Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Oil and Natural Gas Knowledge Management Database from NETL  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Knowledge Management Database (KMD) Portal provides four options for searching the documents and data that NETL-managed oil and gas research has produced over the years for DOE’s Office of Fossil Energy. Information includes R&D carried out under both historical and ongoing DOE oil and gas research and development (R&D). The Document Repository, the CD/DVD Library, the Project Summaries from 1990 to the present, and the Oil and Natural Gas Program Reference Shelf provide a wide range of flexibility and coverage.

2

Oil & Gas Research | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other...

3

05663_AlaskaHeavyOil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Controls On Production and Seismic Monitoring Alaska Heavy Oils Last Reviewed 12202012 DE-NT0005663 Goal The goal of this project is to improve recovery of Alaskan North...

4

oil-gas-announcements | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNLBuildings andExternal LinksBG/QEmissionsDubna SandOil

5

Oil & Gas Research | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 Technical ConferenceOfficeOfficeOfficialOil &

6

NETL Gas Migration Study to Advance Understanding of Responsible...  

Broader source: Energy.gov (indexed) [DOE]

Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas Development NETL Gas Migration Study to Advance Understanding of Responsible Oil and Natural Gas...

7

Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository  

SciTech Connect (OSTI)

The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

2007-01-01T23:59:59.000Z

8

NETL- AVESTAR  

ScienceCinema (OSTI)

NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.

None

2014-06-26T23:59:59.000Z

9

NETL- AVESTAR  

SciTech Connect (OSTI)

NETL's Advanced Virtual Energy Simulation Training and Research, or AVESTAR, Center is designed to promote operational excellence for the nation's energy systems, from smart power plants to smart grid. The AVESTAR Center brings together advanced dynamic simulation and control technologies, state-of-the-art simulation-based training facilities, and leading industry experts to focus on the optimal operation of clean energy plants in the smart grid era.

None

2013-07-09T23:59:59.000Z

10

NETL: Oil & Gas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O NOil & Gas

11

NETL: Vacancy Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jobs, Fellowship Releases, & New Student Opportunities RSS Feed. THERE ARE NO VACANCIES AT THIS TIME. Please check again later. Status of NETL Vacancy Announcement...

12

NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)  

ScienceCinema (OSTI)

NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

None

2014-06-16T23:59:59.000Z

13

NETL - Supercomputing: NETL Simulation Based Engineering User Center (SBEUC)  

SciTech Connect (OSTI)

NETL's Simulation-Based Engineering User Center, or SBEUC, integrates one of the world's largest high-performance computers with an advanced visualization center. The SBEUC offers a collaborative environment among researchers at NETL sites and those working through the NETL-Regional University Alliance.

None

2013-09-30T23:59:59.000Z

14

solicitations | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations FAQs All NETL Solicitations Funding Opportunity...

15

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Localized Corrosion and Fatigue Behavior of Ultra-Deep Drilling Alloys 4 March 2014 Office of Fossil Energy NETL-TRS-1-2014 Disclaimer This report was prepared as an account of...

16

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

17

NETL CT Imaging Facility  

SciTech Connect (OSTI)

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2013-09-04T23:59:59.000Z

18

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

19

NETL CT Imaging Facility  

ScienceCinema (OSTI)

NETL's CT Scanner laboratory is equipped with three CT scanners and a mobile core logging unit that work together to provide characteristic geologic and geophysical information at different scales, non-destructively.

None

2014-05-21T23:59:59.000Z

20

Separation of the unsaponifiable matter from cottonseed oil by adsorption  

E-Print Network [OSTI]

oxide. All the results they obtained were in accordance with the theory that the number of double bonds was responsible for the degree of adsorption. They concluded tnat with aluminium oxide their method of separation was only applicable to sterols..., in a ratio 5 crude oil to I silica gel by weight, resulted in the removal of moxe than 50 pex cent of the unsaponifiable matter. Hot 90/ isopropanol was found to be the best of a number of solvents tested for desorbing the material. The solvent...

Zeitoun, Mohamed Ali

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Advanced Collaborative Emissions Study (ACES) NETL Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

NETL Agreement 13919 Advanced Collaborative Emissions Study (ACES) NETL Agreement 13919 Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

22

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concepts APCD Co-benefits Emissions Characterization Methods Development Regulatory Drivers In-house R&D NETL managed the largest funded research program in the country to...

23

NETL LINES OF DEMARCATION 09282012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LINES OF DEMARCATION September 28, 2012 Contact: Site Operations Division or ESS&H Division with Questions The oversight, upkeep, and segregation of NETL infrastructure components,...

24

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

25

VEE-0023- In the Matter of Oil Products, Inc.  

Broader source: Energy.gov [DOE]

On May 13, 1996, Oil Products, Inc. (Oil Products) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Oil...

26

netl research capabilities | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULE J.nbarbee Ames LaboratoryNuclearnest |netl

27

VEE-0032- In the Matter of Thomas Oil Company  

Broader source: Energy.gov [DOE]

On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

28

VEE-0028- In the Matter of Laney Oil Company, Inc.  

Broader source: Energy.gov [DOE]

On June 18, 1996, the Laney Oil Company, Inc., (Laney Oil) of Monroe, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

29

Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

30

NETL: Solid Oxide Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and water concerns associated with fossil fuel based electric power generation. The NETL Fuel Cell Program maintains a portfolio of RD&D projects that address the technical issues...

31

NETL: Feed Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUA AnnualFeed

32

NETL: Gasifier Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUA

33

NETL: SOFC Project Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUAProject

34

NETL: SOFC Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUAProjectSystems

35

VEE-0039- In the Matter of Froman Oil Company  

Broader source: Energy.gov [DOE]

On February 11, 1997, Froman Oil Company (Froman) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Froman requests that it...

36

VEE-0080- In the Matter of Potter Oil Co., Inc.  

Broader source: Energy.gov [DOE]

On April 18, 2001, Potter Oil Co., Inc. (Potter) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Potter requests that it...

37

VEE-0066- In the Matter of Taylor Oil Company  

Broader source: Energy.gov [DOE]

On July 30, 1999, Taylor Oil Company (Taylor) of Somerville, New Jersey filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

38

VEE-0035- In the Matter of Rice Oil Company, Inc.  

Broader source: Energy.gov [DOE]

On October 22, 1996, Rice Oil Company, Inc. (Rice) of Greenfield, Massachusetts filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE)....

39

VEE-0030- In the Matter of Lee Oil Company  

Broader source: Energy.gov [DOE]

On July 19, 1996, Lee Oil Company (Lee), located in Greensboro, North Carolina, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy. In its...

40

VEE-0021- In the Matter of Jacobs Oil Company  

Broader source: Energy.gov [DOE]

On August 16, 1996 Jacobs Oil Company (Jacobs) of Dysart, Pennsylvania filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

VEE-0064- In the Matter of Belcourt Oil Company  

Broader source: Energy.gov [DOE]

On July 23, 1999, Belcourt Oil Company (Belcourt) of Belcourt, North Dakota filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In...

42

LEE-0152- In the Matter of Sound Oil Company  

Broader source: Energy.gov [DOE]

On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

43

VEE-0056- In the Matter of Stacey Oil Co.  

Broader source: Energy.gov [DOE]

On April 2, 1999, Stacey Oil Co. (Stacey), of Whitefish, Montana, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Stacey...

44

LEE-0161- In the Matter of Coker Oil, Inc.  

Broader source: Energy.gov [DOE]

On September 16, 1994, Coker Oil, Inc. (Coker) of Lake City, South Carolina, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

45

VEE-0061- In the Matter of Paul Smith Oil Company  

Broader source: Energy.gov [DOE]

On May 24, 1999, Paul Smith Oil Company (Smith) filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Smith asks that it be...

46

VEE-0059- In the Matter of XXXX Oil Co., Inc.  

Broader source: Energy.gov [DOE]

On April 26, 1999, XXXXXXXXXX Oil Co., Inc. (XXXXXXXXXX) of XXXXXXXXXX, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

47

VEE-0036- In the Matter of Kalamazoo Oil Co.  

Broader source: Energy.gov [DOE]

On November 26, 1996, Kalamazoo Oil Co. (Kalamazoo), of Kalamazoo, Michigan, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its...

48

VEE-0042- In the Matter of Edris Oil Service, Inc.  

Broader source: Energy.gov [DOE]

On March 5, 1997, Edris Oil Service, Inc. (Edris) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Edris...

49

LEE-0163- In the Matter of Pierce Oil Co., Inc.  

Broader source: Energy.gov [DOE]

On September 20, 1994, Pierce Oil Co., Inc. (Pierce) of Price, Utah, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

50

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NETL FE NA 2010 Benjamin May 412010 - 3312011 Main Chiller MGN NETL Site Install Metal Jacketing, Insulation, and Safety Labels The main chiller for the Morgantown NETL site...

51

NETL-ORD3 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy Scientist NamedNETL-ORD1DOE/NETL

52

United States National Energy Technology Laboratory's (NETL)...  

Open Energy Info (EERE)

Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology...

53

NETL's Energy Data eXchange  

ScienceCinema (OSTI)

A brief tour around NETL's Energy Data Exchange site, where researchers can upload data or look at data from another researcher.

None

2014-07-22T23:59:59.000Z

54

NETL's Energy Data eXchange  

SciTech Connect (OSTI)

A brief tour around NETL's Energy Data Exchange site, where researchers can upload data or look at data from another researcher.

None

2014-07-16T23:59:59.000Z

55

nrap initiative | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that have been conducting collaborative research for the Office of Fossil Energy's Carbon Sequestration Program for many years: NETL, Lawrence Berkeley National Laboratory,...

56

NETL's JIC in a box  

ScienceCinema (OSTI)

The National Energy Technology Laboratory developed the idea of a portable joint information center AKA JIC in-a-box. This video discribes some of the equipment in the portable JIC as well as some of the methodology that NETL developed as a result of this portable JIC concept.

David Anna

2010-01-08T23:59:59.000Z

57

Does Ownership Matter? The Performance and Efficiency of State Oil vs. Private Oil (1987-2006)  

E-Print Network [OSTI]

-owned International Oil Companies (IOCs). The dataset, which is based on a survey published by Energy Intelligence and covers 1,001 firm observation years in the period 1987 to 2006, provides a unique corporate perspective on the industry’s development. After... could enter into long-term supply contracts as a temporary measure, but ultimately “the Admiralty should become the independent owner and producer of its own supplies of liquid fuel”.2 In 1914, the British government therefore acquired a controlling...

Wolf, C

58

NETL- Severe Environment Corrosion Erosion Facility  

ScienceCinema (OSTI)

NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

None

2014-06-16T23:59:59.000Z

59

NETL- Severe Environment Corrosion Erosion Facility  

SciTech Connect (OSTI)

NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.

None

2013-09-12T23:59:59.000Z

60

NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NAE National Academy of Engineering NAS National Academy of Sciences NATCARB National Carbon Sequestration Database and Geographic Information System NETL National Energy...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NGCC Natural gas combined cycle NOx Oxides of nitrogen PC Sub Pulverized coal subcritical PC Sup Pulverized coal supercritical PM Particulate matter SO 2 Sulfur dioxide...

62

Visiting NETL Albany, Morgantown or Pittsburgh | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdatesValley winsVideo HistoryVisitingVisiting NETL

63

NETL-ORD1 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy Scientist NamedNETL-ORD1

64

Interviews with Researchers and Engineers at NETL  

ScienceCinema (OSTI)

Learn how several of the researchers and engineers got their start in the field of science and some of their favorite aspects of working at NETL, The Energy Lab  

None

2010-01-08T23:59:59.000Z

65

Interviews with Researchers and Engineers at NETL  

SciTech Connect (OSTI)

Learn how several of the researchers and engineers got their start in the field of science and some of their favorite aspects of working at NETL, The Energy Lab  

2009-12-08T23:59:59.000Z

66

heavy_oil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors |hcelliott Ames Laboratory Profilehe 2

67

contact | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL Technology

68

contact | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL TechnologyOn-Site

69

contacts | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungClean EnergyContact NETL

70

NETL: Aligned Gasification Research Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUA Annual

71

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From:i6 GreenPowerWV RegionalDOE/NETL

72

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67Molecular Science NETL's Molecular

73

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67Molecular Science NETL's

74

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67Molecular Science NETL'sStructural

75

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologies | NewsAbout NETL

76

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologies | NewsAboutNETL

77

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Division FE 0910 MPD 2011 Neal Duttlinger March 2011 - March 2014 NETL Albany, OR Mechanical Testing Laboratory Continuing operations the Mechanical Testing Laboratory at NETL...

78

Size distribution of metals in particulate matter formed during combustion of residual fuel oil  

SciTech Connect (OSTI)

Between July 1992 and January 1993 three full-scale test programs were performed by Carnot for the Electric Power Research Institute and the Fuel Oil Users` Support (FOUS) Group, as part of a program for development and testing of various stack emissions models. One of the components of the program was determination of the concentrations of individual elements as a function of the size of particles suspended in flue gas. The size distributions of species are important because several aspects of system performance depend upon particulate matter size and composition: (1) the rate of ash deposition in the convection section, and activity of deposits for high temperature corrosion and SO{sub 3} formation, (2) the efficiency of precipitators for collection of individual elements, and (3) scattering of visible light and contribution of particles to stack plume opacity. Size distributions of major ash constituents were measured at the entrance and exit of the dust collectors during each of the field tests. To the authors` knowledge, these are the first reports of such measurements in residual oil-fired utility boilers. The focus, in the present paper, is on the composition of the particles entering the dust collectors.

Walsh, P. [Pennsylvania State Univ., University Park, PA (United States); Rovesti, W.C. [Electric Power Research Institute, Washington, DC (United States); Freeman, R.F. [Niagara Mohawk Power Corp., Oswego, NY (United States); Olen, K.R.; Washington, K.T.; Patrick, S.T.; Campbell, G.L.; Harper, D.S. [Florida Power & Light Co., West Palm Beach, FL (United States); Teetz, R.D.; Bennett, T.E. [Long Island Lighting Co., Glenwood Landing, NY (United States)] [and others

1994-08-01T23:59:59.000Z

79

Oil  

E-Print Network [OSTI]

Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

unknown authors

80

Quality Guidline for Cost Estimation Methodology for NETL Assessments...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Levelization factor NETL National Energy Technology Laboratory NGCC Natural gas combined cycle O&M Operation and maintenance PC Pulverized coal PSFM Power systems financial model...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

carbon capture rd index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

compared to existing technologies. In collaboration with university partners, NETL is examining all three classes of technologies to better address both near and longer term...

82

aligned-research-programs | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to remove environmental concerns related to coal use. For this purpose, NETL's Clean Coal Research Program (CCRP) is developing a portfolio of innovative technologies,...

83

NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...  

Open Energy Info (EERE)

- Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle...

84

NETL Researcher Honored with 2013 Federal Laboratory Consortium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jeffrey Hawk of the National Energy Technology Laboratory (NETL) has been awarded a Far West region Federal Laboratory Consortium (FLC) award for Outstanding Technology Development...

85

NETL- High-Pressure Combustion Research Facility  

SciTech Connect (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2013-07-08T23:59:59.000Z

86

NETL- High-Pressure Combustion Research Facility  

ScienceCinema (OSTI)

NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

None

2014-06-26T23:59:59.000Z

87

NETL's Hybrid Performance, or Hyper, facility  

ScienceCinema (OSTI)

NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

None

2014-06-26T23:59:59.000Z

88

NETL's Hybrid Performance, or Hyper, facility  

SciTech Connect (OSTI)

NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

None

2013-06-12T23:59:59.000Z

89

NETL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions for Optimizing for KNL Key

90

index | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Offshore Resources Assessing Risk and Mitigating Deleterious Events Associated with Drilling and Production Background Increasingly, offshore domestic oil and natural gas...

91

Int. J. Oil, Gas and Coal Technology, Vol. 5, No. 1, 2012 1 Copyright 2012 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Enterprises Ltd. Top-Down, Intelligent Reservoir Modeling of Oil and Gas Producing Shale Reservoirs; Case.Bromhal@netl.doe.gov Abstract: Producing hydrocarbon (both oil and gas) from Shale plays has attracted much attention in recent modeling approach to history matching, forecasting and analyzing oil and gas production from shale

Mohaghegh, Shahab

92

LEE-0138- In the Matter of O'Brian Oil Company  

Broader source: Energy.gov [DOE]

On July 18, 1994 and November 22, 1995, O'Brian Oil Company (O'Brian) of Shellsburg, Iowa, filed Applications for Exception with the Office of Hearings and Appeals of the Department of Energy. In...

93

VEE-0013- In the Matter of O'Brian Oil Company  

Broader source: Energy.gov [DOE]

On July 18, 1994 and November 22, 1995, O'Brian Oil Company (O'Brian) of Shellsburg, Iowa, filed Applications for Exception with the Office of Hearings and Appeals of the Department of Energy. In...

94

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NETL - ORD FE 0569-0008-3-00-0 NETL ORD 2010 Kelly Rose Ongoing Adj. to B12, B18,and B16 (Morgantown, WV) Mobile Sediment Analysis Laboratory Photo-documentation and logging of...

95

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

T-40. 04 25 2011 Allen Lichvar Digitally signed by Allen Lichvar DN: cnAllen Lichvar, oESS&H Division, ouNETL 725, emailallen.lichvar@netl.doe.gov, cUS Date: 2011.04.25...

