Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel oil and kerosene sales 1995  

Science Conference Proceedings (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

2

Fuel oil and kerosene sales 1992  

SciTech Connect

This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1993-10-29T23:59:59.000Z

3

Fuel oil and kerosene sales 1993  

Science Conference Proceedings (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

4

Fuel Oil and Kerosene Sales 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil and Kerosene Sales Fuel Oil and Kerosene Sales 2012 November 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Fuel Oil and Kerosene Sales 2012 1

5

Fuel oil and kerosene sales, 1990  

Science Conference Proceedings (OSTI)

Sales data is presented for kerosene and fuel oils. This is the second year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. 4 figs., 24 tabs.

Not Available

1991-10-10T23:59:59.000Z

6

Fuel oil and kerosene sales 1994  

SciTech Connect

This publication contains the 1994 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the sixth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA)for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1994 edition marks the 11th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Distillate and residual fuel oil sales continued to move in opposite directions during 1994. Distillate sales rose for the third year in a row, due to a growing economy. Residual fuel oil sales, on the other hand, declined for the sixth year in a row, due to competitive natural gas prices, and a warmer heating season than in 1993. Distillate fuel oil sales increased 4.4 percent while residual fuel oil sales declined 1.6 percent. Kerosene sales decreased 1.4 percent in 1994.

NONE

1995-09-27T23:59:59.000Z

7

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Fuel Oil and Kerosene Sales 2011 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 ...

8

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

9

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

10

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT  

U.S. Energy Information Administration (EIA)

Version No.: 2013.01. FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT REFERENCE YEAR 2012 ; This report is ; ... 2012 . 10. Type of Report

11

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

12

Malaysia Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 1 : 1 : 1: 2004-2012: Special Naphthas: 0: 0: 0: 0: 0: 0: 2004-2012: Residual Fuel Oil: 0: 1: 2-3-2: 0: 1994-2012: Naphtha for Petrochem ...

13

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2012: Special Naphthas: 0: 0: 0: 0-3: 0: 2004-2013: Residual Fuel Oil-232-100-184-102-69-112: 2004-2013: Naphtha for Petrochem ...

14

Household Fuel Oil or Kerosene Usage Form  

U.S. Energy Information Administration (EIA)

Contractor’s Street Address . Contractor’s City, State, and ZIP Code . ... is a light distillate fuel oil intended for use in vaporizing pot-type burners.

15

Sales of Fuel Oil and Kerosene in 2009 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Crop Production 2009 Summary, January 2010, page 76. Energy Information Administration Fuel Oil and Kerosene Sales 2009 vii drilling rigs in operation, an important ...

16

Lithuania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0: 2012-2012: Special Naphthas : 0 : 0: 2008-2012: Residual Fuel Oil : 1: 0 : 2010-2011: Waxes : 0: 0: 0: 0 : 2008-2011: Asphalt and Road Oil ...

17

Unfinished Oils - Naphthas and Lighter Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

18

Georgia, Republic of Exports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

Distillate Fuel Oil : 0 : 2011-2011: Greater than 15 to 500 ppm Sulfur : 0 : 2011-2011: Kerosene-Type Jet Fuel : 475: 1: 2011-2012: Special Naphthas : 2 : 2005-2008:

19

,"U.S. Total Distillate Fuel Oil and Kerosene Sales by End Use...  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

20

Guyana Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0 : 2011-2011: Special Naphthas: 0: 0 : 0: 0: 0: 2004-2012: Residual Fuel Oil : 0: 0: 0: 0: 0: 2004-2012: Waxes: 0: 0 : 0: 0: 2004-2012 ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 4: 1: 1: 1 : 0: 2004-2012: Special Naphthas-1-1: 0-1: 0-1: 2004-2012: Residual Fuel Oil-59-67-102-117-112-103: 2004-2012: Naphtha for ...

22

Bahamas Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel-1-1-2-2-2-2: 2004-2012: Special Naphthas: 0: 0: 0: 0-1-2: 2004-2012: Residual Fuel Oil-20-12-17-23-14-11: 1993-2012: Naphtha for Petrochem ...

23

Lower Atlantic (PADD 1C) Distillate Fuel Oil and Kerosene ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 300,889: 274,739: 263,252: 232,429: 230,287: 254,322: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 275,489: ...

24

California Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 309,249: 232,151: 190,082: 225,123: 257,297: 241,967: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 101,932: ...

25

Rocky Mountain (PADD4) Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 262,644: 222,054: 212,571: 228,200: 245,446: 214,160: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 27: 26: 19: ...

26

Kentucky Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 170,042: 94,124: 48,002: 42,101: 67,347: 61,840: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 91,516: 104,387: ...

27

Pennsylvania Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 118,670: 113,851: 90,800: 124,258: 146,291: 140,663: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 25,735: ...

28

Georgia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 78,927: 69,710: 62,072: 63,770: 71,374: 63,902: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 14,016: 10,831: ...

29

Illinois Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 40,116: 51,287: 55,322: 72,188: 58,526: 63,808: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 71,805: 101,851: ...

30

Ohio Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 333,069: 316,926: 206,134: 179,048: 203,135: 175,258: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,122: ...

31

Rocky Mountain (PADD 4) Unfinished Oils - Kerosene and Light ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

32

Connecticut Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,674: 301,591: 272,255: 271,852: 274,578: 274,507: 1984-2012: ...

33

South Carolina Adjusted Distillate Fuel Oil and Kerosene Sales ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 751,994: 695,077: 654,296: 726,647: 725,148: 655,638: 1984-2012: ...

34

Maryland Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 606,247: 548,583: 540,590: 579,203: 540,843: 531,683: 1984-2012: ...

35

Nebraska Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 446,825: 433,745: 461,938: 639,618: 603,268: 584,362: 1984-2012: ...

36

Massachusetts Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 487,861: 463,886: 443,620: 445,626: 460,154: 444,532: 1984-2012: ...

37

Michigan Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 970,806: 891,487: 819,086: 864,049: 854,644: 877,692: 1984-2012: ...

38

Minnesota Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 804,699: 761,187: 633,806: 665,652: 704,971: 746,974: 1984-2012: ...

39

District of Columbia Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 10,721: 15,894: 11,949: 13,216: 15,149: 15,321: 1984-2012: Residual ...

40

Minnesota Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 817,786: 767,218: 640,572: 678,530: 713,572: 763,303: 1984-2012: ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

New Jersey Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,088,505: 978,515: 760,035: 831,955: 952,930: 837,191: 1984-2012: ...

42

Wisconsin Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 788,665: 798,348: 703,583: 738,953: 719,417: 780,145: 1984-2012: ...

43

Connecticut Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 314,309: 300,255: 272,598: 271,767: 274,640: 273,827: 1984-2012: ...

44

Kansas Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 581,898: 610,088: 588,362: 554,334: 548,183: 573,992: 1984-2012: ...

45

Michigan Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 964,966: 888,432: 814,460: 855,592: 850,681: 871,756: 1984-2012: ...

46

Delaware Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 68,223: 61,302: 57,382: 56,676: 57,720: 57,230: 1984-2012: Residual ...

47

Nebraska Adjusted Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 448,098: 435,444: 472,303: 689,579: 627,110: 613,232: 1984-2012: ...

48

Utah Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 525,714: 470,714: 420,706: 426,584: 508,266: 486,456: 1984-2012: ...

49

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Distillate Fuel Oil and Kerosene Sales by End Use" Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Residential",4,"Annual",2012,"6/30/1984" ,"Data 2","Commercial",10,"Annual",2012,"6/30/1984" ,"Data 3","Industrial",9,"Annual",2012,"6/30/1984" ,"Data 4","Farm",4,"Annual",2012,"6/30/1984" ,"Data 5","Electric Power",2,"Annual",2012,"6/30/1984" ,"Data 6","Oil Company",2,"Annual",2012,"6/30/1984"

50

Process for removing polymer-forming impurities from naphtha fraction  

DOE Patents (OSTI)

Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment. 2 figs.

Kowalczyk, D.C.; Bricklemyer, B.A.; Svoboda, J.J.

1983-12-27T23:59:59.000Z

51

Process for removing polymer-forming impurities from naphtha fraction  

DOE Patents (OSTI)

Polymer precursor materials are vaporized without polymerization or are removed from a raw naphtha fraction by passing the raw naphtha to a vaporization zone (24) and vaporizing the naphtha in the presence of a wash oil while stripping with hot hydrogen to prevent polymer deposits in the equipment.

Kowalczyk, Dennis C. (Pittsburgh, PA); Bricklemyer, Bruce A. (Avonmore, PA); Svoboda, Joseph J. (Pittsburgh, PA)

1983-01-01T23:59:59.000Z

52

Singapore Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2012-2012: Special Naphthas: 0: 0: 0: 0: 0: 108: 1993-2013: Residual Fuel Oil: 3,227: 7,198: 3,010: 5,718: 3,067: 2,153: 1993-2013: Waxes: 0 ...

53

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

54

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

55

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

56

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

57

Coal liquefaction process with increased naphtha yields  

DOE Patents (OSTI)

An improved process for liquefying solid carbonaceous materials wherein the solid carbonaceous material is slurried with a suitable solvent and then subjected to liquefaction at elevated temperature and pressure to produce a normally gaseous product, a normally liquid product and a normally solid product. The normally liquid product is further separated into a naphtha boiling range product, a solvent boiling range product and a vacuum gas-oil boiling range product. At least a portion of the solvent boiling-range product and the vacuum gas-oil boiling range product are then combined and passed to a hydrotreater where the mixture is hydrotreated at relatively severe hydrotreating conditions and the liquid product from the hydrotreater then passed to a catalytic cracker. In the catalytic cracker, the hydrotreater effluent is converted partially to a naphtha boiling range product and to a solvent boiling range product. The naphtha boiling range product is added to the naphtha boiling range product from coal liquefaction to thereby significantly increase the production of naphtha boiling range materials. At least a portion of the solvent boiling range product, on the other hand, is separately hydrogenated and used as solvent for the liquefaction. Use of this material as at least a portion of the solvent significantly reduces the amount of saturated materials in said solvent.

Ryan, Daniel F. (Friendswood, TX)

1986-01-01T23:59:59.000Z

58

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

59

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

60

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

62

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

63

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

64

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

65

Gulf Coast (PADD 3) Distillate Fuel Oil and Kerosene Sales by ...  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 699,882: 631,796: 542,036: 573,037: 694,053: 729,109: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 613,864: ...

66

New York Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 63,226: 44,510: 35,307: 33,709: 42,254: 35,237: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 12,339: 10,814: ...

67

Florida Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 71,962: 55,219: 35,537: 41,430: 47,283: 61,059: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 140,493: 153,438: ...

68

West Virginia Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Railroad : Distillate Fuel Oil: 15,766: 15,416: 10,143: 11,650: 12,711: 10,456: 1984-2012: Vessel Bunkering : Distillate Fuel Oil: 45,429: 28,568: 99: ...

69

Alabama Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 979,566: 854,244: 791,004: 859,486: 917,892: 871,796: 1984-2012: ...

70

Arizona Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 877,174: 799,123: 746,952: 751,025: 767,565: 761,995: 1984-2012: ...

71

Rhode Island Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 77,882: 61,856: 59,789: 65,067: 65,295: 62,041: 1984-2012: Residual ...

72

South Carolina Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 752,984: 699,864: 653,641: 726,889: 724,974: 656,396: 1984-2012: ...

73

Utah Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 512,415: 464,448: 420,807: 427,293: 507,559: 486,956: 1984-2012: ...

74

New Jersey Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

Total Transportation (Railroad, Vessel Bunkering, On-Highway) Distillate Fuel Oil: 1,091,896: 991,981: 755,753: 832,806: 951,803: 842,035: 1984-2012: ...

75

Multizone naphtha reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naphtha hydrocarbon at reforming conditions having at least two segregated catalyst zones. The improvement comprises contacting the hydrocarbon in a first zone with a first catalyst comprising tin and at least one platinum group metal deposited on a solid catalyst support followed by contacting in a second zone with a second catalyst comprising at least one metal selected from the group consisting of platinum group metals deposited on a solid catalyst support.

Fleming, B.

1987-05-05T23:59:59.000Z

76

Total Crude Oil and Petroleum Products Imports by Processing Area  

Gasoline and Diesel Fuel Update (EIA)

Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Total Crude Oil and Petroleum Products Crude Oil Total Products Other Liquids Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History East Coast (PADD 1) 62,196 60,122 54,018 52,671 54,668 52,999 1981-2013 Midwest (PADD 2) 54,439 53,849 53,638 60,984 63,482 56,972 1981-2013 Gulf Coast (PADD 3) 141,142 150,846 138,204 149,059 141,421 138,656 1981-2013

77

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

78

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

79

Total Refinery Net Input of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids Pentanes Plus Liquefied Petroleum Gases Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Alaskan Crude Oil Receipts Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

80

Refinery & Blenders Net Input of Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Crude Oil & Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Normal Butane Isobutane Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Hydrogen Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components (net) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

82

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

83

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

84

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

85

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

86

www.eia.gov  

U.S. Energy Information Administration (EIA)

Supply includes production of crude oil ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... Non-Farm Employment EMNFPUS ...

87

www.eia.gov  

U.S. Energy Information Administration (EIA)

Supply includes production of crude oil ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... Biofuels and Biomass REICBUS OWICBUS

88

www.eia.gov  

U.S. Energy Information Administration (EIA)

Crude Oil Supply Other Supply ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

89

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

90

Special Naphthas Imports from Colombia  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

91

Selective hydrocracking of light naphtha cuts  

Science Conference Proceedings (OSTI)

For the production of high-quality automotive gasolines, technology has been developed for a combined ''isoreforming'' process, in which hydrocracking of a heavy straight-run naphtha cut to give a high-octane component with an octane number of 84-86 (MM) is combined with catalytic reforming of the residual fraction from hydrocracking. The ''isoreforming'' technology can be used to produce AI-93 automotive gasolines with aromatic hydrocarbon contents of 45-49% by weight, without TEL, in yields of 78-82% by weight on the original feed. The authors also discuss a catalytic upgrading process for light straight-run naphtha distillates or raffinates from catalytic reforming. The influence of the depth of reaction in hydrocracking n-paraffins in the straight-run 62-105 degrees C cut on the yield of the C5-EP cut and its octane number is investigated.

Koslov, I.T.; Khavkin, V.A.; Nefedov, B.K.

1986-03-01T23:59:59.000Z

92

Refinery Yield of Kerosene  

U.S. Energy Information Administration (EIA)

Texas Gulf Coast : 1993-2012: La. Gulf Coast-0.1: 0.3: 0.2: 0.1: 0: 0.0: 1993-2013: N. La., Ark: 0.0 : ... Based on crude oil input and net reruns of ...

93

Distillate Fuel Oil Sales for Residential Use  

Annual Energy Outlook 2012 (EIA)

End Use Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate...

94

Utah Kerosene Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene Sales for Resale Refiner Sales Volumes; Utah Kerosene Refiner Sales Volumes; Utah Sales for Resale Refiner Sales Volumes of Aviation Fuels ...

95

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

96

Idaho Kerosene Wholesale/Resale Volume by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene Refiner Sales Volumes; Idaho Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. ...

97

Naphtha for Petrochemical Feedstock Use Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

98

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils...  

Gasoline and Diesel Fuel Update (EIA)

50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State (Thousand Gallons per Day) Geographic Area Month Kerosene No. 1 Distillate No. 2...

99

Supply, disposition, and stocks of all oils by P. A. D. districts and imports into the United States, by country, final 1978  

Science Conference Proceedings (OSTI)

Final annual US supply, disposition, and stocks are detailed for: all oils, petroleum products, crude oil, selected natural gas plant liquids, and net unfinished oils for each of five P.A.D. (Petroleum Administration for Defense) Districts for 1978. Petroleum products include motor gasoline, aviation gasoline, jet engine fuels, ethane, liquefied gases, kerosene, distillate fuel oil, residual fuel oil, petrochemical feedstocks, naphthas, lubricants, wax, coke, asphalt, and other products. Also given is the percentage of refinery yields based on crude and net unfinished oil rerun. Imports of petroleum products and of crude oil into the United States are shown by country and continent, with US totals and subtotals for each P.A.D. District. OPEC (Organization of Petroleum Exporting Countries) members are indicated. Data are reported in barrels per day. An accompanying map indicates the US P.A.D. Districts. A brief narrative discusses salient statistics. Prior to the 1978 annual issue, this report was entitled Supply Demand, and Stocks of All Oils by P.A.D. Districts and Imports into the United States, by Country. 1 figure, 6 tables.

