Powered by Deep Web Technologies
Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Innovative technologies for managing oil field waste.  

Science Conference Proceedings (OSTI)

Each year, the oil industry generates millions of barrels of wastes that need to be properly managed. For many years, most oil field wastes were disposed of at a significant cost. However, over the past decade, the industry has developed many processes and technologies to minimize the generation of wastes and to more safely and economically dispose of the waste that is generated. Many companies follow a three-tiered waste management approach. First, companies try to minimize waste generation when possible. Next, they try to find ways to reuse or recycle the wastes that are generated. Finally, the wastes that cannot be reused or recycled must be disposed of. Argonne National Laboratory (Argonne) has evaluated the feasibility of various oil field waste management technologies for the U.S. Department of Energy. This paper describes four of the technologies Argonne has reviewed. In the area of waste minimization, the industry has developed synthetic-based drilling muds (SBMs) that have the desired drilling properties of oil-based muds without the accompanying adverse environmental impacts. Use of SBMs avoids significant air pollution from work boats hauling offshore cuttings to shore for disposal and provides more efficient drilling than can be achieved with water-based muds. Downhole oil/water separators have been developed to separate produced water from oil at the bottom of wells. The produced water is directly injected to an underground formation without ever being lifted to the surface, thereby avoiding potential for groundwater or soil contamination. In the area of reuse/recycle, Argonne has worked with Southeastern Louisiana University and industry to develop a process to use treated drill cuttings to restore wetlands in coastal Louisiana. Finally, in an example of treatment and disposal, Argonne has conducted a series of four baseline studies to characterize the use of salt caverns for safe and economic disposal of oil field wastes.

Veil, J. A.; Environmental Assessment

2003-09-01T23:59:59.000Z

2

Update on cavern disposal of NORM-contaminated oil field wastes.  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J. A.

1998-09-22T23:59:59.000Z

3

Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns  

Science Conference Proceedings (OSTI)

Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

1996-06-01T23:59:59.000Z

4

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

Terralog Technologies USA Inc.

2001-12-17T23:59:59.000Z

5

Development of Improved Oil Field Waste Injection Disposal Techniques  

Science Conference Proceedings (OSTI)

The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

Terralog Technologies

2002-11-25T23:59:59.000Z

6

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

Science Conference Proceedings (OSTI)

Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-10T23:59:59.000Z

7

Disposal of oil field wastes and NORM wastes into salt caverns.  

Science Conference Proceedings (OSTI)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J. A.

1999-01-27T23:59:59.000Z

8

Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs  

Science Conference Proceedings (OSTI)

Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

1997-10-01T23:59:59.000Z

9

New information on disposal of oil field wastes in salt caverns  

Science Conference Proceedings (OSTI)

Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

Veil, J.A.

1996-10-01T23:59:59.000Z

10

Can nonhazardous oil field wastes be disposed of in salt caverns?  

Science Conference Proceedings (OSTI)

Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

Veil, J.A.

1996-10-01T23:59:59.000Z

11

Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

12

Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns  

Science Conference Proceedings (OSTI)

This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

1999-01-21T23:59:59.000Z

13

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

Science Conference Proceedings (OSTI)

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21T23:59:59.000Z

14

Risk assessment of nonhazardous oil-field waste disposal in salt caverns.  

Science Conference Proceedings (OSTI)

In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

Elcock, D.

1998-03-05T23:59:59.000Z

15

Risk analyses for disposing nonhazardous oil field wastes in salt caverns  

Science Conference Proceedings (OSTI)

Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

1997-12-01T23:59:59.000Z

16

Ground water and oil field waste sites: a study in Vermilion Parish  

Science Conference Proceedings (OSTI)

Water samples were obtained from 128 private water wells surrounding eight oil field waste sites in Vermilion Parish. The specimens were analyzed for five heavy metals: barium, arsenic, chromium, lead, and cadmium. Half of the specimens were then analyzed for 16 volatile organic compounds. A blood sample was obtained from healthy adults drinking water from the wells tested for volatile organic compounds and this blood sample was also analyzed for volatile organic compounds. None of the water samples had levels of heavy metals or volatile organic compounds that exceeded the National Primary Drinking Water Standards. Barium levels in excess of 250 parts per billion suggested that styrene, toluene, and chloroform might be present. Blood levels of volatile organic compounds were significantly higher than could be accounted for by water consumption with levels in smokers significantly higher than in nonsmokers. These data suggest that as yet there is no contamination of ground water supplies around these sites. Volatile organic accumulation in humans probably occurs from a respiratory rather than from an oral route.

Rainey, J.M.; Groves, F.D.; DeLeon, I.R.; Joubert, P.E. (LSU School of Medicine, New Orleans, LA (USA))

1990-06-01T23:59:59.000Z

17

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepared for: U.S. Department of Energy U.S. Department of Energy Office of Fossil Energy Office of Fossil Energy National Petroleum Technology Office National Petroleum Technology Office under Contract W -31-109- under Contract W -31-109- Eng Eng -38 -38 Prepared by: Prepared by: John A. Veil, Karen P. Smith, David John A. Veil, Karen P. Smith, David Tomasko Tomasko , , Deborah Deborah Elcock Elcock , Deborah L. Blunt, and , Deborah L. Blunt, and Gustavious Gustavious P. W illiams P. W illiams Argonne National Laboratory August 1998 August 1998 Disposal of NORM - Disposal of NORM - Contam inated O il Contam inated O il Field Wastes in Salt Field Wastes in Salt Caverns Caverns Disposal of NORM in Salt Caverns Page i Table of Contents Acronyms and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .

18

Abandoned Texas oil fields  

SciTech Connect

Data for Texas abandoned oil fields were primarily derived from two sources: (1) Texas Railroad Commission (TRRC), and (2) Dwight's ENERGYDATA. For purposes of this report, abandoned oil fields are defined as those fields that had no production during 1977. The TRRC OILMASTER computer tapes were used to identify these abandoned oil fields. The tapes also provided data on formation depth, gravity of oil production, location (both district and county), discovery date, and the cumulative production of the field since its discovery. In all, the computer tapes identified 9211 abandoned fields, most of which had less than 250,000 barrel cumulative production. This report focuses on the 676 abandoned onshore Texas oil fields that had cumulative production of over 250,000 barrels. The Dwight's ENERGYDATA computer tapes provided production histories for approximately two-thirds of the larger fields abandoned in 1966 and thereafter. Fields which ceased production prior to 1966 will show no production history nor abandonment date in this report. The Department of Energy hopes the general availability of these data will catalyze the private sector recovery of this unproduced resource.

1980-12-01T23:59:59.000Z

19

Abandoned oil fields in Oklahoma  

SciTech Connect

Data are presented for approximately 165 abandoned oil fields in Oklahoma that have produced 10,000 or more barrels of oil prior to abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production, if known; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (ATT)

Chism, J.

1983-08-01T23:59:59.000Z

20

Revitalizing an old oil field  

Science Conference Proceedings (OSTI)

Redevelopment of the Olney oil field in Illinois is described. First discovered in 1936, production peaked in 1941 when over 30,000 bopd were produced. In 1970, 600 wells in the Olney field pumped only 4000 bpd. Since the decontrol of crude oil prices, a redevelopment project has begun in the field. The project includes well stimulation techniques plus newly drilled or deepened wells. Present production in the Olney field has reached 5000 bopd.

Ortiz, S.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Process for preparing lubricating oil from used waste lubricating oil  

DOE Patents (OSTI)

A re-refining process is described by which high-quality finished lubricating oils are prepared from used waste lubricating and crankcase oils. The used oils are stripped of water and low-boiling contaminants by vacuum distillation and then dissolved in a solvent of 1-butanol, 2-propanol and methylethyl ketone, which precipitates a sludge containing most of the solid and liquid contaminants, unspent additives, and oxidation products present in the used oil. After separating the purified oil-solvent mixture from the sludge and recovering the solvent for recycling, the purified oil is preferably fractional vacuum-distilled, forming lubricating oil distillate fractions which are then decolorized and deodorized to prepare blending stocks. The blending stocks are blended to obtain a lubricating oil base of appropriate viscosity before being mixed with an appropriate additive package to form the finished lubricating oil product.

Whisman, Marvin L. (Bartlesville, OK); Reynolds, James W. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

22

New process effectively recovers oil from refinery waste streams  

Science Conference Proceedings (OSTI)

A new process uses chemically assisted, thermal flashing to break difficult emulsions and recover oil for reprocessing. The process is best suited for refinery waste management and slop oil systems, where it can process streams with high oil content to recover high-quality oil. Recent testing of a full-scale, commercial prototype unit on slop oil emulsions at a major Gulf Coast refinery resulted in: 97.9% recovery of oil with 99.3--99.6% purity; 99.5% recovery of water with 99+% purity; and a centrifuge cake containing 49-60% solids, 23--30 oil, and 17--22% water. The paper discusses background of the process, then gives a process description as well as results of field studies and cost.

Rhodes, A.

1994-08-15T23:59:59.000Z

23

Oil Field Management System  

The INL has developed a device for metering oil and gas streams that consist of both gas and liquid parts presents a significant challenge. Commonly used multi-phase flow meters reflect significant gains in this technology, but still have major flaws ...

24

Biodiesel production using waste frying oil  

SciTech Connect

Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

2011-01-15T23:59:59.000Z

25

Abandoned oil fields in Kansas and Nebraska  

SciTech Connect

Data on approximately 400 abandoned oil fields in Kansas and 90 abandoned oil fields in Nebraska are presented. The following information is obtained on each field: county; DOE field code; field name; AAPG geologic province code; discovery date; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; API gravity; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; and cumulative production of gas from fields. (DMC)

Not Available

1982-12-01T23:59:59.000Z

26

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only".  

E-Print Network (OSTI)

Used Oil and Filter Disposal Used Oil: Create a segregated storage area or container. Label the container "Waste Oil Only". Maintain a written log to document all amounts and types of oil added to the container. No solvents, oil contaminated with solvents, PCBs, non-petroleum based oils, or any other

Yener, Aylin

27

The use of oil shale ash in the production of biodiesel from waste vegetable oil  

Science Conference Proceedings (OSTI)

Oil shale ash obtained from combustion of local oil shale deposits was used in this study as a heterogeneous catalyst to produce biodiesel from waste vegetable oil (WVO). Two alcohols with high and low boiling points

A. Al-Otoom; M. Allawzi; A. Ajlouni; F. Abu-Alrub; M. Kandah

2012-01-01T23:59:59.000Z

28

Engine Oil Aeration Test FIELD SERVICE SIMULATED  

E-Print Network (OSTI)

Engine Oil Aeration Test OBJECTIVE FIELD SERVICE SIMULATED SPECIFICATIONS The objective of this test is to determine the effectiveness of engine lubricating oils at minimizing air entrainment oil. TEST FIXTURE The test engine is a 1994 International Truck 7.3 liter V-8, four- stroke

Chapman, Clark R.

29

Top 100 Oil and Gas Fields  

U.S. Energy Information Administration (EIA)

Appendix B Top 100 Oil and Gas Fields This appendix presents estimates of the proved reserves and production of the top 100 liquids or gas fields by reserves or by ...

30

Top 100 Oil and Gas Fields of 2008  

U.S. Energy Information Administration (EIA)

1 Top 100 Oil and Gas Fields of 2008 The Top 100 Oil and Gas Fields of 2008 ranks the United States’ largest oil and gas fields by their estimated

31

Top 100 Oil and Gas Fields of 2009  

U.S. Energy Information Administration (EIA)

Top 100 Oil and Gas Fields of 2009 ... The peak oil discovery decade reflects the 1967 discovery of Alaska’s Prudhoe Bay Field. The gas discoveries ...

32

Solid fuel fired oil field steam generators  

Science Conference Proceedings (OSTI)

The increased shortages being experienced in the domestic crude oil supply have forced attention on the production of heavy crude oils from proven reserves to supplement requirements for petroleum products. Since most heavy crudes require heat to facilitate their extraction, oil field steam generators appear to represent a key component in any heavy crude oil production program. Typical oil field steam generator experience in California indicates that approx. one out of every 3 bbl of crude oil produced by steam stimulation must be consumed as fuel in the steam generators to produce the injection steam. The scarcity and price of crude oil makes it desirable to substitute more readily available and less expensive solid fuels for the crude oil which is presently serving as the primary steam generator fuel. Solid fuel firing capability also is of importance because of the substantial amounts of high heating value and low cost petroleum coke available from the processing of heavy crude oil and suitable for use as a steam generator fuel.

Young, W.W.

1982-01-01T23:59:59.000Z

33

Event detection in sensor networks for modern oil fields  

Science Conference Proceedings (OSTI)

We report the experience of implementing event detection analytics to monitor and forewarn oil production failures in modern, digitized oil fields. Modern oil fields are equipped with thousands of sensors and gauges to measure various physical and chemical ... Keywords: digital oil field, event warning, gas, industry, near real time analytics, oil, petroleum, surveillance

Matthew Hill; Murray Campbell; Yuan-Chi Chang; Vijay Iyengar

2008-07-01T23:59:59.000Z

34

Geology of Kuparuk River Oil Field, Alaska  

SciTech Connect

The Kuparuk River Oil Field is located on the Alaskan Arctic North Slope in the Colville-Prudhoe Trough ca. 25 miles west of the Prudhoe Bay Field. The 23 API crude is similar in type to that in the Prudhoe Bay Field. However, the Kuparuk Reservoir is in early Cretaceous clastics of the Kuparuk River Formation, stratigraphically higher than at Prudhoe. The origin of the oil is believed to be predominantly from the Jurassic Kingak formation with migration occurring along the basal Cretaceous unconformity. The dominant trapping mechanism is stratigraphic pinch-out and truncation of the reservoir at an intraformational unconformity along the southern and western flanks of a southeast plunging antiform. Structural dip closure exists along the northern and eastern flanks with a tilted oil-water contact at ca. 6675 ft subsea. The reservoir sandstones occur within cleaning and coarsening-upward sequences which are interpreted as shallow-marine and sublittoral in origin.

Hardwick, P.; Carman, G.R.

1982-05-01T23:59:59.000Z

35

Method for reclaiming waste lubricating oils  

DOE Patents (OSTI)

A method for purifying and reclaiming used lubricating oils containing additives such as detergents, antioxidants, corrosion inhibitors, extreme pressure agents and the like and other solid and liquid contaminants by preferably first vacuum distilling the used oil to remove water and low-boiling contaminants, and treating the dried oil with a solvent mixture of butanol, isopropanol and methylethyl ketone which causes the separation of a layer of sludge containing contaminants, unspent additives and oxidation products. After solvent recovery, the desludged oil is then subjected to conventional lubricating oil refining steps such as distillation followed by decolorization and deodorization.

Whisman, Marvin L. (Bartlesville, OK); Goetzinger, John W. (Bartlesville, OK); Cotton, Faye O. (Bartlesville, OK)

1978-01-01T23:59:59.000Z

36

Soil stabilization using oil-shale solid waste  

Science Conference Proceedings (OSTI)

Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

1994-04-01T23:59:59.000Z

37

Top 100 Oil and Gas Fields for 2000  

U.S. Energy Information Administration (EIA)

Appendix B Top 100 Oil and Gas Fields for 2000 This appendix presents estimates of the proved reserves and production of the top 100 oil and gas

38

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1996-08-01T23:59:59.000Z

39

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

Science Conference Proceedings (OSTI)

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1997-10-01T23:59:59.000Z

40

Waste oil reclamation. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning methods and equipment for reclamation and recycling of waste oils. Citations discuss recovery, disposal, and reuse of lubricating oils. Topics include economic analysis, programs assessment, re-refining techniques, chemical component analysis, and reclaimed oil evaluation. Regulations and standards for waste oil treatment and waste oil refineries are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oil and Gas Field Code Master List 2006  

U.S. Energy Information Administration (EIA)

Preface The Oil and Gas Field Code Master List 2006 is the twenty-fifth annual listing of all identified oil and gas fields in the United States. It ...

42

Waste lubricating oil: an annotated review. 1982 revision  

Science Conference Proceedings (OSTI)

Because of renewed interest in waste oil, both in terms of energy conservation and as a threat to the environment, there appears to be a need for a systemic compilation of information on the subject. This is a revision of the 1979 manuscript (BETC/IC-79/4) reflecting publications of the last three years as well as incorporation of papers that were overlooked. The number of citations has jumped from 486 to 1203, with all previous citations also listed here. The bibliography is divided into broad subject areas. The Introduction gives the history and development of the used oil reclamation industry. The General section includes the comprehensive papers that address several subjects and thus, give a capsulated overview of the used oil situation. Sources of Information and Statistical Treatments of Data tell how to obtain additional and future information and data relating to waste oil and could aid those persons interested in keeping their knowledge current. The Other Lubricating Oils section covers many of the lubricants that have the potential for recycling. The Other Oils section is divided into four sub-sections to aid the reader to find the subject of interest. The section on Related Subjects includes those sideline areas that could apply to used oil reclamation.

Cotton, F.O.

1982-10-01T23:59:59.000Z

43

Waste oil reclamation. (Latest citations from the NTIS database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 222 citations and includes a subject term index and title list.)

Not Available

1993-05-01T23:59:59.000Z

44

Waste oil reclamation. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning the reclamation and recycling of used lubricating oils. Topics include specific program descriptions, re-refining techniques, chemical component analysis, and reclaimed oil performance. Appropriate regulations, standards, and clean-up efforts at sites contaminated by waste oils or waste oil refineries are included. (Contains a minimum of 228 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

45

Development of Sirikit oil field, Thailand  

SciTech Connect

The Sirikit oil field, Thailand's first significant oil find, was discovered in late 1981 by Thai Shell Exploration and Production Company, Ltd., with its second exploration well. After deciding to develop the field (named after Thailand's queen), Thai Shell took only 1 year to design and install the production station, and organize an unconventional evacuation system (road tanker and railway) before oil came on stream in January 1983. A series of facility upgradings kept pace with the production buildup, to a plateau of about 21,000 b/d. The crude oil is waxy (pour point = about 35/sup 0/C), but it is light (40/sup 0/ API) and has an attractive refinery yield. Associated gas is sold to the nearby (specially installed) electricity generating station. Gas compression was commissioned in 1985 to increase utilization of gas, which previously was flared. The agricultural environment dictated the need for cluster drilling of deviated wells, as well as highlighting the importance of good relationships with the local population and authorities. Safety and security are of particular interest. The field is geologically complex, being very faulted in a lacustrine environment and extremely stratified and heterogeneous in reservoir quality. One of two major reservoirs has a gas cap. After some early surprises in delineating the field, a three-dimensional seismic survey was conducted, which better defined the structure and the reserve potential. Nevertheless, parallel appraisal and development continues on a careful step-by-step approach, using the latest production and pressure data to refine the reservoir geologic model. In November 1985, the Petroleum Authority of Thailand became a minority partner, with Shell remaining as operator.

Brooks, J.

1986-07-01T23:59:59.000Z

46

Oil and Gas Field Code Master List 1998 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1998 is an addendum to the 1997 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through October 1998.

Robert F. King

1999-01-01T23:59:59.000Z

47

Oil and Gas Field Code Master List 1999 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1999 is an addendum to the 1998 edition of the EIA publication Oil and Gas Field Code Master List, an annual listing of all identified oil and gas fields in the United States. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. The current publication is based on field information collected through November 1999.

Robert F. King

2000-01-01T23:59:59.000Z

48

Geology of the Tambaredjo oil field, Suriname  

SciTech Connect

After the initial discovery in the sixties of oil below the coastal plain of Suriname (S. America), the State Oil Company of Suriname started production of the unique Tambaredjo field in 1982. The heavy, biodegraded oil (14-16[degrees] API) is produced under compaction drive, from the Paleocene T-sand (average thickness 5 m) at a depth of about 300 m. More than 300 wells have been drilled in an area of about 200 km[sup 2]. High resolution seismics makes it possible to correlate units down to 2 m thick. This dense network of bore holes is very suitable for geological correlations and 3D modeling. The T-sand reservoir consists of angular, medium to coarse grained unconsolidated sands with interfingering clays and lignites. The sands are deposited on a well cemented erosional Cretaceous basement. The reservoir is sealed by locally continuous clays. The oil is trapped in structural highs created by syn-sedimentary rejuvenated basement faults. The depositional environment of the T-sand ranges from fluviatile to deltaic. Frequent avulsion and synsedimentary faulting created a highly compartmented reservoir. Although interconnectedness of the sand bodies is high, clay smears and silting out of the edges confine reservoir compartments. The best genetic sand units such as channel fills or mouth bar deposits hardly correlate over more than a few hundred meters. The Tambaredjo oil field offers an unique opportunity to study the detailed sedimentology and petroleum geology of a fluvio-deltaic transitional realm on the passive margin along the Guiana coast.

Dronkert, H. (Delft Univ. of Technology (Netherlands)); Wong, T.E. (Geological Survey of the Netherlands, Haarlem (Netherlands))

1993-02-01T23:59:59.000Z

49

Palm Oil: Production, Processing, Uses, and CharacterizationChapter 23 Waste and Environmental Management in the Malaysian Palm Oil Industry  

Science Conference Proceedings (OSTI)

Palm Oil: Production, Processing, Uses, and Characterization Chapter 23 Waste and Environmental Management in the Malaysian Palm Oil Industry Food Science Health Nutrition Biochemistry Processing eChapters Food Science & Technology Heal

50

Oil and Gas Field Code Master List 1998  

U.S. Energy Information Administration (EIA)

Front Matter. Cover Page, Preface, Contents, Chapters, Maps and the Glossary: PDF.. Oil and Gas Field Code Master List. Field code information for all ...

51

Oil and Gas Field Code Master List 1995  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1995 is the fourteenth annual listing of all identified oil and gasfields in the United States. It is updated with field information collected through October 1995. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1995-12-01T23:59:59.000Z

52

Oil and Gas Field Code Master List 1996  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1996 is the fifteenth annual listing of all identified oil and gasfields in the United States. It is updated with field information collected through October 1996. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1996-12-01T23:59:59.000Z

53

Oil and gas field code master list, 1993  

Science Conference Proceedings (OSTI)

This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

Not Available

1993-12-16T23:59:59.000Z

54

Sea Oil Field Satellite Monitoring: An Opera3onal View  

E-Print Network (OSTI)

#12;Kashagan Field Kashagan Field is an oil field located in Kazakhstan of the larger discoveries in that decade, it is es:mated that the Kashagan billion barrels (2.5Ã?109 m3) of oil. 9 M Migliaccio #12;Kashagan Field Isola

Kuligowski, Bob

55

Top 100 Oil and Gas Fields of 2009  

U.S. Energy Information Administration (EIA) Indexed Site

Top 100 Oil and Gas Fields of 2009 Introduction This supplement to the Energy Information Administration's summary of U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Proved...

56

Use of waste oils to improve densified refuse derived fuels. Final report  

DOE Green Energy (OSTI)

The preparation and properties of densified refuse-derived fuel (d-RDF) had previously been studied. The objectives of this study were the reduction of the power consumption and increase in the throughput of the densifier, increase in the calorific value and of the resistance of the d-RDF to weathering during outdoor storage. It was believed that these objectives might be achieved by adding waste oils to RDF just before densification. The majority of such oil from local sources includes spent crankcase oils with a high content of lead. In the work reported here, office wastes were shredded, air classified, and reshredded prior to feeding to an animal feed densifier. Water was added to the densifier feed in order to investigate a range of moisture contents. Waste oil (from a local dealer) was pumped through spray nozzles onto the densifier feed at controlled flows so as to investigate a range of oil contents. It is observed that over the practical range of waste oil contents, the savings in power consumption with increasing oil content are small. The addition of waste oil (up to 15 wt %) to the feed did not cause noticeable improvements in throughput rates. As expected, the calorific value of the fuel increases in proportion to the amount of waste oil. Pellets containing 13 wt % oil resulted in having a 20% higher calorific content. Increased waste oil levels in RDF led to reduction in pellet lengths and densities. The addition of waste oil to RDF did not improve pellet water repellency.

None

1980-10-01T23:59:59.000Z

57

Oil and Gas Field Code Master List 1997  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1997 is the seventeenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1998-02-01T23:59:59.000Z

58

Oil and Gas Field Code Master List 1998  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 1998 is the eighteenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through October 1998. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

1999-01-01T23:59:59.000Z

59

Oil and Gas Field Code Master List 2000  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2000 is the nineteenth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2000. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2001-01-01T23:59:59.000Z

60

Oil and Gas Field Code Master List 2003  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twenty second annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2002. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oil and Gas Field Code Master List 2001  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twentieth annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2001. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2002-01-01T23:59:59.000Z

62

Oil and Gas Field Code Master List 2002  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List 2001 is the twenty first annual listing of all identified oil and gas fields in the United States. It is updated with field information collected through November 2002. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry.

Robert F. King

2003-01-01T23:59:59.000Z

63

Oil and Gas Field Code Master List 1996 Updates  

Reports and Publications (EIA)

The Oil and Gas Field Code Master List Updates 1996 represents a departure from past Energy Information Administration (EIA) practice. This publication does not provide a list of all identified oil and gas fields in the United States as did the fourteen prior annual volumes of the Oil and Gas Field Code Master List. It provides updates to the Field Code Master File that were made subsequent to the publication of Oil and Gas Field Code Master List 1995, based on information collected through October 1996. These updates represent the addition of new fields to the list and changes to the records of previously listed fields, including deletions. This publication is therefore a supplement to theOil and Gas Field Code Master List 1995, which its recipients were requested to retain.

Robert F. King

1996-12-01T23:59:59.000Z

64

Oil-Grade Alloy 718 in Oil Field Drilling Applications  

Science Conference Proceedings (OSTI)

This paper focuses on the performance of oil-grade alloy 718 for applications in bottom hole ... Additive Manufacturing for Superalloys - Producibility and Cost.

65

Top 100 Oil and Gas Fields - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Appendix B Top 100 Oil and Gas Fields This appendix presents estimates of the proved reserves and production of the largest or top 100 ...

66

Ground disposal of oil shale wastes: a review with an indexed annotated bibliography through 1976  

SciTech Connect

This review covers the available literature concerning ground-disposed wastes and effluents of a potential oil shale industry. Ground disposal has been proposed for essentially all of the solid and liquid wastes produced (Pfeffer, 1974). Since an oil shale industry is not actually in operation, the review is anticipatory in nature. The section, Oil Shale Technology, provides essential background for interpreting the literature on potential shale oil wastes and the topics are treated more completely in the section entitled Environmental Aspects of the Potential Disposal of Oil Shale Wastes to Ground. The first section of the annotated bibliography cites literature concerning potential oil shale wastes and the second section cites literature concerning oil shale technology. Each section contains references arranged historically by year. An index is provided.

Routson, R.C.; Bean, R.M.

1977-12-01T23:59:59.000Z

67

Chemically bonded phosphate ceramic sealant formulations for oil field applications  

DOE Patents (OSTI)

A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

Wagh, Arun S. (Naperville, IL); Jeong, Seung-Young (Taejon, KR); McDaniel, Richard (Crest Hill, IL)

2008-10-21T23:59:59.000Z

68

Oil and Gas Field Code Master List 1990  

Science Conference Proceedings (OSTI)

This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

Not Available

1991-01-04T23:59:59.000Z

69

Method of determining interwell oil field fluid saturation distribution  

DOE Patents (OSTI)

A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

1981-01-01T23:59:59.000Z

70

Assessment of opportunities to increase the recovery and recycling rates of waste oils  

SciTech Connect

Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

Graziano, D.J.; Daniels, E.J.

