil. The off-gas processing plants for the two retorts was completed and put through a shakedown run. Concentration levels of H/sub 2/S and NH/sub 3/ in the retort off gas did not warrant plant operation in the fourth quarter. Environmental studies are reported.

Henderson, K.B.

1984-03-01T23:59:59.000Z

256

DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center  

SciTech Connect (OSTI)

A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

Farnsworth, R.K.; Mishima, J.

1988-12-01T23:59:59.000Z

257

CHARACTERIZATION OF A PRECIPITATE REACTOR FEED TANK (PRFT) SAMPLE FROM THE DEFENSE WASTE PROCESSING FACILITY (DWPF)  

SciTech Connect (OSTI)

A sample of from the Defense Waste Processing Facility (DWPF) Precipitate Reactor Feed Tank (PRFT) was pulled and sent to the Savannah River National Laboratory (SRNL) in June of 2013. The PRFT in DWPF receives Actinide Removal Process (ARP)/ Monosodium Titanate (MST) material from the 512-S Facility via the 511-S Facility. This 2.2 L sample was to be used in small-scale DWPF chemical process cell testing in the Shielded Cells Facility of SRNL. A 1L sub-sample portion was characterized to determine the physical properties such as weight percent solids, density, particle size distribution and crystalline phase identification. Further chemical analysis of the PRFT filtrate and dissolved slurry included metals and anions as well as carbon and base analysis. This technical report describes the characterization and analysis of the PRFT sample from DWPF. At SRNL, the 2.2 L PRFT sample was composited from eleven separate samples received from DWPF. The visible solids were observed to be relatively quick settling which allowed for the rinsing of the original shipping vials with PRFT supernate on the same day as compositing. Most analyses were performed in triplicate except for particle size distribution (PSD), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and thermogravimetric analysis (TGA). PRFT slurry samples were dissolved using a mixed HNO3/HF acid for subsequent Inductively Coupled Plasma Atomic Emission Spectroscopy (ICPAES) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) analyses performed by SRNL Analytical Development (AD). Per the task request for this work, analysis of the PRFT slurry and filtrate for metals, anions, carbon and base were primarily performed to support the planned chemical process cell testing and to provide additional component concentrations in addition to the limited data available from DWPF. Analysis of the insoluble solids portion of the PRFT slurry was aimed at detailed characterization of these solids (TGA, PSD, XRD and SEM) in support of the Salt IPT chemistry team. The overall conclusions from analyses performed in this study are that the PRFT slurry consists of 0.61 Wt.% insoluble MST solids suspended in a 0.77 M [Na+] caustic solution containing various anions such as nitrate, nitrite, sulfate, carbonate and oxalate. The corresponding measured sulfur level in the PRFT slurry, a critical element for determining how much of the PRFT slurry gets blended into the SRAT, is 0.437 Wt.% TS. The PRFT slurry does not contain insoluble oxalates nor significant quantities of high activity sludge solids. The lack of sludge solids has been alluded to by the Salt IPT chemistry team in citing that the mixing pump has been removed from Tank 49H, the feed tank to ARP-MCU, thus allowing the sludge solids to settle out. ? The PRFT aqueous slurry from DWPF was found to contain 5.96 Wt.% total dried solids. Of these total dried solids, relatively low levels of insoluble solids (0.61 Wt.%) were measured. The densities of both the filtrate and slurry were 1.05 g/mL. ? Particle size distribution of the PRFT solids in filtered caustic simulant and XRD analysis of washed/dried PRFT solids indicate that the PRFT slurry contains a bimodal distribution of particles in the range of 1 and 6 ?m and that the particles contain sodium titanium oxide hydroxide Na2Ti2O4(OH)2 crystalline material as determined by XRD. These data are in excellent agreement with similar data obtained from laboratory sampling of vendor supplied MST. Scanning Electron Microscopy (SEM) combined with Energy Dispersive X-ray Spectroscopy (EDS) analysis of washed/dried PRFT solids shows the particles to be like previous MST analyses consisting of irregular shaped micron-sized solids consisting primarily of Na and Ti. ? Thermogravimetric analysis of the washed and unwashed PRFT solids shows that the washed solids are very similar to MST solids. The TGA mass loss signal for the unwashed solids shows similar features to TGA performed on cellulose nitrate filter paper indicating significant presence of the deteriorated filter

Crawford, C.; Bannochie, C.

2014-05-12T23:59:59.000Z

258

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Final report  

SciTech Connect (OSTI)

This report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten, the Proctor Gamble and the Arthur Kill sites, for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A separate Appendix provides supplemental material supporting the evaluations. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. 26 figs., 121 tabs.

NONE

1995-08-01T23:59:59.000Z

259

Investigation of the geokinetics horizontal in situ oil shale retorting process. Quarterly report, April, May, June 1980  

SciTech Connect (OSTI)

The Retort No. 18 burn was terminated on May 11, 1980. A total of 5547 barrels of shale oil or 46 percent of in-place resource was recovered from the retort. The EPA-DOE/LETC post-burn core sampling program is underway on Retort No. 16. Eleven core holes (of 18 planned) have been completed to date. Preliminary results indicate excellent core recovery has been achieved. Recovery of 702 ft of core was accomplished. The Prevention of Significant Deterioration (PSD) permit application was submitted to the EPA regional office in Denver for review by EPA and Utah air quality officials. The application for an Underground Injection Control (UIC) permit to authorize GKI to inject retort wastewater into the Mesa Verde Formation is being processed by the State of Utah. A hearing before the Board of Oil, Gas and Mining is scheduled in Salt Lake City, Utah, for July 22, 1980. Re-entry drilling on Retort No. 24 is progressing and placement of surface equipment is underway. Retort No. 25 blasthole drilling was completed and blast preparations are ongoing. Retort No. 25 will be blasted on July 18, 1980. The retort will be similar to Retort No. 24, with improvements in blasthole loading and detonation. US Patent No. 4,205,610 was assigned to GKI for a shale oil recovery process. Rocky Mountain Energy Company (RME) is evaluating oil shale holdings in Wyoming for application of the GKI process there.

Hutchinson, D.L.

1980-08-01T23:59:59.000Z

260

Integration of High Temperature Gas-cooled Reactor Technology with Oil Sands Processes  

SciTech Connect (OSTI)

This paper summarizes an evaluation of siting an HTGR plant in a remote area supplying steam, electricity and high temperature gas for recovery and upgrading of unconventional crude oil from oil sands. The area selected for this evaluation is the Alberta Canada oil sands. This is a very fertile and active area for bitumen recovery and upgrading with significant quantities piped to refineries in Canada and the U.S Additionally data on the energy consumption and other factors that are required to complete the evaluation of HTGR application is readily available in the public domain. There is also interest by the Alberta oil sands producers (OSP) in identifying alternative energy sources for their operations. It should be noted, however, that the results of this evaluation could be applied to any similar oil sands area.

L.E. Demick

2011-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect (OSTI)

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

262

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect (OSTI)

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

Not Available

1993-09-01T23:59:59.000Z

263

Project report: Tritiated oil repackaging highlighting the ISMS process. Historical radioactive and mixed waste disposal request validation and waste disposal project  

SciTech Connect (OSTI)

The Integrated Safety Management System (ISMS) was established to define a framework for the essential functions of managing work safely. There are five Safety Management Functions in the model of the ISMS process: (1) work planning, (2) hazards analysis, (3) hazards control, (4) work performance, and (5) feedback and improve. Recent activities at the Radioactive and Mixed Waste Management Facility underscored the importance and effectiveness of integrating the ISMS process to safely manage high-hazard work with a minimum of personnel in a timely and efficient manner. This report describes how project personnel followed the framework of the ISMS process to successfully repackage tritium-contaminated oils. The main objective was to open the boxes without allowing the gaseous tritium oxide, which had built up inside the boxes, to release into the sorting room. The boxes would be vented out the building stack until tritium concentration levels were acceptable. The carboys would be repackaged into 30-gallon drums and caulked shut. Sealing the drums would decrease the tritium off-gassing into the RMWMF.

Schriner, J.A. [Automated Solutions of Albuquerque, Inc., NM (United States)

1998-08-01T23:59:59.000Z

264

Supporting Technology for Enhanced Oil Recovery-EOR Thermal Processes Report IV-12  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Ninth Amendment and Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Agreement. The report is presented in sections (for each of the 6 tasks) and each section contains one or more reports prepared by various individuals or groups describing the results of efforts under each of the tasks. A statement of each task, taken from the agreement, is presented on the first page of each section. The tasks are numbered 62 through 67. The first, second, third, fourth, fifth, sixth, seventh, eight, and ninth reports on Annex IV, [Venezuela MEM/USA-DOE Fossil Energy Report IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, and IV-8 (DOE/BETC/SP-83/15, DOE/BC-84/6/SP, DOE/BC-86/2/SP, DOE/BC-87/2/SP, DOE/BC-89/1/SP, DOE/BC-90/1/SP) DOE/BC-92/1/SP, DOE/BC-93/3/SP, and DOE/BC-95/3/SP] contain the results from the first 61 tasks. Those reports are dated April 1983, August 1984, March 1986, July 1! 987, November 1988, December 1989, October 1991, February 1993, and March 1995 respectively.

Izequeido, Alexandor

2001-04-01T23:59:59.000Z

265

Fluid diversion and sweep improvement with chemical gels in oil recovery processes. Final report  

SciTech Connect (OSTI)

The objectives of this project were to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants were examined, including polymer-based gelants, a monomer-based gelant, and a colloidal-silica gelant. This research was directed at gel applications in water injection wells, in production wells, and in high-pressure gas floods. The work examined how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals included determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. During this three-year project, a number of theoretical analyses were performed to determine where gel treatments are expected to work best and where they are not expected to be effective. The most important, predictions from these analyses are presented. Undoubtedly, some of these predictions will be controversial. However, they do provide a starting point in establishing guidelines for the selection of field candidates for gel treatments. A logical next step is to seek field data that either confirm or contradict these predictions. The experimental work focused on four types of gels: (1) resorcinol-formaldehyde, (2) colloidal silica, (3) Cr{sup 3+}(chloride)-xanthan, and (4) Cr{sup 3+}(acetate)-polyacrylamide. All experiments were performed at 41{degrees}C.

Seright, R.S.; Martin, F.D.

1992-09-01T23:59:59.000Z

266

Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries  

SciTech Connect (OSTI)

Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the catalytic ligand species. Such conditions are likely to adversely impact the ability of the transferred mass to produce hydrogen at the same rate (per unit mass SRAT or SME slurry) as in the SRAT or SME vessels.

Koopman, D. C.

2013-01-22T23:59:59.000Z

267

Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility  

SciTech Connect (OSTI)

Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

Mack, J.E.; Williams, L.C.

1982-01-01T23:59:59.000Z

268

The effect of processing parameters on oil content of corn tortilla chips  

E-Print Network [OSTI]

that occurred in over-fried, under-fried, and optimally fried tortilla chips. This research was a pioneering effort in the field, involving the combination of scanning electron microscopy and environmental scanning electron microscopy. The majority of oil...

Dudley, Peta Rock

1993-01-01T23:59:59.000Z

269

Third-Party Evaluation of Petro Tex Hydrocarbons, LLC, ReGen Lubricating Oil Re-refining Process  

SciTech Connect (OSTI)

This report presents an assessment of market, energy impact, and utility of the PetroTex Hydrocarbons, LLC., ReGen process for re-refining used lubricating oil to produce Group I, II, and III base oils, diesel fuel, and asphalt. PetroTex Hydrocarbons, LLC., has performed extensive pilot scale evaluations, computer simulations, and market studies of this process and is presently evaluating construction of a 23 million gallon per year industrial-scale plant. PetroTex has obtained a 30 acre site in the Texas Industries RailPark in Midlothian Texas. The environmental and civil engineering assessments of the site are completed, and the company has been granted a special use permit from the City of Midlothian and air emissions permits for the Texas Commission on Environmental Quality.

