Sample records for oil motor gasoline

  1. Motor gasoline assessment, Spring 1997

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The springs of 1996 and 1997 provide an excellent example of contrasting gasoline market dynamics. In spring 1996, tightening crude oil markets pushed up gasoline prices sharply, adding to the normal seasonal gasoline price increases; however, in spring 1997, crude oil markets loosened and crude oil prices fell, bringing gasoline prices down. This pattern was followed throughout the country except in California. As a result of its unique reformulated gasoline, California prices began to vary significantly from the rest of the country in 1996 and continued to exhibit distinct variations in 1997. In addition to the price contrasts between 1996 and 1997, changes occurred in the way in which gasoline markets were supplied. Low stocks, high refinery utilizations, and high imports persisted through 1996 into summer 1997, but these factors seem to have had little impact on gasoline price spreads relative to average spread.

  2. EIS-0039: Motor Gasoline Deregulation and the Gasoline Tilt

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration developed this EIS to evaluate the environmental impacts, including social and economic impacts, that may result from either of two proposed regulatory changes: (1) the exemption of motor gasoline from the Department of Energy's Mandatory Petroleum Price and Allocation Regulations, and (2) the adoption of the gasoline tilt, a proposed regulation that would allow refiners to recover an additional amount of their total increased costs on gasoline.

  3. Motor gasolines, winter 1981-1982

    SciTech Connect (OSTI)

    Shelton, E M

    1982-07-01T23:59:59.000Z

    Analytical data for 905 samples of motor gasoline, were collected from service stations throughout the country and were analyzed in the laboratories of various refiners, motor manufacturers, and chemical companies. The data were submitted to the Bartlesville Energy Technology Center for study, necessary calculations, and compilation under a cooperative agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The samples represent the products of 30 companies, large and small, which manufacture and supply gasoline. These data are tabulated by groups according to brands (unlabeled) and grades for 17 marketing districts into which the country is divided. A map included in this report, shows marketing areas, districts and sampling locations. The report also includes charts indicating the trends of selected properties of motor fuels since winter 1959-1960 survey for the leaded gasolines, and since winter 1979-1980 survey for the unleaded gasolines. Sixteen octane distribution percent charts for areas 1, 2, 3, and 4 for unleaded antiknock index (R+M)/2 below 90.0, unleaded antiknock index (R+M)/2 90.0 and above, leaded antiknock index (R+M)/2 below 93.0, and leaded antiknock index (R+M)/2 93.0 and above grades of gasoline are presented in this report. The antiknock (octane) index (R+M)/2 averages of gasoline sold in this country were 87.4 for unleaded below 90.0, 91.7 for unleaded 90.0 and above, and 88.9 for leaded below 93.0. Only one sample was reported as 93.0 for leaded gasolines with an antiknock index (R+M)/2 93.0 and above.

  4. Stocks of Total Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,591 135,428

  5. Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil

  6. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  7. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State 292 Energy...

  9. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  10. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1998 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  11. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1995 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  12. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  13. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  14. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    220 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  15. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    134 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  17. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    220 Energy Information AdministrationPetroleum Marketing Annual 2000 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  18. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1998 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  19. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    - - - - W W - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  20. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  1. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  2. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Petroleum Marketing Annual 1999 Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) -...

  3. Table 32. Conventional Motor Gasoline Prices by Grade, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - - - 64.7 64.7 - - - - - - See footnotes at end of table. 32. Conventional Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 86 Energy Information...

  4. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    - - - - - - - - - - - - See footnotes at end of table. 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 116 Energy Information...

  5. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  6. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Energy Information Administration Petroleum Marketing Annual 1995 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

  7. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration Petroleum Marketing Annual 1995 Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  8. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    250 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  9. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Information AdministrationPetroleum Marketing Annual 1999 Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and Selected States (Cents per...

  10. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    Energy Information Administration Petroleum Marketing Annual 1995 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

  11. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    134 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  12. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  13. Motor Gasoline Outlook and State MTBE Bans

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    The U.S. is beginning the summer 2003 driving season with lower gasoline inventories and higher prices than last year. Recovery from this tight gasoline market could be made more difficult by impending state bans on the blending of methyl tertiary butyl ether (MTBE) into gasoline that are scheduled to begin later this year.

  14. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  15. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 466.1 466.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  16. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  17. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    150.0 2,026.7 W W 234.5 161.7 - 396.3 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  18. Petroleum Products Table 43. Refiner Motor Gasoline Volumes...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    253.2 2,222.4 W W 206.4 134.3 - 340.7 See footnotes at end of table. 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State 262 Energy Information...

  19. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

  20. Restructuring: The Changing Face of Motor Gasoline Marketing

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    This report reviews the U.S. motor gasoline marketing industry during the period 1990 to 1999, focusing on changes that occurred during the period. The report incorporates financial and operating data from the Energy Information Administration's Financial Reporting System (FRS), motor gasoline outlet counts collected by the National Petroleum News from the states, and U.S. Census Bureau salary and employment data published in County Business Patterns.

  1. Assessment of Summer 1997 motor gasoline price increase

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Gasoline markets in 1996 and 1997 provided several spectacular examples of petroleum market dynamics. The first occurred in spring 1996, when tight markets, following a long winter of high demand, resulted in rising crude oil prices just when gasoline prices exhibit their normal spring rise ahead of the summer driving season. Rising crude oil prices again pushed gasoline prices up at the end of 1996, but a warm winter and growing supplies weakened world crude oil markets, pushing down crude oil and gasoline prices during spring 1997. The 1996 and 1997 spring markets provided good examples of how crude oil prices can move gasoline prices both up and down, regardless of the state of the gasoline market in the United States. Both of these spring events were covered in prior Energy Information Administration (EIA) reports. As the summer of 1997 was coming to a close, consumers experienced yet another surge in gasoline prices. Unlike the previous increase in spring 1996, crude oil was not a factor. The late summer 1997 price increase was brought about by the supply/demand fundamentals in the gasoline markets, rather than the crude oil markets. The nature of the summer 1997 gasoline price increase raised questions regarding production and imports. Given very strong demand in July and August, the seemingly limited supply response required examination. In addition, the price increase that occurred on the West Coast during late summer exhibited behavior different than the increase east of the Rocky Mountains. Thus, the Petroleum Administration for Defense District (PADD) 5 region needed additional analysis (Appendix A). This report is a study of this late summer gasoline market and some of the important issues surrounding that event.

  2. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    61.5 70.8 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  3. Petroleum Products Table 31. Motor Gasoline Prices by Grade...

    Gasoline and Diesel Fuel Update (EIA)

    82.4 77.1 68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  4. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales...

    Gasoline and Diesel Fuel Update (EIA)

    62.6 71.7 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 34. Reformulated Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 146 Energy Information...

  5. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    71.8 W 70.5 78.9 W 76.0 83.6 W 69.2 75.2 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  6. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type...

    Gasoline and Diesel Fuel Update (EIA)

    W 68.4 70.8 W W 78.6 W 85.7 81.8 W 69.3 73.8 See footnotes at end of table. 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District and State 176 Energy Information...

  7. Motor Gasoline Sales Through Retail Outlets Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year JanCubicXIV. MoroccoMotor894

  8. MTBE, Oxygenates, and Motor Gasoline (Released in the STEO October 1999)

    Reports and Publications (EIA)

    1999-01-01T23:59:59.000Z

    The blending of methyl tertiary butyl ether (MTBE) into motor gasoline has increased dramatically since it was first produced 20 years ago. MTBE usage grew in the early 1980's in response to octane demand resulting initially from the phaseout of lead from gasoline and later from rising demand for premium gasoline. The oxygenated gasoline program stimulated an increase in MTBE production between 1990 and 1994. MTBE demand increased from 83,000 in 1990 to 161,000 barrels per day in 1994. The reformulated gasoline (RFG) program provided a further boost to oxygenate blending. The MTBE contained in motor gasoline increased to 269,000 barrels per day by 1997.

  9. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  10. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  11. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 401 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  12. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Information Administration Petroleum Marketing Annual 1995 Table A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District and State, 1984-Present (Cents per Gallon...

  13. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    table. 56 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  14. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1999 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  15. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    U.S. Energy Information Administration (EIA) Indexed Site

    table. 56 Energy Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon...

  16. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) Year Month...

  17. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  18. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationPetroleum Marketing Annual 1998 Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  19. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  20. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  1. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type (Cents per Gallon Excluding Taxes) - Continued...

  2. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type (Million Gallons per Day) - Continued Year...

  3. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2

    E-Print Network [OSTI]

    1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were

  4. Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices

    E-Print Network [OSTI]

    Paris-Sud XI, Universitť de

    Asymmetric and nonlinear pass-through of crude oil prices to gasoline and natural gas prices Ahmed distributed lags (NARDL) mod- el to examine the pass-through of crude oil prices into gasoline and natural gas the possibility to quantify the respective responses of gasoline and natural gas prices to positive and negative

  5. Why Do Motor Gasoline Prices Vary Regionally? California Case Study

    Reports and Publications (EIA)

    1998-01-01T23:59:59.000Z

    Analysis of the difference between the retail gasoline prices in California and the average U.S. retail prices.

  6. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 5.9 4.4 12.9 NA 17.3 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...

  7. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    98.0 98.0 86.6 75.0 - 80.1 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  8. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    3.3 3.4 7.9 3.3 W 11.3 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  9. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    92.4 92.1 83.7 74.1 W 80.9 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  10. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    87.4 86.9 78.3 68.5 W 70.8 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  11. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    92.8 92.5 84.0 72.5 W 80.7 See footnotes at end of table. 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type 24 Energy Information Administration ...

  12. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    88.4 87.8 80.1 70.0 NA 72.6 See footnotes at end of table. 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type 16 Energy Information Administration ...

  13. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by...

    U.S. Energy Information Administration (EIA) Indexed Site

    94.0 93.9 83.2 73.8 - 79.3 See footnotes at end of table. 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type 20 Energy Information Administration ...

  14. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    3.6 3.7 7.9 3.1 W 11.0 See footnotes at end of table. 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type 26 Energy Information Administration ...

  15. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    5.7 5.9 3.9 12.7 W 16.6 See footnotes at end of table. 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type 18 Energy Information Administration ...

  16. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  17. Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines

    E-Print Network [OSTI]

    Proper Oil Sampling Intervals and Sample Collection Techniques Gasoline/Diesel/Natural Gas Engines: ∑ Oil samples can be collected during oil changes. Follow manufacturers recommendations on frequency (hours, mileage, etc) of oil changes. ∑ Capture a sample from the draining oil while the oil is still hot

  18. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    35.2 213.6 9.5 9.8 12.9 16.6 NA 29.5 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

  19. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    71.6 92.3 78.2 101.8 83.6 87.5 74.7 See footnotes at end of table. A1. RefinerReseller Motor Gasoline Prices by Grade, PAD District, and State, 1984-Present 452 Energy Information...

  20. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    62.2 68.5 90.1 89.6 82.4 70.9 NA 75.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

  1. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    - 4.9 0.4 0.4 0.3 0.4 - 0.7 See footnotes at end of table. 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type 22 Energy Information Administration ...

  2. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    61.5 67.3 89.8 89.5 82.2 69.4 71.1 74.9 See footnotes at end of table. 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type 12 Energy Information Administration ...

  3. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Gasoline and Diesel Fuel Update (EIA)

    82.4 77.1 68.9 62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  4. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...

    Gasoline and Diesel Fuel Update (EIA)

    82.5 75.1 68.6 62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information...

  5. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    33.9 215.8 9.7 10.0 12.1 16.3 0.0 28.4 See footnotes at end of table. 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type 14 Energy Information Administration ...

  6. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    W 5.6 0.5 0.5 0.5 0.4 - 0.9 See footnotes at end of table. 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type 22 Energy Information Administration ...

  7. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  8. Demand, Supply, and Price Outlook for Reformulated Motor Gasoline 1995

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : 42Q)2Q)6)2k(STEO)

  9. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, Eddie G. (Richland, WA); Elliott, Douglas C. (Richland, WA)

    1993-01-01T23:59:59.000Z

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compouns as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  10. Method of upgrading oils containing hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline

    DOE Patents [OSTI]

    Baker, E.G.; Elliott, D.C.

    1993-01-19T23:59:59.000Z

    The present invention is a multi-stepped method of converting an oil which is produced by various biomass and coal conversion processes and contains primarily single and multiple ring hydroxyaromatic hydrocarbon compounds to highly aromatic gasoline. The single and multiple ring hydroxyaromatic hydrocarbon compounds in a raw oil material are first deoxygenated to produce a deoxygenated oil material containing single and multiple ring aromatic compounds. Then, water is removed from the deoxygenated oil material. The next step is distillation to remove the single ring aromatic compounds as gasoline. In the third step, the multiple ring aromatics remaining in the deoxygenated oil material are cracked in the presence of hydrogen to produce a cracked oil material containing single ring aromatic compounds. Finally, the cracked oil material is then distilled to remove the single ring aromatics as gasoline.

  11. Motor Gasoline Market Spring 2007 and Implications for Spring 2008

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year JanCubicXIV. MoroccoMotor

  12. Draft regulatory analysis: notice of proposed rulemaking motor gasoline allocation revisions

    SciTech Connect (OSTI)

    None

    1980-06-01T23:59:59.000Z

    The Draft Regulatory Analysis is prepared for those proposed regulations which either may have a major impact on the general economy, individual industries, or geographic regions and levels of government, or may be significant in that they affect important DOE policy concerns and are the object of public interest. The problems and proposed solutions for the Notice of Proposed Rulemaking and Public Hearings on the Motor Gasoline Allocation Program are examined. The ERA's mandate for this program is set out in the Emergency Petroleum Allocation Act of 1973. Under this Act, the President is empowered to enforce, at his discretion, price and allocation controls on petroleum and petroleum products, including gasoline, through September 30, 1981. The Act sets the following allocation goals: protect public health; maintain public services and agricultural operations; foster competition in the petroleum industry; distribute petroleum among industry sectors and US regions equitably; and minimize economic disruption and unnecessary interference wth market mechanisms.