1995-08-01T23:59:59.000Z

71

Oil and Gas Field Code Master List - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Oil and Gas Field Code Master List Oil and Gas Field Code Master List With Data for 2012 | Release Date: May 8, 2013 | Next Release Date: April 2014 Previous Issues Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1998 1997 1996 1995 Go Comprehensive listing of U.S. oil and gas field names. Oil and Gas Field Code Master List 2012 Definition of a Field Afield is defined as "an area consisting of a single reservoir ormultiple reservoirs all grouped on, or related to, the same individual geological structural feature and/or stratigraphic condition. There may be two or more reservoirs in a field which are separated vertically by intervening impervious strata, or laterally by local geologic barriers, or by both." More › About the Field Code Master List Related Links

72

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

Science Conference Proceedings (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

73

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

Science Conference Proceedings (OSTI)

The scope of this program is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by RBOSC to carry out this study. Research objectives were designed to evaluate hydrologic, geotechnical, and chemical properties and conditions which would affect the design and performance of large-scale embankments. The objectives of this research are: assess the unsaturated movement and redistribution of water and the development of potential saturated zones and drainage in disposed processed oil shale under natural and simulated climatic conditions; assess the unsaturated movement of solubles and major chemical constituents in disposed processed oil shale under natural and simulated climatic conditions; assess the physical and constitutive properties of the processed oil shale and determine potential changes in these properties caused by disposal and weathering by natural and simulated climatic conditions; assess the use of previously developed computer model(s) to describe the infiltration, unsaturated movement, redistribution, and drainage of water in disposed processed oil shale; evaluate the stability of field scale processed oil shale solid waste embankments using computer models.

Reeves, T.L.; Turner, J.P.; Hasfurther, V.R.; Skinner, Q.D.

1992-06-01T23:59:59.000Z

74

An EOR Application @ Liaohe Oil Field in China  

NLE Websites -- All DOE Office Websites (Extended Search)

AN EOR APPLICATION @ LIAOHE OIL AN EOR APPLICATION @ LIAOHE OIL FIELD IN CHINA Tests of Pumping Boiler Flue Gas into Oil Wells Chenglin Zhu (huafugs@sohu.com 011-86-427-7809254 ) Huafu Electrical Appliance Co., Ltd. Xing long Tai District City of Pan Jing, Lioning Province, PRC 124013 Zhang, Fengshan ( huafugs@sohu.com 011-86-427-7809254 ) Liaohe Petroleum Exploration Bureau Xing Long Tai District City of Pan Jing, Lioning Province, PRC 124013

75

Oil and Gas field code master list 1995  

Science Conference Proceedings (OSTI)

This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

NONE

1995-12-01T23:59:59.000Z

76

Horizontal well taps bypassed Dundee oil in Crystal field, Mich.  

SciTech Connect

The Dundee formation (Middle Devonian) has yielded more oil than any other producing interval in Michigan. The Dundee trend, which forms an east-west band across the central Michigan basin, consists of 137 fields which together have yielded more than 350 million bbl of oil. The first commercial Dundee production was established at Mt. Pleasant field in 1928, and most Dundee fields were discovered and brought on production during the 1930s--40s. Wells in many of the fields had very high initial production (IP) rates. IPs in excess of 1,000 b/d of oil were common, with values as high as 9,000 b/d reported. These high flow rates, combined with a thin (10--30 ft) oil column and a strong water drive, resulted in water coning that left significant volumes of oil unrecovered in some fields. One such field, Crystal field in Montcalm County, is the focus of a US Department of energy (DOE) Class 2 Reservoir Demonstration Project designed to demonstrate that horizontal drilling can recover significant volumes of this bypassed oil. The paper describes the demonstration project, regional setting, and the history of the Crystal field.

Wood, J.R.; Allan, J.R.; Huntoon, J.E.; Pennington, W.D. [Michigan Technological Univ., Houghton, MI (United States); Harrison, W.B. III [Western Michigan Univ., Kalamazoo, MI (United States); Taylor, E.; Tester, C.J. [Cronus Development Corp., Traverse City, MI (United States)

1996-10-21T23:59:59.000Z

77

Evaluation of real options in an oil field  

Science Conference Proceedings (OSTI)

The subject of this paper is the application of real options models for valuing an offshore oil property in the North of Africa. Three different approaches were used - one based on the traditional Black-Scholes model, the Marketed Asset Disclaimer (MAD) ... Keywords: capital budgeting, decision analysis, investment appraisal, oil fields, real options

João Oliveira Soares; Diogo Baltazar

2010-11-01T23:59:59.000Z

78

A reservoir management study of a mature oil field  

E-Print Network (OSTI)

An integrated geological, petrophysical and reservoir engineering review was performed for a mature, producing oil field. Like many older fields, important data are missing or were not collected. The techniques used in this thesis may be applied to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments of the producing horizons were identified. Potential for additional reserves was assessed. Well logs, core data, water resistivity and produced fluids data were analyzed. Average values of porosity, permeability, and oil saturation were determined for the field. Potential reserves behind casing were identified. Based on the revised geological and petrophysical data, the original oil in place was estimated from volumetrics to be 42.3 MMSTB. Cumulative oil production was determined for the first time since 1963. The field, individual reservoir, and individual well production performances were reviewed. Initial production histories of more than 220 wells were documented. I collected wellhead fluid samples and analyzed oil gravity and viscosity. Other fluid properties were estimated from correlations. Pressure data from the field was collated and analyzed. Primary production mechanisms and aquifer influx were estimated by reviewing early producing history and performing material balance calculations. Water influx was calculated. The performances of analogous salt dome reservoirs were compared to that of the field. All past well stimulations were reviewed and suggestions made for better implementation. Water injection in the field was reviewed. Problems of implementation and reservoir response were identified. The best areas in the field for waterflooding were identified and analyzed with an analytical model. Based on existing development, the oil ultimate recovery is estimated to be 14.4 MMSTB or 34.0 % of original oil in place. To determine whether oil recovery can be improved, incremental, after tax economic analysis was applied to several schemes. Infill drilling, hydraulic fracturing and waterflooding were analyzed. A course of action to maximize economic return is outlined for the field. Hydraulic fracturing appears to be the most viable technique to improve oil production from the field.

Peruzzi, Tave

1995-01-01T23:59:59.000Z

79

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 932,350: 908,217: 882,911 ...

80

Oklahoma Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Oklahoma Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 12,139: 12,268: 13,290: 11,905: 13,000: 12,891 ...

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Texas Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

View History: Monthly ... Download Data (XLS File) Texas Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981 ...

82

California Field Production of Crude Oil (Thousand Barrels per ...  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 977: 981: 984: 985: 1,007: 1,012 ...

83

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand ...  

U.S. Energy Information Administration (EIA)

Federal Offshore PADD 5 Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 874: 800: 883: 984: 1,586: 1,748 ...

84

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1850's: 2: 1860's: 500: 2,114 ...

85

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 30,297: 27,455: 30,515: 29,540: 31,203: 30,366 ...

86

California Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

California Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 365,370: 373,176 ...

87

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 45,424: 47,271 ...

88

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: ...

89

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 13,551: 14,571: 14,971 ...

90

Alaska Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Alaska Field Production of Crude Oil (Thousand Barrels per Day) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1970's: 198: 193: 191 ...

91

Montana Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Montana Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 78: 84: 84: 83: 85: 86: 84: 85: 84: 88 ...

92

Colorado Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 81: 81: 82: 83: 81: 82: 81: 80: 82: 89 ...

93

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 30,303: 30,545: 29,050 ...

94

Oil and Gas Field Code Index - Energy Information Administration  

U.S. Energy Information Administration (EIA)

000174 LA Fox Lake 000175 MT Gilford North 000210 NM Springs 000213 NM Dog Town Draw ... Energy Information Administration/Oil and Gas Field Code Master List 1998 343

95

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 32,665: 31,462: 31,736 ...

96

South Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

South Dakota Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's: 973: 1,158: 1,172 ...

97

New Mexico Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

New Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 6,286: 5,593: 6,105: 5,902: ...

98

Wet oxidation of oil-bearing sulfide wastes  

SciTech Connect

Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

Miller, R.L.; Hotz, N.J.

1991-01-01T23:59:59.000Z

99

Abandoned oil fields in Alaska, California, Colorado, Montana, North Dakota, Utah and Wyoming  

Science Conference Proceedings (OSTI)

This publication lists approximately 250 abandoned oil fields in Alaska, California, Colorado, Montana, North Dakota, Utah and Wyoming that have produced 10,000 or more barrels of oil before abandonment. The following information is provided for each field: county; DOE field code; field name; AAPG geologic province code; discovery data of field; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; cumulative production of gas from fields. (ATT)

Not Available

1983-04-01T23:59:59.000Z

100

Largest US oil and gas fields, August 1993  

Science Conference Proceedings (OSTI)

The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

Not Available

1993-08-06T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Formation of seep bubble plumes in the Coal Oil Point seep field  

E-Print Network (OSTI)

hydrocarbon seeps near Coal Oil Point, California. Marof seep bubble plumes in the Coal Oil Point seep field Irameasurement system in the Coal Oil Point seep field in the

Leifer, Ira; Culling, Daniel

2010-01-01T23:59:59.000Z

102

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network (OSTI)

Mar Lett (2010) 30:331–338 Fig. 3 Coal Oil Point seep field,hydrocarbon seeps near Coal Oil Point, California. Marhydrocarbon seep emissions, Coal Oil Point seep field,

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z

103

Oil and gas field code master list 1994  

SciTech Connect

This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

Not Available

1995-01-01T23:59:59.000Z

104

Oil and gas field code master list 1997  

Science Conference Proceedings (OSTI)

The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

NONE

1998-02-01T23:59:59.000Z

105

Verifying a Simplified Fuel Oil Flow Field Measurement Protocol  

Science Conference Proceedings (OSTI)

The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

Henderson, H.; Dentz, J.; Doty, C.

2013-07-01T23:59:59.000Z

106

Field development options for a waterflooded heavy-oil reservoir  

Science Conference Proceedings (OSTI)

Battrum Unit 4 is a moderately heavy-oil reservoir in Saskatchewan producing under waterflood from a thin sand. This paper describes a history match of previous field behavior and systematically analyzes through the use of numerical simulation the potential benefits to production of further waterflooding (with and without infill drilling), steamflooding, and horizontal drilling. It is found that the remaining oil recovery potential of a steamflood with horizontal well is significantly higher than that of any of the waterflood options.

Kasraie, M. (Petroleum Recovery Inst., Calgary, Alberta (Canada)); Sammon, P.H. (Computer Modelling Group, Calgary, Alberta (Canada)); Jespersen, P.J. (Sceptre Resources Ltd., Calgary, Alberta (United States))

1993-09-01T23:59:59.000Z

107

Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties  

Science Conference Proceedings (OSTI)

Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

Turner, J.P.

1991-01-01T23:59:59.000Z

108

Scheduled oil sampling: A proactive approach towards pollution prevention and waste minimization  

DOE Green Energy (OSTI)

The Waste Reduction Operations Complex (WROC) at the Idaho National Engineering Laboratory (INEL) maintains an emergency fire protection system which provides fire water during emergency conditions. The diesel engine driving this system receives regular preventative maintenance (PM) and servicing. The Waste Minimization Plan for WROC requires that all systems and processes be given a regular assessment to verify any Pollution Prevention (P2) or Waste Minimization (Waste Min.) activities. The WROC Maintenance group has implemented a proactive or best management practice (BMP) that reflects this P2/Waste Min. awareness. The diesel engine is operated for 30 minutes each week to maintain its readiness. A typical owner`s manual for industrial engines require that the oil be changed every 100-hours of operation or 6-months; only 13-hours of operation occur during the 6-months before the required oil change. Thirteen hours of operation would not warrant changing the oil. The WROC proactive approach to this problem is to perform an annual Scheduled Oil Sampling (SOS). An 8-ounce sample of oil is obtained and sent to a SOS lab. The SOS lab analyzes the condition (breakdown) of the oil and, provides a detailed analysis of metal particulates (from engine wear), and checks for impurities, such as, sulphur, water, coolant, and fuel in the system. The oil is changed only when the sampling results warrant that an oil change is necessary. The actual costs of the oil, filters, and labor far exceed the costs of performing the SOS. The projected cost savings after 8 years is about $12,000 in labor, oil changing costs, and hazardous waste analysis.

Reece, C.; Zirker, L.

1995-11-01T23:59:59.000Z

109

Top 100 Oil and Gas Fields for 1999 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Appendix B Top 100 Oil and Gas Fields for 1999 This appendix presents estimates of the proved reserves and production of the top 100 oil and gas

110

U.S. Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

View History: Monthly Annual : Download Data (XLS File) U.S. Field Production of Crude Oil (Thousand Barrels per Day) ... Crude Oil Supply and Disposition;

111

Oil field rejuvenation work starts at 14 project sites  

Science Conference Proceedings (OSTI)

This paper reports that the U.S. Department of Energy and oil and gas companies have released more information about a joint effort to rejuvenate aging U.S. oil fields in danger of abandonment. Work is starting on 14 demonstration projects that could recover 21 million bbl of oil from the fluvial dominated deltaic (FDD) reservoirs in which they are conducted. Wider application of the same techniques, if they are successful, could results in addition of 6.3 billion bbl of reserves, nearly 25% of U.S. crude oil reserves. A multidisciplinary team approach is to be used, with as many as 11 operators, service companies, universities, or state agencies participating in each project. All of the projects will culminate in extensive technology transfer activities. Here are descriptions of the projects gleaned from public abstracts provided by the DOE contractors.

Petzet, G.A. (Oil and Gas Journal (US))

1992-06-22T23:59:59.000Z

112

Environment, Environmental Restoration, and Waste Management Field Organization Directory  

SciTech Connect

This directory was developed by the Office of Environmental Guidance, RCRA/CERCLA Division (EH-231) from an outgrowth of the Departments efforts to identify and establish the regulatory response lead persons in the Field Organizations. The directory was developed for intemal EH-231 use to identify both the DOE and DOE contractor Field Organizations in the Environment, Environmental Restoration and Waste Management areas. The Field Organization directory is divided into three substantive sections: (1) Environment; (2) Environmental Restoration; and (3) Waste Management which are organized to correspond to the management hierarchy at each Field Organization. The information provided includes the facility name and address, individual managers name, and telephone/fax numbers.

Not Available

1993-07-01T23:59:59.000Z

113

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology  

Science Conference Proceedings (OSTI)

Objectives are listed and technical progress is summarized for contracts for field projects and supporting research on: chemical flooding, carbon dioxide injection, thermal/heavy oil, extraction technology, improved drilling technology, residual oil, and microbial enhanced oil recovery. (DLC)

Linville, B. (ed.)

1980-10-01T23:59:59.000Z

114

SMOOTH OIL & GAS FIELD OUTLINES MADE FROM BUFFERED WELLS  

U.S. Energy Information Administration (EIA) Indexed Site

The VBA code provided at the bottom of this document is an updated version The VBA code provided at the bottom of this document is an updated version (from ArcGIS 9.0 to ArcGIS 9.2) of the polygon smoothing algorithm described below. A bug that occurred when multiple wells had the same location was also fixed. SMOOTH OIL & GAS FIELD OUTLINE POLYGONS MADE FROM BUFFERED WELLS Why smooth buffered field outlines? See the issues in the figure below: [pic] The smoothing application provided as VBA code below does the following: Adds area to the concave portions; doesn't add area to convex portions to maintain buffer spacing Fills in non-field "islands" smaller than buffer size Joins separate polygon rings with a "bridge" if sufficiently close Minimizes increase in total field area Methodology: creates trapezoids between neighboring wells within an oil/gas

115

Utah Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Utah Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,150: 2,170: 2,150: 2,160: 2,150: 2,160: 2,150 ...

116

Texas Field Production of Crude Oil (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Texas Field Production of Crude Oil (Thousand Barrels per Day) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,600: 2,593: 2,604: 2,578: 2,577: 2,568 ...

117

North Dakota Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

North Dakota Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 3,787: 3,493: 3,790: 3,805: 3,974: 3,839 ...

118

Ohio Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Ohio Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 1,148: 1,036: 1,148: 1,111: 1,148: 1,111: 1,148 ...

119

Colorado Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Colorado Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,506: 2,255: 2,527: 2,478: 2,498: 2,445: 2,523 ...

120

U.S. Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1920: 34,008: 33,193: 36,171: 34,945: 36,622: 36,663 ...

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Michigan Field Production of Crude Oil (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

Michigan Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 2,827: 2,493: 2,807: 2,720: 2,763: 2,682: 2,779 ...

122

Oil and gas field code master list, 1983. [Glossary included  

Science Conference Proceedings (OSTI)

This report is the second annual listing of all identified oil and gas fields in the United States with field information collected through November 1983. The purpose of the publication is to provide codes for easy identification of domestic fields. A standardization of these field codes will foster consistency in field identification by government and industry. The use of field names and codes listed in this publication is required on the survey forms and reports regarding field-specific data for the Energy Information Administration (EIA) and the Federal Energy Regulatory Commission. A glossary of the terms is provided to assist the readers in more fully understanding the information in this Field Code Master List. 8 figures, 4 tables.

Not Available

1984-01-01T23:59:59.000Z

123

Framework for managing wastes from oil and gas exploration and production (E&P) sites.  

Science Conference Proceedings (OSTI)

Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2007-09-15T23:59:59.000Z

124

Numerical Simulation of Flow Field in Diesel Centrifugal Gas-Oil Separator Basing on CFD  

Science Conference Proceedings (OSTI)

Aiming at the low efficiency problem of the traditional gas-oil separator, this paper put forward a centrifugal gas-oil separator. In order to identify out the interior fluid field character of centrifugal gas-oil separator, RANS equation, RNG k-e model ... Keywords: Diesel, Centrifugal Gas-oil Separator, Flow Field, Separation Efficiency

Zhiguo Zhao

2012-07-01T23:59:59.000Z

125

Comparison of Permian basin giant oil fields with giant oil fields of other U. S. productive areas  

SciTech Connect

Covering over 40 million ac, the Permian basin is the fourth largest of the 28 productive areas containing giant fields. The 56 giant fields in the basin compare with the total of 264 giant oil fields in 27 other productive areas. Cumulative production figures of 18 billion bbl from the giant fields in the Permian basin are the largest cumulative production figures from giant fields in any of the productive areas. An estimated 1.9 billion bbl of remaining reserves in giant fields rank the basin third among these areas and the 19.9 billion bbl total reserves in giant fields in the basin are the largest total reserves in giant fields in any of the productive areas. The 1990 production figures from giant fields place the basin second in production among areas with giant fields. However, converting these figures to by-basin averages for the giant fields places the Permian basin 12th in field size among the areas with giant fields. Based on average reserves per well, the basin ranks 18th. Average 1990 production per giant field place the basin seventh and the average 1990 production per well in giant fields place the Permian basin 14th among the areas with giant fields.

Haeberle, F.R. (Consultant Geologist, Dallas, TX (United States))

1992-04-01T23:59:59.000Z

126

DOE tallies Class III oil recovery field projects  

SciTech Connect

Here are details from midterm proposals submitted as part of the US Department of Energy's Class 3 oil recovery field demonstration candidate projects. All of the proposals emphasize dissemination of project details so that the results, if successful, can be applied widely in similar reservoirs. Project results will also be fed into a national petroleum technology transfer network. The proposals include: Gulf of Mexico, Gulf coast, offshore California, a California thermal, immiscible CO[sub 2], produced/potable water, microbial EOR, California diatomite, West Texas Spraberry field, and other Permian Basin fields.

Not Available

1994-07-25T23:59:59.000Z

127

Crosshole EM for oil field characterization and EOR monitoring: Field examples from Lost Hills, California  

SciTech Connect

A steamflood recently initiated by Mobil Development and Production U.S. at the Lost Hills No 3 oil field in California is notable for its shallow depth and the application of electromagnetic (EM) geophysical techniques to monitor the subsurface steam flow. Steam was injected into three stacked eastward-dipping unconsolidated oil sands at depths from 60 to 120 m; the plume is expected to develop as an ellipsoid aligned with the regional northwest-southeast strike. Because of the shallow depth of the sands and the high viscosity of the heavy oil, it is important to track the steam in the unconsolidated sediments for both economic and safety reasons. Crosshole and surface-to-borehole electromagnetic imaging were applied for reservoir characterization and steamflood monitoring. The crosshole EM data were collected to map the interwell distribution of the high-resistivity oil sands and to track the injected steam and hot water. Measurements were made in two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the steam drive, to map the distribution of the oil sands, and then 6 and 10 months after steam was injected, to monitor the expansion of the steam chest. Resistivity images derived from the collected data clearly delineated the distribution and dipping structure of the target oil sands. Difference images from data collected before and during steamflooding indicate that the steam chest has developed only in the middle and lower oil sands, and it has preferentially migrated westward in the middle oil sand and eastward in the deeper sand. Surface-to-borehole field data sets at Lost Hills were responsive to the large-scale subsurface structure but insufficiently sensitive to model steam chest development in the middle and lower oil sands. As the steam chest develops further, these data will be of more use for process monitoring.

Wilt, M.; Schenkel, C.; Wratcher, M.; Lambert, I.; Torres-Verdin, C.; Tseng H.W.

1996-07-16T23:59:59.000Z

128

Oliktok Dock allows quick offloading of oil field modules  

SciTech Connect

A discussion of the design and construction of the Oliktok Dock, which serves the Kuparuk River oil fields of the Alaskan North Slope, was presented. The dockhead construction required 18,000 linear ft of HZ 800-16 Arbed sheetpile walls which extended from an elevation of -40 to +10 ft. The project began in mid-summer and was completed in November and cost $5 million.

Not Available

1983-04-01T23:59:59.000Z

129

A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure  

E-Print Network (OSTI)

. Keywords: oil or gas field exploration, decision making under uncertainty, multistage stochastic be addressed. E-mail: grossmann@cmu.edu #12;2 1. Introduction Oil and gas field exploration and production1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field

Grossmann, Ignacio E.

130

Oil-tanker waste-disposal practices: A review  

SciTech Connect

In the spring of 1991, the Environmental Protection Agency, Region 10 (EPA), launched an investigation into tanker waste disposal practices for vessels discharging ballast water at the Alyeska Pipeline Services Company's Ballast Water Treatment (BWT) facility and marine terminal in Valdez, Alaska. It had been alleged that the Exxon Shipping Company was transferring 'toxic wastes originating in California' to Valdez. In response, EPA decided to examine all waste streams generated on board and determine what the fate of these wastes were in addition to investigating the Exxon specific charges. An extensive Information Request was generated and sent to the shipping companies that operate vessels transporting Alaska North Slope Crude. Findings included information on cargo and fuel tank washings, cleaning agents, and engine room waste.

1992-01-01T23:59:59.000Z

131

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

132

Options and costs for offsite disposal of oil and gas exploration and production wastes.  

Science Conference Proceedings (OSTI)

In the United States, most of the exploration and production (E&P) wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. Certain types of wastes are not suitable for onsite management, and some well locations in sensitive environments cannot be used for onsite management. In these situations, operators must transport the wastes offsite for disposal. In 1997, Argonne National Laboratory (Argonne) prepared a report that identified offsite commercial disposal facilities in the United States. This information has since become outdated. Over the past year, Argonne has updated the study through contacts with state oil and gas agencies and commercial disposal companies. The new report, including an extensive database for more than 200 disposal facilities, provides an excellent reference for information about commercial disposal operations. This paper describes Argonne's report. The national study provides summaries of the types of offsite commercial disposal facilities found in each state. Data are presented by waste type and by disposal method. The categories of E&P wastes in the database include: contaminated soils, naturally occurring radioactive material (NORM), oil-based muds and cuttings, produced water, tank bottoms, and water-based muds and cuttings. The different waste management or disposal methods in the database involve: bioremediation, burial, salt cavern, discharge, evaporation, injection, land application, recycling, thermal treatment, and treatment. The database includes disposal costs for each facility. In the United States, most of the 18 billion barrels (bbl) of produced water, 149 million bbl of drilling wastes, and 21 million bbl of associated wastes generated at onshore oil and gas wells are disposed of or otherwise managed at the well site. However, under certain conditions, operators will seek offsite management options for these E&P wastes. Commercial disposal facilities are offsite businesses that accept and manage E&P wastes for a fee. Their services include waste management and disposal, transportation, cleaning of vehicles and tanks, disposal of wash water, and, in some cases, laboratory analysis. Commercial disposal facilities offer a suite of waste management methods and technologies.

Puder, M. G.; Veil, J. A.; Environmental Science Division

2007-01-01T23:59:59.000Z

133

Crosshole EM for oil field characterization and EOR monitoring: Field examples  

SciTech Connect

Crosshole and surface-to-borehole electromagnetic (EM) imaging is applied to reservoir characterization and steam flood monitoring in a central California oil field. Steam was injected into three stacked, eastward-dipping, unconsolidated oil sands within the upper 200 in. The steam plume is expected to develop as an ellipse aligned with the regional northwest-southeast strike. EM measurements were made from two flberglass-cased observation wells straddling the steam injector on a northeast-southwest profile. Field data were collected before the initiation of a steam drive to map the distribution of the oil sands and then six months after the steam was injected to monitor the progress of the steam chest. Resisitivity images derived from the EM data collected before steam injection clearly delineate the distribution and dipping structure on the target oil sands. Difference images from data collected before and after steam flooding indicate that the steam chest has developed only in the deeper oil sands, and it has preferentially migrated eastward. Surface-to-borehole measurements were useful in mapping the distribution of the major oil sands, but they were insensitive to resisitivity changes in the early stages of the steam flood.

Wilt, M.; Schenkel, C. [Lawrence Livermore National Lab., CA (United States); Torres-Verdin, C. [Schlumberger-Doll Research Center, Ridgefield, CT (United States); Lee, Ki Ha [Lawrence Berkeley Lab., CA (United States); Tseng, Hung-Wen [California Univ., Berkeley, CA (United States)

1994-09-01T23:59:59.000Z

134

Oil gravity distribution in the diatomite at South Belridge Field, Kern County, CA: Implications for oil sourcing and migration  

Science Conference Proceedings (OSTI)

Understanding oil gravity distribution in the Belridge Diatomite has led to economic infill development and specific enhanced recovery methods for targeted oil properties. To date more than 100 wells have provided samples used to determining vertical and areal distribution of oil gravity in the field. Detailed geochemical analyses were also conducted on many of the oil samples to establish different oil types, relative maturities, and to identify transformed oils. The geochemical analysis also helped identify source rock expulsion temperatures and depositional environments. The data suggests that the Belridge diatomite has been charged by a single hydrocarbon source rock type and was generated over a relatively wide range of temperatures. Map and statistical data support two distinct oil segregation processes occurring post expulsion. Normal gravity segregation within depositional cycles of diatomite have caused lightest oils to migrate to the crests of individual cycle structures. Some data suggests a loss of the light end oils in the uppermost cycles to the Tulare Formation above, or through early biodegradation. Structural rotation post early oil expulsion has also left older, heavier oils concentrated on the east flank of the structure. With the addition of other samples from the south central San Joaquin area, we have been able to tie the Belridge diatomite hydrocarbon charge into a regional framework. We have also enhanced our ability to predict oil gravity and well primary recovery by unraveling some key components of the diatomite oil source and migration history.

Hill, D.W.; Sande, J.J. [Shell Western E& P Inc., Bakersfield, CA (United States); Doe, P.H. [Shell Development Co., Houston, TX (United States)

1995-04-01T23:59:59.000Z

135

Optimal Planning of Reactive Power Compensators for Oil Field Distribution Networks  

Science Conference Proceedings (OSTI)

The characteristic behavior of the loads of oil pumps is analyzed. An approach for low-voltage side reactive power compensators of oil field distribution networks is put forward. Based on the supplied loads of transformers, the index of maximum reduction ... Keywords: Genetic Algorithm, distribution network, oil field, reactive power compensation

Wu Xiaomeng; Yan Suli

2009-05-01T23:59:59.000Z

136

Long life seen for giant Wilmington oil field  

Science Conference Proceedings (OSTI)

The outlook for the offshore portion of giant Wilmington field is good, says the president of ARCO Long Beach Co., which since 1992 has played a key role in the field`s future. With 8 billion bbl of oil originally in place, wilmington field is the third largest in the US, topped by Alaska`s Prudhoe Bay field and East Texas field. As provided by the optimized Waterflood Agreement, the field contractor`s agreement has been extended. Under its terms, ARCO, the City of Long Beach, and the state of California agreed to a forecast of base profits, i.e., what would have happened without an expanded waterflood. ARCO agreed to provide access to technology needed to design an optimized waterflood and committed to support an investment of $100 million over and above what would have been spent without the program. In exchange, the state agreed to share half of any incremental profits with ARCO. The paper discusses how the agreement has worked, improvements in infrastructure, and safety.