Compere, A L [ORNL; Griffith, William {Bill} L [ORNL

2009-04-01T23:59:59.000Z

270

An evaluation of the benefits of combined steam and fireflooding as a recovery process for heavy oils  

SciTech Connect (OSTI)

Lack of oil mobility is a major problem with in situ combustion field projects, since the combustion front displaces oil into an essentially unheated reservoir. One way of ensuring oil mobility is to utilize steam injection during the early life of the process, and then switch to combustion when heated communication paths have been developed. The in situ combustion characteristics of cores from the Primrose reservoir of Northeastern Alberta were investigated in a comprehensive series of 22 combustion tube tests. The program was carried out in order to evaluate the effectiveness of fireflooding in both cores that had been preheated to the extent that the oil was mobile and in those which were steam-flooded prior to dry combustion. Both normal- and 95% oxygen-enriched air were evaluated. Wet combustion tests were performed utilizing both liquid water and steam injection. The effects of parameters such as pressure, oxygen enrichment and injection flux on the combustion characteristics were examined. This paper will discuss the results of this study, which show that steam co-injection is more effective at lowering the oxygen requirement than was combustion following steam. Additionally, the cores which were preheated exhibited similar oxygen requirements to those which were presteamed to a near-residual saturation.

Moore, R.G.; Laureshen, C.J.; Belgrave, J.D.M.; Ursenbach, M.G. [Univ. of Calgary, Alberta (Canada); Jha, K.N. [Dept. of Natural Resources Canada, Ottawa (Canada)

1995-02-01T23:59:59.000Z

271

EVALUATION OF A TURBIDITY METER FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY  

SciTech Connect (OSTI)

Savannah River Remediation’s (SRR’s) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a “peanut” vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 weight percent (wt%). A “go/no-go” decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a “go” decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a “no-go” determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. Subsequent to the issuance of the initial version of this report but under the scope of the original request for technical assistance, WSE asked for this report to be revised to include the “go/no-go” CU value corresponding to 0.28 wt% solids. It was this request that led to the preparation of Revision 1 of the report. The results for the 0.28 wt% solids value were developed following the same approach as that utilized for the 0.14 wt% solids value. A sludge simulant was used to develop standards for testing both Optek units and to determine the viability of a “go/no-go” CU response for each of the units. Statistical methods were used by SRNL to develop the critical CU value for the “go/no-go” decision for these standards for each Optek unit. Since only one sludge simulant was available for this testing, the sensitivity of these results to other simulants and to actual sludge material is not known. However, limited testing with samples from the actual DWPF process (both SRAT product samples and SMECT samples) demonstrated that the use of the “go/no-go” criteria developed from the sludge simulant testing was conservative for these samples taken from the sludge batch, Sludge Batch 7b, being processed at the time of this testing. While both of the Optek units performed very reliably during this testing, there were statistically significant differences (although small on a practical scale) between the two units. Thus, testing should be conducted on any new unit of this Optek model to qualify it before it is used to support the DWPF operation.

Mahannah, R.; Edwards, T.

2013-06-04T23:59:59.000Z

272

SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS  

SciTech Connect (OSTI)

This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude necessary to have a dramatic impact on blending, washing, or waste loading strategies for DWPF) for the glasses studied here. In general, the concentrations of those species that significantly improve sulfate solubility in a borosilicate glass must be added in relatively large concentrations (e.g., 13 to 38 wt % or more of the frit) in order to have a substantial impact. For DWPF, these concentrations would constitute too large of a portion of the frit to be practical. Therefore, it is unlikely that specific additives may be introduced into the DWPF glass via the frit to significantly improve sulfate solubility. The results presented here continue to show that sulfate solubility or retention is a function of individual glass compositions, rather than a property of a broad glass composition region. It would therefore be inappropriate to set a single sulfate concentration limit for a range of DWPF glass compositions. Sulfate concentration limits should continue to be identified and implemented for each sludge batch. The current PCCS limit is 0.4 wt % SO{sub 4}{sup 2-} in glass, although frit development efforts have led to an increased limit of 0.6 wt % for recent sludge batches. Slightly higher limits (perhaps 0.7-0.8 wt %) may be possible for future sludge batches. An opportunity for allowing a higher sulfate concentration limit at DWPF may lay lie in improving the laboratory experiments used to set this limit. That is, there are several differences between the crucible-scale testing currently used to define a limit for DWPF operation and the actual conditions within the DWPF melter. In particular, no allowance is currently made for sulfur partitioning (volatility versus retention) during melter processing as the sulfate limit is set for a specific sludge batch. A better understanding of the partitioning of sulfur in a bubbled melter operating with a cold cap as well as the impacts of sulfur on the off-gas system may allow a higher sulfate concentration limit to be established for the melter feed. This approach would have to be taken carefully to ensure that a

Fox, K.; Edwards, T.

2012-05-08T23:59:59.000Z

273

Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility  

SciTech Connect (OSTI)

The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000 instruments also allow the DWPF to maintain current service contracts, which support routine preventive maintenance and emergency support for larger problems such as component failure. One of the three new systems was set up in the DWPF Lab trailers in January of 2007 to be used for the development of methods and procedures. This system will continue to be used for training, new method development and potential improvements to current methods. The qualification of the other two ICS-3000 instruments is to be a phased effort. This effort is to be supported by the Applied Computational Engineering and Statistical (ACES) group of the Savannah River National Laboratory (SRNL) as authorized by the Technical Task Request (TTR) and as directed by the corresponding Task Technical and Quality Assurance (TT&QA) plan. The installation of the first 'rad' system into the M-13 Lab module required modifications to both the Lab module and to the radiohood. The installation was completed in July 2008. The testing of this system was conducted as directed by the TT&QA plan. The purpose of this technical report is to provide a review of the data generated by these tests that will lead to the recommendation for the qualification of the M-13 ICS-3000 instrument. With the successful qualification of this first ICS-3000, plans will be developed for the installation of the second 'rad' system in the M-14 Lab module later in fiscal year 2009. When the second 'rad' ICS-3000 system is installed, the DX-500 systems will be removed and retired from service.

Edwards, T; Mahannah, R.

2011-07-05T23:59:59.000Z

274

AN EVALUATION OF PYROLYSIS OIL PROPERTIES AND CHEMISTRY AS RELATED TO PROCESS AND UPGRADE CONDITIONS WITH SPECIAL CONSIDERATION TO PIPELINE SHIPMENT  

SciTech Connect (OSTI)

One factor limiting the development of commercial biomass pyrolysis is challenges related to the transportation of the produced pyrolysis oil. The oil has different chemical and physical properties than crude oil, including more water and oxygen and has lower H/C ratio, higher specific gravity and density, higher acidity, and lower energy content. These differences could limit its ability to be transported by existing petroleum pipelines. Pyrolysis oil can also be treated, normally by catalytic hydrodeoxygenation, and approaches crude oil and petroleum condensates at higher severity levels. This improvement also results in lower liquid yield and high hydrogen consumption. Biomass resources for pyrolysis are expected to become plentiful and widely distributed in the future, mainly through the use of crop residuals and growing of energy crops such as perennial grasses, annual grasses, and woody crops. Crude oil pipelines are less well distributed and, when evaluated on a county level, could access about 18% of the total biomass supply. States with high potential include Texas, Oklahoma, California, and Louisiana. In this study, published data on pyrolysis oil was compiled into a data set along with bio-source source material, pyrolysis reactor conditions, and upgrading conditions for comparison to typical crude oils. Data of this type is expected to be useful in understanding the properties and chemistry and shipment of pyrolysis oil to refineries, where it can be further processed to fuel or used as a source of process heat.

Bunting, Bruce G [ORNL] [ORNL; Boyd, Alison C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

275

Wetland and Sensitive Species Survey Report for Y-12: Proposed Uranium Processing Facility (UPF)  

SciTech Connect (OSTI)

This report summarizes the results of an environmental survey conducted at sites associated with the proposed Uranium Processing Facility (UPF) at the Y-12 National Security Complex in September-October 2009. The survey was conducted in order to evaluate potential impacts of the overall project. This project includes the construction of a haul road, concrete batch plant, wet soil storage area and dry soil storage area. The environmental surveys were conducted by natural resource experts at ORNL who routinely assess the significance of various project activities on the Oak Ridge Reservation (ORR). Natural resource staff assistance on this project included the collection of environmental information that can aid in project location decisions that minimize impacts to sensitive resource such as significant wildlife populations, rare plants and wetlands. Natural resources work was conducted in various habitats, corresponding to the proposed areas of impact. Thc credentials/qualifications of the researchers are contained in Appendix A. The proposed haul road traverses a number of different habitats including a power-line right-of-way. wetlands, streams, forest and mowed areas. It extends from what is known as the New Salvage Yard on the west to the Polaris Parking Lot on the east. This haul road is meant to connect the proposed concrete batch plant to the UPF building site. The proposed site of the concrete batch plant itself is a highly disturbed fenced area. This area of the project is shown in Fig. 1. The proposed Wet Soils Disposal Area is located on the north side of Bear Creek Road at the former Control Burn Study Area. This is a second growth arce containing thick vegetation, and extensive dead and down woody material. This area of the project is shown in Fig. 2. Thc dry soils storage area is proposed for what is currently known as the West Borrow Area. This site is located on the west side of Reeves Road south of Bear Creek Road. The site is an early successional field. This area of the project is shown in Fig. 2.

Giffen, N.; Peterson, M.; Reasor, S.; Pounds, L.; Byrd, G.; Wiest, M. C.; Hill, C. C.

2009-11-01T23:59:59.000Z

276

Fluidized bed retorting of eastern oil shale  

SciTech Connect (OSTI)

This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of eastern New Albany oil shale. This is the fourth design study conducted by Foster Wheeler; previous design cases employed the following technologies: Fluidized bed rotating/combustion of Colorado Mahogany zone shale. An FCC concept of fluidized bed retorting/combustion of Colorado Mahogany zone shale. Directly heated moving vertical-bed process using Colorado Mahogany zone shale. The conceptual design encompasses a grassroots facility which processes run-of-mine oil shale into a syncrude oil product and dispose of the spent shale solids. The plant has a nominal capacity of 50,000 barrels per day of syncrude product, produced from oil shale feed having a Fischer Assay of 15 gallons per ton. Design of the processing units was based on non-confidential published information and supplemental data from process licensors. Maximum use of process and cost information developed in the previous Foster Wheeler studies was employed. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is detailed by plant section and estimates of the annual operating requirements and costs are provided. In addition, process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed. 12 refs., 17 figs., 52 tabs.

Gaire, R.J.; Mazzella, G.

1989-03-01T23:59:59.000Z

277

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Final report  

SciTech Connect (OSTI)

The National Energy Strategy Plan (NES) has called for 900,000 barrels/day production of heavy oil in the mid-1990s to meet our national needs. To achieve this goal, it is important that the Alaskan heavy oil fields be brought to production. Alaska has more than 25 billion barrels of heavy oil deposits. Conoco, and now BP Exploration have been producing from Schrader Bluff Pool, which is part of the super heavy oil field known as West Sak Field. Schrader Bluff reservoir, located in the Milne Point Unit, North Slope of Alaska, is estimated to contain up to 1.5 billion barrels of (14 to 21{degrees}API) oil in place. The field is currently under production by primary depletion; however, the primary recovery will be much smaller than expected. Hence, waterflooding will be implemented earlier than anticipated. The eventual use of enhanced oil recovery (EOR) techniques, such as hydrocarbon miscible solvent slug injection process, is vital for recovery of additional oil from this reservoir. The purpose of this research project was to determine the nature of miscible solvent slug which would be commercially feasible, to evaluate the performance of the hydrocarbon miscible solvent slug process, and to assess the feasibility of this process for improved recovery of heavy oil from Schrader Bluff reservoir. The laboratory experimental work includes: slim tube displacement experiments and coreflood experiments. The components of solvent slug includes only those which are available on the North Slope of Alaska.

NONE

1995-11-01T23:59:59.000Z

278

Design-Build Process for the Research Support Facility (RSF) (Book)  

SciTech Connect (OSTI)

An in-depth look at how the U.S. DOE and NREL used a performance-based design-build contract to build the Research Support Facility (RSF); one of the most energy efficient office buildings in the world.

