Sample records for oil field production

  1. On the cost of lost production from Russian oil fields

    SciTech Connect (OSTI)

    Smith, J.L. [Univ. of Houston, TX (United States)

    1995-12-31T23:59:59.000Z

    Russia is now paying heavily for past mismanagement of its major oil fields. Unconventional attempts to maximize short-run extraction, neglect of routine maintenance, and shortages of critical equipment have combined to cause a steep decline in production. This study examines the scope and size of resulting economic losses using an extension of the traditional exponential decline model. Estimates derived from the model indicate that as much as 40% of the potential value of Russian oil reserves has been lost through poor management. 20 refs., 8 figs., 5 tabs.

  2. Peak production in an oil depletion model with triangular field profiles

    E-Print Network [OSTI]

    Stark, Dudley

    Peak production in an oil depletion model with triangular field profiles Dudley Stark School.S.A. would occur between 1965 and 1970. Oil production in the U.S.A. actually peaked in 1970 and has been declining since then. Hubbert used a logistic curve to approximate the rate of oil production. Deffeyes [2

  3. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  4. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30T23:59:59.000Z

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  5. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  6. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  7. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia 

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  8. Water alternating enriched gas injection to enhance oil production and recovery from San Francisco Field, Colombia

    E-Print Network [OSTI]

    Rueda Silva, Carlos Fernando

    2003-01-01T23:59:59.000Z

    The main objectives of this study are to determine the most suitable type of gas for a water-alternating-gas (WAG) injection scheme, the WAG cycle time, and gas injection rate to increase oil production rate and recovery from the San Francisco field...

  9. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08T23:59:59.000Z

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a novel alkaline-steam well completion technique for the containment of the unconsolidated formation sands and control of fluid entry and injection profiles. (5) Installation of a 2100 ft, 14 inch insulated, steam line beneath a harbor channel to supply steam to an island location. (6) Testing and proposed application of thermal recovery technologies to increase oil production and reserves: (a) Performing pilot tests of cyclic steam injection and production on new horizontal wells. (b) Performing pilot tests of hot water-alternating-steam (WAS) drive in the existing steam drive area to improve thermal efficiency. (7) Perform a pilot steamflood with the four horizontal injectors and producers using a pseudo steam-assisted gravity-drainage (SAGD) process. (8) Advanced reservoir management, through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring and evaluation.

  10. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05T23:59:59.000Z

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  11. The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco, Ersan Demiralp, Tahir Cagin, and William A. Goddard, III*

    E-Print Network [OSTI]

    Çagin, Tahir

    The MS-Q Force Field for Clay Minerals: Application to Oil Production Sungu Hwang, Mario Blanco inhibitor oil production chemical. 1. Introduction Molecular modeling studies of clay and related zeolite of water, hydrocarbons, and polar organic compounds such as oil field production chemicals on clay mineral

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08T23:59:59.000Z

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and complete well A-605 in Tar V in the first quarter 2003. Plans have been approved to update the Tar II-A 3-D deterministic reservoir simulation model and run sensitivity cases to evaluate the accelerated oil recovery and reservoir cooling plan. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Well work related to the Tar II-A accelerated oil recovery and reservoir cooling plan began in March 2002 with oil production increasing from 1009 BOPD in the first quarter to 1145 BOPD in the third quarter. Reservoir pressures have been increased during the quarter from 88% to 91% hydrostatic levels in the ''T'' sands and from 91% to 94% hydrostatic levels in the ''D'' sands. Well work during the quarter is described in the Reservoir Management section. The post-steamflood production performance in the Tar V pilot project has been below projections because of wellbore mechanical limitations and the loss of a horizontal producer a second time to sand inflow that are being addressed in the fourth quarter. As the fluid production temperatures exceeded 350 F, our self-imposed temperature limit, the pilot steamflood was converted to a hot waterflood project in June 2001 and converted to cold water injection on April 19, 2002.

  13. Prudhoe Bay Oil Production Optimization: Using Virtual

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 Prudhoe Bay Oil Production Optimization: Using Virtual Intelligence Techniques, Stage One: Neural total field oil production by optimizing the gas discharge rates and pressures at the separation handling capacity and subsequent oil production. 10 YEAR AVERAGE AMBIENT 1990-2000 & 2001, 2002 Averages

  14. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Producer profits are for oil production from known fields,Actual Prudhoe Bay Oil Production, Historical and ModeledKaufmann, R. (1991) “Oil production in the Lower 48 States:

  15. Water issues associated with heavy oil production.

    SciTech Connect (OSTI)

    Veil, J. A.; Quinn, J. J.; Environmental Science Division

    2008-11-28T23:59:59.000Z

    Crude oil occurs in many different forms throughout the world. An important characteristic of crude oil that affects the ease with which it can be produced is its density and viscosity. Lighter crude oil typically can be produced more easily and at lower cost than heavier crude oil. Historically, much of the nation's oil supply came from domestic or international light or medium crude oil sources. California's extensive heavy oil production for more than a century is a notable exception. Oil and gas companies are actively looking toward heavier crude oil sources to help meet demands and to take advantage of large heavy oil reserves located in North and South America. Heavy oil includes very viscous oil resources like those found in some fields in California and Venezuela, oil shale, and tar sands (called oil sands in Canada). These are described in more detail in the next chapter. Water is integrally associated with conventional oil production. Produced water is the largest byproduct associated with oil production. The cost of managing large volumes of produced water is an important component of the overall cost of producing oil. Most mature oil fields rely on injected water to maintain formation pressure during production. The processes involved with heavy oil production often require external water supplies for steam generation, washing, and other steps. While some heavy oil processes generate produced water, others generate different types of industrial wastewater. Management and disposition of the wastewater presents challenges and costs for the operators. This report describes water requirements relating to heavy oil production and potential sources for that water. The report also describes how water is used and the resulting water quality impacts associated with heavy oil production.

  16. HYDROLOGIC CONTROLS ON THE SUBSURFACE TRANSPORT OF OIL-FIELD

    E-Print Network [OSTI]

    in Osage County, Oklahoma. Salt and crude oil from oil well waste pits and accidental releases from oil of water containing high concentrations of dissolved salts is produced as a byproduct of oil production, began a multidisciplinary study of the impact of oil production on the near-field environment. Two oil

  17. Production of Shale Oil 

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    Intensive pre-project feasibility and engineering studies begun in 1979 have produced an outline plan for development of a major project for production of shale oil from private lands in the Piceance Basin in western Colorado. This outline plan...

  18. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31T23:59:59.000Z

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

  19. Oil and Gas Production (Missouri)

    Broader source: Energy.gov [DOE]

    A State Oil and Gas Council regulates and oversees oil and gas production in Missouri, and conducts a biennial review of relevant rules and regulations. The waste of oil and gas is prohibited. This...

  20. Steamflooding projects boost California's crude oil production

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    During the summer and fall of 1981, the first time in more than a decade, US crude oil production in the lower 48 was higher than production in the preceding year. California is leading this resurgence. The state's oil production in October 1981 averaged 1,076,000 bpd, compared with 991,000 bpd in October 1980. Some of the increase comes from production in several offshore fields whose development had been delayed; some is due to greater output from the US Government's petroleum reserve at Elk Hills. However, a big portion of the state's increased production results from large steamdrive projects in heavy-oil fields of the San Joaquin Valley that were set in motion by decontrol of heavy-oil proces in mid-1979. California holds vast reserves of viscous, low-gravity oil in relatively shallow reservoirs. The methods used to produce heavy oil are discussed.

  1. Production of Shale Oil

    E-Print Network [OSTI]

    Loper, R. D.

    1982-01-01T23:59:59.000Z

    and the principal features of a proposed $5 billion project to develop facilities for production of 100,000 barrels per day of synthetic crude from oil shale. Subjects included are resource evaluation, environmental baseline studies, plans for acquisition of permits...

  2. Increasing heavy oil reservers in the Wilmington oil Field through advanced reservoir characterization and thermal production technologies, technical progress report, October 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Hara, S. [Tidelands Oil Production Co., Long Beach, CA (United States)], Casteel, J. [USDOE Bartlesville Project Office, OK (United States)

    1997-05-11T23:59:59.000Z

    The project involves improving thermal recovery techniques in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. using advanced reservoir characterization and thermal production technologies. The existing steamflood in the Tar zone of Fault Block (FB) 11-A has been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing a 2100 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

  3. Oil field management system

    DOE Patents [OSTI]

    Fincke, James R.

    2003-09-23T23:59:59.000Z

    Oil field management systems and methods for managing operation of one or more wells producing a high void fraction multiphase flow. The system includes a differential pressure flow meter which samples pressure readings at various points of interest throughout the system and uses pressure differentials derived from the pressure readings to determine gas and liquid phase mass flow rates of the high void fraction multiphase flow. One or both of the gas and liquid phase mass flow rates are then compared with predetermined criteria. In the event such mass flow rates satisfy the predetermined criteria, a well control system implements a correlating adjustment action respecting the multiphase flow. In this way, various parameters regarding the high void fraction multiphase flow are used as control inputs to the well control system and thus facilitate management of well operations.

  4. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  5. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II.

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state's total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation's energy production and refining capability. California is the recipient and refines most of Alaska's 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  6. Trends in heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Pendergrass, R.A. II

    1992-07-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production and is part of a study being conducted for the US Department of Energy. This report summarizes trends in oil production and refining in Canada. Heavy oil (10{degrees} to 20{degrees} API gravity) production in California has increased from 20% of the state`s total oil production in the early 1940s to 70% in the late 1980s. In each of the three principal petroleum producing districts (Los Angeles Basin, Coastal Basin, and San Joaquin Valley) oil production has peaked then declined at different times throughout the past 30 years. Thermal production of heavy oil has contributed to making California the largest producer of oil by enhanced oil recovery processes in spite of low oil prices for heavy oil and stringent environmental regulation. Opening of Naval Petroleum Reserve No. 1, Elk Hills (CA) field in 1976, brought about a major new source of light oil at a time when light oil production had greatly declined. Although California is a major petroleum-consuming state, in 1989 the state used 13.3 billion gallons of gasoline or 11.5% of US demand but it contributed substantially to the Nation`s energy production and refining capability. California is the recipient and refines most of Alaska`s 1.7 million barrel per day oil production. With California production, Alaskan oil, and imports brought into California for refining, California has an excess of oil and refined products and is a net exporter to other states. The local surplus of oil inhibits exploitation of California heavy oil resources even though the heavy oil resources exist. Transportation, refining, and competition in the market limit full development of California heavy oil resources.

  7. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    AND SOCIAL IMPACTS OF OIL product, product that does notthe quantity of oil products that escapes from pipelines. ”transport of crude oil and petroleum products accounted for

  8. Oil production models with normal rate curves Dudley Stark

    E-Print Network [OSTI]

    Stark, Dudley

    Oil production models with normal rate curves Dudley Stark School of Mathematical Sciences Queen;Abstract The normal curve has been used to fit the rate of both world and U.S.A. oil production sizes are lognormally distributed, and the starting time of the production of a field is approximately

  9. Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field

    SciTech Connect (OSTI)

    McWilliams, Michael

    2001-12-18T23:59:59.000Z

    This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

  10. Applications of advanced petroleum production technology and water alternating gas injection for enhanced oil recovery -- Mattoon Oil Field, Illinois. First quarterly technical progress report, 1993

    SciTech Connect (OSTI)

    Baroni, M.R.

    1993-05-24T23:59:59.000Z

    For work during the first quarter of 1993, American Oil Recovery, Inc. targeted completion of the following specific objectives: Convene meetings of Mattoon Project subcontractors in order to plan and coordinate Project activities. Confirm organizational arrangements and plans for implementation of Mattoon Project. Complete most work on detailed analysis of reservoir geology of productive leases in the Mattoon Project. Identify first Facies Defined Subunit for initial injectivity testing to be commenced near the beginning of the second quarter. Identify additional Facies Defined Subunits for injectivity testing and characterization during the second and third quarters. Award subcontract to the Illinois State Geological Survey and commence work on preparation of a geostatistical model (STRATAMODEL) of more than 100 wells on 1,000 acres within the Mattoon Project Area. Obtain oil samples from wells in the identified Facies Subunit for reservoir rock, fluid, and CO{sub 2} compatibility testing by the Illinois State Geological Survey. Design CO{sub 2} injection pumps and injection monitoring equipment configuration. Obtain bids for required pumps and diesel motor. Accomplishments for this quarter are reported.

  11. Increasing heavy oil reserves in the Wilmington oil field through advanced reservoir characterization and thermal production technologies. Quarterly technical progress report, March 30, 1995--June 30, 1995

    SciTech Connect (OSTI)

    Clarke, D. [Long Beach City Dept. of Oil Properties, CA (United States); Ershaghi, I. [Southern California, CA (United States); Davies, D. [Davies (David K.) and Associates, Kingwood, TX (United States); Phillips, C.; Mondragon, J. [Tidelands Oil Production Company (United States)

    1995-07-28T23:59:59.000Z

    This is the first quarterly technical progress report for the project. Although the contract was awarded on March 30, 1995 and Pre-Award Approval was given on January 26, 1995, the partners of this project initiated work on October 1, 1994. As such, this progress report summarizes the work performed from project inception. The production and injection data, reservoir engineering data, and digitized and normalized log data were all completed sufficiently by the end of the quarter to start work on the basic reservoir engineering and geologic stochastic models. Basic reservoir engineering analysis began June 1 and will continue to March, 1996. Design work for the 5 observation/core holes, oil finger printing of the cored oil sands, and tracers surveys began in January, 1995. The wells will be drilled from July--August, 1995 and tracer injection work is projected to start in October, 1995. A preliminary deterministic 3-D geologic model was completed in June which is sufficient to start work on the stochastic 3-D geologic model. The four proposed horizontal wells (two injectors and two producers) have been designed, equipment has been ordered, and the wells will be drilled from mid-August through September. Four existing steam injection wells were converted to hot water injection in March, 1995. Initial rates were kept low to minimize operational problems. Injection rates will be increased significantly in July.

  12. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    bution of the impacts of oil production and consumption. Theof harmful effects from oil production and use. A criticaland procedural impacts of oil production and consumption

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    like oil production requires some knowledge or assumptionlike oil production requires some knowledge or assumptionAlaska Oil Production We use the standard assumption that

  14. Bakken Shale Oil Production Trends

    E-Print Network [OSTI]

    Tran, Tan

    2012-07-16T23:59:59.000Z

    to study this Type of behavior because of scattering data, which leads to erroneous interpretation for the analysis. These production Types, especially Types I and II will give a new type curve matches for shale oil wells above or below the bubble point....

  15. Crude Oil Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S. DEPARTMENTshort0 U.S.4:4Company LevelCoosProduct:Nov-14

  16. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Oil Production The production of crude oil can generally beNorth Slope crude, Q it is the oil production per perioddiscoveries, production, costs, and prices of crude oil. ”

  17. HP-41C helps predict oil production

    SciTech Connect (OSTI)

    Bixler, B.

    1982-04-01T23:59:59.000Z

    A new program for the HP-41C hand-held programable computer predicts yearly oil production and water-oil ratios (WOR) given the following: (1) barrels original oil-in-place; (2) barrels cumulative oil production at start of the flood or at the beginning of the study if the flood is in progress; (3) percent of original oil-in-place ultimately recovered; (4) WOR at the beginning of the study; (5) WOR at abandonment; and (6) barrels total fluid produced per day. This method assumes that the plot of log WOR vs. CUM oil (cumulative oil to the end of the given year) is linear and that the combined production (withdrawal) rate of oil and water is constant for the life of the flood. Details of the program are given, along with a program listing, an example problem, and a bar code listing.

  18. Scheduling Workover Rigs for Onshore Oil Production

    E-Print Network [OSTI]

    2003-06-23T23:59:59.000Z

    Scheduling Workover Rigs for Onshore Oil. Production. Dario J. Aloise, Daniel Aloise, Caroline T.M. Rocha. Universidade Federal do Rio Grande do Norte,.

  19. Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One: Neural Model Building

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 77659 Prudhoe Bay Oil Production Optimization: Using Virtual intelligence Techniques, Stage One.998 respectively. This is the first phase in the development of a tool to maximize total field oil production capacity and subsequent oil production. Figure 2 illustrates the range of daily average temperatures from

  20. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    included because its heavy oil is not currently technicallya marginal field with mostly heavy oil that maybe should notdelaying investments in heavy oil development. If true, this

  1. Powering the World: Offshore Oil & Gas Production

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Gulf of Mexico's oil and gas production Conclusions ­ p.5/59 #12;Summary of Conclusions. . . The globalPowering the World: Offshore Oil & Gas Production Macondo post-blowout operations Tad Patzek that it may be on call for a further ordering." Technology is a "standing-reserve" of energy for humans

  2. Analysis of stress sensitivity and its influence on oil production from tight reservoirs

    E-Print Network [OSTI]

    Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

    2008-01-01T23:59:59.000Z

    and Its Influence on Oil Production from Tight Reservoirscan affect well oil production. Specifically, pressure-Stress Sensitivity on Oil Production During oil production

  3. OPTIMAL DEVELOPMENT PLANNING OF OFFSHORE OIL AND GAS FIELD

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    , well drilling schedule and production profiles of oil, water and gas in each time period. The model can and how many wells are to be drilled in those fields and in what order, which field to be connected, limitation on the number of wells that can be drilled each year due to availability of the drilling rigs

  4. Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2007-09-17T23:59:59.000Z

    is the use of propane as a steam additive with the purpose of increasing recovery and accelerating oil production. The second process involves the use of a novel production configuration that makes use of a vertical injector and a smart horizontal producer...

  5. Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2007-09-17T23:59:59.000Z

    in an attempt to mitigate the effects of steam override. The experimental model was scaled using the conditions in the San Ardo field in California and crude oil from the same field was used for the tests. Superheated steam at 190 â�� 200�ºC was injected...

  6. Potential Oil Production from the Coastal Plain of the Arctic...

    Gasoline and Diesel Fuel Update (EIA)

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the...

  7. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic...

  8. US Crude Oil Production Surpasses Net Imports | Department of...

    Office of Environmental Management (EM)

    US Crude Oil Production Surpasses Net Imports US Crude Oil Production Surpasses Net Imports Source: Energy Information Administration Short Term Energy Outlook. Chart by Daniel...

  9. Landslide oil field, San Joaquin Valley, California

    SciTech Connect (OSTI)

    Collins, B.P.; March, K.A.; Caballero, J.S.; Stolle, J.M.

    1988-03-01T23:59:59.000Z

    The Landslide field, located at the southern margin of the San Joaquin basin, was discovered in 1985 by a partnership headed by Channel Exploration Company, on a farm out from Tenneco Oil Company. Initial production from the Tenneco San Emidio 63X-30 was 2064 BOPD, making landslide one of the largest onshore discoveries in California during the past decade. Current production is 7100 BOPD from a sandstone reservoir at 12,500 ft. Fifteen wells have been drilled in the field, six of which are water injectors. Production from the Landslide field occurs from a series of upper Miocene Stevens turbidite sandstones that lie obliquely across an east-plunging structural nose. These turbidite sandstones were deposited as channel-fill sequences within a narrowly bounded levied channel complex. Both the Landslide field and the larger Yowlumne field, located 3 mi to the northwest, comprise a single channel-fan depositional system that developed in the restricted deep-water portion of the San Joaquin basin. Information from the open-hole logs, three-dimensional surveys, vertical seismic profiles, repeat formation tester data, cores, and pressure buildup tests allowed continuous drilling from the initial discovery to the final waterflood injector, without a single dry hole. In addition, the successful application of three-dimensional seismic data in the Landslide development program has helped correctly image channel-fan anomalies in the southern Maricopa basin, where data quality and severe velocity problems have hampered previous efforts. New exploration targets are currently being evaluated on the acreage surrounding the Landslide discovery and should lead to an interesting new round of drilling activity in the Maricopa basin.

  10. Field-to-Fuel Performance Testing of Various Biomass Feedstocks: Production and Catalytic Upgrading of Bio-Oil to Refinery Blendstocks (Presentation)

    SciTech Connect (OSTI)

    Carpenter, D.; Westover, T.; Howe, D.; Evans, R.; French, R.; Kutnyakov, I.

    2014-09-01T23:59:59.000Z

    Large-scale, cost-competitive deployment of thermochemical technologies to replace petroleum oil with domestic biofuels will require inclusion of high volumes of low-cost, diverse biomass types into the supply chain. However, a comprehensive understanding of the impacts of feedstock thermo-physical and chemical variability, particularly inorganic matter (ash), on the yield and product distribution

  11. System architecture of offshore oil production systems

    E-Print Network [OSTI]

    Keller, James (James Thomas)

    2008-01-01T23:59:59.000Z

    This thesis presents an approach to applying Systems Architecture methods to the development of large, complex, commercial systems, particularly offshore oil and gas productions systems. The aim of this research was to ...

  12. VEE-0023- In the Matter of Oil Products, Inc.

    Broader source: Energy.gov [DOE]

    On May 13, 1996, Oil Products, Inc. (Oil Products) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Oil...

  13. Worldwide Oil Production Michaelis-Menten Kinetics Correlation and Regression

    E-Print Network [OSTI]

    Watkins, Joseph C.

    Michaelis-Menten Kinetics Worldwide Oil Production Example. The modern history of petroleum began in the 19Worldwide Oil Production Michaelis-Menten Kinetics Topic 4 Correlation and Regression Transformed Variables 1 / 13 #12;Worldwide Oil Production Michaelis-Menten Kinetics Outline Worldwide Oil Production

  14. Hydroprocessing Bio-oil and Products Separation for Coke Production

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2013-04-01T23:59:59.000Z

    Fast pyrolysis of biomass can be used to produce a raw bio-oil product, which can be upgraded by catalytic hydroprocessing to hydrocarbon liquid products. In this study the upgraded products were distilled to recover light naphtha and oils and to produce a distillation resid with useful properties for coker processing and production of renewable, low-sulfur electrode carbon. For this hydroprocessing work, phase separation of the bio-oil was applied as a preparatory step to concentrate the heavier, more phenolic components thus generating a more amenable feedstock for resid production. Low residual oxygen content products were produced by continuous-flow, catalytic hydroprocessing of the phase separated bio-oil.

  15. Remediation of oil field wastes

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.

    1990-01-01T23:59:59.000Z

    Treatment and disposal of drilling muds and hazardous wastes has become a growing concern in the oil and gas industry. Further, past practices involving improper disposal require considerable research and cost to effectively remediate contaminated soils. This paper investigates two case histories describing the treatments employed to handle the liquid wastes involved. Both case histories describe the environmentally safe cleanup operations that were employed. 1 ref., 1 fig., 3 tabs.

  16. Production of hydrogen from oil shale

    SciTech Connect (OSTI)

    Schora, F. C.; Feldkirchner, H. L.; Janka, J. C.

    1985-12-24T23:59:59.000Z

    A process for production of hydrogen from oil shale fines by direct introduction of the oil shale fines into a fluidized bed at temperatures about 1200/sup 0/ to about 2000/sup 0/ F. to obtain rapid heating of the oil shale. The bed is fluidized by upward passage of steam and oxygen, the steam introduced in the weight ratio of about 0.1 to about 10 on the basis of the organic carbon content of the oil shale and the oxygen introduced in less than the stoichiometric quantity for complete combustion of the organic carbonaceous kerogen content of the oil shale. Embodiments are disclosed for heat recovery from the spent shale and heat recovery from the spent shale and product gas wherein the complete process and heat recovery is carried out in a single reaction vessel. The process of this invention provides high conversion of organic carbon component of oil shale and high production of hydrogen from shale fines which when used in combination with a conventional oil shale hydroconversion process results in increased overall process efficiency of greater than 15 percent.

  17. Sea Oil Field Satellite Monitoring: An Opera3onal View

    E-Print Network [OSTI]

    Kuligowski, Bob

    through oil drilling. It is refined and separated, most easily by boiling In the oil industry, the term "North Sea" o`en includes areasSea Oil Field Satellite Monitoring: An Opera3onal View Maurizio

  18. Atomistic Models for the absorption of Oil Production Chemicals on

    E-Print Network [OSTI]

    Goddard III, William A.

    Atomistic Models for the absorption of Oil Production Chemicals on Clay minerals Sungu Hwang, Mario The atomistic simulation of the minerals in oil production Prediction of the performance of the oil production: a model for oil -19 -18 -17 -16 -15 -14 0 0.2 0.4 0.6 0.8 1 Coverage Bindingenergyper adsorbate

  19. Reservoir characterization using oil-production-induced microseismicity, Clinton County, Kentucky

    E-Print Network [OSTI]

    -1- Reservoir characterization using oil-production-induced microseismicity, Clinton County;-2- Abstract Microseismic monitoring tests were conducted from 1993 to 1995 in the Seventy-Six oil field, Clinton County, Kentucky. Oil is produced from low-porosity, fractured carbonate rocks at

  20. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    and deductions for oil company investments in the area. 11979) Capital investment models of the oil and gas industry:total “facilities investment cost” of oil production on the

  1. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    2007). The world will reach peak oil production rates, atenergy security costs, and peak oil as emergencies, we willwhen oil price is high, then the first peak in drilling cost

  2. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    The first well at Prudhoe Bay produced oil on March 12,1968, but the first oil flowed down TAPS in January, 1978.function to define the cost of oil production is necessary.

  3. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    field is unique in its geology, oil properties, and contextmany wells to pump oil faster than the geology is willing tofor oil to flow faster than the predominant geology would

  4. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Economics of Undiscovered Oil and Gas in the Central North1993) Mathematical theory of oil and gas recovery: withapplications to ex-USSR oil and gas fields, Boston: Kluwer

  5. Biodiesel production using waste frying oil

    SciTech Connect (OSTI)

    Charpe, Trupti W. [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Rathod, Virendra K., E-mail: vk.rathod@ictmumbai.edu.in [Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India)

    2011-01-15T23:59:59.000Z

    Research highlights: {yields} Waste sunflower frying oil is successfully converted to biodiesel using lipase as catalyst. {yields} Various process parameters that affects the conversion of transesterification reaction such as temperature, enzyme concentration, methanol: oil ratio and solvent are optimized. {yields} Inhibitory effect of methanol on lipase is reduced by adding methanol in three stages. {yields} Polar solvents like n-hexane and n-heptane increases the conversion of tranesterification reaction. - Abstract: Waste sunflower frying oil is used in biodiesel production by transesterification using an enzyme as a catalyst in a batch reactor. Various microbial lipases have been used in transesterification reaction to select an optimum lipase. The effects of various parameters such as temperature, methanol:oil ratio, enzyme concentration and solvent on the conversion of methyl ester have been studied. The Pseudomonas fluorescens enzyme yielded the highest conversion. Using the P. fluorescens enzyme, the optimum conditions included a temperature of 45 deg. C, an enzyme concentration of 5% and a methanol:oil molar ratio 3:1. To avoid an inhibitory effect, the addition of methanol was performed in three stages. The conversion obtained after 24 h of reaction increased from 55.8% to 63.84% because of the stage-wise addition of methanol. The addition of a non-polar solvent result in a higher conversion compared to polar solvents. Transesterification of waste sunflower frying oil under the optimum conditions and single-stage methanol addition was compared to the refined sunflower oil.

  6. Western Hemisphere Oil Products Balance

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil andBOEWest Virginia

  7. Shale Oil Production Performance from a Stimulated Reservoir Volume

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    .1 Unconventional resources ................................................................................. 1 1.2 Oil shale and shale oil ....................................................................................... 6 1.3 Production from unconventional..., heavy oil, shale gas and shale oil. On the other hand, conventional reservoirs can be produced at economic flow rates and produce economic volumes of oil and gas without large stimulation treatments or any special recovery process. Conventional...

  8. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    DC t Total facilities investment cost of production (capitalaverage of facilities investment cost of production for allThe total “facilities investment cost” of oil production on

  9. Oil production response to in situ electrical resistance heating

    E-Print Network [OSTI]

    McDougal, Fred William

    1987-01-01T23:59:59.000Z

    of the electric power through electrical resistance heating with a very small electromagnetic power absorption component. The oil viscosity decreases as the temperature increases thus stimulating oil production. DEDICATION I would like to dedicate this thesis... PROFILE FOR CASE S-2 INTRODUCTION Oil production can be stimulated by applying electrical power to the formation. The electrical power causes a temperature increase that reduces oil viscosity, resulting in increased oil production rates. Electrical...

  10. COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1

    E-Print Network [OSTI]

    Pantaleone, Jim

    context of Alaska oil production taxes, comparing MAPA and ACES to the original petroleum profits tax (PPT1 COMPARING ALASKA'S OIL PRODUCTION TAXES: INCENTIVES AND ASSUMPTIONS1 Matthew Berman In a recent analysis comparing the current oil production tax, More Alaska Production Act (MAPA, also known as SB 21

  11. A reservoir management study of a mature oil field

    E-Print Network [OSTI]

    Peruzzi, Tave

    1995-01-01T23:59:59.000Z

    to other mature oil fields to make sound engineering and business decisions. I interpreted the geological structure and stratigaphy of the salt dome oil field. Structure, isopach and cross-sectional maps were constructed. Depositional environments...

  12. User cost in oil production

    E-Print Network [OSTI]

    Adelman, Morris Albert

    1990-01-01T23:59:59.000Z

    The assumption of an initial fixed mineral stock is superfluous and wrong. User cost (resource rent) in mineral production is the present value of expected increases in development cost. It can be measured as the difference ...

  13. State of heavy oil production and refining in California

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B. [BDM-Oklahoma, Inc., Bartlesville, OK (United States)

    1995-12-31T23:59:59.000Z

    California is unique in the United States because it has the largest heavy oil (10{degrees} to 20{degrees}API gravity) resource, estimated to be in excess of 40 billion barrels. Of the current 941,543 barrels/day of oil produced in California (14% of the U.S. total), 70% or 625,312 barrels/day is heavy oil. Heavy oil constituted only 20% of California`s oil production in the early 1940s, but development of thermal oil production technology in the 1960s allowed the heavy industry to grow and prosper to the point where by the mid-1980s, heavy oil constituted 70% of the state`s oil production. Similar to the rest of the United States, light oil production in the Los Angeles Basin, Coastal Region, and San Joaquin Valley peaked and then declined at different times throughout the past 30 years. Unlike other states, California developed a heavy oil industry that replaced declining light oil production and increased the states total oil production, despite low heavy oil prices, stringent environmental regulations and long and costly delays in developing known oil resources. California`s deep conversion refineries process the nation`s highest sulfur, lowest API gravity crude to make the cleanest transportation fuels available. More efficient vehicles burning cleaner reformulated fuels have significantly reduced the level of ozone precursors (the main contributor to California`s air pollution) and have improved air quality over the last 20 years. In a state where major oil companies dominate, the infrastructure is highly dependent on the 60% of ANS production being refined in California, and California`s own oil production. When this oil is combined with the small volume of imported crude, a local surplus of marketed oil exists that inhibits exploitation of California`s heavy oil resources. As ANS production declines, or if the export restrictions on ANS sales are lifted, a window of opportunity develops for increased heavy oil production.

  14. Performance of electroless nickel coated steel in oil field environments

    SciTech Connect (OSTI)

    Duncan, R.N.

    1983-01-01T23:59:59.000Z

    Details of test programs to establish the corrosion and erosion resistance of electroless nickel coating in saline/CO/sub 2//H/sub 2/S petroleum production environments at temperatures up to 180/sup 0/C (350 F) are presented, together with actual experience with their use. Data on heat treatment and deposit composition effects on electroless nickel corrosion in oil field services are given.

  15. Performance of Electroless Nickel coatings in oil field environments

    SciTech Connect (OSTI)

    Duncan, R.N.

    1982-01-01T23:59:59.000Z

    Recent experience has shown functional Electroless Nickel to have outstanding resistance to corrosion and erosion in petroleum production facilities. Details of test programs to establish the performance of this coating in saline/CO/sub 2//H/sub 2/S environments at temperatures up to 180 C (350 F) are reported, together with actual experience with their use. Data also are presented on the effect of heat treatment and of deposit composition on the corrosion of Electroless Nickel in oil field services.

  16. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    to maintain oil production as a reservoir is depleted. Weoil wells typically are abandoned well before the reservoirs are depleted.

  17. PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT

    E-Print Network [OSTI]

    Laughlin, Robert B.

    PEAKING OF WORLD OIL PRODUCTION: IMPACTS, MITIGATION, & RISK MANAGEMENT Robert L. Hirsch, SAIC OF WORLD OIL PRODUCTION III. WHY TRANSITION WILL BE TIME CONSUMING IV. LESSONS FROM PAST EXPERIENCE V REMARKS APPENDICES #12;4 EXECUTIVE SUMMARY The peaking of world oil production presents the U

  18. RFID BASED GRAIN AND OIL PRODUCTS TRACEABILITY1

    E-Print Network [OSTI]

    Boyer, Edmond

    RFID BASED GRAIN AND OIL PRODUCTS TRACEABILITY1 AND ITS COMPUTER IMPLEMENTATION Haiyan Hu ,*2 the study of the traceability of grain and oil products. Include the study contents, and a system we developed for traceability of grain and oil products, and the demonstration of the study. The system we

  19. DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT

    E-Print Network [OSTI]

    Foss, Bjarne A.

    DISTRIBUTED OPTIMIZATION AND CONTROL OF OFFSHORE OIL PRODUCTION: THE INTELLIGENT PLATFORM Michael R to distributed optimization and control of offshore oil production systems. The model incorporates a complex pipeline network. Oil and gas production systems are represented as a network of connected hierarchical

  20. Oil and gas field code master list, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-16T23:59:59.000Z

    This document contains data collected through October 1993 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service.

  1. HEAVY AND THERMAL OIL RECOVERY PRODUCTION MECHANISMS

    SciTech Connect (OSTI)

    Anthony R. Kovscek; Louis M. Castanier

    2002-09-30T23:59:59.000Z

    The Stanford University Petroleum Research Institute (SUPRI-A) conducts a broad spectrum of research intended to help improve the recovery efficiency from difficult to produce reservoirs including heavy oil and fractured low permeability systems. Our scope of work is relevant across near-, mid-, and long-term time frames. The primary functions of the group are to conduct direction-setting research, transfer research results to industry, and educate and train students for careers in industry. Presently, research in SUPRI-A is divided into 5 main project areas. These projects and their goals include: (1) Multiphase flow and rock properties--to develop better understanding of the physics of displacement in porous media through experiment and theory. This category includes work on imbibition, flow in fractured media, and the effect of temperature on relative permeability and capillary pressure. (2) Hot fluid injection--to improve the application of nonconventional wells for enhanced oil recovery and elucidate the mechanisms of steamdrive in low permeability, fractured porous media. (3) Mechanisms of primary heavy oil recovery--to develop a mechanistic understanding of so-called ''foamy oil'' and its associated physical chemistry. (4) In-situ combustion--to evaluate the effect of different reservoir parameters on the insitu combustion process. (5) Reservoir definition--to develop and improve techniques for evaluating formation properties from production information. What follows is a report on activities for the past year. Significant progress was made in all areas.

  2. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil 

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  3. Production Forecast, Analysis and Simulation of Eagle Ford Shale Oil

    E-Print Network [OSTI]

    Alotaibi, Basel Z S Z J

    2014-12-02T23:59:59.000Z

    fracturing to liberate the recoverable hydrocarbon reserves. Thousands of wells that have been drilled in the major oil shale formations: Bakken, Permian Basin and Eagle Ford, where oil production peaked in the first few weeks and then showed a sharp...

  4. Mediterranean clonal selections evaluated for modern hedgerow olive oil production in Spain

    E-Print Network [OSTI]

    Tous, Joan; Romero, Agusti; Hermoso, Juan Francisco; Ninot, Antonia

    2011-01-01T23:59:59.000Z

    oil output Cumulative oil production tons/acre 5.68b 5.83bmodern hedgerow olive oil production in Spain Paul M. VossenNinot Traditional olive oil production is limited by its

  5. FOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA.

    E-Print Network [OSTI]

    Reed, W.J.

    size distribution model for estimating oil reserves and for use in forest management under the `natural estimates of oil reserves, and be of use for ecosystem based forest management under the `naturalFOREST FIRES AND OIL FIELDS AS PERCOLATION PHENOMENA. William J. Reed #3; JUNE, 1999. Abstract

  6. Canadian offshore oil production solution gas utilization alternatives

    SciTech Connect (OSTI)

    Wagner, J.V.