Not Available

1980-01-07T23:59:59.000Z

100

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Conversion of light naphthas over sulfided nickle erionite  

Science Conference Proceedings (OSTI)

A natural erionite ore has been exchanged with ammonium and nickel salts to yield a Ni/H erionite catalyst that is active and stable for selectively hydrocracking only the n-paraffins from light straight-run naphthas. The primary product is a C[sup 5+] liquid that is 15-20 octane numbers higher than the feed and a propane- and butane-rich gas by-product. Results from a 110-day pilot plant run demonstrated that a catalyst life of more than 1 year should be possible. Naphthenes, aromatics, and isoparaffins are neither produced nor consumed in this process, resulting in a C[sup 5+] liquid product that is lower in benzene and total aromatics than attainable by catalytic reforming of these feeds. Although no further work is planned with this catalyst, a naphtha-upgrading process based on shape-selective zeolitic hydrocracking could provide an attractive alternative to catalytic reforming or isomerization for these hard to upgrade naphthas. It should be particularly attractive in areas where the by-product propane and butane have good value.

Heck, R.H.; Chen, Nai Y. (Mobil Research and Development Corp., Princeton, NJ (United States). Central Research Laboratory)

1993-06-01T23:59:59.000Z

102

Table 41. Refiner Volumes of Aviation Fuels, Kerosene, No. 1 ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene No. 1 Distillate Propane ... 51.4 75.5 6,451.9 3,309.5 W 476.2 ...

103

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

104

Table 5. Kerosene Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of kerosene used for water heating and appliances is included in "Kerosene" under "All Uses." (*) ...

105

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

106

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

107

Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration 13 Fuel Oil and Kerosene Sales 2000 Table 4. Sales of Distillate Fuel Oil by End Use, 1999 and 2000 (Thousand Gallons)

108

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

109

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

110

Advances in the chemistry of catalytic reforming of naphtha  

Science Conference Proceedings (OSTI)

Catalytic reforming of naphtha remains the key process for production of high octane gasoline and aromatics (BTX) which are used as petrochemicals feedstocks. The increased demand for these products has led refiners to investigate ways for improving the performance of the reforming process and its catalysts. Moreover, in order to comply with environmental restrictions, the reduction in lead content would require further increase in the reformate octane number. In response to these requirements, refiners and catalyst manufacturers are examining the role of the catalysts in improving the selectivity to aromatics and in octane enhancement. By understanding the chemistry and the mechanism of the reforming process, higher performance catalysts with longer life on stream and lower cost can be developed. This review covers recent developments in reforming catalysts, process reaction chemistry and mechanism. It also highlights prospective areas of research.

Anabtawi, J.A.; Redwan, D.S.; Al-Jarallah, A.M.; Aitani, A.M. (Petroleum and Gas Technology Div., Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (SA))

1991-01-01T23:59:59.000Z

111

Adjusted Distillate Fuel Oil Sales for Residential Use  

U.S. Energy Information Administration (EIA) Indexed Site

End Use/ Product: Residential - Distillate Fuel Oil Residential - No. 1 Residential - No. 2 Residential - Kerosene Commercial - Distillate Fuel Oil Commercial - No. 1 Distillate Commercial - No. 2 Distillate Commercial - No. 2 Fuel Oil Commercial - Ultra Low Sulfur Diesel Commercial - Low Sulfur Diesel Commercial - High Sulfur Diesel Commercial - No. 4 Fuel Oil Commercial - Residual Fuel Oil Commercial - Kerosene Industrial - Distillate Fuel Oil Industrial - No. 1 Distillate Industrial - No. 2 Distillate Industrial - No. 2 Fuel Oil Industrial - Low Sulfur Diesel Industrial - High Sulfur Diesel Industrial - No. 4 Fuel Oil Industrial - Residual Fuel Oil Industrial - Kerosene Farm - Distillate Fuel Oil Farm - Diesel Farm - Other Distillate Farm - Kerosene Electric Power - Distillate Fuel Oil Electric Power - Residual Fuel Oil Oil Company Use - Distillate Fuel Oil Oil Company Use - Residual Fuel Oil Total Transportation - Distillate Fuel Oil Total Transportation - Residual Fuel Oil Railroad Use - Distillate Fuel Oil Vessel Bunkering - Distillate Fuel Oil Vessel Bunkering - Residual Fuel Oil On-Highway - No. 2 Diesel Military - Distillate Fuel Oil Military - Diesel Military - Other Distillate Military - Residual Fuel Oil Off-Highway - Distillate Fuel Oil Off-Highway - Distillate F.O., Construction Off-Highway - Distillate F.O., Non-Construction All Other - Distillate Fuel Oil All Other - Residual Fuel Oil All Other - Kerosene Period:

112

Arkansas Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Arkansas Kerosene-Type Jet Fuel Refiner Sales Volumes; Arkansas Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 ...

113

Missouri Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes; Missouri Sales for Resale ...

114

New Mexico Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; New Mexico Kerosene-Type Jet Fuel Refiner Sales Volumes; New Mexico Sales for Resale ...

115

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

116

New Jersey No. 2 Fuel Oil Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: New Jersey No. 2 Fuel Oil Refiner Sales Volumes; New Jersey Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

117

State of Maine residential heating oil survey 2001-02 season summary [SHOPP  

Science Conference Proceedings (OSTI)

This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

Elder, Betsy

2002-05-22T23:59:59.000Z

118

Michigan Kerosene Adj Sales/Deliveries to Residential Consumers ...  

U.S. Energy Information Administration (EIA)

Michigan Kerosene Adj Sales/Deliveries to Residential Consumers (Thousand Gallons) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

119

Illinois Kerosene Sales/Deliveries to Residential Consumers ...  

U.S. Energy Information Administration (EIA)

Illinois Kerosene Sales/Deliveries to Residential Consumers (Thousand Gallons) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's ...

120

Kerosene Bulk Terminal Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kerosene-Type Jet Fuel Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

122

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

Annual Energy Outlook 2012 (EIA)

824.7 684.2 24,433.3 85,531.2 19,553.6 105,084.8 129,518.1 429.2 131,456.3 July ... 924.3 684.5 23,436.9 87,740.4 20,605.7...

123

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living ... Infrastructure includes buildings and other major structures such as tanks, towers, monuments,

124

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene...  

Annual Energy Outlook 2012 (EIA)

13,621.8 279.0 14,394.5 1996 Average ... 321.0 6.9 7,031.4 2,531.9 241.1 2,772.9 9,804.4 200.0 10,332.3 Connecticut January ......

125

Favorable conditions noted for Australia shale oil  

Science Conference Proceedings (OSTI)

After brief descriptions of the Rundle, Condor, and Stuart/Kerosene Creek oil shale projects in Queensland, the competitive advantages of oil shale development and the state and federal governments' attitudes towards an oil shale industry in Australia are discussed. It is concluded that Australia is the ideal country in which to start an oil shale industry.

Not Available

1986-09-01T23:59:59.000Z

126

Table 36. Refiner Prices of Aviation Fuels and Kerosene by PAD ...  

U.S. Energy Information Administration (EIA)

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to ... 102.5 96.1 51.9 53.7 72.9 54.7 Florida

127

Life cycle assessment of off-grid lighting applications : kerosene vs. solar lanterns  

E-Print Network (OSTI)

Access to electricity in developing countries is minimal and if available, often unreliable. As a result, fuel-based kerosene lighting is the most common solution to lighting necessities. However, kerosene combustion affects ...

Dave, Shreya H

2008-01-01T23:59:59.000Z

128

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by ...  

U.S. Energy Information Administration (EIA)

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day)

129

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

130

Rate enhancement for catalytic upgrading coal naphthas. Final of final technical progress report, July 1991--September 1994  

Science Conference Proceedings (OSTI)

The objective of this project is to remove sulfur, nitrogen, and oxygen from naphtha derived from coal liquefaction. The project is concerned with the development of hydrotreating catalysts. This period, a ruthenium sulfide catalyst has been studied.

Davis, B.H.

1995-08-01T23:59:59.000Z

131

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Petroleum Supply ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... natural gas plant liquids, biofuels, other ...

132

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 103.5 144.3 150.9 116.6 117.5 101.0 1983-2012 Kerosene-Type Jet Fuel 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 Propane (Consumer Grade) 3,263.4 2,672.2 3,671.1 3,871.2 4,457.3 5,556.4 1983-2012 Kerosene 139.7 46.0 39.8 30.3 27.1 21.0 1983-2012 No. 1 Distillate 161.0 102.0 100.9 107.8 108.9 108.5 1983-2012 No. 2 Distillate 24,345.6 20,801.6 17,757.7 15,767.1 13,802.1 12,536.7 1983-2012 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2012 Ultra Low-Sulfur 12,415.9 12,419.4 12,458.2 11,698.0 10,441.1 10,608.9 2007-2012 Low-Sulfur 7,720.2 6,037.6 3,392.4 3,186.1 2,579.3 1,185.4 1994-2012 High-Sulfur 3,419.6 1,403.5 1,028.3 448.8 402.0 427.5 1994-2012 No. 2 Fuel Oil 789.9 941.0 878.9 434.2 379.7 314.9

133

Economic enhancement of Western shale oil upgrading  

DOE Green Energy (OSTI)

A proof-of-concept study for a novel shale oil refining process was undertaken. This project promises reduced upgrading costs, thereby making shale oil development more feasible for commercialization. The process consists of distillation of raw shale oil into a distillate and residue portion, cracking of the residue by hydropyrolysis, and selective hydrotreating of narrow boiling cuts from the total distillate. Based on models and experimental data, the end product slate is projected to be 34% naphtha, 57% middle distillate, and 10.3% atm residue + coke. Hydrogen addition is 1.3% or 800 scf/bbl. These results are considerably improved over conventional processing, which gives 14% naphtha, 41% middle distillate, and 48.2% residue + coke and hydrogen addition of 3.2% or 2000 scf/bbl. More quantitative data and preliminary economics will be obtained in the next phase of study. 13 refs., 3 figs., 6 tabs.

Bunger, J. W.; Ryu, H.; Jeong, S. Y.

1989-07-01T23:59:59.000Z

134

Synthetic crude oils carcinogenicity screening tests. Progress report, September 15, 1979-March 15, 1980  

DOE Green Energy (OSTI)

Four crude oils (H Coal-Fuel Oil Mode, Occidental in situ Shale Oil, Exxon Donor Solvent Liquid, and SRC II) which were distilled into four fractions (naphtha, mid-distillate, gas oil and residue) for analysis and biological screening testing during the last report period were tested for mutagenicity by the Ames test and for tumor initiating activity by an initiation/promotion (skin painting) test. Substantial agreement exists between Ames and skin painting results. Low boiling naphtha fractions of the 4 crude oils showed little or no mutagenicity or tumor initiating activity by the two tests used. The higher boiling fractions (gas oils and residues) and the crude oils themselves were mutagenic and exhibited tumor initiation activity. The coal derived fractions were more active by both tests than the shale oil fractions.

Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

1980-01-01T23:59:59.000Z

135

Synthetic crude oils carcinogenicity screening tests. Quarterly report, October 16, 1978--February 15, 1979  

DOE Green Energy (OSTI)

Four crude oils (Southern Louisiana Crude Petroleum, H. Coal Syncrude, Paraho Crude Shale Oil, and Geokinetics in situ Shale Oil) have been distilled into four fractions (naphtha, mid-distillate, gas oil, and residue) for analysis and biological (mutagenicity and carcinogenicity) screening testing. Results of selected analytical tests have been obtained on the original crude oils and the fractions. Ames tests and initiation/promotion tests have been started on the original crude oils and the fractions. Four additional synthetic crude oils (Exxon EDS, SRC II, H Coal Fuel Oil, and Occidental In Situ Shale Oil) are being obtained for a second similar series of tests to be started in approximately four months.

Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

1979-01-01T23:59:59.000Z

136

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

137

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 2: 2008: 23: 9: 18: 2009: 89: 2010: 10 ...

138

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

139

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier ...  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1983: 30,535.1 ...

140

Kerosene-Type Jet Fuel Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Kerosene-Type Jet Fuel Imports by Area of Entry  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

142

Kerosene-Type Jet Fuel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

143

Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development  

Science Conference Proceedings (OSTI)

Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

2013-04-15T23:59:59.000Z

144

www.eia.gov  

U.S. Energy Information Administration (EIA)

Biofuels and Biomass REICBUS OWICBUS ... Non-Farm Employment EMNFPUS ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

145

www.eia.gov  

U.S. Energy Information Administration (EIA)

Electricity Supply ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas, lubricants, ... Biofuels and Biomass REICBUS OWICBUS WWCCBUS ...

146

www.eia.gov  

U.S. Energy Information Administration (EIA)

International Petroleum Supply, Consumption ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... Non-Farm Employment EMNFPUS

147

www.eia.gov  

U.S. Energy Information Administration (EIA)

Biofuels and Biomass REICBUS OWICBUS WWCCBUS SORCBUS ... Electricity Supply ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

148

www.eia.gov  

U.S. Energy Information Administration (EIA)

Total Supply Pentanes Plus ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

149

www.eia.gov  

U.S. Energy Information Administration (EIA)

Supply (million short tons) ... natural gas plant liquids, biofuels, other ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

150

www.eia.gov  

U.S. Energy Information Administration (EIA)

Petroleum Supply Annual, ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... natural gas plant liquids, biofuels, other ...

151

www.eia.gov  

U.S. Energy Information Administration (EIA)

U.S. Natural Gas Supply, Consumption, and ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... Biofuels and Biomass REICBUS

152

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Supply includes production of ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ... Biofuels and Biomass REICBUS OWICBUS

153

A NOVEL VAPOR-PHASE PROCESS FOR DEEP DESULFURIZATION OF NAPHTHA/DIESEL  

Science Conference Proceedings (OSTI)

Tier 2 regulations issued by the U.S. Environmental Protection Agency (EPA) require a substantial reduction in the sulfur content of gasoline. Similar regulations have been enacted for the sulfur level in on-road diesel and recently off-road diesel. The removal of this sulfur with existing and installed technology faces technical and economic challenges. These challenges created the opportunity for new emerging technologies. Research Triangle Institute (RTI) with subcontract support from Kellogg Brown & Root, Inc., (KBR) used this opportunity to develop RTI's transport reactor naphtha desulfurization (TReND) process. Starting with a simple conceptual process design and some laboratory results that showed promise, RTI initiated an accelerated research program for sorbent development, process development, and marketing and commercialization. Sorbent development has resulted in the identification of an active and attrition resistant sorbent that has been prepared in commercial equipment in 100 lb batches. Process development has demonstrated both the sulfur removal performance and regeneration potential of this sorbent. Process development has scaled up testing from small laboratory to pilot plant transport reactor testing. Testing in the transport reactor pilot plant has demonstrated the attrition resistance, selective sulfur removal activity, and regeneration activity of this sorbent material. Marketing and commercialization activities have shown with the existing information that the process has significant capital and operating cost benefits over existing and other emerging technologies. The market assessment and analysis provided valuable feedback about the testing and performance requirements for the technical development program. This market analysis also provided a list of potential candidates for hosting a demonstration unit. Although the narrow window of opportunity generated by the new sulfur regulations and the conservative nature of the refining industry slowed progress of the demonstration unit, negotiations with potential partners are proceeding for commercialization of this process.

B.S. Turk; R.P. Gupta; S.K. Gangwal

2003-06-30T23:59:59.000Z

154

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

155

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

156

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,406: 1,620: 1,231: 1,388: 1,379: 1,456 ...