NONE

1996-11-25T23:59:59.000Z

137

Correlating field and laboratory data for crude oil fouling  

Science Conference Proceedings (OSTI)

Crude oil fouling in a laboratory fouling unit was investigated. The study focused on the preheat-train heat exchangers located just before the crude unit furnace and operating at temperatures in excess of 200 C. A fouling rate model developed using laboratory data from crude blends was used to predict the threshold conditions where negligible fouling was expected under refinery conditions. The results from the model were compared to actual data from a fouling unit located at a refinery. The article discusses factors that may explain the performance of the model and the observed discrepancies between fouling data obtained in the laboratory and the field.

Asomaning, S.; Panchal, C.B.; Liao, C.F.

2000-06-01T23:59:59.000Z

138

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

139

Oily-waste-disposal survey, South Tank Farm, Lajes Field, Azores. Final report, 12-17 Jun 90  

Science Conference Proceedings (OSTI)

A survey of the wet and dry sludge pits at the South Tank Farm, Lajes Field, Azores was performed by members of the AFOEHL. Samples of the waste water and sludge from the wet sludge pit (WSP) were taken as well as from the dry sludge pit. Bioremediation studies, incineration, and carbon adsorption studies were performed. The characterization of the waste water from the WSP revealed a one phase mixture of mostly soluble oils and grease with an average COD concentration of 1760 and a BOD of 407 mg/1. Oils and grease concentrations were in the 10 mg/1 range. The characterization of the sludge revealed 43% organics and concentrations of metals not high enough for consideration as hazardous waste. The sludge from the DSP also did not have levels of metals high enough for special disposal as hazardous waste. The WSP waste water was slow to degrade biologically through stimulation of indigenous organisms. Carbon was effective in removing COD. The WSP waste water has subsequently been released to the Praia Bay and the sludge recovered and drummed. Recommendations included the construction of a secondary sewage treatment plant to service the base, airport, and Praia, the construction of a sludge drying facility and testing of the dried sludge for ultimate disposal.

Binovi, R.D.

1991-03-01T23:59:59.000Z

140

Wetland treatment of oil and gas well waste waters. Final report  

SciTech Connect

Constructed wetlands are small on-site systems that possess three of the most desirable components of an industrial waste water treatment scheme: low cost, low maintenance and upset resistance. The main objective of the present study is to extend the knowledge base of wetland treatment systems to include processes and substances of particular importance to small, on-site systems receiving oil and gas well wastewaters. A list of the most relevant and comprehensive publications on the design of wetlands for water quality improvement was compiled and critically reviewed. Based on our literature search and conversations with researchers in the private sector, toxic organics such as Phenolics and b-naphthoic acid, (NA), and metals such as CU(II) and CR(VI) were selected as target adsorbates. A total of 90 lysimeters equivalent to a laboratory-scale wetland were designed and built to monitor the uptake and transformation of toxic organics and the immobilization of metal ions. Studies on the uptake of toxic organics such as phenol and b-naphthoic acid (NA) and heavy metals such as Cu(II) and Cr(VI), the latter two singly or as non-stoichiometric mixtures by laboratory-type wetlands (LWs) were conducted. These LWs were designed and built during the first year of this study. A road map and guidelines for a field-scale implementation of a wetland system for the treatment of oil and gas wastewaters have been suggested. Two types of wetlands, surface flow (SF) and sub surface flow (SSF), have been considered, and the relative merits of each configuration have been reviewed.

Kadlec, R.; Srinivasan, K.

1995-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Pilot Phase of a Field Study to Determine Waste of Water and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems Title Pilot Phase of a Field Study to Determine Waste of Water and...

142

NETL: News Release - Leveling the Playing (Oil) Field For Small...  

NLE Websites -- All DOE Office Websites (Extended Search)

considerably more expensive than conventional methods, but is expected to reduce drilling costs, increase oil discovery rates, and improve the recovery of bypassed oil. Vecta...

143

Integrated reservoir characterization for the Mazari oil field, Pakistan  

E-Print Network (OSTI)

This thesis describes a field study performed on the Mazari oil field located in Sind province, Pakistan. We used an integrated reservoir characterization technique to incorporate the geological, petrophysical, and reservoir performance data to interpret historical reservoir performance, to assess and refine reservoir management activities, and to make plans for future reservoir developments. We used a modified approach to characterize within the mappable geological facies. Our approach is based on the Kozeny-Carmen equation and uses the concept of mean hydraulic radius. As part of our objective to characterize the reservoir, we tabulated reservoir characteristics for each hydraulic flow unit, and we presented estimates of in-place reserves. We evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail. Finally, we give recommendations for activities in reservoir development particularly infill drilling considerations and secondary recovery efforts.

Ashraf, Ejaz

1994-01-01T23:59:59.000Z

144

Froth flotation of oil-bearing metal sulfide wastes  

SciTech Connect

An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

Miller, R.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Atwood, R.L.; Ye, Yi [Advanced Processing Technologies, Inc., Salt Lake City, UT (United States)

1991-12-01T23:59:59.000Z

145

Froth flotation of oil-bearing metal sulfide wastes  

SciTech Connect

An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

Miller, R.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Atwood, R.L.; Ye, Yi (Advanced Processing Technologies, Inc., Salt Lake City, UT (United States))

1991-01-01T23:59:59.000Z

146

Evaluation of Energy Recovery from Municipal Solid Waste in Oil-Fired Power Plants  

Science Conference Proceedings (OSTI)

Five methods of energy recovery from municipal solid waste (MSW) in oil-fired power plants are evaluated: preparation and supplemental firing of refuse-derived fuel (RDF) with oil in a utility boiler originally designed for coal firing; 100% firing of either RDF or MSW in a dedicated water-wall incinerator and use of the steam to drive a dedicated turbine generator unit; and 100% firing of RDF or MSW in a dedicated water-wall incinerator and integration of the steam into the power plant steam cycle.

1982-02-01T23:59:59.000Z

147

Carbon Dioxide Enhanced Oil Recovery and Sequestration Projects --Wellington Field,  

E-Print Network (OSTI)

and seismic contractors TBN Dawson-Markwell Exploration Co. #12;20 MM bbls oil produced ~40 MM bbls oil and deeply buried Arbuckle Aquifer ­ Overlying Mississippian carbonates contain large oil and gas reservoirs freshwater aquifers, and very limited oil and gas production. ­ Published estimates of CO2 sequestration

Peterson, Blake R.

148

Disposal of NORM waste in salt caverns  

Science Conference Proceedings (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

149

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report  

DOE Green Energy (OSTI)

The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

NONE

1996-06-30T23:59:59.000Z

150

Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.  

Science Conference Proceedings (OSTI)

A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

Puder, M. G.; Veil, J. A.

2006-09-05T23:59:59.000Z

151

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III  

SciTech Connect

The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

2002-09-30T23:59:59.000Z

152

ANALYSIS AND INTERPRETATION OF 2D/3D SEISMIC DATA OVER DHURNAL OIL FIELD, NORTHERN PAKISTAN.  

E-Print Network (OSTI)

?? The study area, Dhurnal oil field, is located 74 km southwest of Islamabad in the Potwar basin of Pakistan. Discovered in March 1984, the… (more)

Afsar, Fatima

2013-01-01T23:59:59.000Z

153

Oil and Gas Field Code Master List 2008 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Pipeline’s Annual Report of Gas Supply”, began ... length on DOE forms and by the field naming authority, usually the State oil and gas regulatory ...

154

Oil and Gas Field Code Master List 2007 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Pipeline’s Annual Report of Gas Supply”, began ... length on DOE forms and by the field naming authority, usually the State oil and gas regulatory ...

155

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

This report contains information on contracts for field projects and supporting research on enhanced oil recovery. Brief descriptions of research programs are included. (CBS)

Not Available

1990-05-01T23:59:59.000Z

156

,"U.S. Crude Oil + Lease Condensate Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels)",1,"Annual",2011...

157

Indexes of pumps for oil field pumping units  

Science Conference Proceedings (OSTI)

As reported previously, a series of oil field pumping units has been developed with power outputs of 125, 250, 500, and 1000 kW, designed for injecting working fluids in cementing operations in oil and gas wells, hydraulic fracturing of formations, washing out sand plugs, and other production operations. The units are designed for the use of three-plunger pumps with individual power outputs of 125 or 500 kW. In the 250- and 1000-kW units, two such pumps are used. The 1000-kW pumping unit serves mainly for deep-penetration hydraulic fracturing of formations, and also for fracturing deep formations. The hydraulic fracturing process does not require the use of units with two pumps; this has been demonstrated by experience, both here and in other countries. All units intended for use in hydraulic fracturing are built with a single pump, transmission, and drive. Pumping units for well cementing must have two pumps that will give a high delivery rate. At the start of the operation, a single pump can be used to feed water into the cement mixer, with the second pump used to transfer the cement slurry to the well. Then both pumps are connected to the slurry injection line. The operation of these pumps is described.

Ibragimov, E.S.

1995-07-01T23:59:59.000Z

158

Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services  

E-Print Network (OSTI)

examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes in the price of crude petroleum using quarterly data from 1972 to 2002. The oil industry provides an important

Sadoulet, Elisabeth

159

Peak production in an oil depletion model with triangular field profiles  

E-Print Network (OSTI)

Peak production in an oil depletion model with triangular field profiles Dudley Stark School;1 Introduction M. King Hubbert [5] used curve fitting to predict that the peak of oil produc- tion in the U.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been

Stark, Dudley

160

Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint  

DOE Patents (OSTI)

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350 and 375 C to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan. 2 figs.

Moens, L.

1995-07-11T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Isolation of levoglucosan from lignocellulosic pyrolysis oil derived from wood or waste newsprint  

DOE Patents (OSTI)

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing wood or newsprint to fine particle sizes, treating the particles with a hot mineral acid for a predetermined period of time, and filtering off and drying resulting solid wood or newsprint material; pyrolyzing the dried solid wood or newsprint material at temperatures between about 350.degree. and 375.degree. C. to produce pyrolysis oils; treating the oils to liquid-liquid extraction with methyl isobutyl ketone to remove heavy tar materials from the oils, and to provide an aqueous fraction mixture of the oils containing primarily levoglucosan; treating the aqueous fraction mixtures with a basic metal salt in an amount sufficient to elevate pH values to a range of about 12 to about 12.5 and adding an amount of the salt in excess of the amount needed to obtain the pH range to remove colored materials of impurities from the oil and form a slurry, and freeze-drying the resulting slurry to produce a dry solid residue; and extracting the levoglucosan from the residue using ethyl acetate solvent to produce a purified crystalline levoglucosan.

Moens, Luc (Lakewood, CO)

1995-01-01T23:59:59.000Z

162

Examination of eastern oil shale disposal problems - the Hope Creek field study  

SciTech Connect

A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

1985-02-01T23:59:59.000Z

163

The Use of Oil Refinery Wastes as a Dust Suppression Surfactant for Use in Mining  

Science Conference Proceedings (OSTI)

In this research, the suitability of a selection of petroleum refinery wastes as a dust suppressant were examined. Dust is a significant problem in surface and underground mining mainly because of its adverse effects on human health and machinery. Hence, dust control and suppression is a vital part of mine planning for mining engineers. Water is the oldest and the cheapest suppressant in dealing with the mine dusts. However, surfactant use has recently been used for a wider range of applications in the mining industry. In order to carry out laboratory experiments, a dust chamber was designed and manufactured. The chamber has an inlet for coal dust entrance and a nozzle for spraying water and the oil refinery wastes. Water and the surfactants were mixed at various ratios and then sprayed onto the coal dusts within the cell. Dust concentration was measured systematically to determine the effects of surfactant containing solution on the coal dust and the data obtained by the measurements were analyzed. The results showed that the oil refinery wastes could be used as a dust suppressant, which may create an economical utilization for the wastes concerned.

Dixon-Hardy, D.W.; Beyhan, S.; Ediz, I.G.; Erarslan, K. [University of Leeds, Leeds (United Kingdom)

2008-10-15T23:59:59.000Z

164

Tax effects upon oil field development in Venezuela  

E-Print Network (OSTI)

Important reforms have been made to the oil sector tax code in Venezuela. Given its diversity of oil resources, there was a concern that some resources were not being exploited because of the structure of the tax code. ...

Manzano, Osmel

2000-01-01T23:59:59.000Z

165

About the EIA Oil and Gas Field Code Master List  

U.S. Energy Information Administration (EIA)

Colorado Colorado Department of Natural Resources, Oil and Gas Conservation Commission Florida Florida Geology Survey, Department of Environmental ...

166

Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields  

E-Print Network (OSTI)

The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8% of US oil and gas production, respectively. With increasing energy demand and current high oil and gas prices, integrated reservoir studies, secondary and tertiary recovery methods, and infill drilling are becoming more common as operators strive to increase recovery from stripper oil and gas fields. The primary objective of this research was to support optimized production of oil and gas from stripper well fields by evaluating one stripper gas field and one stripper oil field. For the stripper gas field, I integrated geologic and engineering data to build a detailed reservoir characterization model of the Second White Specks (SSPK) reservoir in Garden Plains field, Alberta, Canada. The objectives of this model were to provide insights to controls on gas production and to validate a simulation-based method of infill drilling assessment. SSPK was subdivided into Units A ? D using well-log facies. Units A and B are the main producing units. Unit A has better reservoir quality and lateral continuity than Unit B. Gas production is related primarily to porosity-netthickness product and permeability and secondarily to structural position, minor structural features, and initial reservoir pressure. For the stripper oil field, I evaluated the Green River formation in the Wells Draw area of Monument Butte field, Utah, to determine interwell connectivity and to assess optimal recovery strategies. A 3D geostatistical model was built, and geological realizations were ranked using production history matching with streamline simulation. Interwell connectivity was demonstrated for only major sands and it increases as well spacing decreases. Overall connectivity is low for the 22 reservoir zones in the study area. A water-flood-only strategy provides more oil recovery than a primary-then-waterflood strategy over the life of the field. For new development areas, water flooding or converting producers to injectors should start within 6 months of initial production. Infill drilling may effectively produce unswept oil and double oil recovery. CO2 injection is much more efficient than N2 and CH4 injection. Water-alternating-CO2 injection is superior to continuous CO2 injection in oil recovery. The results of this study can be used to optimize production from Garden Plains and Monument Butte fields. Moreover, these results should be applicable to similar stripper gas and oil field fields. Together, the two studies demonstrate the utility of integrated reservoir studies (from geology to engineering) for improving oil and gas recovery.

Wang, Jianwei

2008-12-01T23:59:59.000Z

167

Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field  

DOE Green Energy (OSTI)

An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.

1979-10-01T23:59:59.000Z

168

U.S. Crude Oil + Lease Condensate Reserves New Field Discoveries...  

Gasoline and Diesel Fuel Update (EIA)

New Field Discoveries (Million Barrels) U.S. Crude Oil + Lease Condensate Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

169

NETL: News Release - DOE Project Revives Oil Production in Abandoned Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 4 , 2006 DOE Project Revives Oil Production in Abandoned Fields on Osage Tribal Lands Novel Oil Recovery Technique Developed Under DOE's Native American Initiative WASHINGTON, DC - A technology developed with U.S. Department of Energy funding has revived oil production in two abandoned oilfields on Osage Indian tribal lands in northeastern Oklahoma, and demonstrated a technology that could add billions of barrels of additional domestic oil production in declining fields. Production has jumped from zero to more than 100 barrels of oil per day in the two Osage County, Okla., fields, one of which is more than 100 years old. The technology was successfully pilot-tested in the century-old field, and using the knowledge gained, the technology was applied to a neighboring field with comparable success. This suggests that such approaches could revitalize thousands of other seemingly depleted oilfields across America's Midcontinent region.

170

Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field  

E-Print Network (OSTI)

Quantifying infill potential in marginal oil fields often involves several challenges. These include highly heterogeneous reservoir quality both horizontally and vertically, incomplete reservoir databases, considerably large amounts of data involving numerous wells, and different production and completion practices. The most accurate way to estimate infill potential is to conduct a detailed integrated reservoir study, which is often time-consuming and expensive for operators of marginal oil fields. Hence, there is a need for less-demanding methods that characterize and predict heterogeneity and production variability. As an alternative approach, various authors have used empirical or statistical analyses to model variable well performance. Many of the methods are based solely on the analysis of well location, production and time data. My objective is to develop an enhanced method for rapid assessment of infill-drilling potential that would combine increased accuracy of simulation-based methods with times and costs associated with statistical methods. My proposed solution is to use reservoir simulation combined with automatic history matching to regress production data to determine the permeability distribution. Instead of matching on individual cell values of reservoir properties, I match on constant values of permeability within regions around each well. I then use the permeability distribution and an array of automated simulation predictions to determine infill drilling potential throughout the reservoir. Infill predictions on a single-phase synthetic case showed greater accuracy than results from statistical techniques. The methodology successfully identified infill well locations on a synthetic case derived from Cut Bank field, a water-flooded oil reservoir. Analysis of the actual production and injection data from Cut Bank field was unsuccessful, mainly because of an incomplete production database and limitations in the commercial regression software I used. In addition to providing more accurate results than previous empirical and statistical methods, the proposed method can also incorporate other types of data, such as geological data and fluid properties. The method can be applied in multiphase fluid situations and, since it is simulation based, it provides a platform for easy transition to more detailed analysis. Thus, the method can serve as a valuable reservoir management tool for operators of stripper oil fields.

Chavez Ballesteros, Luis Eladio

2004-12-01T23:59:59.000Z

171

Crude Oil plus Lease Condensate New Field Discoveries  

U.S. Energy Information Administration (EIA)

Crude Oil plus Lease Condensate Proved Reserves, Reserves Changes, ... Michigan : 10: 0: 8: 2009-2011: Mississippi : 1: 0: 1: 2009-2011: Montana : 0: ...

172

Excess water production diagnosis in oil fields using ensemble classifiers.  

E-Print Network (OSTI)

??In hydrocarbon production, more often than not, oil is produced commingled with water. As long as the water production rate is below the economic level… (more)

Rabiei, Minou

2011-01-01T23:59:59.000Z

173

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Final report, November 1995  

SciTech Connect

A study is described on the hydrological and geotechnical behavior of an oil shale solid waste. The objective was to obtain information which can be used to assess the environmental impacts of oil shale solid waste disposal in the Green River Basin. The spent shale used in this study was combusted by the Lurgi-Ruhrgas process by Rio Blanco Oil Shale Company, Inc. Laboratory bench-scale testing included index properties, such as grain size distribution and Atterberg limits, and tests for engineering properties including hydraulic conductivity and shear strength. Large-scale tests were conducted on model spent shale waste embankments to evaluate hydrological response, including infiltration, runoff, and seepage. Large-scale tests were conducted at a field site in western Colorado and in the Environmental Simulation Laboratory (ESL)at the University of Wyoming. The ESL tests allowed the investigators to control rainfall and temperature, providing information on the hydrological response of spent shale under simulated severe climatic conditions. All experimental methods, materials, facilities, and instrumentation are described in detail, and results are given and discussed. 34 refs.

1995-12-31T23:59:59.000Z

174

Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes  

SciTech Connect

Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca[sup 2+] - and K[sup +]-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca[sup 2+] - and K[sup +]-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca[sup 2+] systems than in the K[sup +] systems at any given ionic strength. High salt content and K[sup +] collapse the bentonite layers and limit access to and compete for adsorption sites. The K[sup +] ion is also more difficult to displace than Ca[sup 2+] from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

1992-01-01T23:59:59.000Z

175

Adsorption of aniline and toluidines on montmorillonite: Implications for the disposal of shale oil production wastes  

SciTech Connect

Bentonite clay liners are commonly employed to mitigate the movement of contaminants from waste disposal sites. Solid and liquid waste materials that arise from the production of shale oil contain a vast array of organic compounds. Common among these compounds are the aromatic amines. in order to assess the ability of clay liner material to restrict organic compound mobility, the adsorption of aniline and o-, m-, and p-toluidine on Ca{sup 2+} - and K{sup +}-saturated Wyoming bentonite was investigated. Adsorption experiments were performed under conditions of varied pH, ionic strength, and dominate electrolyte cation and anion. organic adsorption on Ca{sup 2+} - and K{sup +}-saturated montmorillonite is pH dependent. For any given organic compound, maximum adsorption increases with decreasing ionic strength. organic compound adsorption is inhibited in the presence of sulfate and is greater in the Ca{sup 2+} systems than in the K{sup +} systems at any given ionic strength. High salt content and K{sup +} collapse the bentonite layers and limit access to and compete for adsorption sites. The K{sup +} ion is also more difficult to displace than Ca{sup 2+} from interlayer positions. Fourier transform infrared spectroscopic data show that the aniline compounds are adsorbed on bentonite through the hydrogen bonding of an amine hydrogen to a surface silica oxygen. Sulfate reduces amine adsorption by removing positively charged anilinium species from solution to form negatively charge sulfate complexes. Although adsorption of the substituted amines on bentonite is observed, aniline and toluidine adsorption is minimal in saline systems and not detected in alkaline systems. Thus, in shale oil process waste disposal sites, the mobility of the anilines through bentonite liners will not be mitigated by sorption processes, as spent oil shale leachates are both highly alkaline and saline.

Essington, M.E.; Bowen, J.M.; Wills, R.A.; Hart, B.K.

1992-01-01T23:59:59.000Z

176

Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

1999-06-25T23:59:59.000Z

177

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

Scott Hara

2001-06-27T23:59:59.000Z

178

INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS  

SciTech Connect

Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

G.P. Willhite; D.W. Green; C.S. McCool

2003-05-01T23:59:59.000Z

179

Novel Cleanup Agents Designed Exclusively for Oil Field Membrane Filtration Systems Low Cost Field Demonstrations of Cleanup Agents in Controlled Experimental Environments  

Science Conference Proceedings (OSTI)

The goal of our project is to develop innovative processes and novel cleaning agents for water treatment facilities designed to remove fouling materials and restore micro-filter and reverse osmosis (RO) membrane performance. This project is part of Texas A&M University's comprehensive study of the treatment and reuse of oilfield brine for beneficial purposes. Before waste water can be used for any beneficial purpose, it must be processed to remove contaminants, including oily wastes such as residual petroleum hydrocarbons. An effective way of removing petroleum from brines is the use of membrane filters to separate oily waste from the brine. Texas A&M and its partners have developed highly efficient membrane treatment and RO desalination for waste water including oil field produced water. We have also developed novel and new cleaning agents for membrane filters utilizing environmentally friendly materials so that the water from the treatment process will meet U.S. EPA drinking water standards. Prototype micellar cleaning agents perform better and use less clean water than alternate systems. While not yet optimized, the new system restores essentially complete membrane flux and separation efficiency after cleaning. Significantly the amount of desalinated water that is required to clean the membranes is reduced by more than 75%.

David Burnett; Harold Vance

2007-08-31T23:59:59.000Z

180

Absorbents for Mineral Oil Spill Cleanup, Phase 3: Field Performance  

Science Conference Proceedings (OSTI)

Residual mineral oil on the ground surface following electrical equipment spills is often removed using a surface application of an absorbent material. Traditional absorbent products include clays, sawdust-like products, silica-based products, and various organic industry byproduct materials. This project was performed in three phases. Phase 1 included testing to measure overall mineral oil absorption efficiency of 24 absorbents. In Phase 2, absorbents studied in Phase 1 were further ...

2012-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

U.S. Department of Energy Carlsbad Field Office Waste Isolation...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 Media Contact: Deb Gill U.S. DOE Carlsbad Field Office (575)...

182

Hydrogen-Rich Gas Production from Steam Gasification of Palm Oil Wastes Using the Supported Nano-NiO/?-Al2O3 Catalyst  

Science Conference Proceedings (OSTI)

The catalytic steam gasification of palm oil wastes for hydrogen-rich gas production was experimentally investigated in a combined fixed bed reactor using the newly developed nano-NiO/?-Al2O3 catalyst. The results indicated that the nano-NiO/?-Al2O3 ... Keywords: Biomass gasification, palm oil waste, catalyst, hydrogen production

Jianfen Li; Yanfang Yin; Jianjun Liu; Rong Yan

2009-10-01T23:59:59.000Z

183

Northwest McGregor Oil Field in Williams County, North Dakota...  

NLE Websites -- All DOE Office Websites (Extended Search)

collaborated with Eagle Operating, Inc. to complete the test in the Northwest McGregor Oil Field in Williams County, North Dakota. The "huff-and-puff" EOR method consists of three...

184

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9; 1980's:

185

Federal Offshore--Gulf of Mexico Field Production of Crude Oil ...  

U.S. Energy Information Administration (EIA)

Federal Offshore--Gulf of Mexico Field Production of Crude Oil (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1981: 22,166: 20,084: 22,467 ...

186

Real option analysis as a decision tool in oil field developments  

E-Print Network (OSTI)

This thesis shows the applicability and value of real options analysis in developing an oil field, and how its use along with decision analysis can maximize the returns on a given project and minimize the losses. It focuses ...

Babajide, Abisoye (Abisoye E.)

2007-01-01T23:59:59.000Z

187

Abandoned oil fields in Alabama, Florida, Illinois, Indiana, Kentucky, Michigan, Missouri, New York, Tennessee and West Virginia  

SciTech Connect

Data are presented for approximately 240 abandoned oil fields in Alabama, Florida, Illinois, Indiana, Kentucky, Michigan, Missouri, New York, Tennessee, and West Virginia. Production data were not available on a majority of abandoned fields in New York, Missouri, and Kentucky. Consequently, some fields with less than 10,000 barrels cumulative production are included. The following information is presented for each field: county; DOE field code; field name; AAPG geologic province code; discovery date of field; year of last production; discovery well operator; proven acreage; formation thickness; depth of field; gravity of oil production; calendar year; yearly field oil production; yearly field gas production; cumulative oil production; cumulative gas production; number abandoned fields in county; cumulative production of oil from fields; cumulative production of gas from fields. (ATT)

Not Available

1983-04-01T23:59:59.000Z

188

Minimizing Waste from the Oil Industry: Scale Treatment and Scrap Recycling  

SciTech Connect

Naturally occurring radioactive material is technologically concentrated in the piping in systems in the oil and gas industry, especially in the offshore facilities. The activity, mainly Ra-226, in the scales in the systems are often at levels classified as low level radioactive waste (LSA) in the industry. When the components and pipes are descaled for maintenance or recycling purposes, usually by high-pressure water jetting, the LSA scales arising constitute a significant quantity of radioactive waste for disposal. A new process is under development for the treatment of scales, where the radioactive solids are separated from the inactive. This would result in a much smaller fraction to be deposited as radioactive waste. The radioactive part recovered from the scales will be reduced to a stable non-metallic salt and because the volume is significantly smaller then the original material, will minimize the cost for disposal. The pipes, that have been cleaned by high pressure water jetting can either be reused or free released by scrapping and melting for recycling.

Lindberg, M.