96

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

N-Powell Co. FE NA NETL SOD 2011 Ben Smith July 2011 - December 2011 NETL, MGN (Morgantown, WV), B17 Utility Metering Installation: B3, B14, B36 The objective of the proposed work...

97

CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL  

E-Print Network [OSTI]

CONFERENCE PROCEEDINGS EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Abstract Reservoir simulation is the industry

Mohaghegh, Shahab

98

The effect of chemicals on coloring matter and odorous substances in cotton seed oil  

E-Print Network [OSTI]

are as followst fl) Ca018 gives the lightest colored oil ss 18. 1 p'ellow and. 5, 6 red with the mechanical agitation at the room tempers? ture, probab17 dLue to the oxidising ant hslogenating proper ties of the chemical+ (8) CsOC18 also f'ives a vox@ light...

Lokras, Vinayak Narayan

1925-01-01T23:59:59.000Z

99

Breakthrough: NETL's Simulation-Based Engineering User Center (SBEUC)  

ScienceCinema (OSTI)

The National Energy Technology Laboratory relies on supercomputers to develop many novel ideas that become tomorrow's energy solutions. Supercomputers provide a cost-effective, efficient platform for research and usher technologies into widespread use faster to bring benefits to the nation. In 2013, Secretary of Energy Dr. Ernest Moniz dedicated NETL's new supercomputer, the Simulation Based Engineering User Center, or SBEUC. The SBEUC is dedicated to fossil energy research and is a collaborative tool for all of NETL and our regional university partners.

Guenther, Chris

2014-05-21T23:59:59.000Z

100

Crude Oil Analysis Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL Technologies Recognized for Technology Development, Transfer |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL ReleasesDepartment of

102

FWP-45133 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,ofAPPROPRIATION IntegralDOE/NETL

103

UK - NETL Cooperation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,Save Energy Now Jump to: navigation, searchDistrict ofNewNETL

104

NETL R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8ElectricNETL R&D

105

NETL R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8ElectricNETL

106

fy09 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National9 OnPolymer-BasedNETL/DOE,09

107

fy10 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National9 OnPolymer-BasedNETL/DOE,090

108

fy11 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National9 OnPolymer-BasedNETL/DOE,0901

109

fy12 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National9 OnPolymer-BasedNETL/DOE,09012

110

Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?” forthcoming: Review of Economics and Statistics  

E-Print Network [OSTI]

Abstract: Since the oil crises of the 1970s there has been strong interest in the question of how oil production shortfalls caused by wars and other exogenous political events in OPEC countries affect oil prices, U.S. real GDP growth and U.S. CPI inflation. This study focuses on the modern OPEC period since 1973. The results differ from the conventional wisdom along a number of dimensions. First, it is shown that under reasonable assumptions the timing, magnitude and even the sign of exogenous oil supply shocks may differ greatly from current state-of-the-art estimates. Second, the common view that the case for the exogeneity of at least the major oil price shocks is strong is supported by the data for the 1980/81 and 1990/91 oil price shocks, but not for other oil price shocks. Notably, statistical measures of the net oil price increase relative to the recent past do not represent the exogenous component of oil prices. In fact, only a small fraction of the observed oil price increases during crisis periods can be attributed to exogenous oil production disruptions. Third, compared to previous indirect estimates of the effects of exogenous supply disruptions on real GDP growth that treated major oil price increases as exogenous, the direct estimates obtained in this paper suggest a sharp drop after five quarters rather than an immediate and sustained reduction in economic growth for a year. They also suggest a spike in CPI inflation three quarters after the exogenous oil supply shock rather than a sustained increase in inflation, as is sometimes conjectured. Finally, the results of this paper put into perspective the importance of exogenous oil production shortfalls in the Middle East. It is shown that exogenous oil supply shocks made remarkably little difference overall for the evolution of U.S. real GDP growth and CPI inflation since the 1970s, although they did matter for some historical episodes. Key Words: Oil shock; war; counterfactual; oil supply; exogeneity; weak instruments. JEL: E32, C32.

Lutz Kilian

2008-01-01T23:59:59.000Z

111

TEE-0069 - In the Matter of Severson Oil & LP Co., Inc. | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClient update resolve008Energy 8 - In the Matter

112

fe0024311-ttu | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximize Liquid Oil Production from Shale Oil and Gas Condensate Reservoirs by Cyclic Gas Injection Last Reviewed 12102014 DE-FE0024311 Goal The goal is to evaluate the oil...

113

Evaluation of the modified Anderson sampler for determining particle size distributions and respirable concentrations of particulate matter present in the working environment of cottonseed oil mills  

E-Print Network [OSTI]

EVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE DISTRIBUTIONS AND RESPIRABLE CONCENTRATIONS OF PARTICULATE MATTER PRESENT IN THE WORKING ENVIRONMENT OF COTTONSEED OIL MILLS A Thesis by STANLEY WAYNE MATLOCK Submitted... to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Agricultural Engineering FVALUATION OF THE MODIFIED ANDERSON SAMPLER FOR DETERMINING PARTICLE SIZE...

Matlock, Stanley Wayne

1976-01-01T23:59:59.000Z

114

NETL Teams Earn Secretary of Energy Achievement Awards | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary 7,LessonsNETL FEnergy NETL

115

enhanced_oil_current_proj | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungCleanJournal ofFortran Exampleemc2Enhanced

116

enhanced_oil_recovery | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungCleanJournal ofFortran

117

05663_AlaskaHeavyOil | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense(ANL-IN-03-032)431st quarter43) Fluid

118

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Yet Assigned TBD NETL Pittsburgh B 58 OIOSite Operations Division Colleen Butcher B58 Boiler Replacement Replace boilers and appurtenances in B58. Colleen Butcher Digitally signed...

119

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

2012 4262012 - 12312012 Benjamin May (COR) NETL: Morgantown, WV Condensate Return Piping Replacement Project (T-40 to B-22) Install condensate return piping, insulation,...

120

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

DOENETL FE 0561 ORD 2010 Erik Saab 2010 NETL Morgantown GPDUSyngas Generator Decommissioning Prepatory work for the demolition of the GPDU and SGG Structures, Caustic Soda Tank...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NA, TBD URS FE OIOESS&HD 2013 8262013 - 10302013 Elias George NETL: Albany, OR Fire Loop Soil Excavation Removal of suspected contaminated soil and associated piping and...

122

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

2012 March 2012 - March 2015 Joe Tylczak NETL: Albany, OR Severe Environment Corrosion & Erosion Research Facility (SECERF) Research on corrosion and erosion of metal...

123

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NETL- Morgantown, wv. Simulated Based Engineering User Center (SPEUC) A High performance computing system will be constructed with the addition of a transformer to supply a...

124

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NETL: Morgantown, WV, B-13 High Temperature Solids Flow Verification Lab Developing sensors for online measurement of solids flow for high temperature chemical looping (1000...

125

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

SOD 2012 9152012 - 12152012 Joeseph Kanosky NETL: Morgantown, WV B-33 Facility & HVAC Renovations Replacement of the B-33 steam and condensate piping for two AHUs utilizing...

126

NETL Researcher Honored with 2014 FLC Mid-Atlantic Regional STEM...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mid-Atlantic Regional STEM Award for his work furthering NETL's STEM education efforts in West Virginia. Dr. Gerdes has coordinated West Virginia Regional Science Bowl (WVSB) since...

127

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Duttlinger July 2010 - July 2013 Building 31, NETL- Albany, Oregon Environmental Mechanical Testing Laboratory Construction The project goal is to set up a new lab area for...

128

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Unassigned Site Operations (OIBO) 2010 Ben Smith April 2010 - December 2010 NETL, MGN, Building 39 (Morgantown, WV) B39 CASE Facility Upgrades Provide facility modifications...

129

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Unassigned FE NA Site Operations (OIBO) 2010 Ben Smith August 2010 - May 2011 NETL, MGN (Morgantown, WV) MGN Site Metering Installation Install building level utility meters....

130

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NA Unassigned FE NA Site Operations Division 2011 Ben Smith April 2011 - October 2011 NETL: Morgantown, WV (Building 39) Building 39 - Replace Waterless Urinals Demolish existing...

131

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NETL: Albany, OR Offsite Oxycombustion Flame Analysis (OOFA) Application of electronic optical measurement tools for characterization of oxycombustion flames at cooperating test...

132

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Not Procured Yet South Park Twp, PA NA FEOIOSOD Robert Noll Building 921 Chiller Replacement (NETL Pittsburgh) Replace existing chiller on west roof of Building 921. Work will...

133

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Chinn NETL Albany, OR (Bldg 1 Rm 101) Analytical Physics - Wavelength Dispersive X-Ray Fluorescence Spectroscopy Wavelength dispersive x-ray fluorescence analysis of...

134

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

December 2010-December 2013 NETL Albany, OR (Building 1 Room 101) Wavelength Dispersive X-Ray Fluorescence (WDXRF) Spectrometer Rigaku ZSX II spectrometer is used to perform...

135

2003 NETL Onsite Merit Review Development of Predictive  

E-Print Network [OSTI]

power units (APUs) in commercial diesel truck transport as being sponsored by EERE's Hydrogen, Fuel2003 NETL Onsite Merit Review Development of Predictive Models for Diesel-Based Fuel Processors #12;Diesel Fuel Processing R&D Goal and Objectives · GOAL: Develop fundamental understanding

136

Breakthrough: NETL's Research Saving Lives with Coronary Stents  

ScienceCinema (OSTI)

NETL's Albany location is world renown for its expertise in materials research. One recent offshoot of this expertise was the assistance in developing a new material for coronary stents. This research led to the development of a stent which now has a 33% global market share and has produced over four hundred sustainable jobs in the United States.

Turner, Paul

2014-06-26T23:59:59.000Z

137

Breakthrough: NETL's Research Saving Lives with Coronary Stents  

SciTech Connect (OSTI)

NETL's Albany location is world renown for its expertise in materials research. One recent offshoot of this expertise was the assistance in developing a new material for coronary stents. This research led to the development of a stent which now has a 33% global market share and has produced over four hundred sustainable jobs in the United States.

Turner, Paul

2012-11-26T23:59:59.000Z

138

NETL-EERC ENVIRONMENTAL MANAGEMENT COOPERATIVE AGREEMENT  

SciTech Connect (OSTI)

This final report summarizes the accomplishments of the 6-year Environmental Management Cooperative Agreement (EMCA) between the Energy and Environmental Research Center (EERC), a nonprofit, contract-supported unit of the University of North Dakota, and the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The first portion of the report summarizes EMCA's structure, activities, and accomplishments. The appendix contains profiles of the individual EMCA tasks. Detailed descriptions and results of the tasks can be found separately in published Final Topical Reports. EMCA (DOE Contract No. DE-FC21-94MC31388) was in place from the fall of 1994 to the summer of 2001. Under EMCA, approximately $5.4 million was applied in three program areas to expedite the commercialization of 15 innovative technologies for application in DOE's EM Program ($3.8 million, or 69% of funds), provide technical support to the Deactivation and Decommissioning Focus Area (DDFA; $1.04 million, or 19% of funds), and provide for the coordination of the EMCA activities ($0.62 million, or 11% of funds). The following sections profile the overall accomplishments of the EMCA program followed by a summary of the accomplishments under each of the EMCA areas: commercialization, DDFA technical support, and management. Table 1 provides an overview of EMCA, including program areas, program activities, the duration and funding of each activity, and the associated industry partner, if appropriate.

Christina B. Behr-Andres; Daniel J. Daly

2001-07-31T23:59:59.000Z

139

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David M. Hyman Digitally signed by David M. Hyman DN: cnDavid M. Hyman, oNETL, ouESS&H, emailhyman@netl.doe.gov, cUS Date: 2015.03.16 09:00:04 -04'00' 03 16 2015 John...

140

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

by john ganz DN: cnjohn ganz, oNETL- DOE, ou140 OPFC, emailjohn.ganz@netl.doe.gov, cUS Date: 2010.05.24 15:37:39 -04'00' CX does not cover field harvesting of coal samples....

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

fe0024293-geglobal | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unconventional Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate nXis Well Integrity Inspection in Unconventional Wells Last Reviewed January 2015 DE-FE0024293...

142

01240_NStransportation | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are critical to North Slope, Alaska oil and gas development. Performers Geo-Watersheds Scientific, Fairbanks, AK 99708 University of Alaska Fairbanks, Fairbanks, AK 99775 Idaho...

143

fe0013902-groundmetrics | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fuels (oil, natural gas, and biofuels) as early as 20131. Hydraulic fracturing (fracking) has enabled commercial production from unconventional formations. However, fracking...

144

fwp100211-slac | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Unconventional Resources Unconventional Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate Chemical Control of Fluid Flow and Contaminant Release in Shale...

145

systems-studies | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrocarbon liquids co- production to an IGCC power plant can be cost effective when oil prices are relatively high. September 2003 DE-AC26-99FT40342 Refinery Technology...

146

fe0014144-Oceanit | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sensing of Nanite(tm) can improve long-term wellbore integrity and zonal isolation in shale gas and applicable oil and gas operations. Nanite is a cementitious material that...

147

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2017 Danylo B. Oryshchyn NETL Albany, OR (Bldg 17 R113) Low-Pressure Integrated Pollution Removal (IPR)for Jupiter Oxygen Burner Test Facility Research of the efficiency of...

148

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

SOD 2012 9 months Colleen Butcher (COR) NETL: South Park Township, PA Pittsburgh B83 Boiler Room VentilationCooling Project Ventilationcooling will be provided to the B83 third...

149

Microsoft Word - NETL-TRS-003-2012_Cementing Research Needs_20121207...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Research Needs Related to Improving Primary Cement Isolation of Formations in Deep Offshore Wells 7 December 2012 Office of Fossil Energy NETL-TRS-3-2012 Disclaimer This report...

150

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

FY14-24 112014 to 112018 David R. Luebke NETL: South Park Twp. PA, B94 R01 Reaction Chemistry and Engineering Facility This project consists of several custom-built reactor...

151

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

TBD Northwind Engineering LLC FE NA SOD FY12 92112 - 92113 David Welsh NETL: South Park Township, PA Site Wide Painting Project Various site-wide painting projects to...

152

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

ouOPFC, emailCliff.Whyte@netl.doe.gov Date: 2010.02.19 08:12:19 -05'00' Under Grants Program for Renewable Energy Projects (Solar, Wind, Biomass) at StateLocal...

153

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

O'Neill Electric Inc. FE DE-FE0011994 Modification 3 ESS&H Division 2011 Allen Lichvar 1 May 2011 - 31 Oct 2011 NETL Pittsburgh, South Park Twp, PA ReplacementInstallation of...

154

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

NA Unassigned EE PMCBETD FY12 4 months Joseph BaldwinBen Smith NETL: Morgantown, WV Demolition of Utilities and Facility Restoration (B14B17 ATEC Removal) Three environmental...

155

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Unassigned TBD FE TBD OIOSite Operations Division FY13-14August 2013-August 2014 Ben Smith NETL Morgantown, WV Utility Metering Installation For: B6, B7, B8, B12, B14, B17, B19,...

156

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Unassigned TBD FE TBD OIOSite Operations Division FY13-14Aug. 2013 - Aug. 2014 Ben Smith NETL: Morgantown, WV (B17) 2013 B17 Renovation The objective is to renovate B17 in order...

157

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Shaka FE NETLSOD 2012; Oct. 2012 July 2013 Ben Smith (COR) NETL Morgantown, WV Utility Metering Installation For: B-2, B-4, B-5, B-13, B-17, B-29, B-33 Install new meters for...

158

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Not Yet Assigned Unassigned FE Unassigned Site Operations Division FY13; 12 months Ben Smith NETL, Morgantown, WV B28 Demolition B28 has been deemed worthy of demolition by the...

159

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

compliance division, emailjohn.ganz@netl.doe.gov, cUS Date: 2011.05.10 11:16:11 -04'00' Applicant shall obtain and comply with all required air pollution control permits....

160

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

DN: cnDon Ferguson, oNational Energy technology Laboratory, ouEnergy Systems Dynamics Division, emaildonald.ferguson@netl.doe.gov, cUS Reason: I am approving this...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

112014 - 112019 David R. Luebke NETL:South Park Twp, PA-B84 Rm 220 Material Dynamics and Kinetics Lab Preparation and fabrication of polymeric and ionic-liquid based...

162

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

WV Design for HPSB Mods Based on E4 Report - MGN Implementation of High Performance Sustainable Building modifications to NETL Morgantown Buildings 1, 3, 26, and 39 as outlined in...

163

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

PA Design for HPSB Mods Based on E4 Report - PGH Implementation of High Performance Sustainable Building modifications to NETL Pittsburgh buildings 58, 84, 94, 920, 921, 922, and...

164

Microsoft Word - NETL-TRS-2-2014_Addendum 1 to Foamed Cement...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Addendum 1 to Computed Tomography and Statistical Analysis of Bubble Size Distributions in Atmospheric-Generated Foamed Cement 6 March 2014 Office of Fossil Energy NETL-TRS-2-2014...

165

Microsoft Word - NETL-TRS-2-2015_CSIL_BroadImpacts.final.20150219...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Associated with Uncontrolled Hydrocarbon Release Events in the Offshore Gulf of Mexico 19 February 2015 Office of Fossil Energy NETL-TRS-2-2015 Disclaimer This report was...