  13. Does Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks with another spike in gasoline

    E-Print Network [OSTI]

    Ahmad, Sajjad

    with another spike in gasoline prices and their reported record profits. Some months ago, during the last gasoline price spike, Congress summoned the executives of the Big Oil companies to testify aboutDoes Big Oil Collude and Price Gouge? Big Oil came back into the headlines in recent weeks

  14. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M. [Argonne National Lab., Washington, DC (United States); McNutt, B. [USDOE, Washington, DC (United States)

    1993-11-01T23:59:59.000Z

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  15. Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per

    E-Print Network [OSTI]

    Phillips, David

    Sunco Oil manufactures three types of gasoline (gas 1, gas 2 and gas 3). Each type is produced by blending three types of crude oil (crude 1, crude 2 and crude 3). The sales price per barrel of gasoline and the purchase price per barrel of crude oil are given in following table: Gasoline Sale Price per barrel Gas 1

  16. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    Environmental externalities of motor-vehicle use in the US.Gasoline Cd Co Cr Cu Fe Mn Ni Motor Oil & Grease Antifreezecan often be traced to motor vehicle sources. According to

  17. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of primary organic characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA

  18. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    However, refined products such as motor oil and gasoline areused oil in itself is not a dangerous product if handledoil plastic containers can be processed to produce plastic products

  19. Proton NMR analysis of octane number for motor gasoline: Part V

    SciTech Connect (OSTI)

    Ichikawa, M.; Nonaka, N.; Amano, H.; Takada, I.; Ishimori, S. [Suzuki Motor Corp., Hamamatsu (Japan); Andoh, H.; Kumamoto, K. [Showa Shell Sikiyu Tokyo (Japan)

    1992-10-01T23:59:59.000Z

    A method to predict the octane number of automobile gasoline containing methyl tert-butyl ether (MTBE) by proton magnetic resonance (PMR) spectrometry was studied. Samples of gasoline whose octane numbers had been identified according to the ASTM standards (commercially available premium gasoline to which MTBE was added at rates of 7 vol % and 14 vol %) were used in this investigation of the effect of MTBE on the octane number. The findings were utilized to introduce a term regarding MTBE into the previously reported linear regression equation for estimating the octane number from the PMR spectrum, and the appropriateness of the linear regression equation was assessed. As a result the MTBE contents in the sample were determined with satisfactory accuracy by using a standard addition method, and a linear regression equation reflecting the effect of MTBE was obtained. These achievements are reported. 11 refs., 3 figs., 5 tabs.

  20. ,"U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner Gasoline Prices"Sales Volumes

  1. ,"U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales toReformulated, Average Refiner Gasoline Prices"SalesSales

  2. Elastomers in mud motors for oil field applications

    SciTech Connect (OSTI)

    Hendrik, J. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1997-08-01T23:59:59.000Z

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Results of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.

  3. ,"Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant Stocks"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"for Selected

  4. ,"Motor Gasoline Sales to End Users, Total Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventional Gasoline Sales to End Users, Total Refiner Sales Volumes"forUsers, Total Refiner

  5. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01T23:59:59.000Z

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  6. The potential for low petroleum gasoline

    SciTech Connect (OSTI)

    Hadder, G.R.; Webb, G.M.; Clauson, M.

    1996-06-01T23:59:59.000Z

    The Energy Policy Act requires the Secretary of Energy to determine the feasibility of producing sufficient replacement fuels to replace at least 30 percent of the projected consumption of motor fuels by light duty vehicles in the year 2010. The Act also requires the Secretary to determine the greenhouse gas implications of the use of replacement fuels. A replacement fuel is a non-petroleum portion of gasoline, including certain alcohols, ethers, and other components. The Oak Ridge National Laboratory Refinery Yield Model has been used to study the cost and refinery impacts for production of {open_quotes}low petroleum{close_quotes} gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and a major contributor to cost increase is investment in processes to produce and etherify light olefins. High oxygenation can also increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum components might be produced with cost increases of 23 to 37 cents per gallon of gasoline, and with greenhouse gas emissions changes between a 3 percent increase and a 16 percent decrease. Crude oil reduction, with decreased dependence on foreign sources, is a major objective of the low petroleum gasoline program. For year-round gasoline with near-30 percent non-petroleum components, crude oil use is reduced by 10 to 12 percent, at a cost $48 to $89 per barrel. Depending upon resolution of uncertainties about extrapolation of the Environmental Protection Agency Complex Model for pollutant emissions, availability of raw materials and other issues, costs could be lower or higher.

  7. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Gasoline and Crude Oil Prices, 2000-2006 Figure I:Weekly Gasoline and Crude Oil Prices for 2001- 2006 Crudeargue that increases in oil prices may lead to recessions

  8. A short and simple explanation of how oil is converted into gasoline and then brought to

    E-Print Network [OSTI]

    it is not usable. It must first be sent to a refinery where it is converted into many dif- ferent products that we or thicker the oil, the more work the refinery must do to distill it into a useful form. The second, the most economical way to transport crude oil from the well to the refinery is through pipelines. While

  9. Gasoline marketing

    SciTech Connect (OSTI)

    Metzenbaum, H.M.

    1991-02-01T23:59:59.000Z

    Consumers have the option of purchasing several different grades of unleaded gasoline regular, mid-grade, and premium which are classified according to an octane rating. Because of concern that consumers may be needlessly buying higher priced premium unleaded gasoline for their automobiles when regular unleaded gasoline would meet their needs, this paper determines whether consumers were buying premium gasoline that they may not need, whether the higher retail price of premium gasoline includes a price mark-up added between the refinery and the retail pump which is greater than that included in the retail price for regular gasoline, and possible reasons for the price differences between premium and regular gasoline.

  10. Update: World average retail gasoline and diesel prices. Crude oil falls, but consumer taxes rise

    SciTech Connect (OSTI)

    Not Available

    1994-03-21T23:59:59.000Z

    Crude oil prices plunged to five year lows late in 1993. However, examination of consumer petroleum product prices around the world reveals that consumers in many countries did not enjoy a consequent drop.

  11. Motor Oil Analysis It is helpful when investigating the composition and source of pollution that possible contributors have been sufficiently

    E-Print Network [OSTI]

    Russell, Lynn

    Motor Oil Analysis It is helpful when investigating the composition and source of pollution various oils, fuels, et cetera. Patrick Ferree ­ under the guidance of Anita Johnson ­ prepared samples of motor oil via atomization onto Teflon filters, and analyzed these samples using a Fourier transform

  12. Tenneco upgrades natural gasoline

    SciTech Connect (OSTI)

    O'Gorman, E.K.

    1986-08-01T23:59:59.000Z

    Tenneco Oil Co. recently completed a natural gasoline upgrading project at its LaPorte, Tex., facility. The project was started in October 1985. The purpose was to fractionate natural gasoline and isomerize the n-pentane component. Three factors made this a particularly attractive project for the LaPorte complex: 1. The phase down of lead in gasoline made further processing of natural gasoline desirable. 2. Idle equipment and trained personnel were available at the plant as a result of a switch of Tenneco's natural gas liquids (NGL) fractionation to its Mont Belvieu, Tex., facility. 3. The plant interconnects with Houston's local markets. It has pipelines to Mont Belvieu, Texas City, and plants along the Houston Ship Channel, as well as truck, tank car, and barge-loading facilities. Here are the details on the operation of the facilities, the changes which were required to enable the plant to operate successfully, and how this conversion was completed in a timely fashion.

  13. Gasoline accounts for about half the U.S. consumption of petroleum products, and its

    E-Print Network [OSTI]

    . Many claim to observe an asymmetric relationship between gasoline and oil prices -- specifically different model Crude Oil and Gasoline Prices: An Asymmetric Relationship? Nathan S. Balke Research relationship between gasoline and oil prices...that gasoline prices respond more quickly when oil prices

  14. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Murphy, James J.

    2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses this range, by carefully answering the question: ``If the US highway transportation sector did not use oil wartime subsidies, were $55≠$96 billion per year or $0.40≠$0.70 per gallon. In a 2005 update

  15. Computerized controller with service display panel for an oil well pumping motor

    SciTech Connect (OSTI)

    Markuson, N.D.; Wiens, T.A.

    1988-08-30T23:59:59.000Z

    An oil well pump controller in combination with an oil pumping unit and oil well electrical pump motor for controlling and monitoring the operation of an oil well including: microprocessor means for monitoring three-phase electrical power consumption of the electrical pump motor and for calculating real time demand power consumption of the motor, power measuring means electrically connected to the three-phase electrical input of the motor for producing an analog signal indicative of power consumption, conversion means connected to the power measuring means for converting the analog signal into a digital signal usable by the microprocessor means to calculate electrical power consumption, relay means connected to and receiving signals from the microprocessor means indicative of detected power normal, power overload and power underload conditions, the relay means additionally providing circuitry to allow the microprocessor to selectively switch the motor on or off, waterproof box means for housing the components of the oil well pump controller, the waterproof box including a service display panel, overload display means, mounted on the service display panel, which is clearly visible from a distance, and connected to the relay means for indicating when power consumption of the motor has exceeded preprogrammed limits.

  16. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10T23:59:59.000Z

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  17. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  18. Gasoline price data systems

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    Timely observation on prices of gasoline at the wholesale and retail level by geographical area can serve several purposes: (1) to facilitate the monitoring of compliance with controls on distributor margins; (2) to indicate changes in the competitive structure of the distribution system; (3) to measure the incidence of changes in crude oil and refiner costs on retail prices by grade of gasoline, by type of retail outlet, and by geographic area; (4) to identify anomalies in the retail pricing structure that may create incentives for misfueling; and (5) to provide detailed time series data for use in evaluating conservation response to price changes. In order to provide the needed data for these purposes, the following detail on gasoline prices and characteristics of the sampling procedure appear to be appropriate: (1) monthly sample observations on wholesale and retail prices by gasoline grade and type of wholesale or retail dealer, together with volume weights; (2) sample size sufficient to provide detail by state and large cities; (3) responses to be tabulated and reports provided within 30 days after date of observation; and (4) a quick response sampling procedure that can provide weekly data, at least at the national level, when needed in time of rapidly changing prices. Price detail by state is suggested due to its significance for administrative purposes and since gasoline consumption data are estimated by state from other sources. Price detail for large cities are suggested in view of their relevancy as problem areas for vehicle emissions, reflecting one of the analytical uses of the data. In this report, current reporting systems and data on gasoline prices are reviewed and evaluated in terms of the needs outlined above. Recommendations are made for ways to fill the gaps in existing data systems to meet these needs.

  19. Electric car Gasoline car

    E-Print Network [OSTI]

    ENAC/ Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares of an electric vehicle? Electric car (Renault) Gasoline car (competitors) Gasoline car (Renault) Market shares preferences. ∑ Identification of population segments with a strong interest for electric cars. ∑ Forecasting

  20. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    of the Global Crude Oil Market and the U.S. Retail Gasolines to a§ect the world oil market. ) I use tax instruments andthe integration of the world oil market rescues the original

  1. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  2. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  3. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    oil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand elasticity assumption

  4. Finished Motor Gasoline Net Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second QuarterThe

  5. Imports of Total Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14 Dec-14Has Hydrocarbon,2014147682

  6. MTBE, Oxygenates, and Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarketsNov-14Biomass feedstocks

  7. fuel_oil.pdf

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444B (11-19-10)Fuel Oil

  8. The potential for alcohols and related ethers to displace conventional gasoline components

    SciTech Connect (OSTI)

    Hadder, G.R. [Oak Ridge National Lab., TN (United States); McNutt, B.D. [USDOE, Washington, DC (United States)

    1996-02-01T23:59:59.000Z

    The United States Department of Energy is required by law to determine the feasibility of producing sufficient replacement fuels to replace 30 percent of the projected United States consumption of motor fuels by light duty vehicles in the year 2010. A replacement fuel is a non-petroleum portion of gasoline, including alcohols, natural gas and certain other components. A linear program has been used to study refinery impacts for production of ``low petroleum`` gasolines, which contain replacement fuels. The analysis suggests that high oxygenation is the key to meeting the replacement fuel target, and major contributors to cost increase can include investment in processes to produce olefins for etherification with alcohols. High oxygenation can increase the costs of control of vapor pressure, distillation properties, and pollutant emissions of gasolines. Year-round low petroleum gasoline with near-30 percent non-petroleum might be produced with cost increases of 23 to 37 cents per gallon, with substantial decreases in greenhouse gas emissions in some cases. Cost estimates are sensitive to assumptions about extrapolation of a national model for pollutant emissions, availability of raw materials and other issues. Reduction in crude oil use, a major objective of the low petroleum gasoline program, is 10 to 17 percent in the analysis.

  9. With Mathematica Gasoline Inventory

    E-Print Network [OSTI]

    Reiter, Clifford A.

    with the delivery and storage of the gasoline and we desire not to run out of gasoline or exceed the stationPreprint 1 With Mathematica and J: Gasoline Inventory Simulation Cliff Reiter Computational for the number of gallons of gasoline sold by a station for a thousand weeks. The pattern involves demands

  10. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  11. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    Regulation and Arbitrage in Wholesale Gasoline Markets,Content Regulation and Wholesale Gasoline Prices JenniferCONTENT REGULATION AND WHOLESALE GASOLINE PRICES by Jennifer

  12. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    to reduction in crude oil production. The competitive modelbarrel of crude oil is allocated to gasoline production. The

  13. Ashland's new process could boost gasoline yield

    SciTech Connect (OSTI)

    Atkins, O.E.