2002-02-26T23:59:59.000Z

189

Energy Conservation and Efficiency Improvement for the Electric Motors Operating in U.S. Oil Fields  

E-Print Network (OSTI)

Because of its versatility, electricity consumption continues to grow all over the world more rapidly than any other energy form. The portion of the United States' primary energy supply used as electricity has expanded from near zero at the turn of the century to 38 percent in 1987. Electric motors use as input about 64% of all electricity in the U.S. and many other countries. The cost of powering motors in the U.S. is estimated to be roughly $90 billion a year. In terms of primary energy input, motor energy use in the U.S. is comparable to all auto energy use. Electric motors are the largest users of energy in all mineral extraction activities. In oil fields, electric motors drive the pumping units used for lifting the oil and water to the surface. To find out actual efficiencies of operating motors in the oil fields, the University of Wyoming and the U.S. Department of Energy -Denver Support Office have been working for the last twelve months on two Naval Petroleum Reserve oil fields -one each in California and Wyoming. So far, actual motor loading of all operating oil fields motors has been determined by actual field measurements. We have also completed the analysis of economy of operation of existing motors and evaluating the candidate replacement motors. In this paper, we will present these results along with the methodologies and protocol developed for motor energy efficiency improvement in oil field applications.

Ula, S.; Cain, W.; Nichols, T.

1993-03-01T23:59:59.000Z

190

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995  

DOE Green Energy (OSTI)

The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

NONE

1996-01-01T23:59:59.000Z

191

Oil and Gas Field Code Master List Updates 1996  

U.S. Energy Information Administration (EIA)

Figure 1 presents a flow chart of the activities necessary to process new field information. All new field information received by EIA goes through this cycle, ...

192

Oil and Gas Field Code Master List, 1995  

U.S. Energy Information Administration (EIA)

agency within the Department of Energy. The information contained herein should not be construed as ... order to uniquely identify a particular field, the field

193

Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}  

Science Conference Proceedings (OSTI)

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

2013-03-15T23:59:59.000Z

194

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 39, quarter ending June 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1984-12-01T23:59:59.000Z

195

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 41, quarter ending December 31, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-07-01T23:59:59.000Z

196

Contracts for field projects and supporting research on enhanced oil recovery. Progress Review No. 42, quarter ending March 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; environmental technology; and microbial enhanced oil recovery.

Linville, B. (ed.)

1985-11-01T23:59:59.000Z

197

Using Biosurfactants Produced from Agriculture Process Waste Streams to Improve Oil Recovery in Fractured Carbonate Reservoirs  

Science Conference Proceedings (OSTI)

This report describes the progress of our research during the first 30 months (10/01/2004 to 03/31/2007) of the original three-year project cycle. The project was terminated early due to DOE budget cuts. This was a joint project between the Tertiary Oil Recovery Project (TORP) at the University of Kansas and the Idaho National Laboratory (INL). The objective was to evaluate the use of low-cost biosurfactants produced from agriculture process waste streams to improve oil recovery in fractured carbonate reservoirs through wettability mediation. Biosurfactant for this project was produced using Bacillus subtilis 21332 and purified potato starch as the growth medium. The INL team produced the biosurfactant and characterized it as surfactin. INL supplied surfactin as required for the tests at KU as well as providing other microbiological services. Interfacial tension (IFT) between Soltrol 130 and both potential benchmark chemical surfactants and crude surfactin was measured over a range of concentrations. The performance of the crude surfactin preparation in reducing IFT was greater than any of the synthetic compounds throughout the concentration range studied but at low concentrations, sodium laureth sulfate (SLS) was closest to the surfactin, and was used as the benchmark in subsequent studies. Core characterization was carried out using both traditional flooding techniques to find porosity and permeability; and NMR/MRI to image cores and identify pore architecture and degree of heterogeneity. A cleaning regime was identified and developed to remove organic materials from cores and crushed carbonate rock. This allowed cores to be fully characterized and returned to a reproducible wettability state when coupled with a crude-oil aging regime. Rapid wettability assessments for crushed matrix material were developed, and used to inform slower Amott wettability tests. Initial static absorption experiments exposed limitations in the use of HPLC and TOC to determine surfactant concentrations. To reliably quantify both benchmark surfactants and surfactin, a surfactant ion-selective electrode was used as an indicator in the potentiometric titration of the anionic surfactants with Hyamine 1622. The wettability change mediated by dilute solutions of a commercial preparation of SLS (STEOL CS-330) and surfactin was assessed using two-phase separation, and water flotation techniques; and surfactant loss due to retention and adsorption on the rock was determined. Qualitative tests indicated that on a molar basis, surfactin is more effective than STEOL CS-330 in altering wettability of crushed Lansing-Kansas City carbonates from oil-wet to water-wet state. Adsorption isotherms of STEOL CS-330 and surfactin on crushed Lansing-Kansas City outcrop and reservoir material showed that surfactin has higher specific adsorption on these oomoldic carbonates. Amott wettability studies confirmed that cleaned cores are mixed-wet, and that the aging procedure renders them oil-wet. Tests of aged cores with no initial water saturation resulted in very little spontaneous oil production, suggesting that water-wet pathways into the matrix are required for wettability change to occur. Further investigation of spontaneous imbibition and forced imbibition of water and surfactant solutions into LKC cores under a variety of conditions--cleaned vs. crude oil-aged; oil saturated vs. initial water saturation; flooded with surfactant vs. not flooded--indicated that in water-wet or intermediate wet cores, sodium laureth sulfate is more effective at enhancing spontaneous imbibition through wettability change. However, in more oil-wet systems, surfactin at the same concentration performs significantly better.

Stephen Johnson; Mehdi Salehi; Karl Eisert; Sandra Fox

2009-01-07T23:59:59.000Z

198

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

Unknown

2001-08-08T23:59:59.000Z

199

Test plan, the Czechowice Oil Refinery bioremediation demonstration of a process waste lagoon. Revision 1  

SciTech Connect

The overall objective of the bioremediation project is to provide a cost effective bioremediation demonstration of petroleum contaminated soil at the Czechowice Oil Refinery. Additional objectives include training of personnel, and transfer of this technology by example to Poland, and the Risk Abatement Center for Central and Eastern Europe (RACE). The goal of the remediation is to reduce the risk of PAH compounds in soil and provide a green zone (grassy area) adjacent to the site boundary. Initial project discussions with the Czechowice Oil Refinery resulted in helping the refinery find an immediate cost effective solution for the dense organic sludge in the lagoons. They found that when mixed with other waste materials, the sludge could be sold as a fuel source to local cement kilns. Thus the waste was incinerated and provided a revenue stream for the refinery to cleanup the lagoon. This allowed the bioremediation project to focus on remediation of contaminated soil that unusable as fuel, less recalcitrant and easier to handle and remediate. The assessment identified 19 compounds at the refinery that represented significant risk and would require remediation. These compounds consisted of metals, PAH`s, and BTEX. The contaminated soil to be remediated in the bioremediation demonstration contains only PAH (BTEX and metals are not significantly above background concentrations). The final biopile design consists of (1) dewatering and clearing lagoon A to clean clay, (2) adding a 20 cm layer of dolomite with pipes for drainage, leachate collection, air injection, and pH adjustment, (3) adding a 1.1 m layer of contaminated soil mixed with wood chips to improve permeability, and (4) completing the surface with 20 cm of top soil planted with grass.

Altman, D.J.; Hazen, T.C.; Tien, A.J. [Westinghouse Savannah River Co., Aiken, SC (United States). Savannah River Technology Center; Worsztynowicz, A.; Ulfig, K. [Inst. for Ecology of Industrial Areas, Katowice (Poland)

1997-05-10T23:59:59.000Z

200

Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia  

E-Print Network (OSTI)

The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field, Colombia. Experimental and simulation studies were conducted to achieve these objectives. The experimental study consisted of injecting reconstituted gas into a cell containing sand and "live" San Francisco oil. Experimental runs were made with injection of (i) the two field gases and their 50-50 mixture, (ii) the two field gases enriched with propane, and (iii) WAG with the two field gases enriched with propane. Produced oil volume, density, and viscosity; and produced gas volume and composition were measured and analyzed. A 1D 7-component compositional simulation model of the laboratory injection cell and its contents was developed. After a satisfactory history-match of the results of a WAG run, the prediction runs were made using the gas that gave the highest oil recovery in the experiments, (5:100 mass ratio of propane:Balcon gas). Oil production results from simulation were obtained for a range of WAG cycles and gas injection rate. The main results of the study may be summarized as follows. For all cases studied, the lowest oil recovery is obtained with injection of San Francisco gas, (60% of original oil-in-place OOIP), and the highest oil recovery (84% OOIP) is obtained with a WAG 7.5-7.5 (cycle of 7.5 minutes water injection followed by 7.5 minutes of gas injection at 872 ml/min). This approximately corresponds to WAG 20-20 in the field (20 days water injection followed by 20 days gas injection at 6.8 MMSCF/D). Results clearly indicate increase in oil recovery with volume of the gas injected. Lastly, of the three injection schemes studied, WAG injection with propane-enriched gas gives the highest oil recovery. This study is based on the one-dimensional displacement of oil. The three-dimensional aspects and other reservoir complexities that adversely affect oil recovery in reality have not been considered. A 3D reservoir simulation study is therefore recommended together with an economic evaluation of the cases before any decision can be made to implement any of the gas or WAG injection schemes.

Rueda Silva, Carlos Fernando

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Technical evaluation of the waste-to-oil process development facility at Albany, Oregon  

DOE Green Energy (OSTI)

The broad objective of ERDA's solar energy program at Albany, Oregon, is to develop biomass-to-synfuel technology in the Albany process development facility, which is now nearing completion. In the study reported here, the process development plant design was reevaluated, and a number of modifications and additions are recommended to facilitate and accelerate development of biomass conversion processes. Sketches of the recommended modifications and estimates of costs and installation time schedules have been provided. It has been found expedient to implement some of these modifications before construction is completed. Biomass-to-synfuel processes under development or under consideration elsewhere have been reviewed, and some have been identified that are appropriate for further development at Albany. Potential environmental impacts associated with the operation of the Albany, Oregon, facility were reviewed to identify the magnitude of the impacts and the effects of any resultant operational constraints. Two discrete environmental impact categories have been identified with respect to process development operation. These are (1) production, storage, and disposal of product oil and residual solid, liquid, and gaseous waste; and (2) disturbances to the local community. An assessment has been made of unit process waste discharges and mitigation procedures, environmental setting and community considerations, possible operational constraints, and monitoring programs.

Houle, E.H.; Ciriello, S.F.; Ergun, S.; Basuino, D.J.

1976-10-01T23:59:59.000Z

202

Arctic National Wildlife Refuge: oil field or wilderness  

Science Conference Proceedings (OSTI)

The second session of the 100th Congress will see continued debate over the prospect of oil and gas drilling on a 19-million-acre expanse of mountains and tundra known as the Arctic National Wildlife Refuge (ANWR). The arctic refuge, most of which lies above the Arctic Circle, is larger than any refuges in the lower 48 states. Because of its size, the area supports a broad range of linked ecosystems. Of particular concern is the 1.5-million-acre coastal plain, which may be targeted for development. The coastal plain provides a home, at least part of the year, to Alaska's porcupine caribou. The coastal plain also supports many other forms of wildlife-including the wolf, arctic fox, brown bear, polar bear, and arctic peregrine falcon, which is listed as a threatened species. The potential effects of drilling projects extend beyond loss of wildlife; they include desecration of the land itself. Although few members of Congress deny the value of protecting the amazing variety of life on the coastal plain, some insist that limited drilling could be conducted without destroying crucial habitat. Last July, the department tentatively divided some of the targeted lands among native corporations in preparation for leasing to oil companies. In response to what was felt to be an attempt to overstep congressional authority, the House passed HR 2629, banning this kind of land deal without congressional approval. In essence, the measure reiterated congressional authority provided by the Alaska National Interest Lands Conservation Act (ANILCA) of 1980. This act mandated the study of environmental threats and oil potential by the Department of Interior, while putting the ANWR coastal plain off-limits to development without an explicit congressional directive.

Spitler, A.

1987-11-01T23:59:59.000Z

203

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994  

DOE Green Energy (OSTI)

The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

Not Available

1995-01-01T23:59:59.000Z

204

South Belridge Field reaches milestone with its billionth barrel of crude oil  

SciTech Connect

An 84-year-old California oil field which for at least the first two decades of its life was regarded as one of the minor fields of Kern County in May reached a plateau attained previously by only 11 fields in the United States. The South Belridge field 35 miles west of Bakersfield produced its one billionth barrel of oil, thus qualifying for membership in oil production`s most exclusive club. The other billion-barrel fields are Alaska`s Prudhoe Bay and Kuparuk River; California`s Wilmington and Huntington Beach; Oklahoma`s ShoVel-Tum; and Texas` East Texas, Yates, Kelly-Snyder, Slaughter, Wasson and Panhandle. California`s Ventura field presently is believed to be the only other field in the United States with the potential to produce one billion barrels. The field, to the first of this year had produced 930.2 MMbo and had estimated reserves of 81.8 MMbo. Production in the South Belridge field last year totaled 43.8 MMbo, or an average of 120 Mbo/d, which was enough to make the field the fifth most productive in the United States.

Rintoul, B.

1995-07-01T23:59:59.000Z

205

U.S. Department of Energy Carlsbad Field Office Waste Isolation...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 WIPP Employee Inducted Into Mine Rescue Hall of Fame - WIPP...

206

U.S. Department of Energy Carlsbad Field Office Waste Isolation...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. DOE Carlsbad Field Office (575) 234-7270 www.wipp.energy.gov For Immediate Release Waste Isolation Pilot Plant Receives Second EPA Recertification CARLSBAD, N.M., November...

207

Contracts for field projects and supporting research on enhanced oil recovery. Reporting period July--September 1996  

SciTech Connect

This report contains information on accomplishments completed during July through September 1997 on contracts for field projects and supporting research on Enhanced Oil Recovery.

NONE

1997-12-01T23:59:59.000Z

208

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil Point, California  

E-Print Network (OSTI)

Dissolved methane distributions and air-sea flux in the plume of a massive seep field, Coal Oil coastal ocean near Coal Oil Point, Santa Barbara Channel, California. Methane was quantified in the down originating from Coal Oil Point enters the atmosphere within the study area. Most of it appears

California at Santa Barbara, University of

209

Potential use of wood and agriculture wastes as steam generator fuel for thermal enhanced oil recovery. Final report  

DOE Green Energy (OSTI)

Enhanced oil recovery by steam injection methods produces over 200,000 barrels per day of crude oil in California. A sizeable portion of the produced crude, up to 40% for some projects, may be burned to generate steam for injection into the reservoir. The purpose of this study is to evaluate the potential to use wood and agriculture wastes to replace crude oil as steam generator fuel. The Bakersfield area of California's San Joaquin Valley is the focus for this paper. Production from thermal EOR methods centers around Bakersfield and agriculture and wood wastes are available from the San Joaquin Valley and the nearby Sierra Nevada mountains. This paper documents the production of waste materials by county, estimated energy value of each material, and estimated transportation cost for each material. Both agriculture and wood wastes were found to be available in sizeable quantities and could become attractive steam generation fuels. However, some qualifications need to be made on the use of these materials. Transportation costs will probably limit the range of shipping these materials to perhaps 50 to 100 miles. Availability is subject to competition from existing and developing uses of these materials, such as energy sources in their immediate production area. Existing steam generators probably cannot be retrofitted to burn these materials. Fluidized bed combustion, or low Btu gasification, may be a good technology for utilization. FBC or FBG could accept a variety of waste materials. This will be important because the amount of any single waste may not be large enough to support the energy requirements of a good size thermal f a good size thermal EOR operation.

Kosstrin, H.M.; McDonald, R.K.

1979-01-01T23:59:59.000Z

210

Western oil-shale development: a technology assessment. Volume 4. Solid waste from mining and surface retorts  

SciTech Connect

The overall objectives of this study were to: review and evaluate published information on the disposal, composition, and leachability of solid wastes produced by aboveground shale oil extraction processes; examine the relationship of development to surface and groundwater quality in the Piceance Creek basin of northwestern Colorado; and identify key areas of research necessary to quantitative assessment of impact. Information is presented under the following section headings: proposed surface retorting developments; surface retorting processes; environmental concerns; chemical/mineralogical composition of raw and retorted oil shale; disposal procedures; water quality; and research needs.

1982-01-01T23:59:59.000Z

211

Utah Crude Oil + Lease Condensate Reserves New Field Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves New Field Discoveries (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 0 2010's 0 0 - No Data Reported; -- Not...

212

Equilibrium Analysis of the Oil and Gas Field Services Industry  

E-Print Network (OSTI)

This paper examines the response of employment and wages in the US oil and gas …eld services industry to changes in the price of crude petroleum using a time series of quarterly data spanning the period 1972-2002. I …nd that labor quickly reallocates across sectors in response to price shocks but that substantial wage premia are necessary to induce such reallocation. The timing of these premia is at odds with the predictions of standard models — wage premia emerge quite slowly, peaking only as labor adjustment ends and then slowly dissipating. After considering alternative explanations, I argue that a dynamic market clearing model with sluggish movements in industry wide labor demand is capable of rationalizing these …ndings. I proceed to structurally estimate the parameters of the model by minimum distance and …nd that simulated impulse responses match key features of the estimated dynamics. I also provide auxiliary evidence corroborating the implied dynamics of some important unobserved variables. I conclude with a discussion of the strengths and weaknesses of the model and implications for future research. I am deeply indebted to Chris House for sharing with me the art of formulating and solving dynamic

Patrick Kline; Patrick Kline

2008-01-01T23:59:59.000Z

213

Citronelle Oil Field north of Mobile, Alabama. The project will capture  

NLE Websites -- All DOE Office Websites (Extended Search)

Citronelle Oil Field north of Mobile, Alabama. The project will capture Citronelle Oil Field north of Mobile, Alabama. The project will capture approximately 150,000 tons of CO 2 per year from Alabama Power's Plant Barry (a total equivalent to the emissions from 25 megawatts of the plant's generating capacity) and inject the CO 2 into a deep saline reservoir 9,000 feet beneath the surface. Under the plan, the CO 2 will be transported by pipeline and injected into the saline formation, which has oil-bearing formations both above and below its location. A monitoring, verification, and accounting (MVA) program will be conducted to track the movement of the injected CO 2 and ensure that it is safely and permanently stored. The project will commence in 2011 and is expected to last up to four years. This test site was selected by

214

Exploration and Development of U.S. Oil and Gas Fields, 1955-2002  

E-Print Network (OSTI)

We study the exploration and development of oil and gas fields in the United States over the period 1955-2002. We make four contributions to explaining the economic evolution of the oil and gas industry during this period. First, we derive a testable model of the dynamics of competitive oil and gas field exploration and development. Second, we show how to empirically distinguish Hotelling scarcity effects from effects due to technological change. Third, we test these hypotheses using statewide panel data of exploration and development drilling. We find that the time paths of exploration, development and total wells drilled are dominated by Hotelling scarcity effects. Our final contribution is to offer an explanation for why fixed costs from exploration can make the contracting equilibrium in the mineral rights market efficient.

John R. Boyce; Linda Nøstbakken

2009-01-01T23:59:59.000Z

215

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report ending March 31, 1996  

SciTech Connect

This document contains a progress report for the Project Description of Grant No. DE-FG01-94CE15612, {open_quotes}Develop a Combustion of Municipal Solid Waste with Oil Shale in Circulating Fluidized Bed{close_quotes}, dated September 2, 1994. The Project Description lists and describes six tasks, four of which are complete, and two others nearing completion. A summary of progress on each task is presented in this report.

1996-04-01T23:59:59.000Z

216

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

217

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

218

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

219

Special ESP configurations designed to test and produce Yemen oil field. [Electric-Submersible Pump  

SciTech Connect

Innovative electric-submersible-pump (ESP) configurations were used in the exploration phase of a Yemen oil field discovered by Canadian Occidental Petroleum Ltd. Because of subnormal reservoir pressure, CanOxy developed the field with ESPs and had to install surface components that could operate at the high, 130 F., ambient temperatures common in Yemen. The field is in a remote area that has seen very little development. The reservoirs produce a medium-to-heavy crude with a low gas/oil ratio, typically less than 20 scf/bbl. Problems faced in evaluating the field included drilling through unconsolidated sands with high flow capacity and subnormal reservoir pressure. CanOxy had to develop the technology to test the wells during the exploration phase, and intends to use new, or at least uncommon technology, for producing the wells. The paper describes testing the wells, the electric generators and variable speed drives, and the use of these pumps on production wells.

Wilkie, D.I. (Canadian Occidental Petroleum Ltd., Calgary, Alberta (Canada))

1993-09-27T23:59:59.000Z

220

Enhanced oil recovery. Byron Field polymer waterflood will achieve two important firsts  

SciTech Connect

When Marathon Oil Co. starts up its long-awaited, Byron Field Tensleep-Embar Unit polymer waterflood this December 2, firsts will have been achieved: the Big-Horn basin will see its first full-field commercial tertiary flood, and Marathon also will see its first full-field commercial tertiary flood. Marathon's flood will use a massive amount of polymer. Seventy percent of pore volume will be injected. Big Horn basin fields usually have been subjected only to infill drilling and waterflood because the thicker than average crude lies in heterogeneous formations, yielding a situation whereby, even 60 to 70 yr after discovery, simple infill drilling can cause virgin oil to flow to the well bore. In some cases, 20-, 10-, or 5-acre spacing might be required to drain a reservoir adequately, giving long effective lift to simple primary production techniques. In addition, a natural water drive often is present.

Gill, D.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Costs and indices for domestic oil and gas field equipment and production operations 1990 through 1993  

SciTech Connect

This report presents estimated costs and indice for domestic oil and gas field equipment and production operations for 1990, 1991, 1992, and 1993. The costs of all equipment and serives were those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of oil wells to gas wells. The body of the report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (costs and lease availability) have significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas production equipment and operations.

1994-07-08T23:59:59.000Z

222

Costs and indices for domestic oil and gas field equipment and production operations 1994 through 1997  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1994, 1995, 1996, and 1997. The costs of all equipment and services are those in effect during June of each year. The sums (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measures do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables. Price changes for oil and gas, changes in taxes on oil and gas revenues, and environmental factors (compliance costs and lease availability) have a significant impact on the number and cost of oil and gas wells drilled. These changes also impact the cost of oil and gas equipment and production operations.

1998-03-01T23:59:59.000Z

223

Comparison of selected oil-field brines from fields in the Permian basin, West Texas-southeast New Mexico  

SciTech Connect

Stiff diagrams of oil-field brines from the west Texas Permian basin are identifiable within the geological framework. Plotted from a simple analysis of three cations and three anions, older Paleozoic waters can be categorized as either 'pristine' or modified, usually by a later influx of Permian or early Pennsylvanian water. These different plots can be segregated by geologic province. The Permian brines differ by age and also by environment (shelf, basin, etc.).

White, H.G. III

1992-04-01T23:59:59.000Z

224

Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence  

Science Conference Proceedings (OSTI)

Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

Eric P. Robertson

2007-11-01T23:59:59.000Z

225

An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale  

Science Conference Proceedings (OSTI)

This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

1989-01-01T23:59:59.000Z

226

Reservoir simulation of co2 sequestration and enhanced oil recovery in Tensleep Formation, Teapot Dome field  

E-Print Network (OSTI)

Teapot Dome field is located 35 miles north of Casper, Wyoming in Natrona County. This field has been selected by the U.S. Department of Energy to implement a field-size CO2 storage project. With a projected storage of 2.6 million tons of carbon dioxide a year under fully operational conditions in 2006, the multiple-partner Teapot Dome project could be one of the world's largest CO2 storage sites. CO2 injection has been used for decades to improve oil recovery from depleted hydrocarbon reservoirs. In the CO2 sequestration technique, the aim is to "co-optimize" CO2 storage and oil recovery. In order to achieve the goal of CO2 sequestration, this study uses reservoir simulation to predict the amount of CO2 that can be stored in the Tensleep Formation and the amount of oil that can be produced as a side benefit of CO2 injection. This research discusses the effects of using different reservoir fluid models from EOS regression and fracture permeability in dual porosity models on enhanced oil recovery and CO2 storage in the Tensleep Formation. Oil and gas production behavior obtained from the fluid models were completely different. Fully compositional and pseudo-miscible black oil fluid models were tested in a quarter of a five spot pattern. Compositional fluid model is more convenient for enhanced oil recovery evaluation. Detailed reservoir characterization was performed to represent the complex characteristics of the reservoir. A 3D black oil reservoir simulation model was used to evaluate the effects of fractures in reservoir fluids production. Single porosity simulation model results were compared with those from the dual porosity model. Based on the results obtained from each simulation model, it has been concluded that the pseudo-miscible model can not be used to represent the CO2 injection process in Teapot Dome. Dual porosity models with variable fracture permeability provided a better reproduction of oil and water rates in the highly fractured Tensleep Formation.

Gaviria Garcia, Ricardo

2005-12-01T23:59:59.000Z

227

Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields  

Gasoline and Diesel Fuel Update (EIA)

Short-Term Energy Outlook Supplement: Short-Term Energy Outlook Supplement: Status of Libyan Loading Ports and Oil and Natural Gas Fields Tuesday, September 10, 2013, 10:00AM EST Overview During July and August 2013, protests at major oil loading ports in the central-eastern region of Libya forced the complete or partial shut-in of oil fields linked to the ports. As a result of protests at ports and at some oil fields, crude oil production fell to 1.0 million barrels per day (bbl/d) in July and 600,000 bbl/d in August, although the production level at the end of August was far lower. At the end of August, an armed group blocked pipelines that connect the El Sharara and El Feel (Elephant) fields to the Zawiya and Mellitah export terminals, respectively, forcing the shutdown of those fields. El Sharara had been

228

Pore-Level Modeling of Carbon Dioxide Sequestration in Oil Fields: A study of viscous and buoyancy forces  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration in Oil Fields: A Sequestration in Oil Fields: A study of viscous and buoyancy forces Grant S. Bromhal, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880, gbromhal@netl.doe.gov, M. Ferer, Department of Physics, West Virginia University, and Duane H. Smith, U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507-0880 Underground injection of carbon dioxide for enhanced oil recovery (EOR) is a common practice in the oil and gas industry and has often been cited as a proven method of sequestering CO 2 (US DOE, 1999). Of all sequestration methods, this is probably the best understood, as carbon dioxide has been used in the oil industry for many years. Additionally, most oil fields have been relatively well characterized geologically, and

229

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions  

SciTech Connect

The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 [times] 3.0 [times] 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Turner, J.P.; Hasfurther, V.

1992-05-04T23:59:59.000Z

230

Field Instruments for Real Time In-Situ Crude Oil Concentration Measurements  

E-Print Network (OSTI)

The Texas Water Resources Institute awarded a Mill Scholarship to M.C. Sterling, Jr in 2002. This project describes five sensors for rapid monitoring of crude oil concentrations in an aquatic system. These measurements are critical for monitoring plume transport. They are also useful for estimating polycyclic aromatic hydrocarbons (PAH) exposure concentrations as a component of toxicity risk assessments. A submersible multi-angle laser scattering instrument (LISST-100, Sequoia Instruments), an ex-situ single wavelength fluorometer (AU-10 field fluorometer, Turner Designs), an in-situ single wavelength fluorometer (Flashlamp, WET Labs), and two in-situ multiple wavelength fluorometers (ECO-FL3 and SAFire, WET Labs) are evaluated for sensitivity and bias. For each instrument, a brief discussion of its operating principles is presented. Crude oil emulsions of various concentrations were analyzed using the above instruments. The implications of potential interferences and instrument limits are discussed relative to their importance for real time monitoring of crude oil spills.

Fuller, C. B.; Bonner, J. S.; Page, C. A.; Arrambide, G.; Sterling Jr., M. C.; Ojo, T.