    1999-07-01T23:59:59.000Z

    Oil and gas development in the Province of Newfoundland and Labrador is in its early stage and the offshore industry emphasis is almost exclusively on oil production. At the Hibernia field, the Gravity Base Structure (GBS) is installed and the first wells are in production. The Terra Nova project, based on a Floating Production Storage Offloading (FPSO) ship shaped concept, is in its engineering and construction stage and first oil is expected by late 2000. Several other projects, such as Husky's White Rose and Chevron's Hebron, have significant potential for future development in the same area. It is highly probably that these projects will employ the FPSO concept. It is also expected that the solution gas disposal issues of such second generation projects will be of more significance in their regulatory approval process and of such second generation projects will be of more significance in their regulatory approval process and the operators may be forced to look for alternatives to gas reinjection. Three gas utilization alternatives for a FPSO concept based project have been considered and evaluated in this paper: liquefied natural gas (LNG), compressed natural gas (CNG), and gas-to-liquids conversion (GTL). The evaluation and the relative ranking of these alternatives is based on a first pass screening type of study which considers the technical and economical merits of each alternative. Publicly available information and in-house data, compiled within Fluor Daniel's various offices, was used to establish the basic parameters.

  7. Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs

    E-Print Network [OSTI]

    Van den Hof, Paul

    Hierarchical Economic Optimization of Oil Production from Petroleum Reservoirs Gijs M. van Essen-dirk.jansen@shell.com). Abstract: In oil production waterflooding is a popular recovery technology, which involves the injection daily production is generally neglected. To resolve this, a hierarchical optimization structure

  8. Market analysis of shale oil co-products. Appendices

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    Data are presented in these appendices on the marketing and economic potential for soda ash, aluminia, and nahcolite as by-products of shale oil production. Appendices 1 and 2 contain data on the estimated capital and operating cost of an oil shales/mineral co-products recovery facility. Appendix 3 contains the marketing research data.

  9. Potential Oil Production from the Coastal Plain of the Arctic...

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 1. Overview of the Arctic National Wildlife Refuge Background The Arctic...

  10. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent...

  11. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000,...

  12. Conversion Technologies for Advanced Biofuels - Bio-Oil Production...

    Broader source: Energy.gov (indexed) [DOE]

    International report-out at the CTAB webinar on Conversion Technologies for Advanced Biofuels - Bio-Oil Production. ctabwebinarbiooilsproduction.pdf More Documents &...

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    We appended future oil price projections from the Energyfunctional form of price projection (personal communication,producers using a fixed price projection in their production

  14. Oil production from thin oil columns subject to water and gas coning 

    E-Print Network [OSTI]

    Chai, Kwok Kit

    1981-01-01T23:59:59.000Z

    OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

  15. Oil production from thin oil columns subject to water and gas coning

    E-Print Network [OSTI]

    Chai, Kwok Kit

    1981-01-01T23:59:59.000Z

    OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO MATER AND GAS CONING A Thesis by KMOK KIT CHAI Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1981... Major Subject: Petroleum Engineering OIL PRODUCTION FROM THIN OIL COLUMNS SUBJECT TO WATER AND GAS CONING A Thesis by KWOK KIT CHAI Approved as to style and content by airman of o t ee Member Member Head o Department May 1981 ABSTRACT Oil...

  16. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  17. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01T23:59:59.000Z

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  18. Impacts of the Venezuelan Crude Oil Production Loss

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  19. Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery

    E-Print Network [OSTI]

    Huff, Breanna

    2014-08-31T23:59:59.000Z

    in the sampled location. Initial production of early wells ranged from 800 to 2,000 barrels of oil and 300,000 to 500,000 cubic meters of gas daily (Cooperative Refinery Association, 1949). The majority of wells, however, initially produced from 200 to 400... to 15 barrels (Cooperative Refinery Association, 1949). This decrease in productivity led to the undertaking of secondary methods to repressure the reservoir to enhance oil recovery. Water flooding of the Wellington field was initiated in February 1953...

  20. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01T23:59:59.000Z

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  1. Life-Cycle Assessment of Pyrolysis Bio-Oil Production

    SciTech Connect (OSTI)

    Steele, Philp; Puettmann, Maureen E.; Penmetsa, Venkata Kanthi; Cooper, Jerome E.

    2012-02-01T23:59:59.000Z

    As part ofthe Consortium for Research on Renewable Industrial Materials' Phase I life-cycle assessments ofbiofuels, lifecycle inventory burdens from the production of bio-oil were developed and compared with measures for residual fuel oil. Bio-oil feedstock was produced using whole southern pine (Pinus taeda) trees, chipped, and converted into bio-oil by fast pyrolysis. Input parameters and mass and energy balances were derived with Aspen. Mass and energy balances were input to SimaPro to determine the environmental performance of bio-oil compared with residual fuel oil as a heating fuel. Equivalent functional units of 1 MJ were used for demonstrating environmental preference in impact categories, such as fossil fuel use and global warming potential. Results showed near carbon neutrality of the bio-oil. Substituting bio-oil for residual fuel oil, based on the relative carbon emissions of the two fuels, estimated a reduction in CO2 emissions by 0.075 kg CO2 per MJ of fuel combustion or a 70 percent reduction in emission over residual fuel oil. The bio-oil production life-cycle stage consumed 92 percent of the total cradle-to-grave energy requirements, while feedstock collection, preparation, and transportation consumed 4 percent each. This model provides a framework to better understand the major factors affecting greenhouse gas emissions related to bio-oil production and conversion to boiler fuel during fast pyrolysis.

  2. Oil and Gas Field Code Master List 1990

    SciTech Connect (OSTI)

    Not Available

    1991-01-04T23:59:59.000Z

    This is the ninth annual edition of the Energy Information Administration's (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1990 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. There are 54,963 field records in this year's Oil and Gas Field Code Master List (FCML). This amounts to 467 more than in last year's report. As it is maintained by EIA, the Master List includes: Field records for each state and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides;field records for each alias field name; fields crossing state boundaries that may be assigned different names by the respective state naming authorities.

  3. Forecasting future oil production in Norway and the UK: a general improved methodology

    E-Print Network [OSTI]

    Fievet, Lucas; Cauwels, Peter; Sornette, Didier

    2014-01-01T23:59:59.000Z

    We present a new Monte-Carlo methodology to forecast the crude oil production of Norway and the U.K. based on a two-step process, (i) the nonlinear extrapolation of the current/past performances of individual oil fields and (ii) a stochastic model of the frequency of future oil field discoveries. Compared with the standard methodology that tends to underestimate remaining oil reserves, our method gives a better description of future oil production, as validated by our back-tests starting in 2008. Specifically, we predict remaining reserves extractable until 2030 to be 188 +/- 10 million barrels for Norway and 98 +/- 10 million barrels for the UK, which are respectively 45% and 66% above the predictions using the standard methodology.

  4. NATCOR -Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study Margaret Oil produces three products: gasoline, jet fuel, and heating oil. To produce these products, Margaret purchases crude oil at a price of £11 per barrel. Each day to produce gasoline or jet fuel. Distilled oil can be used to produce all three products. The octane level

  5. NATCOR -Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel, and heating oil. The average

    E-Print Network [OSTI]

    Hall, Julian

    NATCOR - Xpress case study (advanced) Margaret Oil produces three products: gasoline, jet fuel.5 for heating oil. To produce these products, Margaret can purchase two types of crude oil: crude 1 (at £12 per Jet fuel Heating oil Minimum octane 8.5 7 4.5 Price (£) 18 16 14 Minimum production 2500 3000 3500

  6. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum form well-rounded petroleum engineers, and deliver science and technology to O&G Industry, while trying that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12

  7. Oil

    E-Print Network [OSTI]

    unknown authors

    Waste oils offer a tremendous recycling potential. An important, dwindling natural resource of great economic and industrial value, oil products are a cornerstone of our modern industrial society. Petroleum is processed into a wide variety of products: gasoline, fuel oil, diesel oil, synthetic rubber, solvents, pesticides, synthetic fibres, lubricating oil, drugs and many more ' (see Figure 1 1. The boilers of Amercian industries presently consume about 40 % of the used lubricating oils collected. In Ontario, the percentage varies from 20 to 30%. Road oiling is the other major use of collected waste oils. Five to seven million gallons (50-70 % of the waste oil col1ected)is spread on dusty Ontario roads each summer. The practice is both a wasteful use of a dwindling resource and an environmental hazard. The waste oil, with its load of heavy metals, particularly lead, additives including dangerous polynuclear aromatics and PCBs, is carried into the natural environment by runoff and dust to contaminate soils and water courses.2 The largest portion of used oils is never collected, but disappears into sewers, landfill sites and backyards. In Ontario alone, approximately 22 million gallons of potentially recyclable lube oil simply vanish each year. While oil recycling has ad-114 Oil

  8. Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns

    SciTech Connect (OSTI)

    Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

    1996-06-01T23:59:59.000Z

    Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

  9. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production . . . . . . . . . . . . . . . . . . . . . . . . . . .Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and

  10. Calculator simplifies field production forecasting

    SciTech Connect (OSTI)

    Bixler, B.

    1982-05-01T23:59:59.000Z

    A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.

  11. Oil and Gas field code master list 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This is the fourteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1995 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the US. The Field Code Index, a listing of all field names and the States in which they occur, ordered by field code, has been removed from this year`s publications to reduce printing and postage costs. Complete copies (including the Field Code Index) will be available on the EIA CD-ROM and the EIA World-Wide Web Site. Future editions of the complete Master List will be available on CD-ROM and other electronic media. There are 57,400 field records in this year`s Oil and Gas Field Code Master List. As it is maintained by EIA, the Master List includes the following: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (see definition of alias below); and fields crossing State boundaries that may be assigned different names by the respective State naming authorities. Taking into consideration the double-counting of fields under such circumstances, EIA identifies 46,312 distinct fields in the US as of October 1995. This count includes fields that no longer produce oil or gas, and 383 fields used in whole or in part for oil or gas Storage. 11 figs., 6 tabs.

  12. Market analysis of shale oil co-products. Summary report

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    This study examines the potential for separating, upgrading and marketing sodium mineral co-products together with shale oil production. The co-products investigated are soda ash and alumina which are derived from the minerals nahcolite and dawsonite. Five cases were selected to reflect the variance in mineral and shale oil content in the identified resource. In the five cases examined, oil content of the shale was varied from 20 to 30 gallons per ton. Two sizes of facilities were analyzed for each resource case to determine economies of scale between a 15,000 barrel per day demonstration unit and a 50,000 barrel per day full sized plant. Three separate pieces of analysis were conducted in this study: analysis of manufacturing costs for shale oil and co-products; projection of potential world markets for alumina, soda ash, and nahcolite; and determination of economic viability and market potential for shale co-products.

  13. Enhanced Microbial Pathways for Methane Production from Oil Shale

    SciTech Connect (OSTI)

    Paul Fallgren

    2009-02-15T23:59:59.000Z

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  14. Basement rift control on oil production in eastern Kansas

    SciTech Connect (OSTI)

    Gustavson, J.B.

    1983-08-01T23:59:59.000Z

    Improved understanding of the central North American rift system (CNARS) offers a new interpretation of the basement structure in certain parts of the Mid-Continent. In eastern Kansas, basement structure can be shown to control oil production from some producing fields. Structural control includes rotated blocks along faults created by horst and graben tectonics typically associated with rift zones. A distinctive gravity signature, the Mid-Continent geophysical anomaly (MGA) is related directly to the CNARS and provides good data for interpretation of the basement structure. Some oil fields can be correlated directly with gravity-interpreted basement structure. Aeromagnetic and Landsat information, combined with the gravity data, further define exploration targets along the general trend of basement features. Migration of thermally matured hydrocarbons into pre-Pennsylvanian, rift generated traps in the ancestral north Kansas basin is postulated. The Nemaha ridge subsequently divided that basin into two smaller basins, the present Salina and Forest City basins. Several exploration targets could exist in this area, with the Arbuckle, Simpson, and Viola units being primary targets. The source of hydrocarbons also may lie in the deep but distant Anadorko basin. An additional totally untested hydrocarbons potential exists in the deep Precambrian/Cambrian sedimentary subbasins created along the flanks of the CNARS. Recent data points to sedimentary columns with depths of approximately 15,000 ft (4500 m) which might be hosts to gas reserves similar to the Rome trough potential of the Appalachian region.

  15. Economic Implementation and Optimization of Secondary Oil Recovery Process: St. Mary West Field, Lafayette County, Arkansas

    SciTech Connect (OSTI)

    Brock P.E., Cary D.

    2003-03-10T23:59:59.000Z

    The purpose of this study was to investigate the economic appropriateness of several enhanced oil recovery processes that are available to a small mature oil field located in southwest Arkansas and to implement the most economic efficient process evaluated. The State of Arkansas natural resource laws require that an oilfield is to be unitized before conducting a secondary recovery project. This requires all properties that can reasonably be determined to include the oil productive reservoir must be bound together as one common lease by a legal contract that must be approved to be fair and equitable to all property owners within the proposed unit area.

  16. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field 

    E-Print Network [OSTI]

    Chavez Ballesteros, Luis Eladio

    2005-02-17T23:59:59.000Z

    Quantifying infill potential in marginal oil fields often involves several challenges. These include highly heterogeneous reservoir quality both horizontally and vertically, incomplete reservoir databases, considerably ...

  17. Update on cavern disposal of NORM-contaminated oil field wastes.

    SciTech Connect (OSTI)

    Veil, J. A.

    1998-09-22T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive material (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. Argonne National Laboratory has previously evaluated the feasibility, legality, risk and economics of disposing of nonhazardous oil field wastes, other than NORM waste, in salt caverns. Cavern disposal of nonhazardous oil field waste, other than NORM waste, is occurring at four Texas facilities, in several Canadian facilities, and reportedly in Europe. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns as well. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, a review of federal regulations and regulations from several states indicated that there are no outright prohibitions against NORM disposal in salt caverns or other Class II wells, except for Louisiana which prohibits disposal of radioactive wastes or other radioactive materials in salt domes. Currently, however, only Texas and New Mexico are working on disposal cavern regulations, and no states have issued permits to allow cavern disposal of NORM waste. On the basis of the costs currently charged for cavern disposal of nonhazardous oil field waste (NOW), NORM waste disposal in caverns is likely to be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  18. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments

    SciTech Connect (OSTI)

    Willhite, G.P.; Green, D.W.; McCool, S.

    2001-03-28T23:59:59.000Z

    Gelled polymer treatments were applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. Procedures were developed to determine the weight-average molecular weight and average size of polyacrylamide samples in aqueous solutions. Sample preparation techniques were key to achieving reproducible results.

  19. An innovative concept for deep water oil production platform design 

    E-Print Network [OSTI]

    Racine, Florian

    1994-01-01T23:59:59.000Z

    As more oil and gas are discovered in deep water, the offshore industry has become increasingly interested in the design of deep water offshore production facilities. A new design concept tentatively called FPSOT (Floating ...

  20. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

  1. Montana Oil and Natural Gas Production Tax Act (Montana)

    Broader source: Energy.gov [DOE]

    The State of Montana imposes a quarterly tax on the gross taxable value of oil and natural gas production. This tax replaces several previous taxes, simplifying fees and rates as well as compliance...

  2. The U.S. Oil and Natural Gas Production Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Natural Gas Production Outlook for PRG Energy Outlook Conference September 22, 2014 by Adam Sieminski, Administrator 0 20 40 60 80 100 120 1980 1985 1990 1995 2000 2005...

  3. Heavy and Thermal Oil Recovery Production Mechanisms, SUPRI TR-127

    SciTech Connect (OSTI)

    Kovscek, Anthony R.; Brigham, William E.; Castanier, Louis M.

    2001-09-07T23:59:59.000Z

    The program spans a spectrum of topics and is divided into five categories: (i) multiphase flow and rock properties, (ii) hot fluid injection, (iii) primary heavy-oil production, (iv) reservoir definition, and (v) in-situ combustion.

  4. Largest US oil and gas fields, August 1993

    SciTech Connect (OSTI)

    Not Available

    1993-08-06T23:59:59.000Z

    The Largest US Oil and Gas Fields is a technical report and part of an Energy Information Administration (EIA) series presenting distributions of US crude oil and natural gas resources, developed using field-level data collected by EIA`s annual survey of oil and gas proved reserves. The series` objective is to provide useful information beyond that routinely presented in the EIA annual report on crude oil and natural gas reserves. These special reports also will provide oil and gas resource analysts with a fuller understanding of the nature of US crude oil and natural gas occurrence, both at the macro level and with respect to the specific subjects addressed. The series` approach is to integrate EIA`s crude oil and natural gas survey data with related data obtained from other authoritative sources, and then to present illustrations and analyses of interest to a broad spectrum of energy information users ranging from the general public to oil and gas industry personnel.

  5. Can nonhazardous oil field wastes be disposed of in salt caverns?

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01T23:59:59.000Z

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal -of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  6. New information on disposal of oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.

    1996-10-01T23:59:59.000Z

    Solution-mined salt caverns have been used for many years for storing hydrocarbon products. This paper summarizes an Argonne National Laboratory report that reviews the legality, technical suitability, and feasibility of disposing of nonhazardous oil and gas exploration and production wastes in salt caverns. An analysis of regulations indicated that there are no outright regulatory prohibitions on cavern disposal of oil field wastes at either the federal level or in the 11 oil-producing states that were studied. There is no actual field experience on the long-term impacts that might arise following closure of waste disposal caverns. Although research has found that pressures will build-up in a closed cavern, none has specifically addressed caverns filled with oil field wastes. More field research on pressure build-up in closed caverns is needed. On the basis of preliminary investigations, we believe that disposal of oil field wastes in salt caverns is legal and feasible. The technical suitability of the practice depends on whether the caverns are well-sited and well-designed, carefully operated, properly closed, and routinely monitored.

  7. Vegetable Oil from Leaves and Stems: Vegetative Production of Oil in a C4 Crop

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    PETRO Project: Arcadia Biosciences, in collaboration with the University of California-Davis, is developing plants that produce vegetable oil in their leaves and stems. Ordinarily, these oils are produced in seeds, but Arcadia Biosciences is turning parts of the plant that are not usually harvested into a source of concentrated energy. Vegetable oil is a concentrated source of energy that plants naturally produce and is easily separated after harvest. Arcadia Biosciences will isolate traits that control oil production in seeds and transfer them into leaves and stems so that all parts of the plants are oil-rich at harvest time. After demonstrating these traits in a fast-growing model plant, Arcadia Biosciences will incorporate them into a variety of dedicated biofuel crops that can be grown on land not typically suited for food production

  8. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery

    SciTech Connect (OSTI)

    M.J. McInerney; R.M. Knapp; Kathleen Duncan; D.R. Simpson; N. Youssef; N. Ravi; M.J. Folmsbee; T.Fincher; S. Maudgalya; Jim Davis; Sandra Weiland

    2007-09-30T23:59:59.000Z

    The long-term economic potential for enhanced oil recovery (EOR) is large with more than 300 billion barrels of oil remaining in domestic reservoirs after conventional technologies reach their economic limit. Actual EOR production in the United States has never been very large, less than 10% of the total U. S. production even though a number of economic incentives have been used to stimulate the development and application of EOR processes. The U.S. DOE Reservoir Data Base contains more than 600 reservoirs with over 12 billion barrels of unrecoverable oil that are potential targets for microbially enhanced oil recovery (MEOR). If MEOR could be successfully applied to reduce the residual oil saturation by 10% in a quarter of these reservoirs, more than 300 million barrels of oil could be added to the U.S. oil reserve. This would stimulate oil production from domestic reservoirs and reduce our nation's dependence on foreign imports. Laboratory studies have shown that detergent-like molecules called biosurfactants, which are produced by microorganisms, are very effective in mobilizing entrapped oil from model test systems. The biosurfactants are effective at very low concentrations. Given the promising laboratory results, it is important to determine the efficacy of using biosurfactants in actual field applications. The goal of this project is to move biosurfactant-mediated oil recovery from laboratory investigations to actual field applications. In order to meet this goal, several important questions must be answered. First, it is critical to know whether biosurfactant-producing microbes are present in oil formations. If they are present, then it will be important to know whether a nutrient regime can be devised to stimulate their growth and activity in the reservoir. If biosurfactant producers are not present, then a suitable strain must be obtained that can be injected into oil reservoirs. We were successful in answering all three questions. The specific objectives of the project were (1) to determine the prevalence of biosurfactant producers in oil reservoirs, and (2) to develop a nutrient regime that would stimulate biosurfactant production in the oil reservoir.

  9. Regulated water production to control water coning in oil wells

    E-Print Network [OSTI]

    Sim?ha, I?s?vara

    1975-01-01T23:59:59.000Z

    REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Petroleum Engineering REGULATED WATER PRODUCTION TO CONTROL WATER CONING IN OIL WELLS A Thesis by ISHWAR SINGH Approved as to style and content by (Chairman of Committee) (Membe ) (Head of Departmen lVlemb ) May 1975 ( I ABST RACT...

  10. UONPR No. 1, Elk Hills, 26R Reservoir, Elk Hills oil and gas field, Kern County, California: Management Review: Surface operations and measurements of production and injection volumes

    SciTech Connect (OSTI)

    Not Available

    1987-01-01T23:59:59.000Z

    Evans, Carey and Crozier was given the task to conduct a Management Review of the Surface Operations of the 26R Reservoir in UONPR No. 1, Elk Hills field, Kern County, California. The MER strategy for this reservoir is to maintain pressure, and toward this end, gas injection volumes are scheduled to amount to 110% of calculated withdrawals. In spite of this, however, reservoir pressure continues to decline. The purpose of this study was, therefore, to determine if, and to what extent, field operating practices and accounting procedures may be contributing to this dilemma and to make appropriate recommendations pertaining to correcting any deficiencies which may have been found.

  11. Oil and gas field code master list 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    This is the thirteenth annual edition of the Energy Information Administration`s (EIA) Oil and Gas Field Code Master List. It reflects data collected through October 1994 and provides standardized field name spellings and codes for all identified oil and/or gas fields in the United States. The master field name spellings and codes are to be used by respondents when filing the following Department of Energy (DOE) forms: Form EIA-23, {open_quotes}Annual Survey of Domestic Oil and Gas Reserves,{close_quotes} filed by oil and gas well operators (field codes are required from larger operators only); Forms FERC 8 and EIA-191, {open_quotes}Underground Gas Storage Report,{close_quotes} filed by natural gas producers and distributors who operate underground natural gas storage facilities. Other Federal and State government agencies, as well as industry, use the EIA Oil and Gas Field Code Master List as the standard for field identification. A machine-readable version of the Oil and Gas Field Code Master List is available from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4650. In order for the Master List to be useful, it must be accurate and remain current. To accomplish this, EIA constantly reviews and revises this list. The EIA welcomes all comments, corrections, and additions to the Master List. All such information should be given to the EIA Field Code Coordinator at (214) 953-1858. EIA gratefully acknowledges the assistance provides by numerous State organizations and trade associations in verifying the existence of fields and their official nomenclature.

  12. Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak?

    E-Print Network [OSTI]

    Ito, Garrett

    Available online at www.sciencedirect.com Future world oil production: growth, plateau, or peak? Larry Hughes and Jacinda Rudolph With the exception of two oil shocks in the 1970s, world oil production that production will increase to about 96 million barrels a day. If this target is met, world oil production

  13. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. [Jurassic Smackover Formation

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  14. Establishment of an oil and gas database for increased recovery and characterization of oil and gas carbonate reservoir heterogeneity. Appendix 1, Volume 1

    SciTech Connect (OSTI)

    Kopaska-Merkel, D.C.; Moore, H.E. Jr.; Mann, S.D.; Hall, D.R.

    1992-06-01T23:59:59.000Z

    This volume contains maps, well logging correlated to porosity and permeability, structural cross section, graph of production history, porosity vs. natural log permeability plot, detailed core log, paragenetic sequence and reservoir characterization sheet of the following fields in southwest Alabama: Appleton oil field; Barnett oil field; Barrytown oil field; Big Escambia Creek gas and condensate field; Blacksher oil field; Broken Leg Creed oil field; Bucatunna Creed oil field; Chappell Hill oil field; Chatom gas and condensate field; Choctaw Ridge oil field; Chunchula gas and condensate field; Cold Creek oil field; Copeland gas and condensate field; Crosbys Creed gas and condensate field; and East Barnett oil field. (AT)

  15. Oil and gas field code master list 1997

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    The Oil and Gas Field Code Master List 1997 is the sixteenth annual listing of all identified oil and gas fields in the US. It is updated with field information collected through October 1997. The purpose of this publication is to provide unique, standardized codes for identification of domestic fields. Use of these field codes fosters consistency of field identification by government and industry. As a result of their widespread adoption they have in effect become a national standard. The use of field names and codes listed in this publication is required on survey forms and other reports regarding field-specific data collected by EIA. There are 58,366 field records in this year`s FCML, 437 more than last year. The FCML includes: field records for each State and county in which a field resides; field records for each offshore area block in the Gulf of Mexico in which a field resides; field records for each alias field name (definition of alias is listed); fields crossing State boundaries that may be assigned different names by the respective State naming authorities. This report also contains an Invalid Field Record List of 4 records that have been removed from the FCML since last year`s report. These records were found to be either technically incorrect or to represent field names which were never recognized by State naming authorities.

  16. Unitizing and waterflooding the California Yowlumne Oil Field

    SciTech Connect (OSTI)

    Burzlaff, A.A.

    1983-03-01T23:59:59.000Z

    The Yowlumne field, located at the southern end of the San Joaquin Valley of California, is one of the largest new onshore oil fields discovered in California in the past twenty years. The field, at an average depth of 12,200', has produced over 42 million barrels of oil since its discovery in 1974. In May, 1982, a portion of the Yowlumne field was unitized and called Yowlumne Unit ''B''. Nine operators and about 160 royalty owners cooperated to form this unit. A two phase unitization formula based on remaining primary and initial hydrocarbon pore volume was used to form Unit ''B''. A secondary waterflood project is being implemented which is estimated to increase oil recovery by some 25 million barrels.

  17. Power Plays: Geothermal Energy In Oil and Gas Fields

    Broader source: Energy.gov [DOE]

    The SMU Geothermal Lab is hosting their 7th international energy conference and workshop Power Plays: Geothermal Energy in Oil and Gas Fields May 18-20, 2015 on the SMU Campus in Dallas, Texas. The two-day conference brings together leaders from the geothermal, oil and gas communities along with experts in finance, law, technology, and government agencies to discuss generating electricity from oil and gas well fluids, using the flare gas for waste heat applications, and desalinization of the water for project development in Europe, China, Indonesia, Mexico, Peru and the US. Other relevant topics include seismicity, thermal maturation, and improved drilling operations.

  18. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect (OSTI)

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01T23:59:59.000Z

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  19. Polarity characterization of crude oils predicts treatment trends in field development

    SciTech Connect (OSTI)

    Andrade Bruening, I.M.R. de

    1995-11-01T23:59:59.000Z

    A method for determining crude oil polarity using inverse gas chromatography proved successful for classifying crudes as well as for assessing their ability to form stable emulsions with water. Polarity determinations have been applied to the formation test crude oil samples collected in Albacora and Marlim deepwater fields of the Campos Basin, Rio de Janeiro, Brazil. The results have been compared with the polarities of the first produced crudes of the Basin and showed that the emulsion separation problems tend to increase. Polarity results provided substantial data to help production field development decisions.

  20. Expectations for Oil Shale Production (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    Oil shales are fine-grained sedimentary rocks that contain relatively large amounts of kerogen, which can be converted into liquid and gaseous hydrocarbons (petroleum liquids, natural gas liquids, and methane) by heating the rock, usually in the absence of oxygen, to 650 to 700 degrees Fahrenheit (in situ retorting) or 900 to 950 degrees Fahrenheit (surface retorting). (Oil shale is, strictly speaking, a misnomer in that the rock is not necessarily a shale and contains no crude oil.) The richest U.S. oil shale deposits are located in Northwest Colorado, Northeast Utah, and Southwest Wyoming. Currently, those deposits are the focus of petroleum industry research and potential future production. Among the three states, the richest oil shale deposits are on federal lands in northwest Colorado.

  1. Peaking of world oil production: Impacts, mitigation, & risk management

    SciTech Connect (OSTI)

    Hirsch, R.L. (SAIC); Bezdek, Roger (MISI); Wendling, Robert (MISI)

    2005-02-01T23:59:59.000Z

    The peaking of world oil production presents the U.S. and the world with an unprecedented risk management problem. As peaking is approached, liquid fuel prices and price volatility will increase dramatically, and, without timely mitigation, the economic, social, and political costs will be unprecedented. Viable mitigation options exist on both the supply and demand sides, but to have substantial impact, they must be initiated more than a decade in advance of peaking.... The purpose of this analysis was to identify the critical issues surrounding the occurrence and mitigation of world oil production peaking. We simplified many of the complexities in an effort to provide a transparent analysis. Nevertheless, our study is neither simple nor brief. We recognize that when oil prices escalate dramatically, there will be demand and economic impacts that will alter our simplified assumptions. Consideration of those feedbacks will be a daunting task but one that should be undertaken. Our aim in this study is to-- • Summarize the difficulties of oil production forecasting; • Identify the fundamentals that show why world oil production peaking is such a unique challenge; • Show why mitigation will take a decade or more of intense effort; • Examine the potential economic effects of oil peaking; • Describe what might be accomplished under three example mitigation scenarios. • Stimulate serious discussion of the problem, suggest more definitive studies, and engender interest in timely action to mitigate its impacts.

  2. Opportunities to improve oil productivity in unstructured deltaic reservoirs

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

  3. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18T23:59:59.000Z

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  4. INCREASED OIL RECOVERY FROM MATURE OIL FIELDS USING GELLED POLYMER TREATMENTS

    SciTech Connect (OSTI)

    G.P. Willhite; D.W. Green; C.S. McCool

    2003-05-01T23:59:59.000Z

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a three-year research program aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production. The work focused on the gel system composed of polyacrylamide and chromium acetate. The molar mass of the polymer was about six million. Chromium(III) acetate reacted and formed crosslinks between polymer molecules. The crosslinked polymer molecules, or pre-gel aggregates, combine and grow to eventually form a 3-dimensional gel. A fundamental study to characterize the formation and growth of pre-gel aggregates was conducted. Two methods, flow field-flow fractionation (FFFF) and multi-angle laser light scattering (MALLS) were used. Studies using FFFF were inconclusive. Data taken using MALLS showed that at the gel time the average molar mass of gel aggregates increased by a factor of about three while the average size increase was approximately 50%. Increased acetate concentration in the gelant increases the gel time. The in situ performance of an added-acetate system was investigated to determine the applicability for in-depth treatments. Increased acetate concentrations delayed the development of increased flow resistance during gelant injection in short sandpacks. The development of increased flow resistance (in situ gelation) was extended from 2 to 34 days by increasing the acetate-to-chromium ratio from 38 to 153. In situ gelation occurred at a time that was approximately 22% of the bulk gelation time. When carbonate rocks are treated with gel, chromium retention in the rock may limit in-depth treatment. Chromium retention due to precipitation was investigated by flowing chromium acetate solutions through carbonate rock. Chromium precipitated faster in the rocks than in beaker experiments at similar conditions. A mathematical model previously developed fit the precipitation data reasonably well. The stability of gels when subjected to stress was investigated by experiments with gels placed in tubes and in laboratory-scale fractures. Rupture pressures for gels placed in small diameter tubes were correlated with the ratio of tube length to tube ID. In fractures, fluid leakoff from the fracture to adjacent matrix rock affected gel formation and gel stability in a positive way. Disproportionate permeability reduction (DPR) was studied in unconsolidated sandpacks and in Berea sandstone cores. A conceptual model was developed to explain the presence of DPR. The effect of a pressure gradient, imposed by injection of oil or brine, on the permeability of gel-treated cores was investigated. DPR increased significantly as the pressure gradient was decreased. The magnitude of the pressure gradient had a much larger effect on water permeability than on oil permeability.

  5. Taxation of oil and gas payments received independent of production

    SciTech Connect (OSTI)

    Fambrough, J.

    1983-06-01T23:59:59.000Z

    Several economic incentives are offered to mineral owners for entering into an oil and gas lease. These are: (1) a bonus; (2) a delay rental; (3) a royalty. This article is intended to aid in the understanding of the tax treatment for these oil and gas payments, received independent of production, in order to avoid any tax penalties and to elucidate a tax-minimization strategy. 11 references, 7 tables. (NLG)

  6. Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities

    E-Print Network [OSTI]

    Taylor, James H.

    Modeling and Control of Three-Phase Gravity Separators in Oil Production Facilities Atalla F. Sayda and James H. Taylor Abstract-- Oil production facilities exhibit complex and challenging dynamic behavior simplicity. I. INTRODUCTION The function of an oil production facility is to separate the oil well stream

  7. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-10T23:59:59.000Z

    Salt caverns can be formed in underground salt formations incidentally as a result of mining or intentionally to create underground chambers for product storage or waste disposal. For more than 50 years, salt caverns have been used to store hydrocarbon products. Recently, concerns over the costs and environmental effects of land disposal and incineration have sparked interest in using salt caverns for waste disposal. Countries using or considering using salt caverns for waste disposal include Canada (oil-production wastes), Mexico (purged sulfates from salt evaporators), Germany (contaminated soils and ashes), the United Kingdom (organic residues), and the Netherlands (brine purification wastes). In the US, industry and the regulatory community are pursuing the use of salt caverns for disposal of oil-field wastes. In 1988, the US Environmental Protection Agency (EPA) issued a regulatory determination exempting wastes generated during oil and gas exploration and production (oil-field wastes) from federal hazardous waste regulations--even though such wastes may contain hazardous constituents. At the same time, EPA urged states to tighten their oil-field waste management regulations. The resulting restrictions have generated industry interest in the use of salt caverns for potentially economical and environmentally safe oil-field waste disposal. Before the practice can be implemented commercially, however, regulators need assurance that disposing of oil-field wastes in salt caverns is technically and legally feasible and that potential health effects associated with the practice are acceptable. In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. It investigated regulatory issues; the types of oil-field wastes suitable for cavern disposal; cavern design and location considerations; and disposal operations, closure and remediation issues. It determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could, from technical and legal perspectives, be suitable for disposing of oil-field wastes. On the basis of these findings, ANL subsequently conducted a preliminary risk assessment on the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in salt caverns. The methodology for the risk assessment included the following steps: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing contaminant toxicities; estimating contaminant intakes; and estimating human cancer and noncancer risks. To estimate exposure routes and pathways, four postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (for noncancer health effects) estimates that were well within the EPA target range for acceptable exposure risk levels. These results lead to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  8. Plasma Production via Field Ionization

    SciTech Connect (OSTI)

    O'Connell, C.L.; Barnes, C.D.; Decker, F.; Hogan, M.J.; Iverson, R.; Krejcik, P.; Siemann, R.; Walz, D.R.; /SLAC; Clayton, C.E.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu,; Marsh, K.A.; Mori, W.; Zhou, M.; /UCLA; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; /Southern California U.

    2007-01-02T23:59:59.000Z

    Plasma production via field ionization occurs when an incoming particle beam is sufficiently dense that the electric field associated with the beam ionizes a neutral vapor or gas. Experiments conducted at the Stanford Linear Accelerator Center explore the threshold conditions necessary to induce field ionization by an electron beam in a neutral lithium vapor. By independently varying the transverse beam size, number of electrons per bunch or bunch length, the radial component of the electric field is controlled to be above or below the threshold for field ionization. Additional experiments ionized neutral xenon and neutral nitric oxide by varying the incoming beam's bunch length. A self-ionized plasma is an essential step for the viability of plasma-based accelerators for future high-energy experiments.

  9. Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley National Laboratory, Berkeley, California

    E-Print Network [OSTI]

    Korneev, Valeri A.

    1 Seismic imaging of oil production rate Valeri A. Korneev, Dmitry Silin, Lawrence Berkeley to the square root of the product of frequency of the signal and the mobility of the fluid in the reservoir. This provides an opportunity for locating the most productive zones of the field before drilling

  10. Past, Present, and Future Production of Bio-oil

    SciTech Connect (OSTI)

    Steele, Philip; Yu, Fei; Gajjela, Sanjeev

    2009-04-01T23:59:59.000Z

    Bio-oil is a liquid product produced by fast pyrol-ysis of biomass. The fast pyrolysis is performed by heating the biomass rapidly (2 sec) at temperatures ranging from 350 to 650 oC. The vapors produced by this rapid heating are then condensed to produce a dark brown water-based emulsion composed of frag-ments of the original hemicellulose, cellulose and lignin molecules contained in the biomass. Yields range from 60 to 75% based on the feedstock type and the pyrolysis reactor employed. The bio-oil pro-duced by this process has a number of negative prop-erties that are produced mainly by the high oxygen content (40 to 50%) contributed by that contained in water (25 to 30% of total mass) and oxygenated compounds. Each bio-oil contains hundreds of chemi-cal compounds. The chemical composition of bio-oil renders it a very recalcitrant chemical compound. To date, the difficulties in utilizing bio-oil have limited its commercial development to the production of liq-uid smoke as food flavoring. Practitioners have at-tempted to utilize raw bio-oil as a fuel; they have also applied many techniques to upgrade bio-oil to a fuel. Attempts to utilize raw bio-oil as a combustion engine fuel have resulted in engine or turbine dam-age; however, Stirling engines have been shown to successfully combust raw bio-oil without damage. Utilization of raw bio-oil as a boiler fuel has met with more success and an ASTM standard has recently been released describing bio-oil characteristics in relation to assigned fuel grades. However, commercialization has been slow to follow and no reports of distribution of these bio-oil boiler fuels have been reported. Co-feeding raw bio-oil with coal has been successfully performed but no current power generation facilities are following this practice. Upgrading of bio-oils to hydrocarbons via hydroprocessing is being performed by several organizations. Currently, limited catalyst life is the obstacle to commercialization of this tech-nology. Researchers have developed means to increase the anhydrosugars content of bio-oil above the usual 3% produced during normal pyrolysis by mild acid pretreatment of the biomass feedstock. Mississippi State University has developed a proprietary method to produce an aqueous fraction containing more than 50% of anhydrosugars content. These anhydrosugars can be catalyzed to hydrogen or hydrocarbons; alter-nately, the aqueous fraction can be hydrolyzed to pro-duce a high-glucose content. The hydrolyzed product can then be filtered to remove microbial inhibitor compounds followed by production of alcohols by fer-mentation. Production of bio-oil is now considered a major candidate as a technology promising production of drop-in transportation and boiler fuels.