Not Available

2012-06-01T23:59:59.000Z

279

Oil shale, tar sand, coal research, advanced exploratory process technology jointly sponsored research. Quarterly technical progress report, April--June 1992  

SciTech Connect (OSTI)

Accomplishments for the quarter are presented for the following areas of research: oil shale, tar sand, coal, advanced exploratory process technology, and jointly sponsored research. Oil shale research includes; oil shale process studies, environmental base studies for oil shale, and miscellaneous basic concept studies. Tar sand research covers process development. Coal research includes; underground coal gasification, coal combustion, integrated coal processing concepts, and solid waste management. Advanced exploratory process technology includes; advanced process concepts, advanced mitigation concepts, and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesa Verde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced recovery techniques; and menu driven access to the WDEQ Hydrologic Data Management Systems.

Not Available

1992-12-01T23:59:59.000Z

280

Options for U.S. Petroleum Refineries to Process Additional Light Tight Oil  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude Oil3113315,0,482272Oil and9:-

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Oil shale: The environmental challenges III  

SciTech Connect (OSTI)

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

282

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

283

Electrostatic coalescence of used automotive crankcase oil as an alternative to other separation processes  

E-Print Network [OSTI]

, verified by separating and analyzing a used oil emulsion. The metal removal efficiency was compared to that of a five day gravity settling. Separation experiments were performed in a 2.26 L coalescer with a flat parallel insulated electrode configuration...

Dixon, John Leslie

1998-01-01T23:59:59.000Z

284

RADIOLOGICAL CONTROLS FOR PLUTONIUM CONTAMINATED PROCESS EQUIPMENT REMOVAL FROM 232-Z CONTAMINATED WASTE RECOVERY PROCESS FACILITY AT THE PLUTONIUM FINSHING PLANT (PFP)  

SciTech Connect (OSTI)

The 232-Z facility at Hanford's Plutonium Finishing Plant operated as a plutonium scrap incinerator for 11 years. Its mission was to recover residual plutonium through incinerating and/or leaching contaminated wastes and scrap material. Equipment failures, as well as spills, resulted in the release of radionuclides and other contamination to the building, along with small amounts to external soil. Based on the potential threat posed by the residual plutonium, the U.S. Department of Energy (DOE) issued an Action Memorandum to demolish Building 232-2, Comprehensive Environmental Response Compensation, and Liability Act (CERC1.A) Non-Time Critical Removal Action Memorandum for Removal of the 232-2 Waste Recovery Process Facility at the Plutonium Finishing Plant (04-AMCP-0486).

MINETTE, M.J.

2007-05-30T23:59:59.000Z

285

Stochastic Programming Approaches for the Placement of Gas Detectors in Process Facilities  

E-Print Network [OSTI]

of these detectors is required in order to have a well-functioning gas detection system. However, the uncertainty in leak locations, gas composition, process and weather conditions, and process geometries must all be considered when attempting to determine...

Legg, Sean W

2013-05-21T23:59:59.000Z

286

Safeguards assessment of gamma-ray detection for process monitoring at natural uranium conversion facilities.  

E-Print Network [OSTI]

??Conversion, the process by which natural uranium ore (yellowcake) is puri?ed and converted through a series of chemical processes into uranium hexa?uoride gas (UF6), has… (more)

Dewji, Shaheen Azim

2014-01-01T23:59:59.000Z

287

Transfer Lines to Connect Liquid Waste Facilities and Salt Waste Processing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,TopDepartment ofTransactionalFacility |

288

A demonstration of variance and covariance calculations using MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator)  

SciTech Connect (OSTI)

Good decision-making in materials accounting requires a valid calculation of control limits and detection sensitivity for facilities handling special nuclear materials (SNM). A difficult aspect of this calculation is determining the appropriate variance and covariance values for the terms in the materials balance (MB) equation. Computer software such as MAVARIC (Materials Accounting VARIance Calculator) and PROFF (PROcessing and Fuel Facilities calculator) can efficiently select and combine variance terms. These programs determine the variance and covariance of an MB equation by first obtaining relations for the variance and covariance of each term in the MB equation through propagating instrument errors and then substituting the measured quantities and their uncertainties into these relations. MAVARIC is a custom spreadsheet used with the second release of LOTUS 1-2-3.** PROFF is a stand-alone menu-driven program requiring no commercial software. Programs such as MAVARIC and PROFF facilitate the complex calculations required to determine the detection sensitivity of an SNM facility. These programs can also be used to analyze materials accounting systems.

Barlich, G.L.; Nasseri, S.S.

1990-01-01T23:59:59.000Z

289

Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983  

SciTech Connect (OSTI)

Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

Evans, R.A.

1998-06-01T23:59:59.000Z

290

Liquid-phase Processing of Fast Pyrolysis Bio-oil using Pt/HZSM-5 Catalyst  

E-Print Network [OSTI]

such as switchgrass, sorghum and miscanthus, agriculture crops such as corn and sugarcane, municipal solid waste, agriculture wastes and forest residues. Energy crops are more preferred since they produce high yield, low fertilizer application requirements and low...), plastic wastes (Bhattacharya et al., 2009; Karaduman et al., 2001; Rutkowski and 7 Kubacki, 2006; Scott et al., 1990), waste biomass like oil cakes (?zbay et al., 2001), energy crops (He et al., 2009), and forest residues (Ingram et al., 2007...

Santos, Bjorn Sanchez

2013-05-01T23:59:59.000Z

291

HWMA/RCRA Closure Plan for the TRA Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System  

SciTech Connect (OSTI)

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the Test Reactor Area Fluorinel Dissolution Process Mockup and Gamma Facilities Waste System, located in Building TRA-641 at the Reactor Technology Complex (RTC), Idaho National Laboratory Site, to meet a further milestone established under the Voluntary Consent Order SITE-TANK-005 Action Plan for Tank System TRA-009. The tank system to be closed is identified as VCO-SITE-TANK-005 Tank System TRA-009. This closure plan presents the closure performance standards and methods for achieving those standards.

K. Winterholler

2007-01-31T23:59:59.000Z

292

Potential small-scale development of western oil shale  

SciTech Connect (OSTI)

Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

1989-10-01T23:59:59.000Z

293

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

SciTech Connect (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

294

A detailed chemical analysis of changes to bitumen produced by the in situ combustion process at the oxygen Wolf Lake Project, Alberta. Part 11; Whole oil samples  

SciTech Connect (OSTI)

The detailed chemical changes in bitumen brought about over a one year period by a in situ combustion process in an oil sands reservoir have been investigated. Relative to a core sample, the fireflood-produced oils exhibited a significant reduction in density and viscosity which began early in the production cycle. This behavior was correlated with a marked increase in material boiling in the naphtha and middle distillate ranges and a concomitant decrease in the residue cut. The sulfur and nitrogen contents in the produced oils decreased relative to the core sample. A reduction in the acid number of the produced oil samples was coupled with an increase in the oxygen content as the fireflood proceeded. In this paper the relationship between these changes and the dynamics of the in situ combustion process are discussed.

Alex, R.F.; Fuhr, B.; Reichert, C. (Alberta Research Council, Oil Sands and Hydrocarbon Recovery, Edmonton, Alberta T6H 5X2 (CA))

1992-01-01T23:59:59.000Z

295

Problem 65 in Section 4.1 (Page 274) Constructing a pipeline Supertankers off-load oil at a docking facility 4 mi offshore. The nearest refinery  

E-Print Network [OSTI]

facility 4 mi offshore. The nearest refinery is 9 mi east of the shore point nearest the docking facility. A pipeline must be constructed connecting the docking facility with the refinery. The pipeline costs $300.42 miles away from the refinery, or equivalently 3.58 miles away from Point A (as the back of the book has

Schilling, Anne

296

Reduced crude processing with Ashland's RCC process  

SciTech Connect (OSTI)

Ashland Oil has long recognized the need to improve the process for the direct conversion of residual feedstocks into transportation fuels and other lighter products. The reduced crude oil conversion (RCC) unit now under construction at the Catlettsburg, Kentucky, refinery was developed to meet these demands. The facility incorporates RCC process innovations and recent catalyst technology improvements, and provides increased operating flexibility. Heavier, higher-sulfur crude oils can be processed under several economically attractive scenarios. They allow for an excellent balance between the production of transportation fuels, and reduced amounts of heavy fractions. An outstanding feature of the RCC process is the highoctane quality of full-boiling-range gasoline that results when converting residual feedstocks.

Zandona, O.J.; Busch, L.E.; Hettinger, W.P.

1982-05-01T23:59:59.000Z

297

Pilot-scale testing of a fuel oil-explosives cofiring process for recovering energy from waste explosives: Final report  

SciTech Connect (OSTI)

The US Army generates and stores a significant quantity of explosives and explosive-related materials that do not meet specifications for their primary use. Current explosives disposal processes do not recover any resources from these materials. The heat of combustion of these materials is typically 9 to 15 kJ/g (4000 to 6500 Btu/lb), which is 21 to 33% of the high heating value of No. 2 fuel oil. One secondary use for explosives is to cofire them with other fuels to recover their energy content. Bench-scale testing has shown that cofiring is feasible and safe within certain guidelines. To further evaluate cofiring, a proof-of-principle test was conducted in a 300-kW (10/sup 6/ Btu/h) combustion chamber. The test program was discontinued before completion because of failures largely unrelated to the explosives contained in the fuel. This report presents the results of the proof-of-principle tests, as well as design and operational changes that would eliminate problems encountered during the course of the test program. It is clearly feasible to cofire explosives and fuel oil. However, more data are needed before the process can be tested in a production boiler, furnace, or incinerator. 20 refs., 14 figs., 9 tabs.

Bradshaw, W.M.

1988-08-01T23:59:59.000Z

298

Biochemically enhanced oil recovery and oil treatment  

SciTech Connect (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

299

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

300

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

302

RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY  

SciTech Connect (OSTI)

A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

LANCE HAYS

2007-02-27T23:59:59.000Z

303

Preliminary evaluation of a process using plasma reactions to desulfurize heavy oils. Final report  

SciTech Connect (OSTI)

Western Research Institute (WRI) has conducted exploratory experiments on the use of microwave-induced plasmas to desulfurize heavy oils. Batch mode experiments were conducted in a quartz reactor system using various reactive and nonreactive plasmas. In these experiments a high-sulfur asphalt was exposed to various plasmas, and the degree of conversion to distillate, gas, and solids was recorded. Products from selected experiments were analyzed to determine if the plasma exposure had resulted in a significant reduction in sulfur content. Exploratory experiments were conducted using reactive plasmas generated from hydrogen and methane and nonreactive plasmas generated from nitrogen. The effects of varying exposure duration, sample temperature, and location of the sample with respect to the plasma discharge were investigated. For comparative purposes two experiments were conducted in which the sample was heated under nitrogen with no plasma exposure. Distillates containing approximately 28% less sulfur than the feedstock represented the maximum desulfurization attained in the plasma experiments. It does not appear that plasma reactions using the simple configurations employed in this study represent a viable method for the desulfurization of heavy oils.

Grimes, P.W.; Miknis, F.P.

1997-09-01T23:59:59.000Z

304

Perform research in process development for hydroretorting of eastern oil shales  

SciTech Connect (OSTI)

Six bulk samples of eastern oil shale were taken from the Clegg Creek Member of the New Albany Shale in northwestern Kentucky, the Chattanooga Shale in northern Alabama, the Gassaway Member of the Chattanooga Shale in central Tennessee, the Antrim Shale in northeastern Michigan, the Cleveland Member of the Ohio Shale in central Ohio, and the Sunbury Shale in eastern Kentucky. A seventh sample of Clegg Creek from southern Indiana had been sampled earlier. The stratigraphic position of all bulk samples was documented using both outcrops and subsurface control; at five sites stratigraphic test holes were cored and logged. Surface gamma was run on the cores before slabbing. The representative character of the Tennessee sample was assured by recovering the required weight in four cores. Obtaining representative bulk samples at other sites often required adapting channel sampling techniques to earth moving equipment, reducing an initial sample by hand methods, and minimizing contamination throughout the sampling operation. Cores were assayed for carbon and Fischer Assay oil yield both on a selected per foot basis as composites. 29 refs., 25 figs., 7 tabs.