2003-06-01T23:59:59.000Z

231

Increasing heavy oil reserves in the Wilmington Oil Field through advanced reservoir characterization and thermal production technologies. Annual report, March 30, 1995--March 31, 1996  

SciTech Connect

The objective of this project is to increase heavy oil reserves in a portion of the Wilmington Oil Field, near Long Beach, California, by implementing advanced reservoir characterization and thermal production technologies. Based on the knowledge and experience gained with this project, these technologies are intended to be extended to other sections of the Wilmington Oil Field, and, through technology transfer, will be available to increase heavy oil reserves in other slope and basin clastic (SBC) reservoirs. The project involves implementing thermal recovery in the southern half of the Fault Block II-A Tar zone. The existing steamflood in Fault Block II-A has been relatively inefficient due to several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery efficiency and reduce operating costs.

NONE

1997-09-01T23:59:59.000Z

232

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

1998-03-03T23:59:59.000Z

233

Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. Summary of Technical Progress

Scott Hara

1997-08-08T23:59:59.000Z

234

Increasing Heavy Oil Reservers in the Wilmington Oil field Through Advanced Reservoir Characterization and Thermal Production Technologies  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, Scott [Tidelands Oil Production Co., Long Beach, CA (United States)

1997-05-05T23:59:59.000Z

235

Oil fields and new plays in the Rioni foreland basin, Republic of Georgia  

Science Conference Proceedings (OSTI)

The Rioni Basin in West Georgia is an Oligocene foredeep that evolved into a Miocene to Pliocene foreland basin, north of the Achara-Trialeti thrust belt and south of the Greater Caucasus. It extends to the west into the Black Sea. A large number of exploration wildcats have been drilled onshore since the nineteenth century and have led to the discovery of three fields. Exploration was prompted by seeps and restricted to frontal ramp anticlines mapped at surface. No wells have been drilled offshore. Supsa (discovered 1889) contains 29 MMbbl oil in clastic Sarmatian reservoirs. The field has around 50 wells but less than 0.5 MMbbl have been produced. Shromisubani (discovered 1973) contains oil within Maeotian and Pontian clastic reservoirs, Chaladidi oil within Upper Cretaceous chalk. Despite this long and apparently intensive exploration effort, several factors make the basin an exciting target for field redevelopment and further exploration. The quality of existing seismic is very poor both on-and offshore. Reinterpretation of the structure of the fold and thrust belt has suggested the presence of new targets and plays which may be imaged by modern seismic methods. In addition, due to problems associated with central planning, discovered fields have not been optimally developed or even fully appraised. The application of new technology, geological interpretation and investment promises to delineate substantial remaining reserves even after more than one hundred years of exploration.

Robinson, A.G.; Griffith, E.T. (JKX Oil and Gas, Guildford (United Kingdom)); Sargeant, J. (RES-Source Limited, Banchory (United Kingdom))

1996-01-01T23:59:59.000Z

236

Bohai Oil corporation conceptual engineering of overall development scheme for SZ 36-1 oil field. Final report. Export trade information  

SciTech Connect

SZ 36-1 oil field is located in the Liaodong Bay in the northeastern section of Bohai Bay, in approximately 32 meters water depth, 46 kilometers offshore the Suizhong Coast. The reservoir is highly heterogeneous and unconsolidated, and the crude has high viscosity, high specific gravity, and requires artificial lift for production. A phased development of the field is planned. The U.S. Trade and Development Program (TDP) contracted for engineering services to perform conceptual engineering of the overall development scheme for the SZ 36-1 oil field. The study consisted of two parts: (1) concept selection, to assess various schemes for developing the SZ 36-1 field and selecting one to recommend to the Bohai oil corporation (BOC); (2) conceptual engineering of the recommended development concept. The final report covers both the concept selection and concept engineering phases of the study.

Not Available

1992-10-01T23:59:59.000Z

237

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

Science Conference Proceedings (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

238

Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management  

SciTech Connect

This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

1997-04-10T23:59:59.000Z

239

Integrated reservoir study of the Appleton Oil Field, Escambia County, Alabama  

E-Print Network (OSTI)

The objective of this study is the development of a reservoir characterization of the Appleton Oil Field, Escambia County, Alabama, using petrophysical data, reservoir performance data and reservoir simulation. Appleton Field is comprised of two producing zones, the "Smackover" and the "Reef," which, as the names imply, are presumed to be separate and distinct geological sequences. In particular, the previous work of several authors delineated a marked difference in these zones based on the quality of the reservoir rocks and their productivity. In one particular study of the Appleton Field, the authors utilized only two wells in their analysis. In contrast, our study involves the use of all five producing wells in the field. The data available for these five wells confirms the differences in reservoir quality between the "Smackover" and the "Reef" producing intervals, although such differences vary from well to well. In this study we also provide a detailed description of Appleton Field using production data analysis and reservoir simulation, both of which reveal possible untapped oil reserves. The volumes of oil in place obtained from our analyses exceed those reported in literature for this field. However, the previous literature noted specifically a possible underestimation of the reported oil in place and the use of infill drilling to exploit these untapped resources The original oil in place (OOIP) using production data was estimated to be 78.8 million STB, which exceeds the reported value of 3.8 million STB by more than a factor of 20. An average recovery factor of 3.4 percent (using production to date) was calculated using the estimated ultimate recovery (or EUR) technique. This result is much lower than the 68 percent reported in literature. The history matched reservoir simulation model utilized an oil-in-place of 11.84 million STB and we obtained a recovery factor of 23 percent (using production to date). We recognize this extremely large variation in computed in-place volume, and it is our contention that an aquifer system is providing this "extra" energy (hence, extra volume). The energy from the aquifer appears to be provided in the form of fluid expansion and water influx (i.e., the production data show no clear "water influx" signal). Based on the variation of OOIP computed from our analysis, we have estimated a lower limit of 5 million STB and an upper limit of 30 million STB OOIP, and we believe that the true OOIP lies somewhere in between (most likely on the order of 20 million STB of oil). Resolution of this issue will require additional data. In particular, we require pressure data to calibrate the simulation, as well as the well performance analysis. We would also like to have a modern fluid sample (oil) made available for a complete PVT analysis.

Chijuka, Ekene F

2002-01-01T23:59:59.000Z

240

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance is below projections because of wellbore mechanical limitations that were being addressed in 2001. As the fluid production is hot, the pilot steamflood was converted to a hot waterflood project in June 2001.

Scott Hara

2002-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being addressed in 2001.

Scott Hara

2001-11-01T23:59:59.000Z

242

Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks  

E-Print Network (OSTI)

A new, relatively high frequency, full waveform matching method was used to study the focal mechanisms of small, local earthquakes induced in an oil field, which are monitored by a sparse near-surface network and a deep ...

Li, Junlun

243

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 45, Quarter ending December 31, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal methods; resource assessment; environmental technology; and microbial enhanced oil recovery. (AT)

Not Available

1986-12-01T23:59:59.000Z

244

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 51 quarter ending June 30, 1987  

Science Conference Proceedings (OSTI)

This Progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Field Projects; Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience; Environmental Technology; Microbial Technology.

Not Available

1988-05-01T23:59:59.000Z

245

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 40, quarter ending September 30, 1984  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding; gas displacement; thermal recovery/heavy oil; resource assessment technology; extraction technology; and microbial technology.

Linville, B. (ed.)

1985-05-01T23:59:59.000Z

246

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 43, quarter ending June 30, 1985  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: (1) chemical flooding; gas displacement thermal recovery/heavy oil; resource assessment technology; extraction technology;environmental technology; and microbial technology. (AT)

Not Available

1986-05-01T23:59:59.000Z

247

An agent-based soft computing society with application in the management of establishment of hydraulic fracture in oil field  

Science Conference Proceedings (OSTI)

Establishment of Hydraulic Fracture in Oil field is a complicated system. The process of establishment of project involves many departments, which frequently interact each other. In general, The Orient-Object technology is not suitable to construct this ...

Fu hua Shang; Xiao feng Li; Jian Xu

2005-08-01T23:59:59.000Z

248

U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy U.S. Department of Energy Carlsbad Field Office Waste Isolation Pilot Plant P.O. Box 3090 Carlsbad, New Mexico 88221 Media Contact: Deb Gill U.S. DOE Carlsbad Field Office (575) 234-7270 i For immediate release Magnum Minerals to Buy WIPP Salt CARLSBAD, N.M., December 21, 2009- The U.S. Department of Energy's (DOE) Carlsbad Field Office (CBFO) has worked out an agreement to sell 300,000 tons of run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) to Magnum Minerals LLC of Hereford, Texas. As part of the agreement, the Carlsbad Soil and Water Conservation District (CSWCD) will sign and administer the contract with Magnum Minerals, allowing proceeds to remain in southeast New Mexico. In 2008, DOE management and operating contractor, Washington TRU Solutions, issued

249

Simulation studies of a horizontal well producing from a thin oil-rim reservoir in the SSB1 field, Malaysia  

E-Print Network (OSTI)

Three-dimensional simulation studies have been carried out to investigate the performance of a horizontal well producing from a thin oil-rim reservoir, X3/X4 in the SSBI field, Malaysia. A heterogeneous model was used which honored the reservoir heterogeneity as deduced from logs. Simulation results indicate that gas and water cresting are inevitable even at low oil production rate of 100 STB/D because of the thin oil column of only 45 feet. Continued production under the current gas/oil ratio limit of 1500 SCF/STB results in an oil recovery at 15 years production of 6% OOIP, compared to 7% OOIP if the gas/oil ratio limit is increased to 10,000 SCF/STB, with negligible oil resaturation losses into the gascap. Simulation results indicate that oil recovery from the X3/X4 reservoir would be increased if wells are produced at gas/oil ratios higher than 1500 SCF/STB, and the horizontal wells are completed at, or as near as possible to, the oil-water contact.

Abdul Hakim, Hazlan

1995-01-01T23:59:59.000Z

250

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

SciTech Connect

This work summarized research conducted on diatomite cores from the Belridge oil field in Kern County. The study was undertaken to try to explain the rapid decline in oil production in diatomite wells. Characterization of the rock showed that the rock was composed principally of amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of low strength and plastic. Finally, it was established that long-term creep of diatomite into a propped fracture proceeds at a rate of approximately 6 x 10-5 in./day, a phenomenon which may be a primary cause of rapid production declines. The testing program also revealed a matrix stength for the formation of calculated 1325 PSI, a value to consider when depleting the reservoir. This also may help to explain the phase transformation of opal ct at calculated 2000 to 2500 ft depth.

Strickland, F.G.

1982-01-01T23:59:59.000Z

251

Costs and indices for domestic oil and gas field equipment and production operations, 1992--1995  

SciTech Connect

This report presents estimated costs and cost indices for domestic oil and natural gas field equipment and production operations for 1992, 1993, 1994, and 1995. The costs of all equipment and services are those in effect during June of each year. The sum (aggregates) of the costs for representative leases by region, depth, and production rate were averaged and indexed. This provides a general measure of the increased or decreased costs from year to year for lease equipment and operations. These general measured do not capture changes in industry-wide costs exactly because of annual variations in the ratio of the total number of oil wells to the total number of gas wells. The detail provided in this report is unavailable elsewhere. The body of this report contains summary tables, and the appendices contain detailed tables.

1996-08-01T23:59:59.000Z

252

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

Scott Hara

2002-11-08T23:59:59.000Z

253

Semi-continuous anaerobic co-digestion of thickened waste activated sludge and fat, oil and grease  

SciTech Connect

Highlights: > Co-digestion of thickened waste activated sludge (TWAS) with fat, oil and grease (FOG). > Co-digestion of TWAS and FOG at 64% VS increased biogas production by 137%. > FOG addition ratio at 74% of total VS caused inhibition of the anaerobic digestion process. > Micronutrients addition did not significantly improve the biogas production and digestion stabilization. - Abstract: Co-digestion of thickened waste activated sludge (TWAS) and fat, oil and grease (FOG) was conducted semi-continuously under mesophilic conditions. The results showed that daily methane yield at the steady state was 598 L/kg VS{sub added} when TWAS and FOG (64% of total VS) were co-digested, which was 137% higher than that obtained from digestion of TWAS alone. The biogas composition was stabilized at a CH{sub 4} and CO{sub 2} content of 66.8% and 29.5%, respectively. Micronutrients added to co-digestion did not improve the biogas production and digestion stabilization. With a higher addition of FOG (74% of total VS), the digester initially failed but was slowly self-recovered; however, the methane yield was only about 50% of a healthy reactor with the same organic loading rate.

Wan Caixia; Zhou Quancheng; Fu Guiming [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural, and Biological Engineering, Ohio State University/Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691-4096 (United States)

2011-08-15T23:59:59.000Z

254

Field study of disposed wastes from advanced coal processes. Quarterly technical progress report, April--June 1992  

Science Conference Proceedings (OSTI)

The Department of Energy/Morgantown Energy Technology Center (DOE/METC) has initiated research on the disposal of solid wastes from advanced coal processes. The objective of this research is to develop information to be used by private industry and government agencies for planning waste disposal practices associated with advanced coal processes. To accomplish this objective, DOE has contracted Radian Corporation and the North Dakota Energy & Environmental Research Center (EERC) to design, construct, and monitor a limited number of field disposal tests with advanced coal process wastes. These field tests will be monitored over a three year period with the emphasis on collecting data on the field disposal of these wastes. There has been considerable research on the characteristics and laboratory leaching behavior of coal wastes -- a lesser amount on wastes from advanced coal processes. However, very little information exists on the field disposal behavior of these wastes. Information on field disposal behavior is needed (a) as input to predictive models being developed, (b) as input to the development of rule of thumb design guidelines for the disposal of these wastes, and (c) as evidence of the behavior of these wastes in the natural environment.

Not Available

1992-12-31T23:59:59.000Z

255

Preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for disposal of radioactive waste  

SciTech Connect

Results are presented of a preliminary study of the oil shales of the Green River formation in the tri-state area of Colorado, Utah, and Wyoming to investigate their utility for possible disposal of radioactive waste material. The objective of this study was to make a preliminary investigation and to obtain a broad overview of the physical and economic factors which would have an effect on the suitability of the oil shale formations for possible disposal of radioactive waste material. These physical and economic factors are discussed in sections on magnitude of the oil shales, waste disposal relations with oil mining, cavities requirements, hydrological aspects, and study requirements. (JRD)

1975-05-01T23:59:59.000Z

256

Borehole gravity surveys in the Cretaceous-Tertiary Sagavanirktok Formation, Kuparuk River oil field, Alaska  

SciTech Connect

Detailed borehole gravity surveys (sponsored by the US Department of Energy) were made in three wells in the Kuparuk River and westernmost Prudhoe Bay oil fields, Alaska from depths as shallow as 15 m to as great as 1,340 m through permafrost and underlying heavy oil bearing sandstones of the Sagavanirktok Formation. A subbituminous coal-bearing sequence and the stability field for methane hydrate occur partly within and partly below the permafrost zone, whose base, defined by the 0{degree}C isotherm, varies from 464 to 564 m. The surveys provided accurate, large-volume estimates of in-situ bulk density from which equivalent porosity was calculated using independent grain and pore-fluid density information. This density and porosity data helped to define the rock mass properties within the hydrate stability field and the thermal conductivity, seismic character, and compaction history of the permafrost. Bulk density of the unconsolidated to poorly consolidated sections ranges mostly from 1.9 to 2.3 g/cm{sup 3}. The shallow permafrost section appears to be slightly overcompacted in comparison to similar sedimentary sequences in nonpermafrost regions. The cause of this apparent overcompaction is unknown but may be due to freeze-thaw processes that have similarly affected sea floor and surficial deposits elsewhere in the Arctic. Fluctuations of bulk density appear to be controlled principally by (1) textural variations of the sediments, possibly exaggerated locally within the permafrost zone by excess ice, (2) presence or absence of carbonaceous material, and (3) type of pore-fluid (water-ice vs. water vs. hydrocarbons). As hypothetical models predict bulk-density is slightly lower opposite one interval of possible methane hydrate. Porosity may be as high as 40-45% for selected coarser grained units within the permafrost zone, and as high as 30-35% in a series of well sorted, heavy oil-bearing sandstones.

Beyer, L.A. (Geological Survey, Menlo Park, CA (USA))

1990-05-01T23:59:59.000Z

257

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

Science Conference Proceedings (OSTI)

The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are described in the Reservoir Management section. The steamflood operation in the Tar V pilot project is mature and profitable. Recent production performance has been below projections because of wellbore mechanical limitations that have been addressed during this quarter. As the fluid production temperatures were beginning to exceed 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and will be converted to cold water injection next quarter.

Scott Hara

2002-04-30T23:59:59.000Z

258

Crude Oil Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

259

Earth stress measurements in the South Belridge oil field, Kern County, California  

SciTech Connect

The authors report earth stress magnitudes in the South Belridge oil field, determined from integrated density logs and microhydraulic fracturing test. They indicate that the vertical stress is generally the intermediate principal stress, except possibly at the deepest zone tested (2,100 ft (640 m)), where it is approximately equal to the lesser compressive horizontal stress. Azimuth of the greater horizontal stress and of induced hydraulic fractures, as measured or inferred by several different techniques, is N15{sup 0}E+-15{sup 0}.

Hansen, K.S.; Purcell, W.R. (Shell Development Co., Houston, TX (US))

1989-12-01T23:59:59.000Z

260

Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage  

E-Print Network (OSTI)

1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt  

DOE Green Energy (OSTI)

Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

Elders, W.A.; Cohen, L.H.

1983-11-01T23:59:59.000Z

262

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 21, quarter ending December 31, 1979  

Science Conference Proceedings (OSTI)

Individual report are presented of contracts for field projects and supporting research on chemical flooding, CO/sub 2/ injection, thermal/heavy oil, resource assessment technology, improved drilling technology, residual oil, environment, and petroleum technology. (DLC)

Linville, B. (ed.)

1980-04-01T23:59:59.000Z

263

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 26, quarter ending March 31, 1981  

SciTech Connect

Objectives and technical progress are summarized for field projects and supporting research in chemical flooding, CO/sub 2/ injection, thermal/heavy oil recovery, resource assessment, extraction technology, microbial enhanced oil recovery, and improved drilling technology. (DLC)

Linville, B. (ed.)

1981-07-01T23:59:59.000Z

264

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 28  

SciTech Connect

Highlights of progress during the quarter ending September 30, 1981 are summarized. Field projects and supporting research in the following areas are reported: chemical flooding; carbon dioxide injection; thermal processes/heavy oil (steam and in-situ combustion); resource assessment technology; extraction technology; environmental; petroleum technology; microbial enhanced oil recovery; and improved drilling technology. A list of BETC publications with abstracts, published during the quarter is included. (DMC)

Linville, B.

1982-01-01T23:59:59.000Z

265

ORIGINAL ARTICLE On the origin of oil-field water in the Biyang Depression of China  

E-Print Network (OSTI)

sources and migration path- ways of oil/gas reservoirs. Such an effort is very useful for exploration Springer-Verlag 2008 Abstract We have surveyed groundwater samples col- lected from oil and gas reservoirs of energy requires more efficient recovery of oil and gas from reservoirs and better understanding of oil

Zhan, Hongbin

266

Reservoir characterization helping to sustain oil production in Thailand's Sirikit Field  

SciTech Connect

Sirikit field is located in the Phitsanulok basin of Thailand's north-central plains. The main reservoir sequence is some 400 m thick and comprises thin interbedded fluvio-lacustrine clay and sandstones. Initial oil volumes after exploration and appraisal drilling in 1981-1984 were estimated at some 180 million bbl. However, further development/appraisal drilling and the following up of new opportunities allowed a better delineation of the reservoirs, resulting in an increased STOIIP and recovery. Total in-place oil volumes were increased to 791 million bbl and the expectation of ultimate recovery to 133 million bbl. To date, 131 wells have been drilled, 65 MMstb have been produced, and production stands at 23,000 bbl/day. Extensive reservoir studies were among the techniques and methods used to assess whether water injection would be a viable further development option. A reservoir geological model was set up through (1) core studies, (2) a detailed sand correlation, and (3) reservoir quality mapping. This model showed that despite considerable heterogeneity most sands are continuous. Reservoir simulation indicated that water injection is viable in the north-central part of the field and that it will increase the Sirikit field reserves by 12 million; this is now part of Thai Shell's reserves portfolio. Injection will start in 1994. New up-to-date seismic and mapping techniques (still) using the old 3-D seismic data acquired in 1983 are being used for further reservoir delineation. This work is expected to result in a further reserve increase.

Shaafsma, C.E.; Phuthithammakul, S. (Thai Shell Exploration and Production Co. Ltd., Bangkok (Thailand))

1994-07-01T23:59:59.000Z

267

Pilot Phase of a Field Study to Determine Waste of Water and Energy in  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase of a Field Study to Determine Waste of Water and Energy in Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems Title Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems Publication Type Report LBNL Report Number LBNL-4985E Year of Publication 2011 Authors Lutz, James D., Peter J. Biermayer, and Derek A. King Subsidiary Authors Energy Analysis Department Document Number LBNL-4985E Pagination 29 Date Published January 1 Publisher Lawrence Berkeley National Laboratory City Berkeley ISBN Number LBNL-4985E Abstract This paper provides an overview of the pilot phase of a field study to determine the feasibility of a method of directly measuring the waste of water and energy caused by current hot water distribution systems (HWDS) in California residences using wireless sensor network technologies. The experience gained in the pilot phase study using wireless sensor networks demonstrates that it is clearly feasible to use this technology for measuring water and gas flows and temperatures.The goal was to demonstrate a method to reliably collect water flow and temperature data from every indoorhot water end use point, at the water heater in one second intervals when water was flowing. The overall success of the pilot phase study indicates that this technique can work. However, the pilot phase study did reveal shortcomings in many areas. The recommendations in this paper address those shortcomings and provide ways to improve the outcomes of any follow-on field study. The project's tasks were to test and evaluate the proposed hardware, installation protocols, data collection, and processing procedures. The techniques developed in this project provide a way to accurately measure temperature and flow of indoor water use events at one second resolution. The technologies used in this pilot phase study are viable for use in a larger field study to determine the energy and water efficiency of hot water distribution systems in California homes. The lessons learned from this experience will improve procedures, programming and wireless sensor network specifications.

268

Using a Wireless Sensors Network in the Sustainable Management of African Palm Oil Solid Waste  

Science Conference Proceedings (OSTI)

All human activities have an impact in the environment in which we live. Nowadays, the industrial gases emission is considered as one of the main causes for worsening greenhouse effect. The African Palm agro industry in Ecuador is no stranger to this ... Keywords: compost, production science, solid waste, wireless sensors network, wireless communication technologies

Mauro Jimenez, Alejandra Jimenez, Pablo Lozada, Santiago Jimenez, Cristhy Jimenez

2013-04-01T23:59:59.000Z

269

Additional Reserve Recovery Using New Polymer Treatment on High Water Oil Ratio Wells in Alameda Field, Kingman County, Kansas  

SciTech Connect

The Chemical Flooding process, like a polymer treatment, as a tertiary (enhanced) oil recovery process can be a very good solution based on the condition of this field and its low cost compared to the drilling of new wells. It is an improved water flooding method in which high molecular-weight (macro-size molecules) and water-soluble polymers are added to the injection water to improve the mobility ratio by enhancing the viscosity of the water and by reducing permeability in invaded zones during the process. In other words, it can improve the sweep efficiency by reducing the water mobility. This polymer treatment can be performed on the same active oil producer well rather than on an injector well in the existence of strong water drive in the formation. Some parameters must be considered before any polymer job is performed such as: formation temperature, permeability, oil gravity and viscosity, location and formation thickness of the well, amount of remaining recoverable oil, fluid levels, well productivity, water oil ratio (WOR) and existence of water drive. This improved oil recovery technique has been used widely and has significant potential to extend reservoir life by increasing the oil production and decreasing the water cut. This new technology has the greatest potential in reservoirs that are moderately heterogeneous, contain moderately viscous oils, and have adverse water-oil mobility ratios. For example, many wells in Kansas's Arbuckle formation had similar treatments and we have seen very effective results. In addition, there were previous polymer treatments conducted by Texaco in Alameda Field on a number of wells throughout the Viola-Simpson formation in the early 70's. Most of the treatments proved to be very successful.

James Spillane

2005-10-01T23:59:59.000Z

270

CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana  

SciTech Connect

The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

2012-03-30T23:59:59.000Z

271

RESERVOIR CHARACTERIZATION OF UPPER DEVONIAN GORDON SANDSTONE, JACKSONBURG STRINGTOWN OIL FIELD, NORTHWESTERN WEST VIRGINIA  

SciTech Connect

The Jacksonburg-Stringtown oil field contained an estimated 88,500,000 barrels of oil in place, of which approximately 20,000,000 barrels were produced during primary recovery operations. A gas injection project, initiated in 1934, and a pilot waterflood, begun in 1981, yielded additional production from limited portions of the field. The pilot was successful enough to warrant development of a full-scale waterflood in 1990, involving approximately 8,900 acres in three units, with a target of 1,500 barrels of oil per acre recovery. Historical patterns of drilling and development within the field suggests that the Gordon reservoir is heterogeneous, and that detailed reservoir characterization is necessary for understanding well performance and addressing problems observed by the operators. The purpose of this work is to establish relationships among permeability, geophysical and other data by integrating geologic, geophysical and engineering data into an interdisciplinary quantification of reservoir heterogeneity as it relates to production. Conventional stratigraphic correlation and core description shows that the Gordon sandstone is composed of three parasequences, formed along the Late Devonian shoreline of the Appalachian Basin. The parasequences comprise five lithofacies, of which one includes reservoir sandstones. Pay sandstones were found to have permeabilities in core ranging from 10 to 200 mD, whereas non-pay sandstones have permeabilities ranging from below the level of instrumental detection to 5 mD; Conglomeratic zones could take on the permeability characteristics of enclosing materials, or could exhibit extremely low values in pay sandstone and high values in non-pay or low permeability pay sandstone. Four electrofacies based on a linear combination of density and scaled gamma ray best matched correlations made independently based on visual comparison of geophysical logs. Electrofacies 4 with relatively high permeability (mean value > 45 mD) was determined to be equivalent to the pay sandstone within the Gordon reservoir. Three-dimensional models of the electrofacies in the pilot waterflood showed that electrofacies 4 is present throughout this area, and the other electrofacies are more disconnected. A three-layer, back-propagation artificial neural network with three slabs in the middle layer can be used to predict permeability and porosity from gamma ray and bulk density logs, the first and the second derivatives of the log data with respect to depth, well location, and log baselines. Two flow units were defined based on the stratigraphic model and geophysical logs. A three-dimensional reservoir model including the flow units, values of permeability calculated through the artificial neural network and injection pressure-rate information were then used as inputs for a reservoir simulator to predict oil production performance for the center producers in the pilot area. This description of the reservoir provided significantly better simulation results than earlier results obtained using simple reservoir models. Bulk density and gamma ray logs were used to identify flow units throughout the field. As predicted by the stratigraphic analysis, one of the flow units crosses stratigraphic units in the reservoir. A neural network was used to predict permeability values for each flow unit in producer and injection wells. The reservoir simulator was utilized to predict the performance of two flood patterns located to the north of the pilot area. Considering the simple model utilized for simulation, the results are in very good agreement with the field history.