  11. Wrenching and oil migration, Mervine field, Kay County, Oklahoma

    SciTech Connect (OSTI)

    Davis, H.G.

    1985-02-01T23:59:59.000Z

    Since 1913, Mervine field (T27N, R3E) has produced oil from 11 Mississippian and Pennsylvanian zones, and gas from 2 Permian zones. The field exhibits an impressive asymmetric surface anticline, with the steeper flank dipping 30/sup 0/E maximum. A nearly vertical, basement-involved fault develops immediately beneath the steeper flank of the surface anticline. Three periods of left-lateral wrench faulting account for 93% of all structural growth: 24% in post-Mississippian-pre-Desmoinesian time, 21% in Virgilian time, and 48% in post-Wolfcampian time. In Mesozoic through early Cenozoic times, the Devonian Woodford Shale (and possibly the Desmoinesian Cherokee shales) locally generated oil, which should have been structurally trapped in the Ordovician Bromide sandstone. This oil may have joined oil already trapped in the Bromide, which had migrated to the Mervine area in the Early Pennsylvanian from a distant source. Intense post-Wolfcampian movement(s) fractured the competent pre-Pennsylvanian rocks, allowing Bromide brine and entrained oil to migrate vertically up the master fault, finally accumulating in younger reservoirs. Pressure, temperature, and salinity anomalies attest to vertical fluid migration continuing at the present time at Mervine field. Consequently, pressure, temperature, and salinity mapping should be considered as valuable supplements to structural and lithologic mapping when prospecting for structural hydrocarbon accumulations in epicratonic provinces.

  12. Taxation and the Extraction of Exhaustible Resources: Evidence From California Oil Production

    E-Print Network [OSTI]

    Rao, Nirupama S.

    Rapid increases in oil prices in 2008 led some to call for special taxes on the oil industry. Because oil is an exhaustible resource, however, the effects of excise taxes on production or on reported producer profits may ...

  13. Paleo-highs may be key to deeper oil production

    SciTech Connect (OSTI)

    Davis, H.G.

    1989-03-01T23:59:59.000Z

    The Illinois basin is primarily a Paleozoic epeirogenic and epicratonic basin located in the east-central United States. Hydrocarbons have been commercially produced from this basin for more than a century, having reached cumulative production of more than 3.2 billion bbl of oil, with relatively little gas. Pursuing this production, more than 72 million feet of exploratory footage, a considerable sum, have been drilled. Taken at face value, these facts have created a commonly held impression throughout the oil and gas industry that the Illinois basin is in a very mature stage of exploration, In other words, the prejudice is that not many reserves remain to be found.

  14. Increased oil recovery from mature oil fields using gelled polymer treatments

    SciTech Connect (OSTI)

    Willhite, G. Paul; Green, Down W.; McCool, Stan

    2000-02-23T23:59:59.000Z

    Gelled polymer treatments are applied to oil reservoirs to increase oil production to reduce water production by altering the fluid movement within the reservoir. This research program is aimed at reducing barriers to the widespread use of these treatments by developing methods to predict gel behavior during placement in matrix rock and fractures, determining the persistence of permeability reduction after gel placement, and by developing methods to design production well treatments to control water production. This report describes the progress of the research during the first six months of work. A Dawn EOS multi-angle laser light scattering detector was purchased, installed and calibrated. Experiments were conducted to determine the permeabilities of a bulk gel and of a filter cake which forms when a gel is dehydrated. The pressure at which a gel in a tube is ruptured was measured and was correlated to the length and diameter of the gel.

  15. Mexico’s Deteriorating Oil Outlook: Implications and Energy Options for the Future

    E-Print Network [OSTI]

    Shields, David

    2008-01-01T23:59:59.000Z

    In Mexico, all investment in the oil and gas industry iswithout reducing investment in oil production. Attentionexploitation of oil fields and a lack of investment in

  16. Oil and Gas Exploration

    E-Print Network [OSTI]

    Tingley, Joseph V.

    , oil and gas, and geothermal activities and accomplishments in Nevada: production statistics Products 23. Sloan dolomite quarry 24. Weiser gypsum quarry Oil Fields 1. Blackburn field 2. North WillowMetals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada

  17. Rapid assessment of redevelopment potential in marginal oil fields, application to the cut bank field

    E-Print Network [OSTI]

    Chavez Ballesteros, Luis Eladio

    2005-02-17T23:59:59.000Z

    it is simulation based, it provides a platform for easy transition to more detailed analysis. Thus, the method can serve as a valuable reservoir management tool for operators of stripper oil fields....

  18. Production Hydraulic Packer Field Test

    SciTech Connect (OSTI)

    Schneller, Tricia; Salas, Jose

    2000-06-30T23:59:59.000Z

    In October 1999, the Rocky Mountain Oilfield Testing Center and Halliburton Energy Services cooperated on a field test of Halliburton's new Production Hydraulic Packer technology on Well 46-TPX-10 at Naval Petroleum Reserve No. 3 near Casper, WY. Performance of the packer was evaluated in set and unset operations. The packer's ability to seal the annulus between the casing and tubing was hydraulically tested and the results were recorded.

  19. Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen,*a

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Dual gas and oil dispersions in water: production and stability of foamulsion Anniina Salonen cosmetic and food products (such as whipped cream) or in oil recovery processes. Depending on the a of oil droplets and gas bubbles and show that the oil can have two very different roles, either

  20. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

  1. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, Curtis L. (Grand Forks, ND); Timpe, Ronald C. (Grand Forks, ND); Potas, Todd A. (Plymouth, MN); DeWall, Raymond A. (Grand Forks, ND); Musich, Mark A. (Grand Forks, ND)

    1992-01-01T23:59:59.000Z

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-decrepitating, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  2. Low-rank coal oil agglomeration product and process

    DOE Patents [OSTI]

    Knudson, C.L.; Timpe, R.C.; Potas, T.A.; DeWall, R.A.; Musich, M.A.

    1992-11-10T23:59:59.000Z

    A selectively-sized, raw, low-rank coal is processed to produce a low ash and relative water-free agglomerate with an enhanced heating value and a hardness sufficient to produce a non-degradable, shippable fuel. The low-rank coal is treated, under high shear conditions, in the first stage to cause ash reduction and subsequent surface modification which is necessary to facilitate agglomerate formation. In the second stage the treated low-rank coal is contacted with bridging and binding oils under low shear conditions to produce agglomerates of selected size. The bridging and binding oils may be coal or petroleum derived. The process incorporates a thermal deoiling step whereby the bridging oil may be completely or partially recovered from the agglomerate; whereas, partial recovery of the bridging oil functions to leave as an agglomerate binder, the heavy constituents of the bridging oil. The recovered oil is suitable for recycling to the agglomeration step or can serve as a value-added product.

  3. Bayesian Networks in the Management of Oil Field Piracy Risk

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of transporting petroleum between production and consumption sites. These sites of energy production production is spread over more than 10,000 offshore fields each of which requires on the one hand, equipment production. This energy resource, despite its scarcity, is being explored in many areas, some of which

  4. Saudi Aramco details 1990 surge in oil production

    SciTech Connect (OSTI)

    Not Available

    1991-08-12T23:59:59.000Z

    This paper reports on Saudi Arabian Oil Co. that has jumped its crude oil production 29% to an average 6,257,600 b/d last year. That was Saudi Arabia's response to Iraq's Aug. 2, 1990, invasion of Kuwait and the ensuing Persian Gulf crisis with its United Nations embargo on Iraqi and Kuwaiti oil exports. It was Saudi Aramco's biggest average crude oil volume since the 6,327,220 b/d gauged in 1982, according to the company's 1990 annual report. By the end of 1990 Saudi Aramco's maximum sustained production capability was 8.5 million b/d of crude. To meet long term demand, it decided to advance the timetable and increase the scope of a crude oil expansion program adopted in 1989. Reserves at the end of the year were 257.9 billion bbl of crude and 180.5 tcf of dissolved, associated, and non-associated natural gas, compared with 257.5 billion bbl and 180.355 tcf at yearend 1989.

  5. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows 

    E-Print Network [OSTI]

    Jittamai, Phongchai

    2006-04-12T23:59:59.000Z

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system...

  6. Analysis of oil-pipeline distribution of multiple products subject to delivery time-windows

    E-Print Network [OSTI]

    Jittamai, Phongchai

    2006-04-12T23:59:59.000Z

    This dissertation defines the operational problems of, and develops solution methodologies for, a distribution of multiple products into oil pipeline subject to delivery time-windows constraints. A multiple-product oil pipeline is a pipeline system...

  7. Evaluation of water resources for enhanced oil recovery operations, Cement Field, Caddo and Grady Counties, Oklahoma

    SciTech Connect (OSTI)

    Preston, D.A.; Harrison, W.E.; Luza, K.V.; Prater, L.; Reddy, R.J.

    1982-02-01T23:59:59.000Z

    This report is based on the results of an investigation of the water resources local to the Cement Oil Field in Caddo and Grady Counties, southwestern, Oklahoma. The intent of the report is to present at least a semi-quantitative estimate of the volume, deliverability, and chemistry of the water potentially available for enhanced oil recovery in one or more Oklahoma oil fields. Subsequent to a review of several oil fields, the Cement Field was chosen for study because of its large size (25,000 acres), its extensive subsurface control (over 1850 wells), and its long history of production (since 1952) from several producing formations, some of which are already undergoing extensive waterflood operations. A preliminary review of the available data for this study suggested a threefold categorization of water resources, since the data for each category are distinctly different in nature, and, to some extent, different in source. The three categories are: surface water, ground water, and subsurface water. Flow, volume, and chemical analyses of each source are estimated.

  8. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Luyendyk, Bruce

    geology and gas-phase (methane) seepage for the Coal Oil Point (COP) seep field, one of the worldORIGINAL Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field's largest and best-studied marine oil and gas seep fields, located over a producing hydrocarbon reservoir

  9. The drilling of a horizontal well in a mature oil field

    SciTech Connect (OSTI)

    Rougeot, J.E.; Lauterbach, K.A.

    1991-01-01T23:59:59.000Z

    This report documents the drilling of a medium radius horizontal well in the Bartlesville Sand of the Flatrock Field, Osage County, Oklahoma by Rougeot Oil and Gas Corporation (Rougeot) of Sperry, Oklahoma. The report includes the rationale for selecting the particular site, the details of drilling the well, the production response, conclusions reached, and recommendations made for the future drilling of horizontal wells. 11 figs., 2 tabs.

  10. Simplified dynamic models for control of riser slugging in offshore oil production

    E-Print Network [OSTI]

    Skogestad, Sigurd

    ForReview Only Simplified dynamic models for control of riser slugging in offshore oil production, Department of Chemical Engineering Keywords: oil production, two-phase flow, severe slugging, riser slugging for control of riser slugging in offshore oil production Esmaeil Jahanshahi, Sigurd Skogestad Department

  11. Low-Salinity Waterflooding to Improve Oil Recovery - Historical Field Evidence

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-11-01T23:59:59.000Z

    Waterflooding is by far the most widely applied method of improved oil recovery. Crude oil/brine/rock interactions can lead to large variations in the displacement efficiency of wa-terfloods. Laboratory water-flood tests and single-well tracer tests have shown that injection of dilute brine can increase oil recovery, but work designed to test the method on a field scale has not yet been undertaken. Historical waterflood records could unintentionally provide some evidence of improved recovery from waterflooding with lower salinity brine. Nu-merous fields in the Powder River basin of Wyoming have been waterflooded using low salinity brine (about 500 ppm) obtained from the Madison limestone or Fox Hills sandstone. Three Minnelusa formation fields in the basin were identified as potential candidates for waterflood comparisons based on the salinity of the connate and injection water. Historical pro-duction and injection data for these fields were obtained from the public record. Field waterflood data were manipulated to be displayed in the same format as laboratory coreflood re-sults. Recovery from fields using lower salinity injection wa-ter was greater than that using higher salinity injection wa-ter—matching recovery trends for laboratory and single-well tests.

  12. Nigeria`s oil production behavior: Tests of alternative hypotheses

    SciTech Connect (OSTI)

    Awokuse, T.O.; Jones, C.T.

    1994-12-31T23:59:59.000Z

    The sudden quadrupling of world oil prices in 1973-1974 marked the beginning of several formal inquiries by economists into the production behavior of members of the Organization of the Petroleum Exporting Countries (OPEC). Interest in the organization was further heightened in 1979 when nominal oil prices further doubled. However, oil market analysts have differed in their evaluation of OPEC`s role in the determination of world oil prices. Most energy economists have modeled OPEC as a cartel. Morris Adelman has suggested that OPEC`s true nature lies somewhere between two polar cases of a dominant-firm industry and an imperfect, market-sharing cartel. In the former case, one large, dominant firm (i.e., Saudi Arabia) serves as the {open_quotes}swing producer,{close_quotes} allowing other cartel members and non-OPEC oil producers to produce whatever they wished, controlling the market price by itself through its own output adjustments. The latter case of an imperfect market-sharing cartel is a loose collusive arrangement in which all members agree on an acceptable price level and individual output shares for each producer. Adelman believes that OPEC wobbles between these two cases, depending upon market conditions.

  13. Disposal of NORM-contaminated oil field wastes in salt caverns -- Legality, technical feasibility, economics, and risk

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01T23:59:59.000Z

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approaching cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  14. Peak Oil Netherlands Foundation (PONL) was founded in May 2005 by a group of citizens who are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims of

    E-Print Network [OSTI]

    Keeling, Stephen L.

    are concerned about the effects of a premature peak in oil and other fossil fuels production. The main aims ----------------------------------------------------------------------------------------------------------- 5 - 1) INTRODUCTION ­ PEAKING OF WORLD OIL PRODUCTION-------------------------------------------------------------------------------------------------- - 25 - 7) PEAK OIL NETHERLANDS OIL PRODUCTION & PEAKING OUTLOOK ---------------------------------- - 26

  15. China's Global Oil Strategy

    E-Print Network [OSTI]

    Thomas, Bryan G

    2009-01-01T23:59:59.000Z

    growth. For data on world oil consumption and long- term oilOil Production Domestic Oil Consumption a variety of

  16. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    VII. IMPACTS OF OIL CONSUMPTION . . . . . . .and the location of oil consumption necessitates that crudere?neries. VII. IMPACTS OF OIL CONSUMPTION The combustion of

  17. Dynamic analysis in productivity, oil shock, and recession

    E-Print Network [OSTI]

    Katayama, Munechika

    2008-01-01T23:59:59.000Z

    displays the share of oil consumption in the transportationis a major source of oil consumption. Any investigation ofrepresents ?rm i’s oil consumption for capital utilization

  18. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    ENHANCED OIL RECOVERY of carbon value and enhanced oil recovery The potential forCO 2 injection for enhanced oil recovery may differ from the

  19. Production of valuable hydrocarbons by flash pyrolysis of oil shale

    DOE Patents [OSTI]

    Steinberg, M.; Fallon, P.T.

    1985-04-01T23:59:59.000Z

    A process for the production of gas and liquid hydrocarbons from particulated oil shale by reaction with a pyrolysis gas at a temperature of from about 700/sup 0/C to about 1100/sup 0/C, at a pressure of from about 400 psi to about 600 psi, for a period of about 0.2 second to about 20 seconds. Such a pyrolysis gas includes methane, helium, or hydrogen. 3 figs., 3 tabs.

  20. Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field Services

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Understanding Sectoral Labor Market Dynamics: An Equilibrium Analysis of the Oil and Gas Field examines the response of employment and wages in the US oil and gas ...eld services industry to changes the dynamic response of wages and employment in the U.S. Oil and Gas Field Services (OGFS) industry to changes

  1. A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field Infrastructure

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 A Multistage Stochastic Programming Approach for the Planning of Offshore Oil or Gas Field, Houston, TX 77098 Abstract The planning of offshore oil or gas field infrastructure under uncertainty is addressed in this paper. The main uncertainties considered are in the initial maximum oil or gas flowrate

  2. ORIGINAL ARTICLE On the origin of oil-field water in the Biyang Depression of China

    E-Print Network [OSTI]

    Zhan, Hongbin

    ORIGINAL ARTICLE On the origin of oil-field water in the Biyang Depression of China Yong Fu Æ Springer-Verlag 2008 Abstract We have surveyed groundwater samples col- lected from oil and gas reservoirs of diagenesis of the oil-field water, respectively. The con- centrations of calcium and magnesium ions are found

  3. New applications for enzymes in oil and gas production

    SciTech Connect (OSTI)

    Harris, R.E.; McKay, I.D. [Cleansorb Ltd., Yateley (United Kingdom)

    1999-04-01T23:59:59.000Z

    Enzymes have been previously used as gel breakers. In these applications, the enzyme removes a chemical which is no longer required, such as biopolymers in filter cakes after drilling or in frac gels after the frac has occurred. Enzymes are now used to produce useful oilfield chemicals in-situ for acidizing, sand consolidation and water shutoff applications. Enzyme-based processes for generating other useful oil-field chemicals, including minerals, gels and resins, are being developed, and these applications are discussed.

  4. Plastic plugbacks can extend oil and gas well productive life

    SciTech Connect (OSTI)

    Rice, R.T. (Chevron U.S.A. Inc. (US))

    1991-11-01T23:59:59.000Z

    A high rate of successful water reduction has been documented in 21 plastic plugbacks performed on gravel-packed oil and gas well completions in the Gulf of Mexico. This electric wireline plugback method is unique because it is performed inside gravel pack assemblies, utilizing plastic instead of cement. This article presents a case study of field results from 21 jobs performed by Tenneco/Chevron.

  5. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

  6. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    and Weimer, D.L. (1984) Oil prices shock, market response,OPEC behavior and world oil prices (pp. 175-185) London:many decades. Recent high oil prices have caused oil-holding

  7. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    state oil companies, Saudi Aramco, Petroleos de Venezuela,state oil companies, Saudi Aramco, Petroleos de Venezuela,

  8. Improved oil recovery in mature fields through reservoir characterization and management

    SciTech Connect (OSTI)

    Leetaru, H.E. (Illinois State Geological Survey, Champaign, IL (United States))

    1993-09-01T23:59:59.000Z

    The Illinois basin is mature with respect to hydrocarbon exploitation in the Pennsylvanian and Mississippian strata. Available subsurface data for the basin commonly are 30 to 50 yr old and of lower quality than today's state-of-the-art data. Recent evaluation of two geologically similar Illinois oil fields shows how the application of new concepts and technologies to the old data can be used to improve oil recovery. Boyd and King fields, located in Jefferson County, Illinois, produce from the Mississippian Aux Vases formation, a unit that was deposited in nearshore mixed siliciclastic-carbonate environments. Prospective areas for further development were delineated by conventional reservoir-characterization methods. Three-dimensional modeling was used to enhance visualization of the lateral and vertical heterogeneity of these reservoirs. At King field, mixing of intercalated siliciclastic-carbonate facies causes significant reservoir heterogeneity; numerous compartments have been bypassed by the existing waterflood. Targeted infill drilling of additional producing and injector wells should recover 1-2 million bbl of additional hydrocarbons. At Boyd field, delineation of areas that contain bypassed oil is more difficult because many of the wells have not penetrated the entire reservoir. An additional problem is that almost all of the production from the original Aux Vases wells was severely inhibited by backflow from a higher pressured, shallower reservoir with which it is commingled. In this type of field, reservoir management must focus on isolating the Aux Vases, producing intervals and deepening individual wells through the entire reservoir. The study of these two fields suggests that detailed geologic characterization of the internal reservoir architecture is not enough. Effective reservoir characterization for improved oil recovery must include both reservoir geology and an understanding of previous reservoir management techniques.

  9. Production of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR

    E-Print Network [OSTI]

    processing that will re- duce the oil content in the meal to a level acceptable to the market. In the pastProduction of Fish Oil UNITED STATES DEPART MENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU. Crowther, Director Production of Fish Oil By GEORGE M. PIGOTT Assistant Professor, Food Science Departm

  10. GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS

    E-Print Network [OSTI]

    Johansen, Tor Arne

    1 GLOBAL OPTIMIZATION OF MULTIPHASE FLOW NETWORKS IN OIL AND GAS PRODUCTION SYSTEMS MSc. Hans in an oil production system is developed. Each well may be manipulated by injecting lift gas and adjusting in the maximum oil flow rate, water flow rate, liquid flow rate, and gas flow rate. The wells may also

  11. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28T23:59:59.000Z

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  12. Video camera log used for water isolation in the Main Body B pool, Elk Hills field, Kern Co., California -- Water and oil identification

    SciTech Connect (OSTI)

    Starcher, M.G.; Murphy, J.R.; Alexander, P.D.; Whittaker, J.L.

    1995-12-31T23:59:59.000Z

    The Main Body B reservoir in the Elk Hills Field is a peripherally waterflooded, +400 ft thick series of layered, turbidite Stevens sands. Permeability variation between layers adversely affects the vertical sweep, resulting in production from lower permeability oil sands dominated by production from higher permeability sands. This paper discusses the unique use of various tools to identify water zones to isolate and oil zones to stimulate. Tools used to identify water and oil entry are discussed with respect to their capabilities of identifying oil and water entry into the wellbore.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Performance and produced polymer evaluation of four alkaline-surfactant-polymer projects concluded that only one of the projects could have benefited from combining the alkaline-surfactant-polymer and gelation technologies. Cambridge, the 1993 Daqing, Mellott Ranch, and the Wardlaw alkaline-surfacant-polymer floods were studied. An initial gel treatment followed by an alkaline-surfactant-polymer flood in the Wardlaw field would have been a benefit due to reduction of fracture flow. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls or 3.3% OOIP when a gel was placed in the B sand. Alkaline-surfactant-polymer flood oil recovery improvement over a waterflood was 392,000 bbls or 6.5% OOIP. Placing a gel into the B sand prior to an alkaline-surfactant-polymer flood resulted in 989,000 bbl or 16.4% OOIP more oil than only water injection. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls or 9.9% OOIP when a gel was placed in the B sand.

  14. Premium performance heating oil - Part 2, Field trial results

    SciTech Connect (OSTI)

    Jetter, S.M.; Hoskin, D.; McClintock, W.R. [Mobil Oil Corp., Paulsboro, NJ (United States)] [and others

    1996-07-01T23:59:59.000Z

    Limited field trial results of a heating oil additive package developed to minimize unscheduled maintenance indicate that it achieves its goal of keeping heating oil systems cleaner. The multifunctional additive package was developed to provide improved fuel oxidation stability, improved corrosion protection, and dispersency. This combination of performance benefits was chosen because we believed it would retard the formation of sludge, as well as allow sludge already present to be carried through the system without fouling the fuel system components (dispersency should keep sludge particles small so they pass through the filtering system). Since many unscheduled maintenance calls are linked to fouling of the fuel filtering system, the overall goal of this technology is to reduce these maintenance calls. Photographic evidence shows that the additive package not only reduces the amount of sludge formed, but even removes existing sludge from filters and pump strainers. This {open_quotes}clean-up{close_quotes} performance is provided trouble free: we found no indication that nozzle/burner performance was impaired by dispersing sludge from filters and pump strainers. Qualitative assessments from specific accounts that used the premium heating oil also show marked reductions in unscheduled maintenance.

  15. Risk analyses for disposing nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.; Caudle, D.

    1997-12-01T23:59:59.000Z

    Salt caverns have been used for several decades to store various hydrocarbon products. In the past few years, four facilities in the US have been permitted to dispose nonhazardous oil field wastes in salt caverns. Several other disposal caverns have been permitted in Canada and Europe. This report evaluates the possibility that adverse human health effects could result from exposure to contaminants released from the caverns in domal salt formations used for nonhazardous oil field waste disposal. The evaluation assumes normal operations but considers the possibility of leaks in cavern seals and cavern walls during the post-closure phase of operation. In this assessment, several steps were followed to identify possible human health risks. At the broadest level, these steps include identifying a reasonable set of contaminants of possible concern, identifying how humans could be exposed to these contaminants, assessing the toxicities of these contaminants, estimating their intakes, and characterizing their associated human health risks. The contaminants of concern for the assessment are benzene, cadmium, arsenic, and chromium. These were selected as being components of oil field waste and having a likelihood to remain in solution for a long enough time to reach a human receptor.

  16. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix II addresses the first Wilhelm Sands and its sub unites and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end.

  17. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOE Patents [OSTI]

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02T23:59:59.000Z

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  18. Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields 

    E-Print Network [OSTI]

    Wang, Jianwei

    2010-01-14T23:59:59.000Z

    The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

  19. Integrated Reservoir Characterization and Simulation Studies in Stripper Oil and Gas Fields

    E-Print Network [OSTI]

    Wang, Jianwei

    2010-01-14T23:59:59.000Z

    The demand for oil and gas is increasing yearly, whereas proven oil and gas reserves are being depleted. The potential of stripper oil and gas fields to supplement the national energy supply is large. In 2006, stripper wells accounted for 15% and 8...

  20. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    Cartelisation in the Oil Market,” Energy Policy, 25(13),1991) “Models of the Oil Market,” in Fundamentals of Pureis warranted. In a review of oil market models, Salehi-

  1. Dynamic analysis in productivity, oil shock, and recession

    E-Print Network [OSTI]

    Katayama, Munechika

    2008-01-01T23:59:59.000Z

    Investment Capital Utilization Percent deviations from the steady state Oil (Investment Capital Utilization Percent deviations from the steady state Oil (Investment Capital Utilization Percent deviations from the steady state Oil (

  2. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    to find and evaluate oil reserves, development costs toand likely holds oil reserves that may be produced in theare located above the oil reserve while others are above the

  3. Dynamic analysis in productivity, oil shock, and recession

    E-Print Network [OSTI]

    Katayama, Munechika

    2008-01-01T23:59:59.000Z

    use of oil in the US economy weakens the peak responses ofpeak under other factors considered, less persistence in the oil-the same size of the oil-price shock. The peak response of

  4. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    and demand for US crude oil resources. A dichotomy formedmore of the common oil resource. The study by Kunce (2003)above the same oil resource. If multiple different lease-

  5. Dynamic analysis in productivity, oil shock, and recession

    E-Print Network [OSTI]

    Katayama, Munechika

    2008-01-01T23:59:59.000Z

    Declining E?ects of Oil-price Shocks . . . . . . . . . . .of IRFs to a 10% Increase in the Oil Price: Case 3 and Caseof IRFs to a 10% Increase in the Oil Price: Before and After

  6. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    of papers on the Gulf of Mexico oil industry is perhaps theof offshore oil and gas activities in the Gulf of Mexico:oil and gas activities by water depth in the Gulf of Mexico

  7. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    In a review of oil market models, Salehi-Isfahani (1995)J. Cremer (1991) “Models of the Oil Market,” in Fundamentalsmarket models predicated on no-cholesterol-knowledge demand structure could not have predicted. In oil

  8. Natural Oil Production from Microorganisms: Bioprocess and Microbe Engineering for Total Carbon Utilization in Biofuel Production

    SciTech Connect (OSTI)

    None

    2010-07-15T23:59:59.000Z

    Electrofuels Project: MIT is using carbon dioxide (CO2) and hydrogen generated from electricity to produce natural oils that can be upgraded to hydrocarbon fuels. MIT has designed a 2-stage biofuel production system. In the first stage, hydrogen and CO2 are fed to a microorganism capable of converting these feedstocks to a 2-carbon compound called acetate. In the second stage, acetate is delivered to a different microorganism that can use the acetate to grow and produce oil. The oil can be removed from the reactor tank and chemically converted to various hydrocarbons. The electricity for the process could be supplied from novel means currently in development, or more proven methods such as the combustion of municipal waste, which would also generate the required CO2 and enhance the overall efficiency of MIT’s biofuel-production system.

  9. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    Ranking the World’s Top Oil Companies, 2001: Fewer, Bigger,top echelon of “super majors” has been created that far surpasses other publicly traded oil companies

  10. Examination of eastern oil shale disposal problems - the Hope Creek field study

    SciTech Connect (OSTI)

    Koppenaal, D.W.; Kruspe, R.R.; Robl, T.L.; Cisler, K.; Allen, D.L.

    1985-02-01T23:59:59.000Z

    A field-based study of problems associated with the disposal of processed Eastern oil shale was initiated in mid-1983 at a private research site in Montgomery County, Kentucky. The study (known as the Hope Creek Spent Oil Shale Disposal Project) is designed to provide information on the geotechnical, revegetation/reclamation, and leachate generation and composition characteristics of processed Kentucky oil shales. The study utilizes processed oil shale materials (retorted oil shale and reject raw oil shale fines) obtained from a pilot plant run of Kentucky oil shale using the travelling grate retort technology. Approximately 1000 tons of processed oil shale were returned to Kentucky for the purpose of the study. The study, composed of three components, is described. The effort to date has concentrated on site preparation and the construction and implementation of the field study research facilities. These endeavors are described and the project direction in the future years is defined.

  11. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    oil price projections from the Energy Information Administration (FOB, through 2030; EIA, 2007) to historicalof oil, or the market price less shipping costs. Historical

  12. Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum Reservoirs

    E-Print Network [OSTI]

    Van den Hof, Paul

    Lexicographic Optimization of Multiple Economic Objectives in Oil Production from Petroleum Systems Approach to Petroleum Production (ISAPP) knowledge centre. ISAPP is a joint project between Delft Reservoirs Gijs van Essen, Paul M.J. Van den Hof and Jan Dirk Jansen Abstract-- In oil production

  13. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    the Oil Industry . . . . . . . . . . . . . . . . . . . . . .in the Venezuelan Oil Industry . . . . . . . . . . . . .and Productivity: Evidence from the Oil Industry . .

  14. Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered

    E-Print Network [OSTI]

    Wood, Thomas K.

    Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered from oil palm frond (OPF) juice and sewage sludge as substrates. Substrate improvement was accomplished Accepted 16 June 2013 Available online 13 July 2013 Keywords: Biohydrogen Escherichia coli Oil palm frond

  15. Parameter identification in large-scale models for oil and gas production

    E-Print Network [OSTI]

    Van den Hof, Paul

    Parameter identification in large-scale models for oil and gas production Jorn F.M. Van Doren: Models used for model-based (long-term) operations as monitoring, control and optimization of oil and gas information to the identification problem. These options are illustrated with examples taken from oil and gas

  16. Non-Edible Plant Oils as New Sources for Biodiesel Production

    E-Print Network [OSTI]

    Arjun B. Chhetri; Martin S. Tango; Suzanne M. Budge; K. Chris Watts

    Abstract: Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi) and jatropha (jatropha curcas, L.) are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME) from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1 % free FA, 84.43 % triglycerides, 4.88 % sterol and 1.59 % others. Jatropha oil contains approximately 14 % free FA, approximately 5 % higher than soapnut oil. Soapnut oil biodiesel contains approximately 85 % unsaturated FA while jatropha oil biodiesel was found to have approximately 80 % unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97 % conversion to FAME was achieved for both soapnut and jatropha oil.

  17. Mediterranean clonal selections evaluated for modern hedgerow olive oil production in Spain

    E-Print Network [OSTI]

    Tous, Joan; Romero, Agusti; Hermoso, Juan Francisco; Ninot, Antonia

    2011-01-01T23:59:59.000Z

    station, Constantí, Catalonia, Spain. We are grateful toBoella farm (La Canonja, Spain) for their collaboration inolive oil production in Spain Paul M. Vossen by Joan Tous,

  18. Oil field waste disposal in salt caverns: An information website

    SciTech Connect (OSTI)

    Tomasko, D.; Veil, J. A.

    1999-12-10T23:59:59.000Z

    Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

  19. Chemically bonded phosphate ceramic sealant formulations for oil field applications

    DOE Patents [OSTI]

    Wagh, Arun S. (Naperville, IL); Jeong, Seung-Young (Taejon, KR); McDaniel, Richard (Crest Hill, IL)

    2008-10-21T23:59:59.000Z

    A sealant for an oil or geothermal well capable of setting within about 3 to about 6 hours at temperatures less than about 250.degree. F. for shallow wells less than about 10,000 feet and deep wells greater than about 10,000 feet having MgO present in the range of from about 9.9 to about 14.5%, KH.sub.2PO.sub.4 present in the range of from about 29.7 to about 27.2%, class C fly ash present in the range of from about 19.8 to about 36.3%, class F fly ash present in the range of from about 19.8 to about 0%, boric acid or borax present in the range of from about 0.39 to about 1.45%, and water present in the range of from about 20.3 to about 21.86% by weight of the sealant.A method of sealing wells is disclosed as are compositions for very high temperature wells is disclosed as is a composition for treating oil field wastes.

  20. Increased Oil Production and Reserves Utilizing Secondary/Terriary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.

    1998-04-08T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO -) 2 flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. Two activities continued this quarter as part of the geological and reservoir characterization of productive carbonate buildups in the Paradox basin: (1) diagenetic characterization of project field reservoirs, and (2) technology transfer.

  1. Tax effects upon oil field development in Venezuela

    E-Print Network [OSTI]

    Manzano, Osmel

    2000-01-01T23:59:59.000Z

    Important reforms have been made to the oil sector tax code in Venezuela. Given its diversity of oil resources, there was a concern that some resources were not being exploited because of the structure of the tax code. ...

  2. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29T23:59:59.000Z

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  3. INCREASED OIL PRODUCTION AND RESERVES UTILIZING SECONDARY/TERTIARY RECOVERY TECHNIQUES ON SMALL RESERVOIRS IN THE PARADOX BASIN, UTAH

    SciTech Connect (OSTI)

    Thomas C. Chidsey, Jr.

    2002-11-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from shallow-shelf carbonate buildups or mounds within the Desert Creek zone of the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field at a 15 to 20 percent recovery rate. Five fields in southeastern Utah were evaluated for waterflood or carbon-dioxide (CO{sub 2})-miscible flood projects based upon geological characterization and reservoir modeling. Geological characterization on a local scale focused on reservoir heterogeneity, quality, and lateral continuity as well as possible compartmentalization within each of the five project fields. The Desert Creek zone includes three generalized facies belts: (1) open-marine, (2) shallow-shelf and shelf-margin, and (3) intra-shelf, salinity-restricted facies. These deposits have modern analogs near the coasts of the Bahamas, Florida, and Australia, respectively, and outcrop analogs along the San Juan River of southeastern Utah. The analogs display reservoir heterogeneity, flow barriers and baffles, and lithofacies geometry observed in the fields; thus, these properties were incorporated in the reservoir simulation models. Productive carbonate buildups consist of three types: (1) phylloid algal, (2) coralline algal, and (3) bryozoan. Phylloid-algal buildups have a mound-core interval and a supra-mound interval. Hydrocarbons are stratigraphically trapped in porous and permeable lithotypes within the mound-core intervals of the lower part of the buildups and the more heterogeneous supramound intervals. To adequately represent the observed spatial heterogeneities in reservoir properties, the phylloid-algal bafflestones of the mound-core interval and the dolomites of the overlying supra-mound interval were subdivided into ten architecturally distinct lithotypes, each of which exhibits a characteristic set of reservoir properties obtained from outcrop analogs, cores, and geophysical logs. The Anasazi and Runway fields were selected for geostatistical modeling and reservoir compositional simulations. Models and simulations incorporated variations in carbonate lithotypes, porosity, and permeability to accurately predict reservoir responses. History matches tied previous production and reservoir pressure histories so that future reservoir performances could be confidently predicted. The simulation studies showed that despite most of the production being from the mound-core intervals, there were no corresponding decreases in the oil in place in these intervals. This behavior indicates gravity drainage of oil from the supra-mound intervals into the lower mound-core intervals from which the producing wells' major share of production arises. The key to increasing ultimate recovery from these fields (and similar fields in the basin) is to design either waterflood or CO{sub 2}-miscible flood projects capable of forcing oil from high-storage-capacity but low-recovery supra-mound units into the high-recovery mound-core units. Simulation of Anasazi field shows that a CO{sub 2} flood is technically superior to a waterflood and economically feasible. For Anasazi field, an optimized CO{sub 2} flood is predicted to recover a total 4.21 million barrels (0.67 million m3) of oil representing in excess of 89 percent of the original oil in place. For Runway field, the best CO{sub 2} flood is predicted to recover a total of 2.4 million barrels (0.38 million m3) of oil representing 71 percent of the original oil in place. If the CO{sub 2} flood performed as predicted, it is a financially robust process for increasing the reserves in the many small fields in the Paradox Basin. The results can be applied to other fields in the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent.