Not Available

1989-11-01T23:59:59.000Z

305

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993  

SciTech Connect (OSTI)

This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

1993-08-11T23:59:59.000Z

306

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992  

SciTech Connect (OSTI)

The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Turner, J.P.; Hasfurther, V.

1992-05-04T23:59:59.000Z

307

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Fourth quarterly report, July--September 1993  

SciTech Connect (OSTI)

The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Turner, J.P.; Hasfurther, V.

1993-10-08T23:59:59.000Z

308

Interactions between nitrifying bacteria and hydrocarbon-degrading bacteria during detoxification of oil sands process affected water  

SciTech Connect (OSTI)

Large quantities of process water are produced during the extraction of bitumen from oil sands by the Syncrude and Suncor operations in northern Alberta. Freshly produced tailings water is acutely toxic, but it has been shown to slowly detoxify over time. As detoxification proceeds, there is also a precipitous decrease in ammonia concentrations. The present study examines these two microbially-mediated processes in relation to levels of bacteria and toxicants in mixtures of fresh and aged (detoxified) tailings water. Detoxification of tailings water was greatly accelerated when equal volumes of fresh and detoxified (natural aging for one year) tailings water were mixed. Addition of phosphorus further stimulated detoxification, causing levels of ammonia and naphthenic acids (toxic organic acids leached during bitumen extraction) to decrease to those of detoxified water within two months. Such changes were not observed when phosphorus was not added, or when it was added to less diluted (10-.1 or 3-.1) fresh tailings water. Populations of nitrifying bacteria and naphthenic acid degraders increased markedly in the phosphorus-amended mixtures, but not in its absence. Addition of CS{sub 2} (a specific inhibitor of nitrification) to these mixtures prevented ammonia oxidation. Surprisingly, it also prevented the increase in naphthenic acid-degraders and retarded the loss of naphthenic acids. These results suggest the existence of interactions in fresh tailings water between nitrifying bacteria, naphthenic acid degraders and toxicants. The activity of naphthenic acid-degraders apparently remains low until ammonia is oxidized, whereas that of nitrifying bacteria remains low until concentrations of naphthenic acids or other toxicants decrease below some threshold level. Understanding these interactions may lead to more efficient and effective processes to detoxify oil sands process water.

Sobolewski, A. [Microbial Technologies, Vancouver, British Columbia (Canada); MacKinnon, M. [Syncrude Research, Edmonton, Alberta (Canada)

1995-12-31T23:59:59.000Z

309

The extraction of bitumen from western oil sands: Volume 2. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

310

The extraction of bitumen from western oil sands: Volume 1. Final report  

SciTech Connect (OSTI)

The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery and upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains an executive summary and reports for five of these projects. 137 figs., 49 tabs.

Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.; Fletcher, J.V.; Hanson, F.V.; Miller, J.D.; Seader, J.D.

1997-11-26T23:59:59.000Z

311

Quantitative comparison of processes of oil-and water-based mud-filtrate invasion and corresponding effects on borehole resistivity measurements  

E-Print Network [OSTI]

for hydrocarbon exploration and production, drilling fluids sustain a pressure higher than that of formationQuantitative comparison of processes of oil- and water-based mud-filtrate invasion-filtrate invasion on borehole resistivity measurements. We simulate the process of mud-fil- trate invasion

Torres-VerdĂ­n, Carlos

312

RESULTS OF THE EXTRACTION-SCRUB-STRIP TESTING USING AN IMPROVED SOLVENT FORMULATION AND SALT WASTE PROCESSING FACILITY SIMULATED WASTE  

SciTech Connect (OSTI)

The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is {approx}15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to <1950 mg/L. The feed to MCU has typically contained <500 mg/L of potassium.

Peters, T.; Washington, A.; Fink, S.

2012-01-09T23:59:59.000Z

313

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

E-Print Network [OSTI]

viable is the recovery of shale oil from our substantialdeposits of oil shale (1). Shale oil is recovered from oilproduce~ along with the shale oil, considerable amounts of

Fish, Richard H.

2013-01-01T23:59:59.000Z

314

CHALLENGES OF PRESERVING HISTORIC RESOURCES DURING THE D & D OF HIGHLY CONTAMINATED HISTORICALLY SIGNIFICANT PLUTONIUM PROCESS FACILITIES  

SciTech Connect (OSTI)

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that ere included or eligible for inclusion in the National Register. In an agreement between the DOE'S Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Sitewide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP.

HOPKINS, A.M.

2006-03-17T23:59:59.000Z

315

The Challenges of Preserving Historic Resources During the Deactivation and Decommissioning of Highly Contaminated Historically Significant Plutonium Process Facilities  

SciTech Connect (OSTI)

The Manhattan Project was initiated to develop nuclear weapons for use in World War II. The Hanford Engineer Works (HEW) was established in eastern Washington State as a production complex for the Manhattan Project. A major product of the HEW was plutonium. The buildings and process equipment used in the early phases of nuclear weapons development are historically significant because of the new and unique work that was performed. When environmental cleanup became Hanford's central mission in 1991, the Department of Energy (DOE) prepared for the deactivation and decommissioning of many of the old process facilities. In many cases, the process facilities were so contaminated, they faced demolition. The National Historic Preservation Act (NHPA) requires federal agencies to evaluate the historic significance of properties under their jurisdiction for eligibility for inclusion in the National Register of Historic Places before altering or demolishing them so that mitigation through documentation of the properties can occur. Specifically, federal agencies are required to evaluate their proposed actions against the effect the actions may have on districts, sites, buildings or structures that are included or eligible for inclusion in the National Register. In an agreement between the DOE's Richland Operations Office (RL), the Washington State Historic Preservation Office (SHPO) and the Advisory Council on Historic Preservation (ACHP), the agencies concurred that the Hanford Site Historic District is eligible for listing on the National Register of Historic Places and that a Site-wide Treatment Plan would streamline compliance with the NHPA while allowing RL to manage the cleanup of the Hanford Site. Currently, many of the old processing buildings at the Plutonium Finishing Plant (PFP) are undergoing deactivation and decommissioning. RL and Fluor Hanford project managers at the PFP are committed to preserving historical artifacts of the plutonium production process. They must also ensure the safety of workers and the full decontamination of buildings or artifacts if they are to be preserved. This paper discusses the real time challenges of working safely, decontaminating process equipment, preserving historical structures and artifacts and documenting their history at PFP. (authors)

Hopkins, A.; Minette, M.; Sorenson, D.; Heineman, R.; Gerber, M. [Fluor Hanford, Inc., PO Box 1000 Richland WA 99352 (United States); Charboneau, S. [US Department of Energy PO Box 550, Richland WA 99352 (United States); Bond, F. [Washington State Department of Ecology, WDOE 3100 Port of Benton Blvd., Richland WA, 99354 (United States)

2006-07-01T23:59:59.000Z

316

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect (OSTI)

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

317

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Sixth interim report Task 9: hydrotreating 400/sup 0/F+ SRC-II oil for biological studies  

SciTech Connect (OSTI)

400/sup 0/F+ SRC-II oil derived from Pittsburgh Seam coal was hydrotreated to provide DOE samples for subsequent biological testing at the Oak Ridge National Laboratory. Samples containing about 500 ppM nitrogen, 2000 ppM nitrogen, and 5000 ppM nitrogen were prepared. These samples do not represent finished products, but conditions were selected to provide a wide range of processing severities. The feedstock was somewhat higher boiling and more difficult to hydrotreat than another 400/sup 0/F+ SRC-II oil studied previously.

Sullivan, R.F.

1982-04-01T23:59:59.000Z

318

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network [OSTI]

and deductions for oil company investments in the area. 11979) Capital investment models of the oil and gas industry:total “facilities investment cost” of oil production on the

Leighty, Wayne

2008-01-01T23:59:59.000Z

319

Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENT OFSanEnergyWaste Processing

320

Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

Ray, J. W.; Marra, S. L.; Herman, C. C.

2013-01-09T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598  

SciTech Connect (OSTI)

At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

Ray, J.W. [Savannah River Remediation (United States)] [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

322

Oil shale mining processing, uses, and environmental impacts. (Latest citations from the EI compendex*plus database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning oil shale mining and retorting, uses, and related environmental aspects. References discuss pyrolyzed, gasified, and combusted oil shales. Product yields and oil quality, socioeconomic impacts, exploration, reclamation of mined lands, and waste disposal are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-09-01T23:59:59.000Z

323

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

324

Guide to research facilities  

SciTech Connect (OSTI)

This Guide provides information on facilities at US Department of Energy (DOE) and other government laboratories that focus on research and development of energy efficiency and renewable energy technologies. These laboratories have opened these facilities to outside users within the scientific community to encourage cooperation between the laboratories and the private sector. The Guide features two types of facilities: designated user facilities and other research facilities. Designated user facilities are one-of-a-kind DOE facilities that are staffed by personnel with unparalleled expertise and that contain sophisticated equipment. Other research facilities are facilities at DOE and other government laboratories that provide sophisticated equipment, testing areas, or processes that may not be available at private facilities. Each facility listing includes the name and phone number of someone you can call for more information.

Not Available

1993-06-01T23:59:59.000Z

325

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

326

Process centrifuge operating problems and equipment failures in canyon reprocessing facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Laboratory (SRL) maintains a compilation of operating problems and equipment failures that have occurred in the fuel reprocessing areas of the Savannah River Site (SRS). At present, the data bank contains more than 230,000 entries ranging from minor equipment malfunctions to incidents with the potential for injury or contamination of personnel, or for economic loss. The data bank has been used extensively for a wide variety of purposes, such as failure analyses, trend analyses, and preparation of safety analyses. Typical of the data are problems associated with the canyon process centrifuges. This report contains a compilation of the centrifuge operating problems and equipment failures primarily as an aid to organizations with related equipment. Publication of these data was prompted by a number of requests for this information by other Department of Energy (DOE) sites. 11 refs., 2 figs., 4 tabs.

Durant, W.S.; Baughman, D.F.

1990-03-01T23:59:59.000Z

327

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network [OSTI]

CA 94720 ABSTRACT in the boiler used to make process steam.water, gas condensate, and boiler blowdown. A summary of thewater, gas condensate, and boiler blowd01m. Retort water and

Fish, Richard H.

2013-01-01T23:59:59.000Z

328

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the...

329

HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT  

SciTech Connect (OSTI)

Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

LOCKREM, L L

2005-07-13T23:59:59.000Z

330

CONTROL STRATEGIES FOR ABANDONED IN-SITU OIL SHALE RETORTS  

E-Print Network [OSTI]

recovery Vent gas '\\Raw shale oil Recycled gas compressorThis process produces shale oil, a low BTU gas, and char,Oil Shale Process" in Oil Shale and Tar Sands, J. W. Smith

Persoff, P.

2011-01-01T23:59:59.000Z

331

Analyses by the Defense Waste Processing Facility Laboratory of Thorium Glasses from the Sludge Batch 6 Variability Study  

SciTech Connect (OSTI)

The Savannah River Remediation (SRR) Defense Waste Processing Facility (DWPF) is currently processing Sludge Batch 6 (SB6) with Frit 418. At times during the processing of this glass system, thorium is expected to be at concentrations in the final wasteform that make it a reportable element for the first time since startup of radioactive operations at the DWPF. The Savannah River National Laboratory (SRNL) supported the qualification of the processing of this glass system at the DWPF. A recommendation from the SRNL studies was the need for the DWPF Laboratory to establish a method to measure thorium by Inductively Coupled Plasma - Atomic Emission Spectroscopy (ICPAES). This recommendation led to the set of thorium-bearing glasses from the SB6 Variability Study (VS) being submitted to the DWPF Laboratory for chemical composition measurement. The measurements were conducted by the DWPF Laboratory using the sodium peroxide fusion preparation method routinely employed for analysis of samples from the Slurry Mix Evaporator (SME). These measurements are presented and reviewed in this report. The review indicates that the measurements provided by the DWPF Laboratory are comparable to those provided by Analytical Development's laboratory at SRNL for these same glasses. As a result, the authors of this report recommend that the DWPF Laboratory begin using its routine peroxide fusion dissolution method for the measurement of thorium in SME samples of SB6. The purpose of this technical report is to present the measurements generated by the DWPF Laboratory for the SB6 VS glasses and to compare the measurements to the targeted compositions for these VS glasses as well as to SRNL's measurements (both sets, targeted and measured, of compositional values were reported by SRNL in [2]). The goal of these comparisons is to provide information that will lead to the qualification of peroxide fusion dissolution as a method for the measurement by the DWPF Laboratory of thorium in SME glass samples.