S. Ameri; K. Aminian; K.L. Avary; H.I. Bilgesu; M.E. Hohn; R.R. McDowell; D.L. Matchen

2001-07-01T23:59:59.000Z

272

Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Second quarterly report ending March 31, 1995  

DOE Green Energy (OSTI)

The Project Description lists and describes six tasks, three of which are virtually complete, with three others underway. A summary of progress on each task follows. Task 1: Development of a Detailed Test Plan. This task is complete. Task 2: Preparation of Test Equipment. This task is complete. Two test units (a six-inch internal diameter and a fifteen-inch internal diameter unit) were prepared and used as described under Task 4. Task 3: Obtain test materials. The required amounts of oil shale and pelletized municipal solid waste have been obtained, tested, and found to be suitable. We have obtained an adequate quantity of a pelletized ``standard`` MSW from BEPR/BFI, Eden Prairie, MN. For test purposes, we synthesized the desired ``worst probable case`` of MSW by the addition of sulfur and chlorine to reach the sulfur and chlorine levels characteristic of such waste. Task 4: Execute Feasibility Demonstration Program. The fluidized bed tests associated with the program have been completed. Analysis of the results is continuing. Testing of the waste stream material generated from these runs will begin about 6 April to evaluate its possible use as cement for specific applications. Information on the technical feasibility of the invention as indicated by the fluid bed test program is included as Attachment A. The results demonstrate that the process is technically feasible. Task 5: Data Analysis. This task is beginning. Task 6: Project Management, Reporting, and Necessary Liaison Activities. Those portions of this task associated with work done on Tasks 1 through 4 have been completed. This task will continue throughout the period of the study. In summary, work is proceeding within budget. No serious problems in the next scheduled tasks are foreseen.

NONE

1995-04-01T23:59:59.000Z

273

Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment  

SciTech Connect

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

PD Meyer; RJ Serne

1999-12-21T23:59:59.000Z

274

Reasons for production decline in the diatomite, Belridge oil field: a rock mechanics view  

Science Conference Proceedings (OSTI)

This paper summarizes research conducted on diatomite cores from the Belridge oil field in Kern County, CA. The study was undertaken to explain the rapid decline in oil production in diatomite wells by investigating three of six possible reasons. Characterization of the rock indicated that the rock was composed of principally amorphous opaline silica diatoms with only a trace of crystoballite quartz or chert quartz. Physical properties tests showed the diatomite to be of very low strength and plastic. It was established that longterm creep of diatomite into a propped fracture proceeds at a rate of approximately 1.5 microns/D (1.5 ..mu..m/d), a phenomenon that may contribute to rapid production declines. Also revealed was a matrix strength for the formation of about 1,325 psi (9136 kPa), a critical value to consider when depleting the reservoir. This also may help to explain the phase transformation to Opal CT around 2,000to 2,500-ft (610- to 762-m) depth.

Strickland, F.G.

1985-03-01T23:59:59.000Z

275

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 33, quarter ending December 31, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-04-01T23:59:59.000Z

276

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress Review No. 31, quarter ending June 30, 1982  

Science Conference Proceedings (OSTI)

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental, petroleum technology, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-10-01T23:59:59.000Z

277

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 32, quarter ending September 30, 1982  

SciTech Connect

Progress reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, resource assessment technology, extraction technology, environmental and safety, microbial enhanced oil recovery, oil recovery by gravity mining, improved drilling technology, and general supporting research.

Linville, B. (ed.)

1983-01-01T23:59:59.000Z

278

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 34, quarter ending March 31, 1983  

SciTech Connect

Progress achieved for the quarter ending March 1983 are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; and thermal/heavy oil. In addition, progress reports are presented for: resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovered by gravity mining; improved drilling technology; and general supporting research. (ATT)

Linville, B. (ed.)

1983-07-01T23:59:59.000Z

279

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 36 for quarter ending September 30, 1983  

SciTech Connect

Progress reports for the quarter ending September 30, 1983, are presented for field projects and supported research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; oil recovery by gravity mining; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1984-03-01T23:59:59.000Z

280

Oil Field Electrical Energy Savings Through Energy-Efficient Motor Retrofits  

E-Print Network (OSTI)

The Wyoming Electric Motor Training and Testing Center (WEMTTC), in conjunction with the Department of Energy-Denver Support Office and the Naval Petroleum Reserve #3 (NPR-3), has conducted an extensive study of electric motor efficiency at the Reserve's oil field near Casper, Wyoming. As a result of this project, WEMTTC has developed a new test method for estimating an electric motor's operating efficiency, and the instrumentation to implement this test method. Using the new test method and instrumentation, several oversized or inefficient motors were replaced with new generation, high-efficiency motors, and the savings documented. This paper describes the test method and instrumentation developed by WEMTTC. The results obtained from the actual energy-efficient motor retrofits are also presented.

Ula, S.; Bershinsky, V.; Cain, W.

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Simulation studies of steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and… (more)

Venturini, Gilberto Jose

2012-01-01T23:59:59.000Z

282

Report to Congress: management of wastes from the exploration, development, and production of crude oil, natural gas, and geothermal energy. Volume 3. Appendices. A. Summary of state oil and gas regulations. B. Glossary of terms for Volume 1. C. Damage case summaries  

SciTech Connect

Section 3001(b)(2)(A) of the 1980 Amendments to the Resource Conservation and Recovery Act (RCRA) temporarily exempted several types of solid waste from regulation under the Federal hazardous-waste control program. These exempted wastes included drilling fluids, produced waters, and other wastes associated with the exploration, development, or production of crude oil or natural gas or geothermal energy. Section 8002(m) of the RCRA Amendments requires EPA to study these wastes and submit a final report to Congress. The report responds to those requirements. This is volume 3 of 3 reports to Congress. The volume contains the Appendices which include a summary of: (1) State oil and gas regulatory programs; and (2) the damage cases compiled for the oil and gas industry. A glossary of oil and gas industry terms is also included in the volume.

Not Available

1987-12-01T23:59:59.000Z

283

Assessment of solid-waste characteristics and control technology for oil-shale retorting. Final report for September 1983-February 1985  

SciTech Connect

The report presents information on oil-shale deposits in the eastern and western parts of the United States, their geological subdivisions, locations, tonnage, and physical and chemical characteristics. Characteristics of solid and liquid wastes produced from various oil-shale-processing technologies and control methods are presented. Also included are results from an experimental study to construct liners and covers for disposal of spent shale. A compilation of available data on the auto-ignition potential of raw and spent shales indicates a similarity between raw-shale fines and bituminous coals.

Agarwal, A.K.

1986-05-01T23:59:59.000Z

284

Contracts for field projects and supporting research on enhanced oil recovery, reporting period January--March 1991  

SciTech Connect

Contracts for field projects and supporting research on Enhanced Oil Recovery for the quarter ending March 31, 1991 are reviewed. A list of available publications is listed. Research topics include microbial EOR, foam injection, thermal recovery, surfactant flooding, reservoir rock characterization, and more.

Not Available

1992-03-01T23:59:59.000Z

285

Scales of geologic reservoir description for engineering applications: North Sea oil field example  

SciTech Connect

A consequence of the increased interaction between geologists and engineers in resolving reservoir problems has been an awareness on the part of geologists of the need to vary the scale of their geologic description according to particular engineering applications. Conventional geological descriptions are normally too detailed for reservoir engineering simulations and often are not in an appropriate form for relating to reservoir performance. An example is presented of two scales of description of a North Sea oil field for two different applications. The field is a Tertiary submarine slope-fan deposit consisting of thick unconsolidated channel sand facies, a lobe sand facies, and a slope claystone facies, all arranged into 12 stratigraphic units and several subunits. Permeability of the channel sands is about twice that of lobe sands, demonstrating a facies control on reservoir quality. For the purpose of calculating reservoir volumetrics, it was possible to scale up the stratigraphy, by combining similar stratigraphic units, into a simple four-layer reservoir model. Average porosity and permeability vary among the layers in this geologically based model. For the purpose of improving understanding of the reservoir, a more complex flow unit model was developed according to geological and petrophysical properties that would influence the flow of fluids in the reservoir. This model is partly based upon sedimentary facies distribution, but differs from a geologic facies model and is in a more suitable form for relating to reservoir performance.

Slatt, R.M.; Hopkins, G.L.

1988-02-01T23:59:59.000Z

286

Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference  

NLE Websites -- All DOE Office Websites (Extended Search)

Ecological Assessment of Ecological Assessment of Hazardous Waste Sites: A Field and Laboratory Reference U.S. Environmental Protection Agency Environmental Research Laboratory 200 S. W. 35th Street Corvallis, OR 97333 ECOLOGICAL ASSESSMENTS OF HAZARDOUS WASTE SITES: A FIELD AND LABORATORY REFERENCE DOCUMENT Edited By William Warren-Hicks l Benjamin R. Parkhurst 2 Samuel S. Baker, Jr. 1 1 Kilkelly Environmental Associates Highway 70 West - The Water Garden Raleigh, NC 27622 2 Western Aquatics, Inc. P.O. BOX 546 203 Grand Avenue Laramie, WY 82070 DISCLAIMER T h e i n f o r m a t i o n i n t h i s d o c u m e n t h a s b e e n f u n d e d b y t h e U n i t e d S t a t e s Environmental Protection Agent h by Contract Number 68-03-3439 to Kilkelly Environmenta] Associates, Raleig , NC 27622. It has been subject to the Agency's peer and administrative review, and it has been approved for publication as an EPA

287

Enhanced oil recovery using water as a driving fluid - 10. field applications of surfactant/polymer flooding  

SciTech Connect

Selection of a suitable reservoir, studies required to support a field application, pilot testing, minifield tests and a review of field applications to date are discussed. It is concluded that surfactant/polymer flooding has a greater potential than other chemical flood processes to mobilize and recover waterflood residual oil. However, the process is complex and costly and requires the utmost in technical expertise and economic incentives to be made to work profitably. 9 refs.

Mungan, N.

1982-05-01T23:59:59.000Z

288

Materials Characterization Paper In Support of the Proposed Rulemaking: Identification of Nonhazardous Secondary Materials That Are Solid Waste – Used Oil  

E-Print Network (OSTI)

EPA defines used oil as any oil that has been refined from crude oil, or any synthetic oil, that has been used and as a result of such use is contaminated by physical or chemical impurities. 1 EPA’s criteria for used oil: • Origin: Used oil must have been refined from crude oil or made from synthetic materials (i.e., derived from coal, shale, or polymers). Examples of crude-oil derived oils and synthetic oils are motor oil, mineral oil, laminating surface agents, and metal working oils. Thus, animal and vegetable oils are not included. Bottom clean-out from virgin fuel oil storage tanks or virgin oil recovered from a spill, as well as products solely used as cleaning agents or for their solvent properties, and certain petroleum-derived products such as antifreeze and kerosene are also not included. Use: The oil must have been used as a lubricant, coolant, heat (non-contact) transfer fluid, hydraulic fluid, heat transfer fluid or for a similar use. Lubricants include, but are not limited to, used motor oil, metal working lubricants, and emulsions. An example of a hydraulic fluid is transmission fluid. Heat transfer fluids can be materials such as coolants, heating media, refrigeration oils, and electrical insulation oils. Authorized states or regions determine what is considered a “similar use ” on a site-specific basis according to whether the material is used and managed in a manner consistent with Part 279 (e.g., used as a buoyant). Contaminants: The used oil must be contaminated by physical (e.g., high water content, metal shavings, or dirt) or chemical (e.g., lead, halogens, solvents or other hazardous constituents) impurities as a result of use. 2. Annual Quantities of Used Oil Generated and Used

unknown authors

2010-01-01T23:59:59.000Z

289

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

Science Conference Proceedings (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

290

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain  

SciTech Connect

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2006-05-31T23:59:59.000Z

291

Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain  

Science Conference Proceedings (OSTI)

Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

Ernest A. Mancini

2003-12-31T23:59:59.000Z

292

Estimating attenuation properties of bentonite layer in Cut Bank oil field, Glacier County, Montana  

E-Print Network (OSTI)

Acquisition and interpretation of 3-D seismic data led DeAngelo and Hardage (2001) to describe the channel system in the south central Cut Bank area in Glacier County, Montana. The presence of a low velocity layer called Bentonite was also discovered in the area with the help of well-logs. Bentonite is a volcanic ash, which lies on both sides of the channel system and is absent within the channel. DeAngelo and Hardage (2001) shot a vertical seismic profiling (VSP) survey at well # 54-8 to analyze the formation structure in depth, since seismic signals around the reservoir area were unclear in the 3-D survey. This research attempts to estimate the attenuation properties of the Bentonite layer in the Cut Bank oil field. VSP data is processed for velocity information and estimation of seismic Q using the spectral ratios method (SRM). The SRM theoretically assumes that the propagating signal is a plane seismic wave traveling vertically from one point to another in a homogeneous model. The amplitudes at the start and end points are known and relate to each other with the attenuation coefficient in a frequency range. The relation between the seismic amplitudes at z distance from each other can be expressed as a linear function of frequency after a few modifications. SRM uses the linearity of the logarithmic ratio of the seismic amplitudes over a frequency range. In theory, ratios plotted against a frequency range must produce a flat line. However, in practice, the logarithmic ratios are expected to draw an approximate line (curve), where some of the data points deviate from the origin of the line. Thus fitting a line to the ratios curve and calculating the slope of this curve are necessary. Slope of the curve relates to the seismic attenuation coefficient and further to the seismic Q. The SRM results suggest that Bentonite may have a Q value as low as 5. This highly attenuative and thin (20 to 40 feet throughout the south central Cut Bank Unit) layer alters seismic signals propagating through it. A thorough analysis of the amplitude spectra suggests that seismic signals dramatically lose their energy when they pass through Bentonite. Low energy content of the signals below the Bentonite layer highlights that the recovery of the seismic energy is less likely despite the presence of multiples, which are known to affect the seismic signals constructively. Therefore, separation of reflected events is a greater challenge for the thin reservoir sand units lying underneath the Bentonite layer. Thus the Bentonite layer in the Cut Bank oil field has to be taken seriously and data processing should be done accordingly for better accuracy.

Karakurt, Necdet

2005-12-01T23:59:59.000Z

293

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

SciTech Connect

This paper analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following six major enhanced oil recovery techniques are analyzed: Steam Drive, In-Situ Combustion, Carbon Dioxide Flooding, Polymer Flooding, Surfactant/Polymer Flooding, and Alkaline Flooding. The analysis includes, by technique and geographical area: the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; a comparison between predicted performance and actual oil recovery; an examination of the performance of different EOR processes within each of the six techniques; and an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-10-01T23:59:59.000Z

294

Recovery efficiency of enhanced oil recovery methods: a review of significant field tests  

Science Conference Proceedings (OSTI)

This study analyzes past enhanced oil recovery (EOR) projects to determine how well they have performed as a function of reservoir and process variables. In total, over 100 key tests covering the following 6 major enhanced oil recovery techniques are analyzed: steam drive, in situ combustion, carbon dioxide flooding, polymer flooding, surfactant/polymer flooding, and alkaline flooding. The analysis includes, by technique and geographic area, (1) the range of oil recovery due to EOR in barrels per acre-foot and as a percentage of oil remaining in-place; (2) a comparison between predicted performance and actual oil recovery; (3) an examination of the performance of different EOR processes within each of the 6 techniques; and (4) an analysis of the relation of reservoir parameters and process variables to oil recovery.

Hammershaimb, E.C.; Kuuskraa, V.A.; Stosur, G.

1983-01-01T23:59:59.000Z

295

Analysis of Data from a Downhole Oil/Water Separator Field Trial in East Texas  

SciTech Connect

Downhole oil/water separator (DOWS) technology is available to separate oil from produced water at the bottom of an oil well. Produced water can be injected directly to a disposal formation rather than lifting it to the surface, treating it there, and reinjecting it. Because of a lack of detailed performance data on DOWS systems, the U.S. Department of Energy (DOE) provided funding to secure DOWS performance data. A large U.S. oil and gas operator offered to share its data with Argonne National Laboratory. This report summarizes data from the DOWS installation in eastern Texas.

Veil, John A.; Layne, Arthur Langhus

2001-04-19T23:59:59.000Z

296

Inversion of field-scale partitioning tracer response for characterizing oil saturation distribution: a streamline approach.  

E-Print Network (OSTI)

??Identifying distribution of remaining oil in the reservoir is vital for evaluation of existing waterflood, design of tertiary recovery projects, and location of infill drilling… (more)

Iliassov, Pavel Alexandrovich

2012-01-01T23:59:59.000Z

297

Oil and Gas Field Code Master List 2000 - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

In order for it to be useful, ... After the establishment of the Department of Energy (DOE) in 1977, the requirement to gather annual, verifiable oil and

298

Earth stress measurements in the South Belridge oil field, Kern County, California  

Science Conference Proceedings (OSTI)

Within Sections 33 and 34 of the South Belridge oil field, where the principal earth stresses are assumed to lie in vertical or horizontal planes, the azimuth of the greater horizontal earth stress as measured or inferred by several different techniques is N15/sup 0/E +. 15/sup 0/. This agrees with values reported in the literature for the regional stress orientation, which range from N-S to NNE-SSW. At depths of about 850 and 1300 feet, the magnitude of the vertical stress (overburden) lies between those of the greater and lesser horizontal stresses determined from open-hole microfrac tests. At about 2100 feet, however, the vertical and lesser horizontal stresses are equal, to within the limits of accuracy of the authors' measurements. If trends of stress versus depth established at the three measurement points continue downward, there is the possibility that at depths below 2100 feet the minimum stress may be vertical. The most reliable methods used for determining in-situ stress orientation at South Belridge are surface tiltmeters and orientation of out-of-round (elliptical) boreholes. Study of natural fractures in the nearby Chico-Martinez Creek outcrop provided important supporting evidence of stress orientation. Impression packers run during the microfrac tests and seismic data recorded during routine hydraulic fracturing procedures yielded much less definitive information concerning fracture and stress direction.

Hansen, K.S.; Purcell, W.R.

1986-01-01T23:59:59.000Z

299

Integrated reservoir characterization of a Tulare steamflood finds bypassed oil - South Belridge Field, Kern County, California  

SciTech Connect

Reservoir quality and producibility are directly related to the characteristics of the depositional lithofacies. Electric log gamma ray/resistivity profiles were used to define facies trends within the Tulare steamflood at South Belridge. Channel and non-channel facies profiles are distinctive across the lease with the channel sands having the better quality reservoir and greater net pay values. Sidewall core permeabilities were averaged over the main producing Tulare intervals with the channels averaging 2000-3000 millidarcies and non-channels 200-500 millidarcies. This supports the lithofacies trend and net pay maps. Although the approach is qualitative, it illustrates the dramatic permeability contrast between the channel and non-channel lithofacies. Temperature maps using downhole temperature surveys and flowline temperatures indicate channel facies temperatures up to 300[degrees] with the non-channel facies having 90[degrees] to 100[degrees] temperatures (near ambient). Higher temperatures also relate to higher average daily production rates for channel associated wells. Channel wells averaged greater than 30 BOPD while non-channel wells averaged 10 BOPD or less. New and replacement well nations have been high graded resulting in favorable production responses. Integration of the lithofacies, permeability and temperature data plus ongoing preventive production optimization work has led to a more efficient Tulare steamflood and identification of bypassed oil on the King-Ellis lease in the South Belridge Field.

Walter, D.R.; Wylie, A.S. Jr.; Broussard, K.A. (Santa Fe Energy Resources, Bakersfield, CA (United States))

1996-01-01T23:59:59.000Z

300

3D Atlas vertical plate oil transmission line field calculations. Final report  

DOE Green Energy (OSTI)

Because of questions regarding current density and inductance estimates of the Atlas oil transmission line in the region where the vertical plates connect to the disk line, calculations using the 3D FE program Flux3d were initiated. Flux3d inductance values are nearly that estimated by D. Scudder. Calculations for three base designs of E. Ballard and D. Pierce were completed where several variations for each base design were used to determine the important parameters affecting inductance and to check inductance consistency. Flux3d showed for the first base design a very high current density of 36MA/m at the connection between the vertical and horizontal ground plates resulting in a magnetic pressure of 120 kpsi. The second base design modified this connection to reduce the current density to 20MA/m and 36 kpsi and for design 3 current density is 17MA/m. Maximum current density on the hot plates is 20MA/m for all 3 designs. These values assumed 1.2MA per VTL or 45.6MA total system current. Electrical fields on the top of the hot plate near the disk line connection is about 50% greater than the nominal value near the center of the vertical plates.

NONE

1997-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Super-giant oil fields and future prospects in the Middle East  

Science Conference Proceedings (OSTI)

Upper Jurassic carbonates, Lower Cretaceous sands, Lower Cretaceous carbonates and Tertiary carbonates of the Middle East contain more than 50% of the worlds oil. Our area of interest covers SE Turkey and Syria in the north to the borders of Yemen and Oman in the south, and from the Red Sea across Saudi Arabia, the Emirates and the Arabian/Persian Gulf to Iran in the East. There are over 80 fields in this region with over 1 billion barrels of recoverable reserves. Yet only around 30,000 wells have been drilled in this territory. Regional structure and stratigraphy are discussed within the context of three major plays in the region as well as a new play in the Permo-Carboniferous. Numerous opportunities are available and countries such as Iraq and Iran may one day open their doors more to the industry than is presently the case. The dramatic petroleum geology of the region will stamp its influence on the nature of business and opportunities for years to come. While fiscal systems here already offer some of the toughest terms in the world, future deals in the more prolific areas will be even tougher. But, the economies of Middle Eastern scale will provide some of the great mega-opportunities of future international exploration.

Christian, L. [Consultant, Dallas, TX (United States); Johnston, D. [Daniel Johnston & Co., Inc., Dallas, TX (United States)

1995-06-01T23:59:59.000Z

302

Probing Asphaltene Aggregation in Native Crude Oils with Low-Field NMR  

SciTech Connect

We show that low-field proton nuclear magnetic resonance (NMR) relaxation and diffusion experiments can be used to study asphaltene aggregation directly in crude oils. Relaxation was found to be multiexponential, reflecting the composition of a complex fluid. Remarkably, the relaxation data for samples with different asphaltene concentrations can be collapsed onto each other by a simple rescaling of the time dimension with a concentration-dependent factor {zeta}, whereas the observed diffusion behavior is unaffected by asphaltene concentration. We interpret this finding in terms of a theoretical model that explains the enhanced relaxation by the transitory entanglement of solvent hydrocarbons within asphaltene clusters and their subsequent slowed motion and diffusion within the cluster. We relate the measured scaling parameters {zeta} to cluster sizes, which we find to be on the order of 2.2-4.4 nm for an effective sphere diameter. These sizes are in agreement with the typical values reported in the literature as well as with the small-angle X-ray scattering (SAXS) experiments performed on our samples.

Zielinski, Lukasz; Saha, Indrajit; Freed, Denise E.; Hrlimann, Martin D.; Liu, Yongsheng (BU-M); (Schlumberger-Doll)

2010-04-13T23:59:59.000Z

303

PURADYN Oil Bypass Filtration System Evaluation Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

including: * Less dependency on foreign oil * Less oil disposed as waste products * Lower oil disposal costs * Less downtime of equipment * Reduced vehicle maintenance costs *...

304

Characterization of Naturally Occurring Radioactive Material (NORM) in Oil and Gas Industry Equipment and Wastes  

SciTech Connect

This Sampling and Analysis (S and A) Plan was developed for the NORM Characterization Program, and describes the information to be gained through the program, how the required information is to be collected, and the anticipated form and content of the final data. The S and A Plan provides detailed procedures describing the work to be performed, how and why the work will be performed, and who will be responsible for conducting the various aspects of the work. The S and A Plan has been prepared with input from all parties involved with the program. Where appropriate, portions of the procedures described in the S and A Plan will be field tested by personnel of the Idaho National Engineering Laboratory (INEL) and the Grand Junction Project Office (GJPO), as well as representatives of the cosponsor organizations prior to their use in the field.

Rood, A.S.; White, G.J.

1999-10-07T23:59:59.000Z

305

of oil yields from enhanced oil recovery  

NLE Websites -- All DOE Office Websites (Extended Search)

oil yields from enhanced oil recovery (EOR) and CO oil yields from enhanced oil recovery (EOR) and CO 2 storage capacity in depleted oil reservoirs. The primary goal of the project is to demonstrate that remaining oil can be economically produced using CO 2 -EOR technology in untested areas of the United States. The Citronelle Field appears to be an ideal site for concurrent CO 2 storage and EOR because the field is composed of sandstone reservoirs

306

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 29, quarter ending December 31, 1981  

SciTech Connect

Highlights of progress accomplished during the quarter ending December, 1981, are summarized in this report. Discussion is presented under the following headings: chemical flooding - field projects; chemical flooding - supporting research; carbon dioxide injection - field projects; carbon dioxide injection - supporting research; thermal/heavy oil - field projects and supporting research; resource assessment technology; extraction technology; environmental aspects; petroleum processing technology; microbial enhanced oil recovery; and improved drilling technology. (DMC)

Linville, B. (ed.)

1982-05-01T23:59:59.000Z

307

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Annual report, October 1991--September 1992  

SciTech Connect

The scope of the original research program and of its continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large-scale testing sufficient to describe commercial-scale embankment behavior. The large-scale testing was accomplished by constructing five lysimeters, each 7.3{times}3.0{times}3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process (Schmalfield 1975). Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin near Rifle, Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was placed in the lysimeter cells. This report discusses and summarizes results from scientific efforts conducted between October 1991 and September 1992 for Fiscal Year 1992.

Turner, J.P.; Reeves, T.L.; Skinner, Q.D.; Hasfurther, V.

1992-11-01T23:59:59.000Z

308

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Second quarterly report, January 1, 1992--March 31, 1992  

SciTech Connect

The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Turner, J.P.; Hasfurther, V.

1992-05-04T23:59:59.000Z

309

Modeling of hydrologic conditions and solute movement in processed oil shale waste embankments under simulated climatic conditions. Third quarterly report, April 1993--June 1993  

SciTech Connect

This report presents research objectives, discusses activities, and presents technical progress for the period April 1, 1993 through June 31, 1993 on Contract No. DE-FC21-86LC11084 with the Department of Energy, Laramie Project Office. The scope of the research program and the continuation is to study interacting hydrologic, geotechnical, and chemical factors affecting the behavior and disposal of combusted processed oil shale. The research combines bench-scale testing with large scale research sufficient to describe commercial scale embankment behavior. The large scale approach was accomplished by establishing five lysimeters, each 7.3 {times} 3.0 {times} 3.0 m deep, filled with processed oil shale that has been retorted and combusted by the Lurgi-Ruhrgas (Lurgi) process. Approximately 400 tons of Lurgi processed oil shale waste was provided by Rio Blanco Oil Shale Co., Inc. (RBOSC) through a separate cooperative agreement with the University of Wyoming (UW) to carry out this study. Three of the lysimeters were established at the RBOSC Tract C-a in the Piceance Basin of Colorado. Two lysimeters were established in the Environmental Simulation Laboratory (ESL) at UW. The ESL was specifically designed and constructed so that a large range of climatic conditions could be physically applied to the processed oil shale which was filled in the lysimeter cells.

Reeves, T.L.; Turner, J.P.; Rangarajan, S.; Skinner, Q.D.; Hasfurther, V.

1993-08-11T23:59:59.000Z

310

U.S. Department of Energy Carlsbad Field Office Waste Isolation...  

NLE Websites -- All DOE Office Websites (Extended Search)

(BAPL) near Pittsburgh, Pa., permanently disposing of it at the Waste Isolation Pilot Plant (WIPP). BAPL is the 20 th site to be completely cleaned of legacy TRU waste....

311

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996  

SciTech Connect

Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

NONE

1997-05-01T23:59:59.000Z

312

Many new ventures in the Middle East focus on old oil, gas fields  

SciTech Connect

This paper reviews the oil and supplies of the world and then focuses on the Middle East as the primary source of oil and gas for the world in the future. It provides data on the total world production and reserves and compares that to the Middle East production and reserves. Data is also provided on pricing and consumption from 1965 to 1995. It goes on to provide information on petroleum exports for the major users and makes predictions on future trends. Finally the paper presents aspects of investment opportunities, sources or needs for capital investments, and the politics associated with the Middle East oil and gas industry.