166

water-energy-workshop-2014 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent MagneticVehicle3 Constraints2014 NETL

167

NETL Releases Hydraulic Fracturing Study | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL Releases Hydraulic

168

NETL's Supercomputer Addresses Energy Issues on Two Fronts | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL

169

October 2, 2008: NETL and Zebra mussels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy(National1 -OSSGasof EnergyDepartment, 2008: NETL

170

NETL Publications Earn National Communications Awards | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary 7,LessonsNETL F 451.1-1/1Energy

171

DE-FE0002911 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/136P2DOE/NETL Methane Hydrate

172

DE-FE0003060 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/136P2DOE/NETL Methane

173

DE-FE0009897 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/136P2DOE/NETL MethaneFE0005958

174

DE-FE0009904 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/136P2DOE/NETL MethaneFE0005958

175

DE-FE0009927 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012JDA 1/31/136P2DOE/NETL

176

NETL Sorbents Licensed to Help Lower Power Draw of HVAC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy Scientist Named FinalistNETL

177

co2 capture meeting | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013 NETL CO2

178

co2-capture-igcc-sri | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storage CleanDiscovery of θ1cmarquardt2013 NETL

179

fwp65213-PNNL-2 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National9 OnPolymer-BasedNETL/DOE

180

NETL Researchers Chosen as Science & Engineering Ambassadors | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250This Nuclear EnergyCEQEnergy NETL's

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL Scientist Earns Prestigious Technical Achievement Award | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250This Nuclear EnergyCEQEnergy NETL'sof

182

Quantifying Uncertainty in Computer Predictions | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuaryNETL-2010/????QualityQuality atQuantifying

183

NETL-RUA Annual Review FY2012 DOE/NETL-2012/1579 National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifAEnergy ScientistNETL-RUA Annual Review

184

00408_Ceramatec | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense(ANL-IN-03-032) --effectsShale Oil

185

fe0024311-ttu | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwater Methane Hydrate Maximize Liquid Oil

186

Online Application Process | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratorySpeeding access1 TechnicalOilOnline Application Process Job

187

FE0003537_UofOklahoma | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

billion barrels of original-oil-in-place in the United States. Enhanced oil recovery (EOR) methods have shown potential to recover a fraction of the remaining oil. Surfactant...

188

NETL, USDA design coal-stabilized biomass gasification unit  

SciTech Connect (OSTI)

Coal, poultry litter, contaminated corn, rice hulls, moldly hay, manure sludge - these are representative materials that could be tested as fuel feedstocks in a hybrid gasification/combustion concept studied in a recent US Department of Energy (DOE) design project. DOE's National Energy Technology Laboratory (NETL) and the US Department of Agriculture (USDA) collaborated to develop a design concept of a power system that incorporates Hybrid Biomass Gasification. This system would explore the use of a wide range of biomass and agricultural waste products as gasifier feedstocks. The plant, if built, would supply one-third of electrical and steam heating needs at the USDA's Beltsville (Maryland) Agricultural Research Center. 1 fig., 1 photo.

NONE

2008-09-30T23:59:59.000Z

189

Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report  

SciTech Connect (OSTI)

A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal.

National Energy Technology Laboratory

2000-08-22T23:59:59.000Z

190

Fit for Purpose Projects | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil Recovery 2 Virginia Polytechnic Institute and State University Virginia Enhanced Coalbed Methane Recovery 3 Blackhorse Energy, LLC Louisiana Enhanced Oil Recovery 4 CONSOL...

191

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

192

Real-time measurements of particulate matter and polycyclic aromatic hydrocarbon emissions from stationary combustion sources used in oil and gas production  

SciTech Connect (OSTI)

Particulate matter emissions and some components of the particles were measured in the exhaust from combustion equipment used in oil and gas production operations near Bakersfield, California. The combustion sources included a 22.5 MW (electric) turbine generator, a 342-Bhp rich-burn spark ignition engine, and a 50 million Btu/h steam generator, all fired using natural gas. The particle components and measurement techniques were as follows: (1) Calcium, magnesium, sodium, silicon, and iron were measured using laser-induced breakdown spectroscopy (LIBS), (2) particle-bound polycyclic aromatic hydrocarbons (PAH) were detected using the charge produced by photoionization, (3) particles having sizes between 0.1 and 7.5 {micro}m were counted using an instrument based on light scattering, and (4) total particulate matter was measured according to US EPA Method 5. Not all of the methods were applied to all of the sources. Measurements were also made in the ambient air near the combustion air inlets to the units, for comparison with the concentrations in the exhaust, but the inlet and outlet measurements were not done simultaneously. Calcium, sodium, and silicon were found in the exhaust from the steam generator at concentrations similar to those in the ambient air near the inlet to the burner. Sodium and silicon were observed in the engine exhaust at levels a factor of four higher than their concentrations in the air. The principal metal observed in the engine exhaust was calcium, a component of the lubricating oil, at a concentration of 11.6 {micro}g/m{sup 3}. The air entering the gas turbine is filtered, so the average concentrations of metals in the turbine exhaust under steady operating conditions were even lower than in the air. During start-up following a shut-down to wash the turbine, silicon and iron were the major species in the stack, at concentrations of 6.4 and 16.2 {micro}g/m{sup 3}, respectively. A possible source of silicon is the water injected into the turbine for NO{sub x} control. Iron-containing particles are expected to be scale from ferrous metals. A commercial photoelectric aerosol sensor was used to measure PAH adsorbed on particles in the exhaust from the steam generator and the rich-burn engine. The conversion of the instrument readings to PAH concentrations is dependent upon the specific distribution of PAH species present. Using the typical calibration factor recommended by the instrument manufacturer, the estimated average concentration of particle-bound PAH was below the instrument detection limit (3--10 ng/m{sup 3}) in the stack gas from the steam generator, and was estimated to be 0.045--0.15 {micro}g/m{sup 3} in the exhaust from the rich-burn engine. Particle mass concentrations estimated from number concentrations determined using the particle counting and sizing instrument were only small fractions of the concentrations measured using Method 5. This is thought to be due primarily to the limited range over which size was quantified (0.1 to 7.5 {micro}m) and the poor efficiency with which the sampling system transferred large particles.

D. w. Hahn; K. r. Hencken; H. A. Johnsen; J. R. Ross; P. M. Walsh

1998-12-10T23:59:59.000Z

193

Overview of the NETL Onsite Fuel Cell R&D Program  

SciTech Connect (OSTI)

Onsite fuel cell R&D at the National Energy Technology Laboratory (NETL) has been ongoing since the late 1990's. The objective of the onsite program is to support development efforts of the fuel cell technology-related product lines and conduct fundamental research of advanced fuel cell technology. Of special focus is NETL's new 10-yr, multimillion dollar development program call the Solid State Energy Conversion Alliance (SECA). This program is aimed at developing low-cost mass manufactured solid oxide fuel cell technology for a wide variety of applications. In addition to SECA, there are a variety of other products/programs at NETL that can be supported by the onsite R&D group. Vision 21 is one such program and is the U. S. Department of Energy's initiative to deploy high efficiency, ultra-clean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and coproduction modules, which are integrated to meet specific power and chemical markets. In response to these program initiatives, NETL's onsite R&D group is developing significant capability and focusing current activity on the following areas: (1) High-Temperature Fuel Cell Test & Characterization; (2) Integrated Fuel Processing; (3) Fuel Cell Component and Systems Modeling; and (4) Sensors, Controls, and Instrumentation. This report discusses plans and ongoing activities in each of these areas.

Berry, David A.; Gemmen, Randall S.

2001-11-06T23:59:59.000Z

194

NETL: The Science of the Very Fast and the Very Small  

ScienceCinema (OSTI)

From innovations in nanotechnology to discoveries that increase our understanding of energy resources around us, NETL and the National Labs are leading the way in studying the science of the very fast and very small. In fields ranging from medicine to materials, our researchers are making advancements that have practical applications in everyday life.

None

2014-06-02T23:59:59.000Z

195

05671_UintaWaterStudy | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water-Related Issues Affecting Conventional Oil and Gas Recovery and Potential Oil Shale Development in the Uinta Basin, Utah Last Reviewed 5152012 DE-NT0005671 Goal The goal of...

196

Peak Oil and REMI PI+: State Fiscal Implications  

E-Print Network [OSTI]

, nation, and states) · Shale oil not included ­ Shale oil reserve estimates 2.0 Trillion bbls in USPeak Oil and REMI PI+: State Fiscal Implications Jim Peach Arrowhead Center Prosper Project is peak oil? · Why peak oil (and gas) matters ­ (In energy and non-energy states) ­ National Real GDP

Johnson, Eric E.

197

CAS-NETL-PNNL CEP Program Final Report  

SciTech Connect (OSTI)

This collaborative joint research project is in the area of advanced gasification and conversion, within the CAS-NETL-PNNL Memorandum of Understanding. The goal is the development and testing of an integrated warm syngas cleanup process. This effort is focused on an advanced, integrated system for capture and removal of alkali, sulfur, PH3, AsH3, chloride, and CO2, leading to a future process demonstration at a CAS gasification facility. Syngas produced by gasification can be used for production of fuels (Fischer-Tropsch, SNG, mixed alcohols), chemicals (MeOH, NH3), and hydrogen for fuel cells and IGCC. To employ this syngas, especially for synthesis reactions, contained impurities must be removed to sub-ppmv levels [1]. Commercially available approaches to remove contaminant species suffer from inefficiencies, employing solvents at ambient or lower temperature along with backup sacrificial sorbents, whereas syngas utilization occurs at higher temperatures. The efficiency and economics syngas utilization can be significantly improved if all the contaminants and CO2 are removed at temperatures higher than the chemical synthesis reaction temperatures (> 250 °C) [2].

King, David L.; Spies, Kurt A.; Rainbolt, James E.; Zhang, Keling

2014-03-31T23:59:59.000Z

198

OIL SHALE  

E-Print Network [OSTI]

Seyitömer, Himmeto?lu and Hat?lda? oil shale deposits. The results demonstrate that these oil shales are

Fields (in-situ Combustion Approach; M. V. Kök; G. Guner; S. Bagci?

199

1112323-danimer-abstract-hydraulic-fractures | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oil Recovery Deepwater Tech Methane Hydrate Field Demo of Eco-Friendly Propped Hydraulic Fractures 11123-23 Primary Performer DaniMer Scientific, LLC (Bainbridge, GA)...

200

5641_FrozenReservoirs | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Most prior work has been on developing production techniques for heavy oil in unconsolidated but unfrozen sands, or for gas hydrates. There is no information available...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Carbon Utilization and Storage | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Assess Carbon Utilization and Storage Technologies PDF Improving Domestic Energy Security and Lowering CO2 Emissions with "Next Generation" CO2-Enhanced Oil Recovery...

202

Proceedings of the NETL Workshop on Fuel Cell Modeling  

SciTech Connect (OSTI)

This workshop was the first U.S. DOE sponsored meeting devoted to fuel cell modeling. The workshop was attended by over 45 people from industry, universities, and the government. The goals of the meeting were to assess the status of fuel cell modeling, and determine how new developments in fuel cell modeling can improve cell design, stack design, and power system design. The primary focus was on cell and stack modeling. Following a review of DOE/NETL fuel cell related programs and activities, Professor Robert Selman (Illinois Institute of Technology) kicked off the technical portion of the workshop by presenting an overview of fuel cell phenomena and the status of fuel cell modeling. This overview provided the necessary background for establishing a common framework for discussing fuel cell modeling. A distinction was made between micro modeling, electrode modeling, cell modeling, stack modeling, and system modeling. It was proposed that all modeling levels be supported for further development. In addition, due to significant advances being made outside the U.S., it was proposed that dialog/exchange with other international researchers be established. Following the Overview Session, eight leading researchers in modeling gave individual presentations. These presentations provided additional information on the status and present direction of model developments. All these presentations can be found in Attachment A. Before the workshop, a survey was sent out requesting comments from the attendees. Results from this survey can be found in Attachment B. This survey was then used as initial talking points at the individual breakout sessions on the afternoon of the workshop. Breakouts were organized by microfundamental modeling, cell modeling, stack modeling, and systems modeling.

Randall S. Gemmen; J. R. Selman

2000-04-18T23:59:59.000Z

203

Quality Guidline for Cost Estimation Methodology for NETL Assessments of Power Plant Performance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedlesAdvancedJanuaryNETL-2010/????

204

Challenges, uncertainties and issues facing gas production from gas hydrate deposits  

E-Print Network [OSTI]

of Mexico, http://www.netl.doe.gov/technologies/oil-gas/of Mexico, http://www.netl.doe.gov/technologies/oil- gas/

Moridis, G.J.

2011-01-01T23:59:59.000Z

205

URTAC Meeting - September 2013 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Program Unconventional Resources NETL Oil Technology R&D Portfolio NETL-SCNGO Oil and Gas R&D Program More Documents & Publications UDAC Meeting - September 2013 UDAC...

206

06554_GreenRiverGIS | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GIS and Web-Based Water Resource Geospatial Infrastructure for Oil Shale Development Last Reviewed 6262013 DE-NT0006554 Goal The goal of this project is to develop a GIS-...

207

NETL, Pennsylvania Pen Data-Sharing Agreement to Address State...  

Broader source: Energy.gov (indexed) [DOE]

into a new data-sharing agreement that promises to improve methods of locating abandoned oil and gas wells. The DEP is engaged in an ongoing effort to discover and seal abandoned...

208

NETL Gas Migration Study to Advance Understanding of Responsible Oil and  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| Department ofOctober

209

NETL-RUA Scans for Improved Enhanced Oil Recovery Technique | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETLAbandoned

210

Oil shale pyrolysis: benchscale experimental studies and modeling.  

E-Print Network [OSTI]

??Oil shale is a complex material that is composed of organic matter, mineral matrix and trace amount of bound and/or unbound water. The endothermic decomposition… (more)

Tiwari, Pankaj

2012-01-01T23:59:59.000Z

211

Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows  

SciTech Connect (OSTI)

The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

Edited by Guenther, Chris; Garg, Rahul

2013-08-19T23:59:59.000Z

212

NETL Technologies Garner R&D 100 Awards | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL Releases

213

NETL's New Supercomputer Ranks Among the World's Top 100 | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:Diesel Engines| DepartmentNETL ReleasesDepartment

214

FWP-FEW0085-01104-0097 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES Committees of9,ofAPPROPRIATION IntegralDOE/NETL

215

NETL-Developed Carbon Capture Technology Recognized with an R&D 100 Award |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department ofMovingJanuary 7,LessonsNETL

216

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison NERSC:3The BurnsTBD TBD NETL:

217

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ. of CentralTBD TBD NETL:

218

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation | Department of Energy NETL

219

Carbon Storage Research and Development | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy,MUSEUM DISPLAY STATUS4Tours SHARECarbon CaptureOil

220

5641_FrozenReservoirs | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICS H.CarbonMarchTHE ADVANCEDProducing Light Oil

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DE-SOL-0000332 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock 16C 0229DE-SOL-0000332

222

DE-SOL-0003641 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock 16C

223

DE-SOL-0003719 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock 16CDE-SOL-0003719 -

224

DE-SOL-0005395 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock 16CDE-SOL-0003719

225

DE-SOL-0006851 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock 16CDE-SOL-0003719Site

226

DE-SOL-0007251 | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlock

227

gas-hydrate-global-assessment | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL HomeYoungCleanJournalMachine ControlFuel Oil

228

GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development  

SciTech Connect (OSTI)

The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.

Zhou, Wei (Wendy) [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

2012-09-30T23:59:59.000Z

229

NOx, SO{sub 3} in the spotlight at NETL's 2006 Environmental Controls conference  

SciTech Connect (OSTI)

As emissions caps drop, technological solutions must become increasingly effective and efficient. Researchers, equipment vendors, and plant operators are exploring alternatives to SCR and SNCR, with a view to reducing the overall costs of NOx reduction. They have also achieved 95% to 99% removal of SO{sub 3}, with no visible plume opacity. These topics were discussed at ECC 2006. The first conference session focussed on selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR) control of nitrogen oxide emissions; the second session addressed the related issue of reducing stack emissions and flue gas concentrations of sulfur trioxide. The article summarises many papers presented. Summaries and/or full versions of all the papers mentioned, and others, are posted at www.netl.doe.gov/publications/proceedings/06/ecc/index.html. 2 figs.

Mann, A.N.; Makovsky, L.E.; Sarkus, T.A. [Technology and Management Services Inc. (United States)

2007-02-15T23:59:59.000Z

230

MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

In this paper, numerical simulations of NETL/PSRI challenge problem of circulating fluidized bed (CFB) using the open-source code Multiphase Flow with Interphase eXchange (MFIX) are reported. Two rounds of simulation results are reported including the first-round blind test and the second-round modeling refinement. Three-dimensional high fidelity simulations are conducted to model a 12-inch diameter pilot-scale CFB riser. Detailed comparisons between numerical results and experimental data are made with respect to axial pressure gradient profile, radial profiles of solids velocity and solids mass flux along different radial directions at various elevations for operating conditions covering different fluidization regimes. Overall, the numerical results show that CFD can predict the complex gas–solids flow behavior in the CFB riser reasonably well. In addition, lessons learnt from modeling this challenge problem are presented.