157

U.S. Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period:

158

U.S. Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina South Carolina Virginia West Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Louisiana Mississippi New Mexico Texas Rocky Mountain (PADD 4) Colorado Idaho Montana Utah Wyoming West Coast (PADD 5) Alaska Arizona California Hawaii Nevada Oregon Washington Period:

159

Table 50. Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene  

Gasoline and Diesel Fuel Update (EIA)

048.9 048.9 3,882.7 43,253.5 78,544.5 20,983.0 99,527.5 142,781.0 1,215.1 152,927.6 February ............................. 4,331.5 2,419.0 42,453.9 81,957.0 20,781.0 102,737.9 145,191.8 1,145.6 153,087.9 March .................................. 3,374.8 1,616.3 38,313.8 87,940.5 21,866.1 109,806.6 148,120.5 1,062.2 154,173.8 April .................................... 1,699.2 728.2 28,122.4 90,081.2 20,288.6 110,369.8 138,492.2 639.3 141,558.9 May ..................................... 1,294.6 643.7 22,565.9 88,582.4 20,702.3 109,284.6 131,850.5 482.9 134,271.8 June .................................... 1,675.6 579.4 23,580.9 96,532.1 21,436.8 117,968.9 141,549.8 385.0 144,189.9 July ..................................... 1,577.3 605.1 22,198.4 92,096.8 21,709.0 113,805.8 136,004.2 656.0 138,842.6

160

Prime Supplier Sales Volumes of Distillate Fuel Oils and Kerosene by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

7,583.7 7,583.7 5,086.5 57,988.5 72,118.7 20,784.9 92,903.6 150,892.1 2,271.3 165,833.6 February ............................. 7,190.5 4,192.4 55,685.0 76,234.8 22,030.8 98,265.6 153,950.6 2,265.8 167,599.4 March .................................. 3,741.4 1,832.9 42,789.1 78,746.7 20,513.7 99,260.4 142,049.5 1,644.7 149,268.5 April .................................... 1,759.1 694.2 33,643.2 85,180.7 21,967.4 107,148.0 140,791.2 1,157.8 144,402.3 May ..................................... 1,029.0 473.8 25,651.8 83,213.2 21,779.5 104,992.8 130,644.5 661.5 132,808.8 June .................................... 1,148.6 527.8 23,238.7 83,513.2 21,394.3 104,907.5 128,146.2 536.4 130,359.0 July ..................................... 868.0 541.3 22,987.0 82,742.6 20,917.3 103,659.8 126,646.8 517.0 128,573.1

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

,"U.S. Total Adjusted Distillate Fuel Oil and Kerosene Sales...  

U.S. Energy Information Administration (EIA) Indexed Site

"Back to Contents","Data 10: On-Highway" "Sourcekey","K2DVAHNUS1" "Date","U.S. No 2 Diesel Adj SalesDeliveries to On-Highway Consumers (Thousand Gallons)" 30863,16797423...

162

Idaho Adjusted Distillate Fuel Oil and Kerosene Sales by End Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal ...

163

Table 5.15 Fuel Oil and Kerosene Sales, 1984-2010 (Thousand ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook › Annual Energy Outlook ... Sources: - 1984-U.S. Energy Information Administration (EIA), Petroleum Marketing Annual 1988

164

Synthetic crude oils carcinogenicity screening tests. Final report, October 16, 1978-August 30, 1980  

DOE Green Energy (OSTI)

Eight crude oils (Southern Louisiana Petroleum, H Coal Syncrude, H Coal Fuel Oil, SRC II, Exxon Donor Solvent Liquid, Occidental in situ Shale Oil, Paraho Shale Oil and Geokinetics in situ Shale Oil) were distilled into, or have been received, as four fractions for analysis and screening for biological (mutagenicity and tumor initiating) activity. Results of selected analytical tests have been obtained on the undistilled crude oils and the fractions. Salmonella typhimurium mutation assay and an accelerated tumor initiation-promotion test have been run on the undistilled crude oils and the fractions. Low boiling (naphtha) fractions of all eight materials showed little or no mutagenicity or skin tumor initiating activity by the two tests used. The higher boiling fractions (gas oils and residues) and the crude oils themselves were mutagenic and exhibited tumor initiation activity. The coal derived fractions were more active by both tests than the shale oil samples, the latter were similar to the petroleum controls. Few differences were apparent in biological activity between coal derived samples of equivalent boiling range among the various coal liquefaction processes, except that the SRC II naphtha sample showed a degree of acute toxicity through skin absorption not exhibited by the other samples. Generally the results agreed closely for the various samples between the salmonella mutation assay with activation and the skin tumor initiation test.

Calkins, W.H.; Deye, J.F.; Hartgrove, R.W.; King, C.F.; Krahn, D.F.

1980-01-01T23:59:59.000Z

165

SPP/CPM excavate bulk sample of Stuart oil shale for testing  

SciTech Connect

Southern Pacific Petroleum N.L. and Central Pacific Minerals N.L. of Australia continue to evaluate retorting technologies suitable for the processing of Stuart oil shale. A sample of 400 Kg of Kerosene Creek oil shale was shipped to UMATAC in Calgary, Alberta for bench testing of the TACIUK process. The objective of the bench scale testing program is to evaluate the process and to determine whether pilot plant tests should be undertaken in the existing 5 ton per hour plant located in Calgary. Preliminary results of the bench scale work were encouraging. In preparation for the 5 ton per hour pilot plant program a bulk sample is being extracted from a box cut in the Kerosene Creek seam. During the same period, Esso completed a series of trials of Rundle Kerosene Creek shale in the Exxon Shale Retort pilot plant at Baytown, Texas. At the Rundle site, data collection concerned with waste management studies is in progress.

1986-12-01T23:59:59.000Z

166

Synthetic crude oils carcinogenicity screening tests. Progress report, February 15-September 15, 1979  

DOE Green Energy (OSTI)

Four crude oils (Southern Louisiana Crude Petroleum, H Coal Syncrude, Paraho Crude Shale Oil and Geokinetics in situ Shale Oil) which were distilled into four fractions (naphtha, mid-distillate, gas oil and residue) for analysis and biological screening testing during the first report period were tested for mutagenicity by the Ames test and for tumor initiating activity by an initiation/promotion (skin painting) test. Substantial agreement exists between Ames and skin painting results. Low boiling fractions of the 4 crude oils showed little or no mutagenicity or tumor activity by the two tests used. The higher boiling fractions (mid gas oils and residues) and the crude oils themselves showed positive mutagenicity and tumor initiation activity. The coal derived fractions were more potent by both tests while the shale oil fractions showed greater activity than the petroleum fractions but considerably less than the coal syncrude.

Calkins, W.H.; Deye, J.F.; King, C.F.; Hartgrove, R.W.; Krahn, D.F.

1979-01-01T23:59:59.000Z

167

Refinery Yield of Liquefied Refinery Gases  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Yield Refinery Yield (Percent) Product: Liquefied Refinery Gases Finished Motor Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Residual Fuel Oil Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 PADD 1 4.4 5.1 4.9 4.9 4.6 2.1 1993-2013 East Coast 4.4 5.3 5.1 5.1 4.9 2.2 1993-2013

168

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

169

RECS Fuel Oil Usage Form_v1 (Draft).xps  

U.S. Energy Information Administration (EIA) Indexed Site

fuel oil usage for this delivery address between fuel oil usage for this delivery address between September 2008 and April 2010. Delivery Number Enter the Delivery Date for each delivery 1 2 3 4 5 6 7 8 9 10 Enter the Total Dollar Amount including taxes [Exclude late fees, merchandise, repairs, and service charges] 11 12 13 14 15 16 17 18 19 20 Form EIA 457G OMB No. 1905-0092 Expires 1/31/13 2009 RECS Fuel Oil and Kerosene Usage Form Delivery Address: Account Number: $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / Enter the Amount Delivered in Gallons XXXX Type of Fuel Sold was: 1=Fuel Oil #1 2=Fuel Oil #2 3=Kerosene 4=Other Enter the Price per Gallon $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ XXX.XX $ X.XX (select one) 1 2 3 4 MM/DD/YY Page 1 of 2 U.S. Energy Information Administration Independent Statistics & Analysis

170

U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

Sales Type: Sales to End Users Sales for Resale Sales Type: Sales to End Users Sales for Resale Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Sales Type Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 93.3 8.2 10.0 12.0 10.9 11.4 1983-2013 Kerosene-Type Jet Fuel 32,893.1 32,452.7 33,281.4 32,532.8 29,876.9 29,004.1 1983-2013 Propane (Consumer Grade) 6,321.3 6,161.4 5,990.4 6,377.7 6,892.8 3,264.5 1983-2013 Kerosene 3.5 2.4 3.6 2.2 3.6 8.8 1983-2013 No. 1 Distillate 45.2 31.9 36.3 32.5 44.6 103.0 1983-2013 No. 2 Distillate 11,266.8 11,311.6 11,647.9 11,375.1 11,192.1 12,138.1 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013

171

Hydroprocessing Bio-oil and Products Separation for Coke Production  

Science Conference Proceedings (OSTI)

Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

2013-04-01T23:59:59.000Z

172

Gulf Shale Oil Upgrading Process technology  

SciTech Connect

A description of the Gulf Shale Oil Hydrotreating Process, which is designed for upgrading full range shale oil to premium quality synthetic crude, is presented. The process consists of two sections: a low severity pretreating section which stabilizes the raw oil, removes iron, arsenic, trace metals and particulates, and sulfur; and a twostage, high severity hydrotreating section which completes the upgrading. The second section hydrotreats the bulk oil to a specified nitrogen content, allowing for a quality FCC feedstock in the 650F+ (343C+) residue. The main reactor effluent is flashed with subsequent hydrotreating of the flash vapor oil to achieve a low nitrogen level in the naphtha and middle distillate. The benefit of this flash configuration is hydrogen addition selectivity which maximizes syncrude quality while minimizing overall hydrogen consumption; this selectivity relationship is detailed. Finally, the product quality of the syncrudes produced with the Gulf Shale Oil Hydrotreating Process using shale oils derived from three different retort technologies and for Western and Eastern shales are discussed.

Jones, W.; Antezana, F.J.; Cugini, A.V.; Lyzinski, D.; Miller, J.B.

1984-04-01T23:59:59.000Z

173

U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene,  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Aviation Gasoline 413.1 602.6 593.2 547.1 431.5 432.6 1983-2013 Kerosene-Type Jet Fuel 26,119.1 27,197.0 28,168.9 27,226.7 25,645.0 27,379.5 1983-2013 Propane (Consumer Grade) 26,164.7 24,627.2 25,506.9 30,382.5 31,250.8 38,981.9 1983-2013 Kerosene 1,302.3 897.9 1,049.8 1,199.7 1,224.4 1,318.9 1983-2013 No. 1 Distillate 197.2 124.8 141.7 228.9 336.0 947.3 1983-2013 No. 2 Distillate 148,472.9 149,527.5 153,402.1 152,957.9 149,298.1 160,704.2 1983-2013 No. 2 Diesel Fuel NA NA NA NA NA NA 1994-2013 Ultra Low-Sulfur 140,589.9 143,645.5 145,899.9 142,352.7 139,922.9 151,092.7 2007-2013 Low-Sulfur 1,976.7 1,020.9 2,521.9 2,944.3 2,205.9 3,904.5 1994-2013 High-Sulfur

174

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network (OSTI)

kerosene other kerosene shale oil gas/diesel oil residualbituminous coal lignite oil shale other petroleum products (

Fridley, David

2011-01-01T23:59:59.000Z

175

The Role of the Flexicoking Process in Heavy Oil Processing  

E-Print Network (OSTI)

The recently commercialized FLEXICOKING Process has a significant role to play in developing, known heavy oil reserves. The process upgrades virtually any pumpable feed including residual, pitch or total crude. Combined with HYDROFINING, it produces a clean product slate composed of low Btu gas, high Btu gas, LPG, naphtha, distillate and gas oil. The low Btu gas falls within the definition of an "Alternate Fuel" under current legislation (PL 95-620). Originally developed for refinery bottoms conversion, the FLEXICOKING process can also be used as the primary technology for Stand Alone Energy Centers upgrading low quality, high metals, heavy crudes. These efficient energy centers can be located either at a heavy oil production field or integrated with an energy-intensive industrial complex.

Taylor, R. I.

1980-01-01T23:59:59.000Z

176

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

It includes kerosene-type jet fuel and naphtha-type jet fuel. Joint Implementation (JI): ... Joint-use facility: A multiple-purpose hydroelectric plant.

177

www.eia.gov  

U.S. Energy Information Administration (EIA)

Biofuels (b) D2RCUWE D2RCUUS D2RCANE ... Non-Farm Employment EMNFPUS ... finished aviation gasoline, kerosene, petrochemical feedstocks, special naphthas ...

178

Analysis of Oxygenated Compounds in Hydrotreated Biomass Fast Pyrolysis Oil Distillate Fractions  

Science Conference Proceedings (OSTI)

Three hydrotreated bio-oils with different oxygen contents (8.2, 4.9, and 0.4 w/w) were distilled to produce Light, Naphtha, Jet, Diesel, and Gasoil boiling range fractions that were characterized for oxygen containing species by a variety of analytical methods. The bio-oils were originally generated from lignocellulosic biomass in an entrained-flow fast pyrolysis reactor. Analyses included elemental composition, carbon type distribution by {sup 13}C NMR, acid number, GC-MS, volatile organic acids by LC, and carbonyl compounds by DNPH derivatization and LC. Acid number titrations employed an improved titrant-electrode combination with faster response that allowed detection of multiple endpoints in many samples and for acid values attributable to carboxylic acids and to phenols to be distinguished. Results of these analyses showed that the highest oxygen content bio-oil fractions contained oxygen as carboxylic acids, carbonyls, aryl ethers, phenols, and alcohols. Carboxylic acids and carbonyl compounds detected in this sample were concentrated in the Light, Naphtha, and Jet fractions (oil or refinery intermediate streams may exist for the Diesel and Gasoil fractions. The 4.9 % oxygen sample contained almost exclusively phenolic compounds found to be present throughout the boiling range of this sample, but imparting measurable acidity primarily in the Light, Naphtha and Jet fractions. Additional study is required to understand what levels of the weakly acidic phenols could be tolerated in a refinery feedstock. The Diesel and Gasoil fractions from this upgraded oil had low acidity but still contained 3 to 4 wt% oxygen present as phenols that could not be specifically identified. These materials appear to have excellent potential as refinery feedstocks and some potential for blending into finished fuels. Fractions from the lowest oxygen content oil exhibited some phenolic acidity, but generally contained very low levels of oxygen functional groups. These materials would likely be suitable as refinery feedstocks and potentially as fuel blend components. PIONA analysis of the Light and Naphtha fractions shows benzene content of 0.5 and 0.4 vol%, and predicted (RON + MON)/2 of 63 and 70, respectively.

Christensen, Earl D.; Chupka, Gina; Luecke, Jon; Smurthwaite, Tricia D.; Alleman, Teresa L.; Iisa, Kristiina; Franz, James A.; Elliott, Douglas C.; McCormick, Robert L.

2011-10-06T23:59:59.000Z

179

Results of hydrotreating the kerosene fraction of HTI`S first proof of concept run  

SciTech Connect

The objective of Sandia`s hydrotreating study is to determine the relationships between hydrotreating conditions and product characteristics for coal liquids produced using current technologies. The coal-derived liquid used in the current work is the kerosene fraction of the product from Hydrocarbon Technologies Inc.`s first proof-of-concept run for it`s Catalytic Two-Stage Liquefaction Technology. Sandia`s hydrotreating experiments were performed in a continuous operation, microflow reactor system using aged HDN-60 catalyst. A factorial experimental design with three variables (temperature, pressure, liquid hourly space velocity) was used in this work. Nitrogen and sulfur contents of the feed and hydrotreated products were determined using an Antek 7000 Sulfur and Nitrogen Analyzer. Multiple samples were collected at each set of reaction conditions to ensure that each condition was lined out. Hydrotreating at each set of reaction conditions was repeated so that results could be normalized for catalyst deactivation. The normalized results were statistically analyzed. Increases in temperature and pressure had the greatest effects on nitrogen removal. The highest severity condition (388{degrees}C, 1500 psig H{sub 2}, 1.5g/h/g(cat)) gave a measured nitrogen value of <5 ppm.

Stohl, F.V.; Lott, S.E.; Diegert, K.V.; Goodnow, D.C.

1996-06-01T23:59:59.000Z

180

Market survey on products from the Tema Oil Refinery carried out as part of the feasibility study on the Tema Oil Refinery expansion project. Export trade information  

SciTech Connect

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydroskimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A feasibility study is investigating the modernization and expansion of the refinery to meet projected market demands until the year 2005. The report presents the results of a market survey done on products from TOR.