  4. Fact #578: July 6, 2009 World Oil Reserves, Production, and Consumptio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production, and Consumption, 2007 The United States was responsible for 8% of the world's petroleum production, held 2% of the world's crude oil reserves, and consumed 24% of the...

  5. Environmental benefits of advanced oil and gas exploration and production technology

    SciTech Connect (OSTI)

    None

    1999-10-01T23:59:59.000Z

    THROUGHOUT THE OIL AND GAS LIFE CYCLE, THE INDUSTRY HAS APPLIED AN ARRAY OF ADVANCED TECHNOLOGIES TO IMPROVE EFFICIENCY, PRODUCTIVITY, AND ENVIRONMENTAL PERFORMANCE. THIS REPORT FOCUSES SPECIFICALLY ON ADVANCES IN EXPLORATION AND PRODUCTION (E&P) OPERATIONS.

  6. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery 

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a ...

  7. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    age tanks, oil/water separator sludge, solvent degreasers,oil transport—by pipelines, railcar, or truck—generates an unknown and untabulated amount of waste, including tank bottom sludges,

  8. Oil production enhancement through a standardized brine treatment. Final report

    SciTech Connect (OSTI)

    Adewumi, A.; Watson, R.; Tian, S.; Safargar, S.; Heckman, S.; Drielinger, I.

    1995-08-01T23:59:59.000Z

    In order to permit the environmentally safe discharge of brines produced from oil wells in Pennsylvania to the surface waters of the Commonwealth and to rapidly brings as many wells as possible into compliance with the law, the Pennsylvania Oil and Gas Association (POGAM) approached the Pennsylvania State University to develop a program designed to demonstrate that a treatment process to meet acceptable discharge conditions and effluent limitations can be standardized for all potential stripper wells brine discharge. After the initial studies, the first phase of this project was initiated. A bench-scale prototype model was developed for conducting experiments in laboratory conditions. The experiments pursued in the laboratory conditions were focused on the removal of ferrous iron from synthetically made brine. Iron was selected as the primary heavy metals for studying the efficiency of the treatment process. The results of a number of experiments in the lab were indicative of the capability of the proposed brine treatment process in the removal of iron. Concurrent with the laboratory experiments, a comprehensive and extensive kinetic study was initiated. This study was necessary to provide the required data base for process modeling. This study included the investigation of the critical pH as well as the rate and order of reactions of the studied elements: aluminum, lead, zinc, and copper. In the second phase of this project, a field-based prototype was developed to evaluate and demonstrate the treatment process effectiveness. These experiments were conducted under various conditions and included the testing on five brines from different locations with various dissolved constituents. The outcome of this research has been a software package, currently based on iron`s reactivity, to be used for design purposes. The developed computer program was refined as far as possible using the results from laboratory and field experiments.

  9. North Blowhorn Creek oil field - a stratigraphic trap in Black Warrior basin of Alabama

    SciTech Connect (OSTI)

    Bearden, B.L.; Mancini, E.A.; Reeves, P.R.

    1984-04-01T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama contains shallow oil and gas prospects. To date more than 1000 wells have been drilled in the region and more than 90 petroleum fields and pools have been discovered. Mississippian sandstone reservoirs are the most productive horizons for hydrocarbons in the basin, and the Carter sandstone is the most prolific. Identification of stratigraphic traps will enhance petroleum exploration by delineating sand body geometry. Definition reservoir thickness and extent is critical for identifying successful prospects. The North Blowhorn Creek field in Lamar County, Alabama, which produces from the Carter sandstone, is a prime example of a stratigraphic trap. As of March 1983, this field has produced a total of 657,678 bbl of oil and 972,3 mmcf of gas. The Carter sandstone there was deposited as part of a delta which prograded from northwest to southeast across the Black Warrior basin of Alabama. Primary and secondary porosity in the Carter sandstone ranges from 10 to 16% with an average of 13.5%. Permeability ranges from approximately .01-29 md with an average of 10 md. The Parkwood shales interbedded with the Carter sandstone are probably the primary petroleum source beds of the Mississippian hydrocarbons.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate gels that were stable to injection of alkaline-surfactant-polymer solutions at 72 F were stable to injection of alkaline-surfactant-polymer solutions at 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Xanthan gum-chromium acetate gels maintained gel integrity in linear corefloods after injection of an alkaline-surfactant-polymer solution at 125 F. At 175 F, Xanthan gum-chromium acetate gels were not stable either with or without subsequent alkaline-surfactant-polymer solution injection. Numerical simulation demonstrated that reducing the permeability of a high permeability zone of a reservoir with gel improved both waterflood and alkaline-surfactant-polymer flood oil recovery. A Minnelusa reservoir with both A and B sand production was simulated. A and B sands are separated by a shale layer. A sand and B sand waterflood oil recovery was improved by 196,000 bbls when a gel was placed in the B sand. A sand and B sand alkaline-surfactant-polymer flood oil recovery was improved by 596,000 bbls when a gel was placed in the B sand. Alkaline-surfactant-pol

  11. Increased Alberta bitumen production results in prorationing of light oil production

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    During January to May 1986, shut-in production of light oil in Alberta averaged 109,000 barrels per day. The peak month was April with a shut-in of 164,000 barrels per day. The cause of the shut-in is insufficient pipeline delivery capacity. Both the Interprovincial and TransMountain systems have been operating at full capacity since November 1985. The Rangeland system has also been utilized to its capacity in late spring. This paper discusses the history of the Alberta Proration Plan dating from 1950, the operation of the plan during the recent past years, and the resulting effects of an increase in bitumen production on the transport capacity for light oil.

  12. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect (OSTI)

    Veil, J.A.

    1997-09-01T23:59:59.000Z

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    energy supplies, like wind power or biofuels, lessons from the oil industry may help to inform what policy

  14. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-12-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  15. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Eastern Gulf Costal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2006-05-31T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates proposed a three-phase, focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling (Phase I) and a field demonstration project (Phases II and III) at Womack Hill Field Unit, Choctaw and Clarke Counties, Alabama, eastern Gulf Coastal Plain. Phase I of the project has been completed. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The major tasks of the project included reservoir characterization, recovery technology analysis, recovery technology evaluation, and the decision to implement a demonstration project. Reservoir characterization consisted of geoscientific reservoir characterization, petrophysical and engineering property characterization, microbial characterization, and integration of the characterization data. Recovery technology analysis included 3-D geologic modeling, reservoir simulation, and microbial core experiments. Recovery technology evaluation consisted of acquiring and evaluating new high quality 2-D seismic data, evaluating the existing pressure maintenance project in the Womack Hill Field Unit, and evaluating the concept of an immobilized enzyme technology project for the Womack Hill Field Unit. The decision to implement a demonstration project essentially resulted in the decision on whether to conduct an infill drilling project in Womack Hill Field. Reservoir performance, multiwell productivity analysis, and reservoir simulation studies indicate that water injection continues to provide stable support to maintain production from wells in the western unitized area of the field and that the strong water drive present in the eastern area of the field is adequate to sustain production from this part of the field. Although the results from the microbial characterization and microbial core experiments are very promising, it is recommended that an immobilized enzyme technology project not be implemented in the Womack Hill Field Unit until live (freshly taken and properly preserved) cores from the Smackover reservoir in the field are acquired to confirm the microbial core experiments to date. From 3-D geologic modeling, reservoir performance analysis, and reservoir simulation, four areas in the Womack Hill Field were identified as prospective infill drilling sites to recover undrained oil from the field. It was determined that the two areas in the unit area probably can be effectively drained by perforating higher zones in the Smackover reservoir in currently producing wells. The two areas in the eastern (non-unitized) part of the field require the drilling of new wells. The successful drilling and testing of a well in 2003 by J. R. Pounds, Inc. has proven the oil potential of the easternmost site in the non-unitized part of the field. Pruet Production Co. acquired new 2-D seismic data to evaluate the oil potential of the westernmost site. Because of the effects of a fault shadow from the major fault bounding the southern border of the Womack Hill Field, it is difficult to evaluate conclusively this potential drill site. Pruet Production Co. has decided not to drill this new well at this time and to further evaluate the new 2-D seismic profiles after these data have been processed using a pre-stack migration technique. Pruet Production Co. has elected not to continue into Phase II of this project because they are not prepared to make a proposal to the other mineral interest owners regarding the drilling of new wells as part of an infil

  16. World Oil Prices and Production Trends in AEO2009 (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01T23:59:59.000Z

    The oil prices reported in Annual Energy Outlook 2009 (AEO) represent the price of light, low-sulfur crude oil in 2007 dollars. Projections of future supply and demand are made for "liquids," a term used to refer to those liquids that after processing and refining can be used interchangeably with petroleum products. In AEO2009, liquids include conventional petroleum liquids -- such as conventional crude oil and natural gas plant liquids -- in addition to unconventional liquids, such as biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  17. Influence of co-field and cross field flow of mineral oil with and without additives on conduction current and breakdown voltage in highly nonuniform fields

    SciTech Connect (OSTI)

    Megahed, I.Y.; Abdallah, M.A. [Univ. of Alexandria (Egypt). Electrical Engineering Dept.; Zaky, A.A. [Arab Academy for Science and Technology, Alexandria (Egypt)

    1996-12-31T23:59:59.000Z

    The paper presents the results of the effect of enforced co-field and cross-field oil flow on the conduction current and breakdown voltage of degassed oil, oil saturated with O{sub 2} and with SF6 and oil containing 1-methylnaphthalene (MN) and dimethylaniline (DMA) as additives. Direct voltage and a point-to-plane electrode geometry were used and results were obtained for both polarities of the point electrode. A general conclusion from all experiments is that oil flow, whether co-field or cross-field, raises the breakdown voltage and lowers the conduction current. The results also show that the exception of DMA, all additives both gaseous (O{sub 2} and SF6) or solid (MN) raised the breakdown voltage and reduced conduction current, compared with degassed oil, for both polarities of the point electrode. These effects are attributed to the electron-trapping properties of the additives.

  18. Globalizing the oil field; U. S. stronghold seen slipping

    SciTech Connect (OSTI)

    Ellis, P.A. (Booz, Allen and Hamilton Inc., Dallas, TX (US)); Deffarges, E.H. (Booz, Allen and Hamilton Inc., San Francisco, CA (US))

    1989-12-01T23:59:59.000Z

    This article assesses the current importance of North American reserves in a global context, recent technological trends that tend to erode the leadership that U.S. majors traditionally have enjoyed in this area and the new role played by national oil companies as full-fledged competitors to oil majors, even outside their territorial waters. A few strategic steps are outlined to aid U.S. major oil companies to these global forces meet the challenges created by and to strengthen their position in the global oil business.

  19. Studies into the Initial Conditions, Flow Rate, and Containment System of Oil Field Leaks in Deep Water

    E-Print Network [OSTI]

    Holder, Rachel

    2013-07-22T23:59:59.000Z

    to contain an oil leak in the field. The dome was found to have satisfactory entrapment in the designed position....

  20. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Jr., Chidsey, Thomas C.; Allison, M. Lee

    1999-11-02T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced- oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  1. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey Jr., Thomas C.

    2003-02-06T23:59:59.000Z

    The primary objective of this project was to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox Basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox Basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m3) of oil. This project was designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-(CO2-) miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  2. Particle Production and Dissipative Cosmic Field

    E-Print Network [OSTI]

    H. Fujisaki; K. Kumekawa; M. Yamaguchi; M. Yoshimura

    1995-08-27T23:59:59.000Z

    Large amplitude oscillation of cosmic field that may occur right after inflation and in the decay process of weakly interacting fields gives rise to violent particle production via the parametric resonance. In the large amplitude limit the problem of back reaction against the field oscillation is solved and the energy spectrum of created particles is determined in a semi-classical approximation. For large enough coupling or large enough amplitude the resulting energy spectrum is broadly distributed, implying larger production of high energy particles than what a simple estimate of the reheating temperature due to the Born formula would suggest.

  3. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    Oil Production in Venezuela and Mexico . . . . . . . . . .Oil Production and Productivity in Venezuela and Mexico . . . . . . . .2.6: Oil Production in Venezuela and Mexico 350 Productivity

  4. CO2 Enhanced Oil Recovery Feasibility Evaluation for East Texas Oil Field

    E-Print Network [OSTI]

    Lu, Ping

    2012-08-31T23:59:59.000Z

    Carbon dioxide enhanced oil recovery (CO2-EOR) has been undergoing for four decades and is now a proven technology. CO2-EOR increases oil recovery, and in the meantime reduces the greenhouse gas emissions by capture CO2 underground. The objectives...

  5. Habitat of oil in the Lindsborg field, Salina basin, north-central Kansas

    SciTech Connect (OSTI)

    Newell, K.D. (Univ. of Kansas, Lawrence (United States))

    1991-03-01T23:59:59.000Z

    The Lindsborg field was discovered in 1938, and is now 14 mi in length and 1-2 mi in width. It has a projected ultimate recovery of 16 MMBO. Three pay zones (5-20 ft thick) produce in the field. The Simpson pay zone (Middle Ordovician) is a well-rounded, quartzitic sandstone that is interpreted to be a paralic, high-energy shelf deposit. The Viola pay (Middle Ordovician) appears to be a dolomitic, lime grainstone but no cores are available to confirm this. The uppermost pay zone, the Upper Ordovician Maquoketa, is a finely laminated, vuggy, cherry dolomite interpreted to have been deposited as a subtidal lime mudstone in a restricted lagoon. The Simpson and Viola pays are structurally trapped in culminations along the crest of the Lindsborg anticline. Although the Maquoketa pay is structurally trapped with the other pay zones in the southern half of the field, its locus of production in the north half of the fields extends 100 ft vertically down the western flank of the anticline. The trapping mechanism is unclear due to lack of core control and modern logging suites, but it may be subtle updip diagenetic change from vuggy to nonvuggy dolomite. The Simpson and Maquoketa oils are geochemically distinct. Both may reflect efficient local source-to-reservoir migration from originally rich but marginally mature Ordovician and Devonian shales that contact each pay zone. If oil in the Lindsborg field is locally generated, the prospectivity of the relatively unproductive and underexplored Salina basin may be enhanced.

  6. UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas

    E-Print Network [OSTI]

    Henderson, Gideon

    UK Oil and Gas Collaborative Doctoral Training Centre (2014 start) Project Title: Environmental assessment of deep-water sponge fields in relation to oil and gas activity: a west of Shetland case study industry and government identified sponge grounds in areas of interest to the oil and gas sector

  7. A nuclear wind/solar oil-shale system for variable electricity and liquid fuels production

    SciTech Connect (OSTI)

    Forsberg, C. [Massachusetts Inst. of Technology, 77 Massachusetts Ave., Cambridge, MA 012139 (United States)

    2012-07-01T23:59:59.000Z

    The recoverable reserves of oil shale in the United States exceed the total quantity of oil produced to date worldwide. Oil shale contains no oil, rather it contains kerogen which when heated decomposes into oil, gases, and a carbon char. The energy required to heat the kerogen-containing rock to produce the oil is about a quarter of the energy value of the recovered products. If fossil fuels are burned to supply this energy, the greenhouse gas releases are large relative to producing gasoline and diesel from crude oil. The oil shale can be heated underground with steam from nuclear reactors leaving the carbon char underground - a form of carbon sequestration. Because the thermal conductivity of the oil shale is low, the heating process takes months to years. This process characteristic in a system where the reactor dominates the capital costs creates the option to operate the nuclear reactor at base load while providing variable electricity to meet peak electricity demand and heat for the shale oil at times of low electricity demand. This, in turn, may enable the large scale use of renewables such as wind and solar for electricity production because the base-load nuclear plants can provide lower-cost variable backup electricity. Nuclear shale oil may reduce the greenhouse gas releases from using gasoline and diesel in half relative to gasoline and diesel produced from conventional oil. The variable electricity replaces electricity that would have been produced by fossil plants. The carbon credits from replacing fossil fuels for variable electricity production, if assigned to shale oil production, results in a carbon footprint from burning gasoline or diesel from shale oil that may half that of conventional crude oil. The U.S. imports about 10 million barrels of oil per day at a cost of a billion dollars per day. It would require about 200 GW of high-temperature nuclear heat to recover this quantity of shale oil - about two-thirds the thermal output of existing nuclear reactors in the United States. With the added variable electricity production to enable renewables, additional nuclear capacity would be required. (authors)

  8. Production of low oil content potato chips using vacuum frying

    E-Print Network [OSTI]

    Garayo, Jagoba

    2001-01-01T23:59:59.000Z

    element to heat the frying oil. Characteristics of commercial batch fryers (Frymaster, Shreveport, Louisiana) include different types of fryers. Countertops fryers are small-capacity fryers (oil capacity 8-11 L), and economic and high efficiency fryers..., and the fryer type are factors that affect the frying process. The chemical composition of the frying oil, the physical and physicochemical constants, and the presence of additive and contaminants also influence the frying process. Additives or contaminants...

  9. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01T23:59:59.000Z

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  10. Some convolution products in Quantum Field Theory

    E-Print Network [OSTI]

    Herintsitohaina Ratsimbarison

    2006-12-05T23:59:59.000Z

    This paper aims to show constructions of scale dependence and interaction on some probabilistic models which may be revelant for renormalization theory in Quantum Field Theory. We begin with a review of the convolution product's use in the Kreimer-Connes formalism of perturbative renormalization. We show that the Wilson effective action can be obtained from a convolution product propriety of regularized Gaussian measures on the space of fields. Then, we propose a natural C*-algebraic framework for scale dependent field theories which may enhance the conceptual approach to renormalization theory. In the same spirit, we introduce a probabilistic construction of interacting theories for simple models and apply it for quantum field theory by defining a partition function in this setting.

  11. Olig sand, shallow oil zone, Elk Hills Field, Kern County, California: General reservoir study

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Olig Sand Reservoirs, classified as part of the Shallow Oil Zone, were studied and evaluated. The reservoirs are located in Section 30R, T30S, R23E and Section 24Z, T30S, R22E, M.D.B. and M., all in Elk Hills Oil Field, Naval Petroleum Reserve No. 1, Kern County, California. The three productive reservoirs studied cover an area of 255 acres, and originally contained 3311 MMCF of gas condensate in 4292 acre-feet of sand. The main reservoir, Fault Block I in Section 30R, has been on production since 1982 and is largely depleted. The reservoirs around wells 324-30R and 385-24Z should still be in a virgin state. They can be depleted either through those wells, when their service as Stevens Zone producers is completed, or by twin well replacements drilled specifically as Olig Sand completions. Thirty-six exhibits have been included to present basic data and study results in a manner that will enhance the readers's understanding of the reservoirs. These exhibits include six maps in the M-series, six sections in the S-Series, and fourteen figures in the F-Series, as well as ten tables. The Appendix includes miscellaneous basic data such as well logs, core analyses, pressure measurements, and well tests. The Calculations Section of the report develops and explains the analytical methods used to define well productivity, determine reserves, and schedule future production of those reserves. Although no MER recommendations have been made for these gas condensate reservoirs, recommended depletion schemes and schedules are presented. These schemes include one eventual recompletion and one new well to maximize present worth of these reservoirs which carry proved reserves of 289 MMCF and probable reserves of 853 MMCF, effective August 1, 1986. In addition, potential future testing is earmarked for wells 322-30R and 344-30R. 11 refs., 14 figs., 10 tabs.

  12. Increasing Waterflood Reserves in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Clarke, D.; Koerner, R.; Moos D.; Nguyen, J.; Phillips, C.; Tagbor, K.; Walker, S.

    1999-04-05T23:59:59.000Z

    This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate.

  13. Real option analysis as a decision tool in oil field developments

    E-Print Network [OSTI]

    Babajide, Abisoye (Abisoye E.)

    2007-01-01T23:59:59.000Z

    This thesis shows the applicability and value of real options analysis in developing an oil field, and how its use along with decision analysis can maximize the returns on a given project and minimize the losses. It focuses ...

  14. Indication of transpressional tectonics in the Gullfaks oil-field, northern North Sea

    E-Print Network [OSTI]

    Fossen, Haakon

    Indication of transpressional tectonics in the Gullfaks oil-field, northern North Sea Haakon Fossen, the structure is characterized by a very marked late Kimmerian unconformity which sepa- rates extensively

  15. EIS-0016: Cumulative Production/Consumption Effects of the Crude Oil Price Incentive Rulemakings, Programmatic

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this Final Statement to FEA-FES-77-7 to assess the environmental and socioeconomic implications of a rulemaking on crude oil pricing incentives as pertains to the full range of oil production technologies (present as well as anticipated.)

  16. Western oil-shale development: a technology assessment. Volume 2: technology characterization and production scenarios

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    A technology characterization of processes that may be used in the oil shale industry is presented. The six processes investigated are TOSCO II, Paraho Direct, Union B, Superior, Occidental MIS, and Lurgi-Ruhrgas. A scanario of shale oil production to the 300,000 BPD level by 1990 is developed. (ACR)

  17. A Bayesian Network to Manage Risks of Maritime Piracy against Offshore Oil Fields

    E-Print Network [OSTI]

    of petroleum, and on the other hand shipping capable of transporting crude oil between production and consumption sites. Modern piracy is currently the major threat to the security of these energy production with the International Maritime Bureau5 compared to 487 reports in 2010. At production sites, monitoring methods

  18. Oil, Gas, and Minerals, Exploration and Production, Lease of Public Land (Iowa)

    Broader source: Energy.gov [DOE]

    The state, counties and cities and other political subdivisions may lease publicly owned lands for the purpose of oil or gas or metallic minerals exploration and production.  Any such leases shall...

  19. Large-Scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis

    SciTech Connect (OSTI)

    Ringer, M.; Putsche, V.; Scahill, J.

    2006-11-01T23:59:59.000Z

    A broad perspective of pyrolysis technology as it relates to converting biomass substrates to a liquid bio-oil product and a detailed technical and economic assessment of a fast pyrolysis plant.

  20. Quinoline and derivatives at a tar oil contaminated site: hydroxylated products as indicator for natural attenuation?

    SciTech Connect (OSTI)

    Anne-Kirsten Reineke; Thomas Goeen; Alfred Preiss; Juliane Hollender [RWTH Aachen, Aachen (Germany). Institute of Hygiene and Environmental Medicine

    2007-08-01T23:59:59.000Z

    LC-MS-MS analysis of groundwater of a tar oil contaminated site (a former coal mine and coking plant in Castrop-Rauxel, Germany) showed the occurrence of the N-heterocycles quinoline and isoquinoline as well as their hydroxylated and hydrogenated metabolites. The concentrations of the hydroxylated compounds, 2(1H)-quinolinone and 1(2H)-isoquinolinone, were significantly higher than those of the nonsubstituted parent compounds. Therefore, exclusive quantification of the parent compounds leads to an underestimation of the amount of N-heterocycles present in the groundwater. Microbial degradation experiments of quinoline and isoquinoline with aquifer material of the site as inocculum showed the formation of hydroxylated and hydrogenated products under sulfate-reducing conditions, the prevailing conditions in the field. However, since analyses of seven tar products showed that these compounds are also primary constituents, their detection in groundwater is found to be a nonsufficient indicator for the occurrence of biological natural attenuation processes. Instead, the ratio of hydroxylated to parent compound (R{sub metabolite}) is proposed as a useful indicator. We found that 65-83% of all groundwater samples showed R{sub metabolite} for 2(1H)-quinolinone, 1(2H)-isoquinolinone, 3,4-dihydro-2(1H)-quinolinone, and 3,4-dihydro-1(2H)-isoquinolinone, which was higher than the highest ratio found in tar products. With respect to the observed partition coefficient between tar oil and water of 3.5 for quinoline and isoquinoline and 0.3 for 2(1H)-quinolinone and 1(2H)-isoquinolinone, the ratio in groundwater would be approximately 10 times higher than the ratio in tar oil. When paying attention to these two parameters, 19-31% of groundwater samples exceed the highest tar oil ratio. This indicates that biological processes take place in the aquifer of the site and R{sub metabolite} is an applicable indicator for natural attenuation. 42 refs., 6 figs., 2 tabs.

  1. IMPROVED OIL RECOVERY FROM UPPER JURASSIC SMACKOVER CARBONATES THROUGH THE APPLICATION OF ADVANCED TECHNOLOGIES AT WOMACK HILL OIL FIELD, CHOCTAW AND CLARKE COUNTIES, EASTERN GULF COASTAL PLAIN

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-05-20T23:59:59.000Z

    Pruet Production Co. and the Center for Sedimentary Basin Studies at the University of Alabama, in cooperation with Texas A&M University, Mississippi State University, University of Mississippi, and Wayne Stafford and Associates are undertaking a focused, comprehensive, integrated and multidisciplinary study of Upper Jurassic Smackover carbonates (Class II Reservoir), involving reservoir characterization and 3-D modeling and an integrated field demonstration project at Womack Hill Oil Field Unit, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plain. The principal objectives of the project are: increasing the productivity and profitability of the Womack Hill Field Unit, thereby extending the economic life of this Class II Reservoir and transferring effectively and in a timely manner the knowledge gained and technology developed from this project to producers who are operating other domestic fields with Class II Reservoirs. The principal research efforts for Year 3 of the project have been recovery technology analysis and recovery technology evaluation. The research focus has primarily been on well test analysis, 3-D reservoir simulation, microbial core experiments, and the decision to acquire new seismic data for the Womack Hill Field area. Although Geoscientific Reservoir Characterization and 3-D Geologic Modeling have been completed and Petrophysical and Engineering Characterization and Microbial Characterization are essentially on schedule, a no-cost extension until September 30, 2003, has been granted by DOE so that new seismic data for the Womack Hill Field can be acquired and interpreted to assist in the determination as to whether Phase II of the project should be implemented.

  2. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs 

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE August 1972 Major Subject: PETROLEUM ENGINEERING THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Approved as. to style...

  3. Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical Report

    E-Print Network [OSTI]

    Johnson, Eric E.

    Report Title: Oil and Gas Production and Economic Growth In New Mexico Type of Report: Technical agency thereof. #12;Page | ii Oil and Gas Production and Economic Growth in New Mexico James Peach and C Mexico's marketed value of oil and gas was $19.2 billion (24.0 percent of state GDP). This paper

  4. Just oil? The distribution of environmental and social impacts of oil production and consumption

    E-Print Network [OSTI]

    O'Rourke, D; Connolly, S

    2003-01-01T23:59:59.000Z

    underground pipeline leak of 1,000,000 liters of gas intoPipeline Safety reported annual leaks of approximately 6.7 million gallons of oil and gas

  5. Activities of the Oil Implementation Task Force, December 1990--February 1991; Contracts for field projects and supporting research on enhanced oil recovery, April--June 1990

    SciTech Connect (OSTI)

    Tiedemann, H.A. (ed.) (USDOE Bartlesville Project Office, OK (USA))

    1991-03-01T23:59:59.000Z

    The Oil Implementation Task Force was appointed to implement the US DOE's new oil research program directed toward increasing domestic oil production by expanded research on near- or mid-term enhanced oil recovery methods. An added priority is to preserve access to reservoirs that have the largest potential for oil recovery, but that are threatened by the large number of wells abandoned each year. This report describes the progress of research activities in the following areas: chemical flooding; gas displacement; thermal recovery; resource assessment; microbial technology; geoscience technology; and environmental technology. (CK)

  6. Shale Oil Production Performance from a Stimulated Reservoir Volume 

    E-Print Network [OSTI]

    Chaudhary, Anish Singh

    2011-10-21T23:59:59.000Z

    The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

  7. Mining and Gas and Oil Production (North Dakota)

    Broader source: Energy.gov [DOE]

    This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

  8. Oil and Gas Exploration, Drilling, Transportation, and Production (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation prohibits the waste of oil or gas and the pollution of water, air, or land. The Department of Health and Environmental Control is authorized to implement regulations designed to...

  9. Light oil yield improvement project at Granite City Division Coke/By-Product Plant

    SciTech Connect (OSTI)

    Holloran, R.A. [National Steel Corp., Granite City, IL (United States). Granite City Div.

    1995-12-01T23:59:59.000Z

    Light oil removal from coke oven gas is a process that has long been proven and utilized throughout many North American Coke/By-Products Plants. The procedures, processes, and equipment requirements to maximize light oil recovery at the Granite City By-Products Plant will be discussed. The Light Oil Yield Improvement Project initially began in July, 1993 and was well into the final phase by February, 1994. Problem solving techniques, along with utilizing proven theoretical recovery standards were applied in this project. Process equipment improvements and implementation of Operator/Maintenance Standard Practices resulted in an average yield increase of 0.4 Gals./NTDC by the end of 1993.

  10. ALKALI – CATALYSED PRODUCTION OF BIODIESEL FUEL FROM NIGERIAN CITRUS SEEDS OIL

    E-Print Network [OSTI]

    unknown authors

    The potential of oil extracted from the seeds of three different Nigerian citrus fruits for biodiesel production was investigated. Fatty acid alkyl esters were produced from orange seed oil, grape seed oil and tangerine seed oil by transesterification of the oils with ethanol using potassium hydroxide as a catalyst. In the conversion of the citrus seed oils to alkyl esters (biodiesel), the grape seed oil gave the highest yield of 90.6%, while the tangerine seed oil and orange seed oil gave a yield of 83.1 % and 78.5%, respectively. Fuel properties of the seed oil and its biodiesel were determined. The results showed that orange seed oil had a density of 730 Kg/m 3, a viscosity of 36.5 mm 2 /s, and a pour point of- 14 o C; while its biodiesel fuel had a density of 892 Kg/m 3, a viscosity of 5.60 mm 2 /s, and a pour point of- 25 o C. Grape seed oil had a density of 675 Kg/m 3, a viscosity of 39.5 mm 2 /s, and a pour point of- 12 o C, while its biodiesel fuel had a density of 890 Kg/m 3, a viscosity of 4.80 mm 2 /s, and a pour point of- 22 o C. Tangerine seed oil had an acid value of 1.40 mg/g, a density of 568 Kg/m 3, a viscosity of 37.3 mm 2 /s, and a pour point of- 15 o C, while its biodiesel fuel had an acid value of 0.22 mg/g, a density of 895 Kg/m 3, a viscosity of 5.30 mm 2 /s, and a pour point of- 24 o C.

  11. Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}

    SciTech Connect (OSTI)

    Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

    2013-03-15T23:59:59.000Z

    The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

  12. Experimental Investigation of Biodiesel Production from Waste Mustard Oil

    E-Print Network [OSTI]

    Rajat Subhra Samanta; Mukunda Kumar Das

    The demand for petroleum is increasing with each passing day. This may be attributed to the limited resources of petroleum crude. Hence there is an urgent need of developing alternative energy sources to meet the ever increasing energy demand. Biofuels are currently being considered from multidimensional perspectives, i.e. depleting fossil fuels, resources, environmental health, energy security and agricultural economy. The two most common types of biofuels are ethanol and biodiesel [1]. Biodiesel is a promising alternative fuel to replace petroleum-based diesel that is produced primarily from vegetable oil, animal fat and waste mustard oil. The vegetable oils which are rich in oxygen can be used as future alternate fuels for the operation of diesel engine [2]. Biodiesel is produced from wasted mustard oil through alkali catalyzed transesterification process. Biodiesel is simple to use, biodegradable, non-toxic and essentially free of sulfur and aromatics. Physical properties like density, flash point, kinematic viscosity, cloud point and pour point were found out for biodiesel produced from waste mustard oil. The same characteristic study was also carried out for conventional diesel fuel and used as a baseline for comparison. The values obtained from waste mustard oil ethyl ester (biodiesel) is closely matched with the conventional diesel fuel and it can be used in diesel engine without any modification. Biodiesel can be used in pure form (B100) or may be blended with petroleum diesel at any concentration in most injection pump diesel engines.

  13. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    timing game in petroleum production: An econometric model,”game in offshore petroleum production,” working paper,UCD-ITS-RR-07-04. Petroleum Production Tax, website (2007)

  14. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    RR-08-26 Modeling of Energy Production Decisions: An Alaskarapid or gradual energy production in the future? • Doesnet social benefit from energy production and achieving a

  15. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD OF THE SAN JUAN BASIN REGION

    SciTech Connect (OSTI)

    Don L. Hanosh

    2004-11-01T23:59:59.000Z

    This report discusses: (1) being able to resume marginal oil production operations in the Red Mountain Oil Field, located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP); (2) determining if this system can reduce life costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improve the economics. In April 2003, a cooperative 50% cost share agreement between Enerdyne and the DOE was executed to investigate the feasibility of using cable suspended electric submersible pumps to reduce the life costs and increase the ultimate oil recovery of the Red Mountain Oil Field, located on the Chaco Slope of the San Juan Basin, New Mexico. The field was discovered in 1934 and has produced approximately 55,650 cubic meters (m{sup 3}), (350,000 barrels, 42 gallons) of oil. Prior to April 2003, the field was producing only a few cubic meters of oil each month; however, the reservoir characteristics suggest that the field retains ample oil to be economic. This field is unique, in that, the oil accumulations, above fresh water, occur at depths from 88-305 meters, (290 feet to 1000 feet), and serves as a relatively good test area for this experiment.

  16. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01T23:59:59.000Z

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  17. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01T23:59:59.000Z

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  18. Energy and crude oil input requirements for the production of reformulated gasolines

    SciTech Connect (OSTI)

    Singh, M. [Argonne National Lab., Washington, DC (United States); McNutt, B. [USDOE, Washington, DC (United States)

    1993-11-01T23:59:59.000Z

    The energy and crude oil requirements for the production of reformulated gasolines (RFG) are estimated. Both the energy and crude oil embodied in the final product and the process energy required to manufacture the RFG and its components are included. The effects on energy and crude oil use of using various oxygenates to meet the minimum oxygen content level required by the Clean Air Act Amendments are evaluated. The analysis illustrates that production of RFG requires more total energy than that of conventional gasoline but uses less crude oil. The energy and crude oil use requirements of the different RFGs vary considerably. For the same emissions performance level, RFG with ethanol requires substantially more total energy and crude oil than RFG with MTBE or ETBE. A specific proposal by the EPA designed to allow the use of ethanol in RFG would increase the total energy required to produce RFG by 2% and the total crude oil required by 2.0 to 2.5% over that for the base RFG with MTBE.

  19. Process and economic model of in-field heavy oil upgrading using aqueous pyrolysis

    SciTech Connect (OSTI)

    Thorsness, C. B., LLNL

    1997-01-21T23:59:59.000Z

    A process and economic model for aqueous pyrolysis in-field upgrading of heavy oil has been developed. The model has been constructed using the ASPEN PLUS chemical process simulator. The process features cracking of heavy oil at moderate temperatures in the presence of water to increase oil quality and thus the value of the oil. Calculations with the model indicate that for a 464 Mg/day (3,000 bbl/day) process, which increases the oil API gravity of the processed oil from 13.5{degree} to 22.4{degree}, the required value increase of the oil would need to be at least $2.80/Mg{center_dot}{degree}API($0.40/bbl{center_dot}{degree}API) to make the process economically attractive. This level of upgrading has been demonstrated in preliminary experiments with candidate catalysts. For improved catalysts capable of having the coke make and increasing the pyrolysis rate, a required price increase for the oil as low as $1.34/Mg{center_dot}{degree}API ($0.21/bbl{center_dot}{degree}API)has been calculated.

  20. Oil production by entrained pyrolysis of biomass and processing of oil and char

    DOE Patents [OSTI]

    Knight, James A. (Atlanta, GA); Gorton, Charles W. (Atlanta, GA)

    1990-01-02T23:59:59.000Z

    Entrained pyrolysis of lignocellulosic material proceeds from a controlled pyrolysis-initiating temperature to completion of an oxygen free environment at atmospheric pressure and controlled residence time to provide a high yield recovery of pyrolysis oil together with char and non-condensable, combustible gases. The residence time is a function of gas flow rate and the initiating temperature is likewise a function of the gas flow rate, varying therewith. A controlled initiating temperature range of about 400.degree. C. to 550.degree. C. with corresponding gas flow rates to maximize oil yield is disclosed.