    1980-04-07T23:59:59.000Z

    According to O. E. Atkins (Ashland Oil Co.), Ashland's new fluid catalytic cracking process will convert heavy residual oil to (% by vol) 11% fuel gas, 4.8% LNG, 75.7% gasoline (if all the produced olefins are converted to gasoline), 9% distillates, and 8.1% heavy fuel oil. Ashland is building a $70 million, 40,000 bbl/day unit at its 215,000 bbl/day Catlettsburg, Ky., refinery which will increase the present 90,000 bbl/day gasoline yield by 25,000 bbl/day for the same amount of feedstock. The increased gasoline yield (no-lead octane rating of 94) is expected to increase the net margin on a barrel of feed from $8 up to $12, at the present prices of $11.50/bbl of residual oil and $40/bbl of gasoline. Ashland has not disclosed detailed information on the new process, which: can accommodate atmospheric residua that are high in sulfur and metals; is a high temperature, low (about 1 atm) pressure process; does not use hydrogen; uses a proprietary new crystalline silica-alumina microspherical (zeolite) catalyst which, via a proprietary passivating technique, will demetalize crude oil fractions of vanadium and nickel. Residuum cracking processes developed by other companies are briefly discussed.

  14. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    bene?ts of reducing oil consumption or the amount that oilincreases with increasing oil consumption. This will be theincreases with increasing oil consumption. This will be the

  15. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  16. World Crude Oil Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand Motor444 U.S.Working and

  17. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Natural Gas, Heating Oil and Gasoline,Ē NBER Working Paper.2006. ďChinaís Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,Ē Energy Journal 23(1),

  18. The Elasticity of Demand for Gasoline in China1 C.-Y. Cynthia Lin, Jieyin (Jean) Zeng

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    understanding of the relationships among gasoline demand, gasoline price and disposable income is important and the Brent crude oil price over the period 1997-2009. Except for 2009, domestic gasoline and diesel prices followed the trends in the Brent crude oil price, though not exactly. Although China's domestic fuel prices

  19. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20T23:59:59.000Z

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  20. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    economic slowdown cuts oil demand. At the intersection ofoil price, the expected retail gasoline price and consumption quantities are shown using a short-run demand

  1. The producer surplus associated with gasoline fuel use in the United States1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    : Q41, Q43 Keywords: oil, marginal costs, producer surplus, gasoline, wealth transfer, drilling costs, exploratory wells, development wells 1 We received financial support from the Sustainable Transportation

  2. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  3. Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits†

    E-Print Network [OSTI]

    Ula, S.; Bershinsky, V.; Cain, W.

    1995-01-01T23:59:59.000Z

    The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency...

  4. Fact #835: August 25, Average Annual Gasoline Pump Price, 1929...

    Broader source: Energy.gov (indexed) [DOE]

    50% since the data series began in 1929. The effect of the U.S. embargo of oil from Iran can be seen in the early 1980's with the price of gasoline peaking in 1982. From 2002...

  5. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    output. If the world oil market were free and competitive,Unfortunately, the world oil market is not always stable andcaused a brief panic in oil markets: immediately following

  6. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    cost of defending the investments of US oil producers in thecost of defending the investments of US oil producers in thevalue of US oil producer assets, sales or investment in the

  7. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    70% of the worldís proven oil reserves, and the Persian Gulfto the largest proven oil reserves in the world (Jointthe regionís huge reserves of oil, and that as a result US

  8. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2008-01-01T23:59:59.000Z

    Montgomery, W.D. , 1982. Oil Prices, Energy Security, andPaik, I.K. , 2004. Oil price shocks and the macroeconomy:the United States from Oil Price Shocks? CRS 91-438E.

  9. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    Biofuel on the International Oil Market Gal Hochman, Deepakon the international oil market ? Gal Hochman, Deepakand biodiesel GEG to oil markets reduce gasoline consumption

  10. Ethanol Demand in United States Gasoline Production

    SciTech Connect (OSTI)

    Hadder, G.R.

    1998-11-24T23:59:59.000Z

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  11. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-25T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using similar methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The "as received" feedstock to the pyrolysis plant will be "reactor ready". This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  12. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case

    SciTech Connect (OSTI)

    Jones, Susanne B.; Valkenburt, Corinne; Walton, Christie W.; Elliott, Douglas C.; Holladay, Johnathan E.; Stevens, Don J.; Kinchin, Christopher; Czernik, Stefan

    2009-02-28T23:59:59.000Z

    The purpose of this study is to evaluate a processing pathway for converting biomass into infrastructure-compatible hydrocarbon biofuels. This design case investigates production of fast pyrolysis oil from biomass and the upgrading of that bio-oil as a means for generating infrastructure-ready renewable gasoline and diesel fuels. This study has been conducted using the same methodology and underlying basis assumptions as the previous design cases for ethanol. The overall concept and specific processing steps were selected because significant data on this approach exists in the public literature. The analysis evaluates technology that has been demonstrated at the laboratory scale or is in early stages of commercialization. The fast pyrolysis of biomass is already at an early stage of commercialization, while upgrading bio-oil to transportation fuels has only been demonstrated in the laboratory and at small engineering development scale. Advanced methods of pyrolysis, which are under development, are not evaluated in this study. These may be the subject of subsequent analysis by OBP. The plant is designed to use 2000 dry metric tons/day of hybrid poplar wood chips to produce 76 million gallons/year of gasoline and diesel. The processing steps include: 1.Feed drying and size reduction 2.Fast pyrolysis to a highly oxygenated liquid product 3.Hydrotreating of the fast pyrolysis oil to a stable hydrocarbon oil with less than 2% oxygen 4.Hydrocracking of the heavy portion of the stable hydrocarbon oil 5.Distillation of the hydrotreated and hydrocracked oil into gasoline and diesel fuel blendstocks 6. Hydrogen production to support the hydrotreater reactors. The ďas receivedĒ feedstock to the pyrolysis plant will be ďreactor ready.Ē This development will likely further decrease the cost of producing the fuel. An important sensitivity is the possibility of co-locating the plant with an existing refinery. In this case, the plant consists only of the first three steps: feed prep, fast pyrolysis, and upgrading. Stabilized, upgraded pyrolysis oil is transferred to the refinery for separation and finishing into motor fuels. The off-gas from the hydrotreaters is also transferred to the refinery, and in return the refinery provides lower-cost hydrogen for the hydrotreaters. This reduces the capital investment. Production costs near $2/gal (in 2007 dollars) and petroleum industry infrastructure-ready products make the production and upgrading of pyrolysis oil to hydrocarbon fuels an economically attractive source of renewable fuels. The study also identifies technical areas where additional research can potentially lead to further cost improvements.

  13. Eco Oil 4

    SciTech Connect (OSTI)

    Brett Earl; Brenda Clark

    2009-10-26T23:59:59.000Z

    This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

  14. Use TAME and heavier ethers to improve gasoline properties

    SciTech Connect (OSTI)

    Ignatius, J.; Jaervelin, H.; Lindqvist, P. (Neste Engineering, Porvoo (Finland))

    1995-02-01T23:59:59.000Z

    Producing oxygenates from all potential FCC tertiary olefins is one of the most economic methods for reducing olefins and Reid vapor pressure (Rvp) in motor gasoline. MTBE production based on FCC isobutylene has reached a very high level. But the amount of MTBE from a refinery sidestream MTBE unit is insufficient for producing reformulated gasoline (RFG) and additional oxygenates must be purchased. The next phase will see conversion of isoamylenes in FCC light gasoline to TAME. Very little attention has been given to the heavier tertiary olefins present in the FCC light gasoline like tert-hexenes and heptenes. This route allows higher levels of oxygenates production, thereby lowering Rvp and the proportion of olefins in the gasoline pool and maximizing the use of FCC olefins. By using all the components produced by an FCC efficiently, many gasoline problems can be solved. Isobutene is converted to MTBE, C[sub 3]/C[sub 4] olefins are converted to alkylate and C[sub 5] tertiary olefins can be converted to TAME. All of these are preferred components for gasoline quality. By producing more oxygenates like MTBE, TAME and heavier ethers, a refinery can be self-sufficient in blending reformulated gasoline and no oxygenates need to be purchased. The technology for producing TAME and other ethers is described.

  15. Gasoline Jet Fuels

    E-Print Network [OSTI]

    Kemner, Ken

    C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 into fuels. IACT is examining these key reactions to understand the fundamental chemistry and to provide

  16. Ethers help gasoline quality

    SciTech Connect (OSTI)

    Chang, E.J.; Leiby, S.M. (SRI International, Menlo Park, CA (US))

    1992-02-01T23:59:59.000Z

    In this article three scenarios to evaluate the effect of etherification on gasoline production and quality are reviewed: Base case FCC/C{sub 4} alkylation complex - FCC unit operation for maximum gasoline yield, MTBE unit added to base case FCC unit operation and MTBE unit added to maximum olefins FCC unit operation. Details of the FCC, MTBE and C{sub 4} alkylation operations used in this article are reviewed, followed by a discussion of overall results.

  17. Price changes in the gasoline market: Are Midwestern gasoline prices downward sticky?

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    This report examines a recurring question about gasoline markets: why, especially in times of high price volatility, do retail gasoline prices seem to rise quickly but fall back more slowly? Do gasoline prices actually rise faster than they fall, or does this just appear to be the case because people tend to pay more attention to prices when they`re rising? This question is more complex than it might appear to be initially, and it has been addressed by numerous analysts in government, academia and industry. The question is very important, because perceived problems with retail gasoline pricing have been used in arguments for government regulation of prices. The phenomenon of prices at different market levels tending to move differently relative to each other depending on direction is known as price asymmetry. This report summarizes the previous work on gasoline price asymmetry and provides a method for testing for asymmetry in a wide variety of situations. The major finding of this paper is that there is some amount of asymmetry and pattern asymmetry, especially at the retail level, in the Midwestern states that are the focus of the analysis. Nevertheless, both the amount asymmetry and pattern asymmetry are relatively small. In addition, much of the pattern asymmetry detected in this and previous studies could be a statistical artifact caused by the time lags between price changes at different points in the gasoline distribution system. In other words, retail gasoline prices do sometimes rise faster than they fall, but this is largely a lagged market response to an upward shock in the underlying wholesale gasoline or crude oil prices, followed by a return toward the previous baseline. After consistent time lags are factored out, most apparent asymmetry disappears.

  18. Motor Gasoline Sales to End Users Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40MonthlyBiodieselO F F e

  19. Prime Supplier Sales Volumes of Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14Table 4. U.S.Feet)348,016.0 336,514.0

  20. U.S. Motor Gasoline Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'

  1. Stocks of Motor Gasoline Blending Components

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights Ôā∑2008DeutscheState470,6036,190

  2. Summer 2002 Motor Gasoline Outlook2.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights1,943,742 1,947,078 Summary of0April 19

  3. Summer 2003 Motor Gasoline Outlook.doc

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO) Highlights1,943,742 1,947,078 Summary of0April 193

  4. Motor Gasoline Sales to End Users Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206 12,4937693

  5. Price of Motor Gasoline Through Retail Outlets

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 2011 atJohnPrices, Sales Volumes &

  6. Prime Supplier Sales Volumes of Motor Gasoline

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar(DollarsCubicThousand68.76,760.2 5,346.9

  7. Motor Gasoline Outlook and State MTBE Bans

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration22)May 28, 1996September

  8. Prime Supplier Sales Volumes of Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic Feet) Year Jan2009 2010

  9. State Gasoline Taxes

    E-Print Network [OSTI]

    Learned, Edmund Philip

    1925-03-15T23:59:59.000Z

    products in the present and should attempt to save a part of the supply for the future. The important part of the oil product is the lubricants which constitute about five per cent of the refined product. Lubricating oils can be se cured from oil shales...

  10. J:\\_GasAss97\\Current\\Motor Gas Ass2.vp

    Gasoline and Diesel Fuel Update (EIA)

    1 May 1998 Assessment of Summer 1997 Motor Gasoline Price Increase Energy Information Administration Washington DC 20585 This report was prepared by the Energy Information...

  11. Reformulating Competition? Gasoline Content Regulation and Wholesale Gasoline Prices

    E-Print Network [OSTI]

    Brown, Jennifer; Hastings, Justine; Mansur, Erin T.; Villas-Boas, Sofia B

    2007-01-01T23:59:59.000Z

    are added to gasoline at the terminal. Therefore, gasolinegasoline from one market and shipping it to another. These firms may own terminals

  12. Areas Participating in the Oxygenated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains from

  13. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there Gains

  14. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    1999-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $1.17Figure 4 Average US Retail Gasoline Price (excluding taxes)of the average retail price of gasoline, with a 4.0 cent per

  15. Variable-Rate State Gasoline Taxes

    E-Print Network [OSTI]

    Ang-Olson, Jeffrey; Wachs, Martin; Taylor, Brian D.