Edwards, T.; Click, D.; Feller, M.

2011-02-28T23:59:59.000Z

332

POLYVINYLCHLORIDE WASTE WITH OIL SHALE ASH TO CAPTURE  

E-Print Network [OSTI]

alkaline oil shale ash. Solid heat carrier (Galoter process)-type oil shale retorting units, where the

V. Oja; A. Elenurm; I. Rohtla; E. Tearo; E. Tali

333

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

334

Methods to estimate equipment and materials that are candidates for removal during the decontamination of fuel processing facilities  

SciTech Connect (OSTI)

The methodology presented in this report provides a model for estimating the volume and types of waste expected from the removal of equipment and other materials during Decontamination and Decommissioning (D and D) of canyon-type fuel reprocessing facilities. This methodology offers a rough estimation technique based on a comparative analysis for a similar, previously studied, reprocessing facility. This approach is especially useful as a planning tool to save time and money while preparing for final D and D. The basic methodology described here can be extended for use at other types of facilities, such as glovebox or reactor facilities.

Duncan, D.R.; Valero, O.J. [Westinghouse Hanford Co., Richland, WA (United States); Hyre, R.A.; Pottmeyer, J.A.; Millar, J.S.; Reddick, J.A. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States)

1995-02-01T23:59:59.000Z

335

POC-SCALE TESTING OF OIL AGGLOMERATION TECHNIQUES AND EQUIPMENT FOR FINE COAL PROCESSING  

SciTech Connect (OSTI)

This report covers the technical progress achieved from July 01, 1997 to September 30, 1997 on the POC-Scale Testing Agglomeration Techniques and Equipment for Fine Coal Processing project. Experimental procedures and test data for recovery of fine coal from coal fines streams generated at a commercial coal preparation plant are described. Two coal fines streams, namely Sieve Bend Effluent and Cyclone Overflow were investigated. The test results showed that ash was reduced by more than 50% at combustible matter recovery levels exceeding 95%.

NONE

1998-01-01T23:59:59.000Z

336

Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 2, Task 3, Testing of process improvement concepts: Final report, September 1987--May 1991  

SciTech Connect (OSTI)

This final report, Volume 2, on ``Process Improvement Concepts`` presents the results of work conducted by the Institute of Gas Technology (IGT), the Illinois Institute of Technology (IIT), and the Ohio State University (OSU) to develop three novel approaches for desulfurization that have shown good potential with coal and could be cost-effective for oil shales. These are (1) In-Bed Sulfur Capture using different sorbents (IGT), (2) Electrostatic Desulfurization (IIT), and (3) Microbial Desulfurization and Denitrification (OSU and IGT). Results of work on electroseparation of shale oil and fines conducted by IIT is included in this report, as well as work conducted by IGT to evaluate the restricted pipe discharge system. The work was conducted as part of the overall program on ``Pressurized Fluidized-Bed Hydroretorting of Eastern Oil Shales.``

Not Available

1992-03-01T23:59:59.000Z

337

The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning),  

E-Print Network [OSTI]

RTPPP The project RTPPP (Development of a realtime PPP processing facility) is planned to be a followup project of RAPPP (Innovative Algorithms for Rapid Precise Point Positioning), which has RAPPP, the proposed project RTPPP concentrates on the possibilities of the PPP technique within a real

Schuh, Harald

338

Type B Accident Investigation of the April 8, 2003, Electrical Arc Blast at the Foster Wheeler Environmental Corporation TRU Waste Processing Facility, Oak Ridge, Tennessee  

Broader source: Energy.gov [DOE]

At approximately 0330 hours on April 8, 2003, a phase-to-phase arc blast occurred in the boiler electrical control panel at the Foster Wheeler Environmental Corporation (FWENC) Transuranic (TRU) Waste Processing Facility. The boiler was providing steam for the evaporator and was reportedly operating at about 10% of its capacity.

339

Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site  

SciTech Connect (OSTI)

The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

Glover, T.

1999-11-23T23:59:59.000Z

340

Dismantling of Highly Contaminated Process Installations of the German Reprocessing Facility (WAK) - Status of New Remote Handling Technology - 13287  

SciTech Connect (OSTI)

Decommissioning and dismantling of the former German Pilot Reprocessing Plant Karlsruhe (WAK) including the Vitrification Facility (VEK) is being executed in different Project steps related to the reprocessing, HLLW storage and vitrification complexes /1/. While inside the reprocessing building the total inventory of process equipment has already been dismantled and disposed of, the HLLW storage and vitrification complex has been placed out of operation since vitrification and tank rinsing procedures where finalized in year 2010. This paper describes the progress made in dismantling of the shielded boxes of the highly contaminated laboratory as a precondition to get access to the hot cells of the HLLW storage. The major challenges of the dismantling of this laboratory were the high dose rates up to 700 mSv/h and the locking technology for the removal of the hot cell installations. In parallel extensive prototype testing of different carrier systems and power manipulators to be applied to dismantle the HLLW-tanks and other hot cell equipment is ongoing. First experiences with the new manipulator carrier system and a new master slave manipulator with force reflection will be reported. (authors)

Dux, Joachim; Friedrich, Daniel; Lutz, Werner; Ripholz, Martina [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)] [WAK Rueckbau- und Entsorgungs- GmbH, P.O. Box 12 63, 76339 Eggenstein-Leopoldshafen (Germany)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report  

SciTech Connect (OSTI)

The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

NONE

1995-08-01T23:59:59.000Z

342

Implementing an Energy Management System at TOTAL Prot Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility.  

E-Print Network [OSTI]

PROPRIETARY INFORMATION? 2011 KBC Advanced Technologies plc. All Rights Reserved. Implementing an Energy Management System at TOTAL Port Arthur Refinery: The process to improving and sustaining energy efficiency performance at a facility May... Improvements ? Cost-savings initiatives ? Increasing environmental awareness ? Increasing throughput by debottlenecking processes ? Increasing government mandates 2May 2013 Energy Costs for a 200kBPD Complex refinery Typically, energy efficiency programs...

Hoyle, A.

2013-01-01T23:59:59.000Z

343

Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, January 1, 1994--December 31, 1994  

SciTech Connect (OSTI)

Alaska is the second largest oil producing state in the nation and currently contributes nearly 24% of the nations oil production. It is imperative that Alaskan heavy oil fields be brought into production. Schrader Bluff reservoir, located in the Milne Point Unit, which is part of the heavy oil field known as West Sak is estimated to contain 1.5 billion barrels of (14 to 21 degree API) oil-in-place. The field is currently under production by primary depletion. The eventual implementation of enhanced oil recovery (EOR) techniques will be vital for the recovery of additional oil from this reservoir. The availability of hydrocarbon gases (solvents) on the Alaska North Slope make the hydrocarbon miscible solvent injection process an important consideration for the EOR project in Schrader Bluff reservoir. Since Schrader Bluff oil is heavy and viscous, a water-alternating-gas (WAG) type of process for oil recovery is appropriate since such a process tends to derive synergetic benefits from both water injection (which provides mobility control and improvement in sweep efficiency) and miscible gas injection (which provides improved displacement efficiency). A miscible solvent slug injection process rather than continuous solvent injection is considered appropriate. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Coreflood experiments are also needed to determine the effect of solvent slug size, WAG ratio and solvent composition on the recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir.

Sharma, G.D.

1995-07-01T23:59:59.000Z

344

FINGERPRINTING INORGANIC ARSENIC AND ORGANOARSENIC COMPOUNDS IN IN SITU OIL SHALE RETORT AND PROCESS VOTERS USING A LIQUID CHROMATOGRAPH COUPLED WITH AN ATOMIC ABSORPTION SPECTROMETER AS A DETECTOR  

SciTech Connect (OSTI)

Inorganic arsenic and organoarsenic compounds were speciated in seven oil shale retort and process waters, including samples from simulated, true and modified in situ processes, using a high performance liquid chromatograph automatically coupled to a graphite furnace atomic absorption detector. The molecular forms of arsenic at ppm levels (({micro}g/mL) in these waters are identified for the first time, and shown to include arsenate, methylarsonic acid and phenylarsonic acid. An arsenic-specific fingerprint chromatogram of each retort or process water studied has significant impliestions regarding those arsenical species found and those marginally detected, such as dimethylarsinic acid and the suspected carcinogen arsenite. The method demonstrated suggests future means for quantifying environmental impacts of bioactive organometal species involved in oil shale retorting technology.

Fish, Richard H.; Brinckman, Frederick E.; Jewett, Kenneth L.

1981-07-01T23:59:59.000Z

345

Western oil-shale development: a technology assessment. Volume 5: an investigation of dewatering for the modified in-situ retorting process, Piceance Creek Basin, Colorado  

SciTech Connect (OSTI)

The C-a and the C-b tracts in the Piceance Creek Basin are potential sites for the development of oil shale by the modified in-situ retorting (MIS) process. Proposed development plans for these tracts require the disturbance of over three billion m/sup 3/ of oil shale to a depth of about 400 m (1312 ft) or more below ground level. The study investigates the nature and impacts of dewatering and reinvasion that are likely to accompany the MIS process. The purpose is to extend earlier investigations through more refined mathematical analysis. Physical phenomena not adequately covered in previous studies, particularly the desaturation process, are investigated. The present study also seeks to identify, through a parametric approach, the key variables that are required to characterize systems such as those at the C-a and C-b tracts.

Not Available

1982-01-01T23:59:59.000Z

346

Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes  

SciTech Connect (OSTI)

This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

Venezuela

2000-04-06T23:59:59.000Z

347

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

348

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

349

Perform research in process development for hydroretorting of Eastern oil shales: Volume 2, Expansion of the Moving-Bed Hydroretorting Data Base for Eastern oil shales  

SciTech Connect (OSTI)

An extensive data base was developed for six Eastern oil shales: Alabama Chattanooga, Indiana New Albany, Kentucky Sunbury, Michigan Antrim, Ohio Cleveland, and Tennessee Chattanooga shales. The data base included the hydroretorting characteristics of the six shales, as well as the retorting characteristics in the presence of synthesis gas and ionized gas. Shale gasification was also successfully demonstrated. Shale fines (20%) can produce enough hydrogen for the hydroretorting of the remaining 80% of the shale. The amount of fines tolerable in a moving bed was also determined. 16 refs., 59 figs., 43 tabs.

Not Available

1989-11-01T23:59:59.000Z

350

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

351

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

352

Deep Placement Gel Bank as an Improved Oil Recovery Process: Modeling, Economic Analysis and Comparison to Polymer Flooding  

E-Print Network [OSTI]

, the combination of delayed production response and large polymer amounts cause such projects to be less economically favorable than deep gel placement treatments. From results of several sensitivity runs, it can be concluded that plug size and oil viscosity...

Seyidov, Murad

2011-08-08T23:59:59.000Z

353

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, Susanne B.; Meyer, Pimphan A.; Snowden-Swan, Lesley J.; Padmaperuma, Asanga B.; Tan, Eric; Dutta, Abhijit; Jacobson, Jacob; Cafferty, Kara

2013-11-01T23:59:59.000Z

354

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-oil Pathway  

SciTech Connect (OSTI)

This report describes a proposed thermochemical process for converting biomass into liquid transportation fuels via fast pyrolysis followed by hydroprocessing of the condensed pyrolysis oil. As such, the analysis does not reflect the current state of commercially-available technology but includes advancements that are likely, and targeted to be achieved by 2017. The purpose of this study is to quantify the economic impact of individual conversion targets to allow a focused effort towards achieving cost reductions.

Jones, S.; Meyer, P.; Snowden-Swan, L.; Padmaperuma, A.; Tan, E.; Dutta, A.; Jacobson, J.; Cafferty, K.