  1. Schwinger Pair Production in Pulsed Electric Fields

    E-Print Network [OSTI]

    Sang Pyo Kim; Hyung Won Lee; Remo Ruffini

    2012-07-22T23:59:59.000Z

    We numerically investigate the temporal behavior and the structure of longitudinal momentum spectrum and the field polarity effect on pair production in pulsed electric fields in scalar quantum electrodynamics (QED). Using the evolution operator expressed in terms of the particle and antiparticle operators, we find the exact quantum states under the influence of electric pulses and measure the number of pairs of the Minkowski particle and antiparticle. The number of pairs, depending on the configuration of electric pulses, exhibits rich structures in the longitudinal momentum spectrum and undergoes diverse dynamical behaviors at the onset of the interaction but always either converges to a momentum-dependent constant or oscillates around a momentum-dependent time average after the completion of fields.

  2. SUBTASK 1.7 EVALUATION OF KEY FACTORS AFFECTING SUCCESSFUL OIL PRODUCTION IN THE BAKKEN FORMATION, NORTH DAKOTA PHASE II

    SciTech Connect (OSTI)

    Darren D. Schmidt; Steven A. Smith; James A. Sorensen; Damion J. Knudsen; John A. Harju; Edward N. Steadman

    2011-10-31T23:59:59.000Z

    Production from the Bakken and Three Forks Formations continues to trend upward as forecasts predict significant production of oil from unconventional resources nationwide. As the U.S. Geological Survey reevaluates the 3.65 billion bbl technically recoverable estimate of 2008, technological advancements continue to unlock greater unconventional oil resources, and new discoveries continue within North Dakota. It is expected that the play will continue to expand to the southwest, newly develop in the northeastern and northwestern corners of the basin in North Dakota, and fully develop in between. Although not all wells are economical, the economic success rate has been near 75% with more than 90% of wells finding oil. Currently, only about 15% of the play has been drilled, and recovery rates are less than 5%, providing a significant future of wells to be drilled and untouched hydrocarbons to be pursued through improved stimulation practices or enhanced oil recovery. This study provides the technical characterizations that are necessary to improve knowledge, provide characterization, validate generalizations, and provide insight relative to hydrocarbon recovery in the Bakken and Three Forks Formations. Oil-saturated rock charged from the Bakken shales and prospective Three Forks can be produced given appropriate stimulation treatments. Highly concentrated fracture stimulations with ceramic- and sand-based proppants appear to be providing the best success for areas outside the Parshall and Sanish Fields. Targeting of specific lithologies can influence production from both natural and induced fracture conductivity. Porosity and permeability are low, but various lithofacies units within the formation are highly saturated and, when targeted with appropriate technology, release highly economical quantities of hydrocarbons.

  3. Carbon Capture and Sequestration (via Enhanced Oil Recovery) from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Stewart Mehlman

    2010-06-16T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE’s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  4. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30T23:59:59.000Z

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding. As part of the MGSC�������¢����������������s Validation Phase (Phase II) studies, the small injection pilot test was conducted at the Bald Unit site within the Mumford Hills Field in Posey County, southwestern Indiana, which was chosen for the project on the basis of site infrastructure and reservoir conditions. Geologic data on the target formation were extensive. Core analyses, porosity and permeability data, and geophysical logs from 40 wells were used to construct cross sections and structure contour and isopach maps in order to characterize and define the reservoir architecture of the target formation. A geocellular model of the reservoir was constructed to improve understanding of CO2 behavior in the subsurface. At the time of site selection, the Field was under secondary recovery through edge-water injection, but the wells selected for the pilot in the Bald Unit had been temporarily shut-in for several years. The most recently shut-in production well, which was surrounded by four nearby shut-in production wells in a five-spot pattern, was converted to CO2 injection for this pilot. Two additional wells outside the immediate five-spot pattern, one of which was an active producer, were instrumented to measure surface temperature and pressure. The CO2 injection period lasted from September 3, 2009, through December 14, 2010, with one three-month interruption caused by cessation of CO2 deliveries due to winter weather. Water was injected into the CO2 injection well during this period. A total of 6,300 tonnes (6,950 tons) of CO2 were injected into the reservoir at rates that generally ranged from 18 to 32 tonnes (20 to 35 tons) per day. The CO2 injection bottomhole pressure generally remained at 8.3 to 9.0 MPag (1,200 to 1,300 psig). The CO2 injection was followed by continued monitoring for nine months during post-CO2 water injection. A monitoring, verification, and accounting (MVA) program was designed to determine the fate of injected CO2. Extensive periodic sampling and analysis of brine, groundwater, and produced gases began before CO2 injection and continued through the monitored waterflood periods. Samples were gathered from production wells and three newly installed groundwater monitoring wells. Samples underwent geochemical and isotopic analyses to reveal any CO2-related changes. Groundwater and kinetic modeling and mineralogical analysis were also employed to better understand the long-term dynamics of CO2 in the reservoir. No CO2 leakage into groundwater was detected, and analysis of brine and gas chemistry made it possible to track the path of plume migration and infer geochemical reactions and trapping of CO2. Cased-hole logging did not detect any CO2 in the near-wellbore region. An increase in CO2 concentration was first detected in February 2010 from the gas present in the carboy during brine sampling; however, there was no appreciable gas volume associated with the detection of CO2. The first indication of elevated gas rates from the commingled gas of the pilot�������¢����������������s production wells occurred in July 2010 and reached a maximum of 0.36 tonnes/day (0.41 tons/day) in September 2010. An estimated 27 tonnes (30 tons) of CO2 were produced at the surface from the gas separator at the tank battery from September 3, 2009, through September 11, 2011, representing 0.5% of the injected CO2. Consequently, 99.5%

  5. Post Production Heavy Oil Operations: A Case for Partial Upgrading

    E-Print Network [OSTI]

    Lokhandwala, Taher

    2012-12-05T23:59:59.000Z

    tipping off point and with a detailed look at the chemistry of the oil in question it is possible to make a very viable case for visbreaking. In a similar vein, this analysis can serve as a guide in making a case for other partial upgrading methods as well....

  6. World Oil Prices and Production Trends in AEO2008 (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01T23:59:59.000Z

    Annual Energy Outlook 2008 (AEO) defines the world oil price as the price of light, low-sulfur crude oil delivered in Cushing, Oklahoma. Since 2003, both "above ground" and "below ground" factors have contributed to a sustained rise in nominal world oil prices, from $31 per barrel in 2003 to $69 per barrel in 2007. The AEO2008 reference case outlook for world oil prices is higher than in the AEO2007 reference case. The main reasons for the adoption of a higher reference case price outlook include continued significant expansion of world demand for liquids, particularly in non-OECD (Organization for Economic Cooperation and Development) countries, which include China and India; the rising costs of conventional non-OPEC (Organization of the Petroleum Exporting Countries) supply and unconventional liquids production; limited growth in non-OPEC supplies despite higher oil prices; and the inability or unwillingness of OPEC member countries to increase conventional crude oil production to levels that would be required for maintaining price stability. The Energy Information Administration will continue to monitor world oil price trends and may need to make further adjustments in future AEOs.

  7. A top-injection bottom-production cyclic steam stimulation method for enhanced heavy oil recovery

    E-Print Network [OSTI]

    Matus, Eric Robert

    2006-10-30T23:59:59.000Z

    A novel method to enhance oil production during cyclic steam injection has been developed. In the Top-Injection and Bottom-Production (TINBOP) method, the well contains two strings separated by two packers (a dual and a single packer): the short...

  8. Tax policy can change the production path: A model of optimal oil extraction in Alaska

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    the model against historical production data, and use the calibrated model to simulate the impact of tax prices have prompted oil-holding nations and states to revise their tax policies, including increasing to historical data to simulate the effects of alternative tax policies on production paths and on the present

  9. Fluid and Rock Property Controls On Production And Seismic Monitoring Alaska Heavy Oils

    SciTech Connect (OSTI)

    Matthew Liberatore; Andy Herring; Manika Prasad; John Dorgan; Mike Batzle

    2012-06-30T23:59:59.000Z

    The goal of this project is to improve recovery of Alaskan North Slope (ANS) heavy oil resources in the Ugnu formation by improving our understanding of the formationâ??s vertical and lateral heterogeneities via core evaluation, evaluating possible recovery processes, and employing geophysical monitoring to assess production and modify production operations.

  10. Contracts for field projects and supporting research on enhanced oil recovery. Reporting period July--September 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This report contains information on accomplishments completed during July through September 1997 on contracts for field projects and supporting research on Enhanced Oil Recovery.

  11. Optimization of Jatropha Oil Extraction and Its By-Product Utilization by Pyrolysis Method 

    E-Print Network [OSTI]

    Kongkasawan, Jinjuta 1987-

    2012-08-20T23:59:59.000Z

    and biodiesel. Biofuels are derived from biomass feedstock and usually blend with gasoline or diesel fuel, but they can also be used directly on the engines (EIA, 2011b). One can categorize the biofuels by their source and type. Biofuels may be obtained from... of Jatropha Seed and Oil .................................................................8! 2.2.2. Potential of Jatropha Oils for Biofuels Production ........................................12! 2.2 Mechanical Extraction...

  12. The effects of production rate and gravitational segregation on gas injection performance of oil reservoirs

    E-Print Network [OSTI]

    Ferguson, Ed Martin

    1972-01-01T23:59:59.000Z

    models as com- pletely as possible prior to making the gas injection simulations. One validation test involved simulating a horizontal gas drive ex- cluding gravity effects by using the same densities for gas and oil. Shown in Figure 6 is the GOR...THE EFFECTS OF PRODUCTION RATE AND GRAVITATIONAL SEGREGATION ON GAS INJECTION PERFORMANCE OF OIL RESERVOIRS A Thesis by ED MARTIN FERGUSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  13. The use of Devonian oil shales in the production of portland cement

    SciTech Connect (OSTI)

    Schultz, C.W.; Lamont, W.E. [Alabama Univ., University, AL (United States); Daniel, J. [Lafarge Corp., Alpena, MI (United States)

    1991-12-31T23:59:59.000Z

    The Lafarge Corporation operates a cement plant at Alpena, Michigan in which Antrim shale, a Devonian oil shale, is used as part of the raw material mix. Using this precedent the authors examine the conditions and extent to which spent shale might be utilized in cement production. They conclude that the potential is limited in size and location but could provide substantial benefit to an oil shale operation meeting these criteria.

  14. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect (OSTI)

    Veil, J.A. [Argonne National Lab., Washington, DC (United States). Water Policy Program

    1997-10-01T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  15. Top 100 Oil and Gas Fields of 2009

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul2011DryTop 100 Oil and Gas

  16. Oil and Gas Field Code Master List - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14 Dec-14 Jan-15LiquidBG 0ProgramConnecticut900SteveOil

  17. 95 Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    E-Print Network [OSTI]

    Oguntola J Alamu; Opeoluwa Dehinbo; Adedoyin M Sulaiman; Oguntola J. Alamu; Opeoluwa Dehinbo; Adedoyin M. Sulaiman

    Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0 % ethanol (wt % coconut oil), 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4%) was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  18. Matrix product states for gauge field theories

    E-Print Network [OSTI]

    Boye Buyens; Jutho Haegeman; Karel Van Acoleyen; Henri Verschelde; Frank Verstraete

    2014-11-03T23:59:59.000Z

    The matrix product state formalism is used to simulate Hamiltonian lattice gauge theories. To this end, we define matrix product state manifolds which are manifestly gauge invariant. As an application, we study 1+1 dimensional one flavour quantum electrodynamics, also known as the massive Schwinger model, and are able to determine very accurately the ground state properties and elementary one-particle excitations in the continuum limit. In particular, a novel particle excitation in the form of a heavy vector boson is uncovered, compatible with the strong coupling expansion in the continuum. We also study non-equilibrium dynamics by simulating the real-time evolution of the system induced by a quench in the form of a uniform background electric field.

  19. Olive Oil Production in Greece1 The 1981 accession of Greece into the EEC was significant for the

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    to other crops due to the high level of CAP support and high olive-oil prices and d) the lack through the use of mechanized tilling. Historical and cultural importance of olive oil The Romans extendedOlive Oil Production in Greece1 The 1981 accession of Greece into the EEC was significant

  20. The effects of oiling and rehabilitation on the breeding productivity and annual moult and breeding cycles of

    E-Print Network [OSTI]

    de Villiers, Marienne

    The effects of oiling and rehabilitation on the breeding productivity and annual moult and breeding following the Apollo Sea oil spill..... 29 Chapter 3 Breeding and moult phenology of African Penguins Spheniscus demersus at Dassen Island, and the impact of the Apollo Sea and Treasure oil spills

  1. Essays on Macroeconomics and Oil

    E-Print Network [OSTI]

    CAKIR, NIDA

    2013-01-01T23:59:59.000Z

    is described below. Data Crude oil production data is fromproductivity measure is crude oil production per worker, andwhich is measured as crude oil production per worker, is

  2. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama -- Year 2. Annual report, March 1997--March 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.

    1998-09-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and has produced oil from fractured chalk of the Cretaceous Selma Group and glauconitic sandstone of the Eutaw Formation. Nearly all of Gilbertown Field is still in primary recovery, although waterflooding has been attempted locally. The objective of this project is to analyze the geologic structure and burial history of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas in order to suggest ways in which oil recovery can be improved. Indeed, the decline of oil production to marginally economic levels in recent years has made this type of analysis timely and practical. Key technical advancements being sought include understanding the relationship of requisite strain to production in Gilbertown reservoirs, incorporation of synsedimentary growth factors into models of area balance, quantification of the relationship between requisite strain and bed curvature, determination of the timing of hydrocarbon generation, and identification of the avenues and mechanisms of fluid transport.

  3. Growing consumption of petroleum products worldwide has resulted in the proliferation of vessels carrying oil, chemicals, and gases

    E-Print Network [OSTI]

    Neimark, Alexander V.

    Growing consumption of petroleum products worldwide has resulted in the proliferation of vessels carrying oil, chemicals, and gases into our harbors. Meeting our society's surging demand for commodities

  4. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAM JUAN BASIN REGION

    SciTech Connect (OSTI)

    Don L. Hanosh

    2004-08-01T23:59:59.000Z

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps.

  5. Estimates of future regional heavy oil production at three production rates--background information for assessing effects in the US refining industry

    SciTech Connect (OSTI)

    Olsen, D.K.

    1993-07-01T23:59:59.000Z

    This report is one of a series of publications from a project considering the feasibility of increasing domestic heavy oil (10{degree} to 20{degree} API gravity inclusive) production being conducted for the US Department of Energy. The report includes projections of future heavy oil production at three production levels: 900,000; 500,000; and 300,000 BOPD above the current 1992 heavy oil production level of 750,000 BOPD. These free market scenario projections include time frames and locations. Production projections through a second scenario were developed to examine which heavy oil areas would be developed if significant changes in the US petroleum industry occurred. The production data helps to define the possible constraints (impact) of increased heavy oil production on the US refining industry (the subject of a future report). Constraints include a low oil price and low rate of return. Heavy oil has high production, transportation, and refining cost per barrel as compared to light oil. The resource is known, but the right mix of technology and investment is required to bring about significant expansion of heavy oil production in the US.

  6. Microbial petroleum degradation enhancement by oil spill bioremediation products

    E-Print Network [OSTI]

    Lee, Salvador Aldrett

    1996-01-01T23:59:59.000Z

    was conducted using unpolluted, natural seawater. The products were tested in triplicate using 250 ml Erlenmeyer flasks and evaluated over a 28 day period to determine the products' capabilities based on the extent of petroleum degradation. Toxicity...

  7. Microbial petroleum degradation enhancement by oil spill bioremediation products 

    E-Print Network [OSTI]

    Lee, Salvador Aldrett

    1996-01-01T23:59:59.000Z

    was conducted using unpolluted, natural seawater. The products were tested in triplicate using 250 ml Erlenmeyer flasks and evaluated over a 28 day period to determine the products' capabilities based on the extent of petroleum degradation. Toxicity...

  8. Elastomers in mud motors for oil field applications

    SciTech Connect (OSTI)

    Hendrik, J. [Baker Hughes INTEQ GmbH, Celle (Germany)

    1997-08-01T23:59:59.000Z

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Results of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.

  9. High oil production continues to cut U.S. oil imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm) Harmonicbet WhenHiggs BosonAccurate knowledgeHighHigh oil

  10. U.S. oil imports to decline with rising oil production through 2014

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand expected to rise intonet

  11. Low oil prices cut less into U.S. oil production

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin:DeploymentSite Name:24,High naturalProsperityNatural GasLow oil

  12. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-02-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, mule, Blue Hogan, heron North, and Runway) within the Navajo Nation of southeastern utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The reservoir engineering component of the work completed to date included analysis of production data and well tests, comprehensive laboratory programs, and preliminary mechanistic reservoir simulation studies. A comprehensive fluid property characterization program was completed. Mechanistic reservoir production performance simulation studies were also completed.

  13. Integrated reservoir characterization for the Mazari oil field, Pakistan

    E-Print Network [OSTI]

    Ashraf, Ejaz

    1994-01-01T23:59:59.000Z

    evaluated reservoir performance potential using the production history, well tests and cased-hole well log surveys. Suggestions for reservoir management activities in conjunction with the evaluation of the reservoir performance are discussed in detail...

  14. Conversion Technologies for Advanced Biofuels - Bio-Oil Production |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControls andCONVENTIONAL ENERGY (OIL,Department

  15. West Coast (PADD 5) Total Crude Oil and Products Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil andBOE ReserveDistillate Fuel

  16. Spot Prices for Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001) -heating oilAll Tables TablesPricesSpot Prices (Crude

  17. A low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    oil field in the emirate of Abu Dhabi in the United Arab Emirates. The aim of the experiment Arab Emirates Mohammed Y. Ali1 , Braham Barkat1 , Karl A. Berteussen1 , and James Small1 ABSTRACT A lowA low-frequency passive seismic array experiment over an onshore oil field in Abu Dhabi, United

  18. Estimating attenuation properties of bentonite layer in Cut Bank oil field, Glacier County, Montana

    E-Print Network [OSTI]

    Karakurt, Necdet

    2006-04-12T23:59:59.000Z

    -8 to analyze the formation structure in depth, since seismic signals around the reservoir area were unclear in the 3-D survey. This research attempts to estimate the attenuation properties of the Bentonite layer in the Cut Bank oil field. VSP data is processed...

  19. FIELD DESCRIPTION Water Oil/Tar Sediment Tissue STUDYNAME Study Name X X X X

    E-Print Network [OSTI]

    FIELD DESCRIPTION Water Oil/Tar Sediment Tissue STUDYNAME Study Name X X X X QCBATCH Laboratory than the MDL, however, peak height is greater than 3 times the noise level and ID criteria are met. FJ Alpha Analytical Found. Analyte detected at less than the MDL, however, peak height is greater than 3

  20. An architecture of a workflow system for Integrated Asset Management in the smart oil field domain

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    An architecture of a workflow system for Integrated Asset Management in the smart oil field domain Angeles, CA 90089 Email: {amol, prasanna}@usc.edu Abstract--Integrated Asset Management (IAM. The computational chal- lenges of oilfield management - especially reservoir simulation - have been the subject

  1. Preliminary Technical and Legal Evaluation of Disposing of Nonhazardous Oil Field Waste into Salt Caverns

    SciTech Connect (OSTI)

    Ayers, Robert C.; Caudle, Dan; Elcock, Deborah; Raivel, Mary; Veil, John; and Grunewald, Ben

    1999-01-21T23:59:59.000Z

    This report presents an initial evaluation of the suitability, feasibility, and legality of using salt caverns for disposal of nonhazardous oil field wastes. Given the preliminary and general nature of this report, we recognize that some of our findings and conclusions maybe speculative and subject to change upon further research on this topic.

  2. Catalytic Hydroprocessing of Biomass Fast Pyrolysis Bio-oil to Produce Hydrocarbon Products

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Zacher, Alan H.

    2009-10-01T23:59:59.000Z

    Catalytic hydroprocessing has been applied to biomass fast pyrolysis liquid product (bio-oil) in a bench-scale continuous-flow fixed-bed reactor system. The intent of the research was to develop process technology to convert the bio-oil into a petroleum refinery feedstock to supplement fossil energy resources and to displace imported feedstock. The project was a cooperative research and development agreement among UOP LLC, the National Renewable Energy Laboratory and the Pacific Northwest National Laboratory (PNNL). This paper is focused on the process experimentation and product analysis undertaken at PNNL. The paper describes the experimental methods used and relates the results of the product analyses. A range of catalyst formulations were tested over a range of operating parameters including temperature, pressure, and flow-rate with bio-oil derived from several different biomass feedstocks. Effects of liquid hourly space velocity and catalyst bed temperature were assessed. Details of the process results were presented including mass and elemental balances. Detailed analysis of the products were provided including elemental composition, chemical functional type determined by mass spectrometry, and product descriptors such as density, viscosity and Total Acid Number (TAN). In summation, the paper provides an understanding of the efficacy of hydroprocessing as applied to bio-oil.

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  4. Potential Oil Production from the Coastal Plain of the Arctic...

    U.S. Energy Information Administration (EIA) Indexed Site

    Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of...

  5. Modeling of Energy Production Decisions: An Alaska Oil Case Study

    E-Print Network [OSTI]

    Leighty, Wayne

    2008-01-01T23:59:59.000Z

    in available cost and reservoir data and from the need forfluid flow” to simulate reservoir data for use in economicfluid flow” to simulate reservoir data for the production

  6. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect (OSTI)

    Milton, J.D. [CalResources LLC, Bakersfield, CA (United States); Edwards, E.B. [ Ogle & Heck, Carpinteria, CA (United States); Heck, R.G. [Ogle & Heck, Santa Barbara, CA (United States)] [and others

    1996-12-31T23:59:59.000Z

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  7. Geology of the undeveloped oil and gas fields of Central Offshore Santa Maria Basin, California

    SciTech Connect (OSTI)

    Milton, J.D. (CalResources LLC, Bakersfield, CA (United States)); Edwards, E.B. ( Ogle Heck, Carpinteria, CA (United States)); Heck, R.G. (Ogle Heck, Santa Barbara, CA (United States)) (and others)

    1996-01-01T23:59:59.000Z

    Two prominent subsurface structural features of the Central Offshore Santa Maria Basin are the Hosgri fault system and the associated anticlinal fold trend. Exploratory drilling and 3D seismic mapping have delineated a series of oil and gas fields along this trend which underlie four federal units and one non-unitized lease. The units are named after local geography and are called the Lion Rock, Point Sal, Purisima Point and Santa Maria Units. The individual lease, OCS P-0409, overlies the San Miguel field. The Hosgri fault system trends northwest-southeast and effectively forms the eastern boundary of the oil and gas province. Lying semi-parallel with the fault are several anticlinal culminations which have trapped large volumes of oil and gas in the fractured Montery Formation. The Monterey is both source and reservoir rock, averaging 300 meters n thickness throughout the Central Basin. Development of the Monterey Formation as a reservoir rock was through diagensis and tectonism with resulting porosities-from 15 to 20% and permeability up to one Darcy. These parameters coupled with a high geothermal gradient facilitate the inflow rates of the viscous Monterey oil. Some 24 exploration and delineation wells have been drilled in this area and tested at rates ranging from a few hundred to several thousand barrels per day. Estimated oil reserves in the Central Offshore Santa Maria Basin total approximately 1 billion barrels.

  8. Location of oil fields in Forest City basin as related to Precambrian tectonics

    SciTech Connect (OSTI)

    Carlson, M.P. (Univ. of Nebraska, Lincoln (USA))

    1989-09-01T23:59:59.000Z

    Accumulation of petroleum in the Forest City basin is strongly influenced by the tectonic framework established during the Precambrian. A series of Late Proterozoic orogenies created a fracture pattern in the northern Mid-Continent, which was emphasized by the late Keweenawan, Mid-Continent Rift System (MRS). Reactivated basement structures have created both a structural and depositional imprint on younger rocks. The Southeast Nebraska arch is defined by Middle Ordovician (Simpson) overlap of Arbuckle equivalents. Continuing differential movement along segments of the MRS within the North Kansas basin influenced the regional facies distribution of both the Late Ordovician (Viola) and the Late Devonian (Hunton). Middle Pennsylvanian compression from the Ouachita orogeny produced the Nemaha uplift and reactivated transform faulting on the MRS. Extensions of these southeast-trending fractures created offsets on the Nemaha uplift/Humboldt fault system and enhanced structures that host oil production. Fields that lie upon these wrench-fault trends within the Forest City basin have produced from the Simpson (St. Peter), Viola, and Hunton formations. The Precambrian structures and rock types produce strong geophysical signatures in contrast to the subdued anomalies of the Paleozoic sediments. Analyses of magnetic and gravity data provide an interpretation of the basement rocks and, by extrapolation, an additional exploration tool for locating Paleozoic trends related to reactivation of Precambrian tectonics.

  9. Western Shallow Oil Zone, Elk Hills Field, Kern County, California:

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    This study, Appendix V, addresses the Gusher Sands and their sub units and pools. Basic pressure, production and assorted technical dta were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off points for exploitation engineers to develop specific programs towards these ends. 16 refs., 9 tabs.

  10. Remote control of off-shore oil field production equipment

    E-Print Network [OSTI]

    Sissom, Alton Wayne

    1949-01-01T23:59:59.000Z

    sion on the subJect. II OhIGII4AL IDEAS AND BECONlyiKA1'IOgS The problem ss outlined in parts A and 8 of Appendix h'o. 2 was received by the writer in June of 1948, The engineering division of the California Company asked that ocean cable... the manufacturers of control equipment, an oral report wss made to the engineering division of the California Company on September ~, 1948. This report included the following recommendations. l. Consideration of the original control system ss outlined...

  11. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah.

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Lorenz, D.M.; Culham, W.E.

    1997-10-15T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide- (CO{sub 2}-) flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  12. Increased Oil Production and Reserves Utilizing Secondary/Tertiary Recovery Techniques on Small Reservoirs in the Paradox Basin, Utah

    SciTech Connect (OSTI)

    Allison, M. Lee; Chidsey, Jr., Thomas

    1999-11-03T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to about 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million bbl of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-(CO-) flood 2 project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  13. Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations

    E-Print Network [OSTI]

    Yusof, Zainal Abidin Mohd

    Improved production costs will accelerate commercialization of polyhydroxyalkanoate (PHA) polymer and PHA-based products. Plant oils are considered favorable feedstocks, due to their high carbon content and relatively low ...

  14. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading 

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    Increasing environmental concerns over greenhouse gas emissions, depleting petroleum reserves and rising oil prices has stimulated interest on biofuels production from biomass sources. This study explored on biofuels production from pyrolysis...

  15. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies USA Inc.

    2001-12-17T23:59:59.000Z

    The goals of this DOE sponsored project are to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to test these improved models and guidelines in the field.

  16. Development of Improved Oil Field Waste Injection Disposal Techniques

    SciTech Connect (OSTI)

    Terralog Technologies

    2002-11-25T23:59:59.000Z

    The goals of this project have was to: (1) assemble and analyze a comprehensive database of past waste injection operations; (2) develop improved diagnostic techniques for monitoring fracture growth and formation changes; (3) develop operating guidelines to optimize daily operations and ultimate storage capacity of the target formation; and (4) to apply these improved models and guidelines in the field.

  17. Audit of controls over crude oil production under Public Law 94-258 Naval Petroleum Reserve No. 1, Elk Hills, California. [Compliance with legislation

    SciTech Connect (OSTI)

    Not Available

    1986-04-25T23:59:59.000Z

    The Naval Petroleum Reserves Production Act of 1976 (Public Law 94-258) requires the Secretary to produce oil and gas from the Reserve at the Maximum Efficient Rate (MER) developed consistent with sound engineering practices. MER is defined as ''the maximum sustainable daily oil or gas rate from a reservoir which will permit economic development and depletion of that reservoir without detriment to the ultimate recovery.'' MER is determined through analyses and calculations using defined factors and parameters acquired through standard oil field testing procedures. Economic development and depletion of a reservoir without detriment to ultimate recovery means that production rates should not cause loss of originally obtainable petroleum and that revenues should exceed the cost of production. The purpose of the audit was to determine if the Department had adhered to the MER limitation on production at the Reserve as required by Public Law 94-258. Our review disclosed that production rates at the Reserve were not developed through engineering-based MER calculations. Production for the past seven years has exceeded the MER calculated by the Reserve's own engineers and principal consultants. According to studies prepared by the Department's technical engineers and consultants, between 90 and 130 million barrels of otherwise recoverable oil is at risk of being lost through overproduction over the life of the Reserve. Based on the average market value of $18 per barrel on March 6, 1986, the value of this oil was between $1.60 billion and $2.30 billion. We estimate that about half of the oil at risk of loss could yet be recovered if Reserve management develops and implements valid engineering-based MERs. 11 refs.

  18. Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems

    SciTech Connect (OSTI)

    Greg Thoma; John Veil; Fred Limp; Jackson Cothren; Bruce Gorham; Malcolm Williamson; Peter Smith; Bob Sullivan

    2009-05-31T23:59:59.000Z

    This report describes work performed during the initial period of the project 'Probabilistic Risk Based Decision Support for Oil and Gas Exploration and Production Facilities in Sensitive Ecosystems.' The specific region that is within the scope of this study is the Fayetteville Shale Play. This is an unconventional, tight formation, natural gas play that currently has approximately 1.5 million acres under lease, primarily to Southwestern Energy Incorporated and Chesapeake Energy Incorporated. The currently active play encompasses a region from approximately Fort Smith, AR east to Little Rock, AR approximately 50 miles wide (from North to South). The initial estimates for this field put it almost on par with the Barnett Shale play in Texas. It is anticipated that thousands of wells will be drilled during the next several years; this will entail installation of massive support infrastructure of roads and pipelines, as well as drilling fluid disposal pits and infrastructure to handle millions of gallons of fracturing fluids. This project focuses on gas production in Arkansas as the test bed for application of proactive risk management decision support system for natural gas exploration and production. The activities covered in this report include meetings with representative stakeholders, development of initial content and design for an educational web site, and development and preliminary testing of an interactive mapping utility designed to provide users with information that will allow avoidance of sensitive areas during the development of the Fayetteville Shale Play. These tools have been presented to both regulatory and industrial stakeholder groups, and their feedback has been incorporated into the project.

  19. Total Refinery Net Input of Crude Oil and Petroleum Products

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product:Input Product: Total

  20. Quantitation of microbial products and their effectiveness in enhanced oil recovery. Final report

    SciTech Connect (OSTI)

    Zhang, X.; Knapp, R.M.; McInerney, M.J.

    1995-02-01T23:59:59.000Z

    A three-dimensional, three-phase, multiple-component numerical simulator was developed to investigate transport and growth of microorganisms in porous media and the impacts of microbial activities on oil recovery. The microbial activities modeled in this study included: (1) growth, retention, chemotaxis, and end product inhibition of growth, (2) the formation of metabolic products, and (3) the consumption of nutrients. Major mechanisms for microbial enhanced oil recovery (MEOR) processes were modeled as follows: (1) improvement in sweep efficiency of a displacement process due to in situ plugging of highly-permeable production zones by cell mass or due to improved mobility control achieved by increasing the viscosity of the displacing fluid with a biopolymer, and (2) solubilization and mobilization of residual oil in porous media due to the reduction of the interfacial tension between oleic and aqueous phases by the production of a biosurfactant. The numerical solutions for mathematical models involved two steps. The distributions of pressure and phase saturations were solved from continuity equations and Darcy flow velocities for the aqueous phase were computed. This was followed by the solution of convection-dispersion equations for individual components. Numerical solutions from the proposed model were compared to results obtained from analytical equations, commercial simulators, and laboratory experiments. The comparison indicated that the model accurately quantified microbial transport and metabolism in porous media, and predicted additional crude oil recovery due to microbial processes. 50 refs., 41 figs., 26 tabs.

  1. Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells

    E-Print Network [OSTI]

    Rodriguez, Manuel Gregorio

    1999-01-01T23:59:59.000Z

    The Bachaquero-01 reservoir of the Lagunillas field is located in the eastern part of the Maracaibo Lake, Venezuela. The field is operated by the national oil company of Venezuela, PDVSA (Petroleos de Venezuela, S.A.). The Bachaquero-01 heavy oil...

  2. Oil and Gas Gross Production Tax (North Dakota)

    Broader source: Energy.gov [DOE]

    A gross production tax applies to most gas produced in North Dakota. Gas burned at the well site to power an electrical generator that consumes at least 75 percent of the gas is exempt from...

  3. Bachaquero-01 reservoir, Venezuela-increasing oil production by switching from cyclic steam injection to steamflooding using horizontal wells 

    E-Print Network [OSTI]

    Rodriguez, Manuel Gregorio

    1999-01-01T23:59:59.000Z

    The Bachaquero-01 reservoir of the Lagunillas field is located in the eastern part of the Maracaibo Lake, Venezuela. The field is operated by the national oil company of Venezuela, PDVSA (Petroleos de Venezuela, S.A.). The ...

  4. Effect of Magnetic Field on The Friction and Wear Displayed by The Scratch of Oil Lubricated Steel

    E-Print Network [OSTI]

    unknown authors

    Abstract — The present work discusses the effect of magnetic field on the friction and wear of steel scratched by TiC insert. The steel was lubricated by oil and dispersed by iron, copper and aluminium powders as well as polymeric powders such as high density polyethylene (PE), polymethyl methacrylate (PMMA) and polyamide (PA6). Molybdenum disulphide (MoS 2) and graphite (C) were added to the oil as dispersant. Paraffin oil was used as lubricant. Friction coefficient and wear of the tested composites were investigated using a tribometer designed and manufactured for that purpose. It was found that application of induction magnetic field decreased friction coefficient. The decrease was significant for oil lubricated steel and oil dispersed by aluminium, copper, PMMA and PA6 + 10 wt. % C, while addition of iron, PE and MoS 2 particles showed slight friction decrease. At no magnetic field friction coefficient for oil dispersed by aluminium and copper particles showed values lower than that observed for oil dispersed by iron particles. The lowest values of friction coefficient were displayed by oil dispersed by PE particles. Magnetic field caused significant wear increase for oil lubricated steel, where aluminium, copper and PA6 + C particles displayed relatively higher wear, while addition of iron, PE, PMMA and MoS 2 particles showed slight wear increase. At no magnetic field wear decreased due to the action of aluminium particles which formed a continuous layer on the steel surface and consequently decreased wear. Wear of oil lubricated steel dispersed by PE particles displayed relatively low values. Magnetic field showed no significant change on wear of the steel surface. Index Term-- Induction, magnetic field, scratch, friction coefficient, wear, iron, copper, aluminium polymethyl methacrylate, polyethylene, polyamide, molybdenum disulphide, paraffin oil. I.

  5. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. [Bechtel Petroleum Operations, Inc., Tupman, CA (United States); McJannet, G.S. [Dept. of Energy, Tupman, CA (United States)

    1996-12-31T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  6. Application of turbidite facies of the Stevens Oil Zone for reservoir management, Elk Hills Field, California

    SciTech Connect (OSTI)

    Reid, S.A.; Thompson, T.W. (Bechtel Petroleum Operations, Inc., Tupman, CA (United States)); McJannet, G.S. (Dept. of Energy, Tupman, CA (United States))

    1996-01-01T23:59:59.000Z

    A detailed depositional model for the uppermost sand reservoirs of the Stevens Oil Zone, Elk Hills Field, California, contains three facies: turbidite channel-fill sand bodies, overbank Sandstone and mudstone, and pelagic and hemipelagic siliceous shale. Sand bodies are the primary producing facies and consist of layered, graded sandstone with good permeability. The presence of incipient anticlines with subsea relief in the late Miocene resulted in deposition of lenticular and sinuous sand Was within structurally created channels. Relief of these structural channels was low when the earliest sand bodies were deposited, leading to a wide channel complex bounded by broad overbank deposits of moderate to low permeability. As deposition proceeded, increased structural relief constrained the channels, resulting in narrower sand body width and relatively abrupt channel terminations against very low permeability siliceous shale. With post-Miocene uplift and differential compaction, stratigraphic mounding of sand bodies helped create structural domes such as the 24Z reservoir. Stratigraphic traps including the 26R reservoir were also created. Such traps vary in seal quality from very effective to leaky, depending on the lateral transition from sand bodies to siliceous shale. Application of the Elk Hills turbidity model (1) provides a framework for monitoring production performance in the 24Z and Northwest Stevens waterflood projects; and for tracking gas migration into and out of the 26R reservoir, (2) helps b identify undeveloped locations in the 26R reservoir ideally suited for horizontal wells, (3) has led to the identification of two new production trends in the 29R area, and (4) makes possible the development of exploration plays in western Elk Hills.