    2000-01-01T23:59:59.000Z

    1986, the average retail gasoline price dropped from $I 17of the average retail price of gasoline, with a 4 oe per

  16. Crude Oil and Gasoline Price Monitoring

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469Decade Year-0 Year-1 Year-2(Million 2014 View1997What

  17. Oligomerize for better gasoline

    SciTech Connect (OSTI)

    Nierlich, F. (Huls AG, Marl (DE))

    1992-02-01T23:59:59.000Z

    This paper reports on normal butene containing isobutene-depleted C{sub 4} hydrocarbons like raffinate II which are oligomerized using the Octol process in the liquid phase on a heterogeneous catalyst system to yield mainly C{sub 8} and C{sub 12} olefins. Raffinate II, the spent C{sub 4} fraction of an MTBE unit, is an ideal feedstock for further n-butene processing because of its high olefin concentration ranging between 70% and 80%. By modifications of MTBE technology, implementation of selective hydrogenation for removal of residual butadiene and superfractionating raffinate II, polymer grade 1-butene can be produced. Until the mid-70s raffinate I, the team cracker C{sub 4} cut after butadiene extraction, was mainly burned or blended into gasoline. Now nearly all raffinate I is or will be consumed for the purpose of converting isobutylene to MTBE.

  18. Indirect conversion of coal to methanol and gasoline: product price vs product slate

    SciTech Connect (OSTI)

    Wham, R.M.; McCracken, D.J.; Forrester, R.C. III

    1980-01-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) conducts process analysis and engineering evaluation studies for the Department of Energy to provide, on a consistent basis, technical and economic assessments of processes and systems for coal conversion and utilization. Such assessments permit better understanding of the relative technical and economic potential of these processes. The objective of the work described here was to provide an assessment of the technical feasibility, economic competitiveness, and environmental acceptability of selected indirect coal liquefaction processes on a uniform, consistent, and impartial basis. Particular emphasis is placed on production of methanol as a principal product or methanol production for conversion to gasoline. Potential uses for the methanol are combustion in peaking-type turbines or blending with gasoline to yield motor fuel. Conversion of methanol to gasoline is accomplished through the use of the Mobil methanol-to-gasoline (MTG) process. Under the guidance of ORNL, Fluor Engineers and Constructors, Houston Division, prepared four conceptual process designs for indirect conversion of a Western subbituminous coal to either methanol or gasoline. The conceptual designs are based on the use of consistent technology for the core of the plant (gasification through methanol synthesis) with additional processing as necessary for production of different liquid products of interest. The bases for the conceptual designs are given. The case designations are: methanol production for turbine-grade fuel; methanol production for gasoline blending; gasoline production with coproduction of SNG; and gasoline production maximized.

  19. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect (OSTI)

    Leiby, P.N.

    1993-09-01T23:59:59.000Z

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  20. Exploring the use of a higher octane gasoline for the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    Chow, Eric W

    2013-01-01T23:59:59.000Z

    This thesis explores the possible benefits that can be achieved if U.S. oil companies produced and offered a grade of higher-octane gasoline to the consumer market. The octane number of a fuel represents how resistant the ...

  1. Gasoline price spikes and regional gasoline context regulations : a structural approach

    E-Print Network [OSTI]

    Muehlegger, Erich J.

    2004-01-01T23:59:59.000Z

    Since 1999, gasoline prices in California, Illinois and Wisconsin have spiked occasionally well above gasoline prices in nearby states. In May and June 2000, for example, gasoline prices in Chicago rose twenty eight cents ...

  2. MotorWeek H2 on the Horizon Video

    Broader source: Energy.gov [DOE]

    MotorWeek Host: Fuel cell electric cars, or FCEVs, provide drivers with the same benefits as current gasoline vehicles with a comparable driving range and refueling in just a few minutes. FCEVs don...

  3. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingGasoline comes to Sacramento via pipeline, is stored in terminals

  4. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gasoline-delivery truck emissions. The current 2005 lightdelivering gasoline. The truck emissions estimated for theto gasoline-delivery truck emissions for each ?eet scenario.

  5. Edgeworth Price Cycles: Evidence from the Toronto Retail Gasoline Market

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. ďGas Wars: Retail Gasoline Price Fluctua- tionsĒ,Canadian cities, retail gasoline prices are very volatileset of twelve-hourly retail gasoline prices for 22 service

  6. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    wholesale gasoline prices and retail prices. It includes theTable 4 - Gasoline Price Components Year Retail Price TaxesSupply Lower Retail Gasoline Prices? Ē Contemporary Economic

  7. Essays on Automotive Lending, Gasoline Prices, & Automotive Demand

    E-Print Network [OSTI]

    Schulz-Mahlendorf, Wilko Ziggy

    2013-01-01T23:59:59.000Z

    National average retail gasoline prices peaked at over $so that average retail gasoline prices can be employed. Myrapid run-up in retail gasoline prices in recent history.

  8. Revisiting the Income Effect: Gasoline Prices and Grocery Purchases

    E-Print Network [OSTI]

    Gicheva, Dora; Hastings, Justine; Villas-Boas, Sofia B

    2008-01-01T23:59:59.000Z

    Sold On Sale and Retail Gasoline Prices Log % Purchased Onhigher gasoline prices into retail prices, by investigatingexcluding California average retail gasoline price for all

  9. Comparing air quality impacts of hydrogen and gasoline

    E-Print Network [OSTI]

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    associated with the gasoline terminal storage and the smallemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Fig. 7. Integrated gasoline

  10. Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    E-Print Network [OSTI]

    Thornhill, D. A.

    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive ...

  11. Biomass to Gasoline and DIesel Using Integrated Hydropyrolysis and Hydroconversion

    SciTech Connect (OSTI)

    Marker, Terry; Roberts, Michael; Linck, Martin; Felix, Larry; Ortiz-Toral, Pedro; Wangerow, Jim; Tan, Eric; Gephart, John; Shonnard, David

    2013-01-02T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The DOE funding enabled rapid development of the IH2 technology from initial proof-of-principle experiments through continuous testing in a 50 kg/day pilot plant. As part of this project, engineering work on IH2 has also been completed to design a 1 ton/day demonstration unit and a commercial-scale 2000 ton/day IH2 unit. These studies show when using IH2 technology, biomass can be converted directly to transportation quality fuel blending components for the same capital cost required for pyrolysis alone, and a fraction of the cost of pyrolysis plus upgrading of pyrolysis oil. Technoeconomic work for IH2 and lifecycle analysis (LCA) work has also been completed as part of this DOE study and shows IH2 technology can convert biomass to gasoline and diesel blending components for less than $2.00/gallon with greater than 90% reduction in greenhouse gas emissions. As a result of the work completed in this DOE project, a joint development agreement was reached with CRI Catalyst Company to license the IH2 technology. Further larger-scale, continuous testing of IH2 will be required to fully demonstrate the technology, and funding for this is recommended. The IH2 biomass conversion technology would reduce U.S. dependence on foreign oil, reduce the price of transportation fuels, and significantly lower greenhouse gas (GHG) emissions. It is a breakthrough for the widespread conversion of biomass to transportation fuels.

  12. Aviation Gasoline Sales to End Users Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5AreOil andMarketW W W W W W

  13. Gasoline prices decrease (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasolineShort

  14. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline prices

  15. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasoline

  16. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline prices

  17. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014Gasoline

  18. Emissions Control for Lean Gasoline Engines

    Broader source: Energy.gov (indexed) [DOE]

    Reduction Lean Gasoline SI Direct Injection Engine + TWC + LNT + SCR NH 3 LNT NH 3 Optimization HC Slip Control Lean Gasoline SI Direct Injection Engine + TWC + SCR NH 3 TWC NH 3...

  19. Household gasoline demand in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    1995-01-01T23:59:59.000Z

    Continuing rapid growth in U.S. gasoline consumption threatens to exacerbate environmental and congestion problems. We use flexible semiparametric and nonparametric methods to guide analysis of household gasoline consumption, ...

  20. Incidence of Federal and State Gasoline Taxes

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2003-01-01T23:59:59.000Z

    valorem taxes to the retail gasoline price. These ad valoremwholesale and retail, unleaded gasoline price equations. Wegasoline, Journal of Economic Issues 9, 409-414. Table 1: Retail and Wholesale Reduced-Form Price

  1. Retail Policies and Competition in the Gasoline Industry

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, Jim

    2005-01-01T23:59:59.000Z

    receive their gasoline at wholesale terminals, or racks, andterminal and, even though the costs of delivering gasoline

  2. Market Power in California's Gasoline Market

    E-Print Network [OSTI]

    Borenstein, Severin; Bushnell, James; Lewis, Matthew

    2004-01-01T23:59:59.000Z

    gasoline and blendstocks in California at large refineries (24 MM bbl) and terminals (gasoline storage capacity is controlled by a relatively small number of firms such as terminalterminals and is therefore under the control of the same firms that produce gasoline.

  3. Cost, Conflict and Climate: U.S. Challenges in the World Oil Market

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    at the world price of oil and prices of gasoline and otherincremental pro?ts when oil prices rise come from both U.S.the recent increases in oil prices and attempts to clarify

  4. Mick Jagger Explains High Crude Oil Prices How can Mick Jagger of The Rolling Stones help explain the current high crude oil

    E-Print Network [OSTI]

    Ahmad, Sajjad

    in the price of crude oil quickly transmit themselves through the "food chain," quickly hitting gasoline prices an additional pop to the price. In addition, the futures markets draw off gasoline from existing stocks to supply more gasoline in the near future, when even higher prices are expected. In other words, prices

  5. The end of the age of oil David Goodstein

    E-Print Network [OSTI]

    Bertini, Robert L.

    (99 Quads) #12;Fossil Fuels Oil Natural gas Shale oil Methane hydrate Coal #12;Coal Hundreds, maybeOut of Gas The end of the age of oil David Goodstein Portland State University November 14, 2008 #12;Energy Myths $4.00 a gallon is too much to pay for gasoline Oil companies produce oil. We must

  6. 5 World Oil Trends WORLD OIL TRENDS

    E-Print Network [OSTI]

    for gasoline, diesel and other petroleum products. This chapter provides an overview of world oil trends agreements on export routes have limited development. Petroleum production in the United States, including half of petroleum supplies to the United States. OPEC petroleum production also increased in 1994

  7. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    of Monopolization of The World Oil Market, 19715-4991, ORNL-output. If the world oil market were free and competitive,Unfortunately, the world oil market is not always stable and

  8. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    there to protect world oil demandĒ (in Plesch et al. , 2005,instability related to U.S. demand for oil. Although to ourassociated with U.S. demand for Persian Gulf oil. If this is

  9. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    15-1. S OURCES OF CRUDE OIL AND PRODUCTS SUPPLIED IN THE Uimported petroleum (crude oil and products) from the Persian15-1. S OURCES OF CRUDE OIL AND PRODUCTS SUPPLIED IN THE U

  10. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    of the world's proven oil reserves 2 , and the countries ofof the worldís proven oil reserves it typically has producedthe largest proven oil reserves in the world. For example,

  11. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    only 57% of the worldís oil resources, and the Middle EastFree World access to oil resources, and the limitation offew years has made the oil resource in the Middle East more

  12. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    cost be allocated to oil consumption and production by otherthe value of U.S. consumption of oil from the Persian Gulf.production and consumption of Persian-Gulf oil. We believe,

  13. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01T23:59:59.000Z

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  14. Essays on gasoline price spikes, environmental regulation of gasoline content, and incentives for refinery operation

    E-Print Network [OSTI]

    Muehlegger, Erich J

    2005-01-01T23:59:59.000Z

    Since 1999, regional retail and wholesale gasoline markets in the United States have experienced significant price volatility, both intertemporally and across geographic markets. In particular, gasoline prices in California, ...

  15. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05132011 Project...

  16. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 05182012 Project...

  17. Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine...

    Broader source: Energy.gov (indexed) [DOE]

    "Advancing The Technology" Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development Corey E. Weaver Ford Research and Advanced Engineering 06192014 Project...

  18. AVGAS/AUTOGAS (aviation gasoline/automobile gasoline) comparison. Winter-grade fuels. Interim report

    SciTech Connect (OSTI)

    Ferrara, A.M.

    1986-07-01T23:59:59.000Z

    This report describes dynamometer tests that simulated conditions found in a general-aviation aircraft. In these tests, automobile gasoline was tested and compared with aviation gasoline. The tendency for vapor lock and detonation was measured as a function of gasoline grade, Reid vapor pressure, and the age of the fuel.

  19. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    and 584 for the HHDDT and Idle-creep tests respectively. Theonly the idle and creep modes of the test cycle, hereafter

  20. Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.6 53.37.2

  1. Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.6

  2. Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.683.6 83.3

  3. Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.683.6

  4. Table 32. Conventional Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.683.651.0

  5. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.683.651.06

  6. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773

  7. Table 33. Oxygenated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.0 80.1

  8. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.0 80.14.6

  9. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.0

  10. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.084.5 84.3

  11. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.084.5

  12. Table 34. Reformulated Motor Gasoline Prices by Grade, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0 91.084.559.5

  13. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.39,369.58,502.8

  14. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.39,369.58,502.8161.3

  15. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155

  16. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 1553,177.2 34,690.6 19,370.8

  17. Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 1553,177.2 34,690.6

  18. ,"U.S. Motor Gasoline Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpectedOther CountriesTrinidad

  19. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second QuarterTheStocks

  20. Finished Motor Gasoline Refinery, Bulk Terminal, and Natural Gas Plant

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5ValuesJune 2010 1

  1. Microsoft Word - Summer 2004 Motor Gasoline Outlook.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels85)April 2004

  2. Microsoft Word - Summer 2006 Motor Gasoline Prices.doc

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400,Information Administration2 U.S.and Winter Fuels85)April 2004

  3. U.S. Motor Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr MayNov-142,234CubicSeismic49,797.6

  4. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0 20 40MonthlyBiodieselO F F

  5. U.S. Motor Gasoline Refiner Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1 26,672.1 24,222.5 24,638.9 24,788.2 25,390.7

  6. EIA-878 Motor Gasoline Price Survey - Reference Guide

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email: Terminal2,7,7, "Winter

  7. Motor Gasoline Sales to End Users, Total Refiner Sales Volumes

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185 11,206

  8. Refiner and Blender Net Production of Finished Motor Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0

  9. Refinery & Blender Net Production of Finished Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProvedFeet)Thousand Cubic Feet) Year Jan2009698Nov-142009 2010

  10. ,"Motor Gasoline Sales Through Retail Outlets Prices "

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough Retail

  11. Gasoline Price Pass-through

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan FebCubic(MillionThousandGasoline

  12. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline Price

  13. Gasoline and Diesel Fuel Update

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear JanPrice Data CollectionGasoline

  14. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline

  15. Gasoline prices decrease (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014 Gasolinelong

  16. Gasoline prices decrease (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5, 2014

  17. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies...