Li, Tingwen; Dietiker, Jean-Francois; Shahnam, Mehrdad

2012-12-24T23:59:59.000Z

231

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

American Energy Reserves LLC SCNGO 201224 months Gary Covatch Gibson County, IN Game Changing Technology of Polymeric-Surfactants for Tertiary Oil Sample collection of crude oil...

232

Does "Paper Oil" Matter? Executive Summary  

Gasoline and Diesel Fuel Update (EIA)

of daily individual trader positions in U.S. energy and equity futures markets. The econometric techniques we employ tackle serial autocorrelation and endogeneity issues (due to...

233

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

234

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

CAKIR, NIDA

2013-01-01T23:59:59.000Z

235

TIME-LAPSE MODELING AND INVERSION OF CO2 SATURATION FOR SEQUESTRATION AND ENHANCED OIL RECOVERY  

SciTech Connect (OSTI)

In the fifth quarter of this DOE NETL project, they have implemented an algorithm that inverts for changes in fluid properties over time using time-lapse seismic anomalies. This algorithm constitutes the second step in the inversion procedure for Phase III of the project. They demonstrate this inversion procedure with a synthetic data example. Additional activities in this reporting period include a trip by the Principal investigator to an International Monitoring Workshop sponsored by the IEA Greenhouse Gas R and D Program in Santa Cruz, California. In the next quarter, they will further process the Sleipner data to prepare it for later inversion, and continue investigating alternative methods for calculating properties of oil/brine/CO{sub 2} systems.

Mark A. Meadows

2005-02-18T23:59:59.000Z

236

Dark Matters  

ScienceCinema (OSTI)

One of the greatest mysteries in the cosmos is that it is mostly dark.  Astronomers and particle physicists today are seeking to unravel the nature of this mysterious, but pervasive dark matter which has profoundly influenced the formation of structure in the universe.  I will describe the complex interplay between galaxy formation and dark matter detectability and review recent attempts to measure particle dark matter by direct and indirect means.

Joseph Silk

2010-01-08T23:59:59.000Z

237

Modelling the costs of non-conventional oil: A case study of Canadian bitumen  

E-Print Network [OSTI]

in conventional deposits. The longer- term problem of climate change arises from the fuller and longer-term use of coal, and of unconventional deposits such as heavy oils, tar sands and oil shales.” (Grubb, 2001) As conventional oil becomes scarcer, the transport... , it is not mobile at reservoir conditions, (Cupcic, 2003): density Oil shale is a fine-grained sedimentary rock rich in organic matter, (USGS, 2005): oil shales contain kerogen, which is a solid, insoluble organic material...

Méjean, A; Hope, Chris

238

Bioconversion of Heavy oil.  

E-Print Network [OSTI]

??70 % of world?s oil reservoirs consist of heavy oil, and as the supply of conventional oil decreases, researchers are searching for new technologies to… (more)

Steinbakk, Sandra

2011-01-01T23:59:59.000Z

239

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network [OSTI]

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

240

EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION -DOE/NETL May 4 7, 2009 Detection of CO2 Seepage from Geological  

E-Print Network [OSTI]

EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE AND SEQUESTRATION - DOE/NETL May 4 ­ 7, 2009 Detection of CO2 Seepage from Geological Sequestration Sites Using an Array of Downhole Pressure Gauges Jalal Jalali and Shahab D. Mohaghegh, West Virginia University #12;EIGHTH ANNUAL CONFERENCE ON CARBON CAPTURE

Mohaghegh, Shahab

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Evolution of Galaxies by the Incompatibility between Dark Matter and Baryonic Matter  

E-Print Network [OSTI]

In this paper, the evolution of galaxies is by the incompatibility between dark matter and baryonic matter. Due to the structural difference, baryonic matter and dark matter are incompatible to each other as oil droplet and water in emulsion. In the interfacial zone between dark matter and baryonic matter, this incompatibility generates the modification of Newtonian dynamics to keep dark matter and baryonic matter apart. The five periods of baryonic structure development in the order of increasing incompatibility are the free baryonic matter, the baryonic droplet, the galaxy, the cluster, and the supercluster periods. The transition to the baryonic droplet generates density perturbation in the CMB. In the galaxy period, the first-generation galaxies include elliptical, normal spiral, barred spiral, irregular, and dwarf spheroidal galaxies. In the cluster period, the second-generation galaxies include modified giant ellipticals, cD, evolved S0, dwarf elliptical, BCD, and tidal dwarf galaxies. The whole observable expanding universe behaves as one unit of emulsion with increasing incompatibility between dark matter and baryonic matter. The properties of dark matter and baryonic matter are based on cosmology derived from the two physical structures: the space structure and the object structure. Baryonic matter can be described by the periodic table of elementary particles.

Ding-Yu Chung

2011-02-10T23:59:59.000Z

242

Oil Shale, 2012, Vol. 29, No. 1, pp. 1835 ISSN 0208-189X doi: 10.3176/oil.2012.1.03 2012 Estonian Academy Publishers  

E-Print Network [OSTI]

Oil Shale, 2012, Vol. 29, No. 1, pp. 18­35 ISSN 0208-189X doi: 10.3176/oil.2012.1.03 © 2012 have attracted attention because of its organic-rich matter and oil seepage in the rock series that of an average in marine shales. Inter-element correlations suggest that the shale-normalized REE patterns

Lin, Andrew Tien-Shun

243

Emulsified industrial oils recycling  

SciTech Connect (OSTI)

The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

Gabris, T.

1982-04-01T23:59:59.000Z

244

Hydrotreating of oil from eastern oil shale  

SciTech Connect (OSTI)

Oil shale provides one of the major fossil energy reserves for the United States. The quantity of reserves in oil shale is less than the quantity in coal, but is much greater (by at least an order of magnitude) than the quantity of crude oil reserves. With so much oil potentially available from oil shale, efforts have been made to develop techniques for its utilization. In these efforts, hydrotreating has proved to be an acceptable technique for upgrading raw shale oil to make usuable products. The present work demonstrated the use of the hydrotreating technique for upgrading an oil from Indiana New Albany oil shale.

Scinta, J.; Garner, J.W.

1984-01-01T23:59:59.000Z

245

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Analysis Support Team June 7, 2010 2 Agenda * Case for Grid Modernization * Smart Grid Vision, Technologies, & Metrics * What's the Value Proposition? * Change...

246

NETL: Careers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N ACareers Job

247

NETL: Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N ACareers

248

NETL: Library  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N

249

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8

250

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8Electric Power System

251

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8Electric Power

252

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8Electric PowerPrimer

253

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M residential solar 1 M PHEVPEV 10 M PHEVPEV 50 M PHEVPEV 100,000 Buildings as PP Demand Response Conservation 59 Electric System Reliability Sources: Lawrence Berkeley...

254

NETL Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

residential solar 1 M PHEVPEV 10 M PHEVPEV 50 M PHEVPEV 100,000 Buildings as PP 18 Demand Response Conservation 19 Some Challenges * Technology * Interoperability and cyber...

255

Oil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say  

E-Print Network [OSTI]

by a strongman for 42 years, a country of tribes and conflicting interests, a country with oil reserves desired, there is of course the matter of Libya's substantial oil reserves. An existing gas pipeline from Libya to ItalyOil-rich Libya faces daunting challenges after Gadhafi's death, FAU scholars say By LONA O

Belogay, Eugene A.

256

Near Shore Submerged Oil Assessment  

E-Print Network [OSTI]

) oil spill in the Gulf of Mexico, submerged oil refers to near shore oil which has picked up sediments You Should Know About Submerged Oil 1. Submerged oil is relatively uncommon: DWH oil is a light crude

257

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

Peggy Robinson

2004-07-01T23:59:59.000Z

258

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the second six months (July 1, 2003-December 31, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Loco Hills area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Loco Hills area of southeastern New Mexico.

Peggy Robinson

2004-01-01T23:59:59.000Z

259

Oil spill response resources  

E-Print Network [OSTI]

. ACKNOWLEDGMENTS. TABLE OF CONTENTS . . Vn INTRODUCTION. . Oil Pollution Act. Oil Spill Response Equipment . . OB JECTIVES . 12 LITERATURE REVIEW. United States Contingency Plan. . Response Resources Definition of Clean in Context to an Oil Spill. Oil... this fitle. Title IV expands federal authority in managing oil spill clean up operations and amends the provisions for oil spill clean up under the Federal Water Pollution Control Act. It also called for Oil spill plans for vessels and facilities starting...

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

260

Energy Management by Recycling of Vehicle Waste Oil in Pakistan  

E-Print Network [OSTI]

Abstract: Pakistan has been suffering from an energy crisis for about half a decade now. The power crisis is proving to be unbearable, so importing huge amount of hydrocarbons from abroad to meet its energy needs. This study therefore focuses on the analysis of energy and environmental benefits for vehicle waste lubricant oil pertaining to its reuse by means of: (i) regain the heating value of used oils in a combustion process and (ii) recycling of waste oil to make fresh oil products. The waste oil samples were tested by ICP method and the test results were compared with standard requirements. It was found that the matter could effectively be solved by means of waste oil management practices together with collection centers, transports and processors by encouraging and financial help for the recycling industry. The importance and worth of this work concludes minor levels of hazardous elements when regained the heating value from the waste lubricating oil.

Hassan Ali Durrani

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Quality Characteristics of Luffa aegyptiaca seed oil. * 2 1 1 1  

E-Print Network [OSTI]

The oil content and quality characteristics of Luffa aegyptiaca seed oil are described. The straight vegetable oil (SVO) was extracted from the seed using hexane. On a dry matter basis, the oil content was 19-25 % of ground seeds. The quality characteristics of the seed oil were: saponification value (SV), 168mg KOH/g of oil, iodine value (IV), 130g iodine/100g of oil, peroxide value (PV), 280 meq peroxide/kg of oil, free fatty acid (FFA) 10.36 % of oil and acid value (AV) 20.62%. The density of the oil was 0.91g/cm 3 and the specific gravity was 0.92g/ml oil and kinematic viscosity 13.98mm 2 /s at 30 0 C. The saponin content and the unsaponifiable matter of the oil were also determined. The oil quality parameters suggest that the oil may find use as feedstock for biodiesel production. Owing to its iodine value, the oil may also be used in surface coating applications.

O. M Abayeh; I. H Garba; H. M Adamu; O. J Abayeh

262

DE-AI26-06NT42878 - Alaminos Canyon Task | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhanced Oil Recovery Deepwater Tech Methane Hydrate Geochemical Evaluation of Deep Sediment Hydrate Deposits in Alaminos Canyon, Block 818, Texas-Louisiana Shelf...

263

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Gas Emission Estimates (SUMMARY) Conduct measurements of emissions using mobile laboratory facility from various phases of the oil and gas industry operations. Sandra...

264

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Method for Detecting CO2 Plume Extent During Geological... Activities include well drilling and seismic acquisition inside an active EOR field (Bell Creek oil field). Andrea...

265

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Valley City, ND Identification and Evaluation of Residual Oil Zones (ROZs) in the Williston and Powder River Basins This assessment will attempt to identify and rank...

266

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

sensing of Nanite for improving the long-term wellbore integrity and zonal isolation in shale gas and applicable oil & gas operations. Bill Fincham Digitally signed by Bill...

267

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

National Laboratory FE 09121-3300-10 SCNGO 2011 Gary Covatch 36 Months Los Alamos, New Mexico Development of Carbon Nanotube Composite Cables for Ultra Deepwater Oil & Gas...

268

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

5012010 4302011 Grand Forks, Grand Forks County, ND Investigation of the Souring Bakken Oil Reservoirs This project will study the origins and causes of sour gas produced in...

269

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2017 Darin Damiani Champaign, IL A Nonconventional CO2-EOR Target in the Illinois Basin: Oil Reservoirs of the Thick Cypress Sandstone Project planning, data analysis, geological...

270

Utilization of Estonian oil shale at power plants  

SciTech Connect (OSTI)

Estonian oil shale belongs to the carbonate class and is characterized as a solid fuel with very high mineral matter content (60--70% in dry mass), moderate moisture content (9--12%) and low heating value (LHV 8--10 MJ/kg). Estonian oil shale deposits lie in layers interlacing mineral stratas. The main constituent in mineral stratas is limestone. Organic matter is joined with sandy-clay minerals in shale layers. Estonian oil shale at power plants with total capacity of 3060 MW{sub e} is utilized in pulverized form. Oil shale utilization as fuel, with high calcium oxide and alkali metal content, at power plants is connected with intensive fouling, high temperature corrosion and wear of steam boiler`s heat transfer surfaces. Utilization of Estonian oil shale is also associated with ash residue use in national economy and as absorbent for flue gas desulfurization system.

Ots, A. [Tallin Technical Univ. (Estonia). Thermal Engineering Department

1996-12-31T23:59:59.000Z

271

Matter Field, Dark Matter and Dark Energy  

E-Print Network [OSTI]

A model concerning particle theory and cosmology is proposed. Matter field, dark matter and dark energy are created by an energy flow from space to primordial matter fields at the phase transition in the early universe.

Masayasu Tsuge

2009-03-24T23:59:59.000Z

272

Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0 0

273

Understanding Crude Oil Prices  

E-Print Network [OSTI]

business of having some oil in inventory, which is referredKnowledge of all the oil going into inventory today for salebe empty, because inventories of oil are essential for the

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

274

China's Global Oil Strategy  

E-Print Network [OSTI]

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

275

China's Global Oil Strategy  

E-Print Network [OSTI]

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

276

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

277

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),023 Understanding Crude Oil Prices James D. Hamilton Junedirectly. Understanding Crude Oil Prices* James D. Hamilton

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

278

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crudein predicting quarterly real oil price change. variable real

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

279

Understanding Crude Oil Prices  

E-Print Network [OSTI]

per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

280

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Understanding Crude Oil Prices  

E-Print Network [OSTI]

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

282

China's Global Oil Strategy  

E-Print Network [OSTI]

capability to secure oil transport security. Additionally,international oil agreements: 1) ensuring energy security;security, and many argue that as the second-largest consumer of oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

283

China's Global Oil Strategy  

E-Print Network [OSTI]

China made an Iranian oil investment valued at $70 billion.across Iran, China’s oil investment may exceed $100 billionthese involving investment in oil and gas, really undermine

Thomas, Bryan G

2009-01-01T23:59:59.000Z

284

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,Mexico, Italy, France, Canada, US, and UK. Figure 10. Historical Chinese oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

285

China's Global Oil Strategy  

E-Print Network [OSTI]

by this point, China’s demand Oil Demand vs. Domestic Supplycurrent pace of growth in oil demand as staying consistentand predictions of oil supply and demand affected foreign

Thomas, Bryan G

2009-01-01T23:59:59.000Z

286

Understanding Crude Oil Prices  

E-Print Network [OSTI]

and Income on Energy and Oil Demand,” Energy Journal 23(1),2006. “China’s Growing Demand for Oil and Its Impact on U.S.in the supply or demand for oil itself could be regarded as

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

287

Understanding Crude Oil Prices  

E-Print Network [OSTI]

2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

288

Biochemically enhanced oil recovery and oil treatment  

SciTech Connect (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

289

Biochemically enhanced oil recovery and oil treatment  

DOE Patents [OSTI]

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

290

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

1012009 - 1182012 Philadelphia, PA NovaThermal Energy Waste Heat Geothermal Heat Pump System 1) Corporate matters associated with NovaThermal Energy's growth and...

291

Summary of research on hydrogen production from fossil fuels conducted at NETL  

SciTech Connect (OSTI)

In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100şC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil fuels

Shamsi, Abolghasem

2008-03-30T23:59:59.000Z

292

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Center for Coal 2010-2012 Justin Glier 2009-2012 Lawrence, KS Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional CO2...

293

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Center for Coal 2010-2012 Justin Glier 2009-2012 Manhattan, KS Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional CO2...

294

U.S. DEPARTMENT OF ENERGY - NETL CATEGORICAL EXCLUSION (CX) DESIGNATIO...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Center for Coal 2010-2012 Justin Glier 2009-2012 Wichita, KS Modeling CO2 Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional CO2...

295

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Injection of 30,000 tons of CO2 into an existing oil field and observation of the effects on the subsurface environment and determine CO2 storage capacity of reservoir. Brian W....

296

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: Energy.gov (indexed) [DOE]

of Flexible Fiber Reinforced Pipe for 10,000 Foot Water Depths Develop a novel hybrid (carbon-fiber compositemetal) flexible deepwater rise pipe technology for oil and gas...

297

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division FY15-FY18 Erik Albenze Grand Forks, ND Improved Characterization and Modeling of Tight Oil Formations for CO2 EOR This effort will better assess and validate CO2 transport...

298

DE-AI26-06NT42878 - Bottom Source Task | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bottom Source Task Unconventional Resources Enhanced Oil Recovery Deepwater Tech Methane Hydrate Gas Hydrate Research in Deep Sea Sediments DE-AI26-06NT42878 - Bottom Source Task...

299

NETL F 451.1/1-1, Categorical Exclusion Designation Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

extraction efficiency of water and gas of oil using shale core samples) using a microfluidics device. Gary L. Covatch Digitally signed by Gary L. Covatch DN: cnGary L....