  7. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Riley, Ronald; Wicks, John; Perry, Christopher

    2009-12-30T23:59:59.000Z

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian “Clinton” sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test (“Huff-n-Puff”) was conducted on a well in Stark County to test the injectivity in a “Clinton”-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day “soak” period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the “Clinton” sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3½ months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the “Clinton” in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic- CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the “Clinton” reservoir in the ECOF.

  8. Silurian "Clinton" Sandstone Reservoir Characterization for Evaluation of CO2-EOR Potential in the East Canton Oil Field, Ohio

    SciTech Connect (OSTI)

    Ronald Riley; John Wicks; Christopher Perry

    2009-12-30T23:59:59.000Z

    The purpose of this study was to evaluate the efficacy of using CO2-enhanced oil recovery (EOR) in the East Canton oil field (ECOF). Discovered in 1947, the ECOF in northeastern Ohio has produced approximately 95 million barrels (MMbbl) of oil from the Silurian 'Clinton' sandstone. The original oil-in-place (OOIP) for this field was approximately 1.5 billion bbl and this study estimates by modeling known reservoir parameters, that between 76 and 279 MMbbl of additional oil could be produced through secondary recovery in this field, depending on the fluid and formation response to CO2 injection. A CO2 cyclic test ('Huff-n-Puff') was conducted on a well in Stark County to test the injectivity in a 'Clinton'-producing oil well in the ECOF and estimate the dispersion or potential breakthrough of the CO2 to surrounding wells. Eighty-one tons of CO2 (1.39 MMCF) were injected over a 20-hour period, after which the well was shut in for a 32-day 'soak' period before production was resumed. Results demonstrated injection rates of 1.67 MMCF of gas per day, which was much higher than anticipated and no CO2 was detected in gas samples taken from eight immediately offsetting observation wells. All data collected during this test was analyzed, interpreted, and incorporated into the reservoir characterization study and used to develop the geologic model. The geologic model was used as input into a reservoir simulation performed by Fekete Associates, Inc., to estimate the behavior of reservoir fluids when large quantities of CO2 are injected into the 'Clinton' sandstone. Results strongly suggest that the majority of the injected CO2 entered the matrix porosity of the reservoir pay zones, where it diffused into the oil. Evidence includes: (A) the volume of injected CO2 greatly exceeded the estimated capacity of the hydraulic fracture and natural fractures; (B) there was a gradual injection and pressure rate build-up during the test; (C) there was a subsequent, gradual flashout of the CO2 within the reservoir during the ensuing monitored production period; and (D) a large amount of CO2 continually off-gassed from wellhead oil samples collected as late as 3 1/2 months after injection. After the test well was returned to production, it produced 174 bbl of oil during a 60-day period (September 22 to November 21, 2008), which represents an estimated 58 percent increase in incremental oil production over preinjection estimates of production under normal, conditions. The geologic model was used in a reservoir simulation model for a 700-acre model area and to design a pilot to test the model. The model was designed to achieve a 1-year response time and a five-year simulation period. The reservoir simulation modeling indicated that the injection wells could enhance oil production and lead to an additional 20 percent recovery in the pilot area over a five-year period. The base case estimated that by injecting 500 MCF per day of CO2 into each of the four corner wells, 26,000 STBO would be produced by the central producer over the five-year period. This would compare to 3,000 STBO if a new well were drilled without the benefit of CO2 injection. This study has added significant knowledge to the reservoir characterization of the 'Clinton' in the ECOF and succeeded in identifying a range on CO2-EOR potential. However, additional data on fluid properties (PVT and swelling test), fractures (oriented core and microseis), and reservoir characteristics (relative permeability, capillary pressure, and wet ability) are needed to further narrow the uncertainties and refine the reservoir model and simulation. After collection of this data and refinement of the model and simulation, it is recommended that a larger scale cyclic-CO2 injection test be conducted to better determine the efficacy of CO2-EOR in the 'Clinton' reservoir in the ECOF.

  9. Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations

    SciTech Connect (OSTI)

    Rachel Henderson

    2007-09-30T23:59:59.000Z

    The project is titled 'Identification, Verification, and Compilation of Produced Water Management Practices for Conventional Oil and Gas Production Operations'. The Interstate Oil and Gas Compact Commission (IOGCC), headquartered in Oklahoma City, Oklahoma, is the principal investigator and the IOGCC has partnered with ALL Consulting, Inc., headquartered in Tulsa, Oklahoma, in this project. State agencies that also have partnered in the project are the Wyoming Oil and Gas Conservation Commission, the Montana Board of Oil and Gas Conservation, the Kansas Oil and Gas Conservation Division, the Oklahoma Oil and Gas Conservation Division and the Alaska Oil and Gas Conservation Commission. The objective is to characterize produced water quality and management practices for the handling, treating, and disposing of produced water from conventional oil and gas operations throughout the industry nationwide. Water produced from these operations varies greatly in quality and quantity and is often the single largest barrier to the economic viability of wells. The lack of data, coupled with renewed emphasis on domestic oil and gas development, has prompted many experts to speculate that the number of wells drilled over the next 20 years will approach 3 million, or near the number of current wells. This level of exploration and development undoubtedly will draw the attention of environmental communities, focusing their concerns on produced water management based on perceived potential impacts to fresh water resources. Therefore, it is imperative that produced water management practices be performed in a manner that best minimizes environmental impacts. This is being accomplished by compiling current best management practices for produced water from conventional oil and gas operations and to develop an analysis tool based on a geographic information system (GIS) to assist in the understanding of watershed-issued permits. That would allow management costs to be kept in line with the specific projects and regions, which increases the productive life of wells and increases the ultimate recoverable reserves in the ground. A case study was conducted in Wyoming to validate the applicability of the GIS analysis tool for watershed evaluations under real world conditions. Results of the partnered research will continue to be shared utilizing proven methods, such as on the IGOCC Web site, preparing hard copies of the results, distribution of documented case studies, and development of reference and handbook components to accompany the interactive internet-based GIS watershed analysis tool. Additionally, there have been several technology transfer seminars and presentations. The goal is to maximize the recovery of our nation's energy reserves and to promote water conservation.

  10. Top 100 U.S. Oil and Gas Fields

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShale ProvedA(MillionGrossNaturalTop

  11. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox Basin, Utah, Class II

    SciTech Connect (OSTI)

    Chidsey, Thomas C.

    2000-07-28T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by field demonstration and technology transfer of an advanced-oil-recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels (23,850,000-31,800,000 m{sup 3}) of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon-dioxide-miscible flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place within the Navajo Nation, San Juan County, Utah.

  12. An Efficient Multiperiod MINLP Model for Optimal Planning of Offshore Oil and Gas Field Infrastructure

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    the fields and FPSOs, well drilling schedule and production rates of these three components in each time, and which and how many wells are to be drilled in those fields and in what order, which field instances involving 10 fields, 3 FPSOs, 84 wells and 20 years planning horizon are reported, as well

  13. Electric-field-induced turbulent energy cascade in an oil-in-oil emulsion

    E-Print Network [OSTI]

    Atul Varshney; Mayur Sathe; Shankar Ghosh; Anand Yethiraj; S. Bhattacharya; J. B. Joshi

    2014-12-11T23:59:59.000Z

    We observe electro-hydrodynamically driven turbulent flows at low Reynolds numbers in a two-fluid emulsion consisting of micron-scale droplets. In the presence of electric fields, the droplets produce interacting hydrodynamic flows which result in a dynamical organization at a spatial scale much larger than the size of the individual droplets. We characterize the dynamics associated with these structures by both video imaging and a simultaneous, in situ, measurement of the time variation of the bulk Reynolds stress with a rheometer. The results display scale invariance in the energy spectra in both space and time.

  14. Total Crude Oil and Products Exports by Destination

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total Input2009

  15. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: Total

  16. Total Crude Oil and Products Imports from All Countries

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"YearProductionShaleInput Product: TotalCountry: All

  17. Refinery Stocks of Crude Oil and Petroleum Products

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0622Product: TotalProduct:

  18. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-05-04T23:59:59.000Z

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore »the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  19. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Wang, Huamin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rover, Majorie [Iowa State University, Ames, IA (United States); Whitmer, Lysle [Iowa State University, Ames, IA (United States); Smith, Ryan [Iowa State University, Ames, IA (United States); Brown, Robert C. [Iowa State University, Ames, IA (United States)

    2015-05-04T23:59:59.000Z

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  20. Subsurface Hybrid Power Options for Oil & Gas Production at Deep Ocean Sites

    SciTech Connect (OSTI)

    Farmer, J C; Haut, R; Jahn, G; Goldman, J; Colvin, J; Karpinski, A; Dobley, A; Halfinger, J; Nagley, S; Wolf, K; Shapiro, A; Doucette, P; Hansen, P; Oke, A; Compton, D; Cobb, M; Kopps, R; Chitwood, J; Spence, W; Remacle, P; Noel, C; Vicic, J; Dee, R

    2010-02-19T23:59:59.000Z

    An investment in deep-sea (deep-ocean) hybrid power systems may enable certain off-shore oil and gas exploration and production. Advanced deep-ocean drilling and production operations, locally powered, may provide commercial access to oil and gas reserves otherwise inaccessible. Further, subsea generation of electrical power has the potential of featuring a low carbon output resulting in improved environmental conditions. Such technology therefore, enhances the energy security of the United States in a green and environmentally friendly manner. The objective of this study is to evaluate alternatives and recommend equipment to develop into hybrid energy conversion and storage systems for deep ocean operations. Such power systems will be located on the ocean floor and will be used to power offshore oil and gas exploration and production operations. Such power systems will be located on the oceans floor, and will be used to supply oil and gas exploration activities, as well as drilling operations required to harvest petroleum reserves. The following conceptual hybrid systems have been identified as candidates for powering sub-surface oil and gas production operations: (1) PWR = Pressurized-Water Nuclear Reactor + Lead-Acid Battery; (2) FC1 = Line for Surface O{sub 2} + Well Head Gas + Reformer + PEMFC + Lead-Acid & Li-Ion Batteries; (3) FC2 = Stored O2 + Well Head Gas + Reformer + Fuel Cell + Lead-Acid & Li-Ion Batteries; (4) SV1 = Submersible Vehicle + Stored O{sub 2} + Fuel Cell + Lead-Acid & Li-Ion Batteries; (5) SV2 = Submersible Vehicle + Stored O{sub 2} + Engine or Turbine + Lead-Acid & Li-Ion Batteries; (6) SV3 = Submersible Vehicle + Charge at Docking Station + ZEBRA & Li-Ion Batteries; (7) PWR TEG = PWR + Thermoelectric Generator + Lead-Acid Battery; (8) WELL TEG = Thermoelectric Generator + Well Head Waste Heat + Lead-Acid Battery; (9) GRID = Ocean Floor Electrical Grid + Lead-Acid Battery; and (10) DOC = Deep Ocean Current + Lead-Acid Battery.

  1. Evaluation of Wax Deposition and Its Control During Production of Alaska North Slope Oils

    SciTech Connect (OSTI)

    Tao Zhu; Jack A. Walker; J. Liang

    2008-12-31T23:59:59.000Z

    Due to increasing oil demand, oil companies are moving into arctic environments and deep-water areas for oil production. In these regions of lower temperatures, wax deposits begin to form when the temperature in the wellbore falls below wax appearance temperature (WAT). This condition leads to reduced production rates and larger pressure drops. Wax problems in production wells are very costly due to production down time for removal of wax. Therefore, it is necessary to develop a solution to wax deposition. In order to develop a solution to wax deposition, it is essential to characterize the crude oil and study phase behavior properties. The main objective of this project was to characterize Alaskan North Slope crude oil and study the phase behavior, which was further used to develop a dynamic wax deposition model. This report summarizes the results of the various experimental studies. The subtasks completed during this study include measurement of density, molecular weight, viscosity, pour point, wax appearance temperature, wax content, rate of wax deposition using cold finger, compositional characterization of crude oil and wax obtained from wax content, gas-oil ratio, and phase behavior experiments including constant composition expansion and differential liberation. Also, included in this report is the development of a thermodynamic model to predict wax precipitation. From the experimental study of wax appearance temperature, it was found that wax can start to precipitate at temperatures as high as 40.6 C. The WAT obtained from cross-polar microscopy and viscometry was compared, and it was discovered that WAT from viscometry is overestimated. From the pour point experiment it was found that crude oil can cease to flow at a temperature of 12 C. From the experimental results of wax content, it is evident that the wax content in Alaskan North Slope crude oil can be as high as 28.57%. The highest gas-oil ratio for a live oil sample was observed to be 619.26 SCF/STB. The bubblepoint pressure for live oil samples varied between 1600 psi and 2100 psi. Wax precipitation is one of the most important phenomena in wax deposition and, hence, needs to be modeled. There are various models present in the literature. Won's model, which considers the wax phase as a non-ideal solution, and Pedersen's model, which considers the wax phase as an ideal solution, were compared. Comparison indicated that Pedersen's model gives better results, but the assumption of wax phase as an ideal solution is not realistic. Hence, Won's model was modified to consider different precipitation characteristics of the various constituents in the hydrocarbon fraction. The results obtained from the modified Won's model were compared with existing models, and it was found that predictions from the modified model are encouraging.

  2. GEOPHYSICS, VOL. 59, NO. 6 (JUNE 1994); P. 1000-1017, 15 FIGS., 3 TABLES. Elastic-wave stimulation of oil production

    E-Print Network [OSTI]

    Beresnev, Igor

    of oil production: A review of methods and results lgor A. Beresnev* and Paul A. Johnson ABSTRACT from earthquakes and cultural noise may alter water and oil production. In some cases wave excitation of the mechanisms are necessary. INTRODUCTION Declining production in oil recovery operations is of major concern

  3. GUILLE-ESCURET, G. et HLADIK, C.M. (1990) --Products of the oil palm In : C.M. HLADIK, S. BAHUCHET et I. de

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1990-01-01T23:59:59.000Z

    GUILLE-ESCURET, G. et HLADIK, C.M. (1990) -- Products of the oil palm In : C.M. HLADIK, S. BAHUCHET of production. Disnibution of the oil palm in Africa has been favoured by human activities. Schwartz(1) has African Republic, the most productive "wild" populations of oil palm are located on the sites of fonner

  4. Applications of EOR (enhanced oil recovery) technology in field projects--1990 update

    SciTech Connect (OSTI)

    Pautz, J.F.; Thomas, R.D.

    1991-01-01T23:59:59.000Z

    Trends in the type and number of US enhanced oil recovery (EOR) projects are analyzed for the period from 1980 through 1989. The analysis is based on current literature and news media and the Department of Energy (DOE) EOR Project Data Base, which contains information on over 1,348 projects. The characteristics of the EOR projects are grouped by starting date and process type to identify trends in reservoir statistics and applications of process technologies. Twenty-two EOR projects starts were identified for 1989 and ten project starts for 1988. An obvious trend over recent years has been the decline in the number of project starts since 1981 until 1988 which corresponds to the oil price decline during that period. There was a modest recovery in 1989 of project starts, which lags the modest recovery of oil prices in 1987 that was reconfirmed in 1989. During the time frame of 1980 to 1989, there has been a gradual improvement in costs of operation for EOR technology. The perceived average cost of EOR has gone down from a $30/bbl range to low $20/bbl. These costs of operation seems to stay just at the price of oil or slightly above to result in marginal profitability. The use of polymer flooding has drastically decreased both in actual and relative numbers of project starts since the oil price drop in 1986. Production from polymer flooding is down more than 50%. Long-term plans for large, high-cost projects such as CO{sub 2} flooding in West Texas, steamflooding in California, and hydrocarbon flooding on the North Slope have continued to be implemented. EOR process technologies have been refined to be more cost effective as shown by the continued application and rising production attributable to EOR. 8 refs., 6 figs., 13 tabs.

  5. TRANSFORMATION OF PHB AND PHBV GENES DRIVEN BY MAIZE UBIQUITIN PROMOTER INTO OIL PALM FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS

    E-Print Network [OSTI]

    Sinskey, Anthony J.

    FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS 77 Keywords: biodegradable plastics, oil palm, transgenic, biolistics PALM FOR THE PRODUCTION OF BIODEGRADABLE PLASTICS GHULAM KADIR AHMAD PARVEEZ*; BAHARIAH BOHARI*; NOR value products in their yield. One of the products in great demand is thermoplastics, or biodegradable

  6. U.S. Exports of Crude Oil and Petroleum Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoal Production andOrigin219:131,097 152,084

  7. U.S. Imports of Crude Oil and Petroleum Products

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSSCoal Production andOrigin219:131,097269,023

  8. Total Crude Oil and Petroleum Products Imports by Processing Area

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S.6, 20146, 20028,7,Input Product: TotalArea

  9. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    SciTech Connect (OSTI)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21T23:59:59.000Z

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

  10. Risk assessment of nonhazardous oil-field waste disposal in salt caverns.

    SciTech Connect (OSTI)

    Elcock, D.

    1998-03-05T23:59:59.000Z

    In 1996, Argonne National Laboratory (ANL) conducted a preliminary technical and legal evaluation of disposing of nonhazardous oil-field wastes (NOW) into salt caverns. Argonne determined that if caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they could be suitable for disposing of oil-field wastes. On the basis of these findings, Argonne subsequently conducted a preliminary evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from the NOW disposed of in domal salt caverns. Steps used in this evaluation included the following: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing contaminant toxicities, estimating contaminant intakes, and calculating human cancer and noncancer risk estimates. Five postclosure cavern release scenarios were assessed. These were inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks, failure of the cavern through leaky interbeds, and a partial collapse of the cavern roof. Assuming a single, generic, salt cavern and generic oil-field wastes, potential human health effects associated with constituent hazardous substances (arsenic, benzene, cadmium, and chromium) were assessed under each of these scenarios. Preliminary results provided excess cancer risk and hazard index (referring to noncancer health effects) estimates that were well within the US Environmental Protection Agency (EPA) target range for acceptable exposure risk levels. These results led to the preliminary conclusion that from a human health perspective, salt caverns can provide an acceptable disposal method for nonhazardous oil-field wastes.

  11. Estimated human health risks of disposing of nonhazardous oil field waste in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern, determining how humans could be exposed to these contaminants, assessing the contaminants` toxicities, estimating contaminant intakes, and, finally, calculating human cancer and noncancer risks.

  12. Inversion of field-scale partitioning tracer response for characterizing oil saturation distribution: a streamline approach

    E-Print Network [OSTI]

    Iliassov, Pavel Alexandrovich

    2000-01-01T23:59:59.000Z

    INVERSION OF FIELD-SCALE PARTITIONING TRACER RESPONSE FOR CHARACTERIZING OIL SATURATION DISTRIBUTION: A STREAMLINE APPROACH A Thesis by PAVEL ALEXANDROVICH ILIASSOV Submitted to the Office of Graduate Studies of Texas A&M University... A Thesis by PAVEL ALEXANDROVICH ILIASSOV Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: c 4- Akhil Datta-Gupta (Chair of Committee...

  13. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    per day. Monthly crude oil production Iran Iraq KuwaitEIA Table 1.2, “OPEC Crude Oil Production (Excluding Lease2008, from EIA, “Crude Oil Production. ” Figure 16. U.S.

  14. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    Figure 5. Monthly oil production for Iran, Iraq, and Kuwait,day. Monthly crude oil production Iran Iraq Kuwait Figure 6.and the peak in U.S. oil production account for the broad

  15. Improved Oil Recovery from Upper Jurassic Smackover Carbonates through the Application of Advanced Technologies at Womack Hill Oil Field, Choctaw and Clarke Counties, Alabama, Eastern Gulf Coastal Plan (Phase II)

    SciTech Connect (OSTI)

    Ernest A. Mancini; Joe Benson; David Hilton; David Cate; Lewis Brown

    2006-05-29T23:59:59.000Z

    The principal research efforts for Phase II of the project were drilling an infill well strategically located in Section 13, T. 10 N., R. 2 W., of the Womack Hill Field, Choctaw and Clarke Counties, Alabama, and obtaining fresh core from the upper Smackover reservoir to test the feasibility of implementing an immobilized enzyme technology project in this field. The Turner Land and Timber Company 13-10 No. 1 well was successfully drilled and tested at a daily rate of 132 barrels of oil in Section 13. The well has produced 27,720 barrels of oil, and is currently producing at a rate of 60 barrels of oil per day. The 13-10 well confirmed the presence of 175,000 barrels of attic (undrained) oil in Section 13. As predicted from reservoir characterization, modeling and simulation, the top of the Smackover reservoir in the 13-10 well is structurally high to the tops of the Smackover in offsetting wells, and the 13-10 well has significantly more net pay than the offsetting wells. The drilling and testing of the 13-10 well showed that the eastern part of the field continues to have a strong water drive and that there is no need to implement a pressure maintenance program in this part of the Womack Hill Field at this time. The success achieved in drilling and testing the 13-10 infill well demonstrates the benefits of building a geologic model to target areas in mature fields that have the potential to contain undrained oil, thus increasing the productivity and profitability of these fields. Microbial cultures that grew at 90 C and converted ethanol to acid were recovered from fresh cuttings from the Smackover carbonate reservoir in an analogous field to the Womack Hill Field in southwest Alabama; however, no viable microorganisms were found in the Smackover cores recovered from the drilling of the 13-10 well in Womack Hill Field. Further evaluation is, therefore, required prior to implementing an immobilized enzyme technology project in the Womack Hill Field.

  16. East Coast (PADD 1) Total Crude Oil and Products Imports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11Computational Earth SciencePipeline, Tanker,MTBE

  17. Production of Oil in Vegetative Tissues - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg Mercury 35 BrProcurementRaw Materials - EnergyField

  18. Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska

    SciTech Connect (OSTI)

    Hanks, Catherine

    2012-12-31T23:59:59.000Z

    Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

  19. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Final report, March 1996--September 1998

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Carroll, R.E.; Groshong, R.H.; Jin, G.

    1998-12-01T23:59:59.000Z

    This project was designed to analyze the structure of Mesozoic and Tertiary strata in Gilbertown Field and adjacent areas to suggest ways in which oil recovery can be improved. The Eutaw Formation comprises 7 major flow units and is dominated by low-resistivity, low-contrast play that is difficult to characterize quantitatively. Selma chalk produces strictly from fault-related fractures that were mineralized as warm fluid migrated from deep sources. Resistivity, dipmeter, and fracture identification logs corroborate that deformation is concentrated in the hanging-wall drag zones. New area balancing techniques were developed to characterize growth strata and confirm that strain is concentrated in hanging-wall drag zones. Curvature analysis indicates that the faults contain numerous fault bends that influence fracture distribution. Eutaw oil is produced strictly from footwall uplifts, whereas Selma oil is produced from fault-related fractures. Clay smear and mineralization may be significant trapping mechanisms in the Eutaw Formation. The critical seal for Selma reservoirs, by contrast, is where Tertiary clay in the hanging wall is juxtaposed with poorly fractured Selma chalk in the footwall. Gilbertown Field can be revitalized by infill drilling and recompletion of existing wells. Directional drilling may be a viable technique for recovering untapped oil from Selma chalk. Revitalization is now underway, and the first new production wells since 1985 are being drilled in the western part of the field.

  20. Using the Hubbert curve to forecast oil production trends worldwide

    E-Print Network [OSTI]

    Almulla, Jassim M.

    2007-09-17T23:59:59.000Z

    .093 1272.377 0.95 0.0337 152.453 2069 Egypt 11338.65 2025 30.417 0.119 371.776 0.98 0.04298 336.504 2075 F.S.U. 172721.94 1968 74.370 0.098 2321.460 0.94 1.07557 4244.327 2047 Former Czechoslovakia 14611.80 1975 0.084 0.031 173041.972 0.67 0.0011849 111.... 2 0 1 2 3 4 5 6 7 8 9 10 1900 1920 1940 1960 1980 2000 2020 2040 2060 Year Pr od uc tio n R ate , M MS TB /D ay Actual Estimated Fig. 1.1 A Basic Hubbert Bell-Shaped Curve The highest point in the curve represents the production peak. After...

  1. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01T23:59:59.000Z

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  2. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested appeared to alter alkaline-surfactant-polymer solution oil recovery. Total waterflood plus chemical flood oil recovery sequence recoveries were all similar.

  3. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10T23:59:59.000Z

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  4. Focal mechanism determination of induced microearthquakes in an oil field using full waveforms from shallow and deep seismic networks

    E-Print Network [OSTI]

    Li, Junlun

    A new, relatively high frequency, full waveform matching method was used to study the focal mechanisms of small, local earthquakes induced in an oil field, which are monitored by a sparse near-surface network and a deep ...

  5. A Fuzzy Feed-Forward/Feedback Control System for a Three-Phase Oil Field Centrifuge.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),; Smith, R. E. (Ronald E.); Mortensen, F. N. (Fred N.); Wantuck, P. J. (Paul J.); Ross, Timothy J.; Jamshidi, Mohammad; Miller, N. (Neal)

    2002-01-01T23:59:59.000Z

    A set of fuzzy controllers was designed and applied to a commercial three-phase oil field centrifuge. This centrifuge is essentially a one of a kind unit. It is used to recover oil from tank bottoms and oil field and/or refinery sludge. It is unique because it can separate oily emulsions into three separate phases, oil, water, and solids, in one operation. The centrifuge is a large but portable device. It is moved form site to site and is used to separate a large variety of waste emulsions. The centrifuge feedstock varies significantly from site to site and often varies significantly during the daily operation. In this application, fuzzy logic was used on a class of problems not easily solved by classical control techniques. The oil field centrifuge is a highly nonlinear system, with a time varying input. We have been unable to develop a physical-mathematical model of the portion of the centrifuge operation that actually separates the oil, water, and solids. For this portion of the operation we developed a fuzzy feedback control system that modeled a skilled operator's knowledge and actions as opposed to the physical model of the centrifuge itself. Because of the variable feed we had to develop a feed-forward controller that would sense and react to feed changes prior to the time that the actual change reached the centrifuge separation unit. This portion of the control system was also a fuzzy controller designed around the knowledge of a skilled operator. In addition to the combined feed-forward and feedback control systems, we developed a soft-sensor that was used to determine the value of variables needed for the feed-forward control system. These variables could not actually be measured but were calculated from the measurement of other variables. The soft-sensor was developed with a combination of a physical model of the feed system and a skilled operator's expert knowledge. Finally the entire control system is tied together with a fuzzy-SPC (Statistical Process Control) filter, used to filter process and instrument noise and a fuzzy conflict resolution code used to keep the feed-forward and feedback control systems working well together.

  6. Productivity index and field behavior: a case study

    E-Print Network [OSTI]

    Jensen, Marianne

    1998-01-01T23:59:59.000Z

    ) to explain the irrational behavior of the productivity index in a case study presented. The problem has its origin in a field in north Africa, where irrational behavior of the productivity index (PI) has made it difficult to forecast the field performance...

  7. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27T23:59:59.000Z

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  8. Seismic stimulation for enhanced oil recovery

    E-Print Network [OSTI]

    Pride, S.R.

    2008-01-01T23:59:59.000Z

    aims to enhance oil production by sending seismic wavesbe expected to enhance oil production. INTRODUCTION The hopethe reservoir can cause oil production to increase. Quite

  9. Field theory on noncommutative spacetimes: Quasiplanar Wick products

    SciTech Connect (OSTI)

    Bahns, D.; Fredenhagen, K. [II. Institut fuer Theoretische Physik, Universitaet Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Doplicher, S.; Piacitelli, G. [Dipartimento di Matematica, Universita di Roma 'La Sapienza', Piazzale Aldo Moro 2, 00185 Rome (Italy)

    2005-01-15T23:59:59.000Z

    We give a definition of admissible counterterms appropriate for massive quantum field theories on the noncommutative Minkowski space, based on a suitable notion of locality. We then define products of fields of arbitrary order, the so-called quasiplanar Wick products, by subtracting only such admissible counterterms. We derive the analogue of Wick's theorem and comment on the consequences of using quasiplanar Wick products in the perturbative expansion.

  10. Technical Feasibility Study on Biofuels Production from Pyrolysis of Nannochloropsis oculata and Algal Bio-oil Upgrading

    E-Print Network [OSTI]

    Maguyon, Monet

    2013-12-02T23:59:59.000Z

    ]. However, studies on suitability of various biomass feedstocks and development of efficient and carbon-neutral technologies for biomass-to- biofuel conversion may be required to meet this demand. Biomass for fuel production ranges from food and oil crops...

  11. A New Type Curve Analysis for Shale Gas/Oil Reservoir Production Performance with Dual Porosity Linear System

    E-Print Network [OSTI]

    Abdulal, Haider Jaffar

    2012-02-14T23:59:59.000Z

    With increase of interest in exploiting shale gas/oil reservoirs with multiple stage fractured horizontal wells, complexity of production analysis and reservoir description have also increased. Different methods and models were used throughout...

  12. Carbon Capture and Sequestration from a Hydrogen Production Facility in an Oil Refinery

    SciTech Connect (OSTI)

    Engels, Cheryl; Williams, Bryan, Valluri, Kiranmal; Watwe, Ramchandra; Kumar, Ravi; Mehlman, Stewart

    2010-06-21T23:59:59.000Z

    The project proposed a commercial demonstration of advanced technologies that would capture and sequester CO2 emissions from an existing hydrogen production facility in an oil refinery into underground formations in combination with Enhanced Oil Recovery (EOR). The project is led by Praxair, Inc., with other project participants: BP Products North America Inc., Denbury Onshore, LLC (Denbury), and Gulf Coast Carbon Center (GCCC) at the Bureau of Economic Geology of The University of Texas at Austin. The project is located at the BP Refinery at Texas City, Texas. Praxair owns and operates a large hydrogen production facility within the refinery. As part of the project, Praxair would construct a CO2 capture and compression facility. The project aimed at demonstrating a novel vacuum pressure swing adsorption (VPSA) based technology to remove CO2 from the Steam Methane Reformers (SMR) process gas. The captured CO2 would be purified using refrigerated partial condensation separation (i.e., cold box). Denbury would purchase the CO2 from the project and inject the CO2 as part of its independent commercial EOR projects. The Gulf Coast Carbon Center at the Bureau of Economic Geology, a unit of University of Texas at Austin, would manage the research monitoring, verification and accounting (MVA) project for the sequestered CO2, in conjunction with Denbury. The sequestration and associated MVA activities would be carried out in the Hastings field at Brazoria County, TX. The project would exceed DOE?s target of capturing one million tons of CO2 per year (MTPY) by 2015. Phase 1 of the project (Project Definition) is being completed. The key objective of Phase 1 is to define the project in sufficient detail to enable an economic decision with regard to proceeding with Phase 2. This topical report summarizes the administrative, programmatic and technical accomplishments completed in Phase 1 of the project. It describes the work relative to project technical and design activities (associated with CO2 capture technologies and geologic sequestration MVA), and Environmental Information Volume. Specific accomplishments of this Phase include: 1. Finalization of the Project Management Plan 2. Development of engineering designs in sufficient detail for defining project performance and costs 3. Preparation of Environmental Information Volume 4. Completion of Hazard Identification Studies 5. Completion of control cost estimates and preparation of business plan During the Phase 1 detailed cost estimate, project costs increased substantially from the previous estimate. Furthermore, the detailed risk assessment identified integration risks associated with potentially impacting the steam methane reformer operation. While the Phase 1 work identified ways to mitigate these integration risks satisfactorily from an operational perspective, the associated costs and potential schedule impacts contributed to the decision not to proceed to Phase 2. We have concluded that the project costs and integration risks at Texas City are not commensurate with the potential benefits of the project at this time.

  13. Heterogeneous Shallow-Shelf Carbonate Buildups in the Paradox Basin, Utah and Colorado: Targets for Increased Oil Production and Reserves Using Horizontal Drilling Techniques

    SciTech Connect (OSTI)

    Thomas C. Chidsey; Kevin McClure; Craig D. Morgan

    2003-10-05T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the first half of the fourth project year (April 6 through October 5, 2003). The work included (1) analysis of well-test data and oil production from Cherokee and Bug fields, San Juan County, Utah, and (2) diagenetic evaluation of stable isotopes from the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Production ''sweet spots'' and potential horizontal drilling candidates were identified for Cherokee and Bug fields. In Cherokee field, the most productive wells are located in the thickest part of the mound facies of the upper Ismay zone, where microporosity is well developed. In Bug field, the most productive wells are located structurally downdip from the updip porosity pinch out in the dolomitized lower Desert Creek zone, where micro-box-work porosity is well developed. Microporosity and micro-box-work porosity have the greatest hydrocarbon storage and flow capacity, and potential horizontal drilling target in these fields. Diagenesis is the main control on the quality of Ismay and Desert Creek reservoirs. Most of the carbonates present within the lower Desert Creek and Ismay have retained a marine-influenced carbon isotope geochemistry throughout marine cementation as well as through post-burial recycling of marine carbonate components during dolomitization, stylolitization, dissolution, and late cementation. Meteoric waters do not appear to have had any effect on the composition of the dolomites in these zones. Light oxygen values obtained from reservoir samples for wells located along the margins or flanks of Bug field may be indicative of exposure to higher temperatures, to fluids depleted in {sup 18}O relative to sea water, or to hypersaline waters during burial diagenesis. The samples from Bug field with the lightest oxygen isotope compositions are from wells that have produced significantly greater amounts of hydrocarbons. There is no significant difference between the oxygen isotope compositions from lower Desert Creek dolomite samples in Bug field and the upper Ismay limestones and dolomites from Cherokee field. Carbon isotopic compositions for samples from Patterson Canyon field can be divided into two populations: isotopically heavier mound cement and isotopically lighter oolite and banded cement. Technology transfer activities consisted of exhibiting a booth display of project materials at the annual national convention of the American Association of Petroleum Geologists, a technical presentation, a core workshop, and publications. The project home page was updated on the Utah Geological Survey Internet web site.

  14. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAN JUAN BASIN REGION

    SciTech Connect (OSTI)

    Pat Fort; Don L. Hanosh

    2003-11-01T23:59:59.000Z

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps. Resume marginal oil production operations in the Red Mountain oil fields located in McKinley County, New Mexico by installing a cable suspended electric submersible pumping system (HDESP), determine if this system can reduce lift costs making it a more cost effective production system for similar oil fields within the region, and if warranted, drill additional wells to improved the economics. Three Phases of work have been defined in the DOE Form 4600.1 Notice of Financial Assistance Award for this project, in which the project objectives are to be attained through a joint venture between Enerdyne LLC (Enerdyne), owner and operator of the fields and Pumping Solutions Inc. (PSI), developer of the submersible pumping system. Upon analysis of the results of each Phase, the DOE will determine if the results justify the continuation of the project and approve the next Phase to proceed or terminate the project and request that the wells be plugged. This topical report shall provide the DOE with Phase I results and conclusions reached by Enerdyne and PSI.

  15. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia 

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir ...

  16. Application of geostatistical reservoir description for maximizing waterflood infill drilling recovery from La Cira Field, Colombia

    E-Print Network [OSTI]

    Cubillos Gutierrez, Helber

    1995-01-01T23:59:59.000Z

    One of the prospective ways to increase the oil production is to maximize the oil recovery from mature oil fields. In this study we apply an integrated approach that combines geostatistical reservoir description and reservoir simulation to evaluate...

  17. An assessment of using oil shale for power production in the Hashemite Kingdom of Jordan

    SciTech Connect (OSTI)

    Hill, L.J.; Holcomb, R.S.; Petrich, C.H.; Roop, R.D.

    1990-11-01T23:59:59.000Z

    This report addresses the oil shale-for-power-production option in Jordan. Under consideration are 20- and 50-MW demonstration units and a 400-MW, commercial-scale plant with, at the 400-MW scale, a mining operation capable of supplying 7.8 million tonnes per year of shale fuel and also capable of disposal of up to 6.1 million tonnes per year of wetted ash. The plant would be a direct combustion facility, burning crushed oil shale through use of circulating fluidized bed combustion technology. The report emphasizes four areas: (1) the need for power in Jordan, (2) environmental aspects of the proposed oil shale-for-power plant(s), (3) the engineering feasibility of using Jordan's oil shale in circulating fluidized bed combustion (CFBC) boiler, and (4) the economic feasibility of the proposed plant(s). A sensitivity study was conducted to determine the economic feasibility of the proposed plant(s) under different cost assumptions and revenue flows over the plant's lifetime. The sensitivity results are extended to include the major extra-firm benefits of the shale-for-power option: (1) foreign exchange savings from using domestic energy resources, (2) aggregate income effects of using Jordan's indigenous labor force, and (3) a higher level of energy security. 14 figs., 47 tabs.