  18. Advantages of Oxygenates Fuels over Gasoline in Direct Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines Advantages of Oxygenates Fuels over Gasoline in Direct Injection Spark Ignition Engines...

  19. Impact of Ethanol Blending on U.S. Gasoline Prices

    SciTech Connect (OSTI)

    Not Available

    2008-11-01T23:59:59.000Z

    This study assesses the impact of ethanol blending on gasoline prices in the US today and the potential impact of ethanol on gasoline prices at higher blending concentrations.

  20. Reductant Chemistry during LNT Regeneration for a Lean Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean Gasoline Engines Emissions Control for Lean Gasoline...

  1. Dispensing Equipment Testing With Mid-Level Ethanol/Gasoline...

    Energy Savers [EERE]

    Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid Dispensing Equipment Testing With Mid-Level EthanolGasoline Test Fluid The National Renewable Energy...

  2. Design Case Summary: Production of Gasoline and Diesel from Biomass...

    Energy Savers [EERE]

    Design Case Summary: Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating, and Hydrocracking Design Case Summary: Production of Gasoline and Diesel from...

  3. Production of Gasoline and Diesel from Biomass via Fast Pyrolysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A Design Case Production of Gasoline and Diesel from Biomass via Fast Pyrolysis,...

  4. Load Expansion with Diesel/Gasoline RCCI for Improved Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with DieselGasoline RCCI for Improved Engine Efficiency and Emissions Load Expansion with DieselGasoline RCCI for Improved Engine Efficiency and Emissions This poster will...

  5. 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI Emissions 3-Cylinder Turbocharged Gasoline Direct Injection: A High Value Solution for Euro VI...

  6. Energy Department Announces First Regional Gasoline Reserve to...

    Office of Environmental Management (EM)

    Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency Energy Department Announces First Regional Gasoline Reserve to Strengthen Fuel Resiliency May 2, 2014 -...

  7. Fuel purchasing patterns and vehicle use trends from the NPD research gasoline diary data base: data display

    SciTech Connect (OSTI)

    Not Available

    1982-09-01T23:59:59.000Z

    The NPD data base has been developed from the Petroleum Marketing Index (PMI) market research survey. The source for PMI is a national diary panel of approximately 4100 households balanced against the U.S. Census according to demography and geographic location. Survey participants maintain diaries in which they record purchases of gasoline and motor oil for each household vehicle. The PMI survey was augmented to include EPA fuel economy numbers for post 1975 model year vehicles. The steps taken to prepare the data for analysis are discussed, including error correction, smoothing, and collapsing to monthly summary records. This preparation yields a manageable data base which includes monthly summary statistics on travel and fuel use. A statistical smoothing of fuel purchase data was used to reduce the uncertainty in fuel economy calculations introduced by the difference between fuel purchased and fuel consumed. Collapsing to monthly summaries also was done to standardize the observations across the data base to uniform time periods. An overview is given of available data on in-use fuel economy, vehicle miles of travel, and fuel demand, highlighting the quarterly trends in these variables. The data presented are divided into three parts: in-use fuel economy, vehicle miles of travel, and fuel demand and fuel prices.

  8. Multi-Factor Model of Correlated Commodity - Forward Curves for Crude Oil and Shipping Markets

    E-Print Network [OSTI]

    Ellefsen, Per Einar

    2009-01-01T23:59:59.000Z

    An arbitrage free multi-factor model is developed of the correlated forward curves of the crude oil, gasoline, heating oil and tanker shipping markets. Futures contracts trading on public exchanges are used as the primary ...

  9. Gasoline price volatility and the elasticity of demand for gasoline1 C.-Y. Cynthia Lina

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    externalities including local air pollution, global climate change, accidents, congestion, and dependence at reducing demand for gasoline or reducing pollution from automobiles. The latter could be addressed

  10. Edgeworth price cycles in retail gasoline markets

    E-Print Network [OSTI]

    Noel, Michael David, 1971-

    2002-01-01T23:59:59.000Z

    In this dissertation, I present three essays that are motivated by the interesting and dynamic price-setting behavior of firms in Canadian retail gasoline markets. In the first essay, I examine behavior at the market level ...

  11. Insights into Spring 2008 Gasoline Prices

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Gasoline prices rose rapidly in spring 2007 due a variety of factors, including refinery outages and lower than expected imports. This report explores those factors and looks at the implications for 2008.

  12. untitled

    Gasoline and Diesel Fuel Update (EIA)

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 58% Other 1% Residual Fuel Oil 2% Propane...

  13. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 58% Other 0% Residual Fuel Oil 2% Propane...

  14. U. S. Military Expenditures to Protect the Use of Persian Gulf Oil for Motor Vehicles: Report #15 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2006-01-01T23:59:59.000Z

    Office, Strategic Petroleum Reserve: Available Oil Canoil shocks. 7 The Strategic Petroleum Reserve (SPR) also isproducers, and the Strategic Petroleum Reserve. They found

  15. Chemistry Impacts in Gasoline HCCI

    SciTech Connect (OSTI)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01T23:59:59.000Z

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

  16. Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen

    E-Print Network [OSTI]

    Melaina, Marc W

    2007-01-01T23:59:59.000Z

    canned gasoline, gasoline storage and delivery in barrels,gasoline pump, dispensing hose, ?ow meter and underground storagethan gasoline. This being said, our handling and storage

  17. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    Gasoline terminals serve a large market area. Some terminalsthan one terminal. The gasoline supplied at a terminal is awholesale gasoline that is available at a terminal facility.

  18. Vertical Integration in Gasoline Supply: An Empirical Test of Raising Rivals' Costs

    E-Print Network [OSTI]

    Gilbert, Richard; Hastings, Justine

    2001-01-01T23:59:59.000Z

    erentials in wholesale and retail gasoline prices, sometimesand control retail gasoline prices, while still permittingnopolize retail gasoline markets and raise prices. Several

  19. The Speed of Gasoline Price Response in Markets With and Without Edgeworth Cycles

    E-Print Network [OSTI]

    Lewis, Matt; Noel, Michael

    2009-01-01T23:59:59.000Z

    3, 2009 Abstract Retail gasoline prices are known to respondspeed with which retail gasoline prices respond to wholesaleDeltas, George, ďRetail Gasoline Price Dynamics and Local

  20. The Implications of a Gasoline Price Floor for the California Budget and Greenhouse Gas Emissions

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01T23:59:59.000Z

    result in a target retail gasoline price of about $3.00 perAdministration, retail gasoline prices in Californiaprice, the expected retail gasoline price and consumption

  1. Gasoline Price Differences: Taxes, Pollution Regulations, Mergers, Market Power, and Market Conditions

    E-Print Network [OSTI]

    Chouinard, Hayley; Perloff, Jeffrey M.

    2002-01-01T23:59:59.000Z

    of Information and Retail Gasoline Price Behavior: Anform wholesale and retail gasoline price equations usingfor some of the retail gasoline price dispersion within a

  2. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? ĒAdjustment of U.K. Retail Gasoline Prices to Cost Changes. Ēdocumented that retail gasoline prices respond more quickly

  3. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Industry

    E-Print Network [OSTI]

    Lewis, Matt

    2003-01-01T23:59:59.000Z

    Adjustment of U.K. Retail Gasoline Prices to Cost Changes. ĒThe Behavior of Retail Gasoline Prices: Symmetric or Not? Ēdocumented that retail gasoline prices respond more quickly

  4. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model

    E-Print Network [OSTI]

    Delucchi, Mark; Burke, Andy; Lipman, Timothy; Miller, Marshall

    2000-01-01T23:59:59.000Z

    the gasoline-equivalent fuel retail price, excluding exciseprice is the full retail price of gasoline, including allon the retail cost and break-even gasoline price, because

  5. Edgeworth Price Cycles, Cost-based Pricing and Sticky Pricing in Retail Gasoline Markets

    E-Print Network [OSTI]

    Noel, Michael

    2004-01-01T23:59:59.000Z

    Johnson. ďGas Wars: Retail Gasoline Price Fluctua- tionsĒ,were collected on retail gasoline prices, wholesale (rack)ancillary information. Retail gasoline prices, RET AIL mt ,

  6. Asymmetric Price Adjustment and Consumer Search: An Examination of the Retail Gasoline Market

    E-Print Network [OSTI]

    Lewis, Matt

    2004-01-01T23:59:59.000Z

    George. (2004) ďRetail Gasoline Price Dynamics and Localof Information and Retail Gasoline Price Behavior: Andocumented that retail gasoline prices respond more quickly

  7. Do Gasoline Prices Resond Asymmetrically to Cost Shocks? The Confounding Effect of Edgeworth Cycles

    E-Print Network [OSTI]

    Noel, Michael

    2007-01-01T23:59:59.000Z

    Atkinson, B . (2006) "Retail Gasoline Price Cycles: Evidenceof Adjustment of U K Retail Gasoline Prices to Cost Changes"1993) "Gas Wars: Retail Gasoline Price Fluctuations", of and

  8. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    vs. LH2, assuming the gasoline storage terminals are aboutemissions from the gasoline terminal storage and refuelingstorage Truck distribution Gas station Vehicle operation Figure 37. Integrated gasoline

  9. Biochemical processing of heavy oils and residuum

    SciTech Connect (OSTI)

    Lin, M.S.; Premuzic, T.; Yablon, J.H.; Zhou, Wei-Min

    1995-05-01T23:59:59.000Z

    During the past several decades, the petroleum industry has adjusted gradually to accommodate the changes in market product demands, government regulations, and the quality and cost of feedstock crude oils. For example, the trends show that the demand for distillate fuels, such as diesel, as compared to gasoline are increasing. Air-quality standards have put additional demand on the processing of heavier and higher sulfur feed stocks. Thus, the 1990 Clean Air Act amendments require the industry to produce greater quantities of oxygenated gasoline, and lower sulfur diesel and reformulated gasoline. Biochemical technology may play an important role in responding to these demands on the petroleum industry.

  10. Gasoline from Wood via Integrated Gasification, Synthesis, and Methanol-to-Gasoline Technologies

    SciTech Connect (OSTI)

    Phillips, S. D.; Tarud, J. K.; Biddy, M. J.; Dutta, A.

    2011-01-01T23:59:59.000Z

    This report documents the National Renewable Energy Laboratory's (NREL's) assessment of the feasibility of making gasoline via the methanol-to-gasoline route using syngas from a 2,000 dry metric tonne/day (2,205 U.S. ton/day) biomass-fed facility. A new technoeconomic model was developed in Aspen Plus for this study, based on the model developed for NREL's thermochemical ethanol design report (Phillips et al. 2007). The necessary process changes were incorporated into a biomass-to-gasoline model using a methanol synthesis operation followed by conversion, upgrading, and finishing to gasoline. Using a methodology similar to that used in previous NREL design reports and a feedstock cost of $50.70/dry ton ($55.89/dry metric tonne), the estimated plant gate price is $16.60/MMBtu ($15.73/GJ) (U.S. $2007) for gasoline and liquefied petroleum gas (LPG) produced from biomass via gasification of wood, methanol synthesis, and the methanol-to-gasoline process. The corresponding unit prices for gasoline and LPG are $1.95/gallon ($0.52/liter) and $1.53/gallon ($0.40/liter) with yields of 55.1 and 9.3 gallons per U.S. ton of dry biomass (229.9 and 38.8 liters per metric tonne of dry biomass), respectively.

  11. Retail Prices for Regular Gasoline

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oil pricepropanepropane780 2.835 2.812 2.801

  12. Lawrence Berkeley National Laboratory 1996 Site Environmental Report Vol. II Data Appendix

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    Fuel CrudeNVaste Oil Diesel Gasoline Heavy Naptha/Ligroin/Fuel Crude/Waste Oil Diesel Gasoline Heavy Naptha/Ligroin/Heavy Naptha/Ligroin/ Petroleum Benzin 10/8/96 Hydraulic/Motor Oil

  13. Carbo-metallic oil conversion

    SciTech Connect (OSTI)

    Myers, G.D.

    1987-11-24T23:59:59.000Z

    This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

  14. NAFTA and gasoline: Canada, U. S. , Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-03-31T23:59:59.000Z

    The North American Free Trade Agreement has become a hotly debated topic all over the world, but especially in the countries involved: Mexico, United States, and Canada. Comments made by high ranking officials imply there are differences to reconcile before the agreement is passed. Toward seeing these countries in trio, this issue compares gasoline markets and some energy perspectives. The purpose of this article is to contribute to understanding of the three countries through their petroleum industry structure. Gasoline consumption and retail delivery infrastructure are compared and contrasted to illustrate the differences among the NAFTA countries.

  15. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continueGasoline

  16. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices

  17. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,

  18. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  19. Gasoline prices continue to rise (Short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline prices4,1,

  20. Gasoline prices continue to rise (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline pricesGasoline

  1. Combustion and Emissions Performance of Dual-Fuel Gasoline and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion and Emissions Performance of Dual-Fuel Gasoline and Diesel HECC on a Multi-Cylinder Light Duty Diesel Engine Combustion and Emissions Performance of Dual-Fuel Gasoline...

