Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

2

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

3

Missouri Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes; Missouri Sales for Resale ...

4

New Mexico Kerosene-Type Jet Fuel Wholesale/Resale Volume by ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Kerosene-Type Jet Fuel Sales for Resale Refiner Sales Volumes; New Mexico Kerosene-Type Jet Fuel Refiner Sales Volumes; New Mexico Sales for Resale ...

5

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

Gallon Excluding Taxes) - Continued Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Sales to End Users Sales for Resale Sales to End Users Sales for Resale...

6

Kerosene-Type Jet Fuel Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

7

Stocks of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

8

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by ...  

U.S. Energy Information Administration (EIA)

South Carolina Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day)

9

Kerosene-Type Jet Fuel Imports by Area of Entry  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

10

Arkansas Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Arkansas Kerosene-Type Jet Fuel Refiner Sales Volumes; Arkansas Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, Propane, No.1 ...

11

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 295,460 ...

12

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Exports to Italy of Kerosene-Type Jet Fuel (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2005: 2: 2008: 23: 9: 18: 2009: 89: 2010: 10 ...

13

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

New Jersey Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8

14

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier ...  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel All Sales/Deliveries by Prime Supplier (Thousand Gallons per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1983: 30,535.1 ...

15

Kerosene-Type Jet Fuel Refinery Stocks by Type  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil stocks in the ...

16

Kerosene-Type Jet Fuel Exports by Destination  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

17

,"Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes"  

U.S. Energy Information Administration (EIA) Indexed Site

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes",60,"Monthly","9/2013","1/15/1983" ,"Release Date:","12/2/2013" ,"Next Release Date:","1/2/2014" ,"Excel File Name:","pet_cons_refoth_a_epjk_vtr_mgalpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_cons_refoth_a_epjk_vtr_mgalpd_m.htm" ,"Source:","Energy Information Administration"

18

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Kerosene-Type Jet Fuel Stocks at Refineries (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 13,255: 14,640: 14,907: 15,583: 14,878 ...

19

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Imports of Kerosene-Type Jet Fuel, Bonded (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 1,406: 1,620: 1,231: 1,388: 1,379: 1,456 ...

20

Guam Refinery Thermal Cracking/Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Thermal Cracking/Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

U.S. Refinery Thermal Cracking, Other (including Gas Oil ...  

U.S. Energy Information Administration (EIA)

U.S. Refinery Thermal Cracking, Other (including Gas Oil) Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

22

Lithuania Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0: 2012-2012: Special Naphthas : 0 : 0: 2008-2012: Residual Fuel Oil : 1: 0 : 2010-2011: Waxes : 0: 0: 0: 0 : 2008-2011: Asphalt and Road Oil ...

23

Georgia, Republic of Exports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

Distillate Fuel Oil : 0 : 2011-2011: Greater than 15 to 500 ppm Sulfur : 0 : 2011-2011: Kerosene-Type Jet Fuel : 475: 1: 2011-2012: Special Naphthas : 2 : 2005-2008:

24

Guyana Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 0 : 2011-2011: Special Naphthas: 0: 0 : 0: 0: 0: 2004-2012: Residual Fuel Oil : 0: 0: 0: 0: 0: 2004-2012: Waxes: 0: 0 : 0: 0: 2004-2012 ...

25

Malaysia Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 1 : 1 : 1: 2004-2012: Special Naphthas: 0: 0: 0: 0: 0: 0: 2004-2012: Residual Fuel Oil: 0: 1: 2-3-2: 0: 1994-2012: Naphtha for Petrochem ...

26

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2012: Special Naphthas: 0: 0: 0: 0-3: 0: 2004-2013: Residual Fuel Oil-232-100-184-102-69-112: 2004-2013: Naphtha for Petrochem ...

27

Lubricant base oil and wax processing. [Glossary included  

SciTech Connect

This book provides state-of-the-art information on all processes currently used to manufacture lubricant base oils and waxes. It furnishes helpful lists of conversion factors, construction cost data, and process licensors, as well as a glossary of essential petroleum processing terms.

Sequeira, A. Jr.

1994-01-01T23:59:59.000Z

28

Oil and gas field code master list, 1983. [Glossary included  

Science Conference Proceedings (OSTI)

This report is the second annual listing of all identified oil and gas fields in the United States with field information collected through November 1983. The purpose of the publication is to provide codes for easy identification of domestic fields. A standardization of these field codes will foster consistency in field identification by government and industry. The use of field names and codes listed in this publication is required on the survey forms and reports regarding field-specific data for the Energy Information Administration (EIA) and the Federal Energy Regulatory Commission. A glossary of the terms is provided to assist the readers in more fully understanding the information in this Field Code Master List. 8 figures, 4 tables.

Not Available

1984-01-01T23:59:59.000Z

29

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

30

Crude Oil and Petroleum Products Total Stocks Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

31

Ames/Salmonella mutagenicity assay of natural and synthetic crude oils including a Fischer-Retorted Estonian shale oil  

DOE Green Energy (OSTI)

DMSO extracts of a variety of natural and synthetic crude oils were tested for genotoxic activity in the Ames/Salmonella bioassay. Both mutagenic and cytotoxic potentials are cited. Natural crude oils and their refined products and upgraded synfuels are less mutagenic than parent crude shale oils which in turn are less mutagenic than the coal derived distillate blend sample, SRC II. However, this order is not true for cytotoxicity induced by these oil samples; therefore, caution must be exercised in the assessment of their mutagenic potential without consideration of other influential factors including cytotoxicity.

Strniste, G.F.; Nickols, J.W.

1981-01-01T23:59:59.000Z

32

Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Shell storage capacity ...

33

U.S. Crude Oil and Petroleum Products Stocks by Type  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil All Oils (Excluding Crude Oil) Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Ethylene Propane/Propylene Propylene (Nonfuel Use) Normal Butane/Butylene Refinery Grade Butane Isobutane/Butylene Other Hydrocarbons Oxygenates (excluding Fuel Ethanol) MTBE Other Oxygenates Renewables (including Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Unfinished Oils Unfinished Oils, Naphthas & Lighter Unfinished Oils, Kerosene & Light Gas Unfinished Oils, Heavy Gas Oils Residuum Motor Gasoline Blending Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated, RBOB MGBC - Reformulated, RBOB w/ Alcohol MGBC - Reformulated, RBOB w/ Ether MGBC - Reformulated, GTAB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Conventional Other Aviation Gasoline Blending Comp. Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated Gasoline, Other Conventional Gasoline Conventional Gasoline Blended Fuel Ethanol Conventional Gasoline Blended Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm Sulfur and under Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater 500 ppm Sulfur Residual Fuel Oil Residual F.O., than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petro. Feedstock Use Other Oils for Petro. Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products

34

Singapore Exports of Crude Oil and Petroleum Products by Destination  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2012-2012: Special Naphthas: 0: 0: 0: 0: 0: 108: 1993-2013: Residual Fuel Oil: 3,227: 7,198: 3,010: 5,718: 3,067: 2,153: 1993-2013: Waxes: 0 ...

35

Singapore Net Imports of Crude Oil and Petroleum Products into the ...  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 4: 1: 1: 1 : 0: 2004-2012: Special Naphthas-1-1: 0-1: 0-1: 2004-2012: Residual Fuel Oil-59-67-102-117-112-103: 2004-2012: Naphtha for ...

36

Bahamas Net Imports of Crude Oil and Petroleum Products into the U.S.  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel-1-1-2-2-2-2: 2004-2012: Special Naphthas: 0: 0: 0: 0-1-2: 2004-2012: Residual Fuel Oil-20-12-17-23-14-11: 1993-2012: Naphtha for Petrochem ...

37

A high liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process. 2 figs.

Coburn, T.T.

1988-07-26T23:59:59.000Z

38

High liquid yield process for retorting various organic materials including oil shale  

DOE Patents (OSTI)

This invention is a continuous retorting process for various high molecular weight organic materials, including oil shale, that yields an enhanced output of liquid product. The organic material, mineral matter, and an acidic catalyst, that appreciably adsorbs alkenes on surface sites at prescribed temperatures, are mixed and introduced into a pyrolyzer. A circulating stream of olefin enriched pyrolysis gas is continuously swept through the organic material and catalyst, whereupon, as the result of pyrolysis, the enhanced liquid product output is provided. Mixed spent organic material, mineral matter, and cool catalyst are continuously withdrawn from the pyrolyzer. Combustion of the spent organic material and mineral matter serves to reheat the catalyst. Olefin depleted pyrolysis gas, from the pyrolyzer, is enriched in olefins and recycled into the pyrolyzer. The reheated acidic catalyst is separated from the mineral matter and again mixed with fresh organic material, to maintain the continuously cyclic process.

Coburn, Thomas T. (Livermore, CA)

1990-01-01T23:59:59.000Z

39

Kerosene-Type Jet Fuel Net Production  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Finished motor gasoline ...

40

Exports of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Stocks of Crude Oil (Including SPR) - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

42

Omega-3 Oils: Applications in Functional FoodsChapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects  

Science Conference Proceedings (OSTI)

Omega-3 Oils: Applications in Functional Foods Chapter 3 Fish Sources of Various Lipids Including n-3 Polyunsaturated Fatty Acids and Their Dietary Effects Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry 448930

43

Oil and natural gas reserve prices : addendum to CEEPR WP 03-016 ; including results for 2003 revisions to 2001  

E-Print Network (OSTI)

Introduction. A working paper entitled "Oil and Natural Gas Reserve Prices 1982-2002: Implications for Depletion and Investment Cost" was published in October 2003 (cited hereafter as Adelman & Watkins [2003]). Since then ...

Adelman, Morris Albert

2005-01-01T23:59:59.000Z

44

Net Imports of Total Crude Oil and Products into the U.S. by Country  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Finished Motor Gasoline Reformulated Conventional Motor Gasoline Blending Components Reformulated Gasoline Blend. Comp. Conventional Gasoline Blend. Comp. MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., 500 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day

45

Characterization and Alteration of Wettability States of Alaskan Reserviors to Improve Oil Recovery Efficiency (including the within-scope expansion based on Cyclic Water Injection - a pulsed waterflood for Enhanced Oil Recovery)  

SciTech Connect

Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project, cyclic water injection tests using high as well as low salinity were also conducted on several representative ANS core samples. These results indicate that less pore volume of water is required to recover the same amount of oil as compared with continuous water injection. Additionally, in cyclic water injection, oil is produced even during the idle time of water injection. It is understood that the injected brine front spreads/smears through the pores and displaces oil out uniformly rather than viscous fingering. The overall benefits of this project include increased oil production from existing Alaskan reservoirs. This conclusion is based on the performed experiments and results obtained on low-salinity water injection (including ANS lake water), vis-a-vis slightly altering the wetting conditions. Similarly, encouraging cyclic water-injection test results indicate that this method can help achieve residual oil saturation earlier than continuous water injection. If proved in field, this would be of great use, as more oil can be recovered through cyclic water injection for the same amount of water injected.

Abhijit Dandekar; Shirish Patil; Santanu Khataniar

2008-12-31T23:59:59.000Z

46

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

47

Total Crude Oil and Products Imports from All Countries  

U.S. Energy Information Administration (EIA) Indexed Site

Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

48

Gulf Coast (PADD 3) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

49

Midwest (PADD 2) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

50

East Coast (PADD 1) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

MTBE (Oxygenate) Other Oxygenates Fuel Ethanol (Renewable) Biomass-Based Diesel (Renewable) Other Renewable Diesel Other Renewable Fuels Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Aviation Gasoline Blending Components Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

51

Groundwater and Wastewater Remediation Using Agricultural Oils  

agricultural oils to stimulate endogenous microbes which accelerates the cleanup.  The oils tested include canola oil, grapeseed oil, coconut oil, corn oil, cottonseed oil, olive oil, palm oil, palm kernel oil, peanut oil, ...

52

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

53

Crude Oil and Petroleum Products Movements by Pipeline between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline between PAD Districts Pipeline between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Renewable Diesel Fuel Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

54

Rocky Mountain (PADD 4) Total Crude Oil and Products Imports  

U.S. Energy Information Administration (EIA) Indexed Site

Conventional Gasoline Blend. Comp. Fuel Ethanol (Renewable) Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., 501 to 2000 ppm Distillate F.O., Greater than 2000 ppm Kerosene Finished Aviation Gasoline Kerosene-Type Jet Fuel Special Naphthas Residual Fuel Oil Residual F.O., Less than 0.31% Sulfur Residual F.O., 0.31 to 1% Sulfur Residual F.O., Greater than 1% Sulfur Naphtha for Petrochem. Feed. Use Waxes Petroleum Coke Asphalt and Road Oil Lubricants Miscellaneous Products Period/Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

55

Specialty Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing provider for Specialty Oils. Samples tested include Walnut Oil, Pecan Oil, Pistachio Oil, Sesame Seed Oil, Flax Seed Oil, Neem Oil, Safflower Oil, Sunflower Oil. Specialty Oils Laboratory Proficiency Testing Program Laboratory Pro

56

Refinery Stocks of Crude Oil and Petroleum Products  

Gasoline and Diesel Fuel Update (EIA)

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) All Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated - RBOB MGBC - RBOB for Blending with Alcohol* MGBC - RBOB for Blending with Ether* MGBC - Conventional MGBC - Conventional CBOB MGBC - Conventional GTAB MGBC - Conventional Other Aviation Gasoline Blending Components Finished Motor Gasoline Reformulated Reformulated Blended with Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended with Fuel Ethanol Conventional Gasoline Blended with Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate Fuel Oil, 15 ppm and Under Distillate Fuel Oil, Greater than 15 ppm to 500 ppm Distillate Fuel Oil, Greater than 500 ppm Residual Fuel Oil Less than 0.31 Percent Sulfur 0.31 to 1.00 Percent Sulfur Greater than 1.00 Percent Sulfur Petrochemical Feedstocks Naphtha for Petrochemical Feedstock Use Other Oils for Petrochemical Feedstock Use Special Naphthas Lubricants Waxes Petroleum Coke Marketable Coke Asphalt and Road Oil Miscellaneous Products Period-Units: Monthly-Thousand Barrels Annual-Thousand Barrels

57

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

01.2 01.2 94.7 61.3 60.3 71.8 65.8 February ............................. 100.6 96.5 56.9 57.3 73.4 65.7 March .................................. 105.0 100.6 59.0 59.6 69.0 68.0 April .................................... 111.4 107.5 66.0 65.3 80.5 75.1 May ..................................... 114.4 110.0 63.3 62.2 68.4 66.1 June .................................... 113.5 107.0 57.7 57.5 58.5 59.8 July ..................................... 113.7 105.3 60.3 59.6 64.6 61.7 August ................................ 114.4 107.1 65.1 64.5 69.5 66.6 September .......................... 114.3 106.8 71.8 71.6 76.4 75.6 October ............................... 115.0 107.1 73.6 73.6 87.1 80.7 November ........................... 115.1 108.4 71.7 72.2 88.7 79.7 December ........................... 115.3

58

Refinery & Blender Net Production of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

59

Geographic Area Month Aviation Gasoline Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

99.6 99.6 92.9 52.3 52.2 67.4 56.6 February ............................. 99.8 93.2 52.2 52.0 62.8 55.2 March .................................. 99.0 93.1 50.5 50.1 59.4 52.8 April .................................... 101.3 96.6 52.8 52.6 56.1 56.0 May ..................................... 105.8 102.2 55.0 54.7 51.7 57.7 June .................................... 106.4 101.6 53.2 53.1 54.9 53.2 July ..................................... 101.8 100.1 51.9 51.3 51.3 52.3 August ................................ 99.2 98.9 53.4 53.1 53.3 54.9 September .......................... 101.3 98.7 55.7 55.2 57.3 58.0 October ............................... 96.8 96.3 54.9 54.1 56.5 57.0 November ........................... 95.4 94.2 57.0 56.3 62.8 60.5 December ........................... 96.0 95.3 59.2 58.6

60

Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel  

Gasoline and Diesel Fuel Update (EIA)

58,921.8 56,922.5 55,453.9 54,959.2 53,458.9 54,523.8 1983-2012 58,921.8 56,922.5 55,453.9 54,959.2 53,458.9 54,523.8 1983-2012 East Coast (PADD 1) 15,392.8 16,081.8 15,898.2 15,821.2 15,588.0 15,512.9 1983-2012 New England (PADD 1A) 1,279.6 1,525.1 1,132.7 1,146.9 1,177.7 1,153.8 1983-2012 Connecticut 204.6 192.9 153.5 157.1 W 181.0 1983-2012 Maine 175.6 141.7 134.2 161.7 132.7 125.2 1983-2012 Massachusetts 819.4 1,118 676.6 675.6 720.1 710.2 1983-2012 New Hampshire 15.1 15.4 W 62.0 64.1 38.8 1983-2012 Rhode Island 33.3 30.3 75.7 67.2 W W 1983-2012 Vermont 31.6 26.9 W 23.4 23.8 W 1983-2012 Central Atlantic (PADD 1B) 7,527.2 7,614.5 7,315.1 7,397.0 7,311.6 7,228.9 1983-2012 Delaware 11.2 11.9 8.7 10.1 10.0 14.1 1983-2012 District of Columbia - - - - - - 1983-2012

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Kerosene-Type Jet Fuel Imports from Singapore  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

62

Kerosene-Type Jet Fuel Imports from France  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

63

Kerosene-Type Jet Fuel Imports from Non OPEC  

U.S. Energy Information Administration (EIA)

... Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and United Arab Emirates. Totals may not equal sum of components due to independent rounding.

64

Kerosene-Type Jet Fuel Imports from Aruba  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

65

Kerosene-Type Jet Fuel Imports from Singapore  

U.S. Energy Information Administration (EIA)

Indonesia withdrew from OPEC in January 2009, Angola joined OPEC in January 2007, Ecuador withdrew from OPEC in January 1993 and rejoined in November ...

66

Kerosene-Type Jet Fuel Imports from Indonesia  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

67

Kerosene-Type Jet Fuel Imports from China  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

68

Product Supplied for Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Data may not add to ...

69

Kerosene-Type Jet Fuel Imports from All Countries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

70

Refinery Net Production of Kerosene-Type Jet Fuel - Commercial  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

71

Kerosene-Type Jet Fuel Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Beginning in 1993, motor ...

72

Prime Supplier Sales of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

73

Kerosene-Type Jet Fuel Imports from Mexico  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

74

Refiner Retail Price of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

75

Prime Supplier Sales Volumes of Kerosene-Type Jet Fuel  

U.S. Energy Information Administration (EIA) Indexed Site

58,386.8 57,380.8 57,511.7 61,022.4 59,252.0 55,062.2 1983-2013 58,386.8 57,380.8 57,511.7 61,022.4 59,252.0 55,062.2 1983-2013 East Coast (PADD 1) 18,284.2 16,437.1 16,943.8 16,884.2 16,412.3 14,287.5 1983-2013 New England (PADD 1A) 1,211.3 1,172.2 1,228.4 1,207.8 1,432.6 1,121.1 1983-2013 Connecticut 212.1 202.7 207.0 164.4 246.4 169.3 1983-2013 Maine 115.8 127.2 131.1 141.6 144.0 137.8 1983-2013 Massachusetts 738.4 705.5 738.7 743.0 863.8 670.3 1983-2013 New Hampshire 37.4 29.5 35.2 41.8 50.6 44.1 1983-2013 Rhode Island 88.5 W 89.9 89.9 99.2 76.9 1983-2013 Vermont 19.1 W 26.5 27.0 28.7 22.7 1983-2013 Central Atlantic (PADD 1B) 9,320.4 7,996.8 8,594.9 8,104.5 8,284.9 7,114.1 1983-2013 Delaware W W W W W W 1983-2013 District of Columbia W W W W W W 1983-2013

76

Kerosene-Type Jet Fuel Imports from Bahrain  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

77

Wisconsin Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1984: 132.4: 141.2: 143.4: 141.9: 1985: 159.3: 174.1: 176.8: 156.5: 121.5: 117.2: 131.5: 137.9: 135.5: 152.8 ...

78

U.S. Kerosene-Type Jet Fuel Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

79

Gulf Coast (PADD 3) Kerosene-Type Jet Fuel Imports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

80

Missouri Kerosene-Type Jet Fuel Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA) Indexed Site

Exports Exports Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Naphtha for Petro. Feed. Use Other Oils Petro. Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

82

Product Supplied for Total Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Liquids and LRGs Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Conventional Aviation Gasoline Blend. Comp. Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Conventional Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Sulfur Distillate F.O., Greater than 15 to 500 ppm Sulfur Distillate F.O., Greater than 500 ppm Sulfur Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petro. Feed. Use Other Oils for Petro. Feed Use Special Naphthas Lubricants Waxes Petroleum Coke Petroleum Coke - Marketable Petroleum Coke - Catalyst Asphalt and Road Oil Still Gas Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

83

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel  

E-Print Network (OSTI)

The large volume of water produced during the extraction of oil presents a significant problem due to the high cost of disposal in an environmentally friendly manner. On average, an estimated seven barrels of water is produced per barrel of oil in the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. Besides making oil-water separation more complex, produced water also causes problems such as corrosion in the wellbore, decline in production rate and ultimate recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross-flow between high and low permeability layers and early water breakthrough from high permeability layers. Some of the different technologies that can be used to counteract this involve reducing the mobility of water or using a permeability block in the higher permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance of DDG, its injection was modeled, sensitivities run for a range of reservoir characteristics and conditions and an economic analysis was also performed. The performance of the DDG was then compared to other recovery methods, specifically waterflooding and polymer flooding from a technical and economic perspective. A literature review was performed on the background of injection profile control methods, their respective designs and technical capabilities. For the methods selected, Schlumberger's Eclipse software was used to simulate their behavior in a reservoir using realistic and simplified assumptions of reservoir characteristics and fluid properties. The simulation results obtained were then used to carry out economic analyses upon which conclusions and recommendations are based. These results show that the factor with the largest impact on the economic success of this method versus a polymer flood was the amount of incremental oil produced. By comparing net present values of the different methods, it was found that the polymer flood was the most successful with the highest NPV for each configuration followed by DDG.