Not Available

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vtr_mgalpd_m.htm"

182

,"U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates"  

U.S. Energy Information Administration (EIA) Indexed Site

Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Sales for Resale Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 and No. 2 Distillates",11,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_d_nus_vwr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_d_nus_vwr_mgalpd_m.htm"

183

VEE-0035 - In the Matter of Rice Oil Company, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

35 - In the Matter of Rice Oil Company, Inc. 35 - In the Matter of Rice Oil Company, Inc. VEE-0035 - In the Matter of Rice Oil Company, Inc. On October 22, 1996, Rice Oil Company, Inc. (Rice) of Greenfield, Massachusetts filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its Application, Rice requests that it be relieved of the requirement to file Form EIA-782B, entitled "Resellers/Retailers' Monthly Petroleum Product Sales Report" (Form EIA- 782B), and Form EIA-821, entitled "Annual Fuel Oil and Kerosene Sales Report". vee0035.pdf More Documents & Publications VEE-0082 - In the Matter of Fleischli Oil Company VEE-0085 - In the Matter of Smith Brothers Gas Company VEE-0066 - In the Matter of Taylor Oil Company

184

State Home Oil Weatherization (SHOW) Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Oil Weatherization (SHOW) Program Home Oil Weatherization (SHOW) Program State Home Oil Weatherization (SHOW) Program < Back Eligibility Multi-Family Residential Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Maximum Rebate $500/household Program Info State Oregon Program Type State Rebate Program Rebate Amount Blower-door test - 100% of the cost up to $100. All other technologies are 25% of the total cost, up to $150 or $500, depending on the upgrade. Provider Oregon Department of Energy Oregon homeowners and renters who heat with oil, wood, propane, kerosene, or butane are eligible for home weatherization rebates of up to $500. A

185

Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers  

E-Print Network (OSTI)

such as ethane, propane, butane, naphtha or gasoline. AnOthers Losses Ethane Propane Butane Naphtha Gas oil Source:by dehydrogenation of propane and butane respectively. The

Neelis, Maarten

2008-01-01T23:59:59.000Z

186

(Revised May 2010)  

U.S. Energy Information Administration (EIA)

and other petroleum (e.g., cat cracked naphtha, coker naphtha, gas oil, etc.) in the presence of catalysts and substantial quantities of hydrogen.

187

Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels  

Science Conference Proceedings (OSTI)

This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

Patinkin, L.

1983-12-01T23:59:59.000Z

188

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

189

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

190

Gulf Coast (PADD 3) Product Supplied for Crude Oil and ...  

U.S. Energy Information Administration (EIA)

Area: Period-Unit: Download Series History: Definitions ... 51: 37: 1989-2012: Petrochemical Feedstocks: 560: 475: 385: 405: 387: 322: 1989-2012: Naphtha for Petro.

191

Catalytic hydroprocessing of shale oil to produce distillate fuels  

DOE Green Energy (OSTI)

Results are presented of a Chevron Research Company study sponsored by the Energy Research and Development Administration (ERDA) to demonstrate the feasibility of converting whole shale oil to a synthetic crude resembling a typical petroleum distillate. The synthetic crude thus produced can then be processed, in conventional petroleum-refining facilities, to transportation fuels such as high octane gasoline, diesel, and jet fuel. The raw shale oil feed used is a typical Colorado shale oil produced in a surface retort in the so-called indirectly heated mode. It is shown that whole shale oil can be catalytically hydrodenitrified to reduce the nitrogen to levels as low as one part per million in a single catalytic stage. However, for economic reasons, it appears preferable to denitrify to about 0.05 wt % nitrogen. The resulting synthetic crude resembles a petroleum distillate that can be fractionated and further processed as necessary in conventional petroleum refining facilities. Shale oil contains about 0.6% sulfur. Sulfur is more easily removed by hydrofining than is nitrogen; therefore, only a few parts per million of sulfur remain at a product nitrogen of 0.05 wt %. Oxygen contained in the shale oil is also reduced to low levels during hydrodenitrification. The shale oil contains appreciable quantities of iron and arsenic which are also potential catalyst poisons. These metals are removed by a guard bed placed upstream from the hydrofining catalyst. Based on correlations, the naphthas from the shale oil hydrofiner can readily be upgraded to high octane gasolines by catalytic reforming. The middle distillate fractions may require some additional hydrofining to produce salable diesel or jet fuel. The technology is available, and pilot plant studies are scheduled to verify diesel hydrofiner performance.

Sullivan, R.F.; Stangeland, B.E.

1977-01-01T23:59:59.000Z

192

Blender Net Production of Finished Motor Gasoline  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Special Naphthas Lubricants Asphalt and Road Oil Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

193

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste – Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPA’s criteria for used oil: • Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a “similar use ” on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

194

Product Supplied for Special Naphthas  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

195

Special Naphthas Imports from Turkey  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

196

Special Naphthas Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

197

Special Naphthas Imports from Ecuador  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

198

Special Naphthas Imports from Chile  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

199

Special Naphthas Imports from Angola  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

200

Special Naphthas Imports from Netherlands  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Special Naphthas Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

202

Quarterly update. [Oil supply and demand data for the Organization for Economic Co-operation and Development  

SciTech Connect

This quarterly report presents detailed statistics on oil supply and demand in the countries of the Organization for Economic Co-operation and Development. The information consists of complete balances of production, trade, refinery intake/output, final consumption, stock levels, and changes for crude oil, natural gas liquids, refinery feedstocks, and 9 product groups; separate trade data for main product groups, LPG, and naphtha; imports for 48 origins; exports for 31 destinations; international marine bunkers and deliveries by product group; aggregates of quarterly data to annual totals; and natural gas supply and consumption. The information supplied is for Belgium, Denmark, France, Germany, Ireland, Italy, Luxembourg, the Netherlands, UK, European Economic Community, Austria, Finland, Greece, Iceland, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, OECD Europe, Australia, Canada, Japan, New Zealand, and the US.

1980-01-01T23:59:59.000Z

203

Key China Energy Statistics 2012  

E-Print Network (OSTI)

Mtce Mt Fuel Oil Kerosene Petroleum Other Products RefineryDiesel Oil Gasoline Liquid Petroleum Gas Refinery ProductionShares Fuel Oil Kerosene Petroleum Other Products Refinery

Levine, Mark

2013-01-01T23:59:59.000Z

204

Refinery & Blender Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

& Blender Net Production & Blender Net Production Product: Total Finished Petroleum Products Liquefied Refinery Gases Ethane/Ethylene Ethane Ethylene Propane/Propylene Propane Propylene Normal Butane/Butylene Normal Butane Butylene Isobutane/Isobutylene Isobutane Isobutylene Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 ppm to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Residual Fuel Less Than 0.31 Percent Sulfur Residual Fuel 0.31 to 1.00 Percent Sulfur Residual Fuel Greater Than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha For Petro. Feed. Use Other Oils For Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Processing Gain(-) or Loss(+) Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

205

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

206

Total Blender Net Input of Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Input Input Product: Total Input Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquid Petroleum Gases Normal Butane Isobutane Other Liquids Oxygenates/Renewables Methyl Tertiary Butyl Ether (MTBE) Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils (net) Unfinished Oils, Naphthas and Lighter Unfinished Oils, Kerosene and Light Gas Oils Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) (net) MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - Reformulated, RBOB for Blending w/ Alcohol MGBC - Reformulated, RBOB for Blending w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

207

Particles of spilled oil-absorbing carbon in contact with water  

Science Conference Proceedings (OSTI)

Hydrogen generator coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. Carbon particles with surface filaments having a hydrophobic property of oil film absorption, compositions of matter containing those particles, and a system for using the carbon particles for cleaning oil spills.

Muradov, Nazim (Melbourne, FL)

2011-03-29T23:59:59.000Z

208

Total Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

209

Kerosene Imports from Israel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

210

Kerosene Imports from OPEC  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

211

Kerosene Imports from Turkey  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

212

Kerosene Imports from Venezuela  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

213

Kerosene Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

214

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

215

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network (OSTI)

kerosene other kerosene shale oil gas/diesel oil residualshale other petroleum products (China 2008 weighted average) coke oven/gas

Fridley, David

2011-01-01T23:59:59.000Z

216

Appendix A - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Fuel Oil and Kerosene Sales 2009 37 Technical Note 1: EIA-821: Annual Fuel Oil and Kerosene Sales Report, 2007

217

Purchased Electricity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

218

Purchased Steam - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

219

East Coast (PADD 1) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

220

Midwest (PADD 2) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

PAD District 5 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

222

Gulf Coast (PADD 3) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

223

Liquefied Petroleum Gases  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

224

PAD District 4 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

225

Still Gas - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

226

Natural Gas  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, ...

227

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

228

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network (OSTI)

Society's growing demands for energy results in rapid increase in oil consumption and motivates us to make unconventional resources conventional resources. There are enormous amounts of heavy oil reserves in the world but the lack of cost effective technologies either for extraction, transportation, or refinery upgrading hinders the development of heavy oil reserves. One of the critical problems with heavy oil and bitumen is that they require large amounts of thermal energy and expensive catalysts to upgrade. This thesis demonstrates that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam processing lowers the thermal energy requirements and could sharply reduce the investment in catalysts. The design of the facilities can be simpler and will contribute to lowering the costs of transporting and processing heavy oil and bitumen. E-Beam technology uses the high kinetic energy of fast electrons, which not only transfer their energy but also interact with hydrocarbons to break the heavy molecules with lower thermal energy. In this work, we conducted three major stages to evaluate the applicability of E-Beam for heavy oil upgrading. First, we conducted laboratory experiments to investigate the effects of E-Beam on hydrocarbons. To do so, we used a Van de Graff accelerator, which generates the high kinetic energy of electrons, and a laboratory scale apparatus to investigate extensively how radiation effects hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional upgrading. The results of our study are very encouraging. From the experiments we found that E-Beam effect on hydrocarbon is significant. We used less thermal energy for distillation of n-hexadecane (n-C16) and naphtha with E-Beam. The results of experiments with asphaltene indicate that E-Beam enhances the decomposition of heavy hydrocarbon molecules and improves the quality of upgraded hydrocarbon. From the study of energy transfer mechanism, we estimated heat loss, fluid movement, and radiation energy distribution during the reaction. The results of our economic evaluation show that E-Beam upgrading appears to be economically feasible in petroleum industry applications. These results indicate significant potential for the application of E-Beam technology throughout the petroleum industry, particularly near production facilities, transportation pipelines, and refining industry.

Yang, Daegil

2009-12-01T23:59:59.000Z

229

Novel techniques for the denitrogenation of shale oil. Final report, January 1, 1982-March 31, 1984  

DOE Green Energy (OSTI)

The objective of this project is to test the feasibility of a novel process to denitrogenate shale oil and selected distillate fractions by mild catalytic hydrogenation followed by ion exchange. Emphasis is directed toward the study of the ion exchange portion of the process. Using both bench- and pilot-scale units, research was first undertaken to produce a series of samples of mildly hydrogenated shale oils which were then distilled into naphtha, jet fuel, diesel fuel, gas oil and residue. Experiments were performed to determine the relative thermal stability (at somewhat elevated temperatures) of various hydrogenated and ion-exchange treated jet and diesel fuels. Ion exchange markedly improved the stability of raw shale oil. However, the stability of the mildly hydrotreated shale-derived jet fuel was made worse by adding ion-exchange treatment, presumably as a result of removing some of the lower level stabilizers (i.e., phenolics). All samples of shale-derived jet fuel, except the highly hydrogenated P67-154 jet fuel, were less stable than petroleum-derived jet A. In contrast to the above, the raw shale-derived diesel fuel was more stable than petroleum-derived No. 2 heating oil. Mild hydrotreating effected some improvement in stability. A study of the results with Amberlyst-15 resin shows that the process economics are most favorable for the ion exchange of jet fuel when the shale oil hydrotreating severity is high and the nitrogen content of the charge to ion exchange is relatively low. Although ion exchange is not economical in these cases, it appears to be economical when the weight percent nitrogen in the charge to the ion exchange is below 0.05 wt %. Significant savings are possible by minimizing the amount of resin used and by maximizing the number of cycles before discarding the resin. This appears to be realizable using Rohm and Haas XE-397 resin. 14 references, 46 figures, 28 tables.

Cronauer, D.C.

1985-02-01T23:59:59.000Z

230

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

231

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

232

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

233

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

234

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

235

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

236

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

237

Study of gas evolution during oil shale pyrolysis by TQMS (triple quadrupole mass spectrometer)  

DOE Green Energy (OSTI)

Real-time gas evolution during pyrolysis of two Green River Formation (Colorado) oil shales, one eastern US Devonian shale, and two Chinese shales was monitored using a triple quadrupole mass spectrometer (TQMS). We calculated kinetic parameters for hydrocarbon generation. For water, carbon oxides, and sulfur gases, we compared evolution profiles and identified the organicinorganic precursors of each species. We also monitored nitrogen- and sulfur-containing naphtha components. Hydrocarbon gas profiles, except for CH/sub 4/, are similar for all shales, and their rates of evolution reach a maximum at around the temperatures of maximum oil evolutions. The evolution profiles for H/sub 2/, CH/sub 2/, CO, and CO/sub 2/, at high temperatures are affected by the amount of char remaining in shale, carbonate minerals, and the water-gas shift reaction. The water profile, in general, consists of waters from surface dehydration, kerogen pyrolysis, and mineral dehydration. Mineral dehydration was the dominant water source for all shales, but the temperature ranges for the major water peak varied because of widely different mineral composition. Chinese shales evolved much more water than U.S. shales. Major differences between shales were seen in the sulfur gases. 17 refs., 4 figs., 3 tabs.

Oh, M.S.; Coburn, T.T.; Crawford, R.W.; Burnham, A.K.

1988-02-01T23:59:59.000Z

238

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

239

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

240

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

242

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

243

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

244

Designed by Zoning: Evaluating the Spatial Effects of Land Use Regulation  

E-Print Network (OSTI)

oil, kerosene, etc. Coal or coke All other fuels No fueloil, kerosene, etc. Coal or coke All other fuels No fueloil, kerosene, etc. Coal or coke All other fuels No fuel

Warren, Charles Reuben

2009-01-01T23:59:59.000Z

245

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

246

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Consumer Price Estimates for Energy by Source Total Energy, 1970-2010 By Energy Type, 2010 Prices³ by Energy Type, Indexed, 1970-2010 By Petroleum Product, 2010 72 U.S. Energy Information Administration / Annual Energy Review 2011 Fuel Oil Gasoline 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Wood and wood-derived fuels, and biomass waste; excludes fuel ethanol and biodiesel. Prior to 2001, also includes non-biomass waste. 3 Based on nominal dollars. 4 Liquefied petroleum gases. 5 Consumption-weighted average price for asphalt and road oil, aviation gasoline, kerosene, lubricants, petrochemical feedstocks, petroleum coke, special naphthas, waxes, and miscella- neous petroleum products. Source: Table 3.3. Electricity

247

NDP-030/R6 (Table 3)  

NLE Websites -- All DOE Office Websites (Extended Search)

3. Listing of the primary and secondary fuels from the United Nations 3. Listing of the primary and secondary fuels from the United Nations Energy Statistics Database used in calculating CO2-emission estimates. The two-letter commodity code used by he United Nations for each fuel type is shown in parentheses. Gas Fuels Primary gas fuels Secondary gas fuels Natural gas (NG) Gasworks gas (GG) Coke-oven gas (OG) Refinery gas (RG) Liquid Fuels Primary liquid fuels Secondary liquid fuels Crude petroleum (CR) Aviation gasoline (AV) Natural gas liquids (GL) Plant condensate (CD) Gas-diesel oils (DL) Feedstocks (FS) Jet fuel (JF) Kerosene (KR) Liquefied petroleum gas (LP) Motor gasoline (MO) Natural gasoline (NT) Residual fuel oils (RF) Secondary nonenergy liquid fuels Bitumen/asphalt (BT) Lubricants (LU) Naphthas (NP) Petroleum coke (PK)

248

Upgrading of coal liquefaction feedstock by selective agglomeration  

SciTech Connect

The technical feasibility study of using selective agglomeration (with coal-derived oil) to upgrade Illinois No. 6 coal for a liquefaction feedstock was completed. Effects of coal particle size, slurry pH, oil-to-coal ratio, and operating temperature on mineral matter reduction, clean coal weight recovery, and clean coal moisture content were studied. The addition of coal-derived naphtha or kerosene as conditioners to increase hydrophobicity and recovery of coal was also investigated. Results showed that approximately 70% of the mineral matter could be removed from this coal at a clean coal weight recovery of over 85% by grinding the coal to a mean volume diameter of about 10 microns and properly selecting of the operation variables.