300

NETL F 451.1-1/1 Categorical Exclusion (CX) Designation Form  

Broader source: Energy.gov (indexed) [DOE]

Grand Forks, ND Evaluation of Key Factors Affecting Successful Oil Production in the Bakken Formation, ND - Phase 2 Expand on the geographic information system-based, web-driven...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Effect of Crude Oil and Chemical Additives on Metabolic Activity of Mixed Microbial Populations in Fresh Marsh Soils  

E-Print Network [OSTI]

Effect of Crude Oil and Chemical Additives on Metabolic Activity of Mixed Microbial Populations remineralization rates. Crude oil, which is known to contain toxins and reduce microbial diversity organic matter (Panicum hemitomon Shult. or Sagittaria lancifolia L. dominated marshes), crude oil

Nyman, John

302

OIL & GAS INSTITUTE Introduction  

E-Print Network [OSTI]

OIL & GAS INSTITUTE CONTENTS Introduction Asset Integrity Underpinning Capabilities 2 4 4 6 8 9 10 COMPETITIVENESS UNIVERSITY of STRATHCLYDE OIL & GAS INSTITUTE OIL & GAS EXPERTISE AND PARTNERSHIPS #12;1 The launch of the Strathclyde Oil & Gas Institute represents an important step forward for the University

Mottram, Nigel

303

Eco Oil 4  

SciTech Connect (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

304

Understanding Crude Oil Prices  

E-Print Network [OSTI]

consumption would be reduced and incentives for production increased whenever the price of crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

305

Investigation and development of alternative methods for shale oil processing and analysis. Final technical report, October 1979--April 1983  

SciTech Connect (OSTI)

Oil shale, a carbonaceous rock which occurs abundantly in the earth`s crust, has been investigated for many years as an alternate source of fuel oil. The insoluble organic matter contained in such shales is termed {open_quotes}Kerogen{close_quotes} from the Greek meaning oil or oil forming. The kerogen in oil shale breaks down into oil-like products when subjected to conditions simulating destructive distillation. These products have been the subject of extensive investigations by several researchers and many of the constituents of shale oil have been identified. (1) Forsman (2) estimates that the kerogen content of the earth is roughly 3 {times} 10{sup 15} tons as compared to total coal reserves of about 5 {times} 10{sup 12}. Although the current cost per barrel estimate for commercial production of shale oil is higher than that of fossil oil, as our oil reserves continue to dwindle, shale oil technology will become more and more important. When oil shale is heated, kerogen is said to undergo chemical transformation to usable oil in two steps (3): Kerogen (in oil shale) 300-500{degrees}C bitumen. Crude shale oil and other products. The crude shale oil so obtained differs from fossil oil in that: (1) kerogen is thought to have been produced from the aging of plant matter over many years; (2) shale oil has a higher nitrogen content than fossil oil; (3) non-hydrocarbons are present to a much greater extent in shale oil; and (4) the hydrocarbons in shale oil are much more unsaturated than those in fossil oil (petroleum).

Evans, R.A.

1998-06-01T23:59:59.000Z

306

Shale oil from the LLNL pilot retort: Metal ions as markers for water and dust  

SciTech Connect (OSTI)

A metal ion found primarily in one of the three phases (oil, water, or dust) can serve as a marker for that phase. Emulsified water contains most of the magnesium detected in a shale oil. Extraction with saturated salt solution removes most of that Mg. The Mg content of retort water and the percentage of water in the oil (by ASTM D-4006) provides a good estimate of an oil`s Mg content. Mineral matter elements with poorly water soluble carbonates (or oxides) at pH 8 (calcium, for example) serve as markers for dust. When the water is separated from the main and light oil fractions before adding the heavy fraction containing dust, a much drier oil can be obtained. However, when done in this way, a powder containing Ca and Si remains in the oil; it cannot be completely removed even by filtering through a 0.24-{mu} frit. Iron, and certain other transition metal ions, is quite oil soluble. Extraction with dilute nitric acid to remove basic amines reduces the Fe content of shale oil. Unlike carboxylate- complexed metal ions in crude oils, the iron in shale oil does not extract efficiently into an aqueous EDTA solution (pH 5.9). Distillation of shale oil leaves most of the iron and other metals behind in the vacuum residum. Shale oil corrodes the hottest condenser`s steel interior; this is the chief source of iron in the oil.

Coburn, T.T.; Duewer, T.I.; King, K.J.; Baldwin, D.E.; Cena, R.J.

1993-12-31T23:59:59.000Z

307

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network [OSTI]

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

308

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

CAKIR, NIDA

2013-01-01T23:59:59.000Z

309

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Venezuelan Oil Industry Total Wells Drilled and InvestmentWells Drilled and Investment in the Venezuelan Oil Industryopenness of the oil sector to foreign investment contributes

CAKIR, NIDA

2013-01-01T23:59:59.000Z

310

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Venezuela with Mexico, another major oil pro- ducing countryOil Production and Productivity in Venezuela and Mexico . . . . . . . .

CAKIR, NIDA

2013-01-01T23:59:59.000Z

311

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

CAKIR, NIDA

2013-01-01T23:59:59.000Z

312

Matter Wave Radiation Leading to Matter Teleportation  

E-Print Network [OSTI]

The concept of matter wave radiation is put forward, and its equation is established for the first time. The formalism solution shows that the probability density is a function of displacement and time. A free particle and a two-level system are reinvestigated considering the effect of matter wave radiation. Three feasible experimental designs, especially a modified Stern-Gerlach setup, are proposed to verify the existence of matter wave radiation. Matter wave radiation effect in relativity has been formulated in only a raw formulae, which offers another explanation of Lamb shift. A possible mechanics of matter teleportation is predicted due to the effect of matter wave radiation.

Yong-Yi Huang

2015-02-12T23:59:59.000Z

313

Comparison of Heating Methods for In-Situ Oil Shale Extraction  

E-Print Network [OSTI]

Oil shales are lamellar, non-porous, impermeable hydrocarbon bearing rocks that contain organic matter called kerogen which, when heated at pyrolysis temperature of approximately 600-800 ?, thermo-chemically decomposes to liberate hydrocarbons...

Hazra, Kaushik Gaurav

2014-04-29T23:59:59.000Z

314

Apparatus for distilling shale oil from oil shale  

SciTech Connect (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

315

Libyan oil industry  

SciTech Connect (OSTI)

Three aspects of the growth and progress of Libya's oil industry since the first crude oil discovery in 1961 are: (1) relations between the Libyan government and the concessionary oil companies; (2) the impact of Libyan oil and events in Libya on the petroleum markets of Europe and the world; and (3) the response of the Libyan economy to the development of its oil industry. The historical review begins with Libya's becoming a sovereign nation in 1951 and traces its subsequent development into a position as a leading world oil producer. 54 references, 10 figures, 55 tables.

Waddams, F.C.

1980-01-01T23:59:59.000Z

316

Baryonic matter and beyond  

E-Print Network [OSTI]

We summarize recent developments in identifying the ground state of dense baryonic matter and beyond. The topics include deconfinement from baryonic matter to quark matter, a diquark mixture, topological effect coupled with chirality and density, and inhomogeneous chiral condensates.

Kenji Fukushima

2014-10-01T23:59:59.000Z

317

Dark Matter Theory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dark Matter Theory Dark Matter Theory Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505)...

318

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule1, and Alaska Oil and Gas Supply Submodule. A detailed description...

319

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

320

REVIEW PAPER Biodeterioration of crude oil and oil derived  

E-Print Network [OSTI]

, the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

Appanna, Vasu

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Using Oils As Pesticides  

E-Print Network [OSTI]

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing...

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

322

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

323

Understanding Crude Oil Prices  

E-Print Network [OSTI]

an alternative investment strategy to buying oil today andinvestments necessary to catch up. This was the view o?ered by oilinvestment strategy. date t) in order to purchase a quantity Q barrels of oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

324

Gas and Oil (Maryland)  

Broader source: Energy.gov [DOE]

The Department of the Environment has the authority to enact regulations pertaining to oil and gas production, but it cannot prorate or limit the output of any gas or oil well. A permit from the...

325

China's Global Oil Strategy  

E-Print Network [OSTI]

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

326

Oil Sands Feedstocks  

Broader source: Energy.gov (indexed) [DOE]

NCUT National Centre for Upgrading Technology 'a Canada-Alberta alliance for bitumen and heavy oil research' Oil Sands Feedstocks C Fairbridge, Z Ring, Y Briker, D Hager National...

327

SRC Residual fuel oils  

DOE Patents [OSTI]

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

328

Biochemical upgrading of oils  

DOE Patents [OSTI]

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

329

Virtually simulating the next generation of clean energy technologies: NETL's AVESTAR Center is dedicated to the safe, reliable and efficient operation of advanced energy plants with carbon capture  

SciTech Connect (OSTI)

Imagine using a real-time virtual simulator to learn to fly a space shuttle or rebuild your car's transmission without touching a piece of equipment or getting your hands dirty. Now, apply this concept to learning how to operate and control a state-of-the-art, electricity-producing power plant capable of carbon dioxide (CO{sub 2}) capture. That's what the National Energy Technology Laboratory's (NETL) Advanced Virtual Energy Simulation Training and Research (AVESTAR) Center (www.netl.doe.gov/avestar) is designed to do. Established as part of the Department of Energy's (DOE) initiative to advance new clean energy technology for power generation, the AVESTAR Center focuses primarily on providing simulation-based training for process engineers and energy plant operators, starting with the deployment of a first-of-a-kind operator training simulator for an integrated gasification combined cycle (IGCC) power plant with CO{sub 2} capture. The IGCC dynamic simulator builds on, and reaches beyond, conventional power plant simulators to merge, for the first time, a 'gasification with CO{sub 2} capture' process simulator with a 'combined-cycle' power simulator. Based on Invensys Operations Management's SimSci-Esscor DYNSIM software, the high-fidelity dynamic simulator provides realistic training on IGCC plant operations, including normal and faulted operations, as well as plant start-up, shutdown and power demand load changes. The highly flexible simulator also allows for testing of different types of fuel sources, such as petcoke and biomass, as well as co-firing fuel mixtures. The IGCC dynamic simulator is available at AVESTAR's two locations, NETL (Figure 1) and West Virginia University's National Research Center for Coal and Energy (www.nrcce.wvu.edu), both in Morgantown, W.Va. By offering a comprehensive IGCC training program, AVESTAR aims to develop a workforce well prepared to operate, control and manage commercial-scale gasification-based power plants with CO{sub 2} capture. The facility and simulator at West Virginia University promotes NETL's outreach mission by offering hands-on simulator training and education to researchers and university students.

Zitney, S.

2012-01-01T23:59:59.000Z

330

Costs of U.S. Oil Dependence: 2005 Update  

SciTech Connect (OSTI)

For thirty years, dependence on oil has been a significant problem for the United States. Oil dependence is not simply a matter of how much oil we import. It is a syndrome, a combination of the vulnerability of the U.S. economy to higher oil prices and oil price shocks and a concentration of world oil supplies in a small group of oil producing states that are willing and able to use their market power to influence world oil prices. Although there are vitally important political and military dimensions to the oil dependence problem, this report focuses on its direct economic costs. These costs are the transfer of wealth from the United States to oil producing countries, the loss of economic potential due to oil prices elevated above competitive market levels, and disruption costs caused by sudden and large oil price movements. Several enhancements have been made to methods used in past studies to estimate these costs, and estimates of key parameters have been updated based on the most recent literature. It is estimated that oil dependence has cost the U.S. economy $3.6 trillion (constant 2000 dollars) since 1970, with the bulk of the losses occurring between 1979 and 1986. However, if oil prices in 2005 average $35-$45/bbl, as recently predicted by the U.S. Energy Information Administration, oil dependence costs in 2005 will be in the range of $150-$250 billion. Costs are relatively evenly divided between the three components. A sensitivity analysis reflecting uncertainty about all the key parameters required to estimate oil dependence costs suggests that a reasonable range of uncertainty for the total costs of U.S. oil dependence over the past 30 years is $2-$6 trillion (constant 2000 dollars). Reckoned in terms of present value using a discount rate of 4.5%, the costs of U.S. oil dependence since 1970 are $8 trillion, with a reasonable range of uncertainty of $5 to $13 trillion.

Greene, D.L.

2005-03-08T23:59:59.000Z

331

Utah Heavy Oil Program  

SciTech Connect (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

332

Manufacture of refrigeration oils  

SciTech Connect (OSTI)

Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

1981-12-08T23:59:59.000Z

333

Dark Matter: Early Considerations  

E-Print Network [OSTI]

A review of the study of dark matter is given, starting with earliest studies and finishing with the establishment of the standard Cold Dark Matter paradigm in mid 1980-s. Particular attention is given to the collision of the classical and new paradigms concerning the matter content of the Universe. Also the amount of baryonic matter, dark matter and dark energy is discussed using modern estimates.

J. Einasto

2004-01-16T23:59:59.000Z

334

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

335

A novel molecular index for secondary oil migration distance  

E-Print Network [OSTI]

migration distances from source rocks to reservoirs can greatly help in the search for new petroleum and correlates solely with migration distance from source rock to reservoir. Case studies serve to demonstrate alteration of buried organic matter in source rocks, followed by oil expulsion (primary migration) out

Wang, Yang

336

Carcinogenicity Studies of Estonian Oil Shale Soots  

E-Print Network [OSTI]

determine the carcinogenicity of Estonian oil shale soot as well as the soot from oil shale fuel oil. All

A. Vosamae

337

World Oil: Market or Mayhem?  

E-Print Network [OSTI]

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

338

Oil and Gas (Indiana)  

Broader source: Energy.gov [DOE]

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

339

Design of programmable matter  

E-Print Network [OSTI]

Programmable matter is a proposed digital material having computation, sensing, actuation, and display as continuous properties active over its whole extent. Programmable matter would have many exciting applications, like ...

Knaian, Ara N. (Ara Nerses), 1977-

2008-01-01T23:59:59.000Z

340

Mesoscopic Fractional Quantum in Soft Matter Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Division Box  

E-Print Network [OSTI]

matter such as polymers, colloids, emulsions, foams, living organisms, rock layers, sediments, plastics, glass, rubber, oil, soil, DNA, etc, µ ranges from 0 to 2 and is from 0 to 1. It is worth pointing out

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

reserves. In the data, crude oil reserve addi- tions consistForce and Proven Reserves in the Venezuelan Oil Industry .such as crude oil production, proved reserves, new reserves,

CAKIR, NIDA

2013-01-01T23:59:59.000Z

342

Oil and Gas Production (Missouri)  

Broader source: Energy.gov [DOE]

A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

343

in Condensed Matter Physics  

E-Print Network [OSTI]

Master in Condensed Matter Physics ­ Master académique #12;2 #12;3 Students at the University. Condensed matter physics is about explaining and predicting the relationship between the atomic, and broad education in the field of condensed matter physics · introduce you to current research topics

van der Torre, Leon

344

Oil shale technology  

SciTech Connect (OSTI)

Oil shale is undoubtedly an excellent energy source that has great abundance and world-wide distribution. Oil shale industries have seen ups and downs over more than 100 years, depending on the availability and price of conventional petroleum crudes. Market forces as well as environmental factors will greatly affect the interest in development of oil shale. Besides competing with conventional crude oil and natural gas, shale oil will have to compete favorably with coal-derived fuels for similar markets. Crude shale oil is obtained from oil shale by a relatively simple process called retorting. However, the process economics are greatly affected by the thermal efficiencies, the richness of shale, the mass transfer effectiveness, the conversion efficiency, the design of retort, the environmental post-treatment, etc. A great many process ideas and patents related to the oil shale pyrolysis have been developed; however, relatively few field and engineering data have been published. Due to the vast heterogeneity of oil shale and to the complexities of physicochemical process mechanisms, scientific or technological generalization of oil shale retorting is difficult to achieve. Dwindling supplied of worldwide petroleum reserves, as well as the unprecedented appetite of mankind for clean liquid fuel, has made the public concern for future energy market grow rapidly. the clean coal technology and the alternate fuel technology are currently of great significance not only to policy makers, but also to process and chemical researchers. In this book, efforts have been made to make a comprehensive text for the science and technology of oil shale utilization. Therefore, subjects dealing with the terminological definitions, geology and petrology, chemistry, characterization, process engineering, mathematical modeling, chemical reaction engineering, experimental methods, and statistical experimental design, etc. are covered in detail.

Lee, S. (Akron Univ., OH (United States). Dept. of Chemical Engineering)

1991-01-01T23:59:59.000Z

345

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting  

SciTech Connect (OSTI)

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

346

Marathon Oil Company  

E-Print Network [OSTI]

Marine oil shale from the Shenglihe oil shale section in the Qiangtang basin, northern Tibet, China, was dated by the Re-Os technique using Carius Tube digestion, Os distillation, Re extraction by acetone and ICP-MS measure-ment. An isochron was obtained giving an age of 101±24 Ma with an initial

unknown authors

347

Synthetic aircraft turbine oil  

SciTech Connect (OSTI)

Synthetic lubricating oil composition having improved oxidation stability comprising a major portion of an aliphatic ester base oil having lubricating properties, formed by the reaction of pentaerythritol and an organic monocarboxylic acid and containing a phenylnaphthylamine, a dialkyldiphenylamine, a polyhydroxy anthraquinone, a hydrocarbyl phosphate ester and a dialkyldisulfide.

Yaffe, R.

1982-03-16T23:59:59.000Z

348

Chinaâs Oil Diplomacy with Russia.  