  18. For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South Louisiana and became accustomed to the oil indus-

    E-Print Network [OSTI]

    Stephens, Jacqueline

    For the first 15 years of my life, I lived in the shadow of the oil and gas fields of South Louisiana and became accustomed to the oil indus- try and the people involved in this business. I of this world. My father worked for Humble Oil (which was acquired later by Exxon) and we moved from place

  19. INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH Last year the Alaska Legislature made a controversial change in the oil production tax, the state's

    E-Print Network [OSTI]

    Pantaleone, Jim

    ;INSTITUTE OF SOCIAL AND ECONOMIC RESEARCH 2 HOW THE PRODUCTION TAX WORKS Since 2007 the petroleum production change in the oil production tax, the state's largest source of oil revenue. The old tax, known as ACES (Alaska's Clear and Equitable Share), was replaced with MAPA (More Alaska Production Act, or SB21). How

  20. Standard practice for evaluating and qualifying oil field and refinery corrosion inhibitors using rotating cage

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2006-01-01T23:59:59.000Z

    1.1 This practice covers a generally accepted procedure to use the rotating cage (RC) for evaluating corrosion inhibitors for oil field and refinery applications. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  1. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Annual report, February 9, 1996--February 8, 1997

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.

    1997-08-01T23:59:59.000Z

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate buildups or mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to four wells with primary production ranging from 700,000 to 2,000,000 barrels of oil per field at a 15 to 20% recovery rate. At least 200 million barrels of oil is at risk of being unrecovered in these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah are being evaluated for waterflood or carbon-dioxide-miscible flood projects based upon geological characterization and reservoir modeling. The results can be applied to other fields in the Paradox basin and the Rocky Mountain region, the Michigan and Illinois basins, and the Midcontinent. The Anasazi field was selected for the initial geostatistical modeling and reservoir simulation. A compositional simulation approach is being used to model primary depletion, waterflood, and CO{sub 2}-flood processes. During this second year of the project, team members performed the following reservoir-engineering analysis of Anasazi field: (1) relative permeability measurements of the supra-mound and mound-core intervals, (2) completion of geologic model development of the Anasazi reservoir units for use in reservoir simulation studies including completion of a series of one-dimensional, carbon dioxide-displacement simulations to analyze the carbon dioxide-displacement mechanism that could operate in the Paradox basin system of reservoirs, and (3) completion of the first phase of the full-field, three-dimensional Anasazi reservoir simulation model, and the start of the history matching and reservoir performance prediction phase of the simulation study.

  2. Filamentous carbon particles for cleaning oil spills and method of production

    DOE Patents [OSTI]

    Muradov, Nazim

    2010-04-06T23:59:59.000Z

    A compact hydrogen generator is coupled to or integrated with a fuel cell for portable power applications. Hydrogen is produced via thermocatalytic decomposition (cracking, pyrolysis) of hydrocarbon fuels in oxidant-free environment. The apparatus can utilize a variety of hydrocarbon fuels, including natural gas, propane, gasoline, kerosene, diesel fuel, crude oil (including sulfurous fuels). The hydrogen-rich gas produced is free of carbon oxides or other reactive impurities, so it could be directly fed to any type of a fuel cell. The catalysts for hydrogen production in the apparatus are carbon-based or metal-based materials and doped, if necessary, with a sulfur-capturing agent. Additionally disclosed are two novel processes for the production of two types of carbon filaments, and a novel filamentous carbon product. The hydrogen generator can be conveniently integrated with high temperature fuel cells to produce an efficient and self-contained source of electrical power.

  3. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    SciTech Connect (OSTI)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30T23:59:59.000Z

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass production between each soil were significant for Western Wheatgrass and Alfafla. The Sheridan sandy loam soil resulted in the highest production for western wheatgrass and alfalfa while the X-ranch sandy loam had the lowest production rate for both plants. Plant production levels resulting from untreated CBNG produced water were significantly higher compared to untreated conventional oil and gas produced water. However, few differences were found between water treatments. The biomass produced from the greenhouse study was analyzed for elemental composition and for forage value. Elemental composition indentified several interesting findings. Some of the biomass was characterized with seemly high boron and sodium levels. High levels of boron found in some of the biomass was unexpected and may indicate that alfalfa and western wheatgrass plants may have been impacted by either soil or irrigation water containing high boron levels. Plants irrigated with water treated using EDR technology appeared to contain higher levels of boron with increased levels of treatment. Forage evaluations were conducted using near infrared reflectance spectroscopy. The data collected show small differences, generally less than 10%, between produced water treatments including the no treatment and 100% treatment conditions for each plant species studied. The forage value of alfalfa and western wheatgrass did not show significant tendencies dependent on soil, the amount of produced water treatment, or treatment technology.

  4. Steamflood production mechanism in an edge pattern Duri field, Indonesia

    E-Print Network [OSTI]

    Yuwono, Ipung Punto

    1999-01-01T23:59:59.000Z

    STEAMFLOOD PRODUCTION MECHANISM IN AN EDGE PATTERN DURI FIELD, INDONESIA A Thesis by IPUNG PUNTO YUWONO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE December 1998 Major Subject: Petroleum Engineering STEAMFLOOD PRODUCTION MECHANISM IN AN EDGE PATTERN DURI FIELD, INDONESIA A Thesis by IPUNG PUNTO YUWONO Submitted to Texas AkM University in partial fulfillment of the requirements...

  5. Area balance and strain in an extensional fault system: Strategies for improved oil recovery in fractured chalk, Gilbertown Field, southwestern Alabama. Annual report, March 1996--March 1997

    SciTech Connect (OSTI)

    Pashin, J.C.; Raymond, D.E.; Rindsberg, A.K.; Alabi, G.G.; Groshong, R.H.

    1997-08-01T23:59:59.000Z

    Gilbertown Field is the oldest oil field in Alabama and produces oil from chalk of the Upper Cretaceous Selma Group and from sandstone of the Eutaw Formation along the southern margin of the Gilbertown fault system. Most of the field has been in primary recovery since establishment, but production has declined to marginally economic levels. This investigation applies advanced geologic concepts designed to aid implementation of improved recovery programs. The Gilbertown fault system is detached at the base of Jurassic salt. The fault system began forming as a half graben and evolved in to a full graben by the Late Cretaceous. Conventional trapping mechanisms are effective in Eutaw sandstone, whereas oil in Selma chalk is trapped in faults and fault-related fractures. Burial modeling establishes that the subsidence history of the Gilbertown area is typical of extensional basins and includes a major component of sediment loading and compaction. Surface mapping and fracture analysis indicate that faults offset strata as young as Miocene and that joints may be related to regional uplift postdating fault movement. Preliminary balanced structural models of the Gilbertown fault system indicate that synsedimentary growth factors need to be incorporated into the basic equations of area balance to model strain and predict fractures in Selma and Eutaw reservoirs.

  6. U.S. Crude Oil and Petroleum Products Stocks by Type

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Zandofpoint motional%^ U NCrude OilProduct:

  7. Table 2. U.S. tight oil plays: production and proved reserves, 2012-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total Delivered Residentialtight oil plays: production

  8. Natural Gas Production and U.S. Oil Imports | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sure InternationalServicesMissionNationalNatural Gas Production and U.S. Oil

  9. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    consumption would be reduced and incentives for production increased whenever the price of crude oil

  10. Surface Light Field Rendering for Virtual Product Design

    E-Print Network [OSTI]

    Behnke, Sven

    Surface Light Field Rendering for Virtual Product Design Jan MESETH, Gero MÃ?LLER, Reinhard KLEIN illumination solution including accurate materials, which is stored as an outgoing Surface Light Field (SLF-facto standard in manufacturing industries like the automotive industry. They are used, e.g., for performing

  11. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  12. Hydrocarbon Liquid Production from Biomass via Hot-Vapor-Filtered Fast Pyrolysis and Catalytic Hydroprocessing of the Bio-oil

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; French, Richard; Deutch, Steve; Iisa, Kristiina

    2014-08-14T23:59:59.000Z

    Hot-vapor filtered bio-oils were produced from two different biomass feedstocks, oak and switchgrass, and the oils were evaluated in hydroprocessing tests for production of liquid hydrocarbon products. Hot-vapor filtering reduced bio-oil yields and increased gas yields. The yields of fuel carbon as bio-oil were reduced by ten percentage points by hot-vapor filtering for both feedstocks. The unfiltered bio-oils were evaluated alongside the filtered bio-oils using a fixed bed catalytic hydrotreating test. These tests showed good processing results using a two-stage catalytic hydroprocessing strategy. Equal-sized catalyst beds, a sulfided Ru on carbon catalyst bed operated at 220°C and a sulfided CoMo on alumina catalyst bed operated at 400°C were used with the entire reactor at 100 atm operating pressure. The products from the four tests were similar. The light oil phase product was fully hydrotreated so that nitrogen and sulfur were below the level of detection, while the residual oxygen ranged from 0.3 to 2.0%. The density of the products varied from 0.80 g/ml up to 0.86 g/ml over the period of the test with a correlated change of the hydrogen to carbon atomic ratio from 1.79 down to 1.57, suggesting some loss of catalyst activity through the test. These tests provided the data needed to assess the suite of liquid fuel products from the process and the activity of the catalyst in relationship to the existing catalyst lifetime barrier for the technology.

  13. Shale Gas Production Theory and Case Analysis We researched the process of oil recovery and shale gas

    E-Print Network [OSTI]

    Ge, Zigang

    Shale Gas Production Theory and Case Analysis (Siemens) We researched the process of oil recovery and shale gas recovery and compare the difference between conventional and unconventional gas reservoir and recovery technologies. Then we did theoretical analysis on the shale gas production. According

  14. Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products

  15. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    SciTech Connect (OSTI)

    Puder, M. G.; Veil, J. A.

    2006-09-05T23:59:59.000Z

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

  16. Understanding Crude Oil Prices

    E-Print Network [OSTI]

    Hamilton, James Douglas

    2008-01-01T23:59:59.000Z

    2007”. comparison, Mexico used 6.6— Chinese oil consumption17. Oil production from the North Sea, Mexico’s Cantarell,

  17. Comparison of soft computing techniques for a three-phase oil field centrifuge.

    SciTech Connect (OSTI)

    Smith, R. E. (Ronald E.); Parkinson, w; Miller, N. (Neal)

    2002-01-01T23:59:59.000Z

    In this work we compare fuzzy techniques to neural network techniques for building a soft sensor for a three-phase oil field centrifuge. The soft sensor is used in a feed-forward control system that augments a feedback control system. Two approaches were used to develop the soft sensor. The first approach was to use a fuzzy rule based system based upon the experience of an expert operator. The expert operator's experience was supplemented using a computer model of the system. The second approach was to use a neural network to build the inverse of the computer model. The pros and cons of both techniques are discussed. KEYWORDS: fuzzy logic, neural networks, soft sensor, soft computing

  18. Semiclassical pair production rate for rotating electric fields

    E-Print Network [OSTI]

    Eckhard Strobel; She-Sheng Xue

    2015-02-09T23:59:59.000Z

    We semiclassically investigate Schwinger pair production for pulsed rotating electric fields depending on time. To do so we solve the Dirac equation for two-component fields in a WKB-like approximation. The result shows that for two-component fields the spin distribution of produced pairs is generally not $1:1$. As a result the pair creation rates of spinor and scalar quantum electro dynamics (QED) are different even for one pair of turning points. For rotating electric fields the pair creation rate is dominated by particles with a specific spin depending on the sense of rotation for a certain range of pulse lengths and frequencies. We present an analytical solution for the momentum spectrum of the constant rotating field. We find interference effects not only in the momentum spectrum but also in the total particle number of rotating electric fields.

  19. Estimate of the risks of disposing nonhazardous oil field wastes into salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-12-31T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed in domal salt caverns. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Assuming a single, generic salt cavern and generic oil-field wastes, the best-estimate excess cancer risks ranged from 1.7 {times} 10{sup {minus}12} to 1.1 {times} 10{sup {minus}8} and hazard indices (referring to noncancer health effects) ranged from 7 {times} 10{sup {minus}9} to 7 {times} 10{sup {minus}4}. Under worse-case conditions in which the probability of cavern failure is 1.0, excess cancer risks ranged from 4.9 {times} 10{sup {minus}9} to 1.7 {times} 10{sup {minus}5} and hazard indices ranged from 7.0 {times} 10{sup {minus}4} to 0.07. Even under worst-case conditions, the risks are within the US Environmental Protection Agency (EPA) target range for acceptable exposure levels. From a human health risk perspective, salt caverns can, therefore, provide an acceptable disposal method for NOW.

  20. Dual Layer Monolith ATR of Pyrolysis Oil for Distributed Synthesis Gas Production

    SciTech Connect (OSTI)

    Lawal, Adeniyi [Stevens Institute of Technology, Castle Point Hoboken NJ 07030

    2012-09-29T23:59:59.000Z

    We have successfully demonstrated a novel reactor technology, based on BASF dual layer monolith catalyst, for miniaturizing the autothermal reforming of pyrolysis oil to syngas, the second and most critical of the three steps for thermochemically converting biomass waste to liquid transportation fuel. The technology was applied to aged as well as fresh samples of pyrolysis oil derived from five different biomass feedstocks, namely switch-grass, sawdust, hardwood/softwood, golden rod and maple. Optimization of process conditions in conjunction with innovative reactor system design enabled the minimization of carbon deposit and control of the H2/CO ratio of the product gas. A comprehensive techno-economic analysis of the integrated process using in part, experimental data from the project, indicates (1) net energy recovery of 49% accounting for all losses and external energy input, (2) weight of diesel oil produced as a percent of the biomass to be ~14%, and (3) for a �demonstration� size biomass to Fischer-Tropsch liquid plant of ~ 2000 daily barrels of diesel, the price of the diesel produced is ~$3.30 per gallon, ex. tax. However, the extension of catalyst life is critical to the realization of the projected economics. Catalyst deactivation was observed and the modes of deactivation, both reversible and irreversible were identified. An effective catalyst regeneration strategy was successfully demonstrated for reversible catalyst deactivation while a catalyst preservation strategy was proposed for preventing irreversible catalyst deactivation. Future work should therefore be focused on extending the catalyst life, and a successful demonstration of an extended (> 500 on-stream hours) catalyst life would affirm the commercial viability of the process.

  1. Improved Approximations for Fermion Pair Production in Inhomogeneous Electric Fields

    E-Print Network [OSTI]

    Sang Pyo Kim; Don N. Page

    2007-01-31T23:59:59.000Z

    Reformulating the instantons in a complex plane for tunneling or transmitting states, we calculate the pair-production rate of charged fermions in a spatially localized electric field, illustrated by the Sauter electric field E_0 sech^2 (z/L), and in a temporally localized electric field such as E_0 sech^2 (t/T). The integration of the quadratic part of WKB instanton actions over the frequency and transverse momentum leads to the pair-production rate obtained by the worldline instanton method, including the prefactor, of Phys. Rev. D72, 105004 (2005) and D73, 065028 (2006). It is further shown that the WKB instanton action plus the next-to-leading order contribution in spinor QED equals the WKB instanton action in scalar QED, thus justifying why the WKB instanton in scalar QED can work for the pair production of fermions. Finally we obtain the pair-production rate in a spatially localized electric field together with a constant magnetic field in the same direction.

  2. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, Raymond P. (Overland Park, KS); Schmalzer, David K. (Englewood, CO); Wright, Charles H. (Overland Park, KS)

    1982-12-21T23:59:59.000Z

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships.

  3. Method for controlling boiling point distribution of coal liquefaction oil product

    DOE Patents [OSTI]

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-12-21T23:59:59.000Z

    The relative ratio of heavy distillate to light distillate produced in a coal liquefaction process is continuously controlled by automatically and continuously controlling the ratio of heavy distillate to light distillate in a liquid solvent used to form the feed slurry to the coal liquefaction zone, and varying the weight ratio of heavy distillate to light distillate in the liquid solvent inversely with respect to the desired weight ratio of heavy distillate to light distillate in the distillate fuel oil product. The concentration of light distillate and heavy distillate in the liquid solvent is controlled by recycling predetermined amounts of light distillate and heavy distillate for admixture with feed coal to the process in accordance with the foregoing relationships. 3 figs.

  4. Production of Biodiesel from Vegetable Oil Using CaO Catalyst & Analysis of Its Performance in Four Stroke Diesel Engine

    E-Print Network [OSTI]

    Sruthi Gopal; Sajitha C. M; Uma Krishnakumar

    Abstract- The production of biodiesel from vegetable oils stands as a new versatile method of energy generation in the present scenario. Biodiesel is obtained by the transesterification of long chain fatty acids in presence of catalysts. Transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil, reaction temperature, catalyst amount and time. Biodiesel is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. It can be used in diesel engines by blending with conventional diesel in various proportions. Biodiesel seems to be a realistic fuel for future. It has become more attractive recently because of its environmental benefits. This paper discuses the production of biodiesel from

  5. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    E-Print Network [OSTI]

    Duncan, Kathleen E.

    2010-01-01T23:59:59.000Z

    in Alaskan North Slope oil production facilities. Title:Profiling Despite oil production from several major16) was isolated from oil-production water and has optimal

  6. Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions

    E-Print Network [OSTI]

    Brandt, Adam R.; Farrell, Alexander E.

    2008-01-01T23:59:59.000Z

    J. Regular conventional oil production to 2100 and resource10% of total US oil production in 2004, almost entirelysteam-induced heavy oil production in Cali- fornia [30].

  7. The Politics of Mexico’s Oil Monopoly

    E-Print Network [OSTI]

    Huizar, Richard

    2008-01-01T23:59:59.000Z

    2005), p. 59. Table 5: Oil production in barrels per daynot have much impact in oil production. In fact, oil exportscurrent oil reserves and oil production? 2) For how long can

  8. Increased oil production and reserves utilizing secondary/tertiary recovery techniques on small reservoirs in the Paradox basin, Utah. Technical progress report, January 1, 1995--March 31, 1995

    SciTech Connect (OSTI)

    Allison, M.L.

    1995-05-30T23:59:59.000Z

    The primary objective of this project is to enhance domestic petroleum production by demonstration and technology transfer of an advanced oil recovery technology in the Paradox basin, southeastern Utah. If this project can demonstrate technical and economic feasibility, the technique can be applied to approximately 100 additional small fields in the Paradox basin alone, and result in increased recovery of 150 to 200 million barrels of oil. This project is designed to characterize five shallow-shelf carbonate reservoirs in the Pennsylvanian Paradox Formation and choose the best candidate for a pilot demonstration project for either a waterflood or carbon dioxide-flood project. The field demonstration, monitoring of field performance, and associated validation activities will take place in the Paradox basin within the Navajo Nation. The results of this project will be transferred to industry and other researchers through a petroleum extension service, creation of digital databases for distribution, technical workshops and seminars, field trips, technical presentations at national and regional professional meetings, and publication in newsletters and various technical or trade journals.

  9. By studying the mechanisms of wax and oil production in plants and genetically manipulating their fatty acids chains, Ljerka Kunst hopes

    E-Print Network [OSTI]

    Karczmarek, Joanna

    By studying the mechanisms of wax and oil production in plants and genetically manipulating, locally- produced seed oils for industrial applications. All land plants produce a thin wax coating and altering the complex array of enzy- matic reactions involved in wax production is an integral part of plant

  10. Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Syngas production by plasma treatments of alcohols, bio-oils and wood This article has been Contact us My IOPscience #12;Syngas production by plasma treatments of alcohols, bio-oils and wood K to recover energy from biomass. The Syngas produced from biomass can be used to power internal combustion

  11. Play Analysis and Digital Portfolio of Major Oil Reservoirs in the Permian Basin: Application and Transfer of Advanced Geological and Engineering Technologies for Incremental Production Opportunities

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-01-13T23:59:59.000Z

    A play portfolio is being constructed for the Permian Basin in west Texas and southeast New Mexico, the largest onshore petroleum-producing basin in the United States. Approximately 1,300 reservoirs in the Permian Basin have been identified as having cumulative production greater than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of oil through 2000. Of these significant-sized reservoirs, approximately 1,000 are in Texas and 300 in New Mexico. There are 32 geologic plays that have been defined for Permian Basin oil reservoirs, and each of the 1,300 major reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. The final reservoir shapefile for each play contains the geographic location of each reservoir. Associated reservoir information within the linked data tables includes RRC reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are smaller than 1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. Oil production from the reservoirs in the Permian Basin having cumulative production of >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl [5.25 x 10{sup 8} m{sup 3}]), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]). Detailed studies of three reservoirs are in progress: Kelly-Snyder (SACROC unit) in the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play, Fullerton in the Leonard Restricted Platform Carbonate play, and Barnhart (Ellenburger) in the Ellenburger Selectively Dolomitized Ramp Carbonate play. For each of these detailed reservoir studies, technologies for further, economically viable exploitation are being investigated.

  12. PLAY ANALYSIS AND DIGITAL PORTFOLIO OF MAJOR OIL RESERVOIRS IN THE PERMIAN BASIN: APPLICATION AND TRANSFER OF ADVANCED GEOLOGICAL AND ENGINEERING TECHNOLOGIES FOR INCREMENTAL PRODUCTION OPPORTUNITIES

    SciTech Connect (OSTI)

    Shirley P. Dutton; Eugene M. Kim; Ronald F. Broadhead; Caroline L. Breton; William D. Raatz; Stephen C. Ruppel; Charles Kerans

    2004-05-01T23:59:59.000Z

    The Permian Basin of west Texas and southeast New Mexico has produced >30 Bbbl (4.77 x 10{sup 9} m{sup 3}) of oil through 2000, most of it from 1,339 reservoirs having individual cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}). These significant-sized reservoirs are the focus of this report. Thirty-two Permian Basin oil plays were defined, and each of the 1,339 significant-sized reservoirs was assigned to a play. The reservoirs were mapped and compiled in a Geographic Information System (GIS) by play. Associated reservoir information within linked data tables includes Railroad Commission of Texas reservoir number and district (Texas only), official field and reservoir name, year reservoir was discovered, depth to top of the reservoir, production in 2000, and cumulative production through 2000. Some tables also list subplays. Play boundaries were drawn for each play; the boundaries include areas where fields in that play occur but are <1 MMbbl (1.59 x 10{sup 5} m{sup 3}) of cumulative production. This report contains a summary description of each play, including key reservoir characteristics and successful reservoir-management practices that have been used in the play. The CD accompanying the report contains a pdf version of the report, the GIS project, pdf maps of all plays, and digital data files. Oil production from the reservoirs in the Permian Basin having cumulative production >1 MMbbl (1.59 x 10{sup 5} m{sup 3}) was 301.4 MMbbl (4.79 x 10{sup 7} m{sup 3}) in 2000. Cumulative Permian Basin production through 2000 from these significant-sized reservoirs was 28.9 Bbbl (4.59 x 10{sup 9} m{sup 3}). The top four plays in cumulative production are the Northwest Shelf San Andres Platform Carbonate play (3.97 Bbbl [6.31 x 10{sup 8} m{sup 3}]), the Leonard Restricted Platform Carbonate play (3.30 Bbbl 5.25 x 10{sup 8} m{sup 3}), the Pennsylvanian and Lower Permian Horseshoe Atoll Carbonate play (2.70 Bbbl [4.29 x 10{sup 8} m{sup 3}]), and the San Andres Platform Carbonate play (2.15 Bbbl [3.42 x 10{sup 8} m{sup 3}]).

  13. Locally smeared operator product expansions in scalar field theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Monahan, Christopher J. [College of William & Mary; Orginos, Kostas [William and Mary College, JLAB

    2015-04-01T23:59:59.000Z

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standard operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.

  14. Locally smeared operator product expansions in scalar field theory

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Monahan, Christopher J.; Orginos, Kostas

    2015-04-01T23:59:59.000Z

    We propose a new locally smeared operator product expansion to decompose non-local operators in terms of a basis of smeared operators. The smeared operator product expansion formally connects nonperturbative matrix elements determined numerically using lattice field theory to matrix elements of non-local operators in the continuum. These nonperturbative matrix elements do not suffer from power-divergent mixing on the lattice, which significantly complicates calculations of quantities such as the moments of parton distribution functions, provided the smearing scale is kept fixed in the continuum limit. The presence of this smearing scale complicates the connection to the Wilson coefficients of the standardmore »operator product expansion and requires the construction of a suitable formalism. We demonstrate the feasibility of our approach with examples in real scalar field theory.« less

  15. Activities of the Oil Implementation Task Force, reporting period March--August 1991; Contracts for field projects and supporting research on enhanced oil recovery, reporting period October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Activities of DOE's Oil Implementation Task Force for the period March--August 1991 are reviewed. Contracts for fields projects and supporting research on enhanced oil recovery are discussed, with a list of related publications given. Enhanced recovery processes covered include chemical flooding, gas displacement, thermal recovery, and microbial recovery.

  16. New concepts used in the Murchison field submerged production system

    SciTech Connect (OSTI)

    Morton, A.W.

    1981-01-01T23:59:59.000Z

    New concepts were used to install three satellite subsea wells at Conoco's Murchison field, located in 510 feet of water in the North Sea. Originally drilled as exploratory wells, they were re-entered and completed. The sequence of events in bringing the wells to production incorporate the following concepts: Completion with dual 3/one-half/sub d/ouble prime/ tubing retrievable safety valves inside 9 5/8/double prime/-47 pound casing; subsea controllers were not used; flowline bundles were constructed onshore and towed below the surface 264 miles to the field; six high-pressure lines were connected at one time using metal to metal gaskets while the flowline bundle was buoyant nine feet off the seafloor. Production from two satellite subsea wells demonstrated the viability of using exploratory wells for field development.

  17. Inheritance of Oil Production and Quality Factors in Peant (Arachis hypogaea L.)

    E-Print Network [OSTI]

    Wilson, Jeffrey Norman

    2013-08-02T23:59:59.000Z

    Peanut (Arachis hypogaea L.) has the potential to become a major source of biodiesel but for market viability, peanut oil yields must increase and specific quality requirements must be met. Oil yield in peanut is influenced by many components...

  18. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, S.

    2001-01-09T23:59:59.000Z

    The objective of this project is not just to produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production and production costs.

  19. Use of oil-emulsion mud in the Sivells Bend Field: Gas and gas condensate operations for the independent producer. 

    E-Print Network [OSTI]

    Echols, Walter Harlan

    1954-01-01T23:59:59.000Z

    of Deyartnsnh or Stndszk kdriser) LIBRARY A A M COLLESE OF TEXAS USE OF OIL EHULSICM 1%D Ig THE SIVELL8 HEEB FIEKB GAS AHD Gkg COHDENSkTE OPERATIOES FOR THE IEMPEMDEHT PRODUCER Prior Pah1Leatione Accepted in Id. su of Thesis HALTER HARLAN ECHOLS I I I..., Iuc, printed in USA 2 USE OP OIL-EMULSION MUD IN THE SIVELLS BEND I&IELD sand fields in North Texas indicate that they are rather consistently of the dis- solved gas-drive type, resulting in short flowing lives, comparatively long pumping lives...

  20. Future world oil production: Growth, plateau, or peak?1 Larry Hughes and Jacinda Rudolph

    E-Print Network [OSTI]

    Hughes, Larry

    to mankind, three are dominant: oil (34% of world's total energy demand), coal (26.5%), and natural gas (20) (4), and IEA projections (2009 to 2030) (8) Increasing demand for oil from China and other emerging market economies pushed world oil demand higher in the early years of the 21st century; by 2008

  1. World Oil Prices and Production Trends in AEO2010 (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    In Annual Energy Outlook 2010, the price of light, low-sulfur (or "sweet") crude oil delivered at Cushing, Oklahoma, is tracked to represent movements in world oil prices. The Energy Information Administration makes projections of future supply and demand for "total liquids,"" which includes conventional petroleum liquids -- such as conventional crude oil, natural gas plant liquids, and refinery gain -- in addition to unconventional liquids, which include biofuels, bitumen, coal-to-liquids (CTL), gas-to-liquids (GTL), extra-heavy oils, and shale oil.

  2. Increased Oil Recovery from Mature Oil Fields Using Gelled Polymer Treatments, Annual Report, June 16,2000-June 15, 2001

    SciTech Connect (OSTI)

    Willhite, G.P.; Green, D.W.; McCool, C.S.

    2002-05-22T23:59:59.000Z

    This program was aimed at reducing barriers to the widespread use of gelled polymer treatments by (1) developing methods to predict gel behavior during placement in matrix rock and fractures, (2) determining the persistence of permeability reduction after gel placement, and (3) developing methods to design production well treatments to control water production.

  3. European Conference on the Mathematics of Oil Recovery --Cannes, France, 30 August -2 September 2004 The determination of optimal well locations is a challenging problem in oil production since it

    E-Print Network [OSTI]

    Parashar, Manish

    production since it depends on geological and fluid properties as well as on economic parameters. This work Optimizing how and where wells are drilled in an oil reservoir is a problem with both high eco- nomic impact

  4. Risk analyses for disposing of nonhazardous oil field wastes in salt caverns

    SciTech Connect (OSTI)

    Tomasko, D.; Elcock, D.; Veil, J.

    1997-09-01T23:59:59.000Z

    Argonne National Laboratory (ANL) has completed an evaluation of the possibility that adverse human health effects (carcinogenic and noncarcinogenic) could result from exposure to contaminants released from nonhazardous oil field wastes (NOW) disposed of in domal salt caverns. In this assessment, several steps were used to evaluate potential human health risks: identifying potential contaminants of concern; determining how humans could be exposed to these contaminants; assessing the contaminants` toxicities; estimating contaminant intakes; and, finally, calculating human cancer and noncancer risks. Potential human health risks associated with hazardous substances (arsenic, benzene, cadmium, and chromium) in NOW were assessed under four postclosure cavern release scenarios: inadvertent cavern intrusion, failure of the cavern seal, failure of the cavern through cracks or leaky interbeds, and a partial collapse of the cavern roof. To estimate potential human health risks for these scenarios, contaminant concentrations at the receptor were calculated using a one-dimensional solution to an advection/dispersion equation that included first order degradation. Even under worst-case conditions, the risks have been found to be within the US EPA target range for acceptable exposure levels. From a human health risk perspective, salt caverns can provide an acceptable disposal method for NOW.

  5. Probing Asphaltene Aggregation in Native Crude Oils with Low-Field NMR

    SciTech Connect (OSTI)

    Zielinski, Lukasz; Saha, Indrajit; Freed, Denise E.; Hrlimann, Martin D.; Liu, Yongsheng (BU-M); (Schlumberger-Doll)

    2010-04-13T23:59:59.000Z

    We show that low-field proton nuclear magnetic resonance (NMR) relaxation and diffusion experiments can be used to study asphaltene aggregation directly in crude oils. Relaxation was found to be multiexponential, reflecting the composition of a complex fluid. Remarkably, the relaxation data for samples with different asphaltene concentrations can be collapsed onto each other by a simple rescaling of the time dimension with a concentration-dependent factor {zeta}, whereas the observed diffusion behavior is unaffected by asphaltene concentration. We interpret this finding in terms of a theoretical model that explains the enhanced relaxation by the transitory entanglement of solvent hydrocarbons within asphaltene clusters and their subsequent slowed motion and diffusion within the cluster. We relate the measured scaling parameters {zeta} to cluster sizes, which we find to be on the order of 2.2-4.4 nm for an effective sphere diameter. These sizes are in agreement with the typical values reported in the literature as well as with the small-angle X-ray scattering (SAXS) experiments performed on our samples.

  6. Disposal of oil field wastes and NORM wastes into salt caverns.

    SciTech Connect (OSTI)

    Veil, J. A.

    1999-01-27T23:59:59.000Z

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM), the risk to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne's research indicates that disposal of NOW into salt caverns is feasible and, in most cases, would not be prohibited by state agencies (although those agencies may need to revise their wastes management regulations). A risk analysis of several cavern leakage scenarios suggests that the risk from cavern disposal of NOW and NORM wastes is below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  7. Simulation studies of steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Venturini, Gilberto Jose

    2002-01-01T23:59:59.000Z

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  8. Simulation studies of steam-propane injection for the Hamaca heavy oil field

    E-Print Network [OSTI]

    Venturini, Gilberto Jose

    2002-01-01T23:59:59.000Z

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  9. Integrated reservoir study of the Appleton Oil Field, Escambia County, Alabama

    E-Print Network [OSTI]

    Chijuka, Ekene F

    2002-01-01T23:59:59.000Z

    million STB of oil). Resolution of this issue will require additional data. In particular, we require pressure data to calibrate the simulation, as well as the well performance analysis. We would also like to have a modern fluid sample (oil) made...

  10. Usefulness of effective field theory for boosted Higgs production

    E-Print Network [OSTI]

    S. Dawson; I. M. Lewis; Mao Zeng

    2015-04-22T23:59:59.000Z

    The Higgs + jet channel at the LHC is sensitive to the effects of new physics both in the total rate and in the transverse momentum distribution at high p_T. We examine the production process using an effective field theory (EFT) language and discuss the possibility of determining the nature of the underlying high scale physics from boosted Higgs production. The effects of heavy color triplet scalars and top partner fermions with TeV scale masses are considered as examples and Higgs-gluon couplings of dimension-5 and dimension-7 are included in the EFT. As a by-product of our study, we examine the region of validity of the EFT. Dimension-7 contributions in realistic new physics models give effects in the high p_T tail of the Higgs signal which are so tiny that they are likely to be unobservable.

  11. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetatexanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential

  12. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect (OSTI)

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01T23:59:59.000Z

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differentia

  13. Topologically Stratified Energy Minimizers in a Product Abelian Field Theory

    E-Print Network [OSTI]

    Han, Xiaosen

    2015-01-01T23:59:59.000Z

    The recently developed product Abelian gauge field theory by Tong and Wong hosting magnetic impurities is reformulated into an extended model that allows the coexistence of vortices and anti-vortices. The two Abelian gauge fields in the model induce two species of magnetic vortex-lines resulting from $N_s$ vortices and $P_s$ anti-vortices ($s=1,2$) realized as the zeros and poles of two complex-valued Higgs fields, respectively. An existence theorem is established for the governing equations over a compact Riemann surface $S$ which states that a solution with prescribed $N_1, N_2$ vortices and $P_1,P_2$ anti-vortices of two designated species exists if and only if the inequalities \\[ \\left|N_1+N_2-(P_1+P_2)\\right|area of $S$. The minimum energy of these solutions is shown to assume the explicit value \\...

  14. Production of hydrogen, liquid fuels, and chemicals from catalytic processing of bio-oils

    SciTech Connect (OSTI)

    Huber, George W; Vispute, Tushar P; Routray, Kamalakanta

    2014-06-03T23:59:59.000Z

    Disclosed herein is a method of generating hydrogen from a bio-oil, comprising hydrogenating a water-soluble fraction of the bio-oil with hydrogen in the presence of a hydrogenation catalyst, and reforming the water-soluble fraction by aqueous-phase reforming in the presence of a reforming catalyst, wherein hydrogen is generated by the reforming, and the amount of hydrogen generated is greater than that consumed by the hydrogenating. The method can further comprise hydrocracking or hydrotreating a lignin fraction of the bio-oil with hydrogen in the presence of a hydrocracking catalyst wherein the lignin fraction of bio-oil is obtained as a water-insoluble fraction from aqueous extraction of bio-oil. The hydrogen used in the hydrogenating and in the hydrocracking or hydrotreating can be generated by reforming the water-soluble fraction of bio-oil.

  15. Have We Run Out of Oil Yet? Oil Peaking Analysis from an Optimist's Perspective

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Hopson, Dr Janet L [University of Tennessee, Knoxville (UTK); Li, Jia [University of Tennessee, Knoxville (UTK)

    2005-01-01T23:59:59.000Z

    This study addresses several questions concerning the peaking of conventional oil production from an optimist's perspective. Is the oil peak imminent? What is the range of uncertainty? What are the key determining factors? Will a transition to unconventional oil undermine or strengthen OPEC's influence over world oil markets? These issues are explored using a model combining alternative world energy scenarios with an accounting of resource depletion and a market-based simulation of transition to unconventional oil resources. No political or environmental constraints are allowed to hinder oil production, geological constraints on the rates at which oil can be produced are not represented, and when USGS resource estimates are used, more than the mean estimate of ultimately recoverable resources is assumed to exist. The issue is framed not as a question of "running out" of conventional oil, but in terms of the timing and rate of transition from conventional to unconventional oil resources. Unconventional oil is chosen because production from Venezuela's heavy-oil fields and Canada's Athabascan oil sands is already underway on a significant scale and unconventional oil is most consistent with the existing infrastructure for producing, refining, distributing and consuming petroleum. However, natural gas or even coal might also prove to be economical sources of liquid hydrocarbon fuels. These results indicate a high probability that production of conventional oil from outside of the Middle East region will peak, or that the rate of increase of production will become highly constrained before 2025. If world consumption of hydrocarbon fuels is to continue growing, massive development of unconventional resources will be required. While there are grounds for pessimism and optimism, it is certainly not too soon for extensive, detailed analysis of transitions to alternative energy sources.