Okeke, Tobenna

2012-05-01T23:59:59.000Z

84

East Coast (PADD 1) Total Crude Oil and Petroleum Products Net Receipts by  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Gasoline Blended w/ Fuel Ethanol, Greater than Ed55 Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products

85

Total Crude Oil and Petroleum Products Net Receipts by Pipeline, Tanker,  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Total Crude Oil and Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Unfinished Oils Motor Gasoline Blend. Comp. (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

86

Crude Oil and Petroleum Products Movements by Tanker, Pipeline, and Barge  

U.S. Energy Information Administration (EIA) Indexed Site

Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Pentanes Plus Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blend. Components (MGBC) MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended w/ Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

87

Crude Oil and Petroleum Products Movements by Tanker and Barge between PAD  

U.S. Energy Information Administration (EIA) Indexed Site

Tanker and Barge between PAD Districts Tanker and Barge between PAD Districts Product: Crude Oil and Petroleum Products Crude Oil Petroleum Products Liquefied Petroleum Gases Unfinished Oils Motor Gasoline Blending Components MGBC - Reformulated MGBC - Reformulated RBOB MGBC - RBOB for Blending w/ Alcohol* MGBC - RBOB for Blending w/ Ether* MGBC - Reformulated GTAB* MGBC - Conventional MGBC - CBOB MGBC - Conventional GTAB MGBC - Conventional Other Renewable Fuels Fuel Ethanol Renewable Diesel Fuel Other Renewable Fuels Finished Motor Gasoline Reformulated Gasoline Reformulated Gasoline Blended Fuel Ethanol Reformulated, Other Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Gasoline Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and Under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Residual Fuel Oil Residual FO - Less than 0.31% Sulfur Residual FO - 0.31 to 1.00% Sulfur Residual FO - Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem. Feed. Use Special Naphthas Lubricants Waxes Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Annual-Thousand Barrels

88

Total Crude Oil and Petroleum Products Imports by Area of Entry  

U.S. Energy Information Administration (EIA) Indexed Site

by Area of Entry by Area of Entry Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane Ethylene Propane Propylene Normal Butane Butylene Isobutane Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Fuel Other Renewable Diesel Fuel Other Renewable Fuels Other Hydrocarbons Unfinished Oils Naphthas and Lighter Kerosene and Light Gas Oils Heavy Gas Oils Residuum Motor Gasoline Blending Components (MGBC) MGBC - Reformulated, RBOB MGBC - Conventional MGBC - Conventional, CBOB MGBC - Conventional, GTAB MGBC - Other Conventional Aviation Gasoline Blending Components Finished Petroleum Products Finished Motor Gasoline Reformulated Gasoline Reformulated Blended w/ Fuel Ethanol Conventional Gasoline Conventional Blended w/ Fuel Ethanol Conventional Blended w/ Fuel Ethanol, Ed55 and Lower Conventional Other Finished Aviation Gasoline Kerosene-Type Jet Fuel Kerosene-Type Bonded Aircraft Fuel Other Bonded Aircraft Fuel Kerosene Distillate Fuel Oil Distillate F.O., 15 ppm and under Distillate F.O., Bonded, 15 ppm and under Distillate F.O., Other, 15 ppm and under Distillate F.O., Greater than 15 to 500 ppm Distillate F.O., Bonded, Greater than 15 to 500 ppm Distillate F.O., Other, Greater than 15 to 500 ppm Distillate F.O., Greater than 500 ppm Distillate F.O., Greater than 500 to 2000 ppm Distillate F.O., Bonded, Greater than 500 to 2000 ppm Distillate F.O., Other, Greater than 500 ppm to 2000 ppm Distillate F.O., Greater than 2000 ppm Distillate F.O., Bonded, Greater than 2000 ppm Distillate F.O., Other, Greater than 2000 ppm Residual Fuel Oil Residual F.O., Bonded Ship Bunkers, Less than 0.31% Sulfur Residual F.O., Bonded Ship Bunkers, 0.31 to 1.00% Sulfur Residual F.O., Bonded Ship Bunkers, Greater than 1.00% Sulfur Petrochemical Feedstocks Naphtha for Petrochem. Feed. Use Other Oils for Petrochem Feed. Use Special Naphthas Lubricants Waxes Petroleum Coke Asphalt and Road Oil Miscellaneous Products Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day

89

NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for NIOP-AOCS Fats & Oils, samples in this series include crude coconut oil, RB Palm Oil, Crude Safflower Oil, Crude sunflower Oil. NIOP-AOCS Fats and Oils Laboratory Proficiency Testing Program Laboratory Proficiency Progr

90

NETL: Oil & Natural Gas Projects: Shale Oil Upgrading Utilizing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Companies providing oil samples of at least five (5) gallons include Chevron, Oil Shale Exploration Company (OSEC), and Red Leaf Resources, Inc. Background Work performed...

91

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA) Indexed Site

33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 33,033.1 32,893.1 32,452.7 33,281.4 32,532.8 30,000.3 1983-2013 East Coast (PADD 1) 8,170.7 7,484.8 7,317.4 7,494.1 7,085.1 5,550.5 1983-2013 New England (PADD 1A) W W W 337.4 390.2 279.7 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 4,254.7 4,171.6 4,469.2 4,834.6 4,713.8 3,787.7 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2,477.5 2,444.1 2,660.1 2,524.8 2,448.5 1,789.9 1984-2013 New York 1,435.8 1,430.6 1,480.5 W W W 1984-2013

92

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 2.165 3.052 1.704 2.201 3.054 3.104 1978-2012 East Coast (PADD 1) 2.161 3.068 1.707 2.201 3.064 3.126 1983-2012 New England (PADD 1A) 2.224 3.113 1.737 2.216 3.098 3.179 1983-2012 Connecticut 2.222 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 3.088 3.154 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 2.158 3.080 1.694 2.192 3.060 3.116 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland 2.151 2.962 1.645 2.198 3.039 W 1983-2012 New Jersey 2.106 3.014 1.684 2.182 3.050 3.105 1983-2012

93

East Coast (PADD 1) Product Supplied of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

456: 507: 447: 462: 433: 511: 459: 457: 482: 491: 1991: 557: 487: 490: 401: 389: 420: 500: 477: 423: 424: 433: 487: 1992: 462: 456: 384: 441: 386: 465: 463: 472: 432 ...

94

U.S. Exports to Panama of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

456: 90: 389: 627: 503: 300: 411-= No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data.

95

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History U.S. 40,136.3 39,913.9 37,954.6 34,775.2 33,272.0 32,545.7 1983-2012 East Coast (PADD 1) 9,039.8 9,693.3 9,041.1 8,730.4 7,785.9 6,813.2 1983-2012 New England (PADD 1A) 606.3 930.0 766.0 790.7 679.4 373.7 1983-2012 Connecticut 171.1 W W W W W 1983-2012 Maine W W W W W W 1983-2012 Massachusetts W W W W 495.6 189.3 1983-2012 New Hampshire W W W W W - 1983-2012 Rhode Island W W W W W W 1983-2012 Vermont W W - - - W 1983-2012 Central Atlantic (PADD 1B) 4,645.2 4,946.6 5,127.5 4,696.7 3,983.7 3,569.8 1983-2012 Delaware W - - W - - 1983-2012 District of Columbia - - - - - - 1983-2012 Maryland W 209.8 210.3 190.8 177.5 W 1983-2012 New Jersey 1,463.5 1,555.6 2,006.2 1,922.4 1,913.2 1,646.2 1983-2012

96

Prices of Refiner Kerosene-Type Jet Fuel Sales to End Users  

U.S. Energy Information Administration (EIA) Indexed Site

2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 2.922 2.787 2.813 2.908 3.002 3.040 1975-2013 East Coast (PADD 1) 2.907 2.783 2.825 2.919 3.028 3.055 1983-2013 New England (PADD 1A) W W W 2.973 3.085 3.129 1983-2013 Connecticut W W W W W W 1984-2013 Maine W W W W W W 1984-2013 Massachusetts W W W W W W 1984-2013 New Hampshire - - - W - - 1984-2013 Rhode Island W W W W W W 1984-2013 Vermont - - - - - - 1984-2013 Central Atlantic (PADD 1B) 2.899 2.763 2.816 2.904 3.011 3.043 1983-2013 Delaware - - - - - - 1984-2013 District of Columbia - - - - - - 1984-2013 Maryland W W W W W W 1984-2013 New Jersey 2.881 2.748 2.805 2.895 3.003 3.038 1984-2013 New York 2.930 2.788 2.830 W W W 1984-2013 Pennsylvania 2.906 2.766 2.852 2.908 3.018 3.020 1984-2013

97

U.S. Imports from Singapore of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 308: 101: 358: 292: 418: 465: 295: 252: 2005: 840: 27: 550: 249: 300: 314: 2006: 304: 314: 660: 329: 331 ...

98

West Coast (PADD 5) Imports from Singapore of Kerosene-Type Jet ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 2,489: 2,280: 2,847: 1,433: 326: 318: 2010's: 303-

99

Weekly East Coast (PADD 1) Ending Stocks of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

9,977 : 04/20 : 9,525 : 04/27 : 8,585 : 2012-May: 05/04 : 8,884 : 05/11 : 8,607 : 05/18 : 10,044 : 05/25 : 10,075 : 2012-Jun: 06/01 : 9,465 : 06/08 : 10,058 : 06/15 :

100

Refining District Texas Gulf Coast Kerosene-Type Jet Fuel Stocks ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 3,029: 3,968: 3,482: 3,284: 3,543: 3,978: 3,501: 3,707: 2,993: 2,931: 3,003: 2,636: 1994: 3,924: 3,273 ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Michigan Kerosene-Type Jet Fuel All Sales/Deliveries by Prime ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 276.4: 475.2: 567.8: 603.9: 716.4: 715.9: 785.3: 1990's: 887.4: 869.1: 917.2 ...

102

U.S. Exports to Nigeria of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2008: 276: 586: 551: 241: 2009: 313: 592: 594: 2010: 276: 249: 300: 751: 328: 295: 285: 276: 303: 2011: 277: 563 ...

103

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1965: 316: 285: 316: 312: 335: 330: 349: 345: 371: 334: 334: 372: 1966: 364: 401: 391: 426: 369: 421: 291: 306 ...

104

West Coast (PADD 5) Refinery Yield of Kerosene-Type Jet Fuel (Percent)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 15.1: 15.7: 16.1: 17.9: 17.3: 16.5: 15.8: 2000's: 16.2: 16.0: 16.0: 16.0: 16.2 ...

105

Weekly U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1991-Feb : 02/08 : 1,466 : 02/15 : 1,226

106

U.S. Refinery Yield of Kerosene-Type Jet Fuel (Percent)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1990's: 9.2: 9.8: 9.7: 10.4: 10.3: 9.9: 10.2: 2000's: 10.3: 9.8: 9.8: 9.5: 9.7: 9.8: 9.3 ...

107

Weekly U.S. Ending Stocks of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1982-Aug : 08/20 : 33,523 : 08/27

108

Kerosene-Type Jet Fuel Sales to End Users Refiner Sales Volumes  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Values shown for the ...

109

U.S. Product Supplied of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 842: 771: 791: 789: 831: 858: 876: 1980's: 851: 809: 804: 839: 953: 1,005: 1,105 ...

110

Net Imports of Kerosene-Type Jet Fuel into the U.S. by Country  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

111

Alabama Kerosene-Type Jet Fuel Retail Sales by Refiners (Thousand ...  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 81.5: 89.7: 79.0: 75.4: 74.1: 79.3: 84.2: 1990's: 100.4: 96.7: W: 105.9: 108.2 ...

112

U.S. Imports from Malaysia of Kerosene-Type Jet Fuel (Thousand ...  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 2004: 311: 2005: 200: 2008: 301: 2010: 30: 212: 301: 2012: 310-

113

Kerosene-Type Jet Fuel Imports from OPEC - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: *Countries listed under ...

114

Kerosene-Type Jet Fuel Movements by Pipeline between PAD Districts  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

115

Weekly U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 2010-Jun: 06/04 : 59 : 06/11 : 59 : 06/18

116

Weekly U.S. Imports of Kerosene-Type Jet Fuel (Thousand Barrels ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 1982-Aug : 08/20 : 24 : 08/27 : 0

117

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 28: 21: 10: 18: 16: 12: 19: 22: 20: 14: 23: 222: 1982: 255: 245: 80: 44: 27: 38: 32: 32: 41: 35: 269: 692 ...

118

U.S. Exports to Haiti of Kerosene-Type Jet Fuel (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 2000's: 0: 2: 2010's: 0-

119

Weekly West Coast (PADD 5) Imports of Kerosene-Type Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Year-Month Week 1 Week 2 Week 3 Week 4 Week 5; End Date Value End Date Value End Date Value End Date Value End Date Value; 2004-Apr : 04/09 : NA : 04/16 : NA : 04/23

120

U.S. Imports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 29: 48: 30: 48: 64: 87: 102: 1990's: 100: 55: 74: 90: 107: 96: 109: 91: 124: 128 ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Kerosene-Type Jet Fuel Movements by Tanker and Barge between PAD ...  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

122

DAG in Oil Laboratory Proficiency Testing  

Science Conference Proceedings (OSTI)

Lab proficiency testing for DAG in Oil to determine Total DAG.Samples include canola oil and soybean oil. DAG in Oil Laboratory Proficiency Testing Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laboratories Laborato

123

Oil and Gas Exploration  

E-Print Network (OSTI)

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

124

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

1999-01-12T23:59:59.000Z

125

Biochemical upgrading of oils  

DOE Patents (OSTI)

A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

Premuzic, E.T.; Lin, M.S.

1999-01-12T23:59:59.000Z

126

The effect of biofuel on the international oil market  

E-Print Network (OSTI)

hand, the literature on crude oil usually assumes a COFconsequence of extracting crude oil. User costs include thecountries, at times when crude oil prices surged during 2002

Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

2010-01-01T23:59:59.000Z

127

PURADYN Oil Bypass Filtration System Evaluation Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

including: * Less dependency on foreign oil * Less oil disposed as waste products * Lower oil disposal costs * Less downtime of equipment * Reduced vehicle maintenance costs *...

128

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

129

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

130

Table 4. Crude oil production and resources (million barrels)  

U.S. Energy Information Administration (EIA)

2013 EIA/ARI unproved shale oil technically recoverable resources (TRR) 2012 USGS conventional unproved oil TRR, including reserve growth

131

Does EIA have data on shale (or “tight oil ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

132

North American spot crude oil benchmarks likely diverging ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

133

What is the difference between crude oil, petroleum ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

134

Bakken crude oil price differential to WTI narrows over ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

135

Shale oil and shale gas resources are globally abundant  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

136

Table A14. Oil and gas supply - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Carbon dioxide enhanced oil recovery ... 3Tight oil represents resources in low-permeability reservoirs, including shale and chalk formations.

137

Palm Oil: Production, Processing, Characterization, and Uses  

Science Conference Proceedings (OSTI)

This book serves as a rich source of information on the production, processing, characterization and utilization of palm oil and its components. It also includes several topics related to oil palm genomics, tissue culture and genetic engineering of oil pal

138

Glossary - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

It includes kerosene-type jet fuel and naphtha-type jet fuel. Joint Implementation (JI): ... Joint-use facility: A multiple-purpose hydroelectric plant.

139

Crude Oil Imports from Qatar  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

140

Crude Oil Imports from Sweden  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table 2. Principal tight oil plays: oil production and proved...  

U.S. Energy Information Administration (EIA) Indexed Site

"Other tight oil plays (e.g. Monterey, Woodford)",,,24,253 "All U.S. tight oil plays",,,228,3628 "Note: Includes lease condensate." "Source: U.S. Energy...

142

Finished Motor Gasoline Net Production  

Gasoline and Diesel Fuel Update (EIA)

Data Series: Finished Motor Gasoline Finished Motor Gasoline (less Adj.) Reformulated Gasoline Reformulated Gasoline Blenede w/ Fuel Ethanol Reformulated Other Gasoline Conventional Gasoline Conventional Gasoline Blended w/ Fuel Ethanol Conventional Gasoline Blended w/ Fuel Ethanol, Ed55 & Ed55 Other Conventional Gasoline Finished Motor Gasoline Adjustment Kerosene-Type Jet Fuel Kerosene-Type Jet, Commercial Kerosene-Type Jet, Military Distillate Fuel Oil Distillate Fuel Oil, 15 ppm Sulfur and Under Distillate Fuel Oil > 15 ppm to 500 ppm Sulfur Distillate Fuel Oil > 500 ppm Sulfur Residual Fuel Oil Propane/Propylene Period: Weekly 4-Week Average

143

Utah Heavy Oil Program  

Science Conference Proceedings (OSTI)

The Utah Heavy Oil Program (UHOP) was established in June 2006 to provide multidisciplinary research support to federal and state constituents for addressing the wide-ranging issues surrounding the creation of an industry for unconventional oil production in the United States. Additionally, UHOP was to serve as an on-going source of unbiased information to the nation surrounding technical, economic, legal and environmental aspects of developing heavy oil, oil sands, and oil shale resources. UHOP fulGilled its role by completing three tasks. First, in response to the Energy Policy Act of 2005 Section 369(p), UHOP published an update report to the 1987 technical and economic assessment of domestic heavy oil resources that was prepared by the Interstate Oil and Gas Compact Commission. The UHOP report, entitled 'A Technical, Economic, and Legal Assessment of North American Heavy Oil, Oil Sands, and Oil Shale Resources' was published in electronic and hard copy form in October 2007. Second, UHOP developed of a comprehensive, publicly accessible online repository of unconventional oil resources in North America based on the DSpace software platform. An interactive map was also developed as a source of geospatial information and as a means to interact with the repository from a geospatial setting. All documents uploaded to the repository are fully searchable by author, title, and keywords. Third, UHOP sponsored Give research projects related to unconventional fuels development. Two projects looked at issues associated with oil shale production, including oil shale pyrolysis kinetics, resource heterogeneity, and reservoir simulation. One project evaluated in situ production from Utah oil sands. Another project focused on water availability and produced water treatments. The last project considered commercial oil shale leasing from a policy, environmental, and economic perspective.

J. Bauman; S. Burian; M. Deo; E. Eddings; R. Gani; R. Goel; C.K. Huang; M. Hogue; R. Keiter; L. Li; J. Ruple; T. Ring; P. Rose; M. Skliar; P.J. Smith; J.P. Spinti; P. Tiwari; J. Wilkey; K. Uchitel

2009-10-20T23:59:59.000Z

144

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Investor Flows and the 2008 Boom/Bust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research is the outgrowth of a survey paper I prepared for the Air Transport Association of America. I am grateful to Kristoffer Laursen for research assistance and to Kristoffer and Stefan Nagel for their comments. Abstract This paper explores the impact of investor flows and financial market conditions on returns in crude-oil futures markets. I begin by arguing that informational frictions and the associated speculative activity may induce prices to drift away from "fundamental" values and show increased volatility. This is followed by a discussion of the interplay between imperfect infor- mation about real economic activity, including supply, demand, and inventory accumulation, and speculative

145

Heating oil prices rise due to winter demand and crude oil prices ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

146

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

147

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

PAD District level net receipts includes implied net ... Total stocks do not include distillate fuel oil stocks located in the Northeast Heating Oil ...

148

Shale oil cracking. 2. Effect on oil composition  

DOE Green Energy (OSTI)

Results from spectroscopic investigations are presented that demonstrate the effect of oil cracking on shale oil composition. Techniques used include infrared spectroscopy, capillary column gas chromatography/mass spectroscopy and /sup 13/C nuclear magnetic resonance. We show that cracking causes an increase in aromatic and alkene content of the oil. We compare our results for oils prepared in the laboratory with oils prepared in the TOSCO-II semi-works and in modified and true-in-situ combustion retorts. We demonstrate that the napthalene/2-methyl-naphthalene ratio is a good indicator of cracking conditions in an oil shale retort.

Burnham, A.K.; Sanborn, R.H.; Crawford, R.W.; Newton, J.C.; Happe, J.A.

1980-08-01T23:59:59.000Z

149

Weekly Petroleum Status Report February 13, 2013  

U.S. Energy Information Administration (EIA)

Spot Prices of Crude Oil, Motor Gasoline, and Heating Oil: PDF: CSV: 12: Spot Prices of Ultra-Low Sulfur Diesel Fuel, Kerosene-Type Jet Fuel, and Propane PDF: CSV: 13:

150

Edible Oils Package  

Science Conference Proceedings (OSTI)

Contains four (4) titles regarding frying and edible oils. Edible Oils Package Food Science & Technology Health - Nutrition - Biochemistry Value Packages 1766A8D5F05863694E128DE1C47D07C3 This Value Package includes: ...

151

Oil from rock  

SciTech Connect

The article discusses first the Green River Formation oil shale projects in the western United States from which conservative estimates have suggested an output of 400,000 to 600,000 bbl/day of crude shale oil by 1990. The western reserves recoverable with present technology are said to exceed 600 billion (10/sup 9/) bbl. Three major considerations could limit the large-scale development of shale oil: availability of water, environmental factors, and socio-economic considerations. Water is used to obtain and process the crude shale oil, and additional water is needed to cool the spent shale and to establish new vegetation on top of it. Nitrogenous compounds and arsenic in crude shale oil are among potential pollutants. Spent shale contains salts that are potentially leachable, as well as organic pyrolytic products. Retorting oil shales may release more CO/sub 2/ through decomposition of carbonate minerals that will subsequently be generated by burning the oil produced. Topographic effects of oil shale mining may raise socio-economic problems. Next the article discusses the conversion of coal to liquid by pyrolysis or hydrogenation, including the Gulf solvent refined coal (SRC) and the Exxon (EDS) liquefaction processes. Also described in the South African SASOL process for producing synthetic fuel from coal. A parallel account is included on the estimated complete cycle of United States and of worldwide crude oil production, forecasting depletion within less than a century. 11 refs.

Walters, S.

1982-02-01T23:59:59.000Z

152

Postgraduate Handbook Courses, programs and any arrangements for programs including staff  

E-Print Network (OSTI)

corn oil; Camelina oil. One of the following: Trans-Esterification, Esterification, Hydrotreating-process renewable biomass and petroleum. 5 POTENTIALLY RELEVANT I Naphtha, LPG Camelina oil Hydrotreating 5 including peat, dung, plant-oils, bees wax, rendered animal fats, draft animals, natural derived sources

Benatallah, Boualem

153

Stocks of Total Crude Oil and Petroleum Products (Including SPR)  

U.S. Energy Information Administration (EIA)

Weekly data for RBOB with Ether, RBOB with Alcohol, and Reformulated GTAB Motor Gasoline Blending Components are discontinued as of the week ending June 4, ...

154

Structural Oil Pan With Integrated Oil Filtration And Cooling System  

DOE Patents (OSTI)

An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

Freese, V, Charles Edwin (Westland, MI)

2000-05-09T23:59:59.000Z

155

Oil and Oil Derivatives Compliance Requirements  

Science Conference Proceedings (OSTI)

... for international connection of oiled residues discharge ... C to + 163°C, fuels, lubricating oils and hydraulic ... fuel of gas turbine, crude oil, lubricating oil ...

2012-10-26T23:59:59.000Z

156

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

157

U.S. crude oil production  

U.S. Energy Information Administration (EIA)

Production of Crude Oil including Lease Condensate (Thousand Barrels Per Day) Loading... Units Conversion Download Excel: 2012 2013 JAN ...

158

Division of Oil, Gas, and Mining Permitting  

E-Print Network (OSTI)

" or "Gas" does not include any gaseous or liquid substance processed from coal, oil shale, or tar sands

Utah, University of

159

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

160

Crude oil distillation and the definition of refinery capacity ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Rail traffic reflects more oil production, less coal-fired ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

162

Hurricane effects on oil and natural gas production depend on ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

163

International Petroleum (Oil) Prices webpage provided by EIA  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

164

Energy Security - Oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

165

tight oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

166

Crude oils have different quality characteristics - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

167

State Ranking - Crude Oil Production - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

168

oil reserves - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

169

Bakken formation oil and gas drilling activity mirrors development ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

170

Price difference between Brent and WTI crude oil narrowing - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

171

oil prices - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

172

Performance Profiles Table Browser: T-19. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

173

Performance Profiles Table Browser: T-20. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

174

Performance Profiles Table Browser: T-22. Oil and Natural Gas ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

175

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

176

State heating oil and propane program season begins - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

177

Tenth oil recovery conference  

SciTech Connect

The Tertiary Oil Recovery Project is sponsored by the State of Kansas to introduce Kansas producers to the economic potential of enhanced recovery methods for Kansas fields. Specific objectives include estimation of the state-wide tertiary oil resource, identification and evaluation of the most applicable processes, dissemination of technical information to producers, occasional collaboration on recovery projects, laboratory studies on Kansas applicable processes, and training of students and operators in tertiary oil recovery methods. Papers have been processed separately for inclusion on the data base.