E-Print Network [OSTI]

??In Chinaâs view, it is necessary to get crude oil and oil pipeline. Under Russia and China strategic partnership, China tries to obtain âlong term… (more)

Chao, Jiun-chuan

2011-01-01T23:59:59.000Z

349

OIL SHALE DEVELOPMENT IN CHINA  

E-Print Network [OSTI]

In this paper history, current status and forecast of Chinese oil shale indus-try, as well as the characteristics of some typical Chinese oil shales are given.

J. Qian; J. Wang; S. Li

350

Peak oil: diverging discursive pipelines.  

E-Print Network [OSTI]

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

351

Petroleum Oil | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

352

Balancing oil and environment... responsibly.  

SciTech Connect (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

353

Essays on Macroeconomics and Oil  

E-Print Network [OSTI]

Oil Production in Venezuela and Mexico . . . . . . . . . .and Productivity in Venezuela and Mexico . . . . . . . . OilEllner, ”Organized Labor in Venezuela 1958-1991: Behavior

CAKIR, NIDA

2013-01-01T23:59:59.000Z

354

Of Matters Condensed  

E-Print Network [OSTI]

The American Physical Society (APS) March Meeting of condensed matter physics has grown to nearly 10,000 participants, comprises 23 individual APS groups, and even warrants its own hashtag (#apsmarch). Here we analyze the text and data from March Meeting abstracts of the past nine years and discuss trends in condensed matter physics over this time period. We find that in comparison to atomic, molecular, and optical physics, condensed matter changes rapidly, and that condensed matter appears to be moving increasingly toward subject matter that is traditionally in materials science and engineering.

Shulman, Michael

2015-01-01T23:59:59.000Z

355

Incompressibility of strange matter  

E-Print Network [OSTI]

Strange stars calculated from a realistic equation of state (EOS), that incorporate chiral symmetry restoration as well as deconfinement at high density show compact objects in the mass radius curve. We compare our calculations of incompressibility for this EOS with that of nuclear matter. One of the nuclear matter EOS has a continuous transition to ud-matter at about five times normal density. Another nuclear matter EOS incorporates density dependent coupling constants. From a look at the consequent velocity of sound, it is found that the transition to ud-matter seems necessary.

Monika Sinha; Manjari Bagchi; Jishnu Dey; Mira Dey; Subharthi Ray; Siddhartha Bhowmick

2004-04-01T23:59:59.000Z

356

Big Questions: Dark Matter  

ScienceCinema (OSTI)

Carl Sagan's oft-quoted statement that there are "billions and billions" of stars in the cosmos gives an idea of just how much "stuff" is in the universe. However scientists now think that in addition to the type of matter with which we are familiar, there is another kind of matter out there. This new kind of matter is called "dark matter" and there seems to be five times as much as ordinary matter. Dark matter interacts only with gravity, thus light simply zips right by it. Scientists are searching through their data, trying to prove that the dark matter idea is real. Fermilab's Dr. Don Lincoln tells us why we think this seemingly-crazy idea might not be so crazy after all.

Lincoln, Don

2014-08-07T23:59:59.000Z

357

Does "Paper Oil" Matter? Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnal Cycle ofDoDocuments for ForeignDoes

358

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network [OSTI]

Kuwait, Middle East, oil and gas fields, oil refinery, oil waste, oil well,Equipment Kuwait Oil Co. 1991. Mideast well fire, oil spillKuwait, Persian Gulf, Saudia Arabia, Oil spill, cleanup, oil spills, crude, oil spill incidents, oil spills-pipeline, warfare, oil skimmers, oil wells,

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

359

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

360

Matter: Space without Time  

E-Print Network [OSTI]

While Quantum Gravity remains elusive and Quantum Field Theory retains the interpretational difficulties of Quantum Mechanics, we have introduced an alternate approach to the unification of particles, fields, space and time, suggesting that the concept of matter as space without time provides a framework which unifies matter with spacetime and in which we anticipate the development of complete theories (ideally a single unified theory) describing observed 'particles, charges, fields and forces' solely with the geometry of our matter-space-time universe.

Yousef Ghazi-Tabatabai

2012-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Imbibition assisted oil recovery  

E-Print Network [OSTI]

analyzed in detail to investigate oil recovery during spontaneous imbibition with different types of boundary conditions. The results of these studies have been upscaled to the field dimensions. The validity of the new definition of characteristic length...

Pashayev, Orkhan H.

2004-11-15T23:59:59.000Z

362

Oil Market Assessment  

Reports and Publications (EIA)

Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

2001-01-01T23:59:59.000Z

363

Production of Shale Oil  

E-Print Network [OSTI]

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

Loper, R. D.

1982-01-01T23:59:59.000Z

364

Oil shale research in China  

SciTech Connect (OSTI)

There have been continued efforts and new emergence in oil shale research in Chine since 1980. In this paper, the studies carried out in universities, academic, research and industrial laboratories in recent years are summarized. The research areas cover the chemical structure of kerogen; thermal behavior of oil shale; drying, pyrolysis and combustion of oil shale; shale oil upgrading; chemical utilization of oil shale; retorting waste water treatment and economic assessment.

Jianqiu, W.; Jialin, Q. (Beijing Graduate School, Petroleum Univ., Beijing (CN))

1989-01-01T23:59:59.000Z

365

Biocatalysis in Oil Refining  

SciTech Connect (OSTI)

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

366

Oil/gas collector/separator for underwater oil leaks  

DOE Patents [OSTI]

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

367

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL AND GAS IN NEW MEXICO AND WYOMING  

SciTech Connect (OSTI)

This report contains a summary of activities of Gnomon, Inc. and five sub-contractors that have taken place during the first six months (January 1, 2003--June 30, 2003) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Gnomon, Inc. and all five (5) subcontractors have agreed on a process for the framework of this two-year project. They have also started gathering geomorphological information and entering cultural resource data into databases that will be used to create models later in the project. This data is being gathered in both the Power River Basin of Wyoming, and the Southeastern region of New Mexico. Several meetings were held with key players in this project to explain the purpose of the research, to obtain feedback and to gain support. All activities have been accomplished on time and within budget with no major setbacks.

Peggy Robinson

2003-07-25T23:59:59.000Z

368

Optimising the Use of Spent Oil Shale.  

E-Print Network [OSTI]

??Worldwide deposits of oil shales are thought to represent ~3 trillion barrels of oil. Jordanian oil shale deposits are extensive and high quality, and could… (more)

FOSTER, HELEN,JANE

2014-01-01T23:59:59.000Z

369

Oil Prices and Long-Run Risk.  

E-Print Network [OSTI]

??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low… (more)

READY, ROBERT

2011-01-01T23:59:59.000Z

370

Seismic stimulation for enhanced oil recovery  

E-Print Network [OSTI]

aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

Pride, S.R.

2008-01-01T23:59:59.000Z

371

Seismic stimulation for enhanced oil recovery  

E-Print Network [OSTI]

that in a declining oil reservoir, seismic waves sent acrosswells. Because oil reservoirs are often at kilometers orproximity to the oil reservoir. Our analysis suggests there

Pride, S.R.

2008-01-01T23:59:59.000Z

372

DISTRIBUTED GENERATION POWER UNITS AT MARGINAL OIL WELL SITES  

SciTech Connect (OSTI)

The CEC approved funding on April 9, 2003 for $1,000,000.00 instead of the $1,500,000.00 COPE requested for the project. A kickoff meeting with the California Energy Commission (CEC) was held on Monday, April 14, 2003, in their Sacramento, CA offices. Mark Carl, IOGCC project manager for the DOE grant, attended this meeting, along with Bob Fickes with COPE, Edan Prabhu, Mike Merlo and CEC officials. The change in funding by the CEC required a modification in the scope of work and an amended form DOE F 4600.1. The modifications were completed and the IOGCC received approval to commence work on the project on May 9, 2003. On May 29, 2003, Virginia Weyland with DOE/NETL, Mark Carl with IOGCC, and Bob Fickes with COPE, Edan Prabhu and Mike Merlo, consultants with COPE, participated in a teleconference kick-off meeting. During May, 2003, COPE canvassed its membership for potential locations for the four test sites. They received a very good response and have identified at least two potential sites for each of the four test sites. COPE has been obtaining gas samples from the various potential lease sites for analyses to verify the chemical properties analyses which the oil and gas producers provided during the initial contact period. The St. James project located at 814 W. 23 rd Street in Los Angeles, California, was selected as the first test site for the project. A Project Advisory Committee (PAC) was established in May, 2003. The following representatives from each of the following areas of expertise comprise the PAC membership. Acquisition of permits for the initial test site has required drawn out negotiations with CEC which has hindered progress on the technical aspects of the project. The technical aspects will begin aggressively beginning in October, 2003. The Southern California Air Quality Management District (SCAQMD) donated three Capstone micro-turbines to the project. These micro-turbines will be utilized at the St. James Project site located in Los Angeles, California. This site will fulfill the requirements of the medium BTU test site. It is anticipated that start-up of operations will begin during late December, 2003 or early January, 2004.

Mark A. Carl

2003-10-29T23:59:59.000Z

373

The Dark Matter problem  

E-Print Network [OSTI]

In these notes I will briefly summarize our knowledge about the dark matter problem, and emphasize the corresponding dynamical aspects. This covers a wide area of research, so I have been selective, and have concentrated on the subject of dark matter in nearby galaxies, in particular spirals.

A. Bosma

1998-12-01T23:59:59.000Z

374

Money Matters Parent Presentation  

E-Print Network [OSTI]

Money Matters Parent Presentation Presented by Becky Lore June 7, 2014 #12;Money Matters · Dates.fcac-acfc.gc.ca · Gail Vaz-Oxlade My Money, My Choices www.gailvazoxlade.com · Money Mentors www.moneymentors.ca/ · Money

Seldin, Jonathan P.

375

netl newsroom | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome CareersTechnologies |Solicitations andnetl

376

The NETL Community | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe Life of Enrico FermiAssemblyTheThe

377

Geochemistry of selected oils and rocks from the central portion of the West Siberian basin, Russia  

SciTech Connect (OSTI)

Six analyzed oils, produced from Middle jurassic to Upper Cretaceous strata in the Middle Ob region of the West Siberian basin, show biomarker and stable carbon isotope compositions indicating an origin from the Upper Jurassic Bazhenov Formation. The chemical compositions of these oils are representative of more than 85% of the reserves in West Siberia (Kontorovich et al., 1975). Bazhenov-sourced oil in Cenomanian strata in the Van-Egan field underwent biodegradation in the reservoir, resulting in a low API gravity, an altered homohopane distribution, and the appearance of 25-norhopanes without alteration of the steranes. High API gravity oil from the Salym field has surpassed the peak of the oil window, consistent with abnormally high temperatures and pressures in the Bazhenov source rock from which it is produced. The remaining oils are very similar, including samples from Valanginian and Bathonian-Callovian intervals in a sequence of stacked reservoirs in the Fedorov field. Bazhenov rock samples from the study area contain abundant oil-prone, marine organic matter preserved under anoxic conditions. While the Upper Jurassic Vasyugan Formation shows lower oil-regenerative potential than the Bazhenov Formation, it cannot be excluded as a source rock because insufficient sample was available for biomarker analysis. Core from the Lower to Middle Jurassic Tyumen Formation in the YemYegov 15 well was compared with the oils because it is thermally mature and shows TOC and HI values, indicating slightly more favorable oil-generative characteristics than the average for the formation (2.75 wt. % for 270 samples; 95 mg HC/g TOC for 25 samples). The core contains terrigenous, gas-prone organic matter that shows no relationship with the analyzed oils. 59 refs., 15 figs., 8 tabs.

Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (United States)); Kontorovich, A.Eh.; Andrusevich, V.E. (Inst. of Geology, Novosibirsk (Russian Federation)); Moldowan, J.M. (Chevron Petroleum Technology Co., Richmond, CA (United States)); Demaison, G.J. (Petroscience Inc., Walnut Creek, CA (United States)); Stasova, O.F. (NPO SIBGEO, Novosibirsk (Russian Federation))

1993-05-01T23:59:59.000Z

378

Carbon Trading Protocols for Geologic Sequestration  

E-Print Network [OSTI]

Storing CO2 With Enhanced Oil Recovery, DOE/NETL, pp. 1-41.materials. Currently, Enhanced Oil Recovery projects andOF ERCs FOR ENHANCED OIL RECOVERY PROJECTS Enhanced Oil

Hoversten, Shanna

2009-01-01T23:59:59.000Z

379

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network [OSTI]

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Maroncelli, Mark

380

Spot-Oiling Johnsongrass.  

E-Print Network [OSTI]

I TEXAS AGRICULTURAL EXTENSIO-N SERVICE G. G. Gibson, Director, College Station, Texas [Blank Page in Original Bulletin] I the bast I ir used the low I . .. 1 the fol or mort , needed SPOT-OILING JOHNSONGRASS H. E. Rea, M. J. Norris..., and Fred C. Elliott* Texas A. & M. College System ~HNSONGRASS CAN BE killed to the i ground by the application of 1 / 3 teaspoonful of a herbicidal oil to the crown of each stem. Eradication of established Johnsongrass can be obtained in a single...

Elliott, Fred C.; Norris, M. J.; Rea, H. E.

1955-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Oil | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment ofNo FearOfficeOil Oil For the

382

Virent is Replacing Crude Oil  

Broader source: Energy.gov [DOE]

Breakout Session 2A—Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and Refinery Co-Processing Virent is Replacing Crude Oil Randy Cortright, Founder & Chief Technology Officer, Virent

383

Enhanced Oil Recovery of Viscous Oil by Injection of Water-in-Oil Emulsion Made with Used Engine Oil  

E-Print Network [OSTI]

was proposed for emulsion generation because of several key advantages: more favorable viscosity that results in better emulsion injectivity, soot particles within the oil that readily promote stable emulsions, almost no cost of the oil itself and relatively...

Fu, Xuebing

2012-08-20T23:59:59.000Z

384

Oil and Gas Program (Tennessee)  

Broader source: Energy.gov [DOE]

The Oil and Gas section of the Tennessee Code, found in Title 60, covers all regulations, licenses, permits, and laws related to the production of natural gas. The laws create the Oil and Gas...

385

Oil and Gas Conservation (Montana)  

Broader source: Energy.gov [DOE]

Parts 1 and 2 of this chapter contain a broad range of regulations pertaining to oil and gas conservation, including requirements for the regulation of oil and gas exploration and extraction by the...

386

Process for the production of refrigerator oil  

SciTech Connect (OSTI)

A process for producing a high quality refrigerator oil from an oil fraction boiling at a temperature within boiling point of lubricating oil by contacting said oil fraction with a solvent to extract undesirable components thereby lowering % C..cap alpha.. of said oil fraction, hydrogenating said solvent extracted fraction under the specific conditions, and then contacting said hydrogenated oil with a solid absorbant to remove impurities; said oil fraction being obtained from a low grade naphthenic crude oil.

Kunihiro, T.; Tsuchiya, K.

1985-06-04T23:59:59.000Z

387

Nineteenth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 23 selections. Some of the titles are: Effects of maturation on hydrocarbon recoveries from Canadian oil shale deposits; Dust and pressure generated during commercial oil shale mine blasting: Part II; The petrosix project in Brazil - An update; Pathway of some trace elements during fluidized-bed combustion of Israeli Oil Shale; and Decommissioning of the U.S. Department of Energy Anvil Points Oil Shale Research Facility.

Gary, J.H.

1986-01-01T23:59:59.000Z

388

Analysis Patterns for Oil Refineries  

E-Print Network [OSTI]

We present analysis patterns to describe the structure of oil refineries. The Refinery Produc tion Unit Pattern describes the structure of units and unit groups. The Oil Storage Pattern describes the structure of tanks and tank groups. The Oil Delivery Pattern describes the structure of stations for import and export of oil. The Production Process Pattern describes the productionprocess. The audience for this paper includes analysts, designers, and programmers who are involved in developing Refinery Information Systems.

Lei Zhen; Guangzhen Shao

389

Oil and Gas Air Heaters  

E-Print Network [OSTI]

, the relation of hot-air temperature, oil or gas consumption and fresh airflow is determined based on energy equilibrium....

Kou, G.; Wang, H.; Zhou, J.

2006-01-01T23:59:59.000Z

390

Geochemical evaluation of oils and source rocks from the Western Siberian basin, U. S. S. R  

SciTech Connect (OSTI)

Although the Western Siberian basin is among the most prolific in the world, there has been disagreement among Soviet geoscientists on the origin of the petroleum within this basin. Screening geochemical analyses were used to select several oils and potential source rocks for a preliminary study using detailed biomarker and supporting geochemistry. Possible sources for this petroleum include rocks of Middle Jurassic, Upper Jurassic, and Lower Cretaceous age. Results indicate that most of the analyzed Western Siberian oils, occurring in reservoirs from Middle Jurassic to Late Cretaceous in age, are derived from the Upper Jurassic Bazhenov Formation. The locations of the samples in the study generally correspond to the distribution of the most effective oil-generative parts of the Bazhenov Formation. Analyses show that the Bazhenov rock samples contain abundant marine algal and bacterial organic matter, preserved under anoxic depositional conditions. Biomarkers show that thermal maturities of the samples range from the early to late oil-generative window and that some are biodegraded. For example, the Salym No. 114 oil, which flowed directly from the Bazhenov Formation, shows a maturity equivalent to the late oil window. The Van-Egan no. 110 oil shows maturity equivalent to the early oil window and is biodegraded. This oil shows preferential microbial conversion of lower homologs of the 17{alpha}, 21{beta}(H)-hopanes to 25-nor-17{alpha}(H)-hopanes.

Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)); Moldowan, J.M. (Chevron Oil Field Research Co., Richmond, CA (United States)); Kontorovich, A.E.; Stasova, O. (Siberian Scientific Research Institute for Geology, Geophysics and Mineral Resources, Novobsibirsk (Russian Federation)); Demaison, G.J.

1991-03-01T23:59:59.000Z

391

Programmable matter by folding  

E-Print Network [OSTI]

Programmable matter is a material whose properties can be programmed to achieve specific shapes or stiffnesses upon command. This concept requires constituent elements to interact and rearrange intelligently in order to ...

Wood, R. J.

392

The Heart of Matter  

E-Print Network [OSTI]

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Godbole, Rohini M

2010-01-01T23:59:59.000Z

393

Matter & Energy Electronics  

E-Print Network [OSTI]

See also: Matter & Energy Electronics· Detectors· Technology· Construction· Sports Science Electronic Tongue Tastes Wine Variety, Vintage (Aug. 12, 2008) -- You don't need a wine expert to Advance

Suslick, Kenneth S.

394

The Heart of Matter  

E-Print Network [OSTI]

In this article I trace the development of the human understanding of the "Heart of Matter" from early concepts of "elements" (or alternatively "Panchmahabhootas") to the current status of "quarks" and "leptons" as the fundamental constituents of matter, interacting together via exchange of the various force carrier particles called "gauge bosons" such as the photon, W/Z-boson etc. I would like to show how our understanding of the fundamental constituents of matter has gone hand in hand with our understanding of the fundamental forces in nature. I will also outline how the knowledge of particle physics at the "micro" scale of less than a Fermi(one millionth of a nanometer), enables us to offer explanations of Cosmological observations at the "macro" scale. Consequently these observations, may in turn, help us address some very fundamental questions of the Physics at the "Heart of the Matter".

Rohini M. Godbole

2010-06-30T23:59:59.000Z

395

Atomic dark matter  

SciTech Connect (OSTI)

We propose that dark matter is dominantly comprised of atomic bound states. We build a simple model and map the parameter space that results in the early universe formation of hydrogen-like dark atoms. We find that atomic dark matter has interesting implications for cosmology as well as direct detection: Weak-scale dark atoms can accommodate hyperfine splittings of order 100 keV, consistent with the inelastic dark matter interpretation of the DAMA data while naturally evading direct detection bounds. Moreover, protohalo formation can be suppressed below M{sub proto} ? 10{sup 3}–10{sup 6}M{sub s}un for weak scale dark matter due to Ion-Radiation and Ion-Atom interactions in the dark sector.

Kaplan, David E.; Krnjaic, Gordan Z.; Rehermann, Keith R.; Wells, Christopher M., E-mail: dkaplan@pha.jhu.edu, E-mail: gordan@pha.jhu.edu, E-mail: keith@pha.jhu.edu, E-mail: cwells13@pha.jhu.edu [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States)

2010-05-01T23:59:59.000Z

396

OIL ANALYSIS LAB TRIVECTOR ANALYSIS  

E-Print Network [OSTI]

OIL ANALYSIS LAB TRIVECTOR ANALYSIS This test method is a good routine test for the overall condition of the oil, the cleanliness, and can indicate the presence of wear metals that could be coming of magnetic metal particles within the oil. This may represent metals being worn from components (i

397

Oil shale: Technology status report  

SciTech Connect (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

398

TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS  

SciTech Connect (OSTI)

The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC's accomplishments during FY02. Activities were maintained at recent record levels. Strategic planning from multiple sources within the framework of the organization gives PTTC the vision to have even more impact in the future. The Houston Headquarters (HQ) location has strived to serve PTTC well in better connecting with producers and the service sector. PTTC's reputation for unbiased bottom line information stimulates cooperative ventures with other organizations. Efforts to build the contact database, exhibit at more trade shows and a new E-mail Technology Alert service are expanding PTTC's audience. All considered, the PTTC network has proven to be an effective way to reach domestic producers locally, regionally and nationally.

Unknown

2002-11-01T23:59:59.000Z

399

Exploiting heavy oil reserves  

E-Print Network [OSTI]

North Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen.hamptonassociates.com pRINTED BY nB GroUP Paper sourced from sustainable forests CONTENTS 3/5 does the north Sea still industry partnership drives research into sensor systems 11 Beneath the waves in 3d 12/13 does

Levi, Ran

400

African oil plays  

SciTech Connect (OSTI)

The vast continent of Africa hosts over eight sedimentary basins, covering approximately half its total area. Of these basins, only 82% have entered a mature exploration phase, 9% have had little or no exploration at all. Since oil was first discovered in Africa during the mid-1950s, old play concepts continue to bear fruit, for example in Egypt and Nigeria, while new play concepts promise to become more important, such as in Algeria, Angola, Chad, Egypt, Gabon, and Sudan. The most exciting developments of recent years in African oil exploration are: (1) the Gamba/Dentale play, onshore Gabon; (2) the Pinda play, offshore Angola; (3) the Lucula/Toca play, offshore Cabinda; (4) the Metlaoui play, offshore Libya/Tunisia; (5) the mid-Cretaceous sand play, Chad/Sudan; and (6) the TAG-I/F6 play, onshore Algeria. Examples of these plays are illustrated along with some of the more traditional oil plays. Where are the future oil plays likely to develop No doubt, the Saharan basins of Algeria and Libya will feature strongly, also the presalt of Equatorial West Africa, the Central African Rift System and, more speculatively, offshore Ethiopia and Namibia, and onshore Madagascar, Mozambique, and Tanzania.

Clifford, A.J. (BHP Petroleum, Melbourne, Victoria (Australia))

1989-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

World Oil Transit Chokepoints  

Reports and Publications (EIA)

Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

2012-01-01T23:59:59.000Z

402

Naphthenic lube oils  

SciTech Connect (OSTI)

A process is disclosed for increasing the volume of lubricating oil base stocks recovered from a crude oil. A fraction having an atmospheric boiling range of about 675/sup 0/ to 1100/sup 0/ F. is recovered by vacuum distillation. This fraction is treated with furfural to extract a hydrocarbon mixture containing at least 50 volume % aromatic hydrocarbons. The raffinate is a lubricating oil base stock very high in paraffinic hydrocarbons and low in naphthenic hydrocarbons. The fraction extracted by the furfural contains at least about 50 volume % aromatic hydrocarbons and less than about 10 volume % paraffinic hydrocarbons. The mixture is hydrotreated to hydrogenate a substantial portion of the aromatic hydrocarbons. The hydrotreated product then is catalytically dewaxed. After removal of low boiling components, the finished lubricating oil base stock has a viscosity of at least about 200 SUS at 100/sup 0/ F., a pour point of less than 20/sup 0/ F. and contains at least 50 volume % of naphthenic hydrocarbons, a maximum of about 40 volume % aromatic hydrocarbons, and a maximum of about 10 volume % paraffinic hydrocarbons.

Hettinger Jr., W. P.; Beck, H. W.; Rozman, G. J.; Turrill, F. H.

1985-05-07T23:59:59.000Z

403

Oil and Global Adjustment  

E-Print Network [OSTI]

The current account surplus of the world’s major oil exporting economies – defined as the IMF’s fuel-exporting emerging economies plus Norway – increased from $110b to about $500b between 2002 and 2006. 2 In 2006, the current account surplus of the Gulf

Brad Setser

2007-01-01T23:59:59.000Z

404

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents [OSTI]

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

405

A feasibility study of oil shale fired pulse combustors with applications to oil shale retorting. Final report  

SciTech Connect (OSTI)

The results of the experimental investigation performed to determine the feasibility of using pulverized Colorado oil shale to fuel a bench scale pulse combustor reveal that oil shale cannot sustain pulsations when used alone as fuel. Trace amounts of propane mixed with the oil shale enabled the pulsations, however. Up to 80% of the organic material in the oil shale was consumed when it was mixed with propane in the combustor. Beyond the feasibility objectives, the operating conditions of the combustor fuel with propane and mixtures of oil shale and propane were characterized with respect to pulsation amplitude and frequency and the internal combustor wall temperature over fuel lean and fuel rich stoichiometries. Maximum pressure excursions of 12.5 kPa were experienced in the combustor. Pulsation frequencies ranged from 50 to nearly 80 Hz. Cycle resolved laser Doppler anemometry velocities were measured at the tail pipe exit plane. Injecting inert mineral matter (limestone) into the pulse combustor while using propane fuel had only a slight effect on the pulsation frequency for the feed rates tested.

Morris, G.J.; Johnson, E.K.; Zhang, G.Q.; Roach, R.A.

1992-07-01T23:59:59.000Z

406

Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.  

E-Print Network [OSTI]

??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies… (more)

Rafiq, Shuddhasattwa

2009-01-01T23:59:59.000Z

407

Just oil? The distribution of environmental and social impacts of oil production and consumption  

E-Print Network [OSTI]

bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

O'Rourke, D; Connolly, S

2003-01-01T23:59:59.000Z

408

Unconventional Oil and Gas Resources  

SciTech Connect (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

409

Thermodynamics of clusterized matter  

E-Print Network [OSTI]

Thermodynamics of clusterized matter is studied in the framework of statistical models with non-interacting cluster degrees of freedom. At variance with the analytical Fisher model, exact Metropolis simulation results indicate that the transition from homogeneous to clusterized matter lies along the $\\rho=\\rho_0$ axis at all temperatures and the limiting point of the phase diagram is not a critical point even if the surface energy vanishes at this point. Sensitivity of the inferred phase diagram to the employed statistical framework in the case of finite systems is discussed by considering the grand-canonical and constant-pressure canonical ensembles. A Wigner-Seitz formalism in which the fragment charge is neutralized by an uniform electron distribution allows to build the phase diagram of neutron star matter.

Ad. R. Raduta; F. Gulminelli

2009-08-26T23:59:59.000Z

410

Shale oil recovery process  

DOE Patents [OSTI]

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

411

Oil shale retort apparatus  

DOE Patents [OSTI]

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

412

Oil Price Volatility  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing ReservoirsYear-Month WeekReservesYear Jan Feb0

413

Crude Oil Prices  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in Nonproducing Reservoirs (MillionExpectedChangesAdministration Cost and

414

Using simple models to describe oil production from unconventional reservoirs.  

E-Print Network [OSTI]

??Shale oil (tight oil) is oil trapped in low permeability shale or sandstone. Shale oil is a resource with great potential as it is heavily… (more)

Song, Dong Hee

2014-01-01T23:59:59.000Z

415

A naphthenic jet fuel produced from an Australian marine oil shale  

SciTech Connect (OSTI)

CSR Limited holds title to an Authority to Prospect covering the Cretaceous Julia Creek oil shale deposit, located in Queensland, Australia, approximately 600 km inland from the eastern seaboard. The shale is of marine origin, having been deposited as an anaerobic sediment in a restricted epicontinental sea. Algae are the predominant source of organic matter. Resources are estimated at 20 billion barrels of oil, approximately half in shale deposits suitable for open cut mining. Typical oil shale analyses are given. Average oil yields are 70 liters per ton. The oil has several deleterious characteristics which necessitate its upgrading at higher severity than is conventional at existing refineries. Heteroatom levels are in total significantly higher than values for petroleum crudes and the aromaticity and metal content of the oil add to its complexity and unusual nature. Two processing routes have been proposed for this oil - either the production of a syncrude by hydrostabilization of the whole oil, or alternatively, upgrading separate fractions to marketable fuels. Pilot plant studies were carried out to simulate refinery processes options. During these investigations, they were successful in the first Australian production of shale-derived jet and diesel synfuels which met all specifications. In this paper, they present details of the jet fuel production and describe its unusual naphthenic character.

Stephenson, L.C.; Muradian, A. (CSR Ltd., Sydney (Australia)); Fookes, C.J.R.; Atkins, A.R. (CSIRO Div. of Energy Chemistry, Sutherland (Australia)); Batts, B.D. (Macquarie Univ., North Ryde (Australia))

1987-04-01T23:59:59.000Z

416

Unconventional oil market assessment: ex situ oil shale.  

E-Print Network [OSTI]

??This thesis focused on exploring the economic limitations for the development of western oil shale. The analysis was developed by scaling a known process and… (more)

Castro-Dominguez, Bernardo

2010-01-01T23:59:59.000Z

417

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

418

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

419

BP Oil Spill November 10, 2011  

E-Print Network [OSTI]

BP Oil Spill Qiyam Tung November 10, 2011 1 Introduction Figure 1: BP Oil spill (source: http://thefoxisblack.com/2010/05/02/the-bp-oil-spill-in-the-gulf-of-mexico/) Last year, there was a major oil spill caused major techniques to minimize the threat once it happened. What kind of damage would an oil spill like this cause

Lega, Joceline

420

The twentieth oil shale symposium proceedings  

SciTech Connect (OSTI)

This book contains 20 selections. Some of the titles are: The technical contributions of John Ward Smith in oil shale research; Oil shale rubble fires: ignition and extinguishment; Fragmentation of eastern oil shale for in situ recovery; A study of thermal properties of Chinese oil shale; and Natural invasion of native plants on retorted oil shale.

Gary, J.H.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Matter & Energy Nanotechnology  

E-Print Network [OSTI]

to electrical energy in order to power electronic devices, these results point to an advantage in reducingSee Also: Matter & Energy Nanotechnology Materials Science Technology Energy Technology Civil of potential functionalities, ranging from single-nanowire lasers and LEDs to more complex devices

Espinosa, Horacio D.

422

Matter & Energy Wind Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

Shepelyansky, Dima

423

Matter & Energy Solar Energy  

E-Print Network [OSTI]

See Also: Matter & Energy Solar Energy· Electronics· Materials Science· Earth & Climate Energy and the Environment · Renewable Energy· Environmental Science · Reference Chemical compound· Semiconductor· Gallium at the University of Illinois, the future of solar energy just got brighter. Although silicon is the industry

Rogers, John A.

424

Matter & Energy Engineering  

E-Print Network [OSTI]

.com/products/seahawk/ Maryland Solar Panels-- Solar Installations from BGE HOME $0 Down For Big Energy Savings! www.bgehome.com/SolarLike 6 0 | More APA MLA See Also: Matter & Energy Petroleum Engineering Fossil Fuels Earth believe may be contributing to global warming. The UK government has just announced it is investing Ł1

Sóbester, András

425

Asymmetric condensed dark matter  

E-Print Network [OSTI]

We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate can be very light, $10^{-22}\\,{\\rm eV} \\lesssim m \\lesssim 10^2\\,{\\rm eV}$; the lower limit arises from constraints on small-scale structure formation, while the upper bound ensures that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of deco...

Aguirre, Anthony

2015-01-01T23:59:59.000Z

426

Dark matter axions `96  

SciTech Connect (OSTI)

This report discusses why axions have been postulated to exist, what cosmology implies about their presence as cold dark matter in the galactic halo, how axions might be detected in cavities wherein strong magnetic fields stimulate their conversion into photons, and relations between axions` energy spectra and galactic halos` properties.

Sikivie, P.

1996-12-31T23:59:59.000Z

427

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network [OSTI]

Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

428

Carbo-metallic oil conversion  

SciTech Connect (OSTI)

This patent describes a method for catalytically cracking reduced crude oil feeds comprising Conradson carbon in the presence of a premised catalyst temperature of about 760/sup 0/C (1400/sup 0/F). The cracking is carried out to form hydrocarbon products comprising gasoline, which method comprises maintaining the functions of oil feed, Conradson carbon, hydrogen in deposited carbonaceous material, and water addition to the oil feed to be converted in accordance with the relationship of operating parameters for a catalyst to oil ratio in the range of about 4.5 to 7.5.

Myers, G.D.

1987-11-24T23:59:59.000Z

429

Maps of crude oil futures  

SciTech Connect (OSTI)

The Crude Oil Futures presentation shows their concept of the quantity of oil possibly present (the combination of conventional demonstrated reserves plus undiscovered recoverable resources) within the areas outlined. The Crude Oil Futures is not as an exploration map but as a perspective on the distribution of world oil. The occurrence of oil is, after all, a function of particular geologic factors that are not everywhere present. Furthermore, large amounts of oil can occur only where the several necessary independent variables (geologic factors) combine optimally. In the Western Hemisphere, similar minimal crude oil futures are shown for North America and South America. This similarity is a reflection not of similar geology but rather of the fact that most of the oil has already been produced from North America, whereas South America as a whole (except for Venezuela) possesses a geology less likely to produce oil. In Europe, Africa, and Asia, four regions are dominant: the Middle East, Libya, North Sea, and west Siberia. Paleogeography and source rock distribution were keys to this distribution - the Middle East and Libya reflecting the Tethyan association, and the North Sea and west Siberia benefitting from the Late Jurassic marine transgression into geographic environments where ocean circulation was restricted by tectonic events.

Masters, C.D.

1986-05-01T23:59:59.000Z

430

Oil and macroeconomy in China.  

E-Print Network [OSTI]

??This paper uses two different approaches to investigate the relationship between the oil price shock and the macroeconomy in China. The first approach is the… (more)

Hu, Lin

2008-01-01T23:59:59.000Z

431

Oil and Gas Exploration (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding...