  2. Fact #835: August 25, Average Historical Annual Gasoline Pump...

    Broader source: Energy.gov (indexed) [DOE]

    early 1980's with the price of gasoline peaking in 1982. From 2002 to 2008 the price of gasoline rose substantially, but then fell in 2009 during the economic recession. In 2012,...

  3. Saber's heavy oil cracking refinery project

    SciTech Connect (OSTI)

    Benefield, C.S.; Glasscock, W.L.

    1983-03-01T23:59:59.000Z

    Perhaps more than any other industry, petroleum refining has been subjected to the radical swings in business and political climates of the past several decades. Because of the huge investments and long lead times to construct refining facilities, stable government policies, predictable petroleum prices, secure feedstock supplies and markets, and reliable cost estimates are necessary ingredients to effectively plan new refinery projects. However, over the past ten years the political and economic climates have provided anything but these conditions. Yet, refiners have demonstrated a willingness to undertake risks by continuing to expand and modernize their refineries. The refining business -- just as most businesses -- responds to economic incentives. These incentives, when present, result in new technology and capacity additions. In the 1940's, significant technology advances were commercialized to refine higher-octane motor gasolines. Such processes as continuous catalytic cracking (Houdry Process Corporation), fluid catalytic cracking (Standard Oil Development Company), HF alkylation (UOP and Phillips Petroleum Company), and catalytic reforming (UOP) began to supply a growing gasoline market, generated from the war effort and the ever increasing numbers of automobiles on the road. The post-war economy of the 1950's and 1960's further escalated demand for refined products, products which had to meet higher performance specifications and be produced from a wider range of raw materials. The refining industry met the challenge by introducing hydro-processing technology, such as hydrocracking developed in 1960. But, the era must be characterized by the large crude processing capacity additions, required to meet demand from the rapidly expanding U.S. economy. In 1950, refining capacity was 6.2 million BPD. By 1970, capacity had grown to 11.9 million BPD, an increase of 91%.

  4. National Survey of E85 and Gasoline Prices

    SciTech Connect (OSTI)

    Bergeron, P.

    2008-10-01T23:59:59.000Z

    Study compares the prices of E85 and regular gasoline nationally and regionally over time for one year.

  5. What Do Consumers Believe About Future Gasoline Soren T. Anderson

    E-Print Network [OSTI]

    Silver, Whendee

    What Do Consumers Believe About Future Gasoline Prices? Soren T. Anderson Michigan State University of consumers about their expectations of future gasoline prices. Overall, we find that consumer beliefs follow a random walk, which we deem a reasonable forecast of gasoline prices, but we find a deviation from

  6. ISSN 1745-9648 Gasoline Prices Jump Up on Mondays

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by ōystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

  7. Author's personal copy Gasoline prices and traffic safety in Mississippi

    E-Print Network [OSTI]

    Levinson, David M.

    Author's personal copy Gasoline prices and traffic safety in Mississippi Guangqing Chi a, , Arthur November 2010 Keywords: Gasoline prices Traffic crashes Traffic safety Age Gender Race Problem: Limited literature suggests that gasoline prices have substantial effects on reducing fatal crashes. However

  8. Vertical Relationships and Competition in Retail Gasoline Markets

    E-Print Network [OSTI]

    California at Berkeley. University of

    , if any, of the differences in retail gasoline prices between markets is attributable to differences substantially higher retail gasoline prices than other regions of the country. For example, for the first week of August 1999, the price of reformulated gasoline in California was 39.6 cents higher than the average

  9. Ethanol Production and Gasoline Prices: A Spurious Correlation

    E-Print Network [OSTI]

    Rothman, Daniel

    Ethanol Production and Gasoline Prices: A Spurious Correlation Christopher R. Knittel and Aaron proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been

  10. Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    2008 Abstract The relationship between gasoline prices and the demand for vehicle fuel efficiencyAutomobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We

  11. Pollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel

    E-Print Network [OSTI]

    Utah, University of

    gasoline mechanism based on the chemistry of n-heptane and isooctanesthe two indicator fuels for octanePollutant Emissions from Gasoline Combustion. 1. Dependence on Fuel Structural Functionalities H O fractions of gasoline fuels, the Utah Surrogate Mechanisms is extended to include submecha- nisms

  12. Empirical Regularities of Asymmetric Pricing in the Gasoline Industry

    E-Print Network [OSTI]

    Niebur, Ernst

    pricing in the retail gasoline industry, and also documents empirical regularities in the market. I find of asymmetric price movements in the retail gasoline industry. Yet, there is no general agreement as to whether asym- metric pricing is widespread throughout the retail gasoline industry or merely an anomaly

  13. Reformulated gasoline: Costs and refinery impacts

    SciTech Connect (OSTI)

    Hadder, G.R.

    1994-02-01T23:59:59.000Z

    Studies of reformulated gasoline (RFG) costs and refinery impacts have been performed with the Oak Ridge National Laboratory Refinery Yield Model (ORNL-RYM), a linear program which has been updated to blend gasolines to satisfy emissions constraints defined by preliminary complex emissions models. Policy makers may use the reformulation cost knee (the point at which costs start to rise sharply for incremental emissions control) to set emissions reduction targets, giving due consideration to the differences between model representations and actual refining operations. ORNL-RYM estimates that the reformulation cost knee for the US East Coast (PADD I) is about 15.2 cents per gallon with a 30 percent reduction of volatile organic compounds (VOCs). The estimated cost knee for the US Gulf Coast (PADD III) is about 5.5 cents per gallon with a VOC reduction of 35 percent. Reid vapor pressure (RVP) reduction is the dominant VOC reduction mechanism. Even with anti-dumping constraints, conventional gasoline appears to be an important sink which permits RFG to be blended with lower aromatics and sulfur contents in PADD III. In addition to the potentially large sensitivity of RFG production to different emissions models, RFG production is sensitive to the non-exhaust VOC share assumption for a particular VOC model. ORNL-RYM has also been used to estimate the sensitivity of RFG production to the cost of capital; to the RVP requirements for conventional gasoline; and to the percentage of RFG produced in a refining region.

  14. TABLE34.CHP:Corel VENTURA

    Gasoline and Diesel Fuel Update (EIA)

    Oils ... 36 0 0 36 227 0 0 0 Motor Gasoline Blending Components ... 0 32 0 0 0 0 381 0 Finished Motor...

  15. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  16. EMPLOYEE BENEFIT SERVICE Signature Service Oil Change

    E-Print Network [OSTI]

    New Mexico, University of

    UNM Staff EMPLOYEE BENEFIT SERVICE Jiffy Lube Signature Service Oil Change Fast - No Appointment We change your oil with up to 5 quarts of major brand motor oil We install a new oil fi We visually inspect. ASE training programs ∑ Jiffy Lube uses top quality products that meet or exceed vehicle warranty

  17. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

    1985-01-01T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

  18. Oil cooled, hermetic refrigerant compressor

    DOE Patents [OSTI]

    English, W.A.; Young, R.R.

    1985-05-14T23:59:59.000Z

    A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

  19. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  20. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    SciTech Connect (OSTI)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15T23:59:59.000Z

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first-stage (when observed) and second-stage ignition delay times and of heat release rate. The experimental and computational results are used to gain insight into low and intermediate temperature processes during gasoline ignition.

  1. CREATING THE NORTHEAST GASOLINE SUPPLY RESERVE

    Broader source: Energy.gov [DOE]

    In 2012, Superstorm Sandy made landfall in the northeastern United States and caused heavy damage to two refineries and left more than 40 terminals in New York Harbor closed due to water damage and loss of power. This left some New York gas stations without fuel for as long as 30 days. As part of the Obama Administrationís ongoing response to the storm, the Department of Energy created the first federal regional refined product reserve, the Northeast Gasoline Supply Reserve.

  2. The Extraction of Gasoline from Natural Gas

    E-Print Network [OSTI]

    Schroeder, J. P.

    1914-05-15T23:59:59.000Z

    for the quantitative estimation of the condensable gasoline consti- tuents of so-called rtwetn natural gasĽ Three general lines of experimentation suggested themselves after a preliminary study of the problem. These were the separation of a liqui- fied sample... fractionation of a mixture of natural gases are, however, not available in the ordinary laboratory, so this method altho successful and accurate is hardly practical. Even after the fractionation of the gas has ^lebeau and Damiens in Chen. Abstr. 7, 1356...

  3. Energy Information Administration/Petroleum Marketing Annual

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 62.0% No. 2 Distillate 24.6% Other 0.9%...

  4. Energy Information Administration/Petroleum Marketing Annual

    U.S. Energy Information Administration (EIA) Indexed Site

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 62.4% No. 2 Distillate 24.4% Other 1.0%...

  5. X:\\Data_Publication\\Pma\\current\\ventura\\pma00.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 61.9% No. 2 Distillate 24.8% Other 0.9%...

  6. untitled

    Gasoline and Diesel Fuel Update (EIA)

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 61.9% No. 2 Distillate 26.8% Other 0.8%...

  7. untitled

    U.S. Energy Information Administration (EIA) Indexed Site

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 60.7% No. 2 Distillate 26.9% Other 0.7%...

  8. X:\\L6046\\Data_Publication\\Pma\\current\\ventura\\pma.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil Figure 5. U.S. Refiner Wholesale Petroleum Product Volumes Motor Gasoline 61.5% No. 2 Distillate 26.5% Other 0.5%...

  9. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Gasoline and Diesel Fuel Update (EIA)

    or consumed. b Includes an adjustment for crude oil, previously referred to as "Unaccounted For Crude Oil." Also included is an adjustment for motor gasoline blending...

  10. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Disposition a Includes an adjustment for crude oil, previously referred to as "Unaccounted For Crude Oil." Also included is an adjustment for motor gasoline blending...

  11. PSA Vol 1 Tables Revised Ver 2 Print.xls

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    andor consumed. b Includes an adjustment for crude oil, previously referred to as "Unaccounted For Crude Oil." Also included is an adjustment for motor gasoline blending...

  12. Assessment of Historic Trend in Mobility and Energy Use in India Transportation Sector Using Bottom-up Approach

    E-Print Network [OSTI]

    Zhou, Nan

    2010-01-01T23:59:59.000Z

    IEA Motor Gasoline IEA Heavy Fuel Oil Total Rail Fuel UseEstimated Electric IEA Heavy Fuel Oil J 1,500 P J 60 P Total

  13. Vertical Relationships and Competition in Retail Gasoline Markets: An Empirical Evidence from Contract Changes in Southern California

    E-Print Network [OSTI]

    Hastings, Justine

    2000-01-01T23:59:59.000Z

    The Behavior of Retail Gasoline Prices: Symmetric or Not? Ēvertical contracts and retail gasoline prices. The thirdthe differences in retail gasoline prices between markets is

  14. Mexicoís Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    Mexico imports almost 40 percent of its gasoline, 40 percent of its coal (coal and LNG, damage to hydropower dams, and environmental drawbacks with oil, wind power would seem to offer a major opportunity for Mexico,

  15. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  16. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health...

  17. Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

  18. Characterization of Pre-Commercial Gasoline Engine Particulates...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    analysis methods were used to examine particulates from single cylinder test engines running on gasoline and ethanol blends. deer12zelenyuk.pdf More Documents & Publications...

  19. High Compression Ratio Turbo Gasoline Engine Operation Using...

    Broader source: Energy.gov (indexed) [DOE]

    Compression Ratio Turbo Gasoline Engine Operation Using Alcohol Enhancement PI: John B. Heywood Sloan Automotive Laboratory Massachusetts Institute of Technology June 19, 2014...

  20. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  1. U.S. gasoline prices increase slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2,short14,0,long,long

  2. Conventional Gasoline Sales to End Users Prices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4Consumption TheX Imeans ofF DataContango

  3. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel PM

  4. DOE's Gasoline/Diesel PM Split Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractionsMaterialsDevelop Low-carbonDOE's Gasoline/Diesel

  5. Gasoline prices continue to fall (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name: Email:UraniumNaturallong version)Gasoline

  6. Gasoline prices continue to increase (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue to

  7. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices continue

  8. Gasoline prices continue to increase (short version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline prices

  9. Gasoline prices inch down (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014long version) The U.S.Gasoline

  10. Diesel vs Gasoline Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * SEnergyTemperatureDepartment ofUsevs Gasoline

  11. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    emissions from the gasoline terminal storage and refuelingLH2, assuming the gasoline storage terminals are about asGasoline comes to Sacramento via pipeline, stored in terminals

  12. Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand

    E-Print Network [OSTI]

    Hughes, Jonathan; Knittel, Christopher R; Sperling, Dan

    2007-01-01T23:59:59.000Z

    Consumption and Real Retail Gasoline Price for January 19742006. FIGURE 2 Real Retail Gasoline Price for Two Periodsjt is the real retail price of gasoline in month j and year

  13. Diffusion and Reactivity of Gas Oil in FCC Catalysts SULAIMAN Al-KHATTAF, HUGO I. de LASA*

    E-Print Network [OSTI]

    Al-Khattaf, Sulaiman

    developed in a novel CREC Simulator, is employed to estimate the unconverted gas oil, the gasoline and secondary cracking reactions and the yields of gasoline, coke and light gas yields. Key words: FCC, cracking in FCC units has become more prevalent due to the declining availability and as a result higher prices

  14. Premium Efficient Motors

    E-Print Network [OSTI]

    Moser, P. R.

    1984-01-01T23:59:59.000Z

    Premium efficient motors are available which convert electrical energy into mechanical energy with fewer losses than the more standard motors. The fewer losses in these motors are due to changes in the motor design and improved manufacturing methods...