Sleeper, R. (ed.)

1993-01-01T23:59:59.000Z

178

Methods and apparatuses for preparing upgraded pyrolysis oil  

SciTech Connect

Methods and apparatuses for preparing upgraded pyrolysis oil are provided herein. In an embodiment, a method of preparing upgraded pyrolysis oil includes providing a biomass-derived pyrolysis oil stream having an original oxygen content. The biomass-derived pyrolysis oil stream is hydrodeoxygenated under catalysis in the presence of hydrogen to form a hydrodeoxygenated pyrolysis oil stream comprising a cyclic paraffin component. At least a portion of the hydrodeoxygenated pyrolysis oil stream is dehydrogenated under catalysis to form the upgraded pyrolysis oil.

Brandvold, Timothy A; Baird, Lance Awender; Frey, Stanley Joseph

2013-10-01T23:59:59.000Z

179

Oil reserves  

SciTech Connect

As of March 1988, the Strategic Petroleum Reserve inventory totaled 544.9 million barrels of oil. During the past 6 months the Department of Energy added 11.0 million barrels of crude oil to the SPR. During this period, DOE distributed $208 million from the SPR Petroleum Account. All of the oil was purchased from PEMEX--the Mexican national oil company. In FY 1988, $164 million was appropriated for facilities development and management and $439 million for oil purchases. For FY 1989, DOE proposes to obligate $173 million for facilities development and management and $236 million for oil purchases. DOE plans to postpone all further drawdown exercises involving crude oil movements until their effects on cavern integrity are evaluated. DOE and the Military Sealift Command have made progress in resolving the questions surrounding nearly $500,000 in payments for demurrage charges.

Not Available

1988-01-01T23:59:59.000Z

180

Unconventional Oil and Gas Resources  

Science Conference Proceedings (OSTI)

World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

none

2006-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Multiphase flow analysis of oil shale retorting  

DOE Green Energy (OSTI)

Several multiphase phenomena occur during oil shale retorting. An analysis is presented of two of these processes including condensation of oil shale vapor and oscillations of pressure in oil shale blocks through cracked bedding planes. Energy conservation equations for oil shale retorting, which include the effects associated with condensation of oil, are derived on the basis of two phase flow theory. It is suggested that an effective heat capacity associated with the latent heat of condensation should be included in the modeling of simulated modified in-situ oil shale retorting. A pressure propagation equation for fast transients in oil shale cracks has been derived and examined in view of existing experimental data. For slow processes, a limiting solution for maximum pressure in oil shale rocks has been obtained. Generation of high pressures in rocks by thermal or other means may lead to rock fracture which may be taken advantage of in modified in-situ oil shale processing.

Gidaspow, D.; Lyczkowski, R.W.

1978-09-18T23:59:59.000Z

182

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

183

Vegetable Oil for Color Only Laboratory Proficiency Testing Program  

Science Conference Proceedings (OSTI)

Lab Proficiency Testing service for Vegetable Oil for Color Only. Sample Includes soybean oil. Vegetable Oil for Color Only Laboratory Proficiency Testing Program Laboratory Proficiency Program (LPP) aocs applicants certified chemist chemists Lab laborat

184

Vehicle Technologies Office: Fact #456: February 12, 2007 Oil...  

NLE Websites -- All DOE Office Websites (Extended Search)

12, 2007 Oil Imports, Today and Tomorrow U.S. oil imports, which include both crude oil and petroleum products, are predicted to rise to 16.4 million barrels per day by the...

185

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

playing key role in peak-oil debate, future energy supply.of di?ering views of peak oil, including Yergin’s, isHubbert’s Peak: The Impending World Oil Shortage. Princeton

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

186

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

187

Crude Oil Imports from Persian Gulf  

U.S. Energy Information Administration (EIA)

U.S. Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

188

U.S. Imports from Singapore  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel: 1,433: 326: 318: 303 : 2004-2010: Residual Fuel Oil: 250 : 217: 431: 449 : 1993-2011: Less than 0.31% Sulfur : 217 : 449 : 2005-2011: 0.31 to ...

189

U.S. Imports from Singapore  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel : 2004-2010: Residual Fuel Oil : 1993-2011: Less than 0.31% Sulfur : 2005-2011: 0.31 to 1.00% Sulfur : 2007-2010:

190

Oil shale data book  

SciTech Connect

The Oil Shale Data Book has been prepared as a part of its work under DOE Management Support and Systems Engineering for the Naval Oil Shale Reserves Predevelopment Plan. The contract calls for the preparation of a Master Development Plan for the Reserves which comprise some 145,000 acres of oil shale lands in Colorado and Utah. The task of defining the development potential of the Reserves required that the resources of the Reserves be well defined, and the shale oil recovery technologies that are potentially compatible with this resource be cataloged. Additionally, processes associated with shale oil recovery like mining, materials handling, beneficiation, upgrading and spent shale disposal have also been cataloged. This book, therefore, provides a ready reference for evaluation of appropriate recovery technologies and associated processes, and should prove to be valuable for many oil shale activities. Technologies that are still in the process of development, like retorting, have been treated in greater detail than those that are commercially mature. Examples of the latter are ore crushing, certain gas clean-up systems, and pipeline transportation. Emphasis has been on documenting available design information such as, maximum module size, operation conditions, yields, utility requirements, outlet gas compositions, shale oil characteristics, etc. Cost information has also been included where available.

1979-06-01T23:59:59.000Z

191

Water issues associated with heavy oil production.  

Science Conference Proceedings (OSTI)

Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

Veil, J. A.; Quinn, J. J.; Environmental Science Division

2008-11-28T23:59:59.000Z

192

Enhanced Oil Recovery | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enhanced Oil Recovery Enhanced Oil Recovery Enhanced Oil Recovery Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Cross-section illustrating how carbon dioxide and water can be used to flush residual oil from a subsurface rock formation between wells. Crude oil development and production in U.S. oil reservoirs can include up to three distinct phases: primary, secondary, and tertiary (or enhanced) recovery. During primary recovery, the natural pressure of the reservoir or gravity drive oil into the wellbore, combined with artificial lift techniques (such as pumps) which bring the oil to the surface. But only about 10 percent of a reservoir's original oil in place is typically produced during primary recovery. Secondary recovery techniques extend a

193

Winter Crude Oil and  

Gasoline and Diesel Fuel Update (EIA)

4 4 Notes: While the relatively low stock forecast (although not as low as last winter) adds some extra pressure to prices, the price of crude oil could be the major factor affecting heating oil prices this winter. The current EIA forecast shows residential prices averaging $1.29 this winter, assuming no volatility. The average retail price is about 7 cents less than last winter, but last winter included the price spike in November 2000, December 2000, and January 2001. Underlying crude oil prices are currently expected to be at or below those seen last winter. WTI averaged over $30 per barrel last winter, and is currently forecast to average about $27.50 per barrel this winter. As those of you who watch the markets know, there is tremendous uncertainty in the amount of crude oil supply that will be available this winter. Less

194

Remedial investigation work plan for Bear Creek Valley Operable Unit 1 (S-3 Ponds, Boneyard/Burnyard, Oil Landfarm, Sanitary Landfill 1, and the Burial Grounds, including Oil Retention Ponds 1 and 2) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee. Volume 1, Main text  

Science Conference Proceedings (OSTI)

The intent and scope of the work plan are to assemble all data necessary to facilitate selection of remediation alternatives for the sites in Bear Creek Valley Operable Unit 1 (BCV OU 1) such that the risk to human health and the environment is reduced to acceptable levels based on agreements with regulators. The ultimate goal is to develop a final Record Of Decision (ROD) for all of the OUs in BCV, including the integrator OU. However, the initial aim of the source OUs is to develop a ROD for interim measures. For source OUs such as BCV OU 1, data acquisition will not be carried out in a single event, but will be carried out in three stages that accommodate the schedule for developing a ROD for interim measures and the final site-wide ROD. The three stages are as follows: Stage 1, Assemble sufficient data to support decisions such as the need for removal actions, whether to continue with the remedial investigation (RI) process, or whether no further action is required. If the decision is made to continue the RI/FS process, then: Stage 2, Assemble sufficient data to allow for a ROD for interim measures that reduce risks to the human health and the environment. Stage 3, Provide input from the source OU that allows a final ROD to be issued for all OUs in the BCV hydrologic regime. One goal of the RI work plan will be to ensure that sampling operations required for the initial stage are not repeated at later stages. The overall goals of this RI are to define the nature and extent of contamination so that the impact of leachate, surface water runoff, and sediment from the OU I sites on the integrator OU can be evaluated, the risk to human health and the environment can be defined, and the general physical characteristics of the subsurface can be determined such that remedial alternatives can be screened.

Not Available

1993-09-01T23:59:59.000Z

195

The Fuels and Lubricants Research Division of Southwest Research includes extensive engines, fuels and lubricants research,  

E-Print Network (OSTI)

Caterpillar 1K Lubricant Test This test evaluates the piston deposits, liner wear, and oil consumption and oil consumption. The test is proposed for inclusion in the PC-10 category. Mack T8/T8A/T8E Lubricant of Mack engine oil specification EON+ 03, CI-4+ and will be included in PC-10. Mack T12 Lubricant Test

Chapman, Clark R.

196

Oil shale, tar sands, and related materials  

SciTech Connect

This sixteen-chapter book focuses on the many problems and the new methodology associated with the commercialization of the oil shale and tar sand industry. Topics discussed include: an overview of the Department of Energy's oil shale R, D, and D program; computer simulation of explosive fracture of oil shale; fracturing of oil shale by treatment with liquid sulfur dioxide; chemistry of shale oil cracking; hydrogen sulfide evolution from Colorado oil shale; a possible mechanism of alkene/alkane production in oil shale retorting; oil shale retorting kinetics; kinetics of oil shale char gasification; a comparison of asphaltenes from naturally occurring shale bitumen and retorted shale oils: the influence of temperature on asphaltene structure; beneficiation of Green River oil shale by density methods; beneficiation of Green River oil shale pelletization; shell pellet heat exchange retorting: the SPHER energy-efficient process for retorting oil shale; retorted oil shale disposal research; an investigation into the potential economics of large-scale shale oil production; commercial scale refining of Paraho crude shale oil into military specification fuels; relation between fuel properties and chemical composition; chemical characterization/physical properties of US Navy shale-II fuels; relation between fuel properties and chemical composition: stability of oil shale-derived jet fuel; pyrolysis of shale oil residual fractions; synfuel stability: degradation mechanisms and actual findings; the chemistry of shale oil and its refined products; the reactivity of Cold Lake asphaltenes; influence of thermal processing on the properties of Cold Lake asphaltenes: the effect of distillation; thermal recovery of oil from tar sands by an energy-efficient process; and hydropyrolysis: the potential for primary upgrading of tar sand bitumen.

Stauffer, H.C.

1981-01-01T23:59:59.000Z

197

General model of oil shale pyrolysis  

DOE Green Energy (OSTI)

A mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking and cracking, and evolution of H/sub 2/ and CH/sub 4/ from char. Oil is treated in eleven boiling-point fractions in order to treat the competition between oil coking and evaporation, and to evaluate the effect of oil cracking on the boiling point distribution of the oil. The kinetics and product yields calculated by the model are compared to experimental results for pyrolysis conditions ranging from isothermal fluid-bed to high-pressure slow-heating-rate retorting.

Burnham, A.K.; Braun, R.L.

1983-11-01T23:59:59.000Z

198

International Energy Outlook 2006 - World Oil Markets  

Gasoline and Diesel Fuel Update (EIA)

Oil Markets Oil Markets International Energy Outlook 2006 Chapter 3: World Oil Markets In the IEO2006 reference case, world oil demand increases by 47 percent from 2003 to 2030. Non-OECD Asia, including China and India, accounts for 43 percent of the increase. In the IEO2006 reference case, world oil demand grows from 80 million barrels per day in 2003 to 98 million barrels per day in 2015 and 118 million barrels per day in 2030. Demand increases strongly despite world oil prices that are 35 percent higher in 2025 than in last yearÂ’s outlook. Much of the growth in oil consumption is projected for the nations of non-OECD Asia, where strong economic growth is expected. Non-OECD Asia (including China and India) accounts for 43 percent of the total increase in world oil use over the projection period.

199

Knowledge exchange Research grant proposals now include  

E-Print Network (OSTI)

of Edinburgh. Traditionally, geophysicists use seismic exploration to find new oil and gas fields. But MTEM a new method to prospect for oil and gas deep beneath the ground. NERC-funded PhD student David Wright-out sells for $275 million In June 2007, Norwegian oil giant Petroleum Geo-Services (PGS) bought Scotland

Brierley, Andrew

200

PIA - Northeast Home Heating Oil Reserve System (Heating Oil...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

OIl Speculation  

Gasoline and Diesel Fuel Update (EIA)

Investor Flows and the 2008 BoomBust in Oil Prices Kenneth J. Singleton 1 August 10, 2011 1 Graduate School of Business, Stanford University, kenneths@stanford.edu. This research...

202

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

203

Heavy Oil Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Select Reports from Heavy Oil Projects Project Number Performer Title Heavy Oil Recovery US (NIPERBDM-0225) BDM-Oklahoma, Inc. Feasibility Study of Heavy Oil Recovery in the...

204

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

3. Crude Oil Statistics The United States had 21,371 million barrels of crude oil proved reserves as of December 31, 2004. Crude oil proved reserves ...

205

Isolation of levoglucosan from lignocellulosic pyrolysis oil ...  

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing ...

206

Materials for Oil and Gas Transport  

Science Conference Proceedings (OSTI)

Jun 18, 2008 ... The demand on materials for transporting oil, natural gas, and other fluids, including hydrogen, ethanol, etc. is severe in terms of material ...

207

Palm oil - towards a sustainable future?.  

E-Print Network (OSTI)

?? The food industry faces problems relating to the sustainability of palm oil as a food commodity. These problem areas include social, environmental, economic and… (more)

Nilsson, Sara

2013-01-01T23:59:59.000Z

208

V. Shifts in Governance: Oil Pollution  

Science Conference Proceedings (OSTI)

In the American Oil Pollution Act these costs are included in the term ..... The background of this second objective is that from 1969 to 1972 the proportion.

209

5 World Oil Trends WORLD OIL TRENDS  

E-Print Network (OSTI)

5 World Oil Trends Chapter 1 WORLD OIL TRENDS INTRODUCTION In considering the outlook for California's petroleum supplies, it is important to give attention to expecta- tions of what the world oil market. Will world oil demand increase and, if so, by how much? How will world oil prices be affected

210

Oil shale and tar sands technology: recent developments  

SciTech Connect

The detailed, descriptive information in this book is based on US patents, issued since March 1975, that deal with the technology of oil shale and tar sands. The book contains an introductory overview of the subject. Topics included are oil shale retorting, in situ processing of oil shale, shale oil refining and purification processes, in situ processing of tar sands, tar sands separation processes.

Ranney, M.W.

1979-01-01T23:59:59.000Z

211

Process for oil shale retorting  

DOE Patents (OSTI)

Particulate oil shale is subjected to a pyrolysis with a hot, non-oxygenous gas in a pyrolysis vessel, with the products of the pyrolysis of the shale contained kerogen being withdrawn as an entrained mist of shale oil droplets in a gas for a separation of the liquid from the gas. Hot retorted shale withdrawn from the pyrolysis vessel is treated in a separate container with an oxygenous gas so as to provide combustion of residual carbon retained on the shale, producing a high temperature gas for the production of some steam and for heating the non-oxygenous gas used in the oil shale retorting process in the first vessel. The net energy recovery includes essentially complete recovery of the organic hydrocarbon material in the oil shale as a liquid shale oil, a high BTU gas, and high temperature steam.

Jones, John B. (300 Enterprise Bldg., Grand Junction, CO 80501); Kunchal, S. Kumar (300 Enterprise Bldg., Grand Junction, CO 80501)

1981-10-27T23:59:59.000Z

212

Oil | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. |...

213

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

214

EIA Oil price timeline  

U.S. Energy Information Administration (EIA)

Crude oil, gasoline, heating oil, diesel, propane, ... Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

215

Price ratio of crude oil to natural gas continues to increase ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

216

How many gallons of gasoline does one barrel of oil make? - FAQ ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

217

Does EIA have data on U.S. oil refineries and their locations ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

218

Attributes of crude oil at U.S. refineries vary by region - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

219

Refinery receipts of crude oil by rail, truck, and barge continue ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

220

Drop in U.S. gasoline prices reflects decline in crude oil costs ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gasoline prices rise due to increased crude oil costs - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

222

Rail deliveries of oil and petroleum products up 38% in first half ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

223

Heating oil futures contract now uses ultra-low sulfur diesel fuel ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

224

Oil and natural gas production is growing in Caspian Sea region ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

225

Table 2. Fuel Oil Consumption and Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

1 A small amount of fuel oil used for appliances is included in "Fuel Oil" under "All Uses." NF = No applicable RSE row factor.

226

Price ratio of crude oil to natural gas increasing - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

227

U.S. oil rig count overtakes natural gas rig count - Today in ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

228

WTI-Brent crude oil price spread has reached unseen levels - Today ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

229

Effects of low temperature preheating on the pyrolysis products from blocks of oil shale.  

E-Print Network (OSTI)

??Oil shale is a sedimentary rock composed of inorganic and organic fractions. The inorganic minerals contained in oil shale include: dolomite, calcite, quartz, i1 lite,… (more)

Alston, David W.

1905-01-01T23:59:59.000Z

230

New data show record growth in U.S. crude oil reserves and strong ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

231

Table 4.7 Crude Oil and Natural Gas Development Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

232

Table 4.6 Crude Oil and Natural Gas Exploratory Wells, 1949-2010  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

233

System and method for preparing near-surface heavy oil for extraction using microbial degradation  

DOE Patents (OSTI)

A system and method for enhancing the recovery of heavy oil in an oil extraction environment by feeding nutrients to a preferred microbial species (bacteria and/or fungi). A method is described that includes the steps of: sampling and identifying microbial species that reside in the oil extraction environment; collecting fluid property data from the oil extraction environment; collecting nutrient data from the oil extraction environment; identifying a preferred microbial species from the oil extraction environment that can transform the heavy oil into a lighter oil; identifying a nutrient from the oil extraction environment that promotes a proliferation of the preferred microbial species; and introducing the nutrient into the oil extraction environment.

Busche, Frederick D. (Highland Village, TX); Rollins, John B. (Southlake, TX); Noyes, Harold J. (Golden, CO); Bush, James G. (West Richland, WA)

2011-04-12T23:59:59.000Z

234

Studies of oil-shale reaction chemistry at LLL  

DOE Green Energy (OSTI)

A review is presented of recent studies on the chemistry of oil shale retorting. Kinetics are summarized for oil production and destruction mechanisms including kerogen-bitumen pyrolysis, oil coking and oil cracking. The effect of retorting conditions on shale oil quality is discussed along with the reverse process of inferring retorting conditions and yield loss mechanisms in modified in-situ retorts. Kinetic studies of carbonate mineral decomposition and related mineral reactions as well as residual carbon gasification are outlined.

Burnham, A.K.

1979-11-01T23:59:59.000Z

235

Revitalizing an old oil field  

Science Conference Proceedings (OSTI)

Redevelopment of the Olney oil field in Illinois is described. First discovered in 1936, production peaked in 1941 when over 30,000 bopd were produced. In 1970, 600 wells in the Olney field pumped only 4000 bpd. Since the decontrol of crude oil prices, a redevelopment project has begun in the field. The project includes well stimulation techniques plus newly drilled or deepened wells. Present production in the Olney field has reached 5000 bopd.

Ortiz, S.

1981-12-01T23:59:59.000Z

236

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

237

Vsd Oil Free Compressor, Vsd Oil Free Compressor Products, Vsd ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Compressor, You Can Buy Various High Quality Vsd Oil Free Compressor Products from Global Vsd Oil Free Compressor Suppliers and Vsd Oil ...

238

SPECIATION OF TRACE ORGANIC LIGANDS AND INORGANIC AND ORGANOMETALLIC COMPOUNDS IN OIL SHALE PROCESS WATERS  

E-Print Network (OSTI)

Division of Oil, Gas, and Shale Technology to appropriateseven oil shale process waters including retort water, gas1d1i lc the gas condensate is condensed develop oil shale

Fish, Richard H.

2013-01-01T23:59:59.000Z

239

Waste oil reclamation. (Latest citations from the NTIS database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

240

Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Crude Oil Imports From Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

Crude Oil Imports From Persian Gulf Crude Oil Imports From Persian Gulf January - June 2013 | Release Date: August 29, 2013 | Next Release Date: February 27, 2014 2013 Crude Oil Imports From Persian Gulf Highlights It should be noted that several factors influence the source of a company's crude oil imports. For example, a company like Motiva, which is partly owned by Saudi Refining Inc., would be expected to import a large percentage from the Persian Gulf, while Citgo Petroleum Corporation, which is owned by the Venezuelan state oil company, would not be expected to import a large percentage from the Persian Gulf, since most of their imports likely come from Venezuela. In addition, other factors that influence a specific company's sources of crude oil imports would include the characteristics of various crude oils as well as a company's economic

242

Impacts of PSC Elements on Contract Economics under Oil Price Uncertainty  

Science Conference Proceedings (OSTI)

Production sharing contract (PSC) is one of the most common types of cooperation modes in international petroleum contracts. The elements that affect PSC economics mainly include royalty, cost oil, profit oil as well as income tax. Assuming that oil ... Keywords: Production Sharing, Oil Price, Oil Contract, International Petroleum Cooperation

Wang Zhen; Zhao Lin; Liu Mingming

2010-05-01T23:59:59.000Z

243

Appendix F Cultural Resources, Including  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Appendix F Appendix F Cultural Resources, Including Section 106 Consultation STATE OF CALIFORNIA - THE RESOURCES AGENCY EDMUND G. BROWN, JR., Governor OFFICE OF HISTORIC PRESERVATION DEPARTMENT OF PARKS AND RECREATION 1725 23 rd Street, Suite 100 SACRAMENTO, CA 95816-7100 (916) 445-7000 Fax: (916) 445-7053 calshpo@parks.ca.gov www.ohp.parks.ca.gov June 14, 2011 Reply in Reference To: DOE110407A Angela Colamaria Loan Programs Office Environmental Compliance Division Department of Energy 1000 Independence Ave SW, LP-10 Washington, DC 20585 Re: Topaz Solar Farm, San Luis Obispo County, California Dear Ms. Colamaria: Thank you for seeking my consultation regarding the above noted undertaking. Pursuant to 36 CFR Part 800 (as amended 8-05-04) regulations implementing Section

244

Countries Gasoline Prices Including Taxes  

Gasoline and Diesel Fuel Update (EIA)

Countries (U.S. dollars per gallon, including taxes) Countries (U.S. dollars per gallon, including taxes) Date Belgium France Germany Italy Netherlands UK US 01/13/14 7.83 7.76 7.90 8.91 8.76 8.11 3.68 01/06/14 8.00 7.78 7.94 8.92 8.74 8.09 3.69 12/30/13 NA NA NA NA NA NA 3.68 12/23/13 NA NA NA NA NA NA 3.63 12/16/13 7.86 7.79 8.05 9.00 8.78 8.08 3.61 12/9/13 7.95 7.81 8.14 8.99 8.80 8.12 3.63 12/2/13 7.91 7.68 8.07 8.85 8.68 8.08 3.64 11/25/13 7.69 7.61 8.07 8.77 8.63 7.97 3.65 11/18/13 7.99 7.54 8.00 8.70 8.57 7.92 3.57 11/11/13 7.63 7.44 7.79 8.63 8.46 7.85 3.55 11/4/13 7.70 7.51 7.98 8.70 8.59 7.86 3.61 10/28/13 8.02 7.74 8.08 8.96 8.79 8.04 3.64 10/21/13 7.91 7.71 8.11 8.94 8.80 8.05 3.70 10/14/13 7.88 7.62 8.05 8.87 8.74 7.97 3.69

245

New Zealand Energy Data: Oil Consumption by Fuel and Sector ...  