  16. Brine contamination of ground water and streams in the Baxterville Oil Field Area, Lamar and Marion Counties, Mississippi. Water resources investigation

    SciTech Connect (OSTI)

    Kalkhoff, S.J.

    1993-12-31T23:59:59.000Z

    The report defines the extent of oil-field-brine contamination in ground water and streams in the Baxterville oil field area. The report is based largely on data collected during the period October 1984 through November 1985. Water samples were collected from streams and wells in the study area. Data from a previous study conducted in the vicinity of the nearby Tatum Salt Dome were used for background water-quality information. Natural surface-water quality was determined by sampling streamflow from a nearby basin having no oil field activities and from samples collected in an adjacent basin during a previous study.

  17. REVIEW PAPER Biodeterioration of crude oil and oil derived

    E-Print Network [OSTI]

    Appanna, Vasu

    , the majority of applied microbiologi- cal methods of enhanced oil recovery also dete- riorates oil and appearsREVIEW PAPER Biodeterioration of crude oil and oil derived products: a review Natalia A. Yemashova January 2007 Ó Springer Science+Business Media B.V. 2007 Abstract Biodeterioration of crude oil and oil

  18. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 86, quarter ending March 31, 1996

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    Summaries are presented for 37 enhanced oil recovery contracts being supported by the Department of Energy. The projects are grouped into gas displacement methods, thermal recovery methods, geoscience technology, reservoir characterization, and field demonstrations in high-priority reservoir classes. Each summary includes the objectives of the project and a summary of the technical progress, as well as information on contract dates, size of award, principal investigator, and company or facility doing the research.

  19. HETEROGENEOUS SHALLOW-SHELF CARBONATE BUILDUPS IN THE PARADOX BASIN, UTAH AND COLORADO: TARGETS FOR INCREASED OIL PRODUCTION AND RESERVES USING HORIZONTAL DRILLING TECHNIQUES

    SciTech Connect (OSTI)

    David E. Eby; Thomas C. Chidsey, Jr.; Kevin McClure; Craig D. Morgan

    2003-07-01T23:59:59.000Z

    The Paradox Basin of Utah, Colorado, Arizona, and New Mexico contains nearly 100 small oil fields producing from carbonate buildups within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to 10 wells with primary production ranging from 700,000 to 2,000,000 barrels (111,300-318,000 m{sup 3}) of oil per field and a 15 to 20 percent recovery rate. At least 200 million barrels (31.8 million m{sup 3}) of oil will not be recovered from these small fields because of inefficient recovery practices and undrained heterogeneous reservoirs. Several fields in southeastern Utah and southwestern Colorado are being evaluated as candidates for horizontal drilling and enhanced oil recovery from existing vertical wells based upon geological characterization and reservoir modeling case studies. Geological characterization on a local scale is focused on reservoir heterogeneity, quality, and lateral continuity, as well as possible reservoir compartmentalization, within these fields. This study utilizes representative cores, geophysical logs, and thin sections to characterize and grade each field's potential for drilling horizontal laterals from existing development wells. The results of these studies can be applied to similar fields elsewhere in the Paradox Basin and the Rocky Mountain region, the Michigan and Illinois Basins, and the Midcontinent region. This report covers research activities for the second half of the third project year (October 6, 2002, through April 5, 2003). The primary work included describing and mapping regional facies of the upper Ismay and lower Desert Creek zones of the Paradox Formation in the Blanding sub-basin, Utah. Regional cross sections show the development of ''clean carbonate'' packages that contain all of the productive reservoir facies. These clean carbonates abruptly change laterally into thick anhydrite packages that filled several small intra-shelf basins in the upper Ismay zone. Examination of upper Ismay cores identified seven depositional facies: open marine, middle shelf, inner shelf/tidal flat, bryozoan mounds, phylloid-algal mounds, quartz sand dunes, and anhydritic salinas. Lower Desert Creek facies include open marine, middle shelf, protomounds/collapse breccia, and phylloid-algal mounds. Mapping the upper Ismay zone facies delineates very prospective reservoir trends that contain porous, productive buildups around the anhydrite-filled intra-shelf basins. Facies and reservoir controls imposed by the anhydritic intra-shelf basins should be considered when selecting the optimal location and orientation of any horizontal drilling from known phylloidalgal reservoirs to undrained reserves, as well as identifying new exploration trends. Although intra-shelf basins are not present in the lower Desert Creek zone of the Blanding sub-basin, drilling horizontally along linear shoreline trends could also encounter previously undrilled, porous intervals and buildups. Technology transfer activities consisted of a technical presentation at a Class II Review conference sponsored by the National Energy Technology Laboratory at the Center for Energy and Economic Diversification in Odessa, Texas. The project home page was updated on the Utah Geological Survey Internet web site.

  20. Framework for managing wastes from oil and gas exploration and production (E&P) sites.

    SciTech Connect (OSTI)

    Veil, J. A.; Puder, M. G.; Environmental Science Division

    2007-09-15T23:59:59.000Z

    Oil and gas companies operate in many countries around the world. Their exploration and production (E&P) operations generate many kinds of waste that must be carefully and appropriately managed. Some of these wastes are inherently part of the E&P process; examples are drilling wastes and produced water. Other wastes are generic industrial wastes that are not unique to E&P activities, such as painting wastes and scrap metal. Still other wastes are associated with the presence of workers at the site; these include trash, food waste, and laundry wash water. In some host countries, mature environmental regulatory programs are in place that provide for various waste management options on the basis of the characteristics of the wastes and the environmental settings of the sites. In other countries, the waste management requirements and authorized options are stringent, even though the infrastructure to meet the requirements may not be available yet. In some cases, regulations and/or waste management infrastructure do not exist at all. Companies operating in these countries can be confronted with limited and expensive waste management options.

  1. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    to reduction in crude oil production. The competitive modelbarrel of crude oil is allocated to gasoline production. The

  2. Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char

    SciTech Connect (OSTI)

    Ben Hassen-Trabelsi, A., E-mail: aidabenhassen@yahoo.fr [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Kraiem, T. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia); Naoui, S. [Centre de Recherche et de Technologies de l’Energie (CRTEn), Technopôle Borj-Cédria, B.P 95, 2050, Hammam Lif (Tunisia); Belayouni, H. [Département de Géologie, Université de Tunis, 2092, Tunis (Tunisia)

    2014-01-15T23:59:59.000Z

    Highlights: • Produced bio-fuels (bio-oil and bio-char) from some animal fatty wastes. • Investigated the effects of main parameters on pyrolysis products distribution. • Determined the suitable conditions for the production of the maximum of bio-oil. • Characterized bio-oils and bio-chars obtained from several animal fatty wastes. - Abstract: Several animal (lamb, poultry and swine) fatty wastes were pyrolyzed under nitrogen, in a laboratory scale fixed-bed reactor and the main products (liquid bio-oil, solid bio-char and syngas) were obtained. The purpose of this study is to produce and characterize bio-oil and bio-char obtained from pyrolysis of animal fatty wastes. The maximum production of bio-oil was achieved at a pyrolysis temperature of 500 °C and a heating rate of 5 °C/min. The chemical (GC–MS analyses) and spectroscopic analyses (FTIR analyses) of bio-oil showed that it is a complex mixture consisting of different classes of organic compounds, i.e., hydrocarbons (alkanes, alkenes, cyclic compounds…etc.), carboxylic acids, aldehydes, ketones, esters,…etc. According to fuel properties, produced bio-oils showed good properties, suitable for its use as an engine fuel or as a potential source for synthetic fuels and chemical feedstock. Obtained bio-chars had low carbon content and high ash content which make them unattractive for as renewable source energy.

  3. Projections of the impact of expansion of domestic heavy oil production on the U.S. refining industry from 1990 to 2010. Topical report

    SciTech Connect (OSTI)

    Olsen, D.K.; Ramzel, E.B.; Strycker, A.R. [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute] [National Institute for Petroleum and Energy Research, Bartlesville, OK (United States). ITT Research Institute; Guariguata, G.; Salmen, F.G. [Bonner and Moore Management Science, Houston, TX (United States)] [Bonner and Moore Management Science, Houston, TX (United States)

    1994-12-01T23:59:59.000Z

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil (10{degrees} to 20{degrees} API gravity) production. This report provides a compendium of the United States refining industry and analyzes the industry by Petroleum Administration for Defense District (PADD) and by ten smaller refining areas. The refining capacity, oil source and oil quality are analyzed, and projections are made for the U.S. refining industry for the years 1990 to 2010. The study used publicly available data as background. A linear program model of the U.S. refining industry was constructed and validated using 1990 U.S. refinery performance. Projections of domestic oil production (decline) and import of crude oil (increases) were balanced to meet anticipated demand to establish a base case for years 1990 through 2010. The impact of additional domestic heavy oil production, (300 MB/D to 900 MB/D, originating in select areas of the U.S.) on the U.S. refining complex was evaluated. This heavy oil could reduce the import rate and the balance of payments by displacing some imported, principally Mid-east, medium crude. The construction cost for refining units to accommodate this additional domestic heavy oil production in both the low and high volume scenarios is about 7 billion dollars for bottoms conversion capacity (delayed coking) with about 50% of the cost attributed to compliance with the Clean Air Act Amendment of 1990.

  4. Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products , Chase L.D.C.b

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    and consumption of sustainable palm oil through a voluntary certification scheme. This certification scheme1 Pilot application of PalmGHG, the RSPO greenhouse gas calculator for oil palm products Bessou C, France b Independent Consultant in Tropical Agriculture, High Trees, Martineau Drive, Dorking, Surrey RH4

  5. Fuzzy SPC filter for a feed-forward control system for a three-phase oil field centrifuge.

    SciTech Connect (OSTI)

    Parkinson, W. J. (William Jerry),; Smith, R. E. (Ronald E.); Mortensen, F. N. (Fred N.); Wantuck, P. J. (Paul J.); Jamshidi, Mohammad; Ross, Timothy J.

    2002-01-01T23:59:59.000Z

    In this work we describe a signal filter for a feed-forward controller based on the application of fuzzy logic combined with statistical process control (SPC), The feed-forward controller is for a three-phase oil field centrifuge. The centrifuge system is used to separate meta-stable three-phase emulsions consisting of oil and water stabilized by solids. These emulsions are considered to be unusable wastes and must be disposed of in an environmentally acceptable manner. The centrifuge is capable of turning these wastes into clean saleable oil, water that can be reused in an operating process or re-injected into oil wells and, solids that can be disposed of in landfills. The feed-forward controller is used for feed disturbance rejection. It works in conjunction with and, is capable of over-riding the actions of, a feedback controller. The measured feed variables for the feed-forward controller each exhibit reasonably large random fluctuations. It is therefore quite important to use a signal filter that truly recognizes the difference between random noise and a 'caused' event, in order to prevent overriding a perfectly good correction from the feedback controller.

  6. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07T23:59:59.000Z

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  7. Field Instruments for Real Time In-Situ Crude Oil Concentration Measurements

    E-Print Network [OSTI]

    Fuller, C. B.; Bonner, J. S.; Page, C. A.; Arrambide, G.; Sterling Jr., M. C.; Ojo, T.

    The Texas Water Resources Institute awarded a Mill Scholarship to M.C. Sterling, Jr in 2002. This project describes five sensors for rapid monitoring of crude oil concentrations in an aquatic system. These measurements are critical for monitoring...

  8. Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California

    E-Print Network [OSTI]

    Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

    2010-01-01T23:59:59.000Z

    Oil Point, California. Mar Petrol Geol 22:569–578 Whelan J,S transect of the Gulf of Mexico. Mar Petrol Geol 22:479–497of gas origin: Mar Petrol Geol 26:333–344 Finkbeiner T,

  9. Formation of seep bubble plumes in the Coal Oil Point seep field

    E-Print Network [OSTI]

    Leifer, Ira; Culling, Daniel

    2010-01-01T23:59:59.000Z

    Oil Point, California. Mar Petrol Geol 22:569–578 Winkel ES,methane exhalations. Mar Petrol Geol 22:579–590 Kvenvoldenunconsolidated sediment. Mar Petrol Geol 22:551–568 Leifer

  10. Understanding the Impact of Open-Framework Conglomerates on Water-Oil Displacements: Victor Interval of the Ivishak Reservoir, Prudhoe Bay Field, Alaska

    E-Print Network [OSTI]

    Gershenzon, Naum I; Ritzi, Robert W; Dominic, David F

    2014-01-01T23:59:59.000Z

    The Victor Unit of the Ivishak Formation in the Prudhoe Bay Oilfield is characterized by high net-to-gross fluvial sandstones and conglomerates. The highest permeability is found within sets of cross-strata of open-framework conglomerate (OFC). They are preserved within unit bar deposits and assemblages of unit bar deposits within compound (braid) bar deposits. They are thief zones limiting enhanced oil recovery. We incorporate recent research that has quantified important attributes of their sedimentary architecture within preserved deposits. We use high-resolution models to demonstrate the fundamental aspects of their control on oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. We found that when the pressure gradient is oriented perpendicular to the paleoflow direction, the total oil production and the water breakthrough time are larger, and remaining oil saturation is smaller, than when it is oriented parallel to paleoflow. The pressure differe...

  11. The effect of biofuel on the international oil market

    E-Print Network [OSTI]

    Hochman, Gal; Rajagopal, Deepak; Zilberman, David D.

    2010-01-01T23:59:59.000Z

    producer surplus from oil consumption and production. Ourconsumption of crude oil, consumption grew from 2005 to 2006from oil extraction, production, and consumption. More

  12. Phenolic compounds containing/neutral fractions extract and products derived therefrom from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Black, Stuart K. (Denver, CO); Diebold, James P. (Lakewood, CO); Kreibich, Roland E. (Auburn, WA)

    1993-01-01T23:59:59.000Z

    A process for preparing phenol-formaldehyde novolak resins and molding compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils. The fractionation consists of a neutralization stage which can be carried out with aqueous solutions of bases or appropriate bases in the dry state, followed by solvent extraction with an organic solvent having at least a moderate solubility parameter and good hydrogen bonding capacity. Phenolic compounds-containing/neutral fractions extracts obtained by fractionating fast-pyrolysis oils from a lignocellulosic material, is such that the oil is initially in the pH range of 2-4, being neutralized with an aqueous bicarbonate base, and extracted into a solvent having a solubility parameter of approximately 8.4-9.11 [cal/cm.sup.3 ].sup.1/2 with polar components in the 1.8-3.0 range and hydrogen bonding components in the 2-4.8 range and the recovery of the product extract from the solvent with no further purification being needed for use in adhesives and molding compounds. The product extract is characterized as being a mixture of very different compounds having a wide variety of chemical functionalities, including phenolic, carbonyl, aldehyde, methoxyl, vinyl and hydroxyl. The use of the product extract on phenol-formaldehyde thermosetting resins is shown to have advantages over the conventional phenol-formaldehyde resins.

  13. Reducing Onshore Natural Gas and Oil Exploration and Production Impacts Using a Broad-Based Stakeholder Approach

    SciTech Connect (OSTI)

    Amy Childers

    2011-03-30T23:59:59.000Z

    Never before has the reduction of oil and gas exploration and production impacts been as important as it is today for operators, regulators, non-governmental organizations and individual landowners. Collectively, these stakeholders are keenly interested in the potential benefits from implementing effective environmental impact reducing technologies and practices. This research project strived to gain input and insight from such a broad array of stakeholders in order to identify approaches with the potential to satisfy their diverse objectives. The research team examined three of the most vital issue categories facing onshore domestic production today: (1) surface damages including development in urbanized areas, (2) impacts to wildlife (specifically greater sage grouse), and (3) air pollution, including its potential contribution to global climate change. The result of the research project is a LINGO (Low Impact Natural Gas and Oil) handbook outlining approaches aimed at avoiding, minimizing, or mitigating environmental impacts. The handbook identifies technical solutions and approaches which can be implemented in a practical and feasible manner to simultaneously achieve a legitimate balance between environmental protection and fluid mineral development. It is anticipated that the results of this research will facilitate informed planning and decision making by management agencies as well as producers of oil and natural gas. In 2008, a supplemental task was added for the researchers to undertake a 'Basin Initiative Study' that examines undeveloped and/or underdeveloped oil and natural gas resources on a regional or geologic basin scope to stimulate more widespread awareness and development of domestic resources. Researchers assessed multi-state basins (or plays), exploring state initiatives, state-industry partnerships and developing strategies to increase U.S. oil and gas supplies while accomplishing regional economic and environmental goals.

  14. Biodiesel Production from Linseed Oil and Performance Study of a Diesel Engine 40 BIODIESEL PRODUCTION FROM LINSEED OIL AND PERFORMANCE STUDY OF A DIESEL ENGINE WITH DIESEL BIO-DIESEL FUELS

    E-Print Network [OSTI]

    Md. Nurun Nabi; S. M. Najmul Hoque

    Abstract: The use of biodiesel is rapidly expanding around the world, making it imperative to fully understand the impacts of biodiesel on the diesel engine combustion process and pollutant formation. Biodiesel is known as “the mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oils or animal fats, for use in compression ignition (diesel) engines. ” Biodiesel was made by transesterification from linseed oil. In aspect of Bangladesh linseed can play an important role in the production of alternative diesel fuel. The climatic and soil condition of our country is convenient for the production of linseed (Linum Usitatissimum) crop. In the first phase of this work optimization of different parameters for biodiesel production were investigated. In the second phase the performance study of a diesel engine with diesel biodiesel blends were carried out. The results showed that with the variation of catalyst, methanol and reaction time; variation of biodiesel production was realized. About 88 % biodiesel production was experienced with 20 % methanol, 0.5% NaOH catalyst and at 550C. The results also showed that when compared with neat diesel fuel, biodiesel gives almost similar thermal efficiency, lower carbon monoxide (CO) and particulate matter (PM) while slightly higher nitrogen oxide (NOx) emission was experienced.

  15. Observational constraints on gauge field production in axion inflation

    SciTech Connect (OSTI)

    Meerburg, P.D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08540 (United States); Pajer, E., E-mail: meerburg@princeton.edu, E-mail: enrico.pajer@gmail.com [Department of Physics, Princeton University, Princeton, NJ 08544 (United States)

    2013-02-01T23:59:59.000Z

    Models of axion inflation are particularly interesting since they provide a natural justification for the flatness of the potential over a super-Planckian distance, namely the approximate shift-symmetry of the inflaton. In addition, most of the observational consequences are directly related to this symmetry and hence are correlated. Large tensor modes can be accompanied by the observable effects of a the shift-symmetric coupling ?F F-tilde to a gauge field. During inflation this coupling leads to a copious production of gauge quanta and consequently a very distinct modification of the primordial curvature perturbations. In this work we compare these predictions with observations. We find that the leading constraint on the model comes from the CMB power spectrum when considering both WMAP 7-year and ACT data. The bispectrum generated by the non-Gaussian inverse-decay of the gauge field leads to a comparable but slightly weaker constraint. There is also a constraint from ?-distortion using TRIS plus COBE/FIRAS data, but it is much weaker. Finally we comment on a generalization of the model to massive gauge fields. When the mass is generated by some light Higgs field, observably large local non-Gaussianity can be produced.

  16. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential, Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico

    SciTech Connect (OSTI)

    Swift, T.E.; Marlow, R.E.; Wilhelm, M.H.; Goodrich, J.H.; Kumar, R.M.

    1981-11-01T23:59:59.000Z

    This report describes part of the work done to fulfill a contract awarded to Gruy Federal, Inc., by the Department of Energy (DOE) on Feburary 12, 1979. The work includes pressure-coring and associated logging and testing programs to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report details the second such project. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques incorporating the a, m, and n values obtained from Core Laboratories analysis did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations and production data confirmed the validity of oil saturation determinations. Residual oil saturation, for the perforated and tested intervals were 259 STB/acre-ft for the interval from 4035 to 4055 feet, and 150 STB/acre-ft for the interval from 3692 to 3718 feet. Nine BOPD was produced from the interval 4035 to 4055 feet and no oil was produced from interval 3692 to 3718 feet, qualitatively confirming the relative oil saturations as calculated. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. This project demonstrates the usefulness of integrating pressure core, log, and production data to realistically evaluate a reservoir for carbon dioxide flood.

  17. Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands (Mississippi)

    Broader source: Energy.gov [DOE]

    The Rules and Regulations Governing Leasing for Production or Extraction of Oil, Gas and Other Minerals From Onshore State-Owned Lands is applicable to the natural gas sector. This law delegates...

  18. A New Method for History Matching and Forecasting Shale Gas/Oil Reservoir Production Performance with Dual and Triple Porosity Models

    E-Print Network [OSTI]

    Samandarli, Orkhan

    2012-10-19T23:59:59.000Z

    Different methods have been proposed for history matching production of shale gas/oil wells which are drilled horizontally and usually hydraulically fractured with multiple stages. These methods are simulation, analytical models, and empirical...

  19. Production of Biodiesel from Jatropha Oil (Jatropha curcas) in Pilot Plant

    E-Print Network [OSTI]

    Tint Tint Kywe; Mya Mya Oo

    Abstract—In this research, among the chemical properties, free fatty acid value of jatropha oil was determined to be 22.6%, 5.23% and 8.8 % respectively. Total, free and combined glycerol percent of raw jatropha oil were 8.27 %, 0.58 % and 7.69 % respectively. Yield of biodiesel from jatropha oil at optimal sodium hydroxide catalyst concentration 1%, reaction temperature 65°C, reaction time one hour and molar ratio of methanol to oil 6:1 was 92 % from lab scale. Yield of biodiesel from jatropha oil at optimal potassium hydroxide catalyst concentration 1%, reaction temperature – room temperature, reaction time 5 hours and molar ratio of ethanol to oil 8:1 was 90% from the lab scale. Biodiesel was also produced from pilot plant at optimum transesterification process condition as stated above. The yield of biodiesel (methyl ester) and ethyl ester were 92 % and 90% on the basis of refined jatropha oil in the pilot plant scale. The capacity of biodiesel pilot plant is 30 gal / day. The fuel properties of biodiesel, namely cetane index, flash point, pour point, kinematic viscosity, specific gravity, color, copper strip corrosion, acid value, water and sediment and distillation at 90 % recovery, were found to be within the limits of American Society for Testing and Materials (ASTM) specifications for biodiesel and diesel fuel. The fuel consumption of the engine which used biodiesel produced from free fatty acid content 5.23 % in raw jatropha oil is more than the fuel consumption of the engine which used biodiesel produced from free fatty acid content 1 % in refined raw jatropha oil. Keywords—renewable energy, biodiesel, transesterification, methyl ester, ethyl ester, pilot plant. I.

  20. Determination of imidazoline and amido-amine type corrosion inhibitors in both crude oil and produced brine from oilfield production

    SciTech Connect (OSTI)

    Matherly, R.M.; Jiao, J. [Baker Performance Chemicals, Houston, TX (United States); Blumer, D.J. [ARCO Alaska Inc., Anchorage, AK (United States); Ryman, J.S. [Baker Performance Chemicals, Anchorage, AK (United States)

    1995-12-01T23:59:59.000Z

    The classical method for the determination of corrosion inhibitors in oilfield brines is the dye transfer method. Within this method are many variations which the analyst may use to determine the amount of corrosion inhibitor in either water or crude oil. These methods, however, suffer from many interferences which result in both false positive and negatives for corrosion inhibitor content. These methods essentially detect all amines as corrosion inhibitors. Improved high pressure liquid chromatography (HPLC) methods have been developed for the analysis of quaternary salt type corrosion inhibitors in brine waters, however, these methods do not appear to work in crude oil or for other forms of corrosion inhibitors such as the imidazolines, and amido-amines. This paper presents a method for the quantitative analysis of the imidazoline and amido-amine type corrosion inhibitors in both oilfield water and crude oil samples by HPLC. The corrosion inhibitor of interest is first separated from the matrix on a small column, then derivatized to form a product which is both sensitive and selective on a fluorescence detector. Detection limits for imidazolines are around 0.2 mg/L, amides and amines are similar. The advantage of this procedure is it can be used to determine the amount of corrosion inhibitor in both oil and brine water phases as well as on solid surfaces.

  1. Reactivation of an Idle Lease to Increase Heavy Oil Recovery Through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Resrvoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Creties Jenkins; Doug Sprinkel; Milind Deo; Ray Wydrinski; Robert Swain

    1997-10-21T23:59:59.000Z

    This project reactivates ARCO?s idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming is being used to reestablish baseline production within the reservoir characterization phase of the project. During the demonstration phase scheduled to begin in January 1997, a continuous steamflood enhanced oil recovery will be initiated to test the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having similar producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially to other producers in California, through an aggressive technology transfer program.

  2. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low Dip Slope and Basin Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California

    SciTech Connect (OSTI)

    Deo, M.; Forster, C.; Jenkins, C.; Schamel, S.; Sprinkel, D.; and Swain, R.

    1999-02-01T23:59:59.000Z

    This project reactivates ARCO's idle Pru Fee lease in the Midway-Sunset field, California and conducts a continuous steamflood enhanced oil recovery demonstration aided by an integration of modern reservoir characterization and simulation methods. Cyclic steaming was used to reestablish baseline production within the reservoir characterization phase of the project completed in December 1996. During the demonstration phase begun in January 1997, a continuous steamflood enhanced oil recovery is testing the incremental value of this method as an alternative to cyclic steaming. Other economically marginal Class III reservoirs having simular producibility problems will benefit from insight gained in this project. The objectives of the project are: (1) to return the shut-in portion of the reservoir to optimal commercial production; (2) to accurately describe the reservoir and recovery process; and (3) to convey the details of this activity to the domestic petroleum industry, especially t o other producers in California, through an aggressive technology transfer program.

  3. Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters

    Broader source: Energy.gov [DOE]

    Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters

  4. Reactivation of an Idle Lease to Increase Heavy Oil Recovery through Application of Conventional Steam Drive Technology in a Low-Dip Slope and Reservoir in the Midway-Sunset Field, San Jaoquin Basin, California, Class III

    SciTech Connect (OSTI)

    Schamel, Steven; Deo, Milind; Deets, Mike

    2002-02-21T23:59:59.000Z

    The objective of the project is not just to commercially produce oil from the Pru Fee property, but rather to test which operational strategies best optimize total oil recovery at economically acceptable rates of production volumes and costs.

  5. Water and gas coning: two and three phase system correlations for the critical oil production rate and optimum location of the completion interval 

    E-Print Network [OSTI]

    Gonzalez, Francisco Manuel

    1987-01-01T23:59:59.000Z

    WATER AND GAS COMING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM LOCATION OF THE COMPLETION INTERVAL A Thesis by FRANCISCO MANUEL GONZALEZ, JR. Submitted to the Graduate College of Texas A...&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1987 Major Subject: Petroleum Engineering WATER AND GAS CONING: TWO AND THREE PHASE SYSTEM CORRELATIONS FOR THE CRITICAL OIL PRODUCTION RATE AND OPTIMUM...

  6. Research staff at the USGS Patuxent Wildlife Research Center began studying the effects of crude oil and petroleum products on birds in the late 1970's under a grant from the U.S. Environmental Protection Agency.

    E-Print Network [OSTI]

    Torgersen, Christian

    oil and petroleum products on birds in the late 1970's under a grant from the U.S. Environmental products, can vary greatly in their composition and toxicity. Q: How do birds become exposed to oil? A: All: Avian embryos, especially very young ones, are very sensitive to crude oil and refined petroleum

  7. Reservoir characterization and development opportunities in Jacob Field, South-Central Texas

    E-Print Network [OSTI]

    Hernandez Depaz, Mirko Joshoe

    2004-09-30T23:59:59.000Z

    the study, determine the oil potential, and make recommendations to improve production. Since no previous reservoir study was performed in this field, the original oil in place and the current status of depletion was unknown. Therefore a complete integrated...

  8. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  9. Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils

    DOE Patents [OSTI]

    Chum, Helena L. (Arvada, CO); Kreibich, Roland E. (Auburn, WA)

    1992-01-01T23:59:59.000Z

    A process for preparing phenol-formaldehyde resole resins and adhesive compositions in which portions of the phenol normally contained in said resins are replaced by a phenol/neutral fractions extract obtained from fractionating fast-pyrolysis oils.

  10. Piston ring pack design effects on production spark ignition engine oil consumption : a simulation analysis

    E-Print Network [OSTI]

    Senzer, Eric B

    2007-01-01T23:59:59.000Z

    One of the most significant contributors to an engine's total oil consumption is the piston ring-pack. As a result, optimization of the ring pack is becoming more important for engine manufacturers and lubricant suppliers. ...

  11. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    SciTech Connect (OSTI)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27T23:59:59.000Z

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  12. USING CABLE SUSPENDED SUBMERSIBLE PUMPS TO REDUCE PRODUCTION COSTS TO INCREASE ULTIMATE RECOVERY IN THE RED MOUNTAIN FIELD IN SAN JUAN BASIN REGION

    SciTech Connect (OSTI)

    Don L. Hanosh

    2004-01-01T23:59:59.000Z

    A joint venture between Enerdyne LLC, a small independent oil and gas producer, and Pumping Solutions Inc., developer of a low volume electric submersible pump, suspended from a cable, both based in Albuquerque, New Mexico, has re-established marginal oil production from the Red Mountain Oil Field, located in the San Juan Basin, New Mexico by working over 17 existing wells and installing submersible pumps. The project was funded through a cooperative 50% cost sharing agreement between Enerdyne LLC and the National Energy Technology Laboratory (NETL), United States Department of Energy, executed on April 16, 2003. The total estimated cost for this first phase of the agreement was $386,385.00 as detailed in Phase I Authorization For Expenditure (AFE). This report describes the tasks performed, the results, and conclusions for the first phase (Phase I) of the cooperative agreement.

  13. Western Shallow Oil Zone, Elk Hills Field, Kern County, California: General reservoir study, Appendix 4, Fourth Wilhelm sand

    SciTech Connect (OSTI)

    Carey, K.B.

    1987-09-01T23:59:59.000Z

    The general Reservoir Study of the Western Shallow Oil Zone was prepared by Evans, Carey and Crozier as Task Assignment 009 with the United States Department of Energy. This study, Appendix IV, addresses the Fourth Wilhelm Sand and its sub units and pools. Basic pressure, production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. Basic pressure production and assorted technical data were provided by the US Department of Energy staff at Elk Hills. These data were accepted as furnished with no attempt being made by Evans, Carey and Crozier for independent verification. This study has identified the petrophysical properties and the past productive performance of the reservoir. Primary reserves have been determined and general means of enhancing future recovery have been suggested. It is hoped that this volume can now additionally serve as a take off point for exploitation engineers to develop specific programs toward the end. 12 figs., 9 tabs.

  14. SUSTAINABLE DEVELOPMENT IN KAZAKHASTAN: USING OIL AND GAS PRODUCTION BY-PRODUCT SULFUR FOR COST-EFFECTIVE SECONDARY END-USE PRODUCTS.

    SciTech Connect (OSTI)

    KALB, P.D.; VAGIN, S.; BEALL, P.W.; LEVINTOV, B.L.

    2004-09-25T23:59:59.000Z

    The Republic of Kazakhstan is continuing to develop its extensive petroleum reserves in the Tengiz region of the northeastern part of the Caspian Sea. Large quantities of by-product sulfur are being produced as a result of the removal of hydrogen sulfide from the oil and gas produced in the region. Lack of local markets and economic considerations limit the traditional outlets for by-product sulfur and the buildup of excess sulfur is a becoming a potential economic and environmental liability. Thus, new applications for re-use of by-product sulfur that will benefit regional economies including construction, paving and waste treatment are being developed. One promising application involves the cleanup and treatment of mercury at a Kazakhstan chemical plant. During 19 years of operation at the Pavlodar Khimprom chlor-alkali production facility, over 900 tons of mercury was lost to the soil surrounding and beneath the buildings. The Institute of Metallurgy and Ore Benefication (Almaty) is leading a team to develop and demonstrate a vacuum-assisted thermal process to extract the mercury from the soil and concentrate it as pure, elemental mercury, which will then be treated using the Sulfur Polymer Stabilization/Solidification (SPSS) process. The use of locally produced sulfur will recycle a low-value industrial by-product to treat hazardous waste and render it safe for return to the environment, thereby helping to solve two problems at once. SPSS chemically stabilizes mercury to mercuric sulfide, which has a low vapor pressure and low solubility, and then physically encapsulates the material in a durable, monolithic solid sulfur polymer matrix. Thus, mercury is placed in a solid form very much like stable cinnabar, the form in which it is found in nature. Previous research and development has shown that the process can successfully encapsulate up to 33 wt% mercury in the solid form, while still meeting very strict regulatory standards for leachable mercury (0.025 mg/l in the Toxicity Characteristic Leaching Procedure). The research and development to deploy Kazakhstan recycled sulfur for secondary applications described in this paper is being conducted with support from the International Science and Technology Center (ISTC) and the U.S. Department of Energy Initiatives for Proliferation Prevention (DOE IPP).

  15. Teamwork Plus Technology Equals Reduced Emissions, Reduced Energy Usage, and Improved Productivity for an Oil Production Facility

    E-Print Network [OSTI]

    Booker, G.; Robinson, J.

    control system project into the existing Steepbank Mine and Extraction Process Plant. The Extraction Process separates the raw oil called bitumen from the mined ore and is the largest energy user on the site. A control system and energy audit was conducted...

  16. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30T23:59:59.000Z

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  17. Electromagnetic oil field mapping for improved process monitoring and reservoir characterization: A poster presentation

    SciTech Connect (OSTI)

    Waggoner, J.R.; Mansure, A.J.

    1992-02-01T23:59:59.000Z

    This report is a permanent record of a poster paper presented by the authors at the Third International Reservoir Characterization Technical Conference in Tulsa, Oklahoma on November 3--5, 1991. The subject is electromagnetic (EM) techniques that are being developed to monitor oil recovery processes to improve overall process performance. The potential impact of EM surveys is very significant, primarily in the areas of locating oil, identifying oil inside and outside the pattern, characterizing flow units, and pseudo-real time process control to optimize process performance and efficiency. Since a map of resistivity alone has little direct application to these areas, an essential part of the EM technique is understanding the relationship between the process and the formation resistivity at all scales, and integrating this understanding into reservoir characterization and simulation. First is a discussion of work completed on the core scale petrophysics of resistivity changes in an oil recovery process; a steamflood is used as an example. A system has been developed for coupling the petrophysics of resistivity with reservoir simulation to simulate the formation resistivity structure arising from a recovery process. Preliminary results are given for an investigation into the effect of heterogeneity and anisotropy on the EM technique, as well as the use of the resistivity simulator to interpret EM data in terms of reservoir and process parameters. Examples illustrate the application of the EM technique to improve process monitoring and reservoir characterization.

  18. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 87

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    Approximately 30 research projects are summarized in this report. Title of the project, contract number, company or university, award amount, principal investigators, objectives, and summary of technical progress are given for each project. Enhanced oil recovery projects include chemical flooding, gas displacement, and thermal recovery. Most of the research projects though are related to geoscience technology and reservoir characterization.

  19. Explosively produced fracture of oil shale. Progress report, July-September 1981. [Field experiments; computer models; retort stability

    SciTech Connect (OSTI)

    none,

    1982-04-01T23:59:59.000Z

    The Los Alamos National Laboratory is conducting rock fragmentation research in oil shale to develop the blasting technologies and designs required to create a rubble bed for a modified in situ retort. This report outlines our first field experiments at the Anvil Points Mine in Colorado. These experiments are part of a research program, sponsored by the Laboratory through the Department of Energy and by a Consortium of oil companies. Also included are some typical numerical calculations made in support of proposed field experiments. Two papers detail our progress in computer modeling and theory. The first presents a method for eliminating hourglassing in two-dimensional finite-difference calculations of rock fracture without altering the physical results. The second discusses the significant effect of buoyancy on tracer gas flow through the retort. A paper on retort stability details a computer application of the Schmidt graphical method for calculating fine-scale temperature gradients in a retort wall. The final paper, which describes our approach to field experiments, presents the instrumentation and diagnostic techniques used in rock fragmentation experiments at Anvil Points Mine.

  20. The stimulation of heavy oil reservoirs with electrical resistance heating

    E-Print Network [OSTI]

    Baylor, Blake Allen

    1990-01-01T23:59:59.000Z

    . Equations for r? and P, were written using regression analysis. The calculation procedure is as follows: (1) calculate r?, (2) calculate the skin factor, s??, (3) calculate the heated oil production rate, q, ?, and (4) calculate the downhole power... of various heavy oils at 113 'F Fig. 23 ? Effect of CH, on the viscosity of various heavy oils at 171 'F Fig. 24 - Viscosity/pressure relationship for the recombined field sample Fig. 25 ? Smoothed viscosity/pressure relationship for the recombined...