  15. State of competition in gasoline marketing. The effects of refiner operation at retail (a study required by Title III of the Petroleum Marketing Practices Act)

    SciTech Connect (OSTI)

    Delaney, J.B.; Fenili, R.N.

    1980-05-01T23:59:59.000Z

    Title III of the Petroleum Marketing Practices Act requires the Secretary of Energy to report to the Congress on the extent to which producers, refiners, and other suppliers of motor fuel subsidize the sale of such fuel at retail or wholesale with profits obtained from other operations. This is Part I of the report required under that Title. It addresses a number of questions relating to the central issue - the state of competition in the gasoline marketing industry. Part II of the report, to be issued this fall, will discuss the subpoenaed documents of nine integrated companies, and will contain recommendations for action, if deemed necessary. The basic thrust of Part I is an examination of three issues: (1) Are integrated refiners subsidizing their company operated gasoline retail outlets; (2) Are integrated refiners moving gasoline away from their branded dealer network into their own retail outlets; and (3) Are integrated refiners manipulating the allocation system in favor of their own retail outlets to the detriment of other gasoline marketers. At a series of regional hearings, independent marketers charged that integrated refiners were engaging in each of these practices. In essence, integrated refiners were portrayed as using unfair or illegal competitive practices which would ultimately lead to their domination of retail gasoline markets. This report addresses each allegation, after providing a historical and theoretical framework for today's debate.

  16. Fact #858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest Decline since 2008 Fact 858 February 2, 2015 Retail Gasoline Prices in 2014 Experienced the Largest...

  17. SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines SwRI's HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines Presentation given at the...

  18. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    E-Print Network [OSTI]

    Fischer, M.L.

    2011-01-01T23:59:59.000Z

    OF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, AbraOF SUBSURFACE GASOLINE CONTAMINATION Marc L. Fischer, Abrareporting indoor air contamination (6,7). Estimation of

  19. Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways

    E-Print Network [OSTI]

    Wang, Guihua

    2008-01-01T23:59:59.000Z

    pathway are due to diesel truck emissions resulting from thelike gasoline-delivery truck emissions. As gasoline vehiclepollutants. Recall the truck emissions estimated for the LH2

  20. A Comparison of Two Gasoline and Two Diesel Cars with Varying...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control Technologies A Comparison of Two Gasoline and Two Diesel Cars with Varying Emission Control...

  1. IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE USING GASOLINE

    E-Print Network [OSTI]

    IDENTIFYING THE USAGE PATTERNS OF METHYL TERT-BUTYL ETHER (MTBE) AND OTHER OXYGENATES IN GASOLINE 1608 Mt. View Rapid City, SD 57702 Methyl tert-butyl ether (MTBE) is commonly added to gasoline. In 1998, 11.9 billion liters of MTBE were produced in the U.S. MTBE has been detected frequently

  2. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14T23:59:59.000Z

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, √?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?Motors and Generators for the 21st Century√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ę√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬?√?¬Ě. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  3. Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method

    E-Print Network [OSTI]

    Chen, Haijie

    2008-01-01T23:59:59.000Z

    Twin-land oil control ring is widely used in the automotive diesel engines, and is gaining more and more applications in the modern designs of gasoline engines. Its interaction with the cylinder liner surface accounts for ...

  4. Obstacles and Opportunity: Turbine Motorization in Refineries Today

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  5. Obstacles and Opportunity: Turbine Motorization in Refineries Today†

    E-Print Network [OSTI]

    Feng, Hua; Liu, Jinghing; Liu, Xiang; Ahmad, Mushtaq; Deng, Alan

    2012-01-01T23:59:59.000Z

    Steam turbines have been widely used in oil refineries for driving pumps, compressors and other rotary machines. However, in recent years, the authors of this paper have seen substantial turbine motorization projects completed or being planned...

  6. Northeast Gasoline Supply Reserve | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    supplements the Northeast Home Heating Oil Reserve, a one million barrel supply of ultra-low sulfur diesel, which was used for the first time by first-responders and to fill...

  7. MTBE growth limited despite lead phasedown in gasoline

    SciTech Connect (OSTI)

    Storck, W.

    1985-07-15T23:59:59.000Z

    This month's legislated reduction of the allowable amount of lead additives in gasoline will increase demand strongly for methyl-tert-butyl ether (MTBE) as an octane enhancer, but the economics of the refinery business and the likelihood of rapidly increasing high-octane gasoline imports probably will limit the size of the business in coming years. MTBE will be used to fill the octane gap now, but economics and imports of gasoline later on could hold down demand. The limited growth in sales of MTBE is discussed.

  8. Modeling intraurban price competition: an example of gasoline pricing

    SciTech Connect (OSTI)

    Haining, R.

    1983-11-01T23:59:59.000Z

    Three interacting market models are considered as models for intraurban retail price variation for a single homogenous good, price-posted gasoline. Modifications include spatial markets instead of interacting economic sectors and supply functions independent of price levels in other markets. The final section discusses the results of fitting one of the models to gasoline data for the city of Sheffield during a period of intensifying price competition in the first quarter of 1982. It is concluded, with respect to gasoline price modeling, both independent and interacting market models exist but at different intraurban scales. 15 references, 1 figure, 1 table.

  9. Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships

    E-Print Network [OSTI]

    Rothman, Daniel

    Who is Exposed to Gas Prices? How Gasoline Prices Affect Automobile Manufacturers and Dealerships-busse@kellogg.northwestern.edu, knittel@mit.edu, f-zettelmeyer@kellogg.northwestern.edu #12;Who is Exposed to Gas Prices? How Gasoline of gasoline prices, and consumer responses to gasoline prices have been well studied. In this paper

  10. Long Term Processing Using Integrated Hydropyrolysis plus Hydroconversion (IH2) for the Production of Gasoline and Diesel from Biomass

    SciTech Connect (OSTI)

    Marker, Terry [Gas Technology Institute; Roberts, Michael [Gas Technology Institute; Linck, Martin [Gas Technology Institute; Felix, Larry [Gas Technology Institute; Ortiz-Toral, Pedro [Gas Technology Institute; Wangerow, Jim [Gas Technology Institute; McLeod, Celeste [CRI Catalyst; Del Paggio, Alan [CRI Catalyst; Gephart, John [Johnson Timber; Starr, Jack [Cargill; Hahn, John [Cargill

    2013-06-09T23:59:59.000Z

    Cellulosic and woody biomass can be directly converted to hydrocarbon gasoline and diesel blending components through the use of a new, economical, technology named integrated hydropyrolysis plus hydroconversion (IH2). The IH2 gasoline and diesel blending components are fully compatible with petroleum based gasoline and diesel, contain less than 1% oxygen and have less than 1 total acid number (TAN). The IH2 gasoline is high quality and very close to a drop in fuel. The life cycle analysis (LCA) shows that the use of the IH2 process to convert wood to gasoline and diesel results in a greater than 90% reduction in greenhouse gas emission compared to that found with fossil derived fuels. The technoeconomic analysis showed the conversion of wood using the IH2 process can produce gasoline and diesel at less than $2.00/gallon. In this project, the previously reported semi-continuous small scale IH2 test results were confirmed in a continuous 50 kg/day pilot plant. The continuous IH2 pilot plant used in this project was operated round the clock for over 750 hours and showed good pilot plant operability while consistently producing 26-28 wt % yields of high quality gasoline and diesel product. The IH2 catalyst showed good stability, although more work on catalyst stability is recommended. Additional work is needed to commercialize the IH2 technology including running large particle size biomass, modeling the hydropyrolysis step, studying the effects of process variables and building and operating a 1-50 ton/day demonstration scale plant. The IH2 is a true game changing technology by utilizing U.S. domestic renewable biomass resources to create transportation fuels, sufficient in quantity and quality to substantially reduce our reliance on foreign crude oil. Thus, the IH2 technology offers a path to genuine energy independence for the U. S., along with the creation of a significant number of new U.S. jobs to plant, grow, harvest, and process biomass crops into fungible fuels.

  11. Implementing Motor Decision Plans

    E-Print Network [OSTI]

    Elliott, R. N.

    The first step to reducing energy costs and increasing reliability in motors is to establish a motor plan. A motor plan allows decisions to be made in advance of motor failure, and increases the options available. By contrast, most motor decisions...

  12. Consumptive water use in the production of ethanonl and petroleum gasoline.

    SciTech Connect (OSTI)

    Wu, M.; Mintz, M.; Wang, M.; Arora, S.; Energy Systems

    2009-01-30T23:59:59.000Z

    The production of energy feedstocks and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass, and agricultural residues need water for growth and conversion to ethanol, but petroleum feedstocks like crude oil and oil sands also require large volumes of water for drilling, extraction, and conversion into petroleum products. Moreover, in many cases, crude oil production is increasingly water dependent. Competing uses strain available water resources and raise the specter of resource depletion and environmental degradation. Water management has become a key feature of existing projects and a potential issue in new ones. This report examines the growing issue of water use in energy production by characterizing current consumptive water use in liquid fuel production. As used throughout this report, 'consumptive water use' is the sum total of water input less water output that is recycled and reused for the process. The estimate applies to surface and groundwater sources for irrigation but does not include precipitation. Water requirements are evaluated for five fuel pathways: bioethanol from corn, ethanol from cellulosic feedstocks, gasoline from Canadian oil sands, Saudi Arabian crude, and U.S. conventional crude from onshore wells. Regional variations and historic trends are noted, as are opportunities to reduce water use.

  13. High compression ratio turbo gasoline engine operation using alcohol enhancement

    E-Print Network [OSTI]

    Lewis, Raymond (Raymond A.)

    2013-01-01T23:59:59.000Z

    Gasoline - ethanol blends were explored as a strategy to mitigate engine knock, a phenomena in spark ignition engine combustion when a portion of the end gas is compressed to the point of spontaneous auto-ignition. This ...

  14. Process for conversion of lignin to reformulated hydrocarbon gasoline

    DOE Patents [OSTI]

    Shabtai, Joseph S. (Salt Lake City, UT); Zmierczak, Wlodzimierz W. (Salt Lake City, UT); Chornet, Esteban (Golden, CO)

    1999-09-28T23:59:59.000Z

    A process for converting lignin into high-quality reformulated hydrocarbon gasoline compositions in high yields is disclosed. The process is a two-stage, catalytic reaction process that produces a reformulated hydrocarbon gasoline product with a controlled amount of aromatics. In the first stage, a lignin material is subjected to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol as a reaction medium, to thereby produce a depolymerized lignin product. In the second stage, the depolymerized lignin product is subjected to a sequential two-step hydroprocessing reaction to produce a reformulated hydrocarbon gasoline product. In the first hydroprocessing step, the depolymerized lignin is contacted with a hydrodeoxygenation catalyst to produce a hydrodeoxygenated intermediate product. In the second hydroprocessing step, the hydrodeoxygenated intermediate product is contacted with a hydrocracking/ring hydrogenation catalyst to produce the reformulated hydrocarbon gasoline product which includes various desirable naphthenic and paraffinic compounds.

  15. Determination of methyl tert. butyl ether (MTBE) in gasoline

    SciTech Connect (OSTI)

    Feldman, J.; Orchin, M. (Univ. of Cincinnati, OH (United States))

    1993-02-01T23:59:59.000Z

    A GLC-acid extraction method is described for the determination of MTBE in gasolines. The method consists of a programmed GLC analysis starting at about room temperature conducted before and after extraction with cold 85% phosphoric acid. This treatment results in the preferential solubility of ethers and other oxygenated compounds while minimizing the reaction of olefins and aromatics which may be present in the gasolines. Plotting various known concentrations of MTBE in gasolines against the concentrations determined in the same samples by the authors methodology results in a straight line relationship. The concentration of MTBE in any sample of gasoline may thus be determined using their GLC-extraction procedure and the calibration line. The analysis can accommodate a wide choice of standard GLC columns and programs. 2 refs., 1 fig., 1 tab.

  16. Gasoline Prices, Fuel Economy, and the Energy Paradox

    E-Print Network [OSTI]

    Wozny, Nathan

    It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

  17. Fact #835: August 25, 2014 Average Annual Gasoline Pump Price...

    Broader source: Energy.gov (indexed) [DOE]

    35: Average Annual Gasoline Pump Price, 1929-2013 fotw835web.xlsx More Documents & Publications Offshore Wind Market and Economic Analysis Report 2013 Response to several FOIA...

  18. Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSol√©(tm)HydrogenRFP ¬Ľ Important Trinity / NERSC-8Improved

  19. Edinburgh Motor Assessment (EMAS)†

    E-Print Network [OSTI]

    Bak, Thomas

    2013-12-01T23:59:59.000Z

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, ...

  20. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    capita terms. When crude oil prices are used, these are theprices are driven by oil prices, moreover, and oil isby áuctuations in the crude oil price. The overall mean real

  1. Converting the Sun's Heat to Gasoline Solar Fuel Corporation is a clean tech company transforming the way gasoline, diesel and hydrogen fuels

    E-Print Network [OSTI]

    Jawitz, James W.

    the way gasoline, diesel and hydrogen fuels are created and produced. The company has a proprietary technology for converting solar thermal en- ergy (the sun's heat) to fuel (e.g., gasoline, diesel, hydrogen solar energy to syngas, which is then converted to "drop in" fuel (diesel, gasoline or hydrogen

  2. U.S. summer gasoline price to average 6 cents lower than last year at $3.63 a gallon

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected to risesummer

  3. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1995...

  4. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1997...