Lai, R.; Sinha, K.; Richardson, A.; Killmeyer, R.; Utz, B.; Hickey, R.; Cillo, D.

1994-03-01T23:59:59.000Z

249

Gulf Coast (PADD 3) Special Naphthas Imports  

U.S. Energy Information Administration (EIA)

Import Area: Download Series History: Definitions ... 51: 81: 136: 1995-2012: Netherlands Antilles : 1995-2004: Philippines : 14 : 2010-2010: Portugal: 6: 12

250

Catalytic Hydrotreating Naphtha/Reformer Feed Downstream ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

251

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

252

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

253

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),Figure 3. Price of crude oil contract maturing December ofbarrels per day. Monthly crude oil production Iran Iraq

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

254

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

255

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

256

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

257

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

258

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

259

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

260

China's Global Oil Strategy  

E-Print Network (OSTI)

is an important oil source for China, yet unlike itsthe United States as a major oil source outside the volatileto be a critical source of oil, and one that is almost

Thomas, Bryan G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

262

China's Global Oil Strategy  

E-Print Network (OSTI)

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

263

East Coast (PADD 1) Exports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

Area: Period-Unit: Download Series History ... 51: 51: 1981-2013: Special Naphthas: 0: 0: 0: 0: 0: 11: 1981-2013: Lubricants: 6: 7: 6: 5: 5: 10: 1981-2013: Waxes: 2 ...

264

China's Global Oil Strategy  

E-Print Network (OSTI)

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

265

Understanding Crude Oil Prices  

E-Print Network (OSTI)

5. Monthly oil production for Iran, Iraq, and Kuwait, inday. Monthly crude oil production Iran Iraq Kuwait Figure 6.Arabia PRODUCTION QUOTA Iran PRODUCTION QUOTA Venezuela

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

266

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

267

Kerosene Sales for Industrial Use  

Gasoline and Diesel Fuel Update (EIA)

88,372 22,445 25,536 45,145 22,557 12,920 1984-2012 88,372 22,445 25,536 45,145 22,557 12,920 1984-2012 East Coast (PADD 1) 34,350 10,998 15,113 36,274 15,732 9,177 1984-2012 New England (PADD 1A) 7,027 3,968 6,700 5,785 5,752 2,148 1984-2012 Connecticut 6,143 3,261 6,133 5,297 5,408 1,507 1984-2012 Maine 661 191 116 79 37 22 1984-2012 Massachusetts 84 9 426 119 22 8 1984-2012 New Hampshire 103 205 4 27 86 5 1984-2012 Rhode Island 1 129 0 0 0 0 1984-2012 Vermont 35 172 21 263 199 606 1984-2012 Central Atlantic (PADD 1B) 22,319 6,224 6,981 28,376 8,916 6,571 1984-2012 Delaware 5 2 181 164 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 207 133 107 87 27 3 1984-2012 New Jersey 10,815 3,713 2,988 3,886 1,948 610 1984-2012

268

Kerosene Sales for Residential Use  

Gasoline and Diesel Fuel Update (EIA)

325,320 157,505 205,136 215,587 137,232 57,316 1984-2012 325,320 157,505 205,136 215,587 137,232 57,316 1984-2012 East Coast (PADD 1) 267,992 126,642 159,414 172,303 107,007 47,028 1984-2012 New England (PADD 1A) 75,986 33,235 44,681 41,961 29,375 12,315 1984-2012 Connecticut 5,428 2,061 1,938 1,794 1,303 580 1984-2012 Maine 40,203 17,657 22,748 22,057 15,638 6,295 1984-2012 Massachusetts 6,783 2,633 4,172 4,214 2,585 1,219 1984-2012 New Hampshire 12,493 5,880 7,758 6,854 4,930 1,830 1984-2012 Rhode Island 675 441 1,002 746 551 258 1984-2012 Vermont 10,403 4,563 7,062 6,297 4,369 2,133 1984-2012 Central Atlantic (PADD 1B) 109,558 55,603 78,260 82,460 54,894 25,429 1984-2012 Delaware 2,040 1,048 2,224 1,672 1,043 441 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012

269

Total Adjusted Sales of Kerosene  

U.S. Energy Information Administration (EIA) Indexed Site

End Use: Total Residential Commercial Industrial Farm All Other Period: End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2007 2008 2009 2010 2011 2012 View History U.S. 492,702 218,736 269,010 305,508 187,656 81,102 1984-2012 East Coast (PADD 1) 353,765 159,323 198,762 237,397 142,189 63,075 1984-2012 New England (PADD 1A) 94,635 42,570 56,661 53,363 38,448 15,983 1984-2012 Connecticut 13,006 6,710 8,800 7,437 7,087 2,143 1984-2012 Maine 46,431 19,923 25,158 24,281 17,396 7,394 1984-2012 Massachusetts 7,913 3,510 5,332 6,300 2,866 1,291 1984-2012 New Hampshire 14,454 6,675 8,353 7,435 5,472 1,977 1984-2012

270

Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Shell storage capacity ...

271

Kerosene Sales for Farm Use  

Gasoline and Diesel Fuel Update (EIA)

9,531 4,893 6,414 6,763 3,410 1,712 1984-2012 9,531 4,893 6,414 6,763 3,410 1,712 1984-2012 East Coast (PADD 1) 2,946 1,190 1,660 1,564 1,726 822 1984-2012 New England (PADD 1A) 1,221 394 457 341 164 161 1984-2012 Connecticut 1 78 1 2 2 0 1984-2012 Maine 648 71 118 66 45 91 1984-2012 Massachusetts 1 14 8 9 0 1 1984-2012 New Hampshire 209 101 9 10 8 3 1984-2012 Rhode Island 0 0 0 0 0 0 1984-2012 Vermont 361 130 321 255 110 66 1984-2012 Central Atlantic (PADD 1B) 980 329 866 669 1,236 518 1984-2012 Delaware 8 4 5 11 3 1 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 115 46 43 45 24 42 1984-2012 New Jersey 3 3 207 6 1 1 1984-2012 New York 626 224 268 329 888 421 1984-2012 Pennsylvania 228 53 343 277 321 53 1984-2012

272

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

273

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

274

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Liquefied Refinery Gases 5.3 5.4 5.2 5.2 5.1 3.9 1993-2013 Finished Motor Gasoline 44.4 44.1 44.4 43.9 43.9 44.9 1993-2013 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2013 Kerosene-Type Jet Fuel 10.0 9.1 9.3 9.4 9.8 9.6 1993-2013 Kerosene 0.0 0.1 0.1 0.1 0.0 0.0 1993-2013 Distillate Fuel Oil 28.4 29.4 28.7 29.2 29.3 29.7 1993-2013 Residual Fuel Oil 3.3 2.9 2.8 2.8 2.5 2.6 1993-2013 Naphtha for Petrochemical Feedstock Use 1.4 1.5 1.5 1.6 1.5 1.5 1993-2013 Other Oils for Petrochemical Feedstock Use 0.6 0.6 0.7 0.7 0.6 0.7 1993-2013 Special Naphthas 0.3 0.3 0.3 0.2 0.3 0.2 1993-2013 Lubricants 0.9 1.1 1.1 1.1 1.1 1.1 1993-2013 Waxes

275

U.S. Refinery Yield  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History Liquefied Refinery Gases 4.1 4.1 4.1 4.3 4.0 4.1 1993-2012 Finished Motor Gasoline 45.5 44.2 46.1 45.7 44.9 45.0 1993-2012 Finished Aviation Gasoline 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012 Kerosene-Type Jet Fuel 9.1 9.7 9.3 9.3 9.4 9.5 1993-2012 Kerosene 0.2 0.1 0.1 0.1 0.1 0.1 1993-2012 Distillate Fuel Oil 26.1 27.8 26.9 27.5 28.9 29.1 1993-2012 Residual Fuel Oil 4.2 4.0 4.0 3.8 3.4 3.2 1993-2012 Naphtha for Petrochemical Feedstock Use 1.3 1.0 1.3 1.4 1.3 1.3 1993-2012 Other Oils for Petrochemical Feedstock Use 1.3 1.2 0.8 0.8 0.7 0.6 1993-2012 Special Naphthas 0.3 0.3 0.2 0.2 0.2 0.3 1993-2012 Lubricants 1.1 1.1 1.0 1.1 1.1 1.0 1993-2012 Waxes 0.1 0.1 0.1 0.1 0.1 0.1 1993-2012

276

Eco Oil 4  

DOE Green Energy (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

277

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

278

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

279

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

280

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

282

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

283

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

284

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

285

Word Pro - Untitled1  

U.S. Energy Information Administration (EIA) Indexed Site

Consumer Expenditure Estimates for Energy by Source Consumer Expenditure Estimates for Energy by Source Total Energy, 1970-2010 By Energy Type, 2010 Expenditures³ by Energy Type, Indexed, 1970-2010 By Petroleum Product, 2010 76 U.S. Energy Information Administration / Annual Energy Review 2011 1 Prices are not adjusted for inflation. See "Nominal Dollars" in Glossary. 2 Wood and wood-derived fuels, and biomass waste; excludes fuel ethanol and biodiesel. 3 Based on nominal dollars. 4 Liquefied petroleum gases. 5 Asphalt and road oil, aviation gasoline, kerosene, lubricants, petrochemical feedstocks, petroleum coke, special naphthas, waxes, and miscellaneous petroleum products. Source: Table 3.5. 1970 1975 1980 1985 1990 1995 2000 2005 2010 0 300 600 900 1,200 1,500 Billion Dollars¹ Electricity Gas 709 366 160 50 6

286

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

287

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

288

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

289

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

290

Oil and Gas Supply Module  

Annual Energy Outlook 2012 (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

291

Industrial Uses of Vegetable Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils offers new insights into these important (and growing) products of vegetable oils, while also covering developments in biodegradable grease, vegetable oils-based polyols, and the synthesis of surfactants from vegetable oil

292

The Legacy of Oil Spills  

E-Print Network (OSTI)

When a 1979 exploratory oil well blew out and leaked oil foraddicted to oil directly causes spills as well as globalmagnitudes of past oil spills. They are well aware of the

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

293

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

294

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

295

Palm oil pundit speaks  

Science Conference Proceedings (OSTI)

Dorab E. Mistry, director of Godrej International Ltd. in Mumbai, India, spoke about palm oil on March 15, 2010, during the 2010 Annual Convention of the National Institute of Oilseed Products in Palm Springs, California, USA. Palm oil pundit speaks ...

296

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

297

Understanding Crude Oil Prices  

E-Print Network (OSTI)

well below unity accounts for the broad trends we see in the share of oil purchases in totalWells. ” Middle panel: percent of U.S. total crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

298

Oil Peak or Panic?  

SciTech Connect

In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

299

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

300

Gourmet and Health-Promoting Specialty OilsChapter 11 Camellia Oil and Tea Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 11 Camellia Oil and Tea Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 11 Camellia Oil and T

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Using Oils As Pesticides  

E-Print Network (OSTI)

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing oils for use, application and precautions are discussed.

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

302

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

303

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

304

Understanding Crude Oil Prices  

E-Print Network (OSTI)

to a “negative” storage cost for oil in the form of a bene?tin levels. oil for more than your costs, that is, if P t+1 QSaudi oil, and M S the Saudi’s marginal cost of production.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

305

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

306

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

307

TABLE19.CHP:Corel VENTURA  

Gasoline and Diesel Fuel Update (EIA)

9. 9. Percent Refinery Yield of Petroleum Products by PAD and Refining Districts, a January 1998 Liquefied Refinery Gases ............................................ 1.2 -0.3 1.1 3.4 -0.4 1.9 2.6 Finished Motor Gasoline b ............................................ 49.1 39.8 48.6 51.6 54.9 50.0 51.7 Finished Aviation Gasoline c ........................................ 0.1 0.0 0.1 0.0 0.1 0.1 0.0 Naphtha-Type Jet Fuel ................................................ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Kerosene-Type Jet Fuel .............................................. 6.3 1.2 6.0 6.4 7.8 6.1 6.5 Kerosene ..................................................................... 1.0 4.3 1.2 1.1 0.1 0.3 0.8 Distillate Fuel Oil ......................................................... 26.1 24.0 26.0 23.7 25.0 33.1 25.7 Residual Fuel Oil .........................................................

308

Feasibility study on the modernization and expansion of the Tema Oil Refinery. Executive Summary. Export trade information  

Science Conference Proceedings (OSTI)

The Tema Oil Refinery (TOR), which was commissioned in 1963, is a simple hydro-skimming plant which processes crude oil into LPG, gasoline, kerosene, gasoil, and fuel oil. It is the only petroleum refinery in Ghana. Over the years some of the equipment in the refinery has deteriorated or become obsolete necessitating major rehabilitation. A study of the refinery expansion project takes into consideration earlier studies and, equally important, recognizes the extensive work done by TOR in rehabilitating the refinery. The program, carried out in phases because of funding limitations, has addressed the critical repairs and replacements in the process units and utilities necessary to prolong the life of the refinery and assure reliability and safe operation. It undertook the task of investigating the feasibility of modernizing and expanding the refinery at Tema, Ghana to meet projected market demands until the year 2005. A process planning study was conducted to select the optimal process and utility configuration which would result in economic benefits to Ghana.

Not Available

1992-04-01T23:59:59.000Z

309

Oil shale commercialization study  

SciTech Connect

Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

Warner, M.M.

1981-09-01T23:59:59.000Z

310

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

311

Changes to EIA Petroleum Data Program  

U.S. Energy Information Administration (EIA) Indexed Site

Marketing Annual As of August 17, 2011, the following survey and publication have been reinstated: EIA-821, "Annual Fuel Oil and Kerosene Sales Report" Fuel Oil and Kerosene Sales...

312

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

313

Crude Oil Analysis Database  

DOE Data Explorer (OSTI)

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

314

Crude Oil Watch - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Crude Oil Watch April 19, 2000 Energy Information Administration Office of Oil & Gas A large stockbuild in crude oil inventories contributed to blunt crude oil inputs ...

315

C:\\...\\mailquestionnaire. [PFP#1121010499  

U.S. Energy Information Administration (EIA) Indexed Site

Natural gas from underground pipes Bottled gas (LPG or propane) Fuel oil Kerosene Wood Some other fuel (Specify): ...

316

www.eia.gov  

U.S. Energy Information Administration (EIA)

... Crude oil adjustment balances supply and consumption and was ... finished aviation gasoline, kerosene, petrochemical feedstocks, special ... Non-Farm Employment

317

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

318

Energy Use in China: Sectoral Trends and Future Outlook  

E-Print Network (OSTI)

other Coal,oil and oil product, crude oil, other Coal,oiland oil product, crude oil, other Diesel, Gasoline Diesel,Kerosene, Avgas Pipelin e Crude oil, oil products, NG, other

2008-01-01T23:59:59.000Z

319

World Oil: Market or Mayhem?  