2013-11-01T23:59:59.000Z

355

CO2 Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Annual report, January 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration & Production Inc. and the U.S. Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg/San Andres formation; a light oil, shallow shelf carbonate reservoir within the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. A significant amount of oil reserves are located in carbonate reservoirs. Specifically, the carbonates deposited in shallow shelf (SSC) environments make up the largest percentage of known reservoirs within the Permian Basin of North America. Many of these known resources have been under waterflooding operations for decades and are at risk of abandonment if crude oil recoveries cannot be economically enhanced. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico.

Wehner, S.C.; Boomer, R.J.; Cole, R.; Preiditus, J.; Vogt, J.

1996-09-01T23:59:59.000Z

356

Virent is Replacing Crude Oil  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

357

Fluidized-bed retorting of Colorado oil shale: Topical report. [None  

SciTech Connect (OSTI)

In support of the research program in converting oil shale into useful forms of energy, the US Department of Energy is developing systems models of oil shale processing plants. These models will be used to project the most attractive combination of process alternatives and identify future direction for R and D efforts. With the objective of providing technical and economic input for such systems models, Foster Wheeler was contracted to develop conceptual designs and cost estimates for commercial scale processing plants to produce syncrude from oil shales via various routes. This topical report summarizes the conceptual design of an integrated oil shale processing plant based on fluidized bed retorting of Colorado oil shale. The plant has a nominal capacity of 50,000 barrels per operating day of syncrude product, derived from oil shale feed having a Fischer Assay of 30 gallons per ton. The scope of the plant encompasses a grassroots facility which receives run of the mine oil shale, delivers product oil to storage, and disposes of the processed spent shale. In addition to oil shale feed, the battery limits input includes raw water, electric power, and natural gas to support plant operations. Design of the individual processing units was based on non-confidential information derived from published literature sources and supplemented by input from selected process licensors. The integrated plant design is described in terms of the individual process units and plant support systems. The estimated total plant investment is similarly detailed by plant section and an estimate of the annual operating requirements and costs is provided. In addition, the process design assumptions and uncertainties are documented and recommendations for process alternatives, which could improve the overall plant economics, are discussed.

Albulescu, P.; Mazzella, G.

1987-06-01T23:59:59.000Z

358

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

359

PRODUCTION FACILITY SPILL CONTINGENCY PLAN Operator Name, Address, Phone, Contact Facility Name, Address, Phone, Contact  

E-Print Network [OSTI]

of Oil, Gas and Geothermal Resources 8 Department of Fish and Game (OSPR) 800-852-7550 or 800-OILS-911 9 provide resources and liaison fuctions during oil spills. Page 3 of 9 #12;PRODUCTION FACILITY SPILL the Location and Labeling of: 1 Permanent Tanks 7 Tank & Storage Container Volumes with Contents Storedg 2

360

Staking claims to China's borderland : oil, ores and statebuilding in Xinjiang Province, 1893-1964  

E-Print Network [OSTI]

the discovery of several new oil production sites worldwide,increase in global oil production in the post-war period andas nearly every other oil production facility listed in the

Kinzley, Judd Creighton; Kinzley, Judd Creighton

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.  

E-Print Network [OSTI]

??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

Řstensen, Marie

2005-01-01T23:59:59.000Z

362

Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981  

SciTech Connect (OSTI)

A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

1981-03-01T23:59:59.000Z

363

Process Simulation and Evaluation of Alternative Solvents for Jatropha Curcas L. Seed Oil Extraction in Biodiesel Production  

E-Print Network [OSTI]

Jatropha curcas L. is a drought-resistant plant which can be grown in poor soil and marginal lands. The use of Jatropha seed oil to produce biodiesel has been widely studied in recent years. Results showed that it is one of the most promising...

Chiou, Ming-Hao

2012-10-19T23:59:59.000Z

364

THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE  

SciTech Connect (OSTI)

The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

CHARBONEAU, S.L.

2006-02-01T23:59:59.000Z

365

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

366

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

367

Energy Performance Contracting in State Facilities | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contracting in State Facilities Energy Performance Contracting in State Facilities Provides a brief overview of the performance contracting process, the benefits of using...

368

UK FT PDU Facility Draft EA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Process Development Unit Facility February 2014 The facility is sized as a small-scale pilot CBTL plant that would produce research quantities of FT liquid fuels at...

369

Unconventional oil market assessment: ex situ oil shale.  

E-Print Network [OSTI]

??This thesis focused on exploring the economic limitations for the development of western oil shale. The analysis was developed by scaling a known process and… (more)

Castro-Dominguez, Bernardo

2010-01-01T23:59:59.000Z

370

Facility Microgrids  

SciTech Connect (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

371

Analysis Patterns for Oil Refineries  

E-Print Network [OSTI]

We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

Lei Zhen; Guangzhen Shao

372

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network [OSTI]

contamination, environment, environmental impact, environmental pollution, model, oil spill, storage facility, tank, water pollution, wave (water), additive, administration, barrier, book, brine,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

373

Electro-Mechanical Manipulator for Use in the Remote Equipment Decontamination Cell at the Defense Waste Processing Facility, Savannah River Site - 12454  

SciTech Connect (OSTI)

One of the legacies of the cold war is millions of liters of radioactive waste. One of the locations where this waste is stored is at the Savannah River Site (SRS) in South Carolina. A major effort to clean up this waste is on-going at the defense waste processing facility (DWPF) at SRS. A piece of this effort is decontamination of the equipment used in the DWPF to process the waste. The remote equipment decontamination cell (REDC) in the DWPF uses electro-mechanical manipulators (EMM) arms manufactured and supplied by PaR Systems to decontaminate DWPF process equipment. The decontamination fluid creates a highly corrosive environment. After 25 years of operational use the original EMM arms are aging and need replacement. To support continued operation of the DWPF, two direct replacement EMM arms were delivered to the REDC in the summer of 2011. (authors)

Lambrecht, Bill; Dixon, Joe [Par Systems, Shoreview, Minnesota, 55126 (United States); Neuville, John R. [Savannah River Remediation, Savannah River Site, Aiken, South Carolina, 29808 (United States)

2012-07-01T23:59:59.000Z

374

An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry  

E-Print Network [OSTI]

, economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical...

Cooke, D. H.; McCue, R. H.

375

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Topical report No. 1  

SciTech Connect (OSTI)

The principle objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process coupled with the CVU reservoir characterization components will determine if this process is technically and economic for field implementation. The ultimate goal will be to develop guidelines based on commonly available data that other operators in the industry can use to investigate the applicability of the process within other field. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s objective to increasing domestic oil production and deferring the abandonment of shallow shelf carbonate reservoirs. Accomplishments to date are described in this report.

Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

1995-10-01T23:59:59.000Z

376

Implementing waste minimization at an active plutonium processing facility: Successes and progress at technical area (TA) -55 of the Los Alamos National Laboratory  

SciTech Connect (OSTI)

The Los Alamos National Laboratory has ongoing national security missions that necessitate increased plutonium processing. The bulk of this activity occurs at Technical Area -55 (TA-55), the nations only operable plutonium facility. TA-55 has developed and demonstrated a number of technologies that significantly minimize waste generation in plutonium processing (supercritical CO{sub 2}, Mg(OH){sub 2} precipitation, supercritical H{sub 2}O oxidation, WAND), disposition of excess fissile materials (hydride-dehydride, electrolytic decontamination), disposition of historical waste inventories (salt distillation), and Decontamination & Decommissioning (D&D) of closed nuclear facilities (electrolytic decontamination). Furthermore, TA-55 is in the process of developing additional waste minimization technologies (molten salt oxidation, nitric acid recycle, americium extraction) that will significantly reduce ongoing waste generation rates and allow volume reduction of existing waste streams. Cost savings from reduction in waste volumes to be managed and disposed far exceed development and deployment costs in every case. Waste minimization is also important because it reduces occupational exposure to ionizing radiation, risks of transportation accidents, and transfer of burdens from current nuclear operations to future generations.

Balkey, J.J.; Robinson, M.A.; Boak, J.

1997-12-01T23:59:59.000Z

377

Rheology Of MonoSodium Titanate (MST) And Modified Mst (mMST) Mixtures Relevant To The Salt Waste Processing Facility  

SciTech Connect (OSTI)

The Savannah River National Laboratory performed measurements of the rheology of suspensions and settled layers of treated material applicable to the Savannah River Site Salt Waste Processing Facility. Suspended solids mixtures included monosodium titanate (MST) or modified MST (mMST) at various solid concentrations and soluble ion concentrations with and without the inclusion of kaolin clay or simulated sludge. Layers of settled solids were MST/sludge or mMST/sludge mixtures, either with or without sorbed strontium, over a range of initial solids concentrations, soluble ion concentrations, and settling times.

Koopman, D. C.; Martino, C. J.; Shehee, T. C.; Poirier, M. R.

2013-07-31T23:59:59.000Z

378

Environmental assessment operation of the HB-Line facility and frame waste recovery process for production of Pu-238 oxide at the Savannah River Site  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0948, addressing future operations of the HB-Line facility and the Frame Waste Recovery process at the Savannah River Site (SRS), near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, DOE has concluded that, the preparation of an environmental impact statement is not required, and is issuing this Finding of No Significant Impact.

NONE

1995-04-01T23:59:59.000Z

379

Evaluation of the fire and explosion hazards of oil-shale mining and processing. Volume 1. Analytical studies and accident scenarios. Open file report, 16 June 1977-15 July 1983  

SciTech Connect (OSTI)

The objectives of this research were to identify and evaluate potential fire and explosion hazards in oil-shale mining and processing by laboratory testing to provide recommendations for mitigation safety monitoring and to establish a basis for regulation. A series of scenarios were developed describing hypothetical fire and explosion incidents that might occur in oil-shale mining. The objectives were achieved through the following accomplishments: (1) It was found that fire and explosion properties of oil shale increase with oil shale richness and decreasing particle size. (2) Data from dust loading study in several mines showed that the total potential yield of combustibles was about one-tenth the amount required to fuel a propagating explosion. (3) Aging of oil shale dusts over a period of several years reduces the content of volatile combustibles and the corresponding fire and explosion properties. (4) Data and information from the completed program indicate that the hazard of dust explosions is less severe than the hazard of fire in mine muck piles. Laboratory data were used to relate fire and explosivity properties of oil shales to those of coals and other carbonaceous materials and to assist in the identification and evaluation of potential hazardous situations that may be encountered in oil shale mining and processing.

Crookston, R.B.; Atwood, M.T.; Williams, R.E.; McGuire, M.E.

1983-07-15T23:59:59.000Z

380

FLUIDIZED BED COMBUSTION UNIT FOR OIL SHALE  

E-Print Network [OSTI]

combustion performance using oil shale as fuel in direct burning process. It is a steel column of 18 cm

M. Hammad; Y. Zurigat; S. Khzai; Z. Hammad; O. Mubydeem

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Division of Oil, Gas, and Mining Permitting  

E-Print Network [OSTI]

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

382

Production and Characterization of Jatropha Oil Methyl Ester  

E-Print Network [OSTI]

pollution concern. Utilization of biodiesel produced from Jatropha oil by transesterification process is one

P. Venkateswara Rao; G. Srinivasa Rao

383

Morphological Investigations of Fibrogenic Action of Estonian Oil Shale Dust  

E-Print Network [OSTI]

dust produced in the mining and processing of Estonian oil shale is given. Histological examination of

V. A. Kung

384

Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas{trademark} staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas{trademark}, necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II & III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-11-01T23:59:59.000Z

385

Gasification Product Improvement Facility (GPIF)  

SciTech Connect (OSTI)

The objective is to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology electric power generation applications. The proprietary CRS Sirrine Engineers, Inc. PyGas[trademark] staged gasifier has been selected as the initial gasifier to be developed under this program. The gasifier is expected to avoid agglomeration when used on caking coals. It is also being designed to crack tar vapors and ammonia, and to provide an environment in which volatilized alkali may condense onto aluminosilicates in the coal ash thereby minimizing their exiting with the hot raw coal gas and passing through the system to the gas turbine. The management plan calls for a three phased program. The initial phase (Phase 1), includes the CRS Sinine Engineers, Inc. proprietary gasification invention called PyGas[trademark], necessary coal and limestone receiving/storage/reclaim systems to allow closely metered coal and limestone to be fed into the gasifier for testing. The coal gas is subsequently piped to and combusted in an existing burner of the Monongahela Power Fort Martin Generating Station Unit No. 2. Continuous gasification process steam is generated by a small GPIF packaged boiler using light oil fuel at startup, and by switching from light oil to coal gas after startup. The major peripheral equipment such as foundations, process water system, ash handling, ash storage silo, emergency vent pipe, building, lavatory, electrical interconnect, control room, provisions for Phases II III, and control system are all included in Phase I. A future hot gas cleanup unit conceptualized to be a zinc ferrite based fluidized bed process constitutes the following phase (Phase H). The final phase (Phase III) contemplates the addition of a combustion turbine and generator set sized to accommodate the parasitic load of the entire system.