  5. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    Gasoline and Diesel Fuel Update (EIA)

    Gallons per Day Motor Gasoline No. 2 Distillate Residual Fuel Oil 5. U.S. Refiner Wholesale Petroleum Product Volumes Figure Percentages of Refiner Wholesale Volumes 1996...

  6. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Refiner Retail Volumes 1996 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual...

  7. Source: Energy Information Administration, Form EIA-782A, "Refiners...

    U.S. Energy Information Administration (EIA) Indexed Site

    Refiner Retail Volumes 1997 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual...

  8. High-resolution NMR process analyzer for oxygenates in gasoline

    SciTech Connect (OSTI)

    Skloss, T.W.; Kim, A.J.; Haw, J.F. (Texas A M Univ., College Station, TX (United States))

    1994-02-15T23:59:59.000Z

    We report a high-resolution 42-MHz[sup 1]HFT-NMR instrument that is suitable for use as a process analyzer and demonstrate its use in the determination of methyl tert-butyl ether (MTBE) in a flowing stream of gasoline. This spectrometer is based on a 55-kg permanent magnet with essentially no fringe field. A spectral resolution of 3 Hz was typically obtained for spinning samples, and this performance was only slightly degraded with flowing samples. We report a procedure for magnet drift compensation using a software procedure rather than a field-frequency lock channel. This procedure allowed signal averaging without loss of resolution. Regulatory changes to be implemented in the near future have created a need for the development of methods for the determination of MTBE and other oxygenates in reformulated gasolines. Existing methods employing gas chromatography are not fast enough for process control of a gasoline blender and suffer from other limitations. This study demonstrates that process analysis NMR is well-suited to the determination of MTBE in a simulated gasoline blender. The detection limit of 0.5 vol % MTBE was obtained with a measurement time of 1 min. The absolute standard deviation of independent determinations was 0.17% when the MTBE concentration was 10%, a nominal value. Preliminary results also suggest that the method may be applicable to gasolines containing mixtures of oxygenate additives as well as the measurement of aromatic and olefinic hydrogens. 33 refs., 9 figs.

  9. MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    6. 6.1 MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation Motor Bikes, Mopeds, and Motor Scooters are defined as motor vehicles and are subject to all regulations governing motor vehicle operation on the grounds of the University. Such a motor vehicle owned and operated by a member

  10. USED MINERAL-BASED CRANKCASE OIL

    E-Print Network [OSTI]

    Used Mineral-Based Crankcase

    based crankcase oil vary depending on the brand and type of oil, whether gasoline or diesel fuel was used, the mechanical condition of the engine that the oil came from, and the amount of use between oil changes. Used oil is not naturally found in the environment. What happens to used mineral-based crankcase oil when it enters the environment? q Used mineral-based crankcase oil enters the air through the exhaust system during engine use. q It may enter water or soil when disposed of improperly. q The hydrocarbon components of the oil generally stick to the soil surface. q Some hydrocarbons evaporate into the air very quickly, and others evaporate more slowly. q Hydrocarbon components of the oil that enter surface water bind to small particles in the water and eventually settle to the bottom. q Hydrocarbons from used mineral-based crankcase oil may build up in shellfish or other organisms. q Some metals in used mineral-based crankcase oil dissolve in water and move through the s

  11. Simultaneous Efficiency, NOx, and Smoke Improvements through Diesel/Gasoline Dual-Fuel Operation in a Diesel Engine†

    E-Print Network [OSTI]

    Sun, Jiafeng

    2014-08-05T23:59:59.000Z

    Diesel/gasoline dual-fuel combustion uses both gasoline and diesel fuel in diesel engines to exploit their different reactivities. This operation combines the advantages of diesel fuel and gasoline while avoiding their disadvantages, attains...

  12. Novel Characterization of GDI Engine Exhaust for Gasoline and Mid-Level Gasoline-Alcohol Blends

    SciTech Connect (OSTI)

    Storey, John Morse [ORNL] [ORNL; Lewis Sr, Samuel Arthur [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL; Barone, Teresa L [ORNL] [ORNL; Eibl, Mary A [ORNL] [ORNL; Nafziger, Eric J [ORNL] [ORNL; Kaul, Brian C [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda of 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.

  13. California Gasoline and Diesel Retail Prices

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4: OilConsumption Estimates562

  14. This Week In Petroleum Gasoline Section

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables133,477 133,5910.9.TheRegular

  15. Health studies indicate MTBE is safe gasoline additive

    SciTech Connect (OSTI)

    Anderson, E.V.

    1993-09-01T23:59:59.000Z

    Implementation of the oxygenated fuels program by EPA in 39 metropolitan areas, including Fairbanks and Anchorage, Alaska, in the winter of 1992, encountered some unexpected difficulties. Complaints of headaches, dizziness, nausea, and irritated eyes started in Fairbanks, jumped to Anchorage, and popped up in various locations in the lower 48 states. The suspected culprit behind these complaints was the main additive for oxygenation of gasoline is methyl tert-butyl ether (MTBE). A test program, hastily organized in response to these complaints, has indicated that MTBE is a safe gasoline additive. However, official certification of the safety of MTBE is still awaited.

  16. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,

  17. U.S. gasoline prices continued to decreased (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S. gasoline9,6,

  18. U.S. gasoline prices continued to decreased (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 2015 U.S.U.S. gasoline

  19. U.S. gasoline prices decrease (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8,2, 201514, 2014gasoline

  20. U.S. gasoline prices remain steady (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version) The U.S.gasoline

  1. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline prices

  2. U.S. gasoline prices unchanged (short version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continueshort version)gasoline

  3. Gasoline prices fall for first time this year (long version)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24, 2014 Gasoline5,Gasoline4,gasolinelong

  4. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline prices

  5. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasoline

  6. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune 1,

  7. U.S. gasoline prices continue to increase (long version)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices continue to8, 2015 U.S. gasolineJune

  8. Modeling and Analysis of Natural Gas and Gasoline In A High Compressio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis of Natural Gas and Gasoline In A High Compression Ratio High Efficiency ICRE Modeling and Analysis of Natural Gas and Gasoline In A High Compression Ratio High...

  9. Savings at the pump help push U.S. gasoline demand to 8-year...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    U.S. gasoline demand to 8-year high U.S. gasoline consumption this year is expected to top 9 million barrels per day for the first time since 2007. In its new monthly forecast,...

  10. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5 Composite Catalyst System. Syngas Conversion to Gasoline-Range Hydrocarbons over PdZnOAl2O3 and ZSM-5...

  11. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    of the Global Crude Oil Market and the U.S. Retail Gasolinea§ect the world crude oil market (though of course this maythe integration of the world oil market rescues the original

  12. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    capita terms. When crude oil prices are used, these are thedriven by the world crude oil price rather than by exchange-how consumers think about oil prices and price expectations,

  13. Impact of California Reformulated Gasoline On Motor Vehicle Emissions. 1. Mass Emission Rates

    E-Print Network [OSTI]

    Kirchstetter, Thomas W.; Singer, Brett C.; Harley, Robert A.

    1999-01-01T23:59:59.000Z

    propane standard. Methane,MTBE, speciated and NMHC concentrations were determined following the pro-

  14. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1997 January ... 35.6 37.6 45.0 122.6 33.7 201.3 8.8 9.1 12.1 15.0 W 27.1 February ... 37.8 39.9 46.7 127.7 38.1 212.6 9.1 9.4 12.4 15.5 W...

  15. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1996 ... 24.1 25.4 17.8 108.5 27.1 153.4 5.7 5.9 4.4 12.9 NA 17.3 1997 January ... 20.6 22.0 14.8 98.3 26.4 139.6 4.7 4.9 3.7 11.5...

  16. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    3 January ... - - - - - - - - - - - - February ... - - - - - - - - - - - - March ... - - - - - - - - - - - - April...

  17. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1996 ... 10.7 11.1 26.1 20.5 8.0 54.6 3.3 3.4 7.9 3.3 W 11.3 1997 January ... 11.3 11.8 27.2 19.8 7.3 54.3 3.2 3.3 7.9 3.0 W 10.8...

  18. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    Gasoline and Diesel Fuel Update (EIA)

    1996 January ... 7.5 7.8 19.3 15.7 3.8 38.7 2.9 3.0 7.0 2.7 - 9.7 February ... 7.7 8.0 20.3 16.9 5.9 43.1 3.0 3.0 7.4 3.0 - 10.4 March...

  19. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    0.3 0.3 1.7 0.8 1.4 3.9 0.2 0.2 0.4 0.2 - 0.6 December ... 6.7 7.0 23.0 W W 47.3 2.0 2.0 7.5 W W 10.7 1994 ... 0.6 0.6 2.1 1.6 0.6...

  20. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    U.S. Energy Information Administration (EIA) Indexed Site

    4.5 - 8.7 1.1 1.1 1.0 0.6 - 1.6 March ... 2.1 2.2 1.8 1.8 W 3.7 0.5 0.5 0.4 0.2 - 0.6 April ... 1.2 1.2 0.7 1.3 - 2.1 0.2 0.2 0.2...

  1. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by...

    Gasoline and Diesel Fuel Update (EIA)

    1996 ... 2.4 2.5 2.6 2.9 W 5.6 0.5 0.5 0.5 0.4 - 0.9 1997 January ... 3.7 3.7 2.9 4.5 - 7.4 0.8 0.8 W 0.5 - 1.1 February...

  2. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    Gasoline and Diesel Fuel Update (EIA)

    1996 ... 83.4 83.0 78.8 69.8 67.7 73.8 92.4 92.1 83.7 74.1 W 80.9 1997 January ... 82.4 82.1 77.1 74.3 73.6 75.6 92.1 91.8 82.7...

  3. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by...

    Gasoline and Diesel Fuel Update (EIA)

    1996 January ... 71.4 71.0 67.6 59.2 56.0 63.1 80.9 80.6 72.3 63.8 - 69.9 February ... 72.2 71.7 67.8 59.8 56.8 63.2 81.3 81.0 73.1 64.2 -...

  4. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    1996 ... 79.7 79.1 74.3 66.5 60.7 66.4 88.4 87.8 80.1 70.0 NA 72.6 1997 January ... 82.4 81.7 76.7 71.2 66.2 70.8 91.4 90.9 83.1...

  5. Impact of California Reformulated Gasoline on Motor Vehicle Emissions. 2. Volatile Organic Compound Speciation and Reactivity

    E-Print Network [OSTI]

    Kirchstetter, Thomas; Singer, Brett; Harley, Robert

    1999-01-01T23:59:59.000Z

    diurnal, hot-soak, and running loss emissions lie somewherea contribution from running loss evaporative emissions. Asof diurnal, hot-soak, and running loss evaporative emissions

  6. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250 03

  7. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250 03

  8. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250 03

  9. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250 03

  10. Table 10. U.S. Refiner Oxygenated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 250

  11. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 2503

  12. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 2503

  13. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 2503

  14. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 2503

  15. Table 12. U.S. Refiner Reformulated Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  16. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  17. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  18. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  19. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  20. Table 6. U.S. Refiner Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  1. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  2. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  3. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  4. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  5. Table 7. U.S. Refiner Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25031996

  6. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488

  7. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 January

  8. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 January

  9. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 January

  10. Table 8. U.S. Refiner Conventional Motor Gasoline Prices by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488

  11. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,54883 January

  12. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,54883

  13. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,54883

  14. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,54883 1996

  15. Table 9. U.S. Refiner Conventional Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,54883

  16. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833

  17. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833

  18. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833

  19. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833 1996

  20. Table 11. U.S. Refiner Oxygenated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,548833

  1. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333

  2. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333

  3. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333

  4. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333 1996

  5. Table 13. U.S. Refiner Reformulated Motor Gasoline Volumes by Grade and Sales Type

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488333

  6. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 1995 January

  7. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 1995 January70.4

  8. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 1995 January70.4

  9. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 1995

  10. Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 1773 199553.6 53.3

  11. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.0

  12. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.070.5 58.3 57.7

  13. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.070.5 58.3

  14. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.070.5 58.369.6

  15. Table 35. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177391.070.5

  16. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.41,312.3

  17. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3 61.41,312.32,177.8

  18. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.3

  19. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.39,369.5 40,816.0

  20. Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 18157.39,369.5

  1. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.1 7,298.61,515.4 24,168.6

  2. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.1 7,298.61,515.4

  3. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.1 7,298.61,515.447,959.1

  4. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.1

  5. Table 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV493,552.13,846.3 12,393.4

  6. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,Effective PAD

  7. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,Effective PAD

  8. Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet)4. U.S. Vehicle FuelFoot,Effective PAD

  9. ,"U.S. Motor Gasoline Refiner Sales Volumes"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePriceExpectedOther CountriesTrinidadRefiner Sales

  10. Issues and Methods for Estimating the Percentage Share of Ethanol in Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessApril 2015YearYear Jan Feb

  11. U.S. Sales to End Users Prices for Motor Gasoline

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial and InstitutionalArea: U.S. EastArea: U.S. East

  12. U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion- - - -

  13. U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb MarDecade Year-0 Year-1(Billion- - -49,797.6

  14. U.S. Sales for Resale, Total Refiner Motor Gasoline Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrudePropane, No.1 andNA

  15. U.S. Sales to End Users, Total Refiner Motor Gasoline Sales Volumes

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalThe Outlook269,023Year JanCrudePropane,26,282.1

  16. Issues and Methods for Estimating the Percentage Share of Ethanol in Motor Gasoline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIronNuclear Physicsii Direct all

  17. Table E16. Motor Gasoline Prices and Expenditures, Ranked by State, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. Electric Power6.

  18. Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by69.6 69.1

  19. Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by69.6 69.170.4

  20. Petroleum Products Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear Jan Feb Mar AprYear JanPricePrice (Percent)by69.6