E-Print Network (OSTI)

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

320

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

2 World Oil Market  

E-Print Network (OSTI)

www.eia.gov Crude oil prices react to a variety of geopolitical and economic events price per barrel (real 2010 dollars, quarterly average) 140 120 imported refiner acquisition cost of crude oil WTI crude oil price Global financial collapse 100 80 60 U.S. spare capacity exhausted Iran-Iraq War Saudis abandon swing producer role Asian financial crisis 9-11 attacks Low spare capacity

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski

2012-01-01T23:59:59.000Z

322

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

323

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

324

Understanding Crude Oil Prices  

E-Print Network (OSTI)

disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

325

Oil from rock  

SciTech Connect

The article discusses first the Green River Formation oil shale projects in the western United States from which conservative estimates have suggested an output of 400,000 to 600,000 bbl/day of crude shale oil by 1990. The western reserves recoverable with present technology are said to exceed 600 billion (10/sup 9/) bbl. Three major considerations could limit the large-scale development of shale oil: availability of water, environmental factors, and socio-economic considerations. Water is used to obtain and process the crude shale oil, and additional water is needed to cool the spent shale and to establish new vegetation on top of it. Nitrogenous compounds and arsenic in crude shale oil are among potential pollutants. Spent shale contains salts that are potentially leachable, as well as organic pyrolytic products. Retorting oil shales may release more CO/sub 2/ through decomposition of carbonate minerals that will subsequently be generated by burning the oil produced. Topographic effects of oil shale mining may raise socio-economic problems. Next the article discusses the conversion of coal to liquid by pyrolysis or hydrogenation, including the Gulf solvent refined coal (SRC) and the Exxon (EDS) liquefaction processes. Also described in the South African SASOL process for producing synthetic fuel from coal. A parallel account is included on the estimated complete cycle of United States and of worldwide crude oil production, forecasting depletion within less than a century. 11 refs.

Walters, S.

1982-02-01T23:59:59.000Z

326

Global Oil Geopolitics  

U.S. Energy Information Administration (EIA)

Iran-Iraq War . Iranian revolution . Arab Oil Embargo . Asian financial crisis . capacity exhausted . Global financial collapse . 9-11 attacks . OPEC cuts targets 1.7 ...

327

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

328

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

329

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

330

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

331

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

332

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

333

Oil spill response resources  

E-Print Network (OSTI)

Pollution has become one of the main problems being faced by humanity. Preventing pollution from occurring might be the best idea but is not possible in this fast developing world. So the next best thing to do would be to respond to the pollution source in an effective manner. Oil spills are fast becoming pollution sources that are causing the maximum damage to the environment. This is owing to the compounds that are released and the way oil spreads in both water and land. Preventing the oil spill would be the best option. But once the oil has been spilled, the next best thing to do is to respond to the spill effectively. As a result, time becomes an important factor while responding to an oil spill. Appropriate response to contain and cleanup the spill is required to minimize its potential damage to the ecosystem. Since time and money play a very important role in spill response, it would be a great idea if decisions can be made in such a way that a quick response can be planned. The first part of this study deals with the formation of an 'Oil Spill Resources Handbook', which has information on all the important Oil Spill Contractors. The second and the main part of the study, deals with creating a database in Microsoft Access of the Oil Spill Contractors. The third portion of the study deals with planning an oil spill response using a systems approach.

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

334

China's Global Oil Strategy  

E-Print Network (OSTI)

Industry analysts and academics agree that China’s domestic oil supply will peak, and demand Robert Ebel, China’s Energy

Thomas, Bryan G

2009-01-01T23:59:59.000Z

335

Crude Oil Price Forecast  

U.S. Energy Information Administration (EIA)

We believe crude oil prices will strengthen somewhat, but prices will rise much more slowly than they fell, and they are expected to remain lower in ...

336

Oil And The Macroeconomy.  

E-Print Network (OSTI)

?? This paper examines the oil price-macro economy relationship by means of analyzing the impact ofoil price on Industrial production, real effective exchange rate, long… (more)

Al-Ameri, Leyth

2012-01-01T23:59:59.000Z

337

California Crude Oil Prices  

U.S. Energy Information Administration (EIA)

... of different quality crudes vary over time based on the value the market places on such quality attributes. A heavy crude oil has more heavy, ...

338

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

339

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier  ...

340

Relaxation studies on oil, pressboard and oil impregnated pressboard.  

E-Print Network (OSTI)

??In this thesis, a laboratory relaxation study with FDS and RVM was carried out for a period of 3 years with the fabricated oil (OIL),… (more)

Cao, Hongyan.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Why solar oil shale retorting produces more oil  

DOE Green Energy (OSTI)

A solar oil shale retorting process may produce higher oil yield than conventional processing. High oil yield is obtained for three reasons: oil carbonization inside of the shale is reduced, oil cracking outside of the shale is reduced, and oil oxidation is essentially eliminated. Unique capabilities of focused solar energy produce these advantages. An increase in yield will reduce the cost of mining and shale transportation per barrel of oil produced. These cost reductions may justify the increased processing costs that will probably be associated with solar oil shale retorting.

Aiman, W.R.

1981-05-20T23:59:59.000Z

342

NETL: Oil & Natural Gas Projects: Shale Oil Upgrading Utilizing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Companies providing oil samples of at least five (5) gallons include Chevron, Oil Shale Exploration Company (OSEC), and Red Leaf Resources, Inc. Background Work performed...

343

NETL: Oil and Natural Gas: Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

that have unconventional characteristics (e.g., oil in fractured shales, kerogen in oil shale, bitumen in tar sands) constitute an enormous potential domestic supply of energy....

344

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

345

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

346

NETL: Oil & Natural Gas Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Oil and Natural Gas Supply > Events Oil and Natural Gas Supply Events The following is a listing of events of interest to the oil and natural gas community....

347

The Legacy of Oil Spills  

E-Print Network (OSTI)

010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

348

Handbook of Australasian Edible Oils  

Science Conference Proceedings (OSTI)

This book highlights various aspects of Australasian edible oils. Handbook of Australasian Edible Oils Food Science Health Nutrition Biochemistry Food Science & Technology Health - Nutrition - Biochemistry Soft Bound Books Oils and Fats Specialist

349

Industrial Uses of Vegetable OilsChapter 3 Vegetable Oil-Based Engine Oils: Are They Practical?  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practical? Processing eChapters Processing Press Downloadable pdf of Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practi

350

Development of the Write Process for Pipeline-Ready Heavy Oil  

DOE Green Energy (OSTI)

Work completed under this program advances the goal of demonstrating Western Research Institute's (WRI's) WRITE{trademark} process for upgrading heavy oil at field scale. MEG Energy Corporation (MEG) located in Calgary, Alberta, Canada supported efforts at WRI to develop the WRITE{trademark} process as an oil sands, field-upgrading technology through this Task 51 Jointly Sponsored Research project. The project consisted of 6 tasks: (1) optimization of the distillate recovery unit (DRU), (2) demonstration and design of a continuous coker, (3) conceptual design and cost estimate for a commercial facility, (4) design of a WRITE{trademark} pilot plant, (5) hydrotreating studies, and (6) establish a petroleum analysis laboratory. WRITE{trademark} is a heavy oil and bitumen upgrading process that produces residuum-free, pipeline ready oil from heavy material with undiluted density and viscosity that exceed prevailing pipeline specifications. WRITE{trademark} uses two processing stages to achieve low and high temperature conversion of heavy oil or bitumen. The first stage DRU operates at mild thermal cracking conditions, yielding a light overhead product and a heavy residuum or bottoms material. These bottoms flow to the second stage continuous coker that operates at severe pyrolysis conditions, yielding light pyrolyzate and coke. The combined pyrolyzate and mildly cracked overhead streams form WRITE{trademark}'s synthetic crude oil (SCO) production. The main objectives of this project were to (1) complete testing and analysis at bench scale with the DRU and continuous coker reactors and provide results to MEG for process evaluation and scale-up determinations and (2) complete a technical and economic assessment of WRITE{trademark} technology to determine its viability. The DRU test program was completed and a processing envelope developed. These results were used for process assessment and for scaleup. Tests in the continuous coker were intended to determine the throughput capability of the coker so a scaled design could be developed that maximized feed rate for a given size of reactor. These tests were only partially successful because of equipment problems. A redesigned coker, which addressed the problems, has been build but not operated. A preliminary economic analysis conducted by MEG and an their engineering consultant concluded that the WRITE{trademark} process is a technically feasible method for upgrading bitumen and that it produces SCO that meets pipeline specifications for density. When compared to delayed coking, the industry benchmark for thermal upgrading of bitumen, WRITE{trademark} produced more SCO, less coke, less CO{sub 2} per barrel of bitumen fed, and had lower capital and operating costs. On the other hand, WRITE{trademark}'s lower processing severity yielded crude with higher density and a different product distribution for naphtha, light gas oil and vacuum oil that, taken together, might reduce the value of the SCO. These issues plus the completion of more detailed process evaluation and economics need to be resolved before WRITE{trademark} is deployed as a field-scale pilot.

Lee Brecher; Charles Mones; Frank Guffey

2009-03-07T23:59:59.000Z

351

Oil price analysis  

Science Conference Proceedings (OSTI)

The transport has been in the whole history of mankind the basic and determining mover of the human society shape. It determined not only the position of towns, but also their inner design and it was also last but not least the basic element of the economic ... Keywords: GDP, deposit, fuels, history, market equilibrium, oil, oil reserves, price

Zdenek Riha; Viktorie Jirova; Marek Honcu

2011-12-01T23:59:59.000Z

352

Edible Oils Package  

Science Conference Proceedings (OSTI)

Contains four (4) titles regarding frying and edible oils. Edible Oils Package Food Science & Technology Health - Nutrition - Biochemistry Value Packages 1766A8D5F05863694E128DE1C47D07C3 This Value Package includes: ...

353

Menhaden Fish Oil  

Science Conference Proceedings (OSTI)

Physical Characteristics of Oils, Fats, and Waxes Menhaden Oil Specific Gravity (SG) 15.5/15.5°C. . . . . . . . . . . . . . .0.912– 0.930 25/25°C Other SG Refractive Index (RI) 25°C 40°C Other RI. . . . . . . . . . . . . . . (65) 1

354

Refining of shale oil  

DOE Green Energy (OSTI)

The refining of shale oil is reviewed to assess the current state-of-the-art, especially as to the avaiability of technology suitable for operation on a commercial scale. Oil shale retorting processes as they affect the quality of the crude shale oil for refining, exploratory research on the character and refining of shale oil, and other published refining background leading to the present status are discussed. The initial refining of shale oil requires the removal of a large concentration of nitrogen, an added step not required for typical petroleum crude oils, and recently published estimates show that the total cost of refining will be high. Specific technoloy is reported by industry to be technically proven and available for commercial-scale refining. Although the refining will be more costly than that of petroleum, the viability of a shale oil industry will also be affected greatly by the technology and costs of producing the crude shale oil, environmental costs, and future price and tax treatment, and these are outside the scope of this study of refining.

Lanning, W.C.

1978-05-01T23:59:59.000Z

355

Peak oil: diverging discursive pipelines.  

E-Print Network (OSTI)

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

356

Oil and Natural Gas - Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search NETL Oil and Natural Gas Document Information Oil & Natural Gas Document Repository Results will be shown in two categories. "Document Database Results" provides...

357

Balancing oil and environment... responsibly.  

Science Conference Proceedings (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

358

oil | OpenEI  

Open Energy Info (EERE)

oil oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

359

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

360

Corrosivity Of Pyrolysis Oils  

SciTech Connect

Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

Keiser, James R [ORNL; Bestor, Michael A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

362

An informal description of Standard OIL and Instance OIL  

E-Print Network (OSTI)

An informal description of Standard OIL and Instance OIL 28 November 2000 Sean Bechhofer (1) Jeen to be specified in some language. This paper introduces the newest version of OIL ­ the ontology inference layer of the DAML language, with working name DAML-OIL, was proposed in a message to the rdf-logic mailing list

Ohlbach, Hans Jürgen

363

Table 5.2 Crude Oil Production and Crude Oil Well ...  

U.S. Energy Information Administration (EIA)

Table 5.2 Crude Oil Production and Crude Oil Well Productivity, 1954-2011: Year: Crude Oil Production: Crude Oil Well 1 Productivity: 48 States 2: ...

364

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

365

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Onshore Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Offshore Oil Production

366

Oil shale data book  

SciTech Connect

The Oil Shale Data Book has been prepared as a part of its work under DOE Management Support and Systems Engineering for the Naval Oil Shale Reserves Predevelopment Plan. The contract calls for the preparation of a Master Development Plan for the Reserves which comprise some 145,000 acres of oil shale lands in Colorado and Utah. The task of defining the development potential of the Reserves required that the resources of the Reserves be well defined, and the shale oil recovery technologies that are potentially compatible with this resource be cataloged. Additionally, processes associated with shale oil recovery like mining, materials handling, beneficiation, upgrading and spent shale disposal have also been cataloged. This book, therefore, provides a ready reference for evaluation of appropriate recovery technologies and associated processes, and should prove to be valuable for many oil shale activities. Technologies that are still in the process of development, like retorting, have been treated in greater detail than those that are commercially mature. Examples of the latter are ore crushing, certain gas clean-up systems, and pipeline transportation. Emphasis has been on documenting available design information such as, maximum module size, operation conditions, yields, utility requirements, outlet gas compositions, shale oil characteristics, etc. Cost information has also been included where available.

1979-06-01T23:59:59.000Z

367

FAQs for Survey Forms 804 and 814  

Gasoline and Diesel Fuel Update (EIA)

4 and 814 4 and 814 How are different types of naphtha cargoes classified for reporting purposes? Naphtha to be used as reformer feed is classified as unfinished oils, naphtha and lighter (EIA product code 820). Naphtha intended for gasoline blending is classified as motor gasoline blending components. If the naphtha is intended for gasoline blending but it's not already blended to form RBOB (EIA product codes 122 and 123), CBOB (EIA product code 139), or GTAB (EIA product codes 120 and 121), then classify the product as "All Other Motor Gasoline Blending Components" (EIA product code 138). Naphtha classified as unfinished oils or motor gasoline blending components requires reporting of a processing facility. Traders will probably be able to tell the difference between reformer feed

368

OpenEI - oil  

Open Energy Info (EERE)

/0 en AEO2011: Oil and Gas /0 en AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions http://en.openei.org/datasets/node/805 This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. 

License
Type of License: 

369

Tenth oil recovery conference  

SciTech Connect

The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base.

Sleeper, R. (ed.)

1993-01-01T23:59:59.000Z

370

Oil Speculation by Jussi Keppo  

E-Print Network (OSTI)

Oil Speculation by Jussi Keppo July 8, 2008 The increase in the oil spot price seems to be mainly, the surplus oil capacity decreased from 5 million barrels a day to 2 million barrels a day. There seems, i.e., they are long in these markets. Here I focus on oil and I have simple points

Keppo, Jussi

371

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

372

HS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

373

MS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOOKING DOWN AN OIL WELL LOOKING DOWN AN OIL WELL Ever wonder what oil looks like underground, down deep, hundreds or thousands of feet below the surface, buried under millions of tons of rock and dirt? If you could look down an oil well and see oil where nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-called an "oil reservoir" -looks very much like any other rock formation. It looks a lot like...well, rock. Oil exists underground as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th e "pores" and the oil droplets can be seen only through a microscope. Th e droplets cling to the rock, like drops of water cling

374

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

375

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

376

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

a key area for discoveries, had no significant impact on the National total in 2002. Operators replaced 112 ... 51 4,444 73 12 27 67 61 107 15 13 Crude Oil Proved ...

377

Oil Price Volatility  

U.S. Energy Information Administration (EIA) Indexed Site

Speculation and Oil Price Volatility Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April 2009 1 FACTORS DRIVNG OIL PRICE VOLATILITY FACTORS DRIVNG OIL PRICE VOLATILITY ► ► Market fundamentals Market fundamentals . . Fluctuations in supply, Fluctuations in supply, demand, and market power demand, and market power Some fundamentals related to expectations of Some fundamentals related to expectations of

378

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

379

Oil Market Assessment  

Gasoline and Diesel Fuel Update (EIA)

Logo Oil Market Assessment - September Logo Oil Market Assessment - September 12, 2001 EIA Home Page Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon. Rumors of scattered closures of U.S. refineries, pipelines, and terminals were reported, and Louisiana Offshore Oil Port operations were partially suspended. While the NYMEX and New York Harbor were temporarily closed, operations are expected to resume soon. Most, if not all petroleum industry infrastructure is expected to resume normal operations today or in the very near term. Prices at all levels (where markets were open) posted increases yesterday, but many prices fell today, as initial reactions

380

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. “China signs $2bn Iran oil deal. ” Al Jazeera (11of its partnerships: Sudan, Iran and Venezuela. An analysiss $400 million contract with Iran may omit information about

Thomas, Bryan G

2009-01-01T23:59:59.000Z

382

Crude Oil Outlook  

Gasoline and Diesel Fuel Update (EIA)

July are likely to not be felt until the very end of August or early September. OPEC crude oil production cuts are not likely to be as great as their cuts in quotas. However, they...