Takin, M. [Centre for Global Energy Studies, London (United Kingdom)

1996-05-27T23:59:59.000Z

313

Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California  

SciTech Connect

A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

1996-01-01T23:59:59.000Z

314

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

315

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 27, for quarter ending June 30, 1981  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-09-01T23:59:59.000Z

316

Progress review No. 24: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending September 30, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection and thermal/heavy oil, as well as for the following areas of research: extraction technology; resource assessment technology; environmental; petroleum technology; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1981-02-01T23:59:59.000Z

317

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 30, quarter ending March 31, 1982  

SciTech Connect

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; microbial enhanced oil recovery; improved drilling technology, and general supporting research.

Linville, B. (ed.)

1982-07-01T23:59:59.000Z

318

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 35, quarter ending June 30, 1983  

Science Conference Proceedings (OSTI)

Progress reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal/heavy oil; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; improved drilling technology; and general supporting research.

Linville, B. (ed.)

1983-10-01T23:59:59.000Z

319

Progress review No. 25: contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress report, quarter ending December 31, 1980  

Science Conference Proceedings (OSTI)

Reports are presented of contracts for field projects and supporting research on chemical flooding, carbon dioxide injection, thermal/heavy oil, as well as for the following areas of research: resource assessment technology; extraction technology; environmental; microbial enhanced oil recovery; improving drilling technology; and general supporting research.

Linville, B. (ed.)

1981-05-01T23:59:59.000Z

320

DOE field test produces more oil, royalties from the Green River Formation  

Science Conference Proceedings (OSTI)

This paper reviews a waterflood demonstration project that Lomax Exploration Company performed in the Monument Butte area of Utah. The results of this project were so successful that the methodology is being extended to other similar properties of Utah with oil shale deposits. The paper describes the reservoir characterization methods, methods of sampling and analyzing the reservoir data, the cost of designing and performing the waterflood projects, and the future of such a technology on the declining domestic oil production.

Lomax, J.D. [Lomax Energy LLC, Laguna Beach, CA (United States)

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

1999-04-05T23:59:59.000Z

322

Increasing heavy oil reserves in the Wilmington Oil field through advanced reservoir characterization and thermal production technologies. Quarterly report, April 1, 1996--June 30, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., California using advanced reservoir characterization and thermal production technologies. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The technologies include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S.

1996-08-05T23:59:59.000Z

323

Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996  

SciTech Connect

The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

1997-05-11T23:59:59.000Z

324

Contracts for field projects and supporting research on enhanced oil recovery and improved drilling technology. Progress review No. 37, quarter ending December 31, 1983  

SciTech Connect

Project reports are presented for field projects and supporting research for the following: chemical flooding; carbon dioxide injection; thermal methods; resource assessment technology; extraction technology; environmental and safety; microbial enhanced oil recovery; and general supporting research.

Linville, B. (ed.)

1984-08-01T23:59:59.000Z

325

Vegetative covers for sediment control and phosphorus sequestration from dairy waste application fields  

E-Print Network (OSTI)

Excessive phosphorus (P) in runoff contributes to eutrophication of fresh water bodies. Studies have shown that manure and effluent applied from animal feeding operations to waste application fields (WAFs) have contributed to excess P in segments of the North Bosque River in east central Texas. There is a growing need for environmentally sound, economically viable, and easy to establish best management practices to control such pollution. Vegetative buffer strips offer a potential solution for reducing runoff P from WAFs by extracting it from soil and by reducing sediment P delivery (due to reduced runoff and soil erosion) to streams. In a field study, ten plots (5m x 5m) were assigned to five replicated treatments, namely control (bare, without having any plant cover), cool season grass, warm season forb, warm season grass, and warm season legume to assess their efficacy of runoff sediment control and P sequestration potential from soil. These plots were established on a coastal Bermuda grass WAF that received dairy lagoon effluent. A runoff collection system, a 1m x 1m sub-plot with a runoff conveyance and collection apparatus, was installed on the upstream and downstream margins of each plot. Natural rainfall runoff samples were collected and analyzed subsequently for total P, soluble P, and total suspended solids in the laboratory. Additionally, the total mass of runoff collected from each sub-plot was calculated. Results suggested that the warm season forb and warm season grass were the most effective vegetative covers for the reduction of runoff P, followed by coastal Bermuda and cool season grass, respectively. The lesser amount of runoff total P in these two treatments was due to lesser runoff mass and lesser sediments in the runoff due to initial interception of rain and less raindrop impact on soil because of denser vegetative cover in both treatments compared to all other treatments.

Giri, Subhasis

2008-08-01T23:59:59.000Z

326

NETL: News Release - NETL's Oil and Natural Gas Program Provides  

NLE Websites -- All DOE Office Websites (Extended Search)

24, 2007 24, 2007 Oil and Natural Gas Program Uses Stranded Gas to Revive Oil Production Project Generates Energy from Waste Gas to Restore Marginal Fields WASHINGTON, DC - A U.S. Department of Energy (DOE) project is turning "stranded" natural gas at marginal, or low-production, oil fields into fuel for distributed electric power. The breakthrough is bringing previously idle oil fields back into production and could boost domestic oil production by some 28 million barrels per year within the next 10 years, helping to reduce the Nation's dependence on foreign oil sources. Stranded gas is natural gas that is uneconomic to produce for one or more reasons: the energy, or Btu content, may be too low; the gas may be too impure to use; or, the volume may be too small to warrant a pipeline connection to the gas infrastructure. Non-commercial gas is sometimes produced along with oil, becoming an environmental liability. This unwanted byproduct of oil production has become a major problem in California oil fields where producers have been forced to abandon sites early, leaving valuable reserves of domestic oil untapped.

327

Conservation of Oil and Gas (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation prohibits the production, storage, or transportation of oil or gas in a manner, in an amount, or under conditions that constitute waste. Actions which may lead to the waste of oil...

328

Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87  

SciTech Connect

Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

NONE

1997-10-01T23:59:59.000Z

329

Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using the rotating cylinder electrode  

E-Print Network (OSTI)

1.1 This practice covers a generally accepted procedure to use the rotating cylinder electrode (RCE) for evaluating corrosion inhibitors for oil field and refinery applications in defined flow conditions. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

330

Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990  

Science Conference Proceedings (OSTI)

The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-03-01T23:59:59.000Z

331

Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period January - March 1998 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

1998-04-22T23:59:59.000Z

332

Increasing Waterflood Reserves in the Wilmington Oil Field Through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

The objectives of this quarterly report are to summarize the work conducted under each task during the reporting period October - December 1997 and to report all technical data and findings as specified in the "Federal Assistance Reporting Checklist". The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology. The identification of the sands with high remaining oil saturation will be accomplished by developing a deterministic three dimensional (3-D) geologic model and by using a state of the art reservoir management computer software. The wells identified by the geologic and reservoir engineering work as having the best potential will be logged with cased-hole logging tools. The application of the logging tools will be optimized in the lab by developing a rock-log model. This rock-log model will allow us to translate measurements through casing into effective porosity and hydrocarbon saturation. The wells that are shown to have the best oil production potential will be recompleted. The recompletions will be optimized by evaluating short radius lateral recompletions as well as other recompletion techniques such as the sand consolidation through steam injection.

Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

1998-01-26T23:59:59.000Z

333

Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale-waste lands  

E-Print Network (OSTI)

Responses of soil microbial and nematode communities to aluminum toxicity in vegetated oil-shale and total Al concentrations showed a significant decrease after planting S. cumini plantation onto the shale

Neher, Deborah A.

334

WASTEWATER TREATMENT IN THE OIL SHALE INDUSTRY  

E-Print Network (OSTI)

III, "Method of Breaking Shale Oil-Water Emulsion," U. S.and Biological Treatment of Shale Oil Retort Water, DraftPA (1979). H. H. Peters, Shale Oil Waste Water Recovery by

Fox, J.P.

2010-01-01T23:59:59.000Z

335

U.S. Department of Energy Carlsbad Field Office Waste Isolation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the Office of Site Operations and Director of the National TRU Program. The Waste Isolation Pilot Plant is a U.S. Department of Energy facility designed to safely...

336

Influence of irrigation and weathering reactions on the composition of percolates from retorted oil shale in field lysimeters  

SciTech Connect

Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities of microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.

Garland, T. R.; Wildung, R. E.; Harbert, H. P.

1979-04-01T23:59:59.000Z

337

Development and field application of a mathematical model for predicting the kinematic viscosity of crude oil/diluter mixture under continuous production conditions  

SciTech Connect

Experience producing medium to heavy oil areas has demonstrated that most conventional artificial production systems are inefficient. This situation has been improved by mixing diluter fluids or light crude oil with medium to heavy crude oil downhole. The mixing increases production efficiency, crude oil selling value, and conditions crude to meet minimum selling conditions. An analytical model has been developed to analyze the behavior of crude oil/diluter mixtures under continuous production conditions. The model developed for this study has practical application in field operations. The most important applications are: to select the proper diluter fluid to be used in a specific area; to calculate the exact amount of diluter to be mixed with crude oil to obtain a specific viscosity; to forecast the amount of diluter fluid required for normal and continuous oilfield operations; to predict crude oil-diluter mixture kinematic viscosity under any proportion of the components for economic evaluation; and to calculate API gravities of the produced mixture under continuous operation. The crude oils used in this study have a gravity between 8.6/sup 0/API and 14.3/sup 0/API. The diluters used have a gravity between 31.4/sup 0/API and 63/sup 0/API. The paper presents the analytical model and one application to Venezuelan field in the Orinoco Petroleum Belt, one of the largest oil reserves in the world. Each well in the field has a different viscosity and different production rate. The production rate was considered continuous and under exponential decline.

Alcocer, C.F.; Menzie, D.E.

1986-01-01T23:59:59.000Z

338

Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio  

SciTech Connect

The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

Riley, Ronald; Wicks, John; Perry, Christopher

2009-12-30T23:59:59.000Z

339

Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio  

Science Conference Proceedings (OSTI)

The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

Ronald Riley; John Wicks; Christopher Perry

2009-12-30T23:59:59.000Z

340

Total Crude Oil and Petroleum Products Exports  

U.S. Energy Information Administration (EIA)

Notes: Crude oil exports are restricted to: (1) crude oil derived from fields under the State waters of Alaska's Cook Inlet; (2) Alaskan North Slope crude oil; (3) ...

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management  

Science Conference Proceedings (OSTI)

The objectives of this quarterly report was to summarize the work conducted under each task during the reporting period April - June 1998 and to report all technical data and findings as specified in the ''Federal Assistance Reporting Checklist''. The main objective of this project is the transfer of technologies, methodologies, and findings developed and applied in this project to other operators of Slope and Basin Clastic Reservoirs. This project will study methods to identify sands with high remaining oil saturation and to recomplete existing wells using advanced completion technology.

Koerner, Roy; Clarke, Don; Walker, Scott

1999-11-09T23:59:59.000Z

342

OIL SHALE RESEARCH. CHAPTER FROM THE ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

and INTRODUCTION Oil shale production by vertical modified1 aspects of oil shale production air, solid waste, andimpacts of oil shale production, and to develop information

,

2012-01-01T23:59:59.000Z

343

Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field.  

E-Print Network (OSTI)

??Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca… (more)

Rivero Diaz, Jose Antonio

2012-01-01T23:59:59.000Z

344

Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska  

Science Conference Proceedings (OSTI)

Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

Hanks, Catherine

2012-12-31T23:59:59.000Z

345

Oil and Gas Field Code Master List 2000 - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

respondents to Form FPC 15, “Interstate Pipeline’s Annual ... conventions imposed by the data block length on DOE forms and by the field naming ...

346

Contracts for field projects and supporting research on enhanced oil recovery  

SciTech Connect

Progress reports are presented for field tests and supporting research for the following: chemical flooding, gas displacement; thermal methods; resource assessment technology; environmental technology and microbial technology.

Not Available

1987-04-01T23:59:59.000Z

347

Investigations of Near-Field Thermal-Hydrologic-Mechanical-Chemical Models for Radioactive Waste Disposal in Clay/Shale Rock  

Science Conference Proceedings (OSTI)

Clay/shale has been considered as potential host rock for geological disposal of high-level radioactive waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratory scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of radioactive waste. Figure 1-1 presents the distribution of clay/shale formations within the USA.

Liu, H.H.; Li, L.; Zheng, L.; Houseworth, J.E.; Rutqvist, J.

2011-06-20T23:59:59.000Z

348

Investigation of oil adsorption capacity of granular organoclay media and the kinetics of oil removal from oil-in-water emulsions  

E-Print Network (OSTI)

Produced water, a byproduct of oil and gas production, includes almost 98% of all waste generated by oil and gas exploration and their production activities. This oil contaminated waste water has a great impact on our environment and is considered to be a high-cost liability. The Department of Energy�s Oil and Gas Environmental Program is concerned with the development of new and affordable technology to clean this produced water. Organically modified clays are proposed as a good option for removal of oil from produced water. Organoclay, incorporated into a treatment process shows promise of being a cost effective method of treatment to remove crude oil from brine either as a final treatment prior to brine disposal at sea or as a precursor to desalination. Organoclay also pre-polishes the waste water before further treatment. This research studies the efficacy of using organoclay to remove oil by measuring its adsorption capacity to remove the oil from a SAE 30 (Golden West Superior) motor oil-water emulsion. A kinetic model was developed to examine the time dependent behavior of the oil adsorbing characteristics of the organoclay and to investigate how closely the experimentally obtained data matches the kinetic model. It was found that organoclay is effective in removing various percentages of oil depending on the concentrations of a SAE 30 (Golden West Superior) motor oil-water emulsion. Moreover, it was found that the experimental data closely follow the kinetic behavior of the organoclay as shown by the kinetic model. Since this research is specific to a particular type of oil, SAE 30, further research is required for verifying the adsorption capacity of organoclay in other types of oils. Moreover, it is also recommended that the adsorption capacity of the organoclay, together with conventional adsorbent such as GAC (Granular Activated Carbon), be investigated to determine if there is any further improvement in the adsorption capacity. Lastly, a detailed investigation using the actual produced water from the oil field should be conducted to determine the efficacy of the organoclay system in removing oil from water produced in the field.

Islam, Sonia

2006-12-01T23:59:59.000Z

349

ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING  

SciTech Connect

This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

Peggy Robinson

2005-07-01T23:59:59.000Z

350

Experimental and Computational Studies of Fluid Flow Phenomena in Carbon Dioxide Sequestration in Brine and Oil Fields  

NLE Websites -- All DOE Office Websites (Extended Search)

EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID EXPERIMENTAL AND COMPUTATIONAL STUDIES OF FLUID FLOW PHENOMENA IN CARBON DIOXIDE SEQUESTRATION IN BRINE AND OIL FIELDS Chuang Ji ( chuang.ji@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 BOX 5725 Clarkson University Potsdam, NY 13699 Goodarz Ahmadi ( ahmadi@clarkson.edu ) BOX 5725 Clarkson University Potsdam, NY 13699 Duane H. Smith ( duane.smith@netl.doe.gov ) National Energy Technology Laboratory Department of Energy, Morgantown, WV 26507-0880 2 INTRODUCTION Sequestration of CO 2 by injection into deep geological formations is a method to reduce CO 2 emissions into the atmosphere. However, when CO 2 is injected underground, it forms fingers extending into the rock pores saturated with brine or petroleum. This flow

351

U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test  

Science Conference Proceedings (OSTI)

A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

Tang, Guoping [ORNL; Watson, David B [ORNL; Wu, Wei-min [Stanford University; Schadt, Christopher Warren [ORNL; Parker, Jack C [ORNL; Brooks, Scott C [ORNL

2013-01-01T23:59:59.000Z

352

Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry  

Science Conference Proceedings (OSTI)

A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

Osterlund, Helene [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden)], E-mail: Helene.Osterlund@alsglobal.com; Rodushkin, Ilia [Division of Applied Geology, Lulea University of Technology, S-971 87 Lulea (Sweden); ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden); Ylinenjaervi, Karin; Baxter, Douglas C. [ALS Scandinavia AB, ALS Laboratory Group, Aurorum 10, S-977 75 Lulea (Sweden)

2009-04-15T23:59:59.000Z

353

New Acid Stimulation Treatment to Sustain Production - Los Angeles Downtown Oil Field  

Science Conference Proceedings (OSTI)

Hydrochloric acid stimulation was successfully used on several wells in the Los Angeles Downtown Field, in the past. The decline rates after stimulation were relatively high and generally within six months to a year, production rates have returned to their prestimulation rates. The wells in Los Angeles Downtown Field have strong scale producing tendencies and many wells are treated for scale control. Four wells were carefully selected that are representative of wells that had a tendency to form calcium carbonate scale and had shown substantial decline over the last few years.

Russell, Richard C.

2003-03-10T23:59:59.000Z

354

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 89  

SciTech Connect

Summaries are presented for the DOE contracts related to supported research for thermal recovery of petroleum, geoscience technology, and field demonstrations in high-priority reservoir classes. Data included for each project are: title, contract number, principal investigator, research organization, beginning date, expected completion date, amount of award, objectives of the research, and summary of technical progress.

NONE

1998-04-01T23:59:59.000Z

355

Numerical calculation of thermal field distribution in oil immersed power transformer: a comparison of methods  

Science Conference Proceedings (OSTI)

This paper summarise a few computational methods and engineering models proposed for transformer thermal analysis and the accurate prediction of transformer thermal characteristics. The paper presents different approach for numerical calculation of thermal ... Keywords: hot-spot temperature, numerical calculation, power transformer, thermal field

Vlado Madzarevic; Izudin Kapetanovic; Majda Tesanovic; Mensur Kasumovic

2011-02-01T23:59:59.000Z

356

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

the shower only. The wasted energy is the difference betweenLBNL-5115E Water and Energy Wasted During Residential Showercalculate the water and energy wasted during shower events

Lutz, Jim

2012-01-01T23:59:59.000Z

357

Water and Energy Wasted During Residential Shower Events: Findings from a Pilot Field Study of Hot Water Distribution Systems  

E-Print Network (OSTI)

study to determine waste of water and energy in residential30 percent. The average waste of energy in the hot water ispaper examines the waste of water and energy associated with

Lutz, Jim

2012-01-01T23:59:59.000Z

358

Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems  

E-Print Network (OSTI)

understanding the waste of energy and water in residentialStudy to Determine Waste of Water and Energy in ResidentialStudy to Determine Waste of Water and Energy in Residential

Lutz, Jim

2012-01-01T23:59:59.000Z

359

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2  

DOE Green Energy (OSTI)

Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

360

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 82, quarterly report, January--March 1995  

Science Conference Proceedings (OSTI)

This document consists of a list of projects supporting work on oil recovery programs. A publications list and index of companies and institutions is provided. The remaining portion of the document provides brief descriptions on projects in chemical flooding, gas displacement, thermal recovery, geoscience, resource assessment, and reservoir class field demonstrations.

NONE

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contracts for field projects and supporting research on enhanced oil recovery, reporting period January--March 1991. Progress review No. 66, quarter ending March 31, 1991  

SciTech Connect

Contracts for field projects and supporting research on Enhanced Oil Recovery for the quarter ending March 31, 1991 are reviewed. A list of available publications is listed. Research topics include microbial EOR, foam injection, thermal recovery, surfactant flooding, reservoir rock characterization, and more.

Not Available

1992-03-01T23:59:59.000Z

362

Constitutive models for the Etchegoin Sands, Belridge Diatomite, and overburden formations at the Lost Hills oil field, California  

SciTech Connect

This report documents the development of constitutive material models for the overburden formations, reservoir formations, and underlying strata at the Lost Hills oil field located about 45 miles northwest of Bakersfield in Kern County, California. Triaxial rock mechanics tests were performed on specimens prepared from cores recovered from the Lost Hills field, and included measurements of axial and radial stresses and strains under different load paths. The tested intervals comprise diatomaceous sands of the Etchegoin Formation and several diatomite types of the Belridge Diatomite Member of the Monterey Formation, including cycles both above and below the diagenetic phase boundary between opal-A and opal-CT. The laboratory data are used to drive constitutive parameters for the Extended Sandler-Rubin (ESR) cap model that is implemented in Sandia's structural mechanics finite element code JAS3D. Available data in the literature are also used to derive ESR shear failure parameters for overburden formations. The material models are being used in large-scale three-dimensional geomechanical simulations of the reservoir behavior during primary and secondary recovery.

FOSSUM,ARLO F.; FREDRICH,JOANNE T.

2000-04-01T23:59:59.000Z

363

Options and cost for disposal of NORM waste.  

Science Conference Proceedings (OSTI)

Oil field waste containing naturally occurring radioactive material (NORM) is presently disposed of both on the lease site and at off-site commercial disposal facilities. The majority of NORM waste is disposed of through underground injection, most of which presently takes place at a commercial injection facility located in eastern Texas. Several companies offer the service of coming to an operator's site, grinding the NORM waste into a fine particle size, slurrying the waste, and injecting it into the operator's own disposal well. One company is developing a process whereby the radionuclides are dissolved out of the NORM wastes, leaving a nonhazardous oil field waste and a contaminated liquid stream that is injected into the operator's own injection well. Smaller quantities of NORM are disposed of through burial in landfills, encapsulation inside the casing of wells that are being plugged and abandoned, or land spreading. It is difficult to quantify the total cost for disposing of NORM waste. The cost components that must be considered, in addition to the cost of the operation, include analytical costs, transportation costs, container decontamination costs, permitting costs, and long-term liability costs. Current NORM waste disposal costs range from $15/bbl to $420/bbl.

Veil, J. A.

1998-10-22T23:59:59.000Z

364

Decontaminate Effect of Paddy Field on Waste Water from Fish Pond under Different Residence Time  

Science Conference Proceedings (OSTI)

Wastewater from aquiculture contains usefu1 nutrients for plant, such as nitrogen and phosphorus. Drainage of the wastewater resulted in eutrophication of water body. The nutrients in wastewater from fish pond was assimilated and utilized by paddy field. ... Keywords: Decontaminate effect, Fishpond, Paddy field, Water cycle, Water quality

Shun-Yao Jiang, Jian-Qiang Zhu, Gu Li, Qi-Xia Wu, Yuan Zhou

2013-01-01T23:59:59.000Z

365

Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990  

SciTech Connect

The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-05-01T23:59:59.000Z

366

Activities of the Oil Implementation Task Force; Contracts for field projects and supporting research on enhanced oil recovery, July--September 1990  

SciTech Connect

The report contains a general introduction and background to DOE's revised National Energy Strategy Advanced Oil Recovery Program and activities of the Oil Implementation Task Force; a detailed synopsis of the symposium, including technical presentations, comments and suggestions; a section of technical information on deltaic reservoirs; and appendices containing a comprehensive listing of references keyed to general deltaic and geological aspects of reservoirs and those relevant to six selected deltaic plays. Enhanced recovery processes include chemical floodings, gas displacement, thermal recovery, geoscience, and microbial recovery.

Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

1991-05-01T23:59:59.000Z

367

Depositional setting and reservoir geology of Kuparuk River oil field, North Slope, Alaska  

SciTech Connect

The Kuparuk River field is located approximately 20 mi (32 km) west of the Prudhoe Bay field and produces from the Lower Cretaceous Kuparuk River formation. The lower member of the Kuparuk is a sequence of interbedded sandstone, siltstone, and mudstone. Individual sandstone beds in the lower member are up to 5 ft (1.5 m) thick and consist of fine-grained, well-sorted quartzarenite. The basal part of the lower member contains five sandstone-rich cycles that prograde to the southeast. Each individual cycle strikes northeast-southwest and is up to 80 ft (254 m) thick, 40 mi (64 km) long, and 15 mi (25 km) wide. The lower member sandstones are interpreted to be storm deposits derived from a northerly source and deposited on a broad marine shelf. The upper member was deposited on an erosional unconformity and contains two sandstone intervals. These sandstone intervals are quartzose, glauconitic, very fine to coarse grained, poorly to moderately sorted, and intensely bioturbated. Both upper member sandstones are interpreted to have been deposited as subtidal sand bodies. The upper and lower member sandstones have similar average porosities (23%), but the average permeability of upper member sandstone is considerably higher than the average permeability of the lower member. Natural fractures in siderite-demented zones enhance the permeability of the upper member sandstone. Reservoir performance indicates that permeability is greatest in a north-south direction in upper member sandstones, and that a north-south directional permeability may also exist in lower member sandstone. North-south-oriented line-drive waterflood patterns will be utilized in areas where a north-south directional permeability is suspected.

Paris, C.E.; Masterson, D.W.

1985-04-01T23:59:59.000Z

368

Site Programs & Cooperative Agreements: Waste Isolation Pilot...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Isolation Pilot Plant Site Programs & Cooperative Agreements: Waste Isolation Pilot Plant Waste Isolation Pilot Plant (WIPP) The DOE Carlsbad Field Office funds a number of...

369

Oil shale: potential environmental impacts and control technology. Environmental research brief  

SciTech Connect

The U.S. Environmental Protection Agency's Industrial Environmental Research Laboratory in Cincinnati, Ohio (IERL-Ci) has performed research related to oil shale processing and disposal since 1973. This research is in support of the Clean Air Act, The Federal Water Pollution Control Act, the Resource Conservation and Recovery Act, the Safe Drinking Water Act, and the Toxic Substances Control Act. Potential environmental impacts from oil shale development activities have been identified and potential control technologies are being evaluated through a combination of laboratory and field tests on actual oil shale waste streams. This paper discusses recent results from this program. Included are field test results on control of sulfur gases at Occidental Oil Shale's Logan Wash Site and Geokinetic's Kamp Kerogen Site, wastewater treatability studies on retort water and gas condensate at Logan Wash, and results of laboratory and field testing on raw and retorted oil shales.

Bates, E.R.; Liberick, W.W.; Burckle, J.

1984-03-01T23:59:59.000Z

370

INCREASING OIL RECOVERY THROUGH ADVANCED REPROCESSING OF 3D SEISMIC, GRANT CANYON AND BACON FLAT FIELDS, NYE COUNTY, NEVADA  

SciTech Connect

Makoil, Inc., of Orange, California, with the support of the U.S. Department of Energy has reprocessed and reinterpreted the 3D seismic survey of the Grant Canyon area, Railroad Valley, Nye County, Nevada. The project was supported by Dept. of Energy Grant DE-FG26-00BC15257. The Grant Canyon survey covers an area of 11 square miles, and includes Grant Canyon and Bacon Flat oil fields. These fields have produced over 20 million barrels of oil since 1981, from debris slides of Devonian rocks that are beneath 3,500 to 5,000 ft of Tertiary syntectonic deposits that fill the basin of Railroad Valley. High-angle and low-angle normal faults complicate the trap geometry of the fields, and there is great variability in the acoustic characteristics of the overlying valley fill. These factors combine to create an area that is challenging to interpret from seismic reflection data. A 3D seismic survey acquired in 1992-93 by the operator of the fields has been used to identify development and wildcat locations with mixed success. Makoil believed that improved techniques of processing seismic data and additional well control could enhance the interpretation enough to improve the chances of success in the survey area. The project involved the acquisition of hardware and software for survey interpretation, survey reprocessing, and reinterpretation of the survey. SeisX, published by Paradigm Geophysical Ltd., was chosen as the interpretation software, and it was installed on a Dell Precision 610 computer work station with the Windows NT operating system. The hardware and software were selected based on cost, possible addition of compatible modeling software in the future, and the experience of consulting geophysicists in the Billings area. Installation of the software and integration of the hardware into the local office network was difficult at times but was accomplished with some technical support from Paradigm and Hewlett Packard, manufacturer of some of the network equipment. A number of improvements in the processing of the survey were made compared to the original work. Pre-stack migration was employed, and some errors in muting in the original processing were found and corrected. In addition, improvements in computer hardware allowed interactive monitoring of the processing steps, so that parameters could be adjusted before completion of each step. The reprocessed survey was then loaded into SeisX, v. 3.5, for interpretation work. Interpretation was done on 2, 21-inch monitors connected to the work station. SeisX was prone to crashing, but little work was lost because of this. The program was developed for use under the Unix operating system, and some aspects of the design of the user interface betray that heritage. For example, printing is a 2-stage operation that involves creation of a graphic file using SeisX and printing the file with printer utility software. Because of problems inherent in using graphics files with different software, a significant amount of trial and error is introduced in getting printed output. Most of the interpretation work was done using vertical profiles. The interpretation tools used with time slices are limited and hard to use, but a number to tools and techniques are available to use with vertical profiles. Although this project encountered a number of delays and difficulties, some unavoidable and some self-inflicted, the result is an improved 3D survey and greater confidence in the interpretation. The experiences described in this report will be useful to those that are embarking on a 3D seismic interpretation project.