Open Energy Info (EERE)

Oil Consumption by Fuel and Sector The New Zealand Ministry of Economic Development publishes energy data including many datasets related to oil and other...

246

A number of western states increased oil production since 2010 ...  

U.S. Energy Information Administration (EIA)

Onshore oil production, including crude oil and lease condensate, rose more than 2 million barrels per day (bbl/d), or 64%, in the Lower 48 states from February 2010 ...

247

PADD 2 Stocks of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

History; Total Crude Oil and Petroleum Products (Incl. SPR) 279,627: 277,974: 280,607: 273,702: 274,961: 280,571: 1981-2013: Crude Oil (Including SPR) 117,512:

248

Lubrication from mixture of boric acid with oils and greases  

DOE Patents (OSTI)

Lubricating compositions including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

Erdemir, Ali (Naperville, IL)

1995-01-01T23:59:59.000Z

249

Category:Oil and Gas | Open Energy Information  

Open Energy Info (EERE)

Gas Gas Jump to: navigation, search This category includes companies and information related to oil (petroleum) or natural gas. Pages in category "Oil and Gas" The following 114 pages are in this category, out of 114 total. A Abu Dhabi National Oil Company Abu Dhabi Supreme Petroleum Council Al Furat Petroleum Company Alabama Oil and Gas Board Alaska Division of Oil and Gas Alaska Oil and Gas Conservation Commission Algeria Ministry of Energy and Mining Archaeological Resource Protection Act Archaeological Resources Protection Act Arizona Oil and Gas Commission Arkansas Oil and Gas Commission B Bahrain National Gas and Oil Authority Bald and Golden Eagle Protection Act C California Division of Oil, Gas, and Geothermal Resources California Environmental Quality Act

250

Enriching off gas from oil shale retort  

SciTech Connect

Liquid and gaseous products are recovered from oil shale in an in situ oil shale retort in which a combustion zone is advanced therethrough by a method which includes the steps of establishing a combustion zone in the oil shale in the in situ oil shale retort and introducing a gaseous feed mixture into the combustion zone in the direction the combustion zone is to be advanced through the in situ oil shale retort. The gaseous feed mixture comprises an oxygen supplying gas and water vapor and is introduced into the combustion zone at a rate sufficient to maintain the temperature in the combustion zone within a predetermined range of temperatures above the retorting temperature of the oil shale in the in situ oil shale retort and sufficient to advance the combustion zone through the in situ oil shale retort. The introduction of the gaseous feed mixture into the combustion zone generates combustion products gases which together with the portion of the gaseous feed mixture which does not take part in the combustion process, is called flue gas. The flue gas passes through the oil shale on the advancing side of the combustion zone, thereby retorting the oil shale to produce liquid and gaseous products. The liquid product and the retort off gas, which comprises gaseous product and flue gas, are withdrawn from the in situ oil shale retort at a point on the advancing side of the retorting zone. 47 claims, 1 figure.

Cha, C.Y.; Ridley, R.D.

1977-07-19T23:59:59.000Z

251

Oil price; oil demand shocks; oil supply shocks; dynamic effects.  

E-Print Network (OSTI)

Abstract: Using a newly developed measure of global real economic activity, a structural decomposition of the real price of crude oil in four components is proposed: oil supply shocks driven by political events in OPEC countries; other oil supply shocks; aggregate shocks to the demand for industrial commodities; and demand shocks that are specific to the crude oil market. The latter shock is designed to capture shifts in the price of oil driven by higher precautionary demand associated with fears about future oil supplies. The paper quantifies the magnitude and timing of these shocks, their dynamic effects on the real price of oil and their relative importance in determining the real price of oil during 1975-2005. The analysis sheds light on the origin of the observed fluctuations in oil prices, in particular during oil price shocks. For example, it helps gauge the relative importance of these shocks in the build-up of the real price of crude oil since the late 1990s. Distinguishing between the sources of higher oil prices is shown to be crucial in assessing the effect of higher oil prices on U.S. real GDP and CPI inflation, suggesting that policies aimed at dealing with higher oil prices must take careful account of the origins of higher oil prices. The paper also quantifies the extent to which the macroeconomic performance of the U.S. since the mid-1970s has been driven by the external economic shocks driving the real price of oil as opposed to domestic economic factors and policies. Key words: JEL:

Lutz Kilian

2006-01-01T23:59:59.000Z

252

RMOTC - Testing - Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

Enhanced Oil Recovery Enhanced Oil Recovery Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC will play a significant role in continued enhanced oil recovery (EOR) technology development and field demonstration. A scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) enhanced oil recovery

253

Oil shale retort apparatus  

DOE Patents (OSTI)

A retorting apparatus including a vertical kiln and a plurality of tubes for delivering rock to the top of the kiln and removal of processed rock from the bottom of the kiln so that the rock descends through the kiln as a moving bed. Distributors are provided for delivering gas to the kiln to effect heating of the rock and to disturb the rock particles during their descent. The distributors are constructed and disposed to deliver gas uniformly to the kiln and to withstand and overcome adverse conditions resulting from heat and from the descending rock. The rock delivery tubes are geometrically sized, spaced and positioned so as to deliver the shale uniformly into the kiln and form symmetrically disposed generally vertical paths, or "rock chimneys", through the descending shale which offer least resistance to upward flow of gas. When retorting oil shale, a delineated collection chamber near the top of the kiln collects gas and entrained oil mist rising through the kiln.

Reeves, Adam A. (Grand Junction, CO); Mast, Earl L. (Norman, OK); Greaves, Melvin J. (Littleton, CO)

1990-01-01T23:59:59.000Z

254

Understanding Crude Oil Prices  

E-Print Network (OSTI)

World Production of Crude Oil, NGPL, and Other Liquids, andWorld Production of Crude Oil, NGPL, and Other Liquids, andProduction of Crude Oil, NGPL, and Other Liquids, and Re?

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

255

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),Figure 3. Price of crude oil contract maturing December ofbarrels per day. Monthly crude oil production Iran Iraq

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

256

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

257

China's Global Oil Strategy  

E-Print Network (OSTI)

interpretations of China’s foreign oil strategy. Argumentsof aspects of China’s foreign oil activities, they do notits largest directly-run foreign oil project. Supplying 10

Thomas, Bryan G

2009-01-01T23:59:59.000Z

258

Understanding Crude Oil Prices  

E-Print Network (OSTI)

Natural Gas, Heating Oil and Gasoline,” NBER Working Paper.2006. “China’s Growing Demand for Oil and Its Impact on U.S.and Income on Energy and Oil Demand,” Energy Journal 23(1),

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

259

Oil Spills and Wildlife  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil Spills and Wildlife Name: jess Location: NA Country: NA Date: NA Question: what are some effects of oil spills on plants? Replies: The effects of oil spills over the last...

260

China's Global Oil Strategy  

E-Print Network (OSTI)

Michael T. Klare, Blood and Oil: The Dangers of America’sDowns and Jeffrey A. Bader, “Oil-Hungry China Belongs at BigChina, Africa, and Oil,” (Council on Foreign Relations,

Thomas, Bryan G

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Understanding Crude Oil Prices  

E-Print Network (OSTI)

by the residual quantity of oil that never gets produced.order to purchase a quantity Q barrels of oil at a price P tD t Q t Q t+1 Quantity Figure 5. Monthly oil production for

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

262

China's Global Oil Strategy  

E-Print Network (OSTI)

is an important oil source for China, yet unlike itsthe United States as a major oil source outside the volatileto be a critical source of oil, and one that is almost

Thomas, Bryan G

2009-01-01T23:59:59.000Z

263

Understanding Crude Oil Prices  

E-Print Network (OSTI)

2004. “OPEC’s Optimal Crude Oil Price,” Energy Policy 32(2),percent change in real oil price. Figure 3. Price of crude023 Understanding Crude Oil Prices James D. Hamilton June

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

264

China's Global Oil Strategy  

E-Print Network (OSTI)

nations began to seek out oil reserves around the world. 3on the limited global oil reserves and spiking prices. Manyto the largest proven oil reserves, making up 61 percent of

Thomas, Bryan G

2009-01-01T23:59:59.000Z

265

China's Global Oil Strategy  

E-Print Network (OSTI)

China’s domestic oil supply will peak, and demand Robertpeak will come around 2020, 24 and that by this point, China’s demand Oil

Thomas, Bryan G

2009-01-01T23:59:59.000Z

266

Understanding Crude Oil Prices  

E-Print Network (OSTI)

5. Monthly oil production for Iran, Iraq, and Kuwait, inday. Monthly crude oil production Iran Iraq Kuwait Figure 6.Arabia PRODUCTION QUOTA Iran PRODUCTION QUOTA Venezuela

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

267

Crude Oil Affects Gasoline Prices  

U.S. Energy Information Administration (EIA)

Crude Oil Affects Gasoline Prices. WTI Crude Oil Price. Retail Gasoline Price. Source: Energy Information Administration

268

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil.

Premuzic, Eugene T. (East Moriches, NY); Lin, Mow (Rocky Point, NY)

1994-01-01T23:59:59.000Z

269

Biochemically enhanced oil recovery and oil treatment  

DOE Patents (OSTI)

This invention relates to the preparation of new, modified organisms, through challenge growth processes, that are viable in the extreme temperature, pressure and pH conditions and salt concentrations of an oil reservoir and that are suitable for use in microbial enhanced oil recovery. The modified microorganisms of the present invention are used to enhance oil recovery and remove sulfur compounds and metals from the crude oil. 62 figures.

Premuzic, E.T.; Lin, M.

1994-03-29T23:59:59.000Z

270

Production of Shale Oil  

E-Print Network (OSTI)

Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan provides a blueprint for the development of a 28,000 acre holding on Clear Creek in Garfield County, Colorado on property acquired by Standard Oil of California in the late 1940's and early 1950's. The paper describes these planning activities and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits, plans for development of required retorting and mining technology and a preliminary description of the commercial project which will ultimately emerge from these activities. General financial impact of the project and the case for additional tax incentives to encourage it will be described.

Loper, R. D.

1982-01-01T23:59:59.000Z

271

General model of oil shale pyrolysis. Revision 1  

DOE Green Energy (OSTI)

A mathematical model for pyrolysis of Green River oil shale is developed from previous experiments on oil, water, and gas evolution and oil cracking over a wide range of pyrolysis conditions. Reactions included are evolution of 5 gas species, oil, and water from kerogen, clay dehydration, oil coking and cracking, and evolution of H/sub 2/ and CH/sub 4/ from char. Oil is treated in eleven boiling point fractions in order to treat the competition between oil coking and evaporation, and to evalute the effect of oil cracking on the boiling point distribution of the oil. The kinetics and product yields calculated by the model are compared to experimental results for pyrolysis conditions ranging from isothermal fluid-bed to high-pressure slow-heating-rate retorting.

Burnham, A.K.; Braun, R.L.

1984-04-01T23:59:59.000Z

272

Method for forming an in-situ oil shale retort in differing grades of oil shale  

Science Conference Proceedings (OSTI)

An in-situ oil shale retort is formed in a subterranean formation containing oil shale. The formation comprises at least one region of relatively richer oil shale and another region of relatively leaner oil shale. According to one embodiment, formation is excavated from within a retort site for forming at least one void extending horizontally across the retort site, leaving a portion of unfragmented formation including the regions of richer and leaner oil shale adjacent such a void space. A first array of vertical blast holes are drilled in the regions of richer and leaner oil shale, and a second array of blast holes are drilled at least in the region of richer oil shale. Explosive charges are placed in portions of the blast holes in the first and second arrays which extend into the richer oil shale, and separate explosive charges are placed in portions of the blast holes in the first array which extend into the leaner oil shale. This provides an array with a smaller scaled depth of burial (sdob) and closer spacing distance between explosive charges in the richer oil shale than the sdob and spacing distance of the array of explosive charges in the leaner oil shale. The explosive charges are detonated for explosively expanding the regions of richer and leaner oil shale toward the horizontal void for forming a fragmented mass of particles. Upon detonation of the explosive, greater explosive energy is provided collectively by the explosive charges in the richer oil shale, compared with the explosive energy produced by the explosive charges in the leaner oil shale, resulting in comparable fragmentation in both grades of oil shale.

Ricketts, T.E.

1984-04-24T23:59:59.000Z

273

Energy & Financial Markets: What Drives Crude Oil Prices?  

Reports and Publications (EIA)

An assessment of the various factors that may influence oil prices - physical market factors as well as those related to trading and financial markets. The analysis describes 7 key factors that could influence oil markets and explores possible linkages between each factor and oil prices, and includes regularly-updated graphs that depict aspects of those relationships.

2011-12-14T23:59:59.000Z

274

Proceedings of the 7th Middle East oil show  

Science Conference Proceedings (OSTI)

This book contains the November, 1991 proceedings of the 7th Middle East Oil Show. It includes the following topics: Horizontal drilling; Emergency pipeline repair; Geologic interpretation and digital processing of satellite images; Fracturing patterns; Oil and gas saturation monitoring; and The environmental impact of oil spills.

Not Available

1991-01-01T23:59:59.000Z

275

Eco Oil 4  

DOE Green Energy (OSTI)

This article describes the processes, challenges, and achievements of researching and developing a biobased motor oil.

Brett Earl; Brenda Clark

2009-10-26T23:59:59.000Z

276

Subject is oil shale  

SciTech Connect

The article reviews the current financial, legislative and regulatory problems of oil shale development. 2 refs.

Due, M.J.C.

1982-02-01T23:59:59.000Z

277

Oil | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Oil Oil Prices, 2000-2008 For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. For the first time since 1995, U.S. oil production has surpassed imports. Explore the trend with our interactive chart. | Graphic by Daniel Wood, Energy Department. Oil is used for heating and transportation -- most notably, as fuel for gas-powered vehicles. America's dependence on foreign oil has declined in recent years, but oil prices have increased. The Energy Department supports research and policy options to increase our domestic supply of oil while ensuring environmentally sustainable supplies domestically and abroad, and is investing in research, technology and

278

Energy Department Expands Gas Gouging Reporting System to Include...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

quickly to approve requests of loans from the Strategic Petroleum Reserve to oil refineries. Within 48 hours of receiving requests, oil was on its way to requesting refineries....

279

Oil Dependencies and Peak Oil's Effects on Oil Consumption.  

E-Print Network (OSTI)

?? During the year of 2007, the world has experienced historically high oil prices both in nominal and in real terms, which has reopened discussions… (more)

Tekin, Josef

2007-01-01T23:59:59.000Z

280

U.S. Military Expenditures to Protect the Use of Persian-Gulf Oil For Motor Vehicles  

E-Print Network (OSTI)

of crude oil includes all transportation costs and fees updid not produce or consume oil); the cost of defending theDivision, The External Costs of Oil Used in Transportation,

Delucchi, Mark A.; Murphy, James

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

PARTITIONING OF MAJOR, MINOR, AND TRACE ELEMENTS DURING SIMULATED IN SITU OIL SHALE RETORTING IN A CONTROLLED-STATE RETORT  

E-Print Network (OSTI)

produce oil, in various gas, bitumen, and C quantities andquantity of each element distributed among the products and Elements in the oilOil shales contain organic material in a mineral matrix which includes significant environmentally As, quantities

Fox, J. P.

2011-01-01T23:59:59.000Z

282

Lube Oil System Leakage Mitigation  

Science Conference Proceedings (OSTI)

Lube Oil System Leakage Mitigation is the second in a series of training modules addressing leakage in nuclear power plants. The first planned modules in the leakage reduction series include leakage reduction program management, bolted joints with flat gaskets, valve packing, threaded joints, compression fittings, mechanical seals, and miscellaneous bolting issues.

1999-07-28T23:59:59.000Z

283

Colorado oil shale: the current status, October 1979  

DOE Green Energy (OSTI)

A general background to oil shale and the potential impacts of its development is given. A map containing the names and locations of current oil shale holdings is included. The history, geography, archaeology, ecology, water resources, air quality, energy resources, land use, sociology, transportation, and electric power for the state of Colorado are discussed. The Colorado Joint Review Process Stages I, II, and III-oil shale are explained. Projected shale oil production capacity to 1990 is presented. (DC)

Not Available

1979-01-01T23:59:59.000Z

284

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Outlook Briefing for the State Heating Oil and Propane Program Conference Asheville, NC Mike Burdette Petroleum Division, Energy ...

285

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Table of Contents. Crude Oil, Heating Oil, and Propane Market Outlook. Short-Term World Oil Price Forecast . Price Movements Related to Supply/Demand Balance

286

Crude Oil, Heating Oil, and Propane Market Outlook  

U.S. Energy Information Administration (EIA)

Crude Oil, Heating Oil, and Propane Market Outlook Briefing for the State Heating Oil and Propane Program Conference Wilmington, DE by Douglas MacIntyre

287

Vsd Oil Free Air Compressor, Vsd Oil Free Air Compressor ...  

U.S. Energy Information Administration (EIA)

Vsd Oil Free Air Compressor, You Can Buy Various High Quality Vsd Oil Free Air Compressor Products from Global Vsd Oil Free Air Compressor Suppliers ...

288

Oil Free Vsd Air Compressor, Oil Free Vsd Air Compressor ...  

U.S. Energy Information Administration (EIA)

Oil Free Vsd Air Compressor, You Can Buy Various High Quality Oil Free Vsd Air Compressor Products from Global Oil Free Vsd Air Compressor Suppliers ...

289

Crude Oil  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Includes volumes uses as ...

290

Green Vegetable Oil Processing, Revised First Edition  

Science Conference Proceedings (OSTI)

This book addresses alternative green technologies at various stages of oilseed and vegetable oil processing. The Revised First Edition includes much of the content of the first edition, but incorporates updated data, details, images, figures, and captions

291

Crude-oil market report  

SciTech Connect

The crude oil market has been both quieter and thinner during the past few months. Various factors, including OPEC restraints, settlement of the British coal strike, and dollar exchange rates, have been stabilizing, although erratic output by Iran and the Soviet Union have caused fluctuations in prices. Higher gasoline prices have triggered a preference for sweet crudes and a possible shortage during the summer motoring season. Oil stocks appear to be at the bottom now, but restocking activities will probably not cause shortages. The author forecasts a continued weak market. 2 tables.

1985-01-01T23:59:59.000Z

292

Oil-shale material properties  

SciTech Connect

The mechanical properties of oil shale have been under examination at Sandia since 1975 in a program which has involved laboratory and field experimentation along with complementary analytical activities. The dependence of the fragmentation phenomenon on strain rate is important in explosive applications because strain rates realized in typical blasting events extend over a wide range. The model has been used to calculate a variety of explosive geometries in oil shale, with results compared to small- and large-scale experiments, including a small block test with 80 g of explosive and a field test with 5 kg explosive.

Kipp, M.E.

1983-01-01T23:59:59.000Z

293

Comparison of Selected EIA-782 Data With Other Data Sources  

Reports and Publications (EIA)

This article compares annual average prices reported from the EIA-782 survey series for residential No. 2 distillate, on-highway diesel fuel, retail regular motor gasoline, refiner No. 2 fuel oil for resale, refiner No. 2 diesel fuel for resale, refiner regular motor gasoline for resale, and refiner kerosene-type jet fuel for resale with annual average prices reported by other sources. In terms of volume, it compares EIA-782C Prime Supplier annual volumes for motor gasoline (all grades), distillate fuel oil, kerosene-type jet fuel and residual fuel oil with annual volumes from other sources.

Carol Joyce Blumberg

2012-12-12T23:59:59.000Z

294

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-08-01T23:59:59.000Z

295

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-10-01T23:59:59.000Z

296

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-03-01T23:59:59.000Z

297

World Oil Prices and Production Trends in AEO2010 (released in AEO2010)  

Reports and Publications (EIA)

In AEO2010, the price of light, low-sulfur (or sweet) crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. EIA makes projections of future supply and demand for total liquids, which includes conventional petroleum liquidssuch as conventional crude oil, natural gas plant liquids, and refinery gainin addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

Information Center

2010-05-11T23:59:59.000Z

298

Oil-Well Fire Fighting  

Science Conference Proceedings (OSTI)

... Oil Well Fire Fighting. NIST fire Research NIST Fire Research 2 Oil Well Fire Fighting RoboCrane Model Oil Well Fire Fighting Working Model.

2011-08-25T23:59:59.000Z

299

AN ENGINE OIL LIFE ALGORITHM.  

E-Print Network (OSTI)

??An oil-life algorithm to calculate the remaining percentage of oil life is presented as a means to determine the right time to change the oil… (more)

Bommareddi, Anveshan

2009-01-01T23:59:59.000Z

300

Fuel Oil Use in Manufacturing  

Gasoline and Diesel Fuel Update (EIA)

and residual fuel oils. Distillate fuel oil, the lighter product, is also used for heating of homes and commercial buildings. Residual oil is a much denser, heavier product...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Angolan oil production has doubled since 2003 - Today in Energy ...  

U.S. Energy Information Administration (EIA)

International oil companies, including Chevron, ExxonMobil, Total, Eni, and BP, play a major role in Angola, operating most production.

302

Heating Oil and Propane Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... Weekly heating oil and propane prices are only collected during the heating season, ...

303

North Dakota crude oil production continues to rise ...  

U.S. Energy Information Administration (EIA)

... diesel, propane, and other liquids including ... North Dakota's oil production averaged 660 thousand barrels per day (bbl/d) in June 2012, ... Add ...

304

How dependent is the United States on foreign oil? - FAQ ...  

U.S. Energy Information Administration (EIA)

... propane, and other liquids including biofuels and ... In 2012, about 57% of the ... How dependent is the United States on foreign oil? How many ...

305

Modeling of Energy Production Decisions: An Alaska Oil Case Study  

E-Print Network (OSTI)

the Optimization of Oil Exploration and Production: The UKof taxation on exploration and production include Yucel (of petroleum exploration and production. He found the

Leighty, Wayne

2008-01-01T23:59:59.000Z

306

Turkmenistan Net Imports of Crude Oil and Petroleum Products ...  

U.S. Energy Information Administration (EIA)

... California crude oil to Pacific Rim countries. The Persian Gulf includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

307

Montenegro Net Imports of Crude Oil and Petroleum Products into ...  

U.S. Energy Information Administration (EIA)

... California crude oil to Pacific Rim countries. The Persian Gulf includes Bahrain, Iran, Iraq, Kuwait, Qatar, Saudi Arabia, and the United Arab Emirates.

308

Middle East leads global crude oil and condensate production ...  

U.S. Energy Information Administration (EIA)

Growth in North American crude oil production (including lease condensate) contributed to record global production of 75.6 million barrels per day (bbl/d) in 2012 ...