383

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

384

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

385

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

386

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

387

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

388

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

Coastal Region Onshore ... Los Angeles Basin Onshore. . . 330 0 31 24 31 26 3 0 0 16 319 ... the net loss of proved reserves of crude oil in 2003.

389

Total OECD Oil Stocks  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: OECD oil inventory levels are not expected to rise sufficiently during the rest of the year to match the average levels seen prior to the wide swings since 1995. This...

390

Futures oil market outlook  

Science Conference Proceedings (OSTI)

We expect the broader expansion of global economic activity in 1995 to more than offset the anticipated slowdown in the US economic growth. This should result in worldwide oil demand growth in excess of 1 million barrels per day and firmer oil prices. This comes on the heels of nearly identical growth in 1994 and should be followed by an even larger increase in 1996. This year`s demand growth comes against a backdrop of flat OPEC production and an increase in non-OPEC supplies that will fall short of the expected increase in consumption. Some degree of political upheaval in at least a half dozen important oil exporting nations could also have implication for crude supplies. One major wildcard that remains for global oil markets is the status of the United Nations` sanctions on Iraqi exports and the timing of when these sanctions are to be eased or lifted completely.

Saucer, J. [Smith Barney, Houston, TX (United States)

1995-06-01T23:59:59.000Z

391

Sound Oil Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sound Oil Company Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied.

392

Biocatalysis in Oil Refining  

SciTech Connect

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

393

Oil in Tennessee  

Science Conference Proceedings (OSTI)

Oil is the single most dominant force in the ''energy outlook'' and will continue to be throughout the foreseeable generations. Tennesseans now spend about $10 billion annually to satisfy energy needs; nearly half of that is for oil-based products. Most of the petroleum products sold are in the form of motor fuel, but a third of these products are made up of other categories, such as aviation and jet fuels, heating fuels, and lubricants. Baseline industry data is supplied.

Lamp, R.; Forester, C. (ed.)

1987-01-01T23:59:59.000Z

394

Oil recovery process  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system is claimed for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P.A.; Rhudy, J.S.

1984-02-28T23:59:59.000Z

395

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

396

Will lecture on: Unconventional Oil and Gas  

E-Print Network (OSTI)

are not yet resolved. Ten years ago this category comprised heavy oil, oil shale, coal bed methane, tight gas, and economic aspects of gas shale and tight oil development. The role of oil shale in the emerging energy applied research on heavy oil, gas hydrate, gas shale, tight oil, and oil shale reservoirs. He advises

Schuster, Assaf

397

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

398

Oil/gas collector/separator for underwater oil leaks  

DOE Patents (OSTI)

This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, C.D.

1992-12-31T23:59:59.000Z

399

Oil/gas collector/separator for underwater oil leaks  

DOE Patents (OSTI)

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

400

Process for preparing lubricating oil from used waste lubricating oil  

DOE Patents (OSTI)

A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Shale oil cracking. 2. Effect on oil composition  

DOE Green Energy (OSTI)

Results from spectroscopic investigations are presented that demonstrate the effect of oil cracking on shale oil composition. Techniques used include infrared spectroscopy, capillary column gas chromatography/mass spectroscopy and /sup 13/C nuclear magnetic resonance. We show that cracking causes an increase in aromatic and alkene content of the oil. We compare our results for oils prepared in the laboratory with oils prepared in the TOSCO-II semi-works and in modified and true-in-situ combustion retorts. We demonstrate that the napthalene/2-methyl-naphthalene ratio is a good indicator of cracking conditions in an oil shale retort.

Burnham, A.K.; Sanborn, R.H.; Crawford, R.W.; Newton, J.C.; Happe, J.A.

1980-08-01T23:59:59.000Z

402

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

during oil shale retorting: retort water and gas condensate.commercial oil shale plant, retort water and gas condensateunique to an oil shale retort water, gas condensate, and

Fox, J.P.

2010-01-01T23:59:59.000Z

403

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

404

Oils and Fats World Market Update 2011  

Science Conference Proceedings (OSTI)

Archive of the Oils and Fats World Market Update 2011 Oils and Fats World Market Update 2011 Izmir, Turkey Oils and Fats World Market Update 2011 ...

405

United Oil Company | Open Energy Information  

Open Energy Info (EERE)

United Oil Company Jump to: navigation, search Name United Oil Company Place Pittsburgh, Pennsylvania Product Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

406

Deepwater Oil & Gas Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

407

Oil Prices and Long-Run Risk.  

E-Print Network (OSTI)

??I show that relative levels of aggregate consumption and personal oil consumption provide anexcellent proxy for oil prices, and that high oil prices predict low… (more)

READY, ROBERT

2011-01-01T23:59:59.000Z

408

Oils and Fats World Market Update 2013  

Science Conference Proceedings (OSTI)

Archive of AOCS Oils and Fats World Market Update 2013 Oils and Fats World Market Update 2013 Kiev, Ukraine Oils and Fats World Market Update 2013 ...

409

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

1 1 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides crude oil and natural gas short-term supply parameters to both the Natural Gas Transmission and Distribution Module and the Petroleum

410

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

411

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

412

Method for extracting an oil content from oil shale. [ultrasonic waves  

SciTech Connect

A method is disclosed for extracting an oil content from oil shale by compressing powdery grains of oil shale while applying ultrasonic waves to these powdery grains to separate the oil content from the powdery grains of oil shale.

Lee, J.

1981-12-08T23:59:59.000Z

413

World oil: Market or mayhem  

E-Print Network (OSTI)

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil ” a genuine concern? Why did oil prices spike in the summer of 2008, and what role did speculators play? Any attempt to answer these questions must be informed and disciplined by economics. Such is the purpose of this essay: to illuminate recent developments in the world oil market from the perspective of economic theory.

James L. Smith; James L. Smith; Larry Debrock; Dwight Lee; John Parsons

2009-01-01T23:59:59.000Z

414

Shale oil cracking. 1. Kinetics  

DOE Green Energy (OSTI)

Experiments were conducted to determine kinetics for thermal cracking of shale oil vapor over shale. Cracking temperatures of 504 to 610/sup 0/C and residence times of 2 to 11 seconds were used. A first-order Arrhenius rate expression and stoichiometry were obtained. Also observed were changes in the oil quality. Cracking decreased the H/C ratio, increased the nitrogen content, and decreased the pour point of the oil. Gas-phase oil cracking is contrasted to liquid-phase oil coking as a loss mechanism in oil-shale retorting.

Burnham, A.K.; Taylor, J.R.

1979-10-01T23:59:59.000Z

415

Oil Price Shocks and Inflation  

E-Print Network (OSTI)

Oil prices have risen sharply over the last year, leading to concerns that we could see a repeat of the 1970s, when rising oil prices were accompanied by severe recessions and surging inflation. This Economic Letter examines the historical relationship between oil price shocks and inflation in light of some recent research and goes on to discuss what the recent jump in oil prices might mean for inflation in the future. Figure 1 Inflation and the relative price of oil The historical record Figure 1 plots the price of oil relative to the core personal consumption expenditures price index (PCEPI) together with the core PCEPI inflation

unknown authors

2005-01-01T23:59:59.000Z

416

Abandoned oil fields in Oklahoma  

SciTech Connect

Data are presented for approximately 165 abandoned oil fields in Oklahoma that have produced 10,000 or more barrels of oil prior to abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production, if known; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (ATT)

Chism, J.

1983-08-01T23:59:59.000Z

417

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: North America 622.131

418

OMB No. 1905-0165 Expiration Date: 1/31/2013 Version No.:2011.01 ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076: ... Kerosene & Light Gas Oils: 830 Heavy Gas Oils: 840 Residuum: 850

419

OMB No. 1905-0165 Expiration Date: 12/31/2011 Version No.:2009.01 ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Secure File Transfer: ... Kerosene & light gas oils 830 Heavy Gas Oils 840 Residuum 850

420

DRAFT - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Physical Address of Contact (e.g., Street Address, Building Number, Secure File Transfer: State: ... Kerosene & Light Gas Oils: 830. Heavy Gas Oils: 840. Residuum: 850.

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

FORM EIA-810 MONTHLY REFINERY REPORT - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Physical Address of Contact (e.g., Street Address, Building Number, Secure File Transfer: State: ... Kerosene & Light Gas Oils 830: Heavy Gas Oils 840: Residuum 850

422

OMB No. 1905-0165 Version No.:xxxx.xx FORM EIA-815 MONTHLY BULK ...  

U.S. Energy Information Administration (EIA)

Physical Address (e.g., Street Address, Building Number, Floor, Suite): Fax: (202) 586-1076. ... Kerosene & Light Gas Oils. 830: Heavy Gas Oils. 840: Residuum. 850:

423

International Energy Statistics  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: World 22,069.0 5,219.8

424

International Energy Statistics - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 141.822

425

Key China Energy Statistics 2011  

E-Print Network (OSTI)

Supply Coal Washing Coking Petroleum Refineries Gas WorksMt Diesel Oil Fuel Oil Gasoline Kerosene Liquid PetroleumGas Petroleum Other Products Refinery Production by Product

Levine, Mark

2013-01-01T23:59:59.000Z

426

EIA Short-Term and Winter Fuels Outlook - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

for heating oil, propane, and natural gas, but little change in ... heating oil . electricity . wood . kerosene/other . Howard Gruenspecht, Winter ...

427

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network (OSTI)

kerosene Coal INDUSTRY electricity Coal oil gas COMMERCIALkerosene Coal INDUSTRY electricity Coal oil gas COMMERCIALin the industry sector and primary electricity represents

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

428

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 9,252.5

429

International Energy Statistics - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Motor Gasoline: Jet Fuel: Kerosene: Distillate Fuel Oil: Residual Fuel Oil: Liquefied Petroleum Gases: Other Products: Total: United States 412.649

430

MECS Fuel Oil Tables  

U.S. Energy Information Administration (EIA) Indexed Site

: Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas : Actual, Minimum and Maximum Use Values for Fuel Oils and Natural Gas Year Distillate Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 185 148 1224 3.4% 1994 152 125 1020 3.1% Residual Fuel Oil (TBtu) Actual Minimum Maximum Discretionary Rate 1985 505 290 1577 16.7% 1994 441 241 1249 19.8% Natural Gas (TBtu) Actual Minimum Maximum Discretionary Rate 1985 4656 2702 5233 77.2% 1994 6141 4435 6758 73.4% Source: Energy Information Administration, Office of Energy Markets and End Use, 1985 and 1994 Manufacturing Energy Consumption Surveys. Table 2: Establishments That Actually Switched Between Natural Gas and Residual Fuel Oil Type of Switch Number of Establishments in Population Number That Use Original Fuel Percentage That Use Original Fuel Number That Can Switch to Another Fuel Percentage That Can Switch to Another Fuel Number That Actually Made a Switch Percentage That Actually Made a Switch

431

Abandoned Texas oil fields  

SciTech Connect

Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

1980-12-01T23:59:59.000Z

432

Table 2. Principal tight oil plays: oil production and proved...  

U.S. Energy Information Administration (EIA) Indexed Site

"Other tight oil plays (e.g. Monterey, Woodford)",,,24,253 "All U.S. tight oil plays",,,228,3628 "Note: Includes lease condensate." "Source: U.S. Energy...

433

Enhanced Oil Recovery and Other Oil Resources projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources Enhanced Oil Recovery and Other Oil Resources CO2 EOR | Other EOR & Oil Resources | Environmental | Completed Oil Projects Project Number Project Name Primary Performer DE-FE0013723 Development of Nanoparticle-Stabilized Foams To Improve Performance of Water-less Hydraulic Fracturing The University of Texas at Austin DE-FE0010799 Small Molecular Associative Carbon Dioxide (CO2) Thickeners for Improved Mobility Control University of Pittsburgh DE-FE0006011 Development of Real Time Semi-autonomous Geophysical Data Acquisition and Processing System to Monitor Flood Performance White River Technologies DE-FE0005979 Nanoparticle-stabilized CO2 Foam for CO2 EOR Application New Mexico Institute of Mining and Technology

434

Oil backstreaming in turbomolecular and oil diffusion pumps  

Science Conference Proceedings (OSTI)

State of the art turbomolecular pumps have oil vapor backstreaming rates too low to measure by classical methods (AVS method

Louis Maurice; Pierre Duval; Guy Gorinas

1979-01-01T23:59:59.000Z

435

DAG in Oil Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for DAG in Oil to determine Total DAG.Samples include canola oil and soybean oil. DAG in Oil Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laborato

436

Single Cell Oils: Microbial and Algal Oils, 2nd EditionChapter 16 Nutritional Aspects of Single Cell Oils: Applications of Arachidonic Acid and Docosahexaenoic Acid Oils  

Science Conference Proceedings (OSTI)

Single Cell Oils: Microbial and Algal Oils, 2nd Edition Chapter 16 Nutritional Aspects of Single Cell Oils: Applications of Arachidonic Acid and Docosahexaenoic Acid Oils Biofuels and Bioproducts and Biodiesel Biofuels - Bioproducts ...

437

Crude Oil, Heating Oil, and Propane Market Outlook 2001  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2001/02. It was given by Doug MacIntyre at the 2001 State Heating Oil and Propane Program Conference held in Wilmington, DE on August 13, 2001.

Information Center

2001-08-01T23:59:59.000Z

438

Crude Oil, Heating Oil, and Propane Market Outlook 2003  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2003/04. It was given at the 2003 State Heating Oil and Propane Program Conference held in Asheville, NC on August 11, 2003.

Information Center

2003-04-01T23:59:59.000Z

439

Crude Oil, Heating Oil, and Propane Market Outlook  

Reports and Publications (EIA)

This PowerPoint presentation provides an early look at the crude oil, heating oil, and propane market outlooks for the winter of 2002/03. It was given at the 2002 State Heating Oil and Propane Program Conference held in Kennebunkport, ME on August 12, 2002.

Information Center

2002-08-21T23:59:59.000Z

440

REVIEW PAPER Biodeterioration of crude oil and oil derived  

E-Print Network (OSTI)

, oil pipelines, industrial systems of water cooling, systems of water preparation for pump- ing specific problem such as microbial contamination of stored crude oil and petroleum products. The Russian lubricants (technical vaselines, rope and gun oil) made of petroleum HCs are readily affected by fungi

Appanna, Vasu

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network (OSTI)

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Yener, Aylin

442

Alloy 625 – Impressive Past/Significant Presence/Awesome Future  

Science Conference Proceedings (OSTI)

nitrogen from naphtha, jet fuel. diesel, gas oils and fuel oils. Ths process can result in .... fatigue of alloy 625 overlays in fossil-fired utility boiler^."^". -3.05.

443

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network (OSTI)

Raw Coal Cleaned Coal Other Washed Coal Briquettes CokeCoke Oven Gas Other Gas Other Coking Products Petroleumbase oil n/a n/a Petroleum Coke Naphtha Paraffin Solvent oil

Fridley, David

2011-01-01T23:59:59.000Z

444

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

One of the first places where consumers are feeling the impact of One of the first places where consumers are feeling the impact of this winter's market pressures is in home heating oil prices. This chart shows prices through February 28, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of heating oil

445

STEO September 2012 - oil production  

U.S. Energy Information Administration (EIA) Indexed Site

oil production forecast to rise almost 700,000 bpd this oil production forecast to rise almost 700,000 bpd this year, help cut U.S. petroleum imports U.S. crude oil production is expected to average 6.3 million barrels per day in 2012. That's up nearly 700,000 barrels per day from last year and the highest annual oil output since 1997 says the U.S. Energy Information Administration in its new monthly short-term energy outlook for September. EIA analyst Sam Gorgen explains: "Higher oil supplies, especially from North Dakota and Texas, boosted U.S. oil production. The number of on-shore drilling rigs targeting oil nationwide has increased by around 200 so far this year to just under 1,400 rigs." Higher domestic oil production will help cut U.S. petroleum imports. The share of total U.S.