432

Solar retorting of oil shale  

DOE Patents [OSTI]

An apparatus and method for retorting oil shale using solar radiation. Oil shale is introduced into a first retorting chamber having a solar focus zone. There the oil shale is exposed to solar radiation and rapidly brought to a predetermined retorting temperature. Once the shale has reached this temperature, it is removed from the solar focus zone and transferred to a second retorting chamber where it is heated. In a second chamber, the oil shale is maintained at the retorting temperature, without direct exposure to solar radiation, until the retorting is complete.

Gregg, David W. (Morago, CA)

1983-01-01T23:59:59.000Z

433

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler 18 and is then delivered through the shell to the top of the motor rotor 24 where most of it is flung radially outwardly within the confined space provided by the cap 50 which channels the flow of most of the oil around the top of the stator 26 and then out to a multiplicity of holes 52 to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber 58 to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole 62 also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator 68 from which the suction gas passes by a confined path in pipe 66 to the suction plenum 64 and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum 64.

English, William A. (Murrysville, PA); Young, Robert R. (Murrysville, PA)

1985-01-01T23:59:59.000Z

434

Oil cooled, hermetic refrigerant compressor  

DOE Patents [OSTI]

A hermetic refrigerant compressor having an electric motor and compressor assembly in a hermetic shell is cooled by oil which is first cooled in an external cooler and is then delivered through the shell to the top of the motor rotor where most of it is flung radially outwardly within the confined space provided by the cap which channels the flow of most of the oil around the top of the stator and then out to a multiplicity of holes to flow down to the sump and provide further cooling of the motor and compressor. Part of the oil descends internally of the motor to the annular chamber to provide oil cooling of the lower part of the motor, with this oil exiting through vent hole also to the sump. Suction gas with entrained oil and liquid refrigerant therein is delivered to an oil separator from which the suction gas passes by a confined path in pipe to the suction plenum and the separated oil drops from the separator to the sump. By providing the oil cooling of the parts, the suction gas is not used for cooling purposes and accordingly increase in superheat is substantially avoided in the passage of the suction gas through the shell to the suction plenum. 3 figs.

English, W.A.; Young, R.R.

1985-05-14T23:59:59.000Z

435

The Search for Dark Matter  

ScienceCinema (OSTI)

More than 25 years ago, PNNL scientists began the first underground measurements searching for dark matter using specialized radiation detector technology. Dark matter is yet to be discovered says Physicist John L. Orrell.

Orrell, John

2014-07-24T23:59:59.000Z

436

NETL: Gasifier Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and...

437

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solution psia Pounds per square inch absolute PTFE Polytetrafluoroethylene SCC Stress corrosion cracking SCE Saturated calomel electrode SSC Sulfide stress cracking TiDP Titanium...

438

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasification Systems News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program Plan Project...

439

NETL SOFC: Pressurized Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(HHV) with greater than 97 percent carbon capture, near-zero emissions, and low water usage. The Pressurized Systems key technology is developing a deeper understanding on the...

440

NETL: Feed Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

focuses on innovative technology to allow increased use of lower cost, abundant low-rank coals in dry feeding of high-pressure gasifiers, and co-feeding of coal with...

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that large-scale CO 2 storage is safe and effective requires predicting the long-term integrity of storage sites as well as demonstrating the comprehensive consideration of...

442

NETL: Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and increase the efficiency of producing syngas. Gasifipedia | Feed Systems | Gasifier Optimization | Syngas Processing | Systems Analyses | Gasification Plant Databases...

443

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ground motion is usually well below a level that poses a risk to surface structures, CO 2 storage operations aim to avoid any conditions that could cause felt ground-motion events....

444

NETL: Coal Gasification Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions for

445

NETL: Energy Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions forEnergy Systems Program

446

NETL: Key Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions forEnergy Systems

447

NETL: Natural Gas Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions forEnergy SystemsNatural

448

NETL: Vacancy Announcements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscaleLogos NERSCJeffreyKey Actions forEnergySolid Oxide

449

NETL Business Opportunities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N A L

450

NETL Contact Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N A LNETL

451

NETL: Available Property  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O N A

452

NETL: Onsite Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O NOil &

453

NETL: Tech Transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O NOil

454

NETL: Unsolicited Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries & FuelTechnologies |T I O NOilUnsolicited

455

NETL Focused Standards List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ. of34.1-1#

456

NETL Focused Standards List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ. of34.1-1#4/4/12

457

NETL Focused Standards List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ. of34.1-1#4/4/121/6/14

458

NETL Focused Standards List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.

459

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519 Univ.8ElectricNETLBituminous

460

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519Localized Corrosion and

462

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519Localized Corrosion

463

NETL Report format template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519Localized

464

NETL Researchers Receive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA Comparison95519LocalizedWaterTerry Jordan1,

465

NETL SOFC: Pressurized Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Opticalhttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gifA

466

European Market Study for BioOil (Pyrolysis Oil)  

E-Print Network [OSTI]

European Market Study for BioOil (Pyrolysis Oil) Dec 15, 2006 Doug Bradley President Climate Change Solutions National Team Leader- IEA Bioenergy Task 40- Bio-trade 402 Third Avenue ·Ottawa, Ontario ·Canada K. Market Determining Factors 5. EU Country Perspectives 6. Potential European Markets 6.1. Pulp Mill Lime

467

Normal matter storage of antiprotons  

SciTech Connect (OSTI)

Various simple issues connected with the possible storage of anti p in relative proximity to normal matter are discussed. Although equilibrium storage looks to be impossible, condensed matter systems are sufficiently rich and controllable that nonequilibrium storage is well worth pursuing. Experiments to elucidate the anti p interactions with normal matter are suggested. 32 refs.

Campbell, L.J.

1987-01-01T23:59:59.000Z

468

dark matter dark energy inflation  

E-Print Network [OSTI]

theory dark matter dark energy inflation The National Science Foundation The Kavli Foundation NSF Site Review November 28-29, 2005 #12;dark matter dark energy inflation NSF Site Visit ­ November 28 Gravitation initial conditions beyond single-field slow roll #12;dark matter dark energy inflation NSF Site

Hu, Wayne

469

Dark Energy and Dark Matter  

E-Print Network [OSTI]

A brief overview of our current understanding of abundance and properties of dark energy and dark matter is presented. A more focused discussion of supersymmetric dark matter follows. Included is a frequentist approach to the supersymmetric parameter space and consequences for the direct detection of dark matter.

Keith A. Olive

2010-01-27T23:59:59.000Z

470

Oil burner nozzle  

DOE Patents [OSTI]

An oil burner nozzle for use with liquid fuels and solid-containing liquid fuels. The nozzle comprises a fuel-carrying pipe, a barrel concentrically disposed about the pipe, and an outer sleeve retaining member for the barrel. An atomizing vapor passes along an axial passageway in the barrel, through a bore in the barrel and then along the outer surface of the front portion of the barrel. The atomizing vapor is directed by the outer sleeve across the path of the fuel as it emerges from the barrel. The fuel is atomized and may then be ignited.

Wright, Donald G. (Rockville Center, NY)

1982-01-01T23:59:59.000Z

471

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil price

472

Residential heating oil price  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »Submitter A B CAdministrationheating oil

473

fuel_oil.pdf  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:short version)ec 1827 TableB (11-19-10)Fuel Oil

474

Crude Oil Domestic Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries0 0 0 0

475

Crude Oil Production  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompanyexcluding taxes)Countries08,909

476

Residual Fuel Oil  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary 2013 (Thousand

477

Oil resources: the key to prosperity or to poverty? : Influence of oil price shocks on spending of oil revenues.  

E-Print Network [OSTI]

??Abundant natural resources, in particular oil, play an important role in the economics of many countries. The oil price shocks that have been happening continuously… (more)

Selivanova, Olga

2008-01-01T23:59:59.000Z

478

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

479

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

temperature, type of shale and oil content of shale iscontent of the shale, and shale oil content of the rock cantemperatures. Lean and Rich Shale Oil shales vary in their

Bellman Jr., R.

2012-01-01T23:59:59.000Z

480

Membrane degumming of crude vegetable oil  

E-Print Network [OSTI]

Crude vegetable oils contain various minor substances like phospholipids, coloring pigments, and free fatty acids (FFA) that may affect quality of the oil. Reduction of energy costs and waste disposal are major concerns for many oil refiners who...

Lin, Lan

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil matters netl" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Corrosion of Oil Shale Retort Component Materials," LBL-

Bellman Jr., R.

2012-01-01T23:59:59.000Z

482

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

483

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

Elevated Temperature Corrosion of Oil Shale Retort Componentin In-Situ Oil Shale Retorts," NACE Corrosion 80, Paper No.6-10, 1981 CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A.

Bellman Jr., R.

2012-01-01T23:59:59.000Z

484

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

is in intimate contact with oil and shale during In in-situin contact with the oil and shale. These methods and othersWaters from Green River Oil Shale," Chem. and Ind. , 1. ,

Fox, J.P.

2010-01-01T23:59:59.000Z

485

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network [OSTI]

Waters from Green River Oil Shale," Chem. and Ind. , 1. ,Effluents from In-Situ oil Shale Processing," in Proceedingsin the Treatment of Oil Shale Retort Waters," in Proceedings

Fox, J.P.

2010-01-01T23:59:59.000Z

486

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS  

E-Print Network [OSTI]

CORROSION OF METALS IN OIL SHALE ENVIRONMENTS A. Levy and R.of Metals in In-Situ Oil Shale Retorts," NACE Corrosion 80,Elevated Temperature Corrosion of Oil Shale Retort Component

Bellman Jr., R.

2012-01-01T23:59:59.000Z

487

Crude oil and crude oil derivatives transactions by oil and gas producers.  

E-Print Network [OSTI]

??This study attempts to resolve two important issues. First, it investigates the diversification benefit of crude oil for equities. Second, it examines whether or not… (more)

Xu, He

2007-01-01T23:59:59.000Z

488

Crude oil and finished fuel storage stability: An annotated review  

SciTech Connect (OSTI)

A state-of-the-art review and assessment of storage effects on crude oil and product quality was undertaken through a literature search by computer accessing several data base sources. Pertinent citations from that literature search are tabulated for the years 1980 to the present. This 1990 revision supplements earlier reviews by Brinkman and others which covered stability publications through 1979 and an update in 1983 by Goetzinger and others that covered the period 1952--1982. For purposes of organization, citations are listed in the current revision chronologically starting with the earliest 1980 publications. The citations have also been divided according to primary subject matter. Consequently 11 sections appear including: alternate fuels, gasoline, distillate fuel, jet fuel, residual fuel, crude oil, biodegradation, analyses, reaction mechanisms, containment, and handling and storage. Each section contains a brief narrative followed by all the citations for that category.

Whisman, M.L.; Anderson, R.P.; Woodward, P.W.; Giles, H.N.

1991-01-01T23:59:59.000Z

489

www.fightbac.o anola oil is  

E-Print Network [OSTI]

Ca co Th Ca "Canola" c which is Addition Ca he Ca in Th ca Ca m C know? anola oil is ooking oils. he average anola oil is comes fro s another nal Inform anola oil is eart healthy anola oil is n the world. he part of th anola meal anola oil ca many crop va ano the lowest . canola see a good sou m

490

Constraining Decaying Dark Matter  

E-Print Network [OSTI]

We revisited the decaying dark matter (DDM) model, in which one collisionless particle decays early into two collisionless particles, that are potentially dark matter particles today. The effect of DDM will be manifested in the cosmic microwave background (CMB) and structure formation. With a systematic modification of CMB calculation tool \\texttt{camb}, we can numerically calculated this effect, and compare it to observations. Further Markov Chain Monte Carlo \\texttt{cosmomc} runnings update the constraints in that model: the free streaming length $\\lambda_{FS}\\lesssim0.5$Mpc for nonrelativistic decay, and $((M_{DDM}/keV) Y)^2 (T_d/yr)\\lesssim5\\times10^{-5}$ for relativistic decay.

Ran Huo

2011-07-13T23:59:59.000Z

491

Process oil manufacturing process  

SciTech Connect (OSTI)

A method is described for producing a naphthenic process oil having reduced sulfur, nitrogen and polynuclear aromatics contents from a naphthenic feed containing same and having an atmospheric boiling range of about 650/sup 0/ to about 1200/sup 0/F. comprising: A. passing the feed into a first hydrotreating stage having a hydrotreating catalyst therein, the stage maintained at a temperature of about 600/sup 0/ to about 750/sup 0/F. and at a hydrogen partial pressure of about 400 to about 1500 psig, to convert at least a portion of the sulfur to hydrogen sulfide and the nitrogen to ammonia; B. passing the hydrotreated feed from the first hydrotreating stage in an intermediate stripping stage wherein hydrogen sulfide, ammonia, or both is removed; C. passing the hydrotreated feed from the intermediate stage into a second hydrotreating stage having therein a hydrotreating catalyst selected from the group consisting of nickel-molybdenum, cobalt-molybdenum, nickel-tungsten and mixtures thereof, the second hydrotreating stage maintained at a temperature lower than that of the first hydrotreating stage and at a hydrogen partial pressure ranging between about 400 and about 1,500 psig; D. monitoring the polynuclear aromatics content, the degree of saturation, or both of the product exiting the second hydrotreating stage; and, E. adjusting the temperature in the second hydrotreating stage to keep the polynuclear aromatics content, the degree of saturation, or both below a limit suitable for process oil.

Corman, B.G.; Korbach, P.F.; Webber, K.M.

1989-01-31T23:59:59.000Z

492

Oil market in international and Norwegian perspectives.  

E-Print Network [OSTI]

??Crude oil is the most important energy source in global perspective. About 35 percent of the world’s primary energy consumption is supplied by oil, followed… (more)

Singsaas, Julia Nazyrova

2009-01-01T23:59:59.000Z

493

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate...

494

Optimize carbon dioxide sequestration, enhance oil recovery  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optimize carbon dioxide sequestration, enhance oil recovery The simulation provides an important approach to estimate the potential of storing carbon dioxide in depleted oil fields...

495

Process for oil shale retorting  

DOE Patents [OSTI]

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

496

e n e r g y Unconventional Oil Production  

E-Print Network [OSTI]

Highly variable oil prices and increasing world demand for oil have led producers to look for alternative sources of transportation fuel. Two popular alternatives are oil sands (aka tar sands) and oil shale. However, obtaining usable oil from oil sands or oil shale is more capital-intensive and more expensive than obtaining oil from conventional reserves. At what price of oil do these alternatives become cost-effective? Oil Sands Oil sands are a mixture of sand, water, clay and heavy, viscous oil called bitumen. The largest known deposits of oil sands are in Alberta, Canada, and the Orinoco Oil

Stuck In A Rock; A Hard Place; M. Engemann; Michael T. Owyang

497

The Politics of Mexico’s Oil Monopoly  

E-Print Network [OSTI]

2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

Huizar, Richard

2008-01-01T23:59:59.000Z

498

Separation of oil-soluble sulfonates from sulfonated oils  

SciTech Connect (OSTI)

The authors aimed at developing a method for the complete recovery, from oil solutions, of oil-water-soluble sulfonates meeting the specifications, along with oils at least 99% pure, suitable for further processing. As the starting material the authors used an experimental batch of sulfonated and neutralized distillate lube stocks produced by selective solvent treatment. In determining the optimal extraction parameters, the authors investigated the influence of the solvent to original feed (S:F) weight ratio and the influence of the isopropyl alcohol (IPA) concentration on the composition of the sulfonates and oils recovered at 60/sup 0/C with a settling time of 2 h. The optimal conditions for two-stage extraction were found through a study of the influence of temperature and settling time on the compositions of the sulfonates and oils with S:F = 1.2:1 and with an IPA concentration of 40%. The process technology for two-stage recovery of oils and sulfonates from oil solutions was worked out in a pilot unit.

Ul'yanenko, V.I.; Yur'eva, N.P.; Sergeev, V.P.

1987-01-01T23:59:59.000Z

499

RESEARCH OIL RECOVERY MECHANISMS IN HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The United States continues to rely heavily on petroleum fossil fuels as a primary energy source, while domestic reserves dwindle. However, so-called heavy oil (10 to 20{sup o}API) remains an underutilized resource of tremendous potential. Heavy oils are much more viscous than conventional oils. As a result, they are difficult to produce with conventional recovery methods such as pressure depletion and water injection. Thermal recovery is especially important for this class of reservoirs because adding heat, usually via steam injection, generally reduces oil viscosity dramatically. This improves displacement efficiency. The research described here was directed toward improved understanding of thermal and heavy-oil production mechanisms and is categorized into: (1) flow and rock properties; (2) in-situ combustion; (3) additives to improve mobility control; (4) reservoir definition; and (5) support services. The scope of activities extended over a three-year period. Significant work was accomplished in the area of flow properties of steam, water, and oil in consolidated and unconsolidated porous media, transport in fractured porous media, foam generation and flow in homogeneous and heterogeneous porous media, the effects of displacement pattern geometry and mobility ratio on oil recovery, and analytical representation of water influx. Significant results are described.

Anthony R. Kovscek; William E. Brigham

1999-06-01T23:59:59.000Z

500

Energy Matters Mailbag | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

stocks, availability and maturity of the conversion technologies, and the world crude oil price. Since most of the crude oil is converted into transportation fuels, the...