309

Supply and Disposition of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

inputs, and exports minus the sum of renewable fuels and oxygenate plant net production, imports, and adjustments. Adjustments include an adjustment for crude oil, previously...

310

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil includes ...

311

North Dakota oil production reaches new high in 2012 ...  

U.S. Energy Information Administration (EIA)

North Dakota crude oil production (including lease condensate) averaged an all-time high of 770,000 barrels per day in December 2012. Total annual ...

312

SUPRI heavy oil research program  

SciTech Connect

The 14th Annual Report of the SUPRI Heavy Oil Research Program includes discussion of the following topics: (1) A Study of End Effects in Displacement Experiments; (2) Cat Scan Status Report; (3) Modifying In-situ Combustion with Metallic Additives; (4) Kinetics of Combustion; (5) Study of Residual Oil Saturation for Steam Injection and Fuel Concentration for In-Situ Combustion; (6) Analysis of Transient Foam Flow in 1-D Porous Media with Computed Tomography; (7) Steam-Foam Studies in the Presence of Residual Oil; (8) Microvisualization of Foam Flow in a Porous Medium; (9) Three- Dimensional Laboratory Steam Injection Model; (10) Saturation Evaluation Following Water Flooding; (11) Numerical Simulation of Well-to-Well Tracer Flow Test with Nonunity Mobility Ratio.

Aziz, K.; Ramey, H.J. Jr.; Castanier, L.M.

1991-12-01T23:59:59.000Z

313

Apparatus for distilling shale oil from oil shale  

Science Conference Proceedings (OSTI)

An apparatus for distilling shale oil from oil shale comprises: a vertical type distilling furnace which is divided by two vertical partitions each provided with a plurality of vent apertures into an oil shale treating chamber and two gas chambers, said oil shale treating chamber being located between said two gas chambers in said vertical type distilling furnace, said vertical type distilling furnace being further divided by at least one horizontal partition into an oil shale distilling chamber in the lower part thereof and at least one oil shale preheating chamber in the upper part thereof, said oil shale distilling chamber and said oil shale preheating chamber communication with each other through a gap provided at an end of said horizontal partition, an oil shale supplied continuously from an oil shale supply port provided in said oil shale treating chamber at the top thereof into said oil shale treating chamber continuously moving from the oil shale preheating chamber to the oil shale distilling chamber, a high-temperature gas blown into an oil shale distilling chamber passing horizontally through said oil shale in said oil shale treating chamber, thereby said oil shale is preheated in said oil shale preheating chamber, and a gaseous shale oil is distilled from said preheated oil shale in said oil shale distilling chamber; and a separator for separating by liquefaction a gaseous shale oil from a gas containing the gaseous shale oil discharged from the oil shale preheating chamber.

Shishido, T.; Sato, Y.

1984-02-14T23:59:59.000Z

314

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico  

E-Print Network (OSTI)

GLOBAL SUSTAINABILITY/OIL SPILL COMMUNITY SEMINAR "Natural and Unnatural Oil in the Gulf of Mexico in the Gulf of Mexico has been cited as a factor that may have pre-conditioned the gulf ecosystem better a strong Gulf of Mexico focus, but includes work on the deep-sea biology of hydrothermal vents

315

Natural gas liquids play a greater role in oil and gas ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels and ... topping 2 million barrels per day ... 2012. December; ...

316

What oil changers in America are doing with their used oil  

SciTech Connect

Each year, the US generates 1.378 billion gallons of used oil, with just 57% of this oil accounted for by recycling. The most significant types of used oil disposition come from the very small generator or the so called do-it-yourselfer (DIY). The DIY is an individual who removes used oil from a motor vehicle, utility engine, or piece of farm equipment that he or she owns and operates. Numerous retailers have shown that accepting DIY used oil translates into good public relations and business. First Recovery/Valvoline conducted a recent study of its 2,000 auto parts stores that collect used oil. Sixty-five percent of their customers who returned used oil made a special trip for its return and 44% of them purchased something at the store (average of $13 per customer) when they returned their used oil. The cost of accepting used oil was $85 per month for the 185-gallon indoor collection system including oil pickup. This public service stimulated an additional $429 per month in new revenue for the retailer.

Arner, R.; O'Hare, M.

1995-03-01T23:59:59.000Z

317

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data  

E-Print Network (OSTI)

Mapping oil spills on sea water using spectral mixture analysis of hyperspectral image data Javier large spill oil events threatening coastal habitats and species. Some recent examples include the 2002 Prestige tanker oil spill in Galicia, Northern Spain, as well as repeated oil spill leaks evidenced

Plaza, Antonio J.

318

Oil Bypass Filter Technology Performance Evaluation - First Quarterly Report  

DOE Green Energy (OSTI)

This report details the initial activities to evaluate the performance of the oil bypass filter technology being tested by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass systems from the puraDYN Corporation. Each bus averages about 60,000 miles a year. The evaluation includes an oil analysis regime to monitor the presence of necessary additives in the oil and to detect undesirable contaminants. Very preliminary economic analysis suggests that the oil bypass system can reduce life-cycle costs. As the evaluation continues and oil avoidance costs are quantified, it is estimated that the bypass system economics may prove increasingly favorable, given the anticipated savings in operational costs and in reduced use of oil and waste oil avoidance.

Zirker, L.R.; Francfort, J.E.

2003-01-31T23:59:59.000Z

319

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2010;" 5 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

320

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2002;" 5 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Row"

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2010;" 6 End Uses of Fuel Consumption, 2010;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

322

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2002;" 6 End Uses of Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and","Natural ","LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

323

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

6 End Uses of Fuel Consumption, 2006;" 6 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," " " ",,,,"Fuel Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)"

324

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

1. End Uses of Fuel Consumption, 1998;" 1. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," "," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," ","RSE" " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)","Row"

325

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. End Uses of Fuel Consumption, 1998;" 2. End Uses of Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Trillion Btu." " "," ",," ","Distillate"," "," ",," "," " " ",,,,"Fuel Oil",,,"Coal",,"RSE" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," ","Row" "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze)","Other(e)","Factors"

326

" Row: End Uses;" " Column: Energy Sources, including Net Electricity;"  

U.S. Energy Information Administration (EIA) Indexed Site

5 End Uses of Fuel Consumption, 2006;" 5 End Uses of Fuel Consumption, 2006;" " Level: National and Regional Data; " " Row: End Uses;" " Column: Energy Sources, including Net Electricity;" " Unit: Physical Units or Btu." " "," ",," ","Distillate"," "," ","Coal"," " " ",,,,"Fuel Oil",,,"(excluding Coal" " "," ","Net","Residual","and","Natural Gas(c)","LPG and","Coke and Breeze)"," " " ","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million","Other(e)"

327

Aqueous flooding methods for tertiary oil recovery  

DOE Patents (OSTI)

A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

Peru, Deborah A. (Bartlesville, OK)

1989-01-01T23:59:59.000Z

328

Current status of nonthermal heavy oil recovery  

Science Conference Proceedings (OSTI)

Heavy oils are an important resource worldwide, and yet two-thirds of the heavy oil deposits cannot be exploited by means of thermal recovery methods, because the effective energy production approaches energy input for reasons of formation thickness, depth, oil saturation and/or porosity. In such instances, especially if the heavy oil is not too viscous (below ca 1000 cp), it may be economical to employ nonthermal recovery methods. These include polymer flooding, alkaline flooding, CO/sub 2/ (gaseous) floods, solvent floods, and other more specialized recovery methods, such as emulsion flooding, and combination techniques. This work discusses nonthermal heavy oil recovery methods, based upon their application in the field. The processes and their mechanistic features are discussed in the light of laboratory observations, which tend to be more optimistic than field results. 48 references.

Alikhan, A.A.; Farouq Ali, S.M.

1983-01-01T23:59:59.000Z

329

Oil and Gas Supply Module  

Annual Energy Outlook 2012 (EIA)

Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule, and Alaska Oil and Gas Supply Submodule. A detailed description of...

330

Industrial Uses of Vegetable Oils  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils offers new insights into these important (and growing) products of vegetable oils, while also covering developments in biodegradable grease, vegetable oils-based polyols, and the synthesis of surfactants from vegetable oil

331

The Legacy of Oil Spills  

E-Print Network (OSTI)

When a 1979 exploratory oil well blew out and leaked oil foraddicted to oil directly causes spills as well as globalmagnitudes of past oil spills. They are well aware of the

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

332

Oil and Plants  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil and Plants Name: Matt Location: NA Country: NA Date: NA Question: If you could please tell me exactly what motor oil (unused) does to plants, and the effects. Does it...

333

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. Ying, Wang. “ China, Venezuela firms to co-developApril 21, “China and Venezuela sign oil agreements. ” Chinaaccessed April 21, “Venezuela and China sign oil deal. ” BBC

Thomas, Bryan G

2009-01-01T23:59:59.000Z

334

Palm oil pundit speaks  

Science Conference Proceedings (OSTI)

Dorab E. Mistry, director of Godrej International Ltd. in Mumbai, India, spoke about palm oil on March 15, 2010, during the 2010 Annual Convention of the National Institute of Oilseed Products in Palm Springs, California, USA. Palm oil pundit speaks ...

335

Understanding Crude Oil Prices  

E-Print Network (OSTI)

well below unity accounts for the broad trends we see in the share of oil purchases in totalWells. ” Middle panel: percent of U.S. total crude oil

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

336

Oil Peak or Panic?  

SciTech Connect

In this balanced consideration of the peak-oil controversy, Gorelick comes down on the side of the optimists.

Greene, David L [ORNL

2010-01-01T23:59:59.000Z

337

SRC Residual fuel oils  

DOE Patents (OSTI)

Coal solids (SRC) and distillate oils are combined to afford single-phase blends of residual oils which have utility as fuel oils substitutes. The components are combined on the basis of their respective polarities, that is, on the basis of their heteroatom content, to assure complete solubilization of SRC. The resulting composition is a fuel oil blend which retains its stability and homogeneity over the long term.

Tewari, Krishna C. (Whitehall, PA); Foster, Edward P. (Macungie, PA)

1985-01-01T23:59:59.000Z

338

PREDICTIVE MODELS. Enhanced Oil Recovery Model  

SciTech Connect

PREDICTIVE MODELS is a collection of five models - CFPM, CO2PM, ICPM, PFPM, and SFPM - used in the 1982-1984 National Petroleum Council study of enhanced oil recovery (EOR) potential. Each pertains to a specific EOR process designed to squeeze additional oil from aging or spent oil fields. The processes are: 1 chemical flooding; 2 carbon dioxide miscible flooding; 3 in-situ combustion; 4 polymer flooding; and 5 steamflood. CFPM, the Chemical Flood Predictive Model, models micellar (surfactant)-polymer floods in reservoirs, which have been previously waterflooded to residual oil saturation. Thus, only true tertiary floods are considered. An option allows a rough estimate of oil recovery by caustic or caustic-polymer processes. CO2PM, the Carbon Dioxide miscible flooding Predictive Model, is applicable to both secondary (mobile oil) and tertiary (residual oil) floods, and to either continuous CO2 injection or water-alternating gas processes. ICPM, the In-situ Combustion Predictive Model, computes the recovery and profitability of an in-situ combustion project from generalized performance predictive algorithms. PFPM, the Polymer Flood Predictive Model, is switch-selectable for either polymer or waterflooding, and an option allows the calculation of the incremental oil recovery and economics of polymer relative to waterflooding. SFPM, the Steamflood Predictive Model, is applicable to the steam drive process, but not to cyclic steam injection (steam soak) processes. The IBM PC/AT version includes a plotting capability to produces a graphic picture of the predictive model results.

Ray, R.M. [DOE Bartlesville Energy Technology Center, Bartlesville, OK (United States)

1992-02-26T23:59:59.000Z

339

Gourmet and Health-Promoting Specialty OilsChapter 11 Camellia Oil and Tea Oil  

Science Conference Proceedings (OSTI)

Gourmet and Health-Promoting Specialty Oils Chapter 11 Camellia Oil and Tea Oil Health Nutrition Biochemistry eChapters Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter 11 Camellia Oil and T

340

Using Oils As Pesticides  

E-Print Network (OSTI)

Petroleum and plant-derived spray oils show increasing potential for use as part of Integrated Pest Management systems for control of soft-bodied pests on fruit trees, shade trees, woody ornamentals and household plants. Sources of oils, preparing oils for use, application and precautions are discussed.

Bogran, Carlos E.; Ludwig, Scott; Metz, Bradley

2006-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Understanding Crude Oil Prices  

E-Print Network (OSTI)

to a “negative” storage cost for oil in the form of a bene?tin levels. oil for more than your costs, that is, if P t+1 QSaudi oil, and M S the Saudi’s marginal cost of production.

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

342

Exploiting heavy oil reserves  

E-Print Network (OSTI)

the behaviour of oil and gas prices and the fruits of future exploration. The rate of technological progress. How optimistic are you that the North Sea remains a viable source of oil and gas? A) Our new researchNorth Sea investment potential Exploiting heavy oil reserves Beneath the waves in 3D Aberdeen

Levi, Ran

343

Oil shale in Colorado, the '80s  

SciTech Connect

An overview of near-future oil shale development in Colorado, including an assessment of Colorado's oil shale deposits is presented. A description of the state-of-the-art oil shale technology is also included, and an in-depth look at current projects is given. Also noted are governmental and legal aspects involved, with six areas of specific concern to Colorado pointed out. (JMT)

1979-01-01T23:59:59.000Z

344

Running Out of and Into Oil: Analyzing Global Oil Depletion and Transition Through 2050  

DOE Green Energy (OSTI)

This report presents a risk analysis of world conventional oil resource production, depletion, expansion, and a possible transition to unconventional oil resources such as oil sands, heavy oil and shale oil over the period 2000 to 2050. Risk analysis uses Monte Carlo simulation methods to produce a probability distribution of outcomes rather than a single value. Probability distributions are produced for the year in which conventional oil production peaks for the world as a whole and the year of peak production from regions outside the Middle East. Recent estimates of world oil resources by the United States Geological Survey (USGS), the International Institute of Applied Systems Analysis (IIASA), the World Energy Council (WEC) and Dr. C. Campbell provide alternative views of the extent of ultimate world oil resources. A model of oil resource depletion and expansion for twelve world regions is combined with a market equilibrium model of conventional and unconventional oil supply and demand to create a World Energy Scenarios Model (WESM). The model does not make use of Hubbert curves but instead relies on target reserve-to-production ratios to determine when regional output will begin to decline. The authors believe that their analysis has a bias toward optimism about oil resource availability because it does not attempt to incorporate political or environmental constraints on production, nor does it explicitly include geologic constraints on production rates. Global energy scenarios created by IIASA and WEC provide the context for the risk analysis. Key variables such as the quantity of undiscovered oil and rates of technological progress are treated as probability distributions, rather than constants. Analyses based on the USGS and IIASA resource assessments indicate that conventional oil production outside the Middle East is likely to peak sometime between 2010 and 2030. The most important determinants of the date are the quantity of undiscovered oil, the rate at which unconventional oil production can be expanded, and the rate of growth of reserves and enhanced recovery. Analysis based on data produced by Campbell indicates that the peak of non-Middle East production will occur before 2010. For total world conventional oil production, the results indicate a peak somewhere between 2020 and 2050. Key determinants of the peak in world oil production are the rate at which the Middle East region expands its output and the minimum reserves-to-production ratios producers will tolerate. Once world conventional oil production peaks, first oil sands and heavy oil from Canada, Venezuela and Russia, and later some other source such as shale oil from the United States must expand if total world oil consumption is to continue to increase. Alternative sources of liquid hydrocarbon fuels, such as coal or natural gas are also possible resources but not considered in this analysis nor is the possibility of transition to a hydrogen economy. These limitations were adopted to simplify the transition analysis. Inspection of the paths of conventional oil production indicates that even if world oil production does not peak before 2020, output of conventional oil is likely to increase at a substantially slower rate after that date. The implication is that there will have to be increased production of unconventional oil after that date if world petroleum consumption is to grow.

Greene, D.L.

2003-11-14T23:59:59.000Z

345

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

346

Summary World Oil Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

Oil Data (from World on the Edge) Oil Data (from World on the Edge) Dataset Summary Description This dataset presents summary information related to world oil. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. This world oil dataset includes the following data: World oil production (1950 - 2009): Top 20 producing countries (2009); Oil production in U.S. (1900 - 2009); Oil consumption in U.S. (950 - 2010); Oil consumption in China (1965 - 2009); Oil consumption in E.U. (1965 - 2009); Top 20 oil importing countries (2009); World's 20 largest oil discoveries; Real price of gasoline (2007); Retail gas prices by country (2008); and fossil fuel consumption subsidies (2009).

347

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

348

Oil shale oxidation at subretorting temperatures  

SciTech Connect

Green River oil shale was air oxidized at subretorting temperatures. Off gases consisting of nitrogen, oxygen, carbon monoxide, carbon dioxide, and water were monitored and quantitatively determined. A mathematical model of the oxidation reactions based on a shrinking core model has been developed. This model incorporates the chemical reaction of oxygen and the organic material in the oil shale as well as the diffusivity of the oxygen into the shale particle. Diffusivity appears to be rate limiting for the oxidation. Arrhenius type equations, which include a term for oil shale grade, have been derived for both the chemical reaction and the diffusivity.

Jacobson, I.A. Jr.

1980-06-01T23:59:59.000Z

349

Fuel oil and kerosene sales 1995  

Science Conference Proceedings (OSTI)

This publication contains the 1995 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the seventh year that the survey data have appeared in a separate publication. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the product supplied volumes published in the Petroleum Supply Annual (PSA). 24 tabs.

NONE

1996-09-01T23:59:59.000Z

350

Science Accelerator content now includes multimedia  

Office of Scientific and Technical Information (OSTI)

Science Accelerator content now includes multimedia Science Accelerator has expanded its suite of collections to include ScienceCinema, which contains videos produced by the U.S....

351

Process for tertiary oil recovery using tall oil pitch  

DOE Patents (OSTI)

Compositions and process employing same for enhancing the recovery of residual acid crudes, particularly heavy crudes, by injecting a composition comprising caustic in an amount sufficient to maintain a pH of at least about 11, preferably at least about 13, and a small but effective amount of a multivalent cation for inhibiting alkaline silica dissolution with the reservoir. Preferably a tall oil pitch soap is included and particularly for the heavy crudes a polymeric mobility control agent.

Radke, Clayton J. (El Cerrito, CA)

1985-01-01T23:59:59.000Z

352

Table 5.2 Crude Oil Production and Crude Oil Well Productivity ...  

U.S. Energy Information Administration (EIA)

1 See "Crude Oil Well" in Glossary. R=Revised. P=Preliminary. E=Estimate. NA=Not available. 2 United States excluding Alaska and Hawaii. Includes State onshore, State ...

353

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

354

Oil shale commercialization study  

SciTech Connect

Ninety four possible oil shale sections in southern Idaho were located and chemically analyzed. Sixty-two of these shales show good promise of possible oil and probable gas potential. Sixty of the potential oil and gas shales represent the Succor Creek Formation of Miocene age in southwestern Idaho. Two of the shales represent Cretaceous formations in eastern Idaho, which should be further investigated to determine their realistic value and areal extent. Samples of the older Mesozonic and paleozoic sections show promise but have not been chemically analyzed and will need greater attention to determine their potential. Geothermal resources are of high potential in Idaho and are important to oil shale prospects. Geothermal conditions raise the geothermal gradient and act as maturing agents to oil shale. They also might be used in the retorting and refining processes. Oil shales at the surface, which appear to have good oil or gas potential should have much higher potential at depth where the geothermal gradient is high. Samples from deep petroleum exploration wells indicate that the succor Creek shales have undergone considerable maturation with depth of burial and should produce gas and possibly oil. Most of Idaho's shales that have been analyzed have a greater potential for gas than for oil but some oil potential is indicated. The Miocene shales of the Succor Creek Formation should be considered as gas and possibly oil source material for the future when technology has been perfectes. 11 refs.

Warner, M.M.

1981-09-01T23:59:59.000Z

355

Absorbents for Mineral Oil Spill Cleanup  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. After the material has had time to absorb the mineral oil on the ground surface, it is removed and normally sent to a landfill with a liner and leachate collection system designed to Subtitle D standards for municip...

2011-08-23T23:59:59.000Z

356

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Home > Petroleum > Analysis > Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) ...

357

Petroleum Gasoline & Distillate Needs Including the Energy ...  

U.S. Energy Information Administration (EIA)

Petroleum Gasoline & Distillate Needs Including the Energy Independence and Security Act (EISA) Impacts

358

International developments in oil shale  

SciTech Connect

An overview of oil shale research and development outside the US provides a status report on technology approaches under active consideration in Australia, Brazil, Canada, China, West Germany, Israel, Jordan, Morocco, Soviet Union, Thailand, Turkey, and Yugoslavia. The status report covers the development plans and project costs of industrial projects. The technologies under consideration include the Fushun, Galoter, Kiviter, Lurgi, and Petrosix processes. 10 references.

Uthus, D.B.

1985-08-01T23:59:59.000Z

359

LLNL oil shale project review  

Science Conference Proceedings (OSTI)

Livermore's oil shale project is funded by two budget authorities, two thirds from base technology development and one third from environmental science. Our base technology development combines fundamental chemistry research with operation of pilot retorts and mathematical modeling. We've studied mechanisms for oil coking and cracking and have developed a detailed model of this chemistry. We combine the detailed chemistry and physics into oil shale process models (OSP) to study scale-up of generic second generation Hot-Recycled-Solid (HRS) retorting systems and compare with results from our 4 tonne-per-day continuous-loop HRS pilot retorting facility. Our environmental science program focuses on identification of gas, solid and liquid effluents from oil shale processes and development of abatement strategies where necessary. We've developed on-line instruments to quantitatively measure trace sulfur and nitrogen compounds released during shale pyrolysis and combustion. We've studied shale mineralogy, inorganic and organic reactions which generate and consume environmentally sensitive species. Figures, references, and tables are included with each discussion.

Cena, R.J. (ed.)

1990-04-01T23:59:59.000Z

360

Industrial Oil Products Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the Industrial Oil Products Newsletter April 2013. Industrial Oil Products Newsletter April 2013 Industrial Oil Products Newsletter April 2013 ...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Oil shale retorting: Part 2, variation in product oil chemistry during retorting of an oil shale block  

DOE Green Energy (OSTI)

This report discusses the variation in composition of oil as it is evolved during the pyrolysis of oil shale. Thirteen shale oil fractions collected during pyrolysis of an 18- x 18-cm cylindrical shale block have been analyzed by measurements of density, viscosity, elemental composition, simulated distillation, GLC, /sup 1/H and /sup 13/C NMR, and infrared spectroscopy. The results show a striking change in the composition of oil collected early during retorting, as compared with that collected during the middle or latter part of retorting. In particular, the early oil fractions contain a predominance of naturally occurring isoprenoid compounds, whereas later fractions contain larger amounts of paraffin compounds. Less dramatic changes include variations in the amounts of olefins, aromatics, and degree of aromatic substitution, changes in amount of nitrogen-containing compounds, and variations in density and viscosity. The results of these analyses are used to form a picture of the changes in shale oil composition during retorting in the hope that a clearer understanding of the system's chemistry may eventually provide a way to optimize the shale oil retorting process.

Coburn, T.T.; Campbell, J.H.