446

Business cycles in oil economies  

SciTech Connect

This study examines the impact of oil price shocks on output fluctuations of several oil-exporting economies. In most studies of business cycles, the role of oil price is ignored; the few studies that use oil price as one of the variables in the system focus on modeling oil-importing economies. The vector autoregression (VAR) technique is used to consider the cases of Norway, Nigeria, and Mexico. Both atheoretical and structural' VARs are estimated to determine the importance of oil price impulses on output variations. The study reports two types of results: variance decomposition and impulse response functions, with particular emphasis on the issues of stationarity and co-integration among the series. The empirical results suggest that shocks to oil price are important in explaining output variations. In most cases, shocks to oil price are shown to explain more than 20% of the forecast variance of output over a 40-quarter horizon.

Al-Mutairi, N.H.

1991-01-01T23:59:59.000Z

447

Diacylglycerol Oil, 2nd Edition  

Science Conference Proceedings (OSTI)

This new edition has the latest safety and regulatory information; and discusses the physicochemical properties and application techniques of diacylglycerol oil, an oil with unique digestion and absorption characteristics that make it less likely to be sto

448

NETL: Oil and Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Supply Technologies Oil and Natural Gas Supply Oil and natural gas are the lifeblood of our economy, accounting for more than 60 percent of the energy consumed in the United...

449

Market assessment for shale oil  

SciTech Connect

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

1979-10-01T23:59:59.000Z

450

Applications: Oil and gas production  

E-Print Network (OSTI)

on Health, Safety & Environment in Oil & Gas E&P SPE/EAGE European Unconventional Resources Conference SPE International Conference PennWell Unconventional Oil and Gas Europe PennWell Underwater Intervention Marine Exploration Society Conference UGAS SPE Middle East Unconventional Gas Conference WHOC World Heavy Oil

451

Oil shale: Technology status report  

Science Conference Proceedings (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

452

Economic variables in production of oil from oil shale  

SciTech Connect

The oil-shale production cost estimates reported by the National Petroleum Council in Dec. 1972, as part of an overall study of the U.S. energy situation are the most recent publicly available data on oil-shale economics. Using the basic NPC costs, this study examines several important parameters affecting shale oil's economic viability. Other factors pertinent to consideration of oil shale as a domestic fuel source, such as the leasing of federal oil shale lands, water availability, and environmental restraints are reviewed.

Cameron, R.J.

1973-04-01T23:59:59.000Z

453

INTERIM VALIDATION REPORT MIDDLE DISTILLATE PRICE MONITORING SYSTEM  

E-Print Network (OSTI)

on the price of home heating oil may also be obtained byincluding kerosene, home heating oil, range oil, stove oil,to most marketers of home heating oil. Consequently, during

Hopelain, D.G.

2011-01-01T23:59:59.000Z

454

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

8 FXe 0.1 1 10 100 1000 FNeFKr 0.001 0.01 0.1 1 10 Air-Like XeKr Enrichment from GasOil source Material Solubility Fractionation Hydrate Fractionation (Non-thermogenic source)...

455

Oil Field Management System  

The INL has developed a device for metering oil and gas streams that consist of both gas and liquid parts presents a significant challenge. Commonly used multi-phase flow meters reflect significant gains in this technology, but still have major flaws ...

456

Deepwater Oil & Gas Resources  

Energy.gov (U.S. Department of Energy (DOE))

The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy’s Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection.

457

Oil and Global Adjustment  

E-Print Network (OSTI)

The current account surplus of the world’s major oil exporting economies – defined as the IMF’s fuel-exporting emerging economies plus Norway – increased from $110b to about $500b between 2002 and 2006. 2 In 2006, the current account surplus of the Gulf

Brad Setser

2007-01-01T23:59:59.000Z

458

World Oil Transit Chokepoints  

Reports and Publications (EIA)

Chokepoints are narrow channels along widely used global sea routes, some so narrow that restrictions are placed on the size of vessel that can navigate through them. They are a critical part of global energy security due to the high volume of oil traded through their narrow straits.

Information Center

2012-08-22T23:59:59.000Z

459

Product Guide Product Guide Volumes Category Prices Table Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

6 6 Kerosene refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,36 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 1 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,37 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 2 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . all sellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,18,39 -- refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,37

460

Product Guide Product Guide Volumes Category Prices Table Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

436 Energy Information Administration / Petroleum Marketing Annual 1997 Kerosene refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,36 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 1 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,37 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 2 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . all sellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,18,39 -- refiners

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Product Guide Product Guide Volumes Category Prices Table Crude Oil  

Gasoline and Diesel Fuel Update (EIA)

5 5 Kerosene refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,36 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 1 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,37 3,5,45 prime suppliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -- 50 No. 2 Distillate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . all sellers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15,18,39 -- refiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2,4,37

462

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents (OSTI)

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

463

Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe  

E-Print Network (OSTI)

A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 µL) in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 0–10 ppm) and the second capable of providing higher dilution rates for high concentrations (range 0.02%–0.2 % w/w). The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r 2 = 0.996). Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95 % confidence level. Precision (RSD%) was better than 5 % (2 % typical) for the high concentrations system. The carryover between successive injections was found to be negligible. 1.

Gustavo Pignalosa; Moisés Knochen; Noel Cabrera

2004-01-01T23:59:59.000Z

464

Refinery & Blender Net Production of Kerosene  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

465

Kerosene Sales for All Other Uses  

Gasoline and Diesel Fuel Update (EIA)

1,520 1,036 633 2,297 809 245 1984-2012 1,520 1,036 633 2,297 809 245 1984-2012 East Coast (PADD 1) 795 248 336 1,110 558 120 1984-2012 New England (PADD 1A) 232 23 31 10 105 49 1984-2012 Connecticut 8 5 18 0 0 0 1984-2012 Maine 16 6 3 0 99 45 1984-2012 Massachusetts 0 0 0 2 0 0 1984-2012 New Hampshire 6 1 0 2 2 1 1984-2012 Rhode Island 0 0 0 0 1 2 1984-2012 Vermont 203 12 10 6 3 1 1984-2012 Central Atlantic (PADD 1B) 408 133 79 277 113 56 1984-2012 Delaware 0 0 0 0 0 0 1984-2012 District of Columbia 0 0 0 0 0 0 1984-2012 Maryland 10 4 3 11 4 1 1984-2012 New Jersey 81 0 7 8 0 2 1984-2012 New York 205 88 18 179 89 40 1984-2012 Pennsylvania 112 41 51 79 19 13 1984-2012 Lower Atlantic (PADD 1C) 154 92 225 823 341 16 1984-2012

466

Prices of Refiner Kerosene Sales for Resale  

Gasoline and Diesel Fuel Update (EIA)

May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 2.793 2.806 2.996 3.055 3.057 3.029 1983-2013 East Coast (PADD 1) 3.018 2.989 3.173 3.132 3.172 3.182 1983-2013 New England (PADD 1A) W - - W W NA 1983-2013 Connecticut W - - W W NA 1984-2013 Maine - - - - - - 1984-2013 Massachusetts - - - - - - 1984-2013 New Hampshire - - - - - - 1984-2013 Rhode Island - - - - - - 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 2.952 2.985 3.173 3.096 3.146 3.140 1983-2013 Delaware - W W - W W 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey W W W W W W 1984-2013 New York W W W W 3.328 3.258 1984-2013 Pennsylvania W W W W 3.408 W 1984-2013

467

Kerosene-Type Jet Fuel Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

468

Stocks of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

469

Exports of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

470

Model documentation report: Short-term Integrated Forecasting System demand model 1985. [(STIFS)  

DOE Green Energy (OSTI)

The Short-Term Integrated Forecasting System (STIFS) Demand Model consists of a set of energy demand and price models that are used to forecast monthly demand and prices of various energy products up to eight quarters in the future. The STIFS demand model is based on monthly data (unless otherwise noted), but the forecast is published on a quarterly basis. All of the forecasts are presented at the national level, and no regional detail is available. The model discussed in this report is the April 1985 version of the STIFS demand model. The relationships described by this model include: the specification of retail energy prices as a function of input prices, seasonal factors, and other significant variables; and the specification of energy demand by product as a function of price, a measure of economic activity, and other appropriate variables. The STIFS demand model is actually a collection of 18 individual models representing the demand for each type of fuel. The individual fuel models are listed below: motor gasoline; nonutility distillate fuel oil, (a) diesel, (b) nondiesel; nonutility residual fuel oil; jet fuel, kerosene-type and naphtha-type; liquefied petroleum gases; petrochemical feedstocks and ethane; kerosene; road oil and asphalt; still gas; petroleum coke; miscellaneous products; coking coal; electric utility coal; retail and general industry coal; electricity generation; nonutility natural gas; and utility petroleum. The demand estimates produced by these models are used in the STIFS integrating model to produce a full energy balance of energy supply, demand, and stock change. These forecasts are published quarterly in the Outlook. Details of the major changes in the forecasting methodology and an evaluation of previous forecast errors are presented once a year in Volume 2 of the Outlook, the Methodology publication.

Not Available

1985-07-01T23:59:59.000Z

471

Regional Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Slide 2 of 11 Notes: One of the first places where consumers are feeling the impact of this winterÂ’s market pressures is in home heating oil prices. This chart shows prices through February 7, the most recent EIA data available. The general level of heating oil prices each year is largely a function of crude oil prices, and the price range over the course of the heating season is typically about 10 cents per gallon. Exceptions occur in unusual circumstances, such as very cold weather, large changes in crude oil prices, or supply problems. Heating oil prices for East Coast consumers started this winter at just over $1 per gallon, but rising crude oil prices drove them up nearly 21 cents per gallon through mid-January. With the continuing upward pressure from crude oil markets, magnified by a regional shortfall of

472

oil supply | OpenEI  

Open Energy Info (EERE)

oil supply oil supply Dataset Summary Description CIA: World Factbook assessment of proved reserves of crude oil in barrels (bbl). Proved reserves are those quantities of petroleum which, by analysis of geological and engineering data, can be estimated with a high degree of confidence to be commercially recoverable from a given date forward, from known reservoirs and under current economic conditions. Estimated as of January 1st, 2010. Source CIA Date Released January 01st, 2010 (4 years ago) Date Updated Unknown Keywords crude oil energy energy data international oil oil supply Data text/csv icon 2010 Proved Oil Reserves (csv, 4.6 KiB) text/plain icon Original Text Format (txt, 6.5 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency

473

Measuring Dependence on Imported Oil  

Gasoline and Diesel Fuel Update (EIA)

Dependence on Imported Oil Dependence on Imported Oil by C. William Skinner* U.S. dependence on imported oil** can be measured in at least two ways. The differences hinge largely on whether oil imports are defined as net imports (total imports minus exports) or as total imports. EIA believes that the net-imports definition gives a clearer indication of the fraction of oil consumed that could not have been supplied from domestic sources and is thus the most appropriate measure. With this issue of the Monthly Energy Review, the Energy Information Administration (EIA) introduces a revised table that expresses depend- ence on imports in terms of both measures. How dependent is the United States on foreign oil? How dependent are we on oil from the Persian Gulf or other sensitive areas? Do we import more than we produce domes-

474

Naphtha for Petrochem. Feedstock Use Imports from Yemen  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

475

Naphtha for Petrochem. Feedstock Use Imports from Azerbaijan  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

476

Naphtha for Petrochem. Feedstock Use Imports from Burma  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

477

Naphtha for Petrochem. Feedstock Use Imports from Australia  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

478

Refinery Yield of Naphtha for Petrochemical Feedstock Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal ...

479

Naphtha for Petrochem. Feedstock Use Imports from Peru  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

480

Naphtha for Petrochem. Feedstock Use Imports from Indonesia  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

Note: This page contains sample records for the topic "oil kerosene naphthas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Naphtha for Petrochem. Feedstock Use Imports from Venezuela  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

482

Special Naphthas Imports from Venezuela - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

483

Naphtha for Petrochem. Feedstock Use Imports from Pakistan  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

484

Naphtha for Petrochemical Feedstock Use Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA)

Stock Type: Download Series History: Definitions, Sources & Notes: Show Data By: Product: Stock Type: Area: Jan-13 Feb-13 Mar-13 Apr-13 May-13 Jun-13 View History; U ...

485

Product Supplied for Naphtha for Petrochemical Feedstock Use  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

486

Reforming naphtha with boron-containing large-pore zeolites  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process. It comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising larger-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms containing less that 1000 parts per million aluminum.

Zones, S.I.; Holtermann, D.L.; Rainis, A.

1992-05-19T23:59:59.000Z

487

Prime Supplier Sales Volumes of Naphtha-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

488

Naphtha for Petrochem. Feedstock Use Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

489

Practical Guide to Vegetable Oil ProcessingChapter 1 Basic Oil Chemistry  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 1 Basic Oil Chemistry Processing eChapters Processing Press Downloadable pdf of Chapter 1 Basic Oil Chemistry from the book ...

490

Oil consumption, pollutant emission, oil proce volatility and economic activities in selected Asian Developing Economies.  

E-Print Network (OSTI)

??It is now well established in the literature that oil consumption, oil price shocks, and oil price volatility may impact the economic activities negatively. Studies… (more)

Rafiq, Shuddhasattwa

2009-01-01T23:59:59.000Z

491

Practical Guide to Vegetable Oil ProcessingChapter 11 Oil Quality Management  

Science Conference Proceedings (OSTI)

Practical Guide to Vegetable Oil Processing Chapter 11 Oil Quality Management Processing eChapters Processing Press Downloadable pdf of Chapter 11 Oil Quality Management from the book ...

492

Bleaching and Purifying Fats and Oils: Theory and PracticeChapter 7 Oil Recovery  

Science Conference Proceedings (OSTI)

Bleaching and Purifying Fats and Oils: Theory and Practice Chapter 7 Oil Recovery Processing eChapters Processing Press   Downloadable pdf of Chapter 7 Oil Recovery from ...

493

NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for NIOP-AOCS Fats & Oils, samples in this series include crude coconut oil, RB Palm Oil, Crude Safflower Oil, Crude sunflower Oil. NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program Laboratory Proficiency Progr

494

Crude Existence: The Politics of Oil in Northern Angola  

E-Print Network (OSTI)

agreements divide produced oil into cost oil and profit oil.to development in Angola as “cost oil” or as tax write-offs,The sale of cost oil, also called cost recovery oil, is used

Reed, Kristin

2009-01-01T23:59:59.000Z

495

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

496

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

497

fuel_oil.pdf  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Oil Usage Form Fuel Oil Usage Form 1999 Commercial Buildings Energy Consumption Survey (CBECS) 1. Timely submission of this report is mandatory under Public Law 93-275, as amended. 2. This completed report is due by 3. Data reported on this questionnaire are for the entire building identified in the label to the right. 4. Data may be submitted directly on this questionnaire or in any other format, such as a computer-generated listing, which provides the same i nformation and is conve nient for y our company. a. You may submit a single report for the entire building, or if it i s easier, a separate report for each of several accounts in the building. These will then be aggregated by the survey contractor. b. If you are concerned about your individual account information, you may c

498

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

499

Shale oil recovery process  

DOE Patents (OSTI)

A process of producing within a subterranean oil shale deposit a retort chamber containing permeable fragmented material wherein a series of explosive charges are emplaced in the deposit in a particular configuration comprising an initiating round which functions to produce an upward flexure of the overburden and to initiate fragmentation of the oil shale within the area of the retort chamber to be formed, the initiating round being followed in a predetermined time sequence by retreating lines of emplaced charges developing further fragmentation within the retort zone and continued lateral upward flexure of the overburden. The initiating round is characterized by a plurality of 5-spot patterns and the retreating lines of charges are positioned and fired along zigzag lines generally forming retreating rows of W's. Particular time delays in the firing of successive charges are disclosed.

Zerga, Daniel P. (Concord, CA)

1980-01-01T23:59:59.000Z

500

Oil Prices and Inflation  

E-Print Network (OSTI)

As oil prices have climbed over the last several years, the memory of the 1970s and early 1980s has not been far from the minds of the public or of monetary policymakers. In those earlier episodes, rising oil prices were accompanied by doubledigit overall inflation in the U.S. and in several other developed economies. Indeed, central bankers say they are determined not to let this experience recur, emphasizing that they intend to maintain their credibility with the public in securing low inflation and achieving stable and well-anchored inflation expectations. In pursuing these goals, a key measure policymakers often focus on is core inflation; this may seem surprising, since core inflation excludes energy prices, among other things.

unknown authors

2008-01-01T23:59:59.000Z