Sadowski, R.S.; Brooks, K.S.; Skinner, W.H.; Brown, M.J.

1992-01-01T23:59:59.000Z

386

Reducing Plug and Process Loads for a Large Scale, Low Energy Office Building: NREL's Research Support Facility; Preprint  

SciTech Connect (OSTI)

This paper documents the design and operational plug and process load energy efficiency measures needed to allow a large scale office building to reach ultra high efficiency building goals. The appendices of this document contain a wealth of documentation pertaining to plug and process load design in the RSF, including a list of equipment was selected for use.

Lobato, C.; Pless, S.; Sheppy, M.; Torcellini, P.

2011-02-01T23:59:59.000Z

387

CO{sub 2} HUFF-n-PUFF process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, [January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Technical progress is reported for geostatitical realizations; paramatric simulation; waterflood review; and reservoir characterization.

Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

1995-04-21T23:59:59.000Z

388

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Second quarterly technical progress report, [April 1995--June 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals. Technical progress is summarized for; geostatistical realizations; site-specific simulation;waterflood review; and reservoir characterization.

Cole, R.; Prieditis, J.; Vogt, J.; Wehner, S.

1995-07-11T23:59:59.000Z

389

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir. Quarterly technical progress report, July--September, 1995  

SciTech Connect (OSTI)

The principal objective of the Central Vacuum Unit (CVU) CO{sub 2} Huff-n-Puff (H-n-P) project is to determine the feasibility and practicality of the technology in a waterflooded shallow shelf carbonate environment. The results of parametric simulation of the CO{sub 2} H-n-P process, coupled with the CVU reservoir characterization components will determine if this process is technically and economically feasible for field implementation. The technology transfer objective of the project is to disseminate the knowledge gained through an innovative plan in support of the Department of Energy`s (DOE) objective of increasing domestic oil production and deferring the abandonment of shallow shelf carbonate (SSC) reservoirs. Tasks associated with this objective are carried out in what is considered a timely effort for near-term goals.

Cole, R.; Prieditis, J.; Vogt, J. Wehner, S.

1995-10-15T23:59:59.000Z

390

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

391

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

392

Synthetic fuels from US oil shales: a technical and economic verification of the HYTORT Process. Project 61040 quarterly report, April 1-June 30, 1980  

SciTech Connect (OSTI)

Progress is reported on the HYTORT Process development work conducted from April 1 through June 30, 1980. Thermobalance tests have been conducted on samples of shale from each large multiton sample prior to large-scale tests and these test results have been fit with specific kinetic expressions. Approximately 80% of the instrumentation for the laboratory-scale reactor has been received. Fabrication of the reactor, feed hopper, and residue receiver is about 95% complete. Two successful moving-bed tests were conducted in the bench-scale reactor during this quarter. A large, 50-ton sample of the Lower Huron member of the Ohio Shale was mined and readied for shipment to IGT. Modification of the bench-scale steam-oxygen unit was completed. Spent shale from PDU tests was prepared for use in these tests. A set of five screening runs on New Albany shale oil and a set of four screening runs on Sunbury shale oil were conducted during this quarter. The nitrogen content of these oils was reduced to the 0.16 to 0.30 weight percent range in the bench-scale hydrotreating unit. Design of the laboratory test system for mist-size control studies was completed. Methods are being studied for measuring mist particle size. Shakedown and initial testing of the liquid-sealed lockhopper were performed during this quarter. Two runs were made in the PDU with Kentucky shales using a sample of the Cleveland member of the Ohio shale and a sample of New Albany shale. Samples for environmental analysis were taken during the PDU runs discussed above. On-line sampling equipment was installed prior to the PDU run with New Albany shale and samples were taken of the Stage 2 raw product gases.

None

1980-11-01T23:59:59.000Z

393

Update on cavern disposal of NORM-contaminated oil field wastes.  

SciTech Connect (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J. A.

1998-09-22T23:59:59.000Z

394

Refining and upgrading of synfuels from coal and oil shales by advanced catalytic processes. Quarterly report, January-March 1981  

SciTech Connect (OSTI)

Samples of SRC-II naphtha, middle distillate, and heavy distillate were received and analyzed. These samples are part of a planned study of the potential biological hazards of synthetic crudes. These oils will be hydrotreated when DOE provides blending instructions. Five drums of EDS syncrude made from Big Brown Texas lignite were received and analyzed. The boiling range and other properties of this syncrude are very similar to the properties of the previously studied H-Coal and SRC-II syncrudes. The hydrotreating severities, which were employed to upgrade the H-Coal and SRC-II syncrudes to transportation fuels, are expected to be close to the severities needed for the EDS syncrude.

Sullivan, R. F.; O'Rear, D. J.

1981-05-01T23:59:59.000Z

395

Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process  

SciTech Connect (OSTI)

Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

Baldwin, D.P.; Zamzow, D.S.

1998-11-10T23:59:59.000Z

396

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning 2009 | International...

397

Water issues associated with heavy oil production.  

SciTech Connect (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

398

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network [OSTI]

D. J. and Cecchine, G. Oil shale development in the Unitedresources of some world oil-shale deposits. Technical Reportfor CO2 evolved from oil shale. Fuel Processing Technology,

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

399

Biocatalysis in Oil Refining  

SciTech Connect (OSTI)

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

400

Enhanced oil recovery using hydrogen peroxide injection  

SciTech Connect (OSTI)

NOVATEC received an US Patent on a novel method to recovery viscous oil by hydrogen peroxide injection. The process appears to offer several significant improvements over existing thermal methods of oil recovery. Tejas joined NOVATEC to test the process in the laboratory and to develop oil field applications and procedures.

Moss, J.T. Jr.; Moss, J.T.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

.1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

402

Oil shale, tar sands, and related materials  

SciTech Connect (OSTI)

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

403

Comparison of electrical capacitance tomography and gamma densitometer measurement in viscous oil-gas flows  

SciTech Connect (OSTI)

Multiphase flow is a common occurrence in industries such as nuclear, process, oil and gas, food and chemical. A prior knowledge of its features and characteristics is essential in the design, control and management of such processes due to its complex nature. Electrical Capacitance Tomography (ECT) and Gamma Densitometer (Gamma) are two promising approaches for multiphase visualization and characterization in process industries. In two phase oil and gas flow, ECT and Gamma are used in multiphase flow monitoring techniques due to their inherent simplicity, robustness, and an ability to withstand wide range of operational temperatures and pressures. High viscous oil (viscosity > 100 cP) is of interest because of its huge reserves, technological advances in its production and unlike conventional oil (oil viscosity < 100 cP) and gas flows where ECT and Gamma have been previously used, high viscous oil and gas flows comes with certain associated concerns which include; increased entrainment of gas bubbles dispersed in oil, shorter and more frequent slugs as well as oil film coatings on the walls of flowing conduits. This study aims to determine the suitability of both devices in the visualization and characterization of high-viscous oil and gas flow. Static tests are performed with both devices and liquid holdup measurements are obtained. Dynamic experiments were also conducted in a 1 and 3 inch facility at Cranfield University with a range of nominal viscosities (1000, 3000 and 7500 cP). Plug, slug and wavy annular flow patterns were identified by means of Probability Mass Function and time series analysis of the data acquired from Gamma and ECT devices with high speed camera used to validate the results. Measured Liquid holdups for both devices were also compared.

Archibong Eso, A.; Zhao, Yabin; Yeung, Hoi [Department of Offshore Process and Energy Systems Engineering, Cranfield University, Cranfield (United Kingdom)

2014-04-11T23:59:59.000Z

404

Low-rank coal oil agglomeration  

DOE Patents [OSTI]

A low-rank coal oil agglomeration process. High mineral content, a high ash content subbituminous coals are effectively agglomerated with a bridging oil which is partially water soluble and capable of entering the pore structure, and usually coal derived.

Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND)

1991-01-01T23:59:59.000Z

405

Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993  

SciTech Connect (OSTI)

Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

Smith, V.E.

1994-05-01T23:59:59.000Z

406

The Mechanisms and Processes of Vegetation Dynamics on Oil-Shale Spoil Bings in West Lothian, Scotland   

E-Print Network [OSTI]

The work establishes the ecological importance of shale bings at both a local and global scale by presenting the mechanisms and processes of succession. The bings are postindustrial spoil heaps, the result of retorting ...

Harvie, Barbra

407

Kuwait: World Oil Report 1991  

SciTech Connect (OSTI)

This paper reports that the major event in Kuwait today is the ongoing effort to control blowouts stemming from Iraqi demolition of oil wells and producing facilities last February. A total of 732 wells---about two- thirds of all wells in Kuwait---were blown up. All but 80 caught on fire.

Not Available

1991-08-01T23:59:59.000Z

408

Facilities: NHMFL 9.4 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Citation: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization Fourier  

E-Print Network [OSTI]

with greater than 1% relative abundance in either phase are shown. Pyrolysis of solid biomass, in this case: Characterization of Pine Pellet and Peanut Hull Pyrolysis of Bio-Oils by Negative-Ion Electrospray Ionization of nitrogen-containing species identified in the peanut hull pyrolysis oil by FT-ICR mass spectrometry

Weston, Ken

409

Strategies for Facilities Renewal  

E-Print Network [OSTI]

of steam production is from exothermic chem ical processes. A large gas fired cogeneration unit was completed in 1987 and supplies 90% of the facil ities' electrical needs and 25% of total steam demand (the remaining steam is supplied by process heat...

Good, R. L.

410

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

411

The Economic and Environmental Aspects of Heat Exchanger Cleaning -- How FP&L Has Used the Newly Patented MCC Process to Clean Turbine Lube Oil Coolers to Maximize Efficiency and Minimize Waste  

E-Print Network [OSTI]

of efficient and timely cleaning of heat exchangers. There are great differences in the cleaning processes that are used to clean exchanger bundles in industry today. The cleaning of turbine lube oil coolers is a specialized case in point. A newly patented...

Wood, H. A. T.

412

Processing needs and methodology for wastewaters from the conversion of coal, oil shale, and biomass to synfuels  

SciTech Connect (OSTI)

The workshop identifies needs to be met by processing technology for wastewaters, and evaluates the suitability, approximate costs, and problems associated with current technology. Participation was confined to DOE Environmental Control Technology contractors to pull together and integrate past wastewater-related activities, to assess the status of synfuel wastewater treatability and process options, and to abet technology transfer. Particular attention was paid to probable or possible environmental restrictions which cannot be economically met by present technology. Primary emphasis was focussed upon process-condensate waters from coal-conversion and shale-retorting processes. Due to limited data base and time, the workshop did not deal with transients, upsets, trade-offs and system optimization, or with solids disposal. The report is divided into sections that, respectively, survey the water usage and effluent situation (II); identify the probable and possible water-treatment goals anticipated at the time when large-scale plants will be constructed (III); assess the capabilities, costs and shortcomings of present technology (IV); explore particularly severe environmental-control problems (V); give overall conclusions from the Workshop and recommendations for future research and study (VI); and, finally, present Status Reports of current work from participants in the Workshop (VII).

Not Available

1980-05-01T23:59:59.000Z

413

War curbs oil exports by Iran and Iraq  

SciTech Connect (OSTI)

A discussion of the effects of the war between Iran and Iraq on oil exports from the area covers damage (extent unknown) to the Abadan, Iran, and Basra, Iraq, oil refineries, to the Iraqi petrochemical complex under construction at Basra, to oil export terminals at Kharg Island and Mina-al-Bakr, and to other oil facilities; war-caused reductions in oil production, refining, shipping, and export, estimated at 2.05-3.35 million bbl/day; the possible effects of the war on OPEC's decisions concerning oil production and pricing; the significance of the Strait of Hormuz for the export of oil by several countries in addition to the belligerents; the U.S. and non-Communist oil stocks which might enable the world to avoid an oil shortage if the war is ended in the near future; and the long-term effects of the war on Iran's and Iraq's oil industries.