1977-09-08T23:59:59.000Z

362

Interstate Oil and Gas Conservation Compact (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) Interstate Oil and Gas Conservation Compact (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Siting and Permitting Provider Interstate Oil and Gas Compact Commission This legislation authorizes the State to join the Interstate Compact for the Conservation of Oil and Gas. The Compact is an agreement that has been entered into by 30 oil- and gas-producing states, as well as eight associate states and 10 international affiliates (including seven Canadian provinces). Members participate in the Interstate Oil and Gas Compact

363

Crude Oil, Heating Oil, and Propane Market Outlook  

Gasoline and Diesel Fuel Update (EIA)

Oil, Heating Oil, and Propane Market Outlook Oil, Heating Oil, and Propane Market Outlook 8/13/01 Click here to start Table of Contents Crude Oil, Heating Oil, and Propane Market Outlook Short-Term World Oil Price Forecast Price Movements Related to Supply/Demand Balance OPEC Production Likely To Remain Low U.S. Reflects World Market Crude Oil Outlook Conclusions Distillate Prices Increase With Crude Oil Distillate Stocks on the East Coast Were Very Low Entering Last Winter Distillate Demand Strong Last Winter More Supply Possible This Fall than Forecast Distillate Fuel Oil Imports Could Be Available - For A Price Distillate Supply/Demand Balance Reflected in Spreads Distillate Stocks Expected to Remain Low Winter Crude Oil and Distillate Price Outlook Heating Oil Outlook Conclusion Propane Prices Follow Crude Oil

364

Catalyst regeneration process including metal contaminants removal  

DOE Patents (OSTI)

Spent catalysts removed from a catalytic hydrogenation process for hydrocarbon feedstocks, and containing undesired metals contaminants deposits, are regenerated. Following solvent washing to remove process oils, the catalyst is treated either with chemicals which form sulfate or oxysulfate compounds with the metals contaminants, or with acids which remove the metal contaminants, such as 5-50 W % sulfuric acid in aqueous solution and 0-10 W % ammonium ion solutions to substantially remove the metals deposits. The acid treating occurs within the temperature range of 60.degree.-250.degree. F. for 5-120 minutes at substantially atmospheric pressure. Carbon deposits are removed from the treated catalyst by carbon burnoff at 800.degree.-900.degree. F. temperature, using 1-6 V % oxygen in an inert gas mixture, after which the regenerated catalyst can be effectively reused in the catalytic process.

Ganguli, Partha S. (Lawrenceville, NJ)

1984-01-01T23:59:59.000Z

365

Gulf Coast (PADD 3) Crude Oil Imports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

366

East Coast (PADD 1) Crude Oil Imports - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

PAD District Imports by Country of Origin ... Crude oil includes imports for storage in the Stategic Petroleum Reserve. The Persian Gulf includes Bahrain, ...

367

Crude Oil Analysis Database  

DOE Data Explorer (OSTI)

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

368

Crude Oil Watch - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Crude Oil Watch April 19, 2000 Energy Information Administration Office of Oil & Gas A large stockbuild in crude oil inventories contributed to blunt crude oil inputs ...

369

Biodiesel production using waste frying oil  

SciTech Connect

Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

2011-01-15T23:59:59.000Z

370

Compositional changes in heavy oil steamflood simulators  

E-Print Network (OSTI)

The numerical simulation of heavy oil steamfloods has generally been conducted assuming that the oil is non-volatile. Reservoir simulation has traditionally ignored compositional effect s due to heat and steam and assumed that the hydrocarbon phase is non-volatile. This is equivalent to assuming that the equilibrium ratios, K-values, are zero. In order to properly model the mechanism of steamflooding, however, compositional effects need to be taken into account. In this study, laboratory data including distillation, vapor pressure, steam distillation and viscosity measurements, along with a commercial PVT simulator are used to tune equation-of-state (EOS) and viscosity parameters to properly model the PVT properties of the oil. The Peng-Robinson equation-of-state (PR-EOS) was used for all phase behavior calculations. Viscosity as a function of temperature and composition was modeled with the Pedersen correlation for heavy oils. Once a tuned equation-of-state, compositional fluid description was developed for the heavy oil, one-dimensional numerical simulations of the steamflooding process were performed. These simulations demonstrated the utility of the equation-of-state approach. In addition, it was concluded that compositional effects are essential for the proper modeling of low residual oil saturations seen in the field and the formation of an in-situ solvent bank at the steam-oil interface.

Lolley, Christopher Scott

1995-01-01T23:59:59.000Z

371

High efficiency shale oil recovery  

SciTech Connect

The overall project objective is to demonstrate the high efficiency of the Adams Counter-Current shale oil recovery process. The efficiency will first be demonstrated at bench-scale, in the current phase, after which the demonstration will be extended to the operation of a small pilot plant. Thus the immediate project objective is to obtain data on oil shale retorting operations in a small batch rotary kiln that will be representative of operations in the proposed continuous process pilot plant. Although a batch oil shale sample will be sealed in the batch kiln from the start until the end of the run, the process conditions for the batch will be the same as the conditions that an element of oil shale would encounter in a large continuous process kiln. For example, similar conditions of heat-up rate (20 deg F/min during the pyrolysis), oxidation of the residue and cool-down will prevail for the element in both systems. This batch kiln is a unit constructed in a 1987 Phase I SBIR tar sand retorting project. The kiln worked fairly well in that project; however, the need for certain modifications was observed. These modifications are now underway to simplify the operation and make the data and analysis more exact. The agenda for the first three months of the project consisted of the first of nine tasks and was specified as the following four items: 1. Sample acquisition and equipment alteration: Obtain seven oil shale samples, of varying grade each 10 lb or more, and samples of quartz sand. Order equipment for kiln modification. 3. Set up and modify kiln for operation, including electric heaters on the ends of the kiln. 4. Connect data logger and make other repairs and changes in rotary batch kiln.

Adams, D.C.

1992-01-01T23:59:59.000Z

372

Shale oil: process choices  

SciTech Connect

The four broad categories of shale-oil processing are discussed. All of these processes share the basic function of retorting oil-shale rock at high temperature so that the kerogen material in the rocks is thermally decomposed to shale oil and gaseous products. The technologies and the organizations working on their development are: solids-to-solids heating, The Oil Shale Co. (TOSCO) and Lurgi-Rhur; gas-to-solids heating with internal gas combustion, U. S. Bureau of Mines, Development Engineering Inc. and Union Oil of California; gas-to-solid heating with external heat generation, Development Engineering, Union Oil, Petrobas, and Institute of Gas Technology; and in-situ retorting, Occidental Petroleum Corp. The TOSCO II process is considered proven and on the verge of commercialization. (BLM)

1974-05-13T23:59:59.000Z

373

U.S. Distribution and Production of Oil and Gas Wells Distribution...  

Open Energy Info (EERE)

Distribution and Production of Oil and Gas Wells Distribution tables of oil and gas wells by production rate for all wells, including marginal wells, are available from the EIA for...

374

Downstream Petroleum Mergers and Acquisitions by U.S. Major Oil Companies  

Reports and Publications (EIA)

A summary presentation of mergers and acquisitions by U.S. major oil companies (including the U.S. affiliates of foreign major oil companies). The presentation focuses on petroleum refining over the last several years through late 2009.

Neal Davis

2009-12-02T23:59:59.000Z

375

Physical and Chemical Characteristics of Oils, Fats, & Waxes, 3rd Edition  

Science Conference Proceedings (OSTI)

The third edition of Physical and Chemical Characteristics of Oils, Fats, and Waxes includes updated material as well as 25% more new content. Physical and Chemical Characteristics of Oils, Fats, & Waxes, 3rd Edition Methods - Analyses Books Soft Bound B

376

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

oil and grease is determined by passing a knoVln quantity ofOil shales contain organic material in a matrix which includes significant quantitiesoil shale retorting processes indicate that signifi·~· cant quantities

,

2012-01-01T23:59:59.000Z

377

World Oil: Market or Mayhem?  

E-Print Network (OSTI)

The world oil market is regarded by many as a puzzle. Why are oil prices so volatile? What is OPEC and what does OPEC do? Where are oil prices headed in the long run? Is “peak oil” a genuine concern? Why did oil prices ...

Smith, James L.

2008-01-01T23:59:59.000Z

378

Process of treating oil shale  

SciTech Connect

A process of destructively distilling oil shale is described consisting in subjecting the oil shale containing aluminum to the action of heat and pressure to destructively distill it and separate the light oil constituents. Chlorine gas is simultaneously passed through the hot oil shale countercurrent to the direction of movement of the oil shale.

Egloff, G.

1927-05-03T23:59:59.000Z

379

2 World Oil Market  

E-Print Network (OSTI)

www.eia.gov Crude oil prices react to a variety of geopolitical and economic events price per barrel (real 2010 dollars, quarterly average) 140 120 imported refiner acquisition cost of crude oil WTI crude oil price Global financial collapse 100 80 60 U.S. spare capacity exhausted Iran-Iraq War Saudis abandon swing producer role Asian financial crisis 9-11 attacks Low spare capacity

Adam Sieminski Administrator; Adam Sieminski; Adam Sieminski

2012-01-01T23:59:59.000Z

380

Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same  

DOE Patents (OSTI)

The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

Shafer, Scott F. (Morton, IL)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Improved oil refinery operations and cheaper crude oil to help...  

Annual Energy Outlook 2012 (EIA)

Improved oil refinery operations and cheaper crude oil to help reduce gasoline prices U.S. gasoline prices are expected to fall as more oil refineries come back on line and crude...

382

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

383

Understanding Crude Oil Prices  

E-Print Network (OSTI)

disruptions, and the peak in U.S. oil production account foroil increased 81.1% (logarithmically) between January 1979 and the peak

Hamilton, James Douglas

2008-01-01T23:59:59.000Z

384

Global Oil Geopolitics  

U.S. Energy Information Administration (EIA)

Iran-Iraq War . Iranian revolution . Arab Oil Embargo . Asian financial crisis . capacity exhausted . Global financial collapse . 9-11 attacks . OPEC cuts targets 1.7 ...

385

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1999 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

386

Oil and Gas (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This division of the Indiana Department of Natural Resources provides information on the regulation of oil and gas exploration, wells and well spacings, drilling, plugging and abandonment, and...

387

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

388

Crude Oil Prices  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

389

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 2001 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

390

Residual Fuel Oil Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

391

Oil spill response resources  

E-Print Network (OSTI)

Pollution has become one of the main problems being faced by humanity. Preventing pollution from occurring might be the best idea but is not possible in this fast developing world. So the next best thing to do would be to respond to the pollution source in an effective manner. Oil spills are fast becoming pollution sources that are causing the maximum damage to the environment. This is owing to the compounds that are released and the way oil spreads in both water and land. Preventing the oil spill would be the best option. But once the oil has been spilled, the next best thing to do is to respond to the spill effectively. As a result, time becomes an important factor while responding to an oil spill. Appropriate response to contain and cleanup the spill is required to minimize its potential damage to the ecosystem. Since time and money play a very important role in spill response, it would be a great idea if decisions can be made in such a way that a quick response can be planned. The first part of this study deals with the formation of an 'Oil Spill Resources Handbook', which has information on all the important Oil Spill Contractors. The second and the main part of the study, deals with creating a database in Microsoft Access of the Oil Spill Contractors. The third portion of the study deals with planning an oil spill response using a systems approach.

Muthukrishnan, Shankar

1996-01-01T23:59:59.000Z

392

China's Global Oil Strategy  

E-Print Network (OSTI)

Industry analysts and academics agree that China’s domestic oil supply will peak, and demand Robert Ebel, China’s Energy

Thomas, Bryan G

2009-01-01T23:59:59.000Z

393

Crude Oil Price Forecast  

U.S. Energy Information Administration (EIA)

We believe crude oil prices will strengthen somewhat, but prices will rise much more slowly than they fell, and they are expected to remain lower in ...

394

Oil And The Macroeconomy.  

E-Print Network (OSTI)

?? This paper examines the oil price-macro economy relationship by means of analyzing the impact ofoil price on Industrial production, real effective exchange rate, long… (more)

Al-Ameri, Leyth

2012-01-01T23:59:59.000Z

395

California Crude Oil Prices  

U.S. Energy Information Administration (EIA)

... of different quality crudes vary over time based on the value the market places on such quality attributes. A heavy crude oil has more heavy, ...

396

INHIBITORY EFFECT OF ESSENTIAL OILS ON EXTRACELLULAR  

E-Print Network (OSTI)

Pityriasis capitis is a common scalp disorder caused by a fungus Malassezia globosa. The mechanism of Pityriasis capitis includes Malassezia-induced fatty acid metabolism, particularly lipase-mediated breakdown of sebaceous lipids and release of irritating free fatty acids. We report that extracellular lipase activity was detected in Malassezia globosa. The presence of lipase enzyme was performed in specific media on Petri dishes for formation of a zone.In this article, the effect of Cymbopogon citratus and Zingiber officinale essential oils on the extracellular lipase activity of Malassezia globosa had been studied by titrametric method. At the end of titration 4 µmol fatty acid/ml of reaction mixture was released in the presence of Cymbopogon citratus oil and 7µmol of fatty acid/ml of reaction mixture was liberated in the presence of Zingiber officinale oil. It was found that both essential oils strongly inhibit the lipase activity of M. globosa at a lower concentration.

Shubhangi Mugal; Ranjana Verma; Renu Mishra; Shikha Mandloi

2013-01-01T23:59:59.000Z

397

Fuel oil and kerosene sales 1992  

SciTech Connect

This publication contains the 1992 survey results of the ``Annual Fuel Oil and Kerosene Sales Report`` (Form EIA-821). This is the fourth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM for reference years 1984 through 1987. The 1992 edition marks the ninth annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1993-10-29T23:59:59.000Z

398

Fuel oil and kerosene sales 1993  

Science Conference Proceedings (OSTI)

This publication contains the 1993 survey results of the ``Annual Fuel Oil and Kerosene, Sales Report`` (Form EIA-821). This is the fifth year that the survey data have appeared in a separate publication. Prior to the 1989 report, the statistics appeared in the Petroleum Marketing Annual (PMA) for reference year 1988 and the Petroleum Marketing Monthly (PMM) for reference years 1984 through 1987. The 1993 edition marks the 10th annual presentation of the results of the ongoing ``Annual Fuel Oil and Kerosene Sales Report`` survey. Except for the kerosene and on-highway diesel information, data presented in Tables 1 through 12 (Sales of Fuel Oil and Kerosene) present results of the EIA-821 survey. Tables 13 through 24 (Adjusted Sales of Fuel Oil and Kerosene) include volumes that are based on the EIA-821 survey but have been adjusted to equal the products supplied volumes published in the Petroleum Supply Annual (PSA).

Not Available

1994-10-03T23:59:59.000Z

399

Oil production by Candida curvata and extraction, composition and properties of the oil  

Science Conference Proceedings (OSTI)

A strain of the yeast C. curvata was grown in cheese whey permeate under conditions that allowed for oil production. The N-C ratio of the fermentation medium influenced the amount of oil produced. Concentrated permeate could be used as a substrate, but the efficiency of conversion to oil was reduced. The yeast grew well and produced oil in several different types of whey and milk permeates and also in nonsterile systems. The lipid of C. curvata amounted to approximately 50% of its dry weight and could be extracted by sequential treatment with ethanol, hexane, and benzene. The extraction with benzene was necessary for good yields even though nearly all the material extracted with benzene was soluble in hexane. The lipid was 80-90% triglyceride, contained little free fatty acid, and could be degummed by traditional methods. The triglyceride was 30.4% palmitic, 0.84% palmitoleic acid, 11.4% stearic, 51.0% oleic, 6.2% linoleic, and 0.4% linolenic acid. The saturated acyl groups were almost completely on the sn-1 and 3 positions of the glycerol. The oil melting point was -10 to 22 degrees. No tocopherol was detected and the oil oxidized at a rate similar to that for soybean oil at 55 degrees. The oil contained a variety of linear hydrocarbons and 4 sterols. The polar lipids include phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidic acid.

Hammond, E.G.; Glatz, B.A.; Choi, Y.; Teasdale, M.T.

1981-01-01T23:59:59.000Z

400

Oil and Gas Field Code Master List 1998 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1998 is an addendum to the 1997 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through October 1998.

Robert F. King

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Oil and Gas Field Code Master List 1999 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1999 is an addendum to the 1998 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through November 1999.

Robert F. King

2000-01-01T23:59:59.000Z

402

Oil-shale mining, Rifle, Colorado, 1944-1956  

SciTech Connect

The Rifle, Colorado, oil-shale project of the Bureau of Mines included three major divisions: (1) mining, (2) retorting, and (3) refining. The major functions of the mining program were to supply oil shale to the retorts, to devise mining procedures, and to develop an underground-mining method by which oil shale could be produced safely at an unusually low cost per ton. The selected mining procedures and direct mining costs were demonstrated by sustained test runs.

East, J.H. Jr.; Gardner, E.D.

1964-01-01T23:59:59.000Z

403

Oil and Gas Supply Module  

Gasoline and Diesel Fuel Update (EIA)

States, acquire natural gas from foreign producers for resale States, acquire natural gas from foreign producers for resale in the United States, or sell U.S. gas to foreign consumers. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes unconventional gas recovery from low permeability formations of sandstone and shale, and coalbeds. Foreign gas transactions may occur via either pipeline (Canada or Mexico) or transport ships as liquefied natural gas (LNG). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 89 Figure 7. Oil and Gas Supply Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

404

Determination of Aluminum Rolling Oil and Machinery Oil Residues ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Aluminum Rolling Oil and Machinery Oil Residues on Aluminum Sheet and Foil by Using Elemental Analysis and Fourier  ...

405

Relaxation studies on oil, pressboard and oil impregnated pressboard.  

E-Print Network (OSTI)

??In this thesis, a laboratory relaxation study with FDS and RVM was carried out for a period of 3 years with the fabricated oil (OIL),… (more)

Cao, Hongyan.

2008-01-01T23:59:59.000Z

406

Why solar oil shale retorting produces more oil  

DOE Green Energy (OSTI)

A solar oil shale retorting process may produce higher oil yield than conventional processing. High oil yield is obtained for three reasons: oil carbonization inside of the shale is reduced, oil cracking outside of the shale is reduced, and oil oxidation is essentially eliminated. Unique capabilities of focused solar energy produce these advantages. An increase in yield will reduce the cost of mining and shale transportation per barrel of oil produced. These cost reductions may justify the increased processing costs that will probably be associated with solar oil shale retorting.

Aiman, W.R.

1981-05-20T23:59:59.000Z

407

NETL: Oil and Natural Gas: Enhanced Oil Recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

that have unconventional characteristics (e.g., oil in fractured shales, kerogen in oil shale, bitumen in tar sands) constitute an enormous potential domestic supply of energy....

408

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

409

Distillate and Crude Oil Price  

Gasoline and Diesel Fuel Update (EIA)

fuel and residential heating oil prices on the East Coast is being driven by higher crude oil prices than last year and higher spreads. Crude oil is projected to average almost...

410

NETL: Oil & Natural Gas Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Oil and Natural Gas Supply > Events Oil and Natural Gas Supply Events The following is a listing of events of interest to the oil and natural gas community....

411

The Legacy of Oil Spills  

E-Print Network (OSTI)

010-0527-5 The Legacy of Oil Spills J. T. Trevors & M. H.workers were killed, and oil has been gushing out everday. It is now June, and oil continues to spew forth into

Trevors, J. T.; Saier, M. H.

2010-01-01T23:59:59.000Z

412

Handbook of Australasian Edible Oils  

Science Conference Proceedings (OSTI)

This book highlights various aspects of Australasian edible oils. Handbook of Australasian Edible Oils Food Science Health Nutrition Biochemistry Food Science & Technology Health - Nutrition - Biochemistry Soft Bound Books Oils and Fats Specialist

413

Making and breaking of water in crude oil emulsions  

E-Print Network (OSTI)

An understanding of the processes involved in oil spills, and how they interact to alter the composition and behavior of the oil with respect to time is essential to determine an effective oil spill response. The review of past research has shown more focus on the laboratory methods and computerized modeling schemes to estimate the formation and breaking of emulsions after an oil spill. However, relatively less effort has gone into the study of emulsions corresponding to actual field conditions. This research aims to simulate an oil spill at sea by developing a new technique to make water in oil emulsions, without disturbing the marine wildlife. Further, this research also attempts to analyze the viscosities of water in oil emulsions and determine appropriate emulsion breakers for different crude oil emulsions. The overall test design for the study includes a test apparatus for spreading and evaporation, three different crude oils, a mixing chamber to form the emulsion, and emulsion breakers. Experiments in this research attempt to gain a better understanding of the processes that occur after oil spills at sea. In particular, the rate of evaporation of different crude oils and the formation of crude oil emulsions on the sea surface have been investigated. It was observed that different crude oils behave differently when subjected to the same weathering procedure. Results indicate that the behavior of the crude oil on the sea surface, subjected to spreading, evaporation, and emulsification, can be predicted by using the new technique developed in this research. This technique can also assist the development of effective recovery equipments and materials.

Mehta, Shweta D.

2005-12-01T23:59:59.000Z

414

Industrial Uses of Vegetable OilsChapter 3 Vegetable Oil-Based Engine Oils: Are They Practical?  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practical? Processing eChapters Processing Press Downloadable pdf of Chapter 3 Vegetable Oil-Based Engine Oils: Are They Practi

415

Oil price analysis  

Science Conference Proceedings (OSTI)

The transport has been in the whole history of mankind the basic and determining mover of the human society shape. It determined not only the position of towns, but also their inner design and it was also last but not least the basic element of the economic ... Keywords: GDP, deposit, fuels, history, market equilibrium, oil, oil reserves, price

Zdenek Riha; Viktorie Jirova; Marek Honcu

2011-12-01T23:59:59.000Z

416

Menhaden Fish Oil  

Science Conference Proceedings (OSTI)

Physical Characteristics of Oils, Fats, and Waxes Menhaden Oil Specific Gravity (SG) 15.5/15.5°C. . . . . . . . . . . . . . .0.912– 0.930 25/25°C Other SG Refractive Index (RI) 25°C 40°C Other RI. . . . . . . . . . . . . . . (65) 1

417

Refining of shale oil  

DOE Green Energy (OSTI)

The refining of shale oil is reviewed to assess the current state-of-the-art, especially as to the avaiability of technology suitable for operation on a commercial scale. Oil shale retorting processes as they affect the quality of the crude shale oil for refining, exploratory research on the character and refining of shale oil, and other published refining background leading to the present status are discussed. The initial refining of shale oil requires the removal of a large concentration of nitrogen, an added step not required for typical petroleum crude oils, and recently published estimates show that the total cost of refining will be high. Specific technoloy is reported by industry to be technically proven and available for commercial-scale refining. Although the refining will be more costly than that of petroleum, the viability of a shale oil industry will also be affected greatly by the technology and costs of producing the crude shale oil, environmental costs, and future price and tax treatment, and these are outside the scope of this study of refining.

Lanning, W.C.

1978-05-01T23:59:59.000Z

418

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste – Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPA’s criteria for used oil: • Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a “similar use ” on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

419

Peak oil: diverging discursive pipelines.  