Eric H. Johnson; Don E. French

2001-06-01T23:59:59.000Z

371

Dolomitization and dedolomitization models in a fractured reservoir, Reed City oil field, Michigan  

Science Conference Proceedings (OSTI)

Hydrocarbon production in the Michigan basin is essentially from pinnacle reefs or fractured reservoirs. The epigenetically formed porous dolomite reservoir rock is intimately related to the shear faults (channelways for rising high Mg/Ca ratio fluids) and to the resulting shear folds, the latter showing dolomite/calcite ratios increasing generally from outer closure to the fold axes. The Reed City field (anticline) of western Michigan represents a dramatic exception to this picture with the dolomite/calcite ratio increasing from outer closure to maximum part way up the limbs then decreasing to the axis. This lowest zone is the only unit not dedolomitized, a fact perhaps commensurate with its low stratigraphic position at the bottom of (and apparently beyond the reach of) the descending high-calcium, low-magnesium waters what brought about the dedolomitization. The dedolomitization model would call for a shallow water to exposed oxidizing environment, possible with the position of this area astride the West Michigan Barrier that separates a lagoonal facies from a more open sea facies to the east. Thus, waters with a high Ca/Mg ratio passed down the same shear faults that earlier were channelways for the rising high Mg/Ca ratio waters. On the bases of isopach, structure and dolomite/calcite (Isodol) maps, one can piece together a reasonably chronological sequence of pre-Dundee shear faulting and folding, post-Traverse upward migration of dolomitizing fluids, upward migration of hydrocarbons along the shear faults, downward-moving dedolomitizing fluids, and a later episode of faulting (especially shear cross-faults).

Carlton, R.R.; Prouty, C.E.

1983-03-01T23:59:59.000Z

372

Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field  

E-Print Network (OSTI)

A 16��16��5.6 in. scaled, three-dimensional, physical model of a quarter of a 9-spot pattern was constructed to study the application of two processes designed to improve the efficiency of steam injection. The first process to be tested is the use of propane as a steam additive with the purpose of increasing recovery and accelerating oil production. The second process involves the use of a novel production configuration that makes use of a vertical injector and a smart horizontal producer in an attempt to mitigate the effects of steam override. The experimental model was scaled using the conditions in the San Ardo field in California and crude oil from the same field was used for the tests. Superheated steam at 190 â�� 200�ºC was injected at 48 cm3/min (cold water equivalent) while maintaining the flowing pressures in the production wells at 50 psig. Liquid samples from each producer in the model were collected and treated to break emulsion and analyzed to determine water and oil volumes. Two different production configurations were tested: (1) a vertical well system with a vertical injector and three vertical producers and (2) a vertical injector-smart horizontal well system that consisted of a vertical injector and a smart horizontal producer divided into three sections. Runs were conducted using pure steam injection and steam-propane injection in the two well configurations. Experimental results indicated the following. First, for the vertical configuration, the addition of propane accelerated oil production by 53% and increased ultimate recovery by an additional 7% of the original oil in place when compared to pure steam injection. Second, the implementation of the smart horizontal system increased ultimate oil recovery when compared to the recovery obtained by employing the conventional vertical well system (49% versus 42% of the OOIP).

Rivero Diaz, Jose Antonio

2003-05-01T23:59:59.000Z

373

Selected Abstracts & Bibliography of International Oil Spill Research, through 1998  

E-Print Network (OSTI)

silversides exposed to waste motor oil. In: Proceedings ofU.S.A. Year. Key words: motor oil, EPA regulations, recycledon a 10w-30 multigrade motor oil solid medium to screen for

Louisiana Applied Oil Spill Research & Development Program Electronic Bibliography

1998-01-01T23:59:59.000Z

374

Investigating Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO2 Monitoring Project)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Potential of Carbonate Rocks during Tertiary Sequestration Potential of Carbonate Rocks during Tertiary Recovery from a Billion Barrel Oil Field, Weyburn, Saskatchewan: the Geoscience Framework (IEA Weyburn CO 2 Monitoring and Storage Project) G. Burrowes (Geoffrey_Burrowes@pancanadian.ca; 403-290-2796) PanCanadian Resources 150 - 9 th Avenue S.W., P.O. Box 2850 Calgary, Alberta, Canada T2P 2S5 C. Gilboy (cgilboy@sem.gov.sk.ca; 306-787-2573) Petroleum Geology Branch, Saskatchewan Energy and Mines 201 Dewdney Avenue East Regina, Saskatchewan, Canada S4N 4G3 Introduction In Western Canada the application of CO 2 injection for enhanced, 'tertiary' oil recovery is a relatively recent addition to the arsenal available to reservoir engineers. The first successful application of CO 2 as a miscible fluid in Western Canada began in 1984 at Joffre Field, a

375

Toxicity Characteristic Leaching Procedure (TCLP) Analysis of Crankcase Oils and Oil Residues From the Electric Utility Industry  

Science Conference Proceedings (OSTI)

If used crankcase oils and oil residues from electric utilities were listed as hazardous waste by EPA, disposal would be costly and recycling options would be limited. The toxicity characteristic test results from this study reveal that such used oils and oil residues are generally nonhazardous and therefore do not warrant classification as hazardous wastes.

1993-10-01T23:59:59.000Z

376

Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and Laboratory Reports, Part 1 of 2  

DOE Green Energy (OSTI)

Volume II (part 1 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the documentation and raw data, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

1996-04-01T23:59:59.000Z

377

Expected near-field thermal environments in a sequentially loaded spent-fuel or high-level waste repository in salt  

SciTech Connect

This report describes the effect of realistic waste emplacement schedules on repository thermal environments. Virtually all estimates to date have been based on instantaneous loading of wastes having uniform properties throughout the repository. However, more realistic scenarios involving sequential emplacement of wastes reflect the gradual filling of the repository over its lifetime. These cases provide temperatures that can be less extreme than with the simple approximation. At isolated locations in the repository, the temperatures approach the instantaneous-loading limit. However, for most of the repository, temperature rises in the near-field are 10 to 40 years behind the conservative estimates depending on the waste type and the location in the repository. Results are presented for both spent-fuel and high-level reprocessing waste repositories in salt, for a regional repository concept, and for a single national repository concept. The national repository is filled sooner and therefore more closely approximates the instantaneously loaded repository. However, temperatures in the near-field are still 20/sup 0/C or more below the values in the simple model for 40 years after startup of repository emplacement operations. The results suggest that current repository design concepts based on the instantaneous-loading predictions are very conservative. Therefore, experiments to monitor temperatures in a test and evaluation facility, for example, will need to take into account the reduced temperatures in order to provide data used in predicting repository performance.

Rickertsen, L.D.; Arbital, J.G.; Claiborne, H.C.

1982-01-01T23:59:59.000Z

378

Isolation of levoglucosan from lignocellulosic pyrolysis oil ...  

A method is provided for preparing high purity levoglucosan from lignocellulosic pyrolysis oils derived from wood or waste newsprint. The method includes reducing ...

379

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 52 quarter ending September 30, 1987  

Science Conference Proceedings (OSTI)

This progress review on enhanced oil recovery covers: Chemical Flooding /emdash/ Supporting Research; Gas Displacement /emdash/ Supporting Research; Thermal Recovery /emdash/ Supporting Research; Resource Assessment Technology; Geoscience Technology; Environmental Technology; Microbial Technology.

Not Available

1988-07-01T23:59:59.000Z

380

Ecological Data in Support of the Tank Closure and Waste Management Environmental Impact Statement. Part 2: Results of Spring 2007 Field Surveys  

SciTech Connect

This review provides an evaluation of potential impacts of actions that have been proposed under various alternatives to support the closure of the high level waste tanks on the Hanford Site. This review provides a summary of data collected in the field during the spring of 2007 at all of the proposed project sites within 200 East and 200 West Areas, and at sites not previously surveyed. The primary purpose of this review is to provide biological data that can be incorporated into or used to support the Tank Closure and Waste Management Environmental Impact Statement.

Sackschewsky, Michael R.; Downs, Janelle L.

2007-05-31T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols  

SciTech Connect

Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

Carroll, Herbert B.; Johnson, William I.

1999-04-27T23:59:59.000Z

382

A field strategy to monitor radioactivity associated with investigation derived wastes returned from deep drilling sites  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy, Nevada Operations Office, Underground Test Area Operable Unit (UGTA) is drilling deep (>1500m) monitoring wells that penetrate both unsaturated (vadose) and saturated zones potentially contaminated by sub-surface nuclear weapons testing at the Nevada Test Site, Nye County, Nevada. Drill site radiological monitoring returns data on drilling effluents to make informed management decisions concerning fluid management. Because of rapid turn-around required for on-site monitoring, a representative sample will be analyzed simultaneously for {alpha}, {beta} and {gamma} emitters by instrumentation deployed on-site. For the purposes of field survey, accurate and precise data is returned, in many cases, with minimal sample treatment. A 30% efficient high purity germanium detector and a discriminating liquid scintillation detector are being evaluated for {gamma} and {alpha}/{beta} monitoring respectively. Implementation of these detector systems complements a successful on-site tritium monitoring program. Residual radioactivity associated with underground nuclear tests include tritium, activation products, fission products and actinides. Pulse shape discrimination (PSD) is used in {alpha}/{beta} liquid scintillation counting and is a function of the time distribution of photon emission. In particular, we hope to measure {sup 241}Am produced from {sup 241}Pu by {beta} decay. Because {sup 241}Pu is depleted in fissile bomb fuels, maximum PSD resolution will be required. The high purity germanium detector employs a multichannel analyzer to count gamma emitting radionuclides; we will designate specific window configurations to selectively monitor diagnostic fission product radionuclides (i.e., {sup 137}Cs).

Rego, J.H.; Smith, D.K.; Friensehner, A.V.

1995-05-26T23:59:59.000Z

383

NETL: Oil & Gas Program Solicitation Partnering Sheet  

NLE Websites -- All DOE Office Websites (Extended Search)

and Business Opportunities Partnering Sheet Oil & Gas Program Solicitation DE-PS-26-05NT15600 Partnering Sheet Closing date: March 01, 2005 University: Industry (Oil field...

384

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

NLE Websites -- All DOE Office Websites (Extended Search)

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

385

Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preiminary Documented Safety Analysis Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

HIAR-LANL-2013-04-08 HIAR-LANL-2013-04-08 Site: Los Alamos National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for Coordination Meeting with National Nuclear Security Administration Los Alamos Field Office Safety Basis Review Team Leader for Transuranic Waste Facility Preliminary Documented Safety Analysis Report Dates of Activity : 04/08/13 Report Preparer: James O. Low Activity Description/Purpose: The Office of Health, Safety and Security (HSS) staff visited the Los Alamos National Laboratory (LANL) to coordinate with the National Nuclear Security Administration (NNSA) Los Alamos Field Office (NA-00-LA) Safety Basis Review Team (SBRT) Leader for review of the revised preliminary documented safety analysis (PDSA) for the Transuranic Waste

386

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: FC Site  

Science Conference Proceedings (OSTI)

Utilities typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the south-central United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2002-08-23T23:59:59.000Z

387

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume Coal Combustion By-Products: HA Site  

Science Conference Proceedings (OSTI)

Typically, utilities comanage some or all of their low-volume wastes with their high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement of coal combustion by-products at a utility-owned impoundment in the midwestern United States (HA site). The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2000-10-30T23:59:59.000Z

388

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High Volume Coal Combustion By-Products: AP Site  

Science Conference Proceedings (OSTI)

Power companies typically comanage some or all of their low-volume wastes with high-volume by-products in disposal facilities. This report presents the results of a field study of comanagement practices at an impoundment at a power plant located in the southwestern United States. The findings from this research provided technical information for use in a study of comanagement practices by the U.S. Environmental Protection Agency (EPA).

2001-12-06T23:59:59.000Z

389

Field Evaluation of the Comanagement of Utility Low-Volume Wastes With High-Volume Coal Combustion By-Products: CL Site  

Science Conference Proceedings (OSTI)

This report presents the results of a field study of comanagement of coal combustion by-products at a utility disposal impoundment in the southeastern United States. The study was part of a multiyear effort by the Electric Power Research Institute (EPRI), in cooperation with the Utility Solid Waste Activities Group (USWAG) and individual utility companies, to characterize utility comanagement practices and collect and analyze a comprehensive set of data pertinent to the environmental effects of those pra...

1997-12-09T23:59:59.000Z

390

Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

Speight, J.G.

1992-01-01T23:59:59.000Z

391

Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field  

Science Conference Proceedings (OSTI)

This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

McWilliams, Michael

2001-12-18T23:59:59.000Z

392

OpenEI - oil  

Open Energy Info (EERE)

/0 en AEO2011: Oil and Gas /0 en AEO2011: Oil and Gas End-of-Year Reserves and Annual Reserve Additions http://en.openei.org/datasets/node/805 This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 134, and contains only the reference case. The data is broken down into Crude oil, dry natural gas. 

License
field field-type-text field-field-license-type"> Type of License: 

393

Crude Oil  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels) Product: Crude Oil Liquefied Petroleum Gases Distillate Fuel Oil Residual Fuel Oil Still Gas Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Other...

394

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

395

An overview of the sustainability of solid waste management at military installations  

E-Print Network (OSTI)

cleaners/chemicals, motor oil, batteries, and pesticides.Motor pools, shops, MFH Separation from non-metal components Collection container, collection service Waste Oil

Borglin, S.

2010-01-01T23:59:59.000Z

396

Expansion of the commercial output of Estonian oil shale mining and processing  

Science Conference Proceedings (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

397

Crude Oil Analysis Database  

DOE Data Explorer (OSTI)

The composition and physical properties of crude oil vary widely from one reservoir to another within an oil field, as well as from one field or region to another. Although all oils consist of hydrocarbons and their derivatives, the proportions of various types of compounds differ greatly. This makes some oils more suitable than others for specific refining processes and uses. To take advantage of this diversity, one needs access to information in a large database of crude oil analyses. The Crude Oil Analysis Database (COADB) currently satisfies this need by offering 9,056 crude oil analyses. Of these, 8,500 are United States domestic oils. The database contains results of analysis of the general properties and chemical composition, as well as the field, formation, and geographic location of the crude oil sample. [Taken from the Introduction to COAMDATA_DESC.pdf, part of the zipped software and database file at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the zipped file to your PC. When opened, it will contain PDF documents and a large Excel spreadsheet. It will also contain the database in Microsoft Access 2002.

Shay, Johanna Y.

398

Oil shale: The environmental challenges III  

SciTech Connect

This book presents the papers of a symposium whose purpose was to discuss the environmental and socio-economic aspects of oil shale development. Topics considered include oil shale solid waste disposal, modeling spent shale disposal, water management, assessing the effects of oil shale facilities on water quality, wastewater treatment and use at oil shale facilities, potential air emissions from oil shale retorting, the control of air pollutant emissions from oil shale facilities, oil shale air emission control, socioeconomic research, a framework for mitigation agreements, the Garfield County approach to impact mitigation, the relationship of applied industrial hygiene programs and experimental toxicology programs, and industrial hygiene programs.

Petersen, K.K.

1983-01-01T23:59:59.000Z

399

Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California  

SciTech Connect

A previously idle portion of the Midway-Sunset field, the ARCO Western Energy Pru Fee property, is being brought back into commercial production through tight integration of geologic characterization, geostatistical modeling, reservoir simulation, and petroleum engineering. This property, shut-in over a decade ago as economically marginal using conventional cyclic steaming methods, has a 200-300 foot thick oil column in the Monarch Sand. However, the sand lacks effective steam barriers and has a thick water-saturation zone above the oil-water contact. These factors require an innovative approach to steam flood production design that will balance optimal total oil production against economically viable steam-oil ratios and production rates. The methods used in the Class III demonstration are accessible to most operators in the Midway-Sunset field and could be used to revitalize properties with declining production of heavy oils throughout the region. In January 1997 the project entered its second and main phase with the purpose of demonstrating whether steamflood can be a more effective mode of production of the heavy, viscous oils from the Monarch Sand reservoir than the more conventional cyclic steaming. The objective is not just to produce the pilot site within the Pru Fee property south of Taft, but to test which production parameters optimize total oil recovery at economically acceptable rates of production and production costs.

Steven Schamel

1998-02-27T23:59:59.000Z

400

BUFFERED WELL FIELD OUTLINES  

U.S. Energy Information Administration (EIA) Indexed Site

OIL & GAS FIELD OUTLINES FROM BUFFERED WELLS The VBA Code below builds oil & gas field boundary outlines (polygons) from buffered wells (points). Input well points layer must be a...

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Contracts for field projects and supporting research on enhanced oil recovery. Quarterly technical progress report, July 1, 1995--September 30, 1995  

SciTech Connect

This document presents brief descriptions of research programs concerned with enhanced oil recovery.

NONE

1996-10-01T23:59:59.000Z

402

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 47, Quarter ending June 1986  

SciTech Connect

Progress reports are presented for field projects and supporting research for the following: chemical flooding; gas displacement; thermal recovery; resource assessment; environmental technology; and microbial technology. (AT)

Not Available

1987-07-01T23:59:59.000Z

403

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, April--June 1993  

SciTech Connect

Progress made in five areas of research is described briefly. The subtask in oil shale research is on oil shale process studies. For tar sand the subtask reported is on process development. Coal research includes the following subtasks: Coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes the following: Advanced process concepts; advanced mitigation concepts; oil and gas technology. Jointly sponsored research includes: Organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sup 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; characterization of petroleum residua; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process;NMR analysis of samples from the ocean drilling program; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of Mowry formation shale from different sedimentary basins; solid-state NMR analysis of naturally and artificially matured kerogens; and development of effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

404

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research. Quarterly technical progress report, January--March 1993  

SciTech Connect

Accomplishments for the past quarter are briefly described for the following areas of research: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale and tar sand researches cover processing studies. Coal research includes: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology covers: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW{sup TM} field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; operation and evaluation of the CO{sub 2} HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid-state NMR analysis of Mesaverde Group, Greater Green River Basin tight gas sands; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; oil field waste cleanup using tank bottom recovery process; remote chemical sensor development; in situ treatment of manufactured gas plant contaminated soils demonstration program; solid-state NMR analysis of naturally and artificially matured kerogens; and development of an effective method for the clean-up of natural gas.

1993-09-01T23:59:59.000Z

405

Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research  

SciTech Connect

Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

Not Available

1992-01-01T23:59:59.000Z

406

WATER QUALITY EFFECTS OF LEACHATES FROM AN IN SITU OIL SHALE INDUSTRY  

E-Print Network (OSTI)

4, 19'70, p. 89. 24. C-b Shale Oil Venture: Hydrology, MinePiles Solid wastes from the shale-oil recovery process alsoStabilization of Spent Oil Shales, EPA-600/'7-'78- 021, Feb.

Fox, J. P.

2011-01-01T23:59:59.000Z

407

Radon (Rn-222) and thoron (Rn-220) emanation fractions from three separate formations of oil field pipe scale  

E-Print Network (OSTI)

Over the course of normal oil well operations, pipes used downhole in the oil and petroleum industry tend to accumulate a mineral deposit on their interior, which restricts the flow of oil. This deposit, termed scale, will eventually occlude the interior diameter of the pipe making removal from service and descaling a cost effective option. The pipes are sent to cleaning yards where they remain until descaling can be performed. This storage period can potentially create a health concern not only because of the external radiation exposure but also because of the radon gas emissions, both of which are due to the radioactive minerals contained in the scale. It was believed that the structure of the scale is formed tightly enough to prevent much of the radon from becoming airborne. The goal of this research was to determine the emanation fractions for the rattled scale samples from three formations. A high purity germanium detector was used to measure the activities of the parents and progeny of radon, and electret ion chambers were used to measure the concentration of radon emanated from the scale. The emanation fractions of between 4.9x10-5 and 1.08x10-3 for radon were a factor of approximately 100 smaller than previous research results. For thoron, the fractions were and 5.72x10-8 and 4.92x10-7 for thoron with no previous research to compare. However, information that pertains to the temperature dependence of emanation was included in this research and was not available for previous, similar research. Therefore, differences in the environment (e.g., temperature, humidity, etc.) in which the previous experiments were conducted, as well as differences in the scale formation types used, could account for the discrepancy. In addition, measuring the emanation fractions of the rattled scale was a method of determining whether surface to volume ratio dependence existed. After acquiring the emanation fractions, insufficient evidence of any surface to volume ratio dependence could be found.

Fruchtnicht, Erich Harold

2004-08-01T23:59:59.000Z

408

Field Evaluation of the Comanagement of Utility Low-Volume Wastes with High-Volume By-Products: CY Site  

Science Conference Proceedings (OSTI)

This report documents an investigation into the effects of comanagement of low-volume wastes with high-volume coal combustion by-products at the CY site. This is one of 14 sites investigated by EPRI to provide background information to the United States Environmental Protection Agency (EPA) for the 2000 Regulatory Determination on comanagement under the Resource Conservation and Recovery Act (RCRA).

2005-09-19T23:59:59.000Z

409

An Environmental Assessment of Proposed Geothermal Well Testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

This report is an environmental assessment of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. Oil and gas wells in coastal Louisiana have penetrated a potentially productive geothermal zone of abnormally high-pressured aquifers that also yield large volumes of natural gas. To evaluate the extent to which the geothermal-geopressured water can be used as an alternative energy source and to what extent withdrawal of geopressured water can enhance gas production, it is necessary that flow rates, composition and temperature of fluids and gases, recharge characteristics, pressures, compressibilities, and other hydrodynamic and boundary conditions of the reservoir be determined by means of production tests. Tests are further necessary to evaluate and seek solutions to technological problems.

None

1976-03-01T23:59:59.000Z

410

Oil palm vegetation liquor: a new source of phenolic bioactives  

E-Print Network (OSTI)

Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products ...

Sambandan, T. G.

411

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 78, quarter ending March 31, 1994  

Science Conference Proceedings (OSTI)

This report presents descriptions of various research projects and field projects concerned with the enhanced recovery of petroleum. Contract numbers, principal investigators, company names, and project management information is included.

NONE

1995-05-01T23:59:59.000Z

412

Contracts for field projects and supporting research on enhanced oil recovery. Progress review No. 44, quarter ending September 30, 1985  

SciTech Connect

Progress reports are presented for: field projects and supporting research for chemical flooding and gas displacement; supporting research for thermal methods; microbial technology; research assessment technology; and environmental technology.

Not Available

1986-09-01T23:59:59.000Z

413

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 48, Quarter ending September 30, 1986  

SciTech Connect

Progress reports are presented for: (1) chemical flooding (field projects and supporting research); (2) gas displacement (supporting research); (3) thermal methods (supporting research); (4) resource assessment technology; (5) environmental technology; and (5) microbial technology.

Not Available

1987-09-01T23:59:59.000Z

414

NETL: Oil & Natural Gas Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of shallow reservoirs. This makes Umiat and similar fields in northern Alaska attractive exploration and production targets. Little is known about how to produce conventional oil...

415

Oil shale technical data handbook  

SciTech Connect

This is a reference book to provide information for the evaluation of appropriate technology for shale oil development. The oil resource is defined, and the properties of shale and the oil and gas derived from it are listed. Recovery technologies compatible with the particular resource are also described. Discussion of various aspects of shale oil development, such as mining, materials handling, beneficiation, upgrading, waste-water treatment, and spent shale disposal, are also presented. Available design information dealing with maximum module size, operating conditions, yields, utility requirements, etc. is documented. (BLM)

Nowacki, P. (ed.)

1981-01-01T23:59:59.000Z

416

Oil shale: Technology status report  

Science Conference Proceedings (OSTI)

This report documents the status of the US Department of Energy's (DOE) Oil Shale Program as of the end of FY 86. The report consists of (1) a status of oil shale development, (2) a description of the DOE Oil Shale Program, (3) an FY 86 oil shale research summary, and (4) a summary of FY 86 accomplishments. Discoveries were made in FY 86 about the physical and chemical properties and behavior of oil shales, process chemistry and kinetics, in situ retorting, advanced processes, and the environmental behavior and fate of wastes. The DOE Oil Shale Program shows an increasing emphasis on eastern US oil shales and in the development of advanced oil shale processing concepts. With the award to Foster Wheeler for the design of oil shale conceptual plants, the first step in the development of a systems analysis capability for the complete oil shale process has been taken. Unocal's Parachute Creek project, the only commercial oil shale plant operating in the United States, is operating at about 4000 bbl/day. The shale oil is upgraded at Parachute Creek for input to a conventional refinery. 67 refs., 21 figs., 3 tabs.

Not Available

1986-10-01T23:59:59.000Z

417

Field Operations Procedures Manual for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Sampling and Analysis Plan addresses meteorological monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Meteorological monitoring of various climatological parameters (e.g., temperature, wind speed, humidity) will be collected by instruments installed at WAG 6. Data will be recorded electronically at frequencies varying from 5-min intervals to 1-h intervals, dependent upon parameter. The data will be downloaded every 2 weeks, evaluated, compressed, and uploaded into a WAG 6 data base for subsequent use. The meteorological data will be used in water balance calculations in support of the WAG 6 hydrogeological model.

Not Available

1993-12-01T23:59:59.000Z

418

Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

Silva, M.K.

1996-08-01T23:59:59.000Z

419

Contracts for field projects and supporting research on enhanced oil recovery. Progress review quarter ending September 30, 1993  

SciTech Connect

Progress reports are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; and field demonstrations in high-priority reservoir classes. A list of available publications is also included.

Not Available

1994-08-01T23:59:59.000Z

420

Contracts for field projects and supporting research on enhanced oil recovery: Progress review No. 74, Quarter ending March 31, 1993  

SciTech Connect

Accomplishments for the past quarter are presented for the following tasks: chemical flooding--supporting research; gas displacement--supporting research; thermal recovery--supporting research; geoscience technology; resource assessment technology; microbial technology; field demonstrations in high-priority reservoir classes; and novel technology. A list of available publication is also provided.

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "oil field waste" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Oil immobilization program at Sellafield: an innovative approach  

Science Conference Proceedings (OSTI)

Non-standard wastes - those defined as being both hazardous waste under the United Kingdom Hazardous Waste Regulations 2005 and radioactive under the Radioactive Substances Act 1993 - pose particular, unique challenges for radioactive waste management organizations. Treatment and disposal routes for such wastes are limited, in some cases non existent, and generally not cost effective. A non-standard waste of particular concern in the United Kingdom, and indeed on the Sellafield site, is that of radiologically contaminated waste oil. The optioning process for treatment of bulk contaminated waste oil on the Sellafield site has assessed a range of options including incineration, chemical decontamination, physical decontamination and immobilization. Immobilization has proved to be a potentially useful option for oil waste streams that fail to meet waste acceptance criteria for incineration facilities. Experimental development work has been undertaken at Sellafield during 2006 to test the suitability of an innovative technology for the solidification of waste oil with a cross section of waste streams from the site. These trials have demonstrated that this polymer system is able to successfully immobilize a range of aged, chemically and physically diverse contaminated oil waste streams and thus provide a potential solution to the disposal problem posed by this waste stream. (author)

Cassidy, Helen [Sellafield Ltd. (United Kingdom)

2007-07-01T23:59:59.000Z