Not Available

1980-09-29T23:59:59.000Z

414

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, Arthur E. (Los Altos, CA); Braun, Robert L. (Livermore, CA); Mallon, Richard G. (Livermore, CA); Walton, Otis R. (Livermore, CA)

1986-01-01T23:59:59.000Z

415

Process for oil shale retorting using gravity-driven solids flow and solid-solid heat exchange  

DOE Patents [OSTI]

A cascading bed retorting process and apparatus are disclosed in which cold raw crushed shale enters at the middle of a retort column into a mixer stage where it is rapidly mixed with hot recycled shale and thereby heated to pyrolysis temperature. The heated mixture then passes through a pyrolyzer stage where it resides for a sufficient time for complete pyrolysis to occur. The spent shale from the pyrolyzer is recirculated through a burner stage where the residual char is burned to heat the shale which then enters the mixer stage.

Lewis, A.E.; Braun, R.L.; Mallon, R.G.; Walton, O.R.

1983-09-21T23:59:59.000Z

416

CANISTER HANDLING FACILITY DESCRIPTION DOCUMENT  

SciTech Connect (OSTI)

The purpose of this facility description document (FDD) is to establish requirements and associated bases that drive the design of the Canister Handling Facility (CHF), which will allow the design effort to proceed to license application. This FDD will be revised at strategic points as the design matures. This FDD identifies the requirements and describes the facility design, as it currently exists, with emphasis on attributes of the design provided to meet the requirements. This FDD is an engineering tool for design control; accordingly, the primary audience and users are design engineers. This FDD is part of an iterative design process. It leads the design process with regard to the flowdown of upper tier requirements onto the facility. Knowledge of these requirements is essential in performing the design process. The FDD follows the design with regard to the description of the facility. The description provided in this FDD reflects the current results of the design process.

J.F. Beesley

2005-04-21T23:59:59.000Z

417

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

418

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

419

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

420

Verification of the Accountability Method as a Means to Classify Radioactive Wastes Processed Using THOR Fluidized Bed Steam Reforming at the Studsvik Processing Facility in Erwin, Tennessee, USA - 13087  

SciTech Connect (OSTI)

Studsviks' Processing Facility Erwin (SPFE) has been treating Low-Level Radioactive Waste using its patented THOR process for over 13 years. Studsvik has been mixing and processing wastes of the same waste classification but different chemical and isotopic characteristics for the full extent of this period as a general matter of operations. Studsvik utilizes the accountability method to track the movement of radionuclides from acceptance of waste, through processing, and finally in the classification of waste for disposal. Recently the NRC has proposed to revise the 1995 Branch Technical Position on Concentration Averaging and Encapsulation (1995 BTP on CA) with additional clarification (draft BTP on CA). The draft BTP on CA has paved the way for large scale blending of higher activity and lower activity waste to produce a single waste for the purpose of classification. With the onset of blending in the waste treatment industry, there is concern from the public and state regulators as to the robustness of the accountability method and the ability of processors to prevent the inclusion of hot spots in waste. To address these concerns and verify the accountability method as applied by the SPFE, as well as the SPFE's ability to control waste package classification, testing of actual waste packages was performed. Testing consisted of a comprehensive dose rate survey of a container of processed waste. Separately, the waste package was modeled chemically and radiologically. Comparing the observed and theoretical data demonstrated that actual dose rates were lower than, but consistent with, modeled dose rates. Moreover, the distribution of radioactivity confirms that the SPFE can produce a radiologically homogeneous waste form. The results of the study demonstrate: 1) the accountability method as applied by the SPFE is valid and produces expected results; 2) the SPFE can produce a radiologically homogeneous waste; and 3) the SPFE can effectively control the waste package classification. (authors)

Olander, Jonathan [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States)] [Studsvik Processing Facility Erwin, 151 T.C. Runnion Rd., Erwin, TN 37650 (United States); Myers, Corey [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)] [Studsvik, Inc., 5605 Glenridge Drive, Suite 705, Atlanta, GA 30342 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil processing facilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coal liquefaction process wherein jet fuel, diesel fuel and/or ASTM No. 2 fuel oil is recovered  

DOE Patents [OSTI]

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, Richard F. (Houston, TX); Ryan, Daniel F. (Friendswood, TX)

1982-01-01T23:59:59.000Z

422

Coal liquefaction process wherein jet fuel, diesel fuel and/or astm no. 2 fuel oil is recovered  

SciTech Connect (OSTI)

An improved process for the liquefaction of coal and similar solid carbonaceous materials wherein a hydrogen donor solvent or diluent derived from the solid carbonaceous material is used to form a slurry of the solid carbonaceous material and wherein the naphthenic components from the solvent or diluent fraction are separated and used as jet fuel components. The extraction increases the relative concentration of hydroaromatic (hydrogen donor) components and as a result reduces the gas yield during liquefaction and decreases hydrogen consumption during said liquefaction. The hydrogenation severity can be controlled to increase the yield of naphthenic components and hence the yield of jet fuel and in a preferred embodiment jet fuel yield is maximized while at the same time maintaining solvent balance.

Bauman, R.F.; Ryan, D.F.

1982-06-01T23:59:59.000Z

423

MEASUREMENT AND CALCULATION OF RADIONUCLIDE ACTIVITIES IN SAVANNAH RIVER SITE HIGH LEVEL WASTE SLUDGE FOR ACCEPTANCE OF DEFENSE WASTE PROCESSING FACILITY GLASS IN A FEDERAL REPOSITORY  

SciTech Connect (OSTI)

This paper describes the results of the analyses of High Level Waste (HLW) sludge slurry samples and of the calculations necessary to decay the radionuclides to meet the reporting requirement in the Waste Acceptance Product Specifications (WAPS) [1]. The concentrations of 45 radionuclides were measured. The results of these analyses provide input for radioactive decay calculations used to project the radionuclide inventory at the specified index years, 2015 and 3115. This information is necessary to complete the Production Records at Savannah River Site's Defense Waste Processing Facility (DWPF) so that the final glass product resulting from Macrobatch 5 (MB5) can eventually be submitted to a Federal Repository. Five of the necessary input radionuclides for the decay calculations could not be measured directly due to their low concentrations and/or analytical interferences. These isotopes are Nb-93m, Pd-107, Cd-113m, Cs-135, and Cm-248. Methods for calculating these species from concentrations of appropriate other radionuclides will be discussed. Also the average age of the MB5 HLW had to be calculated from decay of Sr-90 in order to predict the initial concentration of Nb-93m. As a result of the measurements and calculations, thirty-one WAPS reportable radioactive isotopes were identified for MB5. The total activity of MB5 sludge solids will decrease from 1.6E+04 {micro}Ci (1 {micro}Ci = 3.7E+04 Bq) per gram of total solids in 2008 to 2.3E+01 {micro}Ci per gram of total solids in 3115, a decrease of approximately 700 fold. Finally, evidence will be given for the low observed concentrations of the radionuclides Tc-99, I-129, and Sm-151 in the HLW sludges. These radionuclides were reduced in the MB5 sludge slurry to a fraction of their expected production levels due to SRS processing conditions.

Bannochie, C; David Diprete, D; Ned Bibler, N

2008-12-31T23:59:59.000Z

424

Past, Present, and Future Production of Bio-oil  

SciTech Connect (OSTI)

Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.

Steele, Philip; Yu, Fei; Gajjela, Sanjeev

2009-04-01T23:59:59.000Z

425

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

426

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

427

Practical guide: Tools and methodologies for an oil and gas industry emission inventory  

SciTech Connect (OSTI)

During the preparation of Title V Permit applications, the quantification and speciation of emission sources from oil and gas facilities were reevaluated to determine the {open_quotes}potential-to-emit.{close_quotes} The existing emissions were primarily based on EPA emission factors such as AP-42, for tanks, combustion sources, and fugitive emissions from component leaks. Emissions from insignificant activities and routine operations that are associated with maintenance, startups and shutdowns, and releases to control devices also required quantification. To reconcile EPA emission factors with test data, process knowledge, and manufacturer`s data, a careful review of other estimation options was performed. This paper represents the results of this analysis of emission sources at oil and gas facilities, including exploration and production, compressor stations and gas plants.

Thompson, C.C. [C-K Associates, Inc., Baton Rouge, LA (United States); Killian, T.L. [Conoco, Inc., Houston, TX (United States)

1996-12-31T23:59:59.000Z

428

OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY  

SciTech Connect (OSTI)

Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field test data from virtually anywhere in the world, and development of novel data processing techniques. Comprehensive testing was performed to systematically evaluate the performance of the fiber optic sensor systems in both lab and field environments.

Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

2003-06-01T23:59:59.000Z

429

EVALUATION OF THE IMPACT OF THE DEFENSE WASTE PROCESSING FACILITY (DWPF) LABORATORY GERMANIUM OXIDE USE ON RECYCLE TRANSFERS TO THE H-TANK FARM  

SciTech Connect (OSTI)

When processing High Level Waste (HLW) glass, the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. Therefore, the acceptability decision is made on the upstream feed stream, rather than on the downstream melt or glass product. This strategy is known as 'feed forward statistical process control.' The DWPF depends on chemical analysis of the feed streams from the Sludge Receipt and Adjustment Tank (SRAT) and the Slurry Mix Evaporator (SME) where the frit plus adjusted sludge from the SRAT are mixed. The SME is the last vessel in which any chemical adjustments or frit additions can be made. Once the analyses of the SME product are deemed acceptable, the SME product is transferred to the Melter Feed Tank (MFT) and onto the melter. The SRAT and SME analyses have been analyzed by the DWPF laboratory using a 'Cold Chemical' method but this dissolution did not adequately dissolve all the elemental components. A new dissolution method which fuses the SRAT or SME product with cesium nitrate (CsNO{sub 3}), germanium (IV) oxide (GeO{sub 2}) and cesium carbonate (Cs{sub 2}CO{sub 3}) into a cesium germanate glass at 1050 C in platinum crucibles has been developed. Once the germanium glass is formed in that fusion, it is readily dissolved by concentrated nitric acid (about 1M) to solubilize all the elements in the SRAT and/or SME product for elemental analysis. When the chemical analyses are completed the acidic cesium-germanate solution is transferred from the DWPF analytic laboratory to the Recycle Collection Tank (RCT) where the pH is increased to {approx}12 M to be released back to the tank farm and the 2H evaporator. Therefore, about 2.5 kg/yr of GeO{sub 2}/year will be diluted into 1.4 million gallons of recycle. This 2.5 kg/yr of GeO{sub 2} may increase to 4 kg/yr when improvements are implemented to attain an annual canister production goal of 400 canisters. Since no Waste Acceptance Criteria (WAC) exists for germanium in the Tank Farm, the Effluent Treatment Project, or the Saltstone Production Facility, DWPF has requested an evaluation of the fate of the germanium in the caustic environment of the RCT, the 2H evaporator, and the tank farm. This report evaluates the effect of the addition of germanium to the tank farm based on: (1) the large dilution of Ge in the RCT and tank farm; (2) the solubility of germanium in caustic solutions (pH 12-13); (3) the potential of germanium to precipitate as germanium sodalites in the 2H Evaporator; and (4) the potential of germanium compounds to precipitate in the evaporator feed tank. This study concludes that the impacts of transferring up to 4 kg/yr germanium to the RCT (and subsequently the 2H evaporator feed tank and the 2H evaporator) results in <2 ppm per year (1.834 mg/L) which is the maximum instantaneous concentration expected from DWPF. This concentration is insignificant as most sodium germanates are soluble at the high pH of the feed tank and evaporator solutions. Even if sodium aluminosilicates form in the 2H evaporator, the Ge will likely substitute for some small amount of the Si in these structures and will be insignificant. It is recommended that the DWPF continue with their strategy to add germanium as a laboratory chemical to Attachment