E-Print Network (OSTI)

??Peak oil is the claimed moment in time when global oil production reaches its maximum rate and henceforth forever declines. It is highly controversial as… (more)

Doctor, Jeff

2012-01-01T23:59:59.000Z

420

Oil and Natural Gas - Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Search Search NETL Oil and Natural Gas Document Information Oil & Natural Gas Document Repository Results will be shown in two categories. "Document Database Results" provides...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Balancing oil and environment... responsibly.  

Science Conference Proceedings (OSTI)

Balancing Oil and Environment…Responsibly As the price of oil continues to skyrocket and global oil production nears the brink, pursuing unconventional oil supplies, such as oil shale, oil sands, heavy oils, and oils from biomass and coal has become increasingly attractive. Of particular significance to the American way is that our continent has significant quantities of these resources. Tapping into these new resources, however, requires cutting-edge technologies for identification, production, processing and environmental management. This job needs a super hero or two for a job of this size and proportion…

Weimer, Walter C.; Teske, Lisa

2007-01-25T23:59:59.000Z

422

oil | OpenEI  

Open Energy Info (EERE)

oil oil Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA end-of-year reserves gas oil Data application/vnd.ms-excel icon AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions- Reference Case (xls, 58.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

423

Heavy crude oil recovery  

SciTech Connect

The oil crisis of the past decade has focused most of the attention and effort of researchers on crude oil resources, which are accepted as unrecoverable using known technology. World reserves are estimated to be 600-1000 billion metric tons, and with present technology 160 billion tons of this total can be recovered. This book is devoted to the discussion of Enhanced Oil Recovery (EOR) techniques, their mechanism and applicability to heavy oil reservoirs. The book also discusses some field results. The use of numerical simulators has become important, in addition to laboratory research, in analysing the applicability of oil recovery processes, and for this reason the last section of the book is devoted to simulators used in EOR research.

Okandan, E.

1984-01-01T23:59:59.000Z

424

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

425

Corrosivity Of Pyrolysis Oils  

SciTech Connect

Pyrolysis oils from several sources have been analyzed and used in corrosion studies which have consisted of exposing corrosion coupons and stress corrosion cracking U-bend samples. The chemical analyses have identified the carboxylic acid compounds as well as the other organic components which are primarily aromatic hydrocarbons. The corrosion studies have shown that raw pyrolysis oil is very corrosive to carbon steel and other alloys with relatively low chromium content. Stress corrosion cracking samples of carbon steel and several low alloy steels developed through-wall cracks after a few hundred hours of exposure at 50 C. Thermochemical processing of biomass can produce solid, liquid and/or gaseous products depending on the temperature and exposure time used for processing. The liquid product, known as pyrolysis oil or bio-oil, as produced contains a significant amount of oxygen, primarily as components of water, carboxylic acids, phenols, ketones and aldehydes. As a result of these constituents, these oils are generally quite acidic with a Total Acid Number (TAN) that can be around 100. Because of this acidity, bio-oil is reported to be corrosive to many common structural materials. Despite this corrosive nature, these oils have the potential to replace some imported petroleum. If the more acidic components can be removed from this bio-oil, it is expected that the oil could be blended with crude oil and then processed in existing petroleum refineries. The refinery products could be transported using customary routes - pipelines, barges, tanker trucks and rail cars - without a need for modification of existing hardware or construction of new infrastructure components - a feature not shared by ethanol.

Keiser, James R [ORNL; Bestor, Michael A [ORNL; Lewis Sr, Samuel Arthur [ORNL; Storey, John Morse [ORNL

2011-01-01T23:59:59.000Z

426

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

427

Processing of Soybean Oil into Fuels  

DOE Green Energy (OSTI)

Abundant and easily refined, petroleum has provided high energy density liquid fuels for a century. However, recent price fluctuations, shortages, and concerns over the long term supply and greenhouse gas emissions have encouraged the development of alternatives to petroleum for liquid transportation fuels (Van Gerpen, Shanks et al. 2004). Plant-based fuels include short chain alcohols, now blended with gasoline, and biodiesels, commonly derived from seed oils. Of plant-derived diesel feedstocks, soybeans yield the most of oil by weight, up to 20% (Mushrush, Willauer et al. 2009), and so have become the primary source of biomass-derived diesel in the United States and Brazil (Lin, Cunshan et al. 2011). Worldwide ester biodiesel production reached over 11,000,000 tons per year in 2008 (Emerging Markets 2008). However, soybean oil cannot be burned directly in modern compression ignition vehicle engines as a direct replacement for diesel fuel because of its physical properties that can lead to clogging of the engine fuel line and problems in the fuel injectors, such as: high viscosity, high flash point, high pour point, high cloud point (where the fuel begins to gel), and high density (Peterson, Cook et al. 2001). Industrial production of biodiesel from oil of low fatty-acid content often follows homogeneous base-catalyzed transesterification, a sequential reaction of the parent triglyceride with an alcohol, usually methanol, into methyl ester and glycerol products. The conversion of the triglyceride to esterified fatty acids improves the characteristics of the fuel, allowing its introduction into a standard compression engine without giving rise to serious issues with flow or combustion. Commercially available biodiesel, a product of the transesterification of fats and oils, can also be blended with standard diesel fuel up to a maximum of 20 vol.%. In the laboratory, the fuel characteristics of unreacted soybean oil have also been improved by dilution with petroleum based fuels, or by aerating and formation of microemulsions. However, it is the chemical conversion of the oil to fuel that has been the area of most interest. The topic has been reviewed extensively (Van Gerpen, Shanks et al. 2004), so this aspect will be the focus in this chapter. Important aspects of the chemistry of conversion of oil into diesel fuel remain the same no matter the composition of the triglyceride. Hence, although the focus in this book is on soybean oil, studies on other plant based oils and simulated oils have occasional mention in this chapter. Valuable data can be taken on systems that are simpler than soybean based oils, with fewer or shorter chain components. Sometimes the triglycerides will behave differently under reaction conditions, and when relevant, these have been noted in the text. Although the price of diesel fuel has increased, economical production of biodiesel is a challenge because of (1) the increasing price of soybean oil feedstocks and reagent methanol, (2) a distributed supply of feedstocks that reduces the potential for economies of scale, (3) processing conditions that include pressures and temperatures above ambient, and (4) multiple processing steps needed to reduce contaminant levels to ASTM specification D6751 limits (Vasudevan & Briggs 2008). Much of the cost of biodiesel production is related to the conversion of the oil to the methyl ester and so there has been an emphasis to research improved methods of converting soybean oil to biodiesel. However, most of these studies have taken place at the bench scale, and have not demonstrated a marked improvement in yield or reduced oil-to-methanol ratio in comparison with standard base-catalyzed transesterification. One aspect that has a short term chance of implementation is the improvement of the conversion process by the use of a continuous rather than batch process, with energy savings generated by combined reaction and separation, online analysis, and reagent methanol added by titration as needed to produce ASTM specification grade fuel. By adapting process intensif

McFarlane, Joanna [ORNL

2011-01-01T23:59:59.000Z

428

Laser-induced fluorescence fiber optic probe measurement of oil dilution by fuel  

DOE Patents (OSTI)

Apparatus for detecting fuel in oil includes an excitation light source in optical communication with an oil sample for exposing the oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state and a spectrally selective device in optical communication with the oil sample for detecting light emitted from the oil sample as the oil sample returns from the excited state to a non-excited state to produce spectral indicia that can be analyzed to determine the presence of fuel in the oil sample. A method of detecting fuel in oil includes the steps of exposing a oil sample to excitation light in order to excite the oil sample from a non-excited state to an excited state, as the oil sample returns from the excited state to a non-excited state, detecting light emitted from the oil sample to produce spectral indicia; and analyzing the spectral indicia to determine the presence of fuel in the oil sample.

Parks, II, James E. (Knoxville, TN); Partridge, Jr., William P. (Oak Ridge, TN)

2010-11-23T23:59:59.000Z

429

Vegetable oils: liquid coolants for solar heating and cooling applications  

DOE Green Energy (OSTI)

It has been proposed that vegetable oils, renewable byproducts of agriculture processes, be investigated for possible use as liquid coolants. The major thrust of the project was to investigate several thermophysical properties of the four vegetable oils selected. Vapor pressures, specific heat, viscosity, density, and thermal conductivity were determined over a range of temperatures for corn, soybean, peanut, and cottonseed oil. ASTM standard methods were used for these determinations. In addition, chemical analyses were performed on samples of each oil. The samples were collected before and after each experiment so that any changes in composition could be noted. The tests included iodine number, fatty acid, and moisture content determination. (MHR)

Ingley, H A

1980-02-01T23:59:59.000Z

430

NETL: Natural Gas Resources, Enhanced Oil Recovery, Deepwater Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

and Natural Gas Projects and Natural Gas Projects Index of Research Project Summaries Use the links provided below to access detailed DOE/NETL project information, including project reports, contacts, and pertinent publications. Search Natural Gas and Oil Projects Current Projects Natural Gas Resources Shale Gas Environmental Other Natural Gas Resources Ehanced Oil Recovery CO2 EOR Environmental Other EOR & Oil Resources Deepwater Technology Offshore Architecture Safety & Environmental Other Deepwater Technology Methane Hydrates DOE/NETL Projects Completed Projects Completed Natural Gas Resources Completed Enhanced Oil Recovery Completed Deepwater Technology Completed E&P Technologies Completed Environmental Solutions Completed Methane Hydrates Completed Transmission & Distribution

431

U.S. Imports of Crude Oil and Petroleum Products  

U.S. Energy Information Administration (EIA)

History; Total: 10,076: 10,052: 9,790: 10,243: 10,197: 9,979: 1973-2013: Crude Oil: 7,726: 7,737: 7,730: ... Notes: Crude oil includes imports for storage in the ...

432

Fuel and fuel blending components from biomass derived pyrolysis oil  

DOE Patents (OSTI)

A process for the conversion of biomass derived pyrolysis oil to liquid fuel components is presented. The process includes the production of diesel, aviation, and naphtha boiling point range fuels or fuel blending components by two-stage deoxygenation of the pyrolysis oil and separation of the products.

McCall, Michael J.; Brandvold, Timothy A.; Elliott, Douglas C.

2012-12-11T23:59:59.000Z

433

Economic Effects of High Oil Prices (released in AEO2006)  

Reports and Publications (EIA)

The AEO2006 projections of future energy market conditions reflect the effects of oil prices on the macroeconomic variables that affect oil demand, in particular, and energy demand in general. The variables include real GDP growth, inflation, employment, exports and imports, and interest rates.

Information Center

2006-02-01T23:59:59.000Z

434

RDI forecasts oil price increase impact on electric consumers  

SciTech Connect

According to a publication by Resource Data International, Inc. (RDI), Boulder, Colorado, the current oil price increases will effect electricity consumers nationwide. While the direct use of fuel oil and natural gas as boiler fuels is expected to decline with rising prices, the cost of alternative energy sources including coal, nuclear, and hydro are also expected to rise, RDI said.

Not Available

1990-10-25T23:59:59.000Z

435

Proceedings of the 1998 oil heat technology conference  

DOE Green Energy (OSTI)

The 1998 Oil Heat Technology Conference was held on April 7--8 at Brookhaven National Laboratory (BNL) under sponsorship by the US Department of Energy, Office of Building Technologies, State and Community Programs (DOE/BTS). The meeting was held in cooperation with the Petroleum Marketers Association of America (PMAA). Fourteen technical presentations was made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Canada, including: integrated oil heat appliance system development in Canada; a miniature heat-actuated air conditioner for distributed space conditioning; high-flow fan atomized oil burner (HFAB) development; progress in the development of self tuning oil burners; application of HFAB technology to the development of a 500 watt; thermophotovoltaic (TPV) power system; field tests of the Heat Wise Pioneer oil burner and Insight Technologies AFQI; expanded use of residential oil burners to reduce ambient ozone and particulate levels by conversion of electric heated homes to oilheat; PMAA`s Oil Heat Technician`s Manual (third edition); direct venting concept development; evolution of the chimney; combating fuel related problems; the effects of red dye and metal contamination on fuel oil stability; new standard for above ground and basement residential fuel oil storage; plastic and steel composite secondary contained tanks; and money left on the table: an economic analysis of tank cleaning.

McDonald, R.J.

1998-04-01T23:59:59.000Z

436

Environmental control costs for oil shale processes  

SciTech Connect

The studies reported herein are intended to provide more certainty regarding estimates of the costs of controlling environmental residuals from oil shale technologies being readied for commercial application. The need for this study was evident from earlier work conducted by the Office of Environment for the Department of Energy Oil Shale Commercialization Planning, Environmental Readiness Assessment in mid-1978. At that time there was little reliable information on the costs for controlling residuals and for safe handling of wastes from oil shale processes. The uncertainties in estimating costs of complying with yet-to-be-defined environmental standards and regulations for oil shale facilities are a critical element that will affect the decision on proceeding with shale oil production. Until the regulatory requirements are fully clarified and processes and controls are investigated and tested in units of larger size, it will not be possible to provide definitive answers to the cost question. Thus, the objective of this work was to establish ranges of possible control costs per barrel of shale oil produced, reflecting various regulatory, technical, and financing assumptions. Two separate reports make up the bulk of this document. One report, prepared by the Denver Research Institute, is a relatively rigorous engineering treatment of the subject, based on regulatory assumptions and technical judgements as to best available control technologies and practices. The other report examines the incremental cost effect of more conservative technical and financing alternatives. An overview section is included that synthesizes the products of the separate studies and addresses two variations to the assumptions.

1979-10-01T23:59:59.000Z

437

What Drives the Oil-Dollar Correlation?  

E-Print Network (OSTI)

Preliminary- comments welcome, please do not quote Oil prices and the US Dollar tend to move together: while the correlation between the WTI spot price and the US Dollar trade-weighted exchange rate has historically ‡uctuated between positive and negative values, it turned persistently negative in recent years. What explains this comovement? This paper investigates the relationship between oil prices and the US Dollar nominal e¤ective exchange rate using a structural model that is fully identi…ed by exploiting the heteroskedasticity in the data, following Rigobon (2003). We control for e¤ects of US and global economic developments on oil prices and exchange rates by including measures of the surprise component of economic news releases. The results indicate that higher oil prices depreciate the Dollar both in the short run and over longer horizons. We also …nd that that Dollar depreciation is associated with higher oil prices in the short run. US short-term interest rates explain much of the long-run variation in oil prices and and the Dollar exchange rate.

Christian Grisse

2010-01-01T23:59:59.000Z

438

Plan for addressing issues relating to oil shale plant siting  

SciTech Connect

The Western Research Institute plan for addressing oil shale plant siting methodology calls for identifying the available resources such as oil shale, water, topography and transportation, and human resources. Restrictions on development are addressed: land ownership, land use, water rights, environment, socioeconomics, culture, health and safety, and other institutional restrictions. Descriptions of the technologies for development of oil shale resources are included. The impacts of oil shale development on the environment, socioeconomic structure, water availability, and other conditions are discussed. Finally, the Western Research Institute plan proposes to integrate these topics to develop a flow chart for oil shale plant siting. Western Research Institute has (1) identified relative topics for shale oil plant siting, (2) surveyed both published and unpublished information, and (3) identified data gaps and research needs. 910 refs., 3 figs., 30 tabs.

Noridin, J.S.; Donovan, R.; Trudell, L.; Dean, J.; Blevins, A.; Harrington, L.W.; James, R.; Berdan, G.

1987-09-01T23:59:59.000Z

439

Acidity of biomass fast pyrolysis bio-oils  

Science Conference Proceedings (OSTI)

The use of the TAN method for measuring the acidity of biomass fast pyrolysis bio-oil was evaluated. Suggestions for carrying out the analysis have been made. The TAN method by ASTM D664 or D3339 can be used for measuring the acidity of fast pyrolysis bio-oils and their hydrotreating products. The main difference between the methods is that ASTM D664 is specified for higher TAN values than ASTM D3339. Special focus should be placed on the interpretation of the TAN curves because they differ significantly from those of mineral oils. The curve for bio-oils is so gentle that the automatic detection may not observe the end point properly and derivatization should be used. The acidity of fast pyrolysis bio-oils is mainly derived (60-70%) from volatile acids. Other groups of compounds in fast pyrolysis bio-oils that influence acidity include phenolics, fatty and resin acids, and hydroxy acids.

Oasmaa, Anja; Elliott, Douglas C.; Korhonen, Jaana

2010-12-17T23:59:59.000Z

440

In situ noncombustive microwave processing of oil shale. Final report  

SciTech Connect

A unified analytical examination of the products of microwave oil shale has been completed. A sample of subituminous Colorado coal was also included. Analysis systems have been planned, constructed and placed into operation so as to provide a definitive profile of the composition of gases, oil, and water released by the microwave heated oil shale and coal samples. In a previous NSF study, it was reported that microwave retorted oil shale produced large quantities of high BTU content gas. In the data presented in this report, using a modular microcoulometric analysis system, a definitive profile of the composition of the gases, oil, and water, released by the microwave retorted oil shale and coal show that the previous results are confirmed.

Wall, E.T.

1979-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Chemical Methods for Ugnu Viscous Oils  

Science Conference Proceedings (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

442

Fuel Oil Prepared by Blending Heavy Oil and Coal Tar  

Science Conference Proceedings (OSTI)

The effect of temperature, harmonic ration, surfactant and shearing to fuel oil prepared by blending heavy oil and coal tar were detailedly studied. The results show that the viscosity of the blended oil increases gradually with the increase of harmonic ... Keywords: coal tar, heavy oil, blending, surfactant

Guojie Zhang; Xiaojie Guo; Bo Tian; Yaling Sun; Yongfa Zhang

2009-10-01T23:59:59.000Z

443

An informal description of Standard OIL and Instance OIL  

E-Print Network (OSTI)

An informal description of Standard OIL and Instance OIL 28 November 2000 Sean Bechhofer (1) Jeen to be specified in some language. This paper introduces the newest version of OIL ­ the ontology inference layer of the DAML language, with working name DAML-OIL, was proposed in a message to the rdf-logic mailing list

Ohlbach, Hans Jürgen

444

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

445

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

446

Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages  

DOE Patents (OSTI)

An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

Boggs, David Lee (Bloomfield Hills, MI); Baraszu, Daniel James (Plymouth, MI); Foulkes, David Mark (Erfstadt, DE); Gomes, Enio Goyannes (Ann Arbor, MI)

1998-01-01T23:59:59.000Z

447

Table 5.2 Crude Oil Production and Crude Oil Well ...  

U.S. Energy Information Administration (EIA)

Table 5.2 Crude Oil Production and Crude Oil Well Productivity, 1954-2011: Year: Crude Oil Production: Crude Oil Well 1 Productivity: 48 States 2: ...

448

South Dakota Residual Fuel Oil Adj Sales/Deliveries to Oil Company ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Adjusted Sales of Residual Fuel Oil for Oil Company Use ; Adjusted Sales of Residual Fuel Oil for Oil Company Use ; South Dakota Adjusted Distillate ...

449

Intentionally Including - Engaging Minorities in Physics Careers |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers Intentionally Including - Engaging Minorities in Physics Careers April 24, 2013 - 4:37pm Addthis Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the American Institute of Physics Resources. Joining Director Dot Harris (second from left) were Marlene Kaplan, the Deputy Director of Education and director of EPP, National Oceanic and Atmospheric Administration, Claudia Rankins, a Program Officer with the National Science Foundation and Jim Stith, the past Vice-President of the

450

EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 CHAPTER 1: WORLD OIL TRENDS Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Onshore Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Offshore Oil Production

451

Special issue - the emerging reality of oil shale: government plays a prominent role in leasing and developing oil shale  

SciTech Connect

The federal government announced in mid-1979 its intention to develop 400 dam3/day (2.5 million bpd) of oil substitutes by 1990, including 64 dam3/day (400,000 bpd) for oil shale. The federal government owns much of the oil shale reserves in Colorado's Piceance Creek Basin and Utah's Uinta Basin. State and private interests control the remaining 20% of the most marketable reserves. In most of Utah and Colorado, the US controls the richest and largest consolidated oil shale reserves. As a result, the federal government is in a unique position to spur rapid oil shale development through an expedited and expanded federal shale development program. In May 1980, the Department of Interior announced a broad new program for developing federal oil shale reserves. Also in May and June, 1980, the Supreme Court announced 2 decisions, Andrus vs. Utah and Shell Oil vs. Andrus, that opened up for federal development vast oil shale reserves in Utah and clarified in part, the status of private oil shale claims. These developments, coupled with substantial financial inducements soon to emerge from the Synthetic Fuels Corp., suggest the long-awaited promise of oil shale development may finally arrive.

Israel, D.H.

1981-01-01T23:59:59.000Z

452

Transmission line including support means with barriers  

DOE Patents (OSTI)

A gas insulated transmission line includes an elongated outer sheath, a plurality of inner conductors disposed within and extending along the outer sheath, and an insulating gas which electrically insulates the inner conductors from the outer sheath. A support insulator insulatably supports the inner conductors within the outer sheath, with the support insulator comprising a main body portion including a plurality of legs extending to the outer sheath, and barrier portions which extend between the legs. The barrier portions have openings therein adjacent the main body portion through which the inner conductors extend.

Cookson, Alan H. (Pittsburgh, PA)

1982-01-01T23:59:59.000Z

453

The depth of the oil/brine interface and crude oil leaks in SPR caverns  

Science Conference Proceedings (OSTI)

Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.

Heffelfinger, G.S.

1991-06-01T23:59:59.000Z

454

Results of oil-shale investigations in northeastern Nevada  

SciTech Connect

The major focus of this oil-shale investigation has been on specific localities of oil-shale resource potential. Three main areas of oil-shale occurrence have been studied in detail: the Elko area, Pinon Range area, and Coal Mine Canyon. Geologic mapping, stratigraphic studies, and sampling to delimit the lateral extent of the oil shale deposits were in progress prior to the cooperative agreement with Nevada DOE. These surface geologic studies have been summarized in this report. The results of surface geologic studies conducted near Elko suggested that the Elko area represented the best and most accessible oil-shale deposits; therefore, the Elko area was selected as the site of a shallow exploratory drilling program. Essential to this study was the obtaining of fresh, unweathered oil-shale samples from the Elko area. The samples were obtained from the core-drilling program and tested for oil yield by Fischer assays. The oil yields determined from these samples, together with the geology have provided an improved basis for resource estimates for the oil-shale deposit at Elko. In addition to the more detailed field studies, a literature survey was conducted to develop a bibliography related to oil shale in Nevada and to use as a basis for identifying other oil-shale occurrences. The literature search was also extended to include information on petroleum source rocks that contain organic-rich shales with possible potential as additional oil-shale resources. The annotated bibliography is included in the appendix. 88 refs., 8 figs., 5 tabs.

Moore, S.W.; Madrid, H.B.; Server, G.T. Jr.

1983-01-01T23:59:59.000Z

455

Geochemistry of oils from the Junggar basin, northwest China  

SciTech Connect

The Junggar basin of northwestern China is a structural basin containing a thick sequence of Paleozoic-Pleistocene rocks with estimated oil reserves of as much as 5 billion bbl. Analyses of 19 oil samples from nine producing fields and two oil-stained cores in the Junggar basin revealed the presence of at least five genetic oil types. The geo-chemistry of the oils indicates source organic matter deposited in fresh to brackish lake and marine environments, including coaly organic matter sources. The volumetrically most important oil type discovered to date is produced from Late Carboniferous-Middle Triassic reservoirs in the giant Karamay field and nearby fields located along the northwestern margin of the Junggar basin. Oil produced from the Mahu field, located downdip in a depression east of the Karamay field, is from a different source than Karamay oils. Unique oil types are also produced from an upper Permian reservoir at Jimusar field in the southeastern part of the basin, and from Tertiary (Oligocene) rocks at Dushanzi field and Lower Jurassic rocks at Qigu field, both located along the southern margin of the basin. Previous studies have demonstrated the presence of Upper Permian source rocks, and the possibility of Mesozoic or Tertiary sources has been proposed, but not tested by geochemical analysis, although analyses of some possible Jurassic coal source rocks have been reported. Our findings indicate that several effective source rocks are present in the basin, including local sources of Mesozoic or younger age for oil accumulations along the southern and southeastern margins of the basin. Future exploration or assessment of petroleum potential of the basin can be improved by considering the geological relationships among oil types, possible oil source rocks, and reservoirs.

Clayton, J.L.; King, J.D.; Lillis, P.G. [Geological Survey, Denver, CO (United States)] [and others

1997-11-01T23:59:59.000Z

456

DISASTER POLICY Including Extreme Emergent Situations (EES)  

E-Print Network (OSTI)

on the ACGME website with information relating to the ACGME response to the disaster. 3. The University-specific Program Requirements. Defined Responsibilities Following the Declaration of a Disaster or Extreme EmergentPage 123 DISASTER POLICY Including Extreme Emergent Situations (EES) The University of Connecticut

Oliver, Douglas L.

457

OpenEI - oil  

Open Energy Info (EERE)

/0 en AEO2011: Oil and Gas /0 en AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions http://en.openei.org/datasets/node/805 This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. 

License
Type of License: 

458

The Effect of CO2 Pricing on Conventional and Non- Conventional Oil Supply and Demand  

E-Print Network (OSTI)

assumes that nonconventional crude oil enters the market when conventional oil supply alone is unable to meet demand, and the social cost of CO2 is included in the calculation of the oil rent at that time. The results reveal the effect of a CO2 tax set...

Méjean, Aurélie; Hope, Chris

459

US military expenditures to protect the use of Persian Gulf oil for motor vehicles  

E-Print Network (OSTI)

US military expenditures to protect the use of Persian Gulf oil for motor vehicles Mark A. Delucchi 2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses of the full social cost of motor vehicle use in the US often estimate an ``oil import premium'' that includes

Murphy, James J.

460

Oil Speculation by Jussi Keppo  

E-Print Network (OSTI)

Oil Speculation by Jussi Keppo July 8, 2008 The increase in the oil spot price seems to be mainly, the surplus oil capacity decreased from 5 million barrels a day to 2 million barrels a day. There seems, i.e., they are long in these markets. Here I focus on oil and I have simple points

Keppo, Jussi

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Market assessment for shale oil  

DOE Green Energy (OSTI)

This study identified several key issues on the cost, timeliness, and ease with which shale oil can be introduced into the United States' refining system. The capacity of the existing refining industry to process raw shale oil is limited by the availability of surplus hydrogen for severe hydrotreating. The existing crude oil pipeline system will encounter difficulties in handling raw shale oil's high viscosity, pour point, and contaminant levels. The cost of processing raw shale oil as an alternate to petroleum crude oil is extremely variable and primarily dependent upon the percentage of shale oil run in the refinery, as well as the availability of excess hydrogen. A large fraction of any shale oil which is produced will be refined by the major oil companies who participate in the shale oil projects and who do not anticipate problems in processing the shale oil in their refineries. Shale oil produced for sale to independent refiners will initially be sold as boiler fuel. A federal shale oil storage program might be feasible to supplement the Strategic Petroleum Reserve. Based on refinery configurations, hydrogen supply, transportation systems, and crude availability, eleven refineries in Petroleum Administration for Defense Districts (PADDs) 2A and 2B have been identified as potential processors of shale oil. Based on refining technology and projected product demands to the year 2000, shale oil will be best suited to the production of diesel fuel and jet fuel. Tests of raw shale oil in boilers are needed to demonstrate nitrogen oxide emissions control.

Not Available

1979-10-01T23:59:59.000Z

462

HS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil Oil Fossil Energy Study Guide: Oil Pet roleum-or cr ude oil-is a fossil fuel that is found in large quantities beneath the Earth's sur face and is often used as a fuel or raw material in the chemical indust r y. It is a smelly, yellow-to-black liquid and is usually found in underg round areas called reser voirs. If you could look down an oil well and see oil where Nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-an "oil reservoir"-looks very much like any other rock formation. Oil exists in this underground formation as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th

463

MS_Oil_Studyguide.indd  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LOOKING DOWN AN OIL WELL LOOKING DOWN AN OIL WELL Ever wonder what oil looks like underground, down deep, hundreds or thousands of feet below the surface, buried under millions of tons of rock and dirt? If you could look down an oil well and see oil where nature created it, you might be surprised. You wouldn't see a big underground lake, as a lot of people think. Oil doesn't exist in deep, black pools. In fact, an underground oil formation-called an "oil reservoir" -looks very much like any other rock formation. It looks a lot like...well, rock. Oil exists underground as tiny droplets trapped inside the open spaces, called "pores," inside rocks. Th e "pores" and the oil droplets can be seen only through a microscope. Th e droplets cling to the rock, like drops of water cling

464

Oil and Gas Supply Module  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Supply Module Oil and Gas Supply Module This page inTenTionally lefT blank 119 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Oil and Gas Supply Module The NEMS Oil and Gas Supply Module (OGSM) constitutes a comprehensive framework with which to analyze crude oil and natural gas exploration and development on a regional basis (Figure 8). The OGSM is organized into 4 submodules: Onshore Lower 48 Oil and Gas Supply Submodule, Offshore Oil and Gas Supply Submodule, Oil Shale Supply Submodule[1], and Alaska Oil and Gas Supply Submodule. A detailed description of the OGSM is provided in the EIA publication, Model Documentation Report: The Oil and Gas Supply Module (OGSM), DOE/EIA-M063(2011), (Washington, DC, 2011). The OGSM provides

465

Buildings Included on EMS Reports"  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Legacy Management Office of Legacy Management Buildings Included on EMS Reports" "Site","Property Name","Property ID","GSF","Incl. in Water Baseline (CY2007)","Water Baseline (sq. ft.)","Water CY2008 (sq. ft.)","Water CY2009 (sq. ft.)","Water Notes","Incl. in Energy Baseline (CY2003)","Energy Baseline (sq. ft.)","CY2008 Energy (sq. ft.)","CY2009 Energy (sq. ft.)","Energy Notes","Included as Existing Building","CY2008 Existing Building (sq. ft.)","Reason for Building Exclusion" "Column Totals",,"Totals",115139,,10579,10579,22512,,,3183365,26374,115374,,,99476 "Durango, CO, Disposal/Processing Site","STORAGE SHED","DUD-BLDG-STORSHED",100,"no",,,,,"no",,,,"OSF","no",,"Less than 5,000 GSF"

466

Power generation method including membrane separation  

SciTech Connect

A method for generating electric power, such as at, or close to, natural gas fields. The method includes conditioning natural gas containing C.sub.3+ hydrocarbons and/or acid gas by means of a membrane separation step. This step creates a leaner, sweeter, drier gas, which is then used as combustion fuel to run a turbine, which is in turn used for power generation.

Lokhandwala, Kaaeid A. (Union City, CA)

2000-01-01T23:59:59.000Z

467

Electric power monthly, September 1990. [Glossary included  

SciTech Connect

The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

1990-12-17T23:59:59.000Z

468

Nuclear reactor shield including magnesium oxide  

DOE Patents (OSTI)

An improvement in nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux, the reactor shielding including means providing structural support, neutron moderator material, neutron absorber material and other components as described below, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron.

Rouse, Carl A. (Del Mar, CA); Simnad, Massoud T. (La Jolla, CA)

1981-01-01T23:59:59.000Z

469

Investigation of oil adsorption capacity of granular organoclay media and the kinetics of oil removal from oil-in-water emulsions  

E-Print Network (OSTI)

Produced water, a byproduct of oil and gas production, includes almost 98% of all waste generated by oil and gas exploration and their production activities. This oil contaminated waste water has a great impact on our environment and is considered to be a high-cost liability. The Department of Energy�s Oil and Gas Environmental Program is concerned with the development of new and affordable technology to clean this produced water. Organically modified clays are proposed as a good option for removal of oil from produced water. Organoclay, incorporated into a treatment process shows promise of being a cost effective method of treatment to remove crude oil from brine either as a final treatment prior to brine disposal at sea or as a precursor to desalination. Organoclay also pre-polishes the waste water before further treatment. This research studies the efficacy of using organoclay to remove oil by measuring its adsorption capacity to remove the oil from a SAE 30 (Golden West Superior) motor oil-water emulsion. A kinetic model was developed to examine the time dependent behavior of the oil adsorbing characteristics of the organoclay and to investigate how closely the experimentally obtained data matches the kinetic model. It was found that organoclay is effective in removing various percentages of oil depending on the concentrations of a SAE 30 (Golden West Superior) motor oil-water emulsion. Moreover, it was found that the experimental data closely follow the kinetic behavior of the organoclay as shown by the kinetic model. Since this research is specific to a particular type of oil, SAE 30, further research is required for verifying the adsorption capacity of organoclay in other types of oils. Moreover, it is also recommended that the adsorption capacity of the organoclay, together with conventional adsorbent such as GAC (Granular Activated Carbon), be investigated to determine if there is any further improvement in the adsorption capacity. Lastly, a detailed investigation using the actual produced water from the oil field should be conducted to determine the efficacy of the organoclay system in removing oil from water produced in the field.

Islam, Sonia

2006-12-01T23:59:59.000Z

470

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

471

SPR Crude Oil Acquisition Procedures | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures SPR Crude Oil Acquisition Procedures Section 301(e)(2) of the Energy Policy Act of 2005 (Public Law 109-58) directs the Secretary of Energy to develop procedures to acquire petroleum, subject to certain conditions, in quantities to fill the Strategic Petroleum Reserve (SPR) to the authorized one billion barrel capacity. On April 24, 2006, a Notice of Proposed Rulemaking (NOPR) for acquisition of crude oil for the SPR was published in the Federal Register. The procedures include provisions for acquisition through several means, including direct purchase, by transfer of royalty oil from the Department of the Interior, and by receipt of premium barrels resulting from deferral of scheduled deliveries of petroleum for the Reserve.

472

Oil Exports and the Iranian Economy  

E-Print Network (OSTI)

¤ects of economic liberalisation that took place after the ending of the Iran-Iraq war. But as we shall argue in Section 5.2.3 below, once xot, the oil exports variable, is included in the model the WR dummy ceases to be statistically signi?cant. 4All estimations...

Esfahani, H S; Mohaddes, K; Pesaran, M Hashem

473

Residential Heating Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

This chart highlights residential heating oil prices for the current and This chart highlights residential heating oil prices for the current and past heating season. As you can see, prices have started the heating season, about 40 to 50 cents per gallon higher than last year at this time. The data presented are from EIA's State Heating Oil and Propane Program. We normally collect and publish this data twice a month, but given the low stocks and high prices, we started tracking the prices weekly. These data will also be used to determine the price trigger mechanism for the Northeast Heating Oil Reserve. The data are published at a State and regional level on our web site. The slide is to give you some perspective of what is happening in these markets, since you probably will get a number of calls from local residents about their heating fuels bills

474

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

a key area for discoveries, had no significant impact on the National total in 2002. Operators replaced 112 ... 51 4,444 73 12 27 67 61 107 15 13 Crude Oil Proved ...

475

Oil Price Volatility  

U.S. Energy Information Administration (EIA) Indexed Site

Speculation and Oil Price Volatility Speculation and Oil Price Volatility Robert J. Weiner Robert J. Weiner Professor of International Business, Public Policy & Professor of International Business, Public Policy & Public Administration, and International Affairs Public Administration, and International Affairs George Washington University; George Washington University; Membre Associ Membre Associ é é , GREEN, Universit , GREEN, Universit é é Laval Laval EIA Annual Conference Washington Washington 7 April 2009 7 April 2009 1 FACTORS DRIVNG OIL PRICE VOLATILITY FACTORS DRIVNG OIL PRICE VOLATILITY ► ► Market fundamentals Market fundamentals . . Fluctuations in supply, Fluctuations in supply, demand, and market power demand, and market power Some fundamentals related to expectations of Some fundamentals related to expectations of

476

Oil Market Assessment  

Gasoline and Diesel Fuel Update (EIA)

Logo Oil Market Assessment - September Logo Oil Market Assessment - September 12, 2001 EIA Home Page Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon. Rumors of scattered closures of U.S. refineries, pipelines, and terminals were reported, and Louisiana Offshore Oil Port operations were partially suspended. While the NYMEX and New York Harbor were temporarily closed, operations are expected to resume soon. Most, if not all petroleum industry infrastructure is expected to resume normal operations today or in the very near term. Prices at all levels (where markets were open) posted increases yesterday, but many prices fell today, as initial reactions

477

China's Global Oil Strategy  

E-Print Network (OSTI)

21, 2008. “China signs $2bn Iran oil deal. ” Al Jazeera (11of its partnerships: Sudan, Iran and Venezuela. An analysiss $400 million contract with Iran may omit information about

Thomas, Bryan G

2009-01-01T23:59:59.000Z

478

Crude Oil Outlook  

Gasoline and Diesel Fuel Update (EIA)

July are likely to not be felt until the very end of August or early September. OPEC crude oil production cuts are not likely to be as great as their cuts in quotas. However, they...

479

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

20.86 20.67 20.47 20.24 20.32 19.57 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

480

Crude Oil Prices  

Gasoline and Diesel Fuel Update (EIA)

19.11 18.73 18.63 17.97 18.75 18.10 See footnotes at end of table. 21. Domestic Crude Oil First Purchase Prices Energy Information Administration Petroleum Marketing Annual...

Note: This page contains sample records for the topic "oil including kerosene-type" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Crude Oil Price Cycles  

Gasoline and Diesel Fuel Update (EIA)

The heating oil and diesel fuel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle. Over the past 10...

482

Oil & Natural Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Res., 104(B10), 22985-23003. Collett, T.S. (1992), Potential of gas hydrates outlined, Oil Gas J., 90(25), 84-87. 70 Cook, A.E., Goldberg, D., and R.L. Kleinberg (2008),...

483

Crude Oil Price Cycles  

U.S. Energy Information Administration (EIA)

The heating oil and diesel price runups in late January were made even more problematic by coming on top of the high side of the latest crude market cycle.

484

3. Crude Oil Statistics  

U.S. Energy Information Administration (EIA)

Coastal Region Onshore ... Los Angeles Basin Onshore. . . 330 0 31 24 31 26 3 0 0 16 319 ... the net loss of proved reserves of crude oil in 2003.

485

Total OECD Oil Stocks  

Gasoline and Diesel Fuel Update (EIA)

5 Notes: OECD oil inventory levels are not expected to rise sufficiently during the rest of the year to match the average levels seen prior to the wide swings since 1995. This...

486

Futures oil market outlook  

Science Conference Proceedings (OSTI)

We expect the broader expansion of global economic activity in 1995 to more than offset the anticipated slowdown in the US economic growth. This should result in worldwide oil demand growth in excess of 1 million barrels per day and firmer oil prices. This comes on the heels of nearly identical growth in 1994 and should be followed by an even larger increase in 1996. This year`s demand growth comes against a backdrop of flat OPEC production and an increase in non-OPEC supplies that will fall short of the expected increase in consumption. Some degree of political upheaval in at least a half dozen important oil exporting nations could also have implication for crude supplies. One major wildcard that remains for global oil markets is the status of the United Nations` sanctions on Iraqi exports and the timing of when these sanctions are to be eased or lifted completely.

Saucer, J. [Smith Barney, Houston, TX (United States)

1995-06-01T23:59:59.000Z

487

Sound Oil Company  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sound Oil Company Sound Oil Company file:///C|/Documents%20and%20Settings/blackard/Desktop/EIA/LEE0152.HTM[11/29/2012 2:30:44 PM] DECISION AND ORDER OF THE DEPARTMENT OF ENERGY Application for Exception Name of Petitioner: Sound Oil Company Date of Filing: August 16, 1994 Case Number: LEE-0152 On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application, Sound requests that it be relieved of the requirement that it file the Energy Information Administration's (EIA) form entitled "Resellers'/Retailers' Monthly Petroleum Product Sales Report" (Form EIA-782B). As explained below, we have determined that the Application for Exception should be denied.

488

Review and analysis of oil shale technologies. Volume 5. Appendixes and bibliography  

SciTech Connect

Seven appendices are included on: oil shale technology activities, ERDA oil shale program, method of assaying oil shale by a modified Fischer retort, environmental standards and regulations, supplemental information on various true in-situ processing steps, evaluation of in-situ oil shale experments by hot-film flow logging, and discounted cash flow rate of return method. The bibliography contains 133 references. (DLC)

Jee, C.K.; White, J.D.; Bhatia, S.K.; Nicholson, D.

1977-08-01T23:59:59.000Z

489

Investing in Russia`s oil and gas industry: The legal and bureaucratic obstacles  

SciTech Connect

This article discusses the unusual challenges the international oil companies have as they consider investing in the oil and gas industry of the Russian Federation. Topics include the following: Russian oil and gas reserves; the Russian legislative process; law on subsurface resources; regulations on licensing procedure; draft law on oil and gas; draft law on concessions; proposed modification draft legislation; obstacles to wide scale investment.

Skelton, J.W. Jr. [Conoco, Inc., Houston, TX (United States)

1993-12-31T23:59:59.000Z

490

Biocatalysis in Oil Refining  

SciTech Connect

Biocatalysis in Oil Refining focuses on petroleum refining bioprocesses, establishing a connection between science and technology. The micro organisms and biomolecules examined for biocatalytic purposes for oil refining processes are thoroughly detailed. Terminology used by biologists, chemists and engineers is brought into a common language, aiding the understanding of complex biological-chemical-engineering issues. Problems to be addressed by the future R&D activities and by new technologies are described and summarized in the last chapter.

Borole, Abhijeet P [ORNL; Ramirez-Corredores, M. M. [BP Global Fuels Technology

2007-01-01T23:59:59.000Z

491

Oil in Tennessee  

Science Conference Proceedings (OSTI)

Oil is the single most dominant force in the ''energy outlook'' and will continue to be throughout the foreseeable generations. Tennesseans now spend about $10 billion annually to satisfy energy needs; nearly half of that is for oil-based products. Most of the petroleum products sold are in the form of motor fuel, but a third of these products are made up of other categories, such as aviation and jet fuels, heating fuels, and lubricants. Baseline industry data is supplied.

Lamp, R.; Forester, C. (ed.)

1987-01-01T23:59:59.000Z

492

Oil recovery process  

Science Conference Proceedings (OSTI)

An on-site, in-line process and system is claimed for recovering oil from oil-bearing subterranean formations which involves the production, modification, dilution and injection of a polymer solution, preferably consisting essentially of an aqueous solution of a partially hydrolyzed polyacrylamide, having injectivity and mobility properties capable of meeting the specific permeability requirements of substantially any subterranean formation to be achieved. The polymer solutions prepared by the process and system can be used as drive fluids for displacing oil (secondary polymer flood) in an oil-bearing formation, as mobility buffers to follow micellar dispersion floods in the conjoint presence of chemical reagents in other chemical floods (e.g., surfactant, caustic, etc.), or they can follow a water flood. The solutions can also be used to promote pipelining of high viscosity crude oil. Irrespective of the use to which the solutions are put, the process and system enable the polymer solutions to be customized, or tailor-made, so to speak, to meet the performance demands of the environment in which they are to be used, whether it be an oil-bearing formation or a pipeline.

Argabright, P.A.; Rhudy, J.S.

1984-02-28T23:59:59.000Z

493

Chemically enhanced oil recovery  

Science Conference Proceedings (OSTI)

Yet when conducted according to present state of the art, chemical flooding (i.e., micellar/polymer flooding, surfactant/polymer flooding, surfactant flooding) can mobilize more residual crude oil than any other method of enhanced oil recovery. It also is one of the most expensive methods of enhanced oil recovery. This contribution will describe some of the technology that comprises the state of the art technology that must be adhered to if a chemical flood is to be successful. Although some of the efforts to reduce cost and other points are discussed, the principle focus is on technical considerations in designing a good chemical flooding system. The term chemical flooding is restricted here to methods of enhanced oil recovery that employs a surfactant, either injected into the oil reservoir or generated in situ, primarily to reduce oil-water interfacial tension. Hence, polymer-water floods for mobility or profile control, steam foams, and carbon dioxide foams are excluded. Some polymer considerations are mentioned because they apply to providing mobility control for chemical flooding systems.

Nelson, R.C.

1989-03-01T23:59:59.000Z

494

Will lecture on: Unconventional Oil and Gas  

E-Print Network (OSTI)

are not yet resolved. Ten years ago this category comprised heavy oil, oil shale, coal bed methane, tight gas, and economic aspects of gas shale and tight oil development. The role of oil shale in the emerging energy applied research on heavy oil, gas hydrate, gas shale, tight oil, and oil shale reservoirs. He advises

Schuster, Assaf

495

Carbon Dioxide Enhanced Oil Recovery Untapped Domestic Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

targeting unconventional oil resources such as extra heavy oil, oil and tar sands, oil shale, and oil in unconventional reservoirs (like the fractured Bakken Shale of North...

496

Oil/gas collector/separator for underwater oil leaks  

DOE Patents (OSTI)

This invention is comprised of an oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, C.D.

1992-12-31T23:59:59.000Z

497

Oil/gas collector/separator for underwater oil leaks  

DOE Patents (OSTI)

An oil/gas collector/separator for recovery of oil leaking, for example, from an offshore or underwater oil well. The separator is floated over the point of the leak and tethered in place so as to receive oil/gas floating, or forced under pressure, toward the water surface from either a broken or leaking oil well casing, line, or sunken ship. The separator is provided with a downwardly extending skirt to contain the oil/gas which floats or is forced upward into a dome wherein the gas is separated from the oil/water, with the gas being flared (burned) at the top of the dome, and the oil is separated from water and pumped to a point of use. Since the density of oil is less than that of water it can be easily separated from any water entering the dome.

Henning, Carl D. (Livermore, CA)

1993-01-01T23:59:59.000Z

498

Process for preparing lubricating oil from used waste lubricating oil  

DOE Patents (OSTI)

A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

499

U.S. Crude Oil Imports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

History; All Countries: 3,661,404: 3,580,694: 3,289,675: 3,362,856: 3,261,422: 3,120,755: 1910-2012: ... Crude oil includes imports for storage in the Stategic ...

500

Chemical analysis of biomass fast pyrolysis oils  

DOE Green Energy (OSTI)

This paper reviews the development of the field of chemical analysis of biomass fast pyrolysis oils. The techniques applied to pyrolysis oil analysis are reviewed including proximate and ultimate analysis, water (moisture) analysis, and chemical component analysis by various forms of chromatography, solvent separations, and spectrophotometric analyses, like infrared and ultraviolet. Advanced analytical techniques such as nuclear magnetic resonance and molecular beam -- mass spectrometry are also discussed. This paper reviews and compares the methods and the results of the analyses. The advantages and shortcomings of the various methods applied are identified. Comparisons derived from the IEA Round Robin are incorporated.

Elliott, D.C.

1994-09-01T23:59